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ABSTRACT

Latent Interacting Variable Effects (LIVE) modeling is a framework to integrate different types of
microbiome multi-omics data by combining latent variables from single-omic models into a structured meta-
model to determine discriminative, interacting multi-omics features driving disease status. We implemented
and tested LIVE modeling in publicly available metagenomics and metabolomics datasets from Crohn’s
Disease and Ulcerative Colitis patients. Here, LIVE modeling reduced the number of feature correlations from
the original data set for CD and UC to tractable numbers and facilitated prioritization of biological associations
between microbes, metabolites, enzymes and IBD status through the application of stringent thresholds on
generated inferential statistics. We determined LIVE modeling confirmed previously reported IBD biomarkers
and uncovered potentially novel disease mechanisms in IBD. LIVE modeling makes a distinct and
complementary contribution to the current methods to integrate microbiome data to predict IBD status because
of its flexibility to adapt to different types of microbiome multi-omics data, scalability for large and small cohort
studies via reliance on latent variables and dimensionality reduction, and the intuitive interpretability of the
linear meta-model integrating -omic data types. The results of LIVE modeling and the biological relationships
can be represented in networks that connect local correlation structure of single omic data types with global
community and omic structure in the latent variable VIP scores. This model arises as novel tool that allows
researchers to be more selective about omic feature interaction without disrupting the structural correlation
framework provided by sPLS-DA interaction effects modeling. It will lead to form testable hypothesis by
identifying potential and unique interactions between metabolome and microbiome that must be considered for

future studies.
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AUTHOR SUMMARY

Latent Interacting Variable Effects (LIVE) modeling integrates microbiome multiomics features by encoding
them in a set of latent variables (LVs) from single-omic sparse Partial Lease Squares models, and then
combine these LVs into structured metamodel to determine the most discriminative features driving IBD. We
used publicly available metagenomic and metabolomics data from Crohn’s Disease and Ulcerative Colitis
patients to develop LIVE modeling. LIVE modeling reduced data dimensionality efficiently and identified
statistical interactions among microbiome multi-omics data, which can be visualized as a mineable network
data structure. LIVE modeling confirmed features previously reported and revealed novel microbiome
interactions in IBD. LIVE offers a flexible framework for multi-omic modeling that may aid in interpretation of

complex microbiome datasets.
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INTRODUCTION

Alterations in the composition and function of intestinal microbiota are a hallmark of Crohn's Disease
(CD) and Ulcerative Colitis (UC), two subtypes of Inflammatory Bowel Diseases (IBD) [1-4]. These alterations
trigger local and systemic host inflammatory responses that progressively damage the intestines over time [5-
6]. A hypothesis of how alterations in gut microbiota drive chronic inflammation in Crohn's Disease and
Ulcerative Colitis is through the gut metabolome which may act as an interface between the host and
microbiome [7]. However, these mechanisms of metabolome-mediated host-microbiome interactions are poorly
understood. A better understanding of how gut microbiome alterations drive IBDs could enable less-invasive
diagnostic methods for CD and UC, facilitate identification of therapeutic biomarkers, or reveal strategies to
prolong disease remission and reduce the likelihood of relapse [8]. As validated pathways of host-microbiome
interactions in IBD continue to be established, interpretable computational models of microbiome multi-omics
data could potentially reveal translatable insights into IBD progression and drug-resistance, data which is
increasingly available from large cohorts of CD and UC patients.

Much of the current state of the art to determine microbe-metabolite associations is focused on pairwise
correlation approaches, supervised machine learning, unsupervised clustering methods, and multivariate linear
models [9-11]. These techniques are often challenged by the dimensionality of the multi-omics data, often do
not account for a correlation structure within microbiomes or metabolomes and are challenged by high multiple
hypothesis testing burdens. Some examples of how computational workflows try to address high data
dimensionality include applying feature selection methods to random forest (RF) classifiers or reducing the
feature space with latent variable methods like principal component analysis (PCA), and partial least squares —
discriminant analysis (PLS-DA). Latent variable approaches provide additional advantages because of the
global covariance-based frameworks that reduce data dimensionality by encoding the data on latent variables
(LV) that weight the relative importance of the original features [13]. PLS-DA uses latent variables to establish
a system of linear relationships between blocks of independent and dependent variables which estimate causal
relationships between observed indicators and their latent variables.

A variant of PLS-DA, sparse PLS-DA (sPLS-DA), uses Lasso Penalization to select the most

discriminant features to create the LVs to classify the data [16-18]. An example of these methods was

presented by Priya et al., 2022 in which host transcriptomic and gut microbiome data were integrated in a
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machine learning framework that uses sparse canonical correlation analysis and Lasso penalize regression to
characterize the most relevant associations between gut microbiota and host genes and pathways across
three intestinal diseases [19]. This regularization penalty on PLS latent variables helps reduce the curse of
dimensionality in high-dimensional data. Critically however, if multiple -omics data types are modeled on the
same LVs, the Lasso penalty may be overly-restrictive and exclude consequential biological features.
Therefore, there is a need to balance dimensionality reduction with preserving potentially mechanistic
biological information in different molecular data types.

Here, we introduce a computational framework for causal modeling of microbiome multi-omics data
based upon a Partial Least Square Path Modeling (PLS-PM) framework, and which will be denoted as Latent
Interacting Variable-Effects (LIVE) Modeling. PLS-PM approaches incorporate the advantages of LV modeling
for data dimensionality reduction while also including information about the modeled system through structural
connections between model components, allowing the model to encode hypotheses of causality [14-15]. Here,
we construct PLS-PM models of microbiome composition, metabolomics, and bacterial proteomics data from a
cohort of 155 IBD patients and controls in which each molecular data stream is encoded as a set of latent
variables. We then construct a structural model in which we quantify interactions between latent variables with
linear model interaction effects. We show that LIVE Modeling accounts for global data covariance structure in

the single-omic LV’s, efficiently reduces data dimensionality, and allows us to identify statistical interactions

between microbiome multi-omics data associated with disease onset in UC and CD.

RESULTS

Model Description

LIVE modeling integrates multi-omics data while preserving covariance structure within data modalities.
sPLS-DA models are built to model the relationship between individual types of molecular features and an
output variable. A variety of microbiome multi-omics data types, such us relative abundances of genes, taxa,
and metabolites, can be analyzed individually with respect to the dependent variable in their own
dimensionless latent variable space. By building a bottom-up multi-omic model from individual grassroots
models of single data types, this framework can incorporate several types of microbiome multi-omics data as

inputs, determining the most discriminative latent variables per data type. Second, the latent variables are
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extracted from the single-omic sPLS-DA models and integrated together as main and interaction effects terms
in a generalized linear model, formalizing a structured relationship between the response variable and multiple
predictive -omic features. This allows us to evaluate data type-specific effects and determine how the
predictive power of data types depend on each other. Using the LV’s as regression terms preserves internal
covariance within data type LVs and simplifies the interpretability of the multi-omic effects in the model through
analysis of the regression coefficients. Finally, the relationships between multi-omics data types and specific
features implicated by the meta-model can be studied by modeling the relationships between microbes,
metabolites, and enzymes via Spearman correlation analysis and PLS Variable Importance of Projection (VIP)
scores (Figure 1).

We applied our LIVE modeling framework to predict CD or UC status versus control from publicly
available metabolomics, and metagenomics data obtained from the PRISM cohort (the Prospective Registry in
IBD Study at MGH) and reported by Franzosa et al., in 2019. In this study, gut metabolic profile and
microbiome composition in IBD were characterized by analyzing stool samples of 155 patients diagnosed with
Crohn's Disease (68 patients), Ulcerative Colitis (53 patients), and non-IBD control (34 patients). The collected
stool samples were subjected to shotgun metagenomic sequencing to determine taxonomic compositional and
functional potential, as well as four liquid chromatography tandem mass spectrometry (LC-MS) methods to
guantify composition of polar metabolites, lipids, free fatty acids, and bile acids. The datasets contained the
relative abundances of 201 microbiota features, 3829 metabolic features, and 2113 microbial enzyme features
[9]. To validate our model trained on PRISM data and determine performance metrics, we used a public
independent validation cohort also reported by Franzosa et al., consisting of 22 control subjects from LifeLines-

DEEP (LLD) general population study, and 43 IBD subjects from a study of the Department of

Gastroenterology and Hepatology at University Medical Center Groningen (UMCG).

Single-omic sPLS-DA are as predictive of Crohn’s Disease status as naive multi-omics models

Before combining single-omic latent variables (LV) from sparse Partial Least Square Discriminant Analysis
(sPLS-DA) via the LIVE multi-omic meta-model, we assessed the disease-status predictive power of these
data streams individually training on the PRISM cohort and testing on the LLD cohort for Crohn’s Disease and

Ulcerative Colitis. The individual microbiome, metabolome and microbial enzyme sPLS-DA models were
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significantly predictive of CD status. (Metabolome AUC = 0.959: Figure 2a and 2b, Microbiome AUC = 0.972:
Figure 2e and 2f, Enzymatic composition AUC = 0.939: Figure 2i and 2j). The most discriminative features per
each single sPLS-DA models were sorted by the PLS Variable Importance of Projection (Figure 2c, 29, 2k) and
the top features are listed here: the most discriminative metabolites for CD are the flavonoids, steroidal
glucuronide conjugates, fatty acids and conjugates, dipeptides, terpene glycosides, tetrapyrroles and derivates,
benzenesulfonic acids and derivatives, triterpenoids, benzopyrans and alpha-acyloxy carbonyl compounds
(Figure 2d). The most discriminant microbial species are Coprococcus catus, Subdoligranulum unclassified,
Alistipes shahii, Roseburia hominis, Bacteriodales bacterium ph8, Eubacterium ventriosum, Ruminococcus
obeum, Gordonibacter pamelaeae (Figure 2h). Finally, the most discrimative enzymatic features are
1.14.13.81: Magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase, 1.1.1.35: 3-hydroxyacyl-CoA
dehydrogenase, 3.5.3.9: Allantoate deiminase, 3.1.4.1: Phosphodiesterase |, Saccharopine dehydrogenase
(NAD(+), L-lysine-forming) (Figure 2l).

As a computational control, we trained sPLS-DA models on a concatenated matrix that integrated all
data types (microbiome, metabolome, enzymes) in one dataset. Doing this for the CD patient subsets allowed
us to assess whether predicting disease status using multi-omics outperformed single-omic sPLS-DA models.
The control sPLS-DA model also was similarly predictive of CD status as the individual -omic sPLS-DA models
(AUC = 0.959) (Figures 2m and 2n). However, even though the control model has comparable AUC with
single-omic models, the concatenated control has higher balanced error rate (CD = 0.45) than single omic
models (Table 1). This indicated that unstructured combining of multi-omics alone does not enhance predictive
power.

sPLS-DA employs a regularization penalty when constructing LV’s, incorporating different features into
different LV’s based on the ability to discriminate between Crohn's Disease, and control status. The severity of
this penalty is proportional to the number of features in the original dataset, making it much higher for the multi-
omics sPLS-DA model compared to the single-omic sPLS-DA models. In our models for CD, 2 microbiome
LV's, explaining 5% and 2% variance encoded 100 and 2 features respectively, 3 metabolome LV’s explaining
17%, 3%, and 6% variance encoded 70, 40, and 90 features respectively, and 2 microbial enzyme LV’s,

explaining 12% and 2% variance, encoded 100, and 2 features respectively.

By comparison, the concatenated data control sSPLS-DA model resulted in lower feature coverage in the
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IBD microbiome multi-omics data compared to the single-omic sPLS-DA models. The control model that
combines all omics for CD was comprised of 2 LV’s that explained 13% and 1% variance and encoded 70
features (0 microbes, 70 metabolites, 0 enzymes) and 1 feature (0 microbe, 1 metabolite, 0 enzymes)
respectively. Given the number of features that encoded the covariance, individual microbiome, metabolome,
and microbial enzyme sPLS-DA models show a higher combined data coverage than the control model (Table

2). It could be attributed to not restrictive Lasso penalties on individual models than the control model because

of the small number of features in individual omics data sets than omics concatenation matrix data set.

Structured inteqgration of multi-omics latent variables Predicting Crohn’s Disease Status

We sought to test whether structured integration of multi-omics data better predicted disease status than
single-omic sPLS-DA models or the concatenated control sPLS-DA models. Given AUC values and balanced
error rates, we determine the single omic sPLS-DA models can classify control patients versus CD, and
predictions are more accurate than concatenated control model. The most discriminative latent variables from
these single sPLS-DA models were integrated in a structured multi-omics model. We first examined a main-
effects only structured multi-omics model for predicting CD status. The form these models took was as a linear
model with a slope intercept coefficient and main-effects coefficients for patient scores on each latent variable
as features predicting disease status. A main-effects only regression model of microbiome, metabolite and
microbial enzyme LVs was overall predictive of Crohn's Disease status (p = 2.2 e-16). By evaluating the p-
values from each data-type latent variables, we determine that the 2 Metabolomics LV's emerge as the
strongest data type to predict CD status from control patients in comparison with microbiota and enzymatic
composition (Table 3).

We incorporated interaction effects between single-omic LV’s into the structured microbiome multi-
omics PLS-PM framework to extract candidate microbe-metabolite-enzyme interactions driving CD.
Incorporating microbiome, metabolome and microbial enzyme LV interaction effects into the Crohn's Disease
model identified four significant main effects from metabolome LV1, LV2 and LV3, as well as microbiota LV1.
The model also identified significant interaction effects between microbiome LV1 - metabolome LV1, and
metabolite LV2 - microbial enzyme LV1. The strongest microbe-metabolite-microbial enzyme LV interaction

was present between metabolite LV1 - microbiota LV1 - enzymes LV1 which together separated CD patients
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from controls (Figure 3). This indicated that omic features allocated in these microbe-metabolite-microbial
enzyme interacting Latent variables depends on the value of other omic variables to precisely define Crohn
Disease status. In other words, a metabolite in conjunction with specific microbial species and microbial

enzymes can determine CD status.

LIVE Modeling Prioritizes Multi-omic Features Associated with Crohn’s Disease

Having demonstrated that a structured PLS-PM of microbiome multi-omics data outperforms single-
omic and concatenated multi-omics sPLS-DA models, we sought to extract biological insights from the
predictive, interacting LV’s in our CD model. The most discriminant bacteria, metabolites and microbial enzyme
features that determine disease status were prioritized from interacting LV’'s by using as criteria Lasso
Penalization and the variable importance of projection (VIP) scores of feature loadings on LVs (VIP > 1). After
combining these two selection steps, correlation analysis was applied to identify microbe-metabolite-enzymes
triads that were synergistically predictive of Crohn's Disease status. The correlational analysis at this stage,
restricted to features prioritized in our PLS-PM model, was prioritized to 23,188 microbe-metabolites-microbial
enzymes pairs in the CD data based on the Lasso and VIP criteria. This represents a substantial decrease in
the multiple testing burden of the original datasets of over 1.62 x 10° microbe-metabolites-microbial enzymes
pairs.

For Crohn's Disease, analysis of these 23,188 microbe-metabolites-microbial enzymes pairs, identified
7,562 significant correlations (FDR g < 0.01) predictive of CD status on interacting multi-omic LV's (FDR ¢
<0.001 = 6,471 significant correlations; and FDR g < 0.0001 = 5305 significant correlations). LIVE modeling
framework reduces the total number of features to a tractable number (7,562 CD) and the number of pairwise
comparisons between features to that equivalent to a standard RNA-seq experiment. The prioritization of
pairwise relationships between microbes, metabolites, and enzyme can be further refined by implementing
more stringent thresholds on correlational coefficients, log fold change values, VIP scores, and correlation p-
values or by framing interpretation in terms of a particular data type. We can visualize the impact of such
thresholding by first constructing a microbe-metabolite-enzyme correlation network in Cytoscape [20] and then

creating subnetworks that meet different thresholding criteria.
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Here, we examine the effect of refining the significant pairwise correlations (i.e. pairwise local-structure)
by increasing the threshold on the VIP score (i.e. global model importance) a given microbe, metabolite, or
enzyme needs to achieve. For the CD model, we gradually increased the VIP threshold by 1, creating
subnetworks of features with minimum global importance in our PLS-PM model until we reached a threshold
that eliminated all bacterial nodes from the correlation network. At VIP score greater than 5 for Crohn's
Disease features, the network contained 72 nodes that include 44 metabolites, 27 microbial enzymes, and 1
bacterium, with a VIP threshold greater than 6 removing all bacteria. At our identified VIP threshold of 5, our
model predicted Coprococcus cactus as one of the most discriminating bacterial features between CD and

control samples, and Sphingolipids and Leucyl aminopeptidase as upregulated determinant metabolite and

microbial enzyme features in Crohn's Disease (Figure 4).

Single-omic sPLS-DA are as predictive of Ulcerative Colitis status as naive multi-omics models

For UC, the individual microbiome, metabolome, and microbial enzyme sPLS-DA models were
significantly predictive of UC status (metabolome AUC = 0.932 Figure 5a and 5b, microbiome AUC = 0.969:
Figure 5e and 5f, enzymatic composition AUC = 0.922: Figure 5i and 5j). Following LIVE modeling workflow,
the most discriminative features of UC status were sorted by the PLS Variable Importance of Projection (Figure
5¢c, 5g, 5k) and the top features per each single sPLS-DA model were identified. The most discriminative
metabolite features for UC are the diphenylmethanes, diterpenoids, pyridoxamines, tetrapyrroles and
derivatives, cardiolipins, pyridinecarboxilic acids and monoalkyglycerophosphates (Figure 5d). The most
relevant microbial species to classify UC patients are: Gordonibacter pamelaeae, Roseburia hominis,
Eubacterium rectale, Eubacterium hallii, Eubacterium ramulus, Alistipes shahii, Subdoligranulum unclassified.
(Figure 5h). The most discriminative enzymatic features of UC status are 2.7.1.66: Undecaprenol kinase,
1.5.3.1: Sarcosine oxidase, 2.7.1.66: Undecaprenol kinase, 1.5.3.1: Sarcosine oxidase, 2.4.1.4: Amylosucrase,
3.1.2.14: Oleoyl-[acyl-carrier-protein] hydrolase, 4.2.1.52: Transferred entry: 4.3.3.7, and 1.1.1.31: 3-
hydroxyisobutyrate dehydrogenase (Figure 5I).

By comparing single-omics sPLS-DA models with the concatenated matrix as a computational control,
we determined for UC status, similarly to the CD study case, that the control model has comparable AUC with

single-omic models (AUC = 0.959) (Figures 5m and 5n), but, has higher balanced error rate (UC = 0.5) than
9
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single omic models (Table 4). This supports that unstructured combining of multi-omics alone does not

necessarily enhance predictive power.

The regularization penalty from sPLS-DA is proportional to the number of features in the original data
set. Similar our CD study case, the penalty applied to the number of features for the multiomics sPLS-DA
model is higher than single-omic sPLS-DA models, causing more error during predictions. For our UC sPLS-
DA models, 2 microbiome LV'’s, explaining 5% and 2% variance, encoded 80 and 1 features respectively, 2
metabolome LV’s, explaining 10%, and 3% variance, encoded 100 and 100 features respectively, and 2
microbial enzyme LV’s, explaining 13% and 6% variance, encoded 100, and 90 features respectively.

By comparison, the concatenated data control SPLS-DA model resulted in lower feature coverage in the
UC microbiome multi-omics data compared to the single-omic sPLS-DA models. The control sPLS-DA model
for predicting UC status was comprised of 2 LV'’s, explaining 8% and 4% variance, and encoded 100 (0
microbes, 100 metabolites, 0 enzymes) and 1 feature (0O microbe, 1 metabolite, 0 enzymes) respectively (Table
5). Given the number of features that encoded the covariance, individual microbiome, metabolome, and
microbial enzyme sPLS-DA models for UC show a higher coverage than the control model. Like the CD
analysis, it could be attributed to not restrictive Lasso penalties on individual models than the control model

because of the small number of features in individual omics data sets than omics concatenation matrix data

set.

Structured inteqration of multi-omics latent variables Predicting Ulcerative Colitis Status

Given that single omic sPLS-DA models can classify control patients versus UC, and predictions are more
accurate than concatenated control model, the structured integration of multi-omics data was implemented
similar CD case study. The most discriminative latent variables of UC status from these single sPLS-DA
models were integrated in a structured multi-omics model. Following the steps in LIVE modeling workflow, we
first examined a main-effects only multi-omics model for predicting UC status, and we determined that a main-
effects only regression model of microbiome, metabolite and microbial enzyme LVs was overall predictive of
Ulcerative Colitis status (p = 2.2 e-16). By evaluating the p-values from each data-type latent variables, we
determine that the 2 Metabolomics LV’s emerge as the strongest data type to predict CD status from control

patients in comparison with microbiota and enzymatic composition (Table 6).

10
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We incorporated interaction effects between single-omic LV’s into the structured multi-omics model to
extract candidate microbe-metabolite-enzyme interactions driving UC. Our LV's interaction effects model for
UC identified four significant main effects from metabolome LV1 and LV2, microbiota LV1, and microbial
enzyme LV1. The model also identified significant interaction effects between metabolites LV2 - microbiota
LV1, microbiome LV1 -metabolome LV2, and microbiome LV1 - microbial enzyme LV1. The strongest microbe-
metabolite-microbial enzyme LV interaction was present between metabolite LV1 - microbiota LV1 - enzymes
LV1 which together separated UC patients from controls (Figure 6). This indicated that the omic features

projected in the strongest microbe-metabolite-microbial enzyme interacting Latent Variables depends on the

value of other omic variables to precisely define Ulcerative Colitis status.

LIVE Modeling Prioritizes Multi-omic Features Associated with Ulcerative Colitis

The most discriminant bacteria, metabolites and enzyme features that determine Ulcerative Colitis
disease status were prioritized from the predictive and interacting LV’s to extract biological insights, by using
as criteria Lasso Penalization and the variable importance of projection (VIP) scores of feature loadings on LVs
(VIP > 1). Like CD study case, by combining these two selection steps, and applying correlation analysis
restricted to features prioritized in our PLS-PM model, the number of microbe-metabolites-microbial enzymes
pairs for UC model was 21,514, a decrease in the feature space by 5 orders of magnitude from 1.62 x 10°
microbe-metabolites-microbial enzymes pairs in the original data. Analysis of these 21,514 microbe-
metabolites-microbial enzymes pairs identified 2,271 significant correlations (FDR g < 0.01) (S5b Table: FDR q
<0.001 = 935 significant pairs; FDR g < 0.0001 = 445 significant pairs) predictive of UC status on interacting
LV’s.

In the microbe-metabolite-enzyme network for Ulcerative Colitis, VIP score was constrained greater
than 4 and the model identified 69 nodes that include 39 metabolites, 27 microbial enzymes, and 3 bacteria,
with a VIP score greater than 5 removing all bacterial features. Our UC model predicted Eubacterium rectale,
Gordonibacter parmelaeae and Roseburia hominis as the most relevant bacterial features and showed several
metabolites were specifically associated with each bacterium. For instance, the Tetrapyrroles and derivatives
category is described as a downregulated metabolite associated with Eubacterium rectale. Fatty acid esters,

Diphenylmethanes and Pyridoxamines as downregulated metabolites associated with Gordonibacter
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pamelaeae, and Tetrapyrroles and derivatives, Fatty acid esters, and Pyridoxamines as downregulated

metabolites associated with Roseburia hominis and Gordonibacter pamelaeae in Ulcerative colitis (Figure 7).

DISCUSSION

Our structural LIVE (Latent Interacting Variable Effects) modeling framework not only predicts features
that are in concordance with previous studies, but also estimates novel omic associations that must be studied
in vitro and in vivo models. This framework uncovers more feature interactions that increase the likelihood to
establish testable hypothesis and studying biological mechanisms in IBD. LIVE modeling is a microbiome
multi-omics PLS-PM framework reduces the total number of features to tractable numbers (7,562 CD and
2,271 UC FDR g < 0.01) and the number of pairwise comparisons between features to that equivalent to a
standard RNA-seq experiment. This represents a substantial decrease in the multiple testing burdens of the
original datasets. Additionally, given the greater number of significant correlations between CD microbiome
multi-omic features than UC features reinforces the stratification of IBD into these two molecularly subtypes in
addition to their differences in clinical presentation.

The prioritization of pairwise relationships between microbes, metabolites, and enzyme can be further
refined in LIVE modeling by implementing more stringent thresholds on correlational coefficients, log fold
change values, VIP scores, and correlation p-values or by framing interpretation in terms of a particular data
type. We can visualize the impact of such thresholding by first constructing a microbe-metabolite-enzyme
correlation network in Cytoscape and then creating subnetworks that meet different thresholding criteria. LIVE
modeling workflow examines the effect of refining the significant pairwise correlations (i.e. pairwise local-
structure) by increasing the threshold on the VIP score (i.e. global model importance) a given microbe,
metabolite, or enzyme needs to achieve. It allows us to identify the most discriminative and interacting
metabolites, microbial species and enzymes correlations for CD and UC.

This framework identified features associated with Inflammatory Bowel Diseases that have been
reported previously by different studies [9-10]. Some of these features were reported by the original publication
we drew data from, Franzosa et al. Here, the authors analyzed this data using other methods such as pairwise
correlational analysis and random forest classifiers. In total, forty-four metabolites that were downregulated in

Crohn’s Disease were predicted by our model at one of the highest levels of restriction (VIP > 5). Among the
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most important metabolite features are flavonoids, steroidal glucuronide conjugates, fatty acids and

conjugates, dipeptides, terpene glycosides, tetrapyrroles and derivates, benzenesulfonic acids and derivatives,

triterpenoids, benzopyrans and alpha-acyloxy carbonyl compounds [9, 21-23].

The Sphingolipids category was also predicted by our model as a determinant metabolite that was up
regulated in Crohn’s Disease and reported by Franzosa et al and other studies [24]. From thirty-seven
determinant microbiota species predicted by our model at the level of restriction of VIP >1 for Crohn's Disease,
thirteen were also reported by Franzosa et al. as representative microbial species. If the level of restriction is
more stringent VIP>5, Coprococcus catus was predicted as the most determinant microbiota species and it
also has been reported by Franzosa et al., but not prioritized as canonical feature, as well as in other studies
[25-27]. Fold changes calculated from the relative abundance values of 37 predicted microbial species are
about zero which is associated with the loss of species diversity, a characteristic phenomenon in IBD. From
twenty-seven microbial enzymes predicted by our model at VIP > 5 for Crohn's Disease, propionyl-CoA
carboxylase, precorrin-2 dehydrogenase, leucyl aminopeptidase, NAD (+) synthase (glutamine-hydrolyzing)
enzymes were also reported by Franzosa et al. as representative microbial enzymes.

Though bile acids and dicarboxylic acids were reported by Franzosa et al., these features were not
predicted by our model at three distinctive levels of restrictions: VIP >5 (72 features), VIP > 1 (185 features),
and g < 0.01 (7,562 significant features). We determined that these features were excluded in the single omic
sPLS-DA models when individual omics classify between CD and control patients, it means that bile acids and
dicarboxylic acids were not the most discriminative metabolites features of CD status. Several studies
associated Bile acids with Inflammation chronic diarrhea which is connected to bile acid malabsorption in CD
patients.

Our workflow generates several inferential statistics that facilitate prioritization of biological associations
between microbes, metabolites, enzymes, and IBD status. In the preset IBD dataset, by using VIP, metabolite,
microbiota, and enzyme interactions synergistically predict disease status can be visualized at different levels
of restriction. These statistics provide flexibility in the to be more stringent with feature selection. For instance,
in the Crohn's Disease model, one of the highest levels of restriction was VIP > 5, and it estimated

Coprococcus catus as the most determinant microbial species correlated with 44 metabolites and 27 microbial

enzymes. Here, Coprococcus catus becomes the central focus of a network of metabolite and microbial
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enzyme interactions in Crohn's Disease. Nevertheless, this framework can be even more selective if it is
needed. If a higher resolution of feature interactions between metabolites and microbial enzymes with
Coprococcus catus is required, the level of restriction can be incremented in the VIP regarding metabolites and
microbial enzyme features. At VIP >11, our model estimate Coprococcus catus interact with 1.1.1.35: 3-
hydroxyacyl-CoA dehydrogenase, 1.14.13.81: Magnesium-protoporphyrin IX monomethyl ester (oxidative)
cyclase, and 1.2.99.3: aldehyde dehydrogenase; and the following metabolites: triterpenoids, benzenesulfonic
acids and derivatives, tetrapyrroles and derivatives, terpene glycosides, dipeptides, fatty acids and conjugates,
steroid glucuronide conjugates, and flavonoids (Figure 4c). This structural omic interaction framework that
keeps the correlation structure within metabolites, microbiota, metabolome, and enzymes provides high-
resolution property to evaluate omic interactions based on research needs.

A potential application of the LIVE Modeling framework’s identification of disease-driving molecules and
taxa is to leverage features that discriminate disease status from control to identify biomarkers for drug
response, diagnosis, and therapeutics in IBD. In 2021, Lee et al. reported features associated with anti-
cytokine and anti-integrin therapies in this same cohort we analyzed in this study [11].. We compared the
reported drug response features in Lee et al. with disease associated features selected by our structural
interaction model. Gordonibacter parmelaeae was the main microbial species they identified as a determinant
in drug response for Crohn's Disease and Ulcerative Colitis, and it also was predicted by our structural
correlational model for CD (VIP>1) and UC (VIP>4). Particularly in Crohn's Disease, common microbial
enzyme features predicted by our model and reported as drug response associated features were precorrin-4
C (11)-methyltransferase, precorrin-6B C (5,15) -methyltransferase (decarboxylating), glucosamine-1-
phosphate N-acetyltransferase, and histidinol-phosphatase. For Ulcerative Colitis, the metabolite acyl
carnitines, and the microbial enzymes arabinogalactan endo-beta-1,4-galactanase, and phosphoglucomutase
(alpha-D-glucose-1,6-bisphosphate-dependent) were features associated with therapy response and disease
status classification (Table 7). In sum, there are several commonalities between omics features associated
with disease status in LIVE modeling and secondary association with drug response in IBD [9,11].

LIVE modeling used the sample projections of the sPLS-DA model to build an interaction effects linear

regression and predict omic features that are associated with disease and drug response in Inflammatory

Bowel Diseases. These predictions were in good agreement with previous studies that reported disease and
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drug response features, which applying other statistical integrative methods. For instance, a combination of
multivariable linear models and Random Forest classifiers with feature selection were applied to find
associations between metabolome and microbiome features with clinical outcomes before and after exposure
and integrate multi-omics and predict disease status and treatment response, respectively. Likewise, Metwaly
et al. described linkages between IBD and sulfur metabolism using a Generalized Canonical Correlation
Analysis (DIABLO-MixOmics) to integrated microbiota and metabolite profiles [24]. This last approach uses
another correlation structure established by the weighted linear composites which vary to maximize the
correlation between variables by overlapping their distributions [28]. Unlike LIVE Modeling however, it does not
consider a regression modeling between sample projections of independent variables, and dependent
variables.

Our LIVE Modeling framework makes a distinct and complementary contribution to these integrative
methods that aim to predict metabolite and microbial species features that can predict IBD status. What
distinguishes our approach is the flexibility to adapt to different types of microbiome multi-omics data,
scalability for large and small cohort studies via reliance on latent variables and dimensionality reduction, and
the intuitive interpretability of the linear meta-model integrating -omic data types. The results of LIVE modeling
and the biological relationships can be represented in networks that connect local correlation structure of single
omic data types with global community and omic structure in the latent variable VIP scores. This model arises
as novel tool that allows researchers to be more selective about omic feature interaction without disrupting the
structural correlation framework provided by sPLS-DA interaction effects modeling. It will lead to form testable

hypothesis by identifying potential and unique interactions between metabolome and microbiome that must be

considered for future studies.
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MATERIALS AND METHODS

Preprocessing the Data

Publicly available metabolomics, and taxonomic and functional metagenomic data was obtained from 155
patients diagnosed with Crohn Disease, Ulcerative Colitis and non IBD patients (control) [9].. Relative
Abundance profiles were log-transformed to variance stabilize the data with pseudo count 1 for zero values.

This data set includes 201 microbiota features, 3829 metabolic features, and 2113 microbial enzyme features.

Data Integration and Feature selection by sPLS-DA

We trained a sparse Partial Least Square — Discriminant Analysis (sSPLS-DA) model on each single—omic data
to predict the disease status using MixOmics R Package(17)(18). We used the function tune. splsda to select
the optimal number of variables and components, and AUC plots were obtained with auroc function. Then,

loadings, variance importance of projection (VIPs) and coefficients were exported from MixOmics.

Multi-omics modeling with sample projection extracted from latent variables

Sample projections on the single-omic latent variables inferred from sPLS-DA models were used to train a
generalized linear model with interaction effects terms. The alr4 R Package with the function Im were
implemented to training the linear model. The main effects were patient projections on microbiome or
metabolome, or microbial enzyme composition LV’'s. Interactions effects were coded for each pair of

microbiome, metabolome, and enzymatic LV’s. Significant interaction effects indicated that the predictive
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power of the bacterial loadings on a particular microbiome LV was conditioned upon the loadings of

metabolites and enzymes on a particular metabolome and enzymatic LV.

Feature Selection from Lasso Penalizations and Variance Importance Projection.

From sPLS-DA models which identify the most predictive feature that classify disease status, we identified
microbe, metabolite and enzymes features on significant interacting Latent variables with significant variable
importance of projection (VIP) scores. The Lasso Penalization Formula is calculated by the following equation:

b
minimize | SSE + AZ B}
j=1

Variance Importance in Projection (VIP) scores for features are calculated using the regression coefficient b,

weight vector w;, and score vector t; as given in the following equation:

Wi \2
a 2 4+Ts, kj
=1by GG (||w,-||)

@ p2:T1
j=1 bt

ViP =

By considering Lasso Penalization and VIP greater than 1, we selected the most predictive and significant
metabolic, microbiota and enzymes features that synergistically determine IBD status, for prioritized microbe-
metabolite-enzyme correlation analysis. Correlational values were determined by Spearman correlational
analysis. Duplicate correlational values were removed and same type omic data type interactions were
removed. Then, p-value and false discovery rate were calculated from these omic matrices, and most relevant

features were determined by using thresholds such as g-value < 0.01, and g-value < 0.001.

Building Network Plots
Cytoscape software was used to visualize metabolites, microbiota, and enzyme interaction networks.
To build these network plots, a node and edge files were used which containing the name and type of the

features, log fold change and the VIP score, and correlation values, p value and false discovery rate,
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respectively. Different levels of restriction can be applied to visualize interaction network by filtering the data by
VIP score, fold change, correlation, or other metadata.
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FIGURE CAPTIONS

Figure 1.- Latent Interacting Variable Effects (LIVE) Modeling Workflow Multi-Omics Microbiome Data is
encoded in a set of Sparse Partial Least Square Models. Then, structured model combines discriminative
latent variable per each single-omics sPLS-DA models. Next, significant discriminative and predictive omic
features are thresholding by VIP, correlational analysis, and g-values to build meta model networks.

Figure 2.- sPLS-DA model performance and variance importance of projections (VIP) for CD (a) sPLS-
DA sample scores plot for metabolomics data. (b) ROC curve for metabolomics sPLS-DA model. (c) VIP score
histogram for metabolites. (d) Top 14 metabolites by VIP score. (e) SPLS-DA sample scores plot for microbiota
composition data. (f) ROC curve for microbiota sPLS-DA model. (g) VIP scores histogram for microbiota. (h)
Top 10 microbial taxa VIP scores. (i) SPLS-DA sample scores plot for enzymes data. (j) ROC curve for
enzymes sPLS-DA model. (k) VIP score histogram for enzymes. (I) Top 8 enzymes by VIP score. (m) sPLS-DA
sample scores plot for concatenation control multi-omic model. (n) ROC curve for concatenation control model.
(o) VIP score histogram for concatenation control model. (p) Top 12 feature VIP scores for the control model.

Figure 3.- Main and Interaction Effects in a structured model regression for CD (a) LV main effects model
p-values. (b) LV Interaction effects p-values. (c) Scores plot of samples on enzymes LV1 and metabolites LV1.
(d) Scores plot of samples on enzymes LV1 and microbiota LV1. (e) Scores plot of samples on microbiota LV1
and metabolites LV1.

Figure 4.- Meta Model Networks and Subnetworks for CD in Cytoscape (a) Meta-Model networks VIP > 1.
(b) Top 20% highest VIP per each omic data type. (c) VIP > 11 and Coprococcus catus. (d) Top 2 highest VIP.
Edges reflect Spearman correlation coefficient.

Figure 5.- sPLS-DA model performance and variance importance of projections (VIP) for UC (a) sPLS-
DA sample scores plot for metabolomics data. (b) ROC curve for metabolomics sPLS-DA model. (c) VIP score
histogram for metabolites. (d) Top 14 metabolites by VIP score. (e) sPLS-DA sample scores plot for microbiota
composition data. (f) ROC curve for microbiota sPLS-DA model. (g) VIP scores histogram for microbiota. (h)
Top 10 microbial taxa VIP scores. (i) SPLS-DA sample scores plot for enzymes data. (j) ROC curve for
enzymes sPLS-DA model. (k) VIP score histogram for enzymes. (I) Top 8 enzymes by VIP score. (m) sPLS-DA
sample scores plot for concatenation control multi-omic model. (n) ROC curve for concatenation control model.
(o) VIP score histogram for concatenation control model. (p) Top 11 feature VIP scores for the control model.

Figure 6.- Main and Interaction Effects in a structured model regression for UC. (a) LV main effects
model p-values. (b) LV Interaction effects p-values. (c) Scores plot of samples on microbiota LV1 and
metabolites LV1. (d) Scores plot of samples on enzymes LV1 and microbiota LV1. (e) Scores plot of samples
on enzyme LV1 and metabolites LV1.

Figure 7.- Meta Model Networks and Subnetworks for UC in Cytoscape (a) Networks VIP > 1. (b) Top 20%
highest VIP per each omic data type. (c) VIP > 7.5 and Top 3 microbial species. (d) Top 2 highest VIP. Edges
reflect Spearman correlation coefficient.
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LIVE: Latent Interacting Variable Effects Modeling
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Figure 1.- Latent Interacting Variable Effects (LIVE) Modeling Workflow Multi-Omics Microbiome Data is
encoded in a set of Sparse Partial Least Square Models. Then, structured model combines discriminative
latent variable per each single-omics sPLS-DA models. Next, significant discriminative and predictive omic
features are thresholding by VIP, correlational analysis, and g-values to build meta model networks.
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Figure 2.- sPLS-DA model performance and variance importance of projections (VIP) for CD (a) sPLS-
DA sample scores plot for metabolomics data. (b) ROC curve for metabolomics sPLS-DA model. (c) VIP score
histogram for metabolites. (d) Top 14 metabolites by VIP score. (e) sPLS-DA sample scores plot for microbiota
composition data. (f) ROC curve for microbiota sPLS-DA model. (g) VIP scores histogram for microbiota. (h)
Top 10 microbial taxa VIP scores. (i) sPLS-DA sample scores plot for enzymes data. (j) ROC curve for
enzymes sPLS-DA model. (k) VIP score histogram for enzymes. (I) Top 8 enzymes by VIP score. (m) sPLS-DA
sample scores plot for concatenation control multi-omic model. (n) ROC curve for concatenation control model.
(o) VIP score histogram for concatenation control model. (p) Top 12 feature VIP scores for the control model.
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Figure 3.- Main and Interaction Effects in a structured model regression for CD (a) LV main effects model
p-values. (b) LV Interaction effects p-values. (c) Scores plot of samples on enzymes LV1 and metabolites LV1.
(d) Scores plot of samples on enzymes LV1 and microbiota LV1. (e) Scores plot of samples on microbiota LV1

and metabolites LV1.
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Figure 4.- Meta Model Networks and Subnetworks for CD in Cytoscape (a) Meta-Model networks VIP > 1.
(b) Top 20% highest VIP per each omic data type. (c) VIP > 11 and Coprococcus catus. (d) Top 2 highest VIP.

Edges reflect Spearman correlation coefficient.
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Figure 5.- sPLS-DA model performance and variance importance of projections (VIP) for UC (a) sPLS-

DA sample scores plot for metabolomics data. (b) ROC curve for metabolomics sPLS-DA model. (c) VIP score
histogram for metabolites. (d) Top 14 metabolites by VIP score. (e) sSPLS-DA sample scores plot for microbiota

composition data. (f) ROC curve for microbiota SPLS-DA model. (g) VIP scores histogram for microbiota. (h)

Top 10 microbial taxa VIP scores. (i) SPLS-DA sample scores plot for enzymes data. (j) ROC curve for
enzymes sPLS-DA model. (k) VIP score histogram for enzymes. (I) Top 8 enzymes by VIP score. (m) sPLS-DA
sample scores plot for concatenation control multi-omic model. (n) ROC curve for concatenation control model.

(o) VIP score histogram for concatenation control model. (p) Top 11 feature VIP scores for the control model.
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Figure 6.- Main and Interaction Effects in a structured model regression for UC. (a) LV main effects
model p-values. (b) LV Interaction effects p-values. (c) Scores plot of samples on microbiota LV1 and
metabolites LV1. (d) Scores plot of samples on enzymes LV1 and microbiota LV1. (e) Scores plot of samples

on enzyme LV1 and metabolites LV1.
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TABLES
Table 1.- AUC and Balanced Error Rate comparison from single-omics sPLS-DA models for CD
Performance Metric Concatenation Control Metabolome Microbiome Enzymatic Composition
AUC 0.959 0.959 0.9736 0.939
Balanced Error Rate 0.45 0.43 0.24 0.20

Table 2.- Single-omic sPLS-DA models show higher coverage than concatenation control model in CD.

Latent Concatenation Cor_1tro| Metabolome _ Microbiome _ Enzymatic Compos_ition
Variable Encoded Expl_alned Encoded Expl_alned Encoded Expl_alned Encoded Expl_alned
Features Variance Features Variance Features Variance Features Variance
LV1 70 13% 70 17% 100 5% 100 12%
Lv2 1 3% 40 3% 2 2% 2 2%
LVv3 0 0% 90 6% 0 0% 0 0%
Total 71 16% 200 20% 102 7% 102 14%
Table 3.- LIVE Modeling Outcome Table with Coefficients and p-values for CD.
Crohn Disease Coefficient and p-values Main Effects Interactions
Feature coefficients p-value coefficients p-value
Metabolite LV1 -0.0579 <2e-16 -0.0541 1.36 e-13
Metabolite LV2 0.0624 3.98e-16 0.0572 8.10 e -08
Metabolite LV3 0.0394 1.07e-10 0.0359 8.86 e-07
Microbiota LV1 0.0256 0.141 0.0495 0.006
Enzymes LV1 0.0115 0.083 -0.0002 0.976
Metabolite LV1 x Microbiota LV1 - 0.0079 0.007
Metabolite LV2 x Microbiota LV1 - 0.0069 0.300
Metabolite LV3 x Microbiota LV1 - -0.0049 0.264
Metabolite LV1 x Enzymes LV1 - -0.0006 0.569
Metabolite LV2 x Enzymes LV1 - 0.0078 0.006
Metabolites LV3 x Enzymes LV1 - 0.0013 0.446
Microbiota LV1 x Enzymes LV1 - -0.0048 0.118
Metabolite LV1 x Microbiota LV1 x Enzymes LV1 - -0.0010 0.002
Metabolite LV2 x Microbiota LV1 x Enzymes LV1 - 0.0007 0.176
Metabolite LV3 x Microbiota LV1 x Enzymes LV1 - - 0.00005 0.245
Intercept 0.6666 <2e-16 0.7274 <2e-16
F-stat 140.9 F-stat 77.84
p-value 2.2 e-16 p-value 2.2 e-16

Table 4.- AUC and Balanced Error Rate comparison from single-omics sPLS-DA models for UC

Performance Metric Concatenation Control Metabolome Microbiome Enzymatic Composition
AUC 0.952 0.922 0.932 0.969
Balanced Error Rate 0.5 0.343 0.5 0.125
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Table 5.- Single-omic sPLS-DA models show higher coverage than concatenation control model in UC.

Latent Concatenation Control Metabolome ' Microbiome _ Enzymatic Composjtion
Variable Encoded Expl_amed Encoded Exp[amed Encoded Exp[alned Encoded Expl_amed
Features Variance Features Variance Features Variance Features Variance
LV1 100 8% 100 10% 80 5% 100 13%
Lv2 1 4% 100 3% 1 2% 90 6%
Total 101 16% 200 13% 81 7% 190 19%
Table 6.- LIVE Modeling Outcome Table with Coefficients and p-values for UC.
Ulcerative Colitis Coefficient and p-values Main Effects Interaction Effects
Feature coefficients p-value coefficients p-value
Metabolite LV1 -0.0590 1.05e-12 -0.059 6.01e-12
Metabolite LV2 0.0595 1.38e-13 0.061 5.23e-10
Microbiota LV1 -0.0486 0.002 -0.066 0.0003
Enzymes LV1 -0.0003 0.45 0.023 0.019
Metabolite LV1 x Microbiota LV1 - - -0.001 0.675
Metabolite LV2 x Microbiota LV1 - - 0.012 0.050
Metabolite LV1 x Enzymes LV1 - - 0.001 0.477
Metabolite LV2 x Enzymes LV1 - - 0.001 0.487
Microbiota LV1 x Enzymes LV1 - - -0.0005 0.900
Metabolite LV1 x Microbiota LV1 x Enzymes LV1 - - -0.002 0.003
Metabolite LV2 x Microbiota LV1 x Enzymes LV1 - - 0.002 0.018
Intercept 0.609 2e-16 0.642 2e-16
F-stat 87.07 F-stat 47.94
p-value 2.2 e-16 p-value 2.2 e-16

Table 7.- CD and UC features associated with drug response that were predicted by LIVE modeling.

Features

Crohn Disease

Ulcerative Colitis

Metabolites

- C18-neg_Cluster_1016_Acyl carnitines

Microbiota Species

Gordonibacter_pamelaeae

Gordonibacter_pamelaeae

Enzymes

2.1.1.133 Precorrin-4 C (11)-
methyltransferase

2.3.1.157 Glucosamine-1-phosphate N-

acetyltransferase

2.1.1.132 Precorrin-6B C (5,15) -
methyltransferase (decarboxylating)

2.7.7.72 CCA tRNA nucleotidyltransferase

2.3.1.157 Glucosamine-1-phosphate N-
acetyltransferase

3.2.1.89 Arabinogalactan endo-beta-1,4-

galactanase

2.7.7.72 CCA tRNA nucleotidyltransferase

5.4.2.2 Phosphoglucomutase (alpha-D-
glucose-1,6-bisphosphate-dependent)

3.1.3.15 Histidinol-phosphatase
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