

1 **Selection and adaptive introgression guided the complex evolutionary history of the**
2 **European common bean**

3
4 Bellucci E.^{1*}, Benazzo A.^{2*}, Xu C.^{3*}, Bitocchi E.^{1*}, Rodriguez M.^{4,5*}, Alseekh S.^{6,7*}, Di Vittori V.^{1,6*},
5 Gioia T.⁸, Neumann K.¹⁰, Cortinovis G.¹, Frascarelli G.¹, Murube E.¹, Trucchi E.², Nanni L.¹, Ariani
6 A.⁹, Logozzo G.⁸, Shin J.H.³, Liu C.¹¹, Jiang L.⁶, Ferreira J.J.¹², Campa A.¹², Attene G.⁴, Morrell P.L.¹¹,
7 Bertorelle G.², Graner A.^{10*}, Gepts P.^{9*}, Fernie A.R.^{6,7*}, Jackson S.A.^{3*}, Papa R.^{1*#}

8
9 ¹ Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University,
10 60131 Ancona, Italy

11 ² Department of Life Sciences and Biotechnology, University of Ferrara, 44100 Ferrara, Italy

12 ³ Center for Applied Genetic Technologies, University of Georgia, 30602 Athens, GA, USA

13 ⁴ Department of Agriculture, University of Sassari, 07100 Sassari, Italy

14 ⁵ Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale—CBV, Università degli
15 Studi di Sassari, 07041 Alghero, Italy

16 ⁶ Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476 Potsdam-Golm, Germany

17 ⁷ Center for Plant Systems Biology, 4000 Plovdiv, Bulgaria

18 ⁸ School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100
19 Potenza, Italy

20 ⁹ Department of Plant Sciences, University of California, 95616-8780 Davis, CA, USA

21 ¹⁰ Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany

22 ¹¹ Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA, 55108-
23 6026

24 ¹² Regional Agrifood Research and Development Service (SERIDA), 33310, Villaviciosa, Asturias,
25 Spain

26 *These authors contributed equally to this work

27 **#Corresponding author: R. Papa**

28 Department of Agricultural, Food and Environmental Sciences
29 Marche Polytechnic University
30 Via Brecce Bianche 60131 Ancona, Italy

31 **Abstract**

32 Domesticated crops have been disseminated by humans over vast geographic areas. After 1492, the
33 common bean (*Phaseolus vulgaris* L.) was introduced in Europe. By combining whole-genome
34 profiling, metabolic fingerprinting and phenotypic characterisation, we found that the first common
35 bean cultigens successfully introduced into Europe were of Andean origin, after Francisco Pizarro's
36 expedition to northern Peru in 1529. We found that hybridisation, selection and recombination have
37 shaped the genomic diversity of the European common bean in parallel with political constraints. There
38 is clear evidence of adaptive introgression into the Mesoamerican-derived European genotypes, with
39 44 Andean introgressed genomic segments shared by more than 90% of European accessions and
40 distributed across all chromosomes except PvChr11. Genomic scans for signatures of selection
41 highlighted the role of genes relevant to flowering and environmental adaptation, suggesting that
42 introgression was crucial for the dissemination of this tropical crop to the temperate regions of Europe.

43 **Introduction**

44 Following the process of domestication, crops were spread by humans over vast geographic areas,
45 where they adapted to new and often extreme environments (1). The Columbian Exchange (2) started
46 in 1492 with the transatlantic journey of Christopher Columbus. This large-scale set of reciprocal
47 biological introductions between continents provides a paradigm for the rapid adaptation of crop plants
48 to changing environments. Changes in flowering time and photoperiod sensitivity were selected in
49 parallel in the common bean (*Phaseolus vulgaris*), maize (*Zea mays*), potato (*Solanum tuberosum*), to
50 name a few crops that have undergone selection for these adaptive traits (1, 3). Among crops originating
51 from the Americas, the common bean was rapidly adopted and successfully disseminated across Europe
52 (4) and it is now possible to identify local European varieties with Andean and Mesoamerican origins
53 (5, 6, 7, 8, 9, 10). Nowadays, common bean as other food legumes is crucial for main societal challenges
54 and to promote the transition to plant-based diets (11).

55 The introduction of the common bean to Europe from two distinct centres of origin offered an
56 opportunity for widespread genepools hybridisation and recombination (9). Studies of common bean
57 evolution in Europe can exploit the parallel domestication processes and the major genetic differences
58 between the two American genepools. This provides an ideal model to study the role of introgression
59 during the adaptation of common bean accessions to European environments (12).

60 Here, we combine whole-genome analysis and metabolic fingerprinting in 218 common bean
61 landraces, integrated with genome-wide association (GWA) to characterise the genetic basis of multiple
62 traits, including flowering time and growth habit in different environments with contrasting photoperiod
63 conditions. We used the combined results to characterise the effects of selection and inter-genepool
64 introgression, and to test the occurrence of adaptive introgression associated with the development and
65 adaptation of common bean accessions in Europe.

66

67 **The common bean population structure reveals pervasive admixture in Europe**

68 Using ADMIXTURE (13), we reconstructed the ancestry of 218 single-seed-descent (SSD)
69 purified accessions from the Americas (104 accessions collected as reported in SN4_Fig. 13, including
70 66 pure American accessions showing low admixture between gene pools, $q_i > 99\%$) and from Europe

71 (n=114), based on nuclear and chloroplast genetic variants (Fig. 1a-d). The accessions were spatially
72 interpolated to investigate their geographic distribution in Europe (Fig. 1e) and we proposed a model
73 for their introduction in the Old Continent (Fig. 1f). For common beans originating from the Americas,
74 subdivision into the highly differentiated Andean and Mesoamerican populations was consistent with
75 previous studies (11, 13, 14) (Fig. 1a). Next, we followed the nested procedure previously used by Rossi
76 et al. (16) to investigate the population structure within each American gene pool (Supplementary Note
77 4.2). Again, using ADMIXTURE (13), we identified two main Mesoamerican groups (**M1** and **M2**)
78 and three main Andean groups (**A1**, **A2** and **A3**) (Fig. 1b, c). In the centres of domestication, there was
79 little evidence of admixture between genepools.

80 Among the European accessions, nuclear variants allowed us to identify several admixed genotypes
81 (35 EU accessions with more than 10% and 18 with more than 20% of the genome attributed to the
82 other gene pool based on the admixture; SN4_Supplemental Dataset 4) (Fig. 1a). In a few European
83 accessions (n = 14), the nuclear and chloroplast assignments were inconsistent (Fig. 1a): considering
84 only accessions with introgressed genome >70% (n=11), the Andean chloroplast genome was combined
85 with a Mesoamerican nuclear genome (n =6) or *vice versa* (n=5). This suggests, at least in some cases,
86 the occurrence of chloroplast capture (17) as a result of inter-genepool hybridisation and subsequent
87 backcrossing. Moreover, when we explored the molecular phenotypic diversity of the American and
88 European accessions (Supplementary Note 2.3), the metabolomic fingerprint (the molecular phenotypic
89 space expressed as principal component 1 from 1493 putative secondary metabolites with a high
90 hereditability of $H^2 > 0.65$) confirmed the admixture scenario. Several intermediate phenotypes between
91 Mesoamerican and Andean accessions were observed in European landraces, but these were absent in
92 accessions collected in the Americas (Fig. 2a-c). Notably, there was a significant correlation between
93 the admixture coefficients and principal component 1 for both the American and the European
94 accessions, indicating a tight relationship between the phenotypic and genotypic differences due to the
95 genepool structure. This included a reduced difference in Europe due to admixture, particularly in the
96 accessions of Mesoamerican origin.

97 Finally, to provide insight into the population structure of the American pure accessions, we
98 considered their passport data (geographic distribution and country of origin) and phenotypic data on

99 growth habits and photoperiod sensitivities. We identified a clear correspondence between the genetic
100 groups in our sample from the Americas and the well-known common bean eco-geographic races (18):
101 **M1** corresponded to the higher-altitude Durango and Jalisco races, which originated primarily in
102 northern and southern Mexico, respectively; **M2** corresponded to the lower-altitude Mesoamerican race,
103 which is mostly photoperiod-insensitive and is distributed in lowland Mexico, in Central America and
104 in the Caribbeans ; **A1** corresponded to the generally photoperiod-insensitive Nueva Granada race; **A2**
105 corresponded to the Peru race, which includes entries with vigorous climbing growth habits and
106 photoperiod sensitivity; and **A3** corresponded to the Chile race, which has also been identified in
107 archaeological samples from northern Argentina that date from 2500 to 600 years ago (19). The
108 identification of these well-defined ancestral genetic groups in the Americas offers a robust basis to
109 study the inter-genepool and inter-race introgression that may have facilitated adaptation to European
110 environments.

111

112 **Asymmetric introgression and recombination between genepools underlie European common 113 bean adaptation**

114 Given the presence of admixed individuals, we studied the inter-genepool hybridisation and
115 introgression pattern associated with the evolutionary history of the common bean in Europe by genetic
116 assignment at the chromosome level in ChromoPainter v2.0 (20) (Supplementary Note 4). When
117 compared to admixture analysis, this can provide information on recombination between markers and
118 the size of regions that can be attributed to different ancestries. The 66 pure American accessions, from
119 the five genetic groups identified using admixture, due to their low levels of admixture, were used as
120 donor (reference/founder) populations for the chromosome painting of the European genotypes. On this
121 basis, and for each European genotype, we attributed all the single-nucleotide polymorphisms (SNPs)
122 and chromosomal regions to particular ancestries, taking into account within-accession recombination
123 breakpoints (Supplementary Note 4). Using this approach, we were also able to detect recombination
124 events between genepools at the whole-genome level, even in accessions that showed < 1%
125 introgression. Overall, 71 European accessions were attributed to the Andean gene pool (EU_AND)
126 and 43 were assigned to the Mesoamerican gene pool (EU_MES), in agreement with the admixture

127 analysis (Pearson correlation: $r = 0.99$, $p < 0.01$) and confirming previous knowledge about the
128 prevalence of Andean genotypes in Europe (5, 21). Globally, the inferred amount of per-accession
129 introgressed material differed between the EU_MES and EU_AND accessions (two-sided K-S test, $p =$
130 3.3×10^{-3}), showing median proportions of 4.7% and 9.2%, respectively. In the EU_MES accessions,
131 0.01–44.9% of the genome had introgressed from the other genepool, with only one EU_MES accession
132 showing < 1% genome introgression (Fig. 3a; Supplementary Note 4). These proportions were similar
133 in the EU_AND samples, ranging from 0% to 42.2% (Fig. 3a), although two EU_AND accessions
134 showed no introgression and 10 EU_AND accessions showed < 1% introgression from the other
135 genepool (Fig. 3a). The pervasive effect of admixture in European individuals was confirmed by the
136 presence of several accessions with > 20% of their genome acquired by introgression in both the
137 EU_MES (8 of 43 accessions, 18.6%) and EU_AND (11 of 71 accessions, 15.5%) groups (Fig. 3a).

138 The median length of the introgressed genomic segments was higher for the EU_AND
139 accessions (EU_AND = 217 kb, EU_MES = 70 kb; Mann-Whitney test, $P = 7.22 \times 10^{-10}$, Fig. 3b,c), with
140 more extended regions introgressed into EU_AND particularly on chromosomes PvChr02, PvChr05,
141 PvChr06 and PvChr09 (Fig. 3b,c). We obtained very similar results when we repeated the analysis by
142 excluding six accessions showing an admixture proportion $\geq 40\%$ (SN4_Fig.29). The EU_AND
143 accessions carried longer Mesoamerican introgressed haplotypes, reflecting the more recent
144 introgression of Mesoamerican genome fragments into the Andean genotypes compared to the opposite
145 direction. When we estimated the timing of the introgression among the two gene pools in Europe, we
146 confirm the more recent introgression from the Mesoamerican to the Andean gene pool, while the
147 Mesoamerican gene pool was introgressed earlier (SN4_Fig.30). This estimated introgression time is
148 compatible with historical data and with an earlier successful introduction of the Andean gene pool in
149 Europe. Several genomic regions that carry haplotypes with a specific Andean ancestry are near fixation
150 in the European accessions. Here, when seeking regions that may have been subject to natural selection,
151 playing a role in the adaptation, we identified regions putatively under selection in Europe
152 (Supplementary Note 6). Signatures of selection were detected among the regions with Andean ancestry
153 nearly fixed in the European accessions (e.g., position 46 Mb on chromosome Pv01, which carries the
154 *OTU5* locus, that may be involved in the phosphate starvation response; Supplementary Note 4,

155 SN4_Fig. 26; and position 37.9 Mb on chromosome Pv9 which carries the *LHY* locus;
156 SN6_Supplemental Dataset 9).

157 Our results indicate that the first cultigen successfully disseminated across Europe was composed of
158 Andean types. This is shown by the smaller introgression segments of Andean origin and the higher
159 frequencies of Andean-derived common bean accessions in Europe. Our data are also consistent with
160 available historical records. Indeed, the first unambiguous evidence for the introduction of common
161 bean in Europe points to Andean cultivars (22) probably introduced into Spain by Francisco Pizarro in
162 1529 following the exploration of Peru. Piero Valeriano Bolzanio received common bean seeds from
163 Giuliano de Medici (Pope Clement VII, 1523–1534), which had been donated to the same pope by
164 Emperor Charles V's Spanish emissaries from Sicily (where the bean seeds were harvested). The very
165 detailed writing of Piero Valeriano Bolzanio refers to common bean seeds, describing in depth several
166 phenotypic traits supporting their Andean origin, as also recently proposed (23). Valeriano documented
167 his efforts, along with a network of collaborators in the north-east of Italy, Slovenia and Dalmatia, to
168 grow and reproduce beans starting in 1532 (22), with the first report of a putative Mesoamerican
169 genotype in Europe dated 1542 (23). Historical information and timelines, together with our data
170 showing asymmetric introgression, suggest an earlier successful introduction and spread of the Andean
171 genepool into Europe. This may also explain the high frequency of A1/Nueva Granada Andean
172 ancestries (Fig. 1e) in Sicily, the south and north-east of Italy, Slovenia and Croatia, because they could
173 have been among the first European areas to cultivate common bean with the earliest introduced Andean
174 genotypes probably from the Nueva Granada race.

175 Adaptive differences among common beans in the New World may also have influenced the
176 distributions in Europe. For example, M1/Durango-Jalisco genotypes can be extremely photoperiod
177 sensitive, and may therefore have failed to adapt well to many European environments, thus, limiting
178 their dissemination, particularly in central and northern Europe (Fig. 1e). In contrast, southern Spain,
179 southern Italy, Sicily, North Africa, Madeira Island, and the Canary Islands are characterised by mild
180 winters. In these environments, photoperiod-sensitive and late-flowering genotypes, or those adapted
181 to warmer conditions, may have easily completed the crop cycle. As also reported by others (5, 24), we
182 found that Mesoamerican genotypes are more frequent in specific European regions, particularly in

183 south-eastern Europe (Fig. 1e), which also suggests that the history of their introduction may have
184 contributed to their current distribution. As with the role of Charles V and Pope Clement VII in the
185 early dissemination of the Andean beans, the political subdivision of Europe and the Mediterranean
186 basin in the 16th century may have influenced the dissemination of the Mesoamerican genepool. The
187 Ottoman Empire dominated the southern shores of the Mediterranean, the Nile Basin, the Red Sea into
188 eastern Africa, and south-eastern Europe, spanning the area from modern-day Greece to Austria. The
189 prevalence of Mesoamerican genotypes in eastern Africa and China (24, 25) may reflect their initial
190 introduction into Africa from Spain during the Ottoman Empire, which extended its rule in north-eastern
191 Africa and controlled the exchange of goods with China through the Silk Road. Although additional
192 comparative studies between European and Chinese centres are required, our hypothesis is compatible
193 with our results from a *de-novo* admixture analysis applied to Chinese landraces (25), shown in
194 Supplementary Note 4 (SN4_Fig. 20). The importance of political/cultural factors associated with the
195 dissemination of common bean genotypes in Europe is compatible with the lack of significant spatial
196 and ecological patterns between genetic, geographic and ecological distances. Indeed, the routes of
197 dissemination based on cultural and political factors are often independent of geographic and
198 environmental distances, making the occurrence of correlations between genetic distances and
199 geographical or environmental differences less likely (26, 27, 28, 29, 30) (Supplementary Note 4).
200

201 **Analysis of the Environmental associations**

202 We used the geographic distribution of the five ancestral components inferred by ChromoPainter in an
203 association analysis with biogeographical variables (Supplementary Note 4). Ancestral components of
204 A3/Chile negatively correlated with latitude (Supplementary Note 4, SN4_Tab. 8; $r = -0.35$, $p = 0.0001$)
205 and were never observed above the 47th parallel (Fig. 1e). Moreover, A3/Chile component was
206 associated with warmer climates, particularly the maximum temperature in September (Supplementary
207 Note 4; SN4_Tab.8; $r = 0.29$, $p < 0.002$). Although A3/Chile did not appear any more photoperiod-
208 sensitive than A1/Nueva Granada (Supplementary Note 5; SN5_Tab. 12), some American A3/Chile
209 individuals tend to flower later (Fig. 2d) at higher latitudes when grown in Europe (Fig. 2e). Here, we
210 suggest that although A3/Chile was successfully introduced in Europe, a residual sensitivity to the

211 photoperiod might be still preserved in some European genotypes mainly belonging to this ancestry,
212 that show delayed flowering at certain latitudes (Fig 2e), that may have also influenced the
213 dissemination of this common bean ancestry in Europe (Fig. 1e,f). However, compared to the
214 Mesoamerican genotypes, A3/Chile was more uniformly distributed in Europe across different
215 longitudes (Fig. 1e), which also supports the earlier introduction of Andean genotypes. Only a few weak
216 associations with environmental variables were detected for the other genetic groups (Supplementary
217 Note 4).

218

219 **Analysis of genetic diversity in the European common bean**

220 To disentangle how inter-gene pool hybridisation have shaped the genetic diversity of the European
221 common bean, and given the evidence of widespread admixture in Europe, we developed a masked
222 dataset of European accessions by filtering out all introgressed alleles or those with an ambiguous
223 assignment (Supplementary Note 4). This allowed us to consider nucleotide diversity using the
224 frequencies of two reconstructed non-admixed populations of Andean and Mesoamerican origin. From
225 each European genotype, all the Andean SNPs were separated from the Mesoamerican SNPs and
226 included in the two masked datasets. Based on the unmasked and masked datasets, American common
227 bean accessions showed moderately higher nucleotide diversity than European accessions
228 (Supplementary Note 4.3), apparently due to the introduction bottleneck in Europe (Fig. 4a,b).
229 Moreover, when compared to the Mesoamerican gene pool, the Andean gene pool showed an overall
230 lower diversity in the primary centres of domestication (Americas) using both the masked and
231 unmasked datasets (Fig 4a, b). This confirms that the diversity of the Andean germplasm at the centre
232 of origin might still reflect the bottleneck that occurred in the Andean wild populations during the
233 expansion into South America before domestication (31), as reflected in the domesticated pool (32).
234 Indeed, we detected ~70% lower diversity (θ_{π}/bp) in the Andean compared to the Mesoamerican
235 accessions. Very similar results were obtained when we repeated the analysis by excluding six
236 accessions showing an admixture proportion $\geq 40\%$ (Supplementary Note 4).

237 When American and European genetic diversities were compared within each gene pool using
238 the unmasked dataset (AM_AND vs EU_AND and AM_MES vs EU_MES), due to the admixture,

239 European diversity was always higher than American diversity, but the opposite was found when using
240 the masked dataset (Fig. 4b). In other words, we show how the Andean common beans from Europe
241 are more diverse than those from America because of admixed ancestry with the Mesoamerican gene
242 pool, as seen by comparing the genetic diversities of the unmasked and masked datasets (EU_AND).
243 This comparison of the estimated levels of genetic diversity in Europe reflects the key role of inter-
244 genepool hybridisation and recombination in shaping the diversity of the European common bean. The
245 genetic diversity was higher in M1/Durango-Jalisco than M2 Mesoamerica accessions in Americas, and
246 also in A2/Peru than A1/Nueva Granada accessions in Americas, whereas the amount of diversity in
247 A3/Chile accessions was very low. Combined with the neighbourhood-joining tree shown in Fig. 1d,
248 this indicates that the A2/Peru and M1/Durango-Jalisco races were probably the first domesticated
249 Andean and Mesoamerican populations, from which the other races arose by secondary domestication
250 associated with the loss of photoperiod sensitivity (Fig. 1f). Indeed, earliness and loss/reduction of
251 photoperiod sensitivity were important traits under selection during the expansion of the common bean
252 in Europe. This is also suggested by our test for the occurrence of selection for flowering during the
253 introduction of common bean in Europe. The genetic differentiation between American and European
254 accessions for flowering time (PC1 based on flowering data across different European field and
255 greenhouse trials) was measured using Q_{ST} (33). The Q_{ST} for flowering was compared with the
256 distribution of the Q_{ST} for highly heritable metabolites and with the F_{ST} distribution of the SNPs
257 (Supplementary Note 5). We show that the Q_{ST} for the flowering is in the top 97.5% of distribution of
258 the Q_{ST} for highly inheritable metabolites, being also an outlier (99.5%) compared to our F_{ST}
259 distribution, suggesting that flowering is likely a candidate trait that underwent a selection process (33,
260 34). Considering the Andean genepool, the successful introduction in Europe was connected to the
261 domestication pattern at the centre of origin. The earlier, photoperiod-sensitive domesticated genotypes
262 were less successfully disseminated in Europe. Indeed, the relationship between the American and
263 European genetic groups of Andean origin (as defined by ChromoPainter; Supplementary Note 4),
264 coupled with the phenotypic data for flowering (Fig. 2d), shows that the A2/Peru race was more
265 photoperiod-sensitive and was not introduced into Europe successfully, due to the lack of adaptation
266 (other than a single highly admixed accession, qA2 = 43.6%). In contrast, the remaining Andean genetic

267 groups (A1/Nueva Granada and partially A3/Chile) became widespread in Europe. A different scenario
268 was seen for the Mesoamerican genotypes, especially M1/Durango-Jalisco, where introgression appears
269 to have been an important element in the dissemination of the common bean in Europe (Fig. 1f, 2d,e).
270 M1/Durango-Jalisco showed very high levels of admixture in the European material due to
271 introgression from the M2/Mesoamerica and the A1/Nueva Granada and A3/Chile (Fig. 2e), which
272 likely contributed to reduced photoperiod sensitivity compared to the American Durango-Jalisco
273 counterpart (AM_M1) (Fig. 2d), supporting its dissemination throughout Europe (Fig. 1e,f).

274 For the Andean genotypes, both the diversity pattern and photoperiod sensitivity (Fig. 2d)
275 suggest at least two domestication steps occurred: primary domestication of photoperiod-sensitive
276 populations (A2/Peru) and secondary domestication characterised by reduced photoperiod sensitivity
277 (A3/Chile and particularly A1/Nueva Granada). This indicates that secondary domestication (35) was
278 necessary for the successful dissemination of the Andean common bean in Europe (Fig 1f). For the
279 Mesoamerican genotypes, an open question is where and when the introgression from the Andean
280 genepool occurred. We suggest this is likely to have happened in southern Europe and along the
281 southern Mediterranean shore, where the warmer climate in winter may have favoured the
282 Mesoamerican genotypes.

283 The average linkage disequilibrium (LD) decay in accessions from Europe and the Americas
284 (Fig. 4c) is consistent with the historical differences between the genepools and the effects of high inter-
285 genepool hybridisation and introgression at the whole-genome scale in Europe. Admixture in Europe
286 increased the molecular diversity (i.e., effective population size). It also generated new genome-wide
287 admixture LD due to new combinations of alternative alleles in each genepool. Accordingly, inter-
288 genepool hybridisation followed by recombination reduced LD at a long distance but, as expected, had
289 a limited effect on LD decay at short distances because regions are directly inherited from the source
290 populations (36). When we compared the American and European accessions, LD decay was much
291 faster over short distances (< 1.5–2.0 Mb) in American genotypes. In contrast, there was faster LD
292 decay over greater distances (> 3 Mb) in European populations (Fig. 4c). This reflects higher historical
293 rates of recombination in the American genotypes over short distances and the effect of recombination
294 due to inter-genepool introgression in Europe over long distances. A similar pattern was seen when the

295 Mesoamerican and Andean genepools were analysed separately (Supplementary Note 7, SN7_Fig.48).
296 However, the Andean accessions were characterised by higher baseline LD levels. Indeed, the
297 AM_MES and AM_AND populations reached $r^2 = 0.2$ at ~500 kb and ~1 Mb, respectively, whereas r^2
298 = 0.2 was reached at ~1.1 and ~3.5 Mb for the EU_MES and EU_AND samples, respectively.

299

300 **Synonymous and missense mutations**

301 The ratios between missense and loss-of-function mutations over synonymous mutations were
302 calculated to reveal patterns of genetic load across genepools and continents. We observed a clear
303 pattern in the genetic load reflecting differences between the Andean and Mesoamerican origins, with
304 the Andean accessions showing a higher genetic load due to the bottleneck before domestication (Fig.
305 4d). We observed a reduced genetic load in EU_AND for both the loss-of-function (EU_AND vs
306 AM_AND; Mann-Whitney $p=0.03$) and the missense mutations (EU_AND vs AM_AND; Mann-
307 Whitney $p=0.005$). Conversely, we did not observe a reduction of genetic load in EU_MES for both
308 missense and loss-of-function mutations (Fig. 4d). This suggests that the relatively short period of inter-
309 genepool hybridisation, followed by selfing and recombination, promoted the purging of deleterious
310 alleles accumulated in the European Andean pool. The role of hybridisation and subsequent
311 recombination was also supported by the pattern of long-range LD in Europe compared to the Americas
312 (Fig. 4c). The pattern for private alleles (i.e., those not identified in other genepools or populations) in
313 the American and European accessions for low-frequency mutations (< 5%) revealed a 1.44-fold higher
314 frequency of non-synonymous over synonymous mutations in Europe (Supplementary Note 4,
315 SN4_Fig. 43). This may have resulted from the pattern of crop dissemination, which was probably
316 characterised by the exchange of small quantities of seeds and several sequential bottlenecks, followed
317 by rapid population growth at the single-farm level, leading to the fixation of most mutations due to the
318 small population size (i.e., a founder effect). In this demographic context, most mutations would be
319 fixed rapidly at the local level (within the population grown by a single farmer). However, it is also
320 possible that the purging of deleterious mutations, due to hybridisation following seed exchange among
321 farmers and the co-occurrence of different varieties in the same fields (21), facilitated the combined

322 effects of natural and human selection against deleterious recessive alleles and the capture of valuable
323 variants.

324

325 **Selection and adaptive introgression**

326 We defined putative adaptive introgressed loci (PAIL) as those showing signatures of adaptive
327 introgression meeting the following requirements: (a) an excess of introgression based on
328 Chromopainter (Supplementary Note 6), (b) a signature of selection detected using the hapFLK
329 method, which analyses multiple populations, jointly considering their hierarchical structure (37), and
330 (c) an outlier F_{ST} value between Europe and the Americas, suggesting different patterns of diversity
331 between these regions (Supplementary Notes 6 and 8). Although the hapFLK method allowed us to
332 identify selection signatures across the genome, an outlier F_{ST} value was used to define which selection
333 signature represents significant differentiation at the genomic level between American and European
334 populations, suggesting selection in Europe. The identification of excess introgression independently
335 of hapFLK provides evidence for adaptive introgression and the identification of PAIL. We also
336 considered the occurrence of inter-chromosomal LD across genomic regions, private to European
337 genepools (Fig. 4e, Fig. 5) as an interesting signal to define regions potentially involved in adaptive
338 processes, and we identified, through a GWA analyses, genomic regions associated to flowering and
339 growth habit (Supplementary Note 7). Adaptive introgression appears particularly important for the
340 evolution of the European genotypes of Mesoamerican origin (EU_MES). We identified 44 Andean
341 genomic regions with excess introgression (23 of which showed signals of adaptive introgression) that
342 are shared by > 90% of the European genotypes, spanning all chromosomes except PvChr11
343 (SN6_Supplemental Dataset 9; F(AND)) and ranging from ~5 to ~118.5 kb in length (Supplementary
344 Note 6). An Andean allele frequency of 96% was detected along a genomic segment of PvChr01
345 (Chr01:46175616–46294040; SN6_Supplemental Dataset 9) that shows signs of adaptive introgression.
346 This region contains 18 genes including *Phvul.001G203400*, which is orthologous to *OVARIAN*
347 *TUMOR DOMAIN-CONTAINING DEUBIQUITINATING ENZYME 5 (OTU5)* (Supplementary Note
348 8, SN8_Supplemental Dataset 15; row 16). In *Arabidopsis thaliana*, the function of this gene is to

349 recalibrate and maintain cellular inorganic phosphate homeostasis (38, 39). The common bean
350 orthologue may therefore be involved in the phosphate starvation response, making it an interesting
351 candidate for further testing. In the same region on chromosome Pv01, we also identified
352 *Phvul.001G204600* and *Phvul.001G204700* (Supplementary Note 8; SN8_ Supplemental Dataset 15;
353 rows 29 and 30), which are orthologous to *LUMINIDEPENDENS* and *NUTCRACKER*, respectively
354 (Fig. 5).

355 This adaptive introgression region in the common bean genome is close to known regions
356 associated with flowering time, such as the *fin* locus controlling determinacy, and explaining
357 phenotypic variation also for flowering time (40). The region also co-maps with *Phvul.001G189200*
358 (*PvTFL1y*; Pv01:44856139–44857862) (41), and shows linkage (40) to the *Ppd* locus controlling
359 photoperiod sensitivity (42). Wu et al. (25) recently identified several markers on chromosome Pv01
360 associated with flowering under different conditions, with one at ~45.5 Mb on Pv01. In our GWA, we
361 identified a significant association between photoperiod, flowering time (Supplementary Note 7.2) and
362 the marker S01_48049738, which is found ~400 kb downstream of *Phvul.001G221100*
363 (Chr01:47642033–47647745) a gene that has been proposed as a candidate for the common bean *Ppd*
364 locus (43, 44).

365 Overall, we identified 77 genes that are PAIL. These represent ~11% of all genes (n = 681)
366 showing signatures of selection in Europe (i.e., selection signatures identified with hapFLK and being
367 in an F_{ST} outlier window; n = 354) and/or excess introgression (n = 404). Accordingly, 277 genes show
368 selection in Europe but not excess introgression, and 327 show excess introgression but not selection
369 in Europe. The 77 PAIL show enrichment in seven Gene Ontology categories including GO:0048523,
370 negative regulation of cellular processes; GO:0010228, vegetative to reproductive phase transition of
371 the meristem; GO:0042445, hormone metabolic processes; GO:0009657, plastid organisation;
372 GO:0042440, pigment metabolic processes; GO:0009733, response to auxin; and GO:0070647, protein
373 modification by small protein conjugation or removal (Supplementary Note 8.2). Enrichment analysis
374 also suggested that flowering has been an important target of adaptive introgression, highlighting the
375 importance of genes that may be associated with adaptation to abiotic and biotic stress.

376 Adaptive introgression signals were identified in many *P. vulgaris* genes with a putative role related to
377 flowering (Supplementary Note 8.3), including orthologues of genes involved in the four major *A.*
378 *thaliana* flowering pathways (Fig. 5). Significant examples include *Phvul.009G259400* and
379 *Phvul.009G259650* (Supplementary Note 8; SN8_ Supplemental Dataset 15; rows 90 and 92), which
380 are orthologues of *A. thaliana* *LATE ELONGATED HYPOCOTYL* (*LHY*), both located within the same
381 adaptive introgressed region of chromosome PvChr09 (characterised by an Andean allele frequency of
382 96% in the European genotypes). Notably, the transcription factor encoded by *LHY* is a pivotal oscillator
383 in the morning stage of the circadian clock. It is connected to the indirect suppression of the middle,
384 evening, and night complex genes by *CIRCADIAN CLOCK ASSOCIATED 1* (*CCA1*) (45) (Fig. 5), with
385 a putative function in regulating flowering that has also been proposed in the common bean (46). In
386 the EU_MES population, these two *LHY* orthologues show private and significant inter-chromosomal
387 LD with *Phvul.011G050600*, which yields GWA signals for flowering time and adaptive introgression
388 (Supplementary Note 8, SN8_ Supplemental Dataset 15; row 97). The latter is an orthologue of the *A.*
389 *thaliana* genes *VERNALISATION 1* (*VRN1*) and *RELATED TO VERNALISATION1 1* (*RTV1*) (Fig. 5),
390 which are needed to activate the floral integrator genes following long-term exposure to cold
391 temperatures (47). The inter-chromosomal LD between these putative flowering genes, which is private
392 to the EU_MES accessions, may be the result of epistatic selection. Analogous examples include
393 *Phvul.001G204600* (Supplementary Note 8, SN8_ Supplemental Dataset 15; row 29) and
394 *Phvul.001G204700* (Supplementary Note 8, SN8_ Supplemental Dataset 15; row 30), which are
395 orthologous to *LUMINIDEPENDENS* (*LD*) and *NUTCRACKER* (*NUC*), respectively. Both are located
396 in a region of PvChr01 as described above, and are in private inter-chromosomal LD with
397 *Phvul.003G137100* (Supplementary Note 8, SN8_ Supplemental Dataset 15; row 38) on PvChr03,
398 which is orthologous to *GATA*, *NITRATE-INDUCIBLE*, *CARBONMETABOLISM INVOLVED* (*GNC*),
399 and *CYTOKININ-RESPONSIVE GATA FACTOR 1* (*CGA1*). *LD* is one of the eight genes identified so
400 far in the *A. thaliana* autonomous pathway and it represses *FLOWERING LOCUS C* (*FLC*) to promote
401 the transition from vegetative growth to flowering (Fig 5). *NUC* encodes a transcription factor that
402 positively regulates photoperiodic flowering by modulating sugar transport and metabolism via the

403 *FLOWERING LOCUS T (FT)* gene (48; 49). The paralogous *GNC* and *CGA1* genes act redundantly to
404 promote greening downstream of the gibberellin signalling network (50).

405

406 **Conclusions**

407 We have shown that adaptive introgression was necessary for the successful dissemination and
408 adaptation of the common bean in Europe. We combined genome resequencing, metabolomics,
409 classical phenotyping and data analysis for chromosome-level genetic assignment and environmental
410 association. Our data indicate that the Andean genepool was the first to be successfully introduced in
411 Europe, most likely from Francisco Pizarro's expedition to northern Peru in 1529. Most of the Andean
412 genetic background of the European common bean was contributed by the A1/Nueva Granada and
413 A3/Chile races after secondary domestication, whereas the more photoperiod-sensitive A2/Peru race
414 contributed little to European common bean germplasm. The secondary domestication of these Andean
415 races, related to the latitudinal expansion of the cultivation areas from the Andean centres of origin,
416 facilitated the successful dissemination of the Andean common bean in the Old World. However, we
417 propose that the adaptive introgression observed in Europe for individuals mainly belonging to the
418 M1/Durango-Jalisco race was an important event that underpinned the successful dissemination of this
419 Mesoamerican ancestry in Europe. Indeed, genomic analysis indicated that Andean genotypes were
420 rapidly disseminated, whereas Mesoamerican genotypes were eventually disseminated in Europe
421 following introgression from the Andean types. In addition to the flowering time data gathered from
422 the European and American accessions, we also identified clear signatures of selection in common bean
423 orthologues of genes representing the major flowering pathway and environmental adaptations, such as
424 the *OTU5* gene involved in the inorganic phosphate starvation response. These are interesting candidate
425 loci for further validation. Finally, we propose that the dissemination of common bean accessions in
426 Europe may have been influenced by political factors and constraints in the 16th century, including the
427 interaction between political and religious powers in Western Europe and the subdivision of the
428 European continent into Islamic and Christian countries.

429

430 **Acknowledgements**

431 This manuscript is dedicated to our former collaborator Dr. Monica Rossi, who passed away at the age
432 of 44 in 2019, and to Dr. Chris Berry, a colleague and close friend who contributed to the editing of an
433 earlier version of this manuscript and who recently passed away. This work was carried out as part of
434 the BEAN ADAPT project, funded by the ERA-CAPS Programme (2014 Call, Expanding the European
435 Research Area in Molecular Plant Sciences).

436 S.A. and A.R.F acknowledge funding from the European Commission for the PlantaSyst project (SGA-
437 CSA nos. 664621/739582 under FPA no. 664620)

438

439 ***Author contributions***

440 A.G., P.G., A.R.F., S.A.J. and R.P. conceived and managed the project; E.Be. and R.P. wrote
441 the article; E.Be., A.B., C.X., E.Bi., M.R., S.A., V.D.V., K.N., G.C., G.F., P.L.M., A.G., P.G.,
442 A.R.F., S.A.J. and R.P. contributed to the writing and drafting; E.Be., A.B., C.X., E.Bi., M.R.,
443 S.A., V.D.V., T.G., K.N., G.C., G.F., L.N., J.J.F., A.C., G.A., P.L.M., G.B., A.G., P.G., A.R.F.,
444 S.A.J. and R.P. contributed to the editing of the article; E.Be., A.B., C.X., E.Bi., M.R., S.A.,
445 V.D.V., T.G., K.N., G.C., G.F., E.M., E.T., L.N., A.A., C.L., J.J.F., A.C., P.L.M., GB, A.G.,
446 A.R.F., S.A.J. and R.P. contributed to the writing and organisation of the supplementary
447 material; E.Be., E.Bi., S.A., T.G., K.N., L.N., G.L., L.J., J.J.F. and A.C. performed DNA
448 extraction, field and greenhouse experiments; C.X., J.H.S. and S.A.J. conducted sequencing
449 and primary bioinformatic analysis; S.A. and A.R.F. conducted metabolomics analysis; A.B.,
450 E.Bi., M.R., G.F., E.T., C.L., G.B. and R.P. contributed to data analysis; E.Be., A.B., C.X.,
451 E.Bi., M.R., S.A., V.D.V., G.B., A.R.F., S.A.J. and R.P. contributed to coordinate data analysis
452 and data integration. All authors read and approved the article.

453

454 ***Data availability***

455 The raw sequence reads generated and analysed during the current study are available in the
456 Sequence Read Archive (SRA) of the National Center of Biotechnology Information (NCBI)
457 under BioProject number PRJNA573595.

458 **References**

459 1. Cortinovis G, Di Vittori V, Bellucci E, Bitocchi E, Papa R (2020) Adaptation to novel
460 environments during crop diversification. *Curr. Opin. Plant Biol.*, 56:218–222, doi:
461 10.1016/j.pbi.2019.12.011

462 2. Crosby AW (1972) *The Columbian Exchange; Biological and Cultural Consequences of 1492*.
463 Westport, Conn.: Greenwood Pub.Co.

464 3. Brandenburg J-T, Mary-Huard T, Rigaill G, Hearne SJ, Corti H, Joets J, et al. (2017)
465 Independent introductions and admixtures have contributed to adaptation of European maize and its
466 American counterparts. *PLoS Genet* 13(3): e1006666. <https://doi.org/10.1371/journal.pgen.1006666>

467 4. Gepts P (2002) A Comparison between Crop Domestication, Classical Plant Breeding, and
468 Genetic Engineering. *Crop Sci.*, 42: 1780-1790. <https://doi.org/10.2135/cropsci2002.1780>

469 5. Gepts P and Bliss FA (1988) Dissemination pathways of common bean (*Phaseolus vulgaris*,
470 Fabaceae), deduced from phaseolin elettrophoretic variability. II Europe and Africa. *Econ. Bot.* 42, 86-
471 104. <https://doi.org/10.1007/BF02859038>

472 6. Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwester
473 Europe as a secondary center of genetic diversity for common bean. *Theor Appl Genet* 104:934–944

474 7. Sicard D, Nanni L, Porfiri O, Bulfon D and PapanR (2005) Genetic diversity of *Phaseolus*
475 *vulgaris* L. and *P. coccineus* L. landraces in central Italy. *Plant Breed.*, 124: 464-
476 472. <https://doi.org/10.1111/j.1439-0523.2005.01137.x>

477 8. Zeven AC, Waninge J, van Hintum T, Singh SP (1999) Phenotypic variation in a core
478 collection of common bean (*Phaseolus vulgaris* L.) in the Netherlands. *Euphytica* 109:93-106 doi:
479 10.1023/A:1003665408567

480 9. Angioi SA, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Spagnoletti Zeuli PL,
481 Papa R (2010) Beans in Europe: origin and structure of the European landraces of *Phaseolus vulgaris*
482 L. *Theor Appl Genet.* 121:829-843, doi: 10.1007/s00122-010-1353-2

483 10. Angioi SA, Rau D, Nanni L, Bellucci E, Papa R, Attene G (2011) The genetic make-up of
484 the European landraces of the common bean. *Plant Genet Resour.* 9:197-201 doi:
485 doi:10.1017/S147926211000190

486 11. Bellucci, E., Mario Aguilar, O., Alseekh, S., et al. (2021), The INCREASE project: Intelligent
487 Collections of food-legume genetic resources for European agrofood systems. *Plant J.*, 108: 646-
488 660. <https://doi.org/10.1111/tpj.15472>

489 12. Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, Santo D, Nanni L, Attene
490 G, Papa R (2017) Beans (*Phaseolus* ssp.) as a model for understanding crop evolution. *Front Plant Sci.*
491 8:722, doi: 10.3389/fpls.2017.00722

492 13. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in
493 unrelated individuals. *Genome Res.*, 19(9):1655-64

494 14. Ariani A, Berny Mier y Teran JC, Gepts P (2018) Spatial and temporal scales of range
495 expansion in wild *Phaseolus vulgaris*. *Mol. Biol. Evol.* 35(1): 119-131 doi: 10.1093/molbev/msx273

496 15. Schmutz J, McClean P, Mamidi S, et al. (2014) A reference genome for common bean and
497 genome-wide analysis of dual domestications. *Nat Genet* 46, 707-713. <https://doi.org/10.1038/ng.3008>

498 16. Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R (2009) Linkage
499 disequilibrium and population structure in wild and domesticated populations of *Phaseolus vulgaris* L.
500 *Evol. Appl.* 2, 504-522, doi: 0.1111/j.1752-4571.2009.00082.x

501 17. Tsitrone A, Kirkpatrick M, Levin DA (2003) A model for chloroplast capture. *Evolution*
502 57(8):1776-82. PMID: 14503619 doi: 10.1111/j.0014-3820.2003.tb00585.x

503 18. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (*Phaseolus vulgaris*,
504 Fabaceae). *Econ Bot.* 45,379-396, doi: 10.1007/BF02887079

505 19. Trucchi E, Benazzo A, Lari M, et al. (2021) Ancient genomes reveal early Andean farmers
506 selected common beans while preserving diversity. *Nat. Plants* 7, 123-128, doi: 10.1038/s41477-021-
507 00848-7

508 20. Lawson DJ, Hellenthal G, Myers S, Falush D (2012) Inference of population structure using
509 dense haplotype data. *PLoS Genet.* 8(1): e1002453, doi:10.1371/journal.pgen.1002453

510 21. Zeven AC (1997) The introduction of the common bean (*Phaseolus vulgaris* L.) into western
511 Europe and the phenotypic variation of dry beans collected in The Netherlands in 1946. *Euphytica* 94,
512 319-328, doi: 10.1023/A:1002940220241

513 22. Perale M (2001) Milacis Cultus Aperire Paramus. “De milacis cultura” di Piero Valeriano,
514 il Primo Testo Europeo Dedicato al Fagiolo. Belluno: Momenti AiCS

515 23. Myers JR, Formiga AK and Janick J (2022) Iconography of beans and related legumes
516 Following the Columbian Exchange. *Front. Plant Sci.* 13:851029. doi: 10.3389/fpls.2022.851029

517 24. Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, et al. (2014) Genomics
518 of origin, domestication and evolution of *Phaseolus vulgaris*. *Genomics of Plant Genetic Resources*,
519 eds R. Tuberrosa, A. Graner, and E. Frison (Berlin: Springer), 483–507. doi: 10.1007/978-94-007-7572-
520 5_20.

521 25. Wu J, Wang L, Fu J, et al. (2020) Resequencing of 683 common bean genotypes identifies
522 yield component trait associations across a north–south cline. *Nat Genet* 52, 118–125.
523 <https://doi.org/10.1038/s41588-019-0546-0>

524 26. Ongaro L., Sclar M.O, Flores R., et al (2019). The Genomic Impact of European
525 Colonization of the Americas 3974-3986.e4 *Curr. Biol.*, 29 (2019), [10.1016/j.cub.2019.09.076](https://doi.org/10.1016/j.cub.2019.09.076)

526 27. Sherpa, S, Blum, MGB, Capblancq, T, Cumer, T, Rioux, D, Després, L. Unravelling the
527 invasion history of the Asian tiger mosquito in Europe. *Mol Ecol.* 2019; 28: 2360– 2377.
528 <https://doi.org/10.1111/mec.15071>

529 28. S.J. Micheletti, K. Bryc, S.G. Ancona Esselmann, W.A. Freyman, M.E. Moreno, G.D.
530 Poznik, A.J. Shastri, S. Beleza, J.L. Mountain, 23andMe Research Team Genetic Consequences of the
531 Transatlantic Slave Trade in the Americas. *Am. J. Hum. Genet.*, 107 (2020), pp. 265-277

532 29. Rispe, C., Legeai, F., Nabity, P.D. et al. The genome sequence of the grape phylloxera
533 provides insights into the evolution, adaptation, and invasion routes of an iconic pest. *BMC Biol* 18, 90
534 (2020). <https://doi.org/10.1186/s12915-020-00820-5>

535 30. Fontaine, M.C.; Labb  , F.; Dussert, Y.; Deli  re, L.; Richart-Cervera, S.; Giraud, T.; Delmotte,
536 F. Europe as a Bridgehead in the Worldwide Invasion History of Grapevine Downy Mildew,
537 *Plasmopara viticola*. *Curr. Biol.* 2021, 31, 2155–2166.

538 31. Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Spagnoletti Zeuli P, Logozzo G,
539 Stougaard J, McClean P, Attene G et al. (2012) Mesoamerican origin of the common bean (*Phaseolus*
540 *vulgaris* L.) is revealed by sequence data. PNAS, USA 109: E788–E796

541 32. Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E., et al. (2013) Molecular
542 analysis of the parallel domestication of the common bean (*Phaseolus vulgaris*) in Mesoamerica and
543 the Andes. New Phytol. 197, 300–313, doi: 10.1111/j.1469-8137.2012.04377.x

544 33. Whitlock, M.C. (2008), Evolutionary inference from QST. Molecular Ecology, 17: 1885-
545 1896. <https://doi.org/10.1111/j.1365-294X.2008.03712.x>

546 34. Beleggia R, Rau D, Laidò G, Platani C, Nigro F, Fragasso M, De Vita P, Scossa F, Fernie
547 AR, Nikoloski Z, Papa R. Evolutionary Metabolomics Reveals Domestication-Associated Changes in
548 Tetraploid Wheat Kernels. Mol Biol Evol. 2016 Jul;33(7):1740-53. doi: 10.1093/molbev/msw050.
549 Epub 2016 Apr 5. PMID: 27189559; PMCID: PMC4915355.

550 35. Meyer RS and Purugganan MD (2013) Evolution of crop species: genetics of domestication
551 and diversification. Nat Rev Genet. 14(12):840-52. doi: 10.1038/nrg3605. PMID: 24240513

552 36. Chakraborty R and Weiss KM (1988) Admixture as a tool for finding linked genes and
553 detecting that difference from allelic association between loci. PNAS, USA 85 (23) 9119-9123; doi:
554 10.1073/pnas.85.23.9119

555 37. Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B (2013) Detecting signatures of
556 selection through haplotype differentiation among hierarchically structured populations. Genetics,
557 193(3):929-41

558 38. Yen MR, Suen DF, Hsu FM, Tsai YH, Fu H, Schmidt W, Chen PY (2017) Deubiquitinating
559 enzyme OTU5 contributes to DNA methylation patterns and is critical for phosphate nutrition signals.
560 Plant Physiol. 175(4):1826-1838, doi: 10.1104/pp.17.01188

561 39. Suen DF, Tsai YH, Cheng YT, Radjacommare R, Ahirwar RN, Fu H, Schmidt W (2018) The
562 deubiquitinase OTU5 regulates root responses to phosphate starvation. Plant Physiol. 176(3):2441-
563 2455, doi: 10.1104/pp.17.01525

564 40. Koinange, E.M.K., Singh, S.P. and Gepts, P. (1996), Genetic Control of the Domestication
565 Syndrome in Common Bean. *Crop Science*, 36: 1037-1045 [cropsci1996.0011183X003600040037x](https://doi.org/10.2135/cropsci1996.0011183X003600040037x).
566 <https://doi.org/10.2135/cropsci1996.0011183X003600040037x>

567 41. Repinski SL, Kwak M, Gepts P. The common bean growth habit gene PvTFL1y is a
568 functional homolog of *Arabidopsis* TFL1. *Theor Appl Genet*. 2012 May;124(8):1539-47. doi:
569 10.1007/s00122-012-1808-8. Epub 2012 Feb 14. PMID: 22331140.

570 42. Wallace DH, Yourstone KS, Masaya PN, Zobel RW. 1993. Photoperiod gene control over
571 partitioning between reproductive and vegetative growth. *Theoretical and Applied Genetics* 86, 6–16.

572 43. Kamfwa, K., Cichy, K.A. and Kelly, J.D. (2015), Genome-Wide Association Study of
573 Agronomic Traits in Common Bean. *The Plant Genome*, 8: [plantgenome2014.09.0059](https://doi.org/10.3835/plantgenome2014.09.0059).
574 <https://doi.org/10.3835/plantgenome2014.09.0059>

575 44. James L Weller, Jacqueline K Vander Schoor, Emilie C Perez-Wright, Valérie Hecht, Ana
576 M González, Carmen Capel, Fernando J Yuste-Lisbona, Rafael Lozano, Marta Santalla, Parallel origins
577 of photoperiod adaptation following dual domestications of common bean, *Journal of Experimental
578 Botany*, Volume 70, Issue 4, 1 February 2019, Pages 1209–1219, <https://doi.org/10.1093/jxb/ery455>

579 45. Adams S, Manfield I, Stockley P, Carré IA (2015) Revised morning loops of the *Arabidopsis*
580 circadian clock based on analyses of direct regulatory interactions. *Plos One* 10(12): e0143943, doi:
581 10.1371/journal.pone.0143943

582 46. Kaldis, AD., Kousidis, P., Kesanopoulos, K. et al. Light and circadian regulation in the expression
583 of LHY and Lhcb genes in *Phaseolus vulgaris*. *Plant Mol Biol* 52, 981–997 (2003).
584 <https://doi.org/10.1023/A:1025433529082>.

585 47. Heo JB, Sung S, Assmann SM (2012) Ca²⁺-dependent GTPase, extra-large G protein 2
586 (XLG2), promotes activation of DNA-binding protein related to vernalization 1 (RTV1), leading to
587 activation of floral integrator genes and early flowering in *Arabidopsis*. *J. Biol. Chem.* 287(11):8242-
588 8253, doi: 10.1074/jbc.M111.317412

589 48. King RW, Hisamatsu T, Goldschmidt EE, Blundell C (2008) The nature of floral signals in
590 *Arabidopsis*. I. Photosynthesis and a far-red photoresponse independently regulate flowering by

591 increasing expression of FLOWERING LOCUS T (FT). *J. Exp. Bot.* 59(14):3811–3820, doi:
592 10.1093/jxb/ern231

593 49. Seo PJ, Ryu J, Kang SK, Park CM (2011) Modulation of sugar metabolism by an
594 INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in
595 *Arabidopsis*. *Plant J.* 65(3):418-429, doi: 10.1111/j.1365-313X.2010.04432.x

596 50. Richter R, Bastakis E, Schwechheimer C (2013) Cross-repressive interactions between SOC1
597 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in
598 *Arabidopsis*. *Plant Physiol.* 162(4):1992-2004; doi: 10.1104/pp.113.219238

599

600 **Figure legends**

601 **Figure 1. Population structure of common bean in America and Europe.**

602 **a**, Admixture analysis ($K = 2$) showing inferred ancestry in the American (AM; left) and European (EU; right) accessions, with the identification of two gene pools (identified as clusters 1 and 2) that show correspondence to the two main common bean gene pools based on our passport data (cluster 1 – Andean, cluster 2 – Mesoamerican), and several intermediates and admixed genotypes in Europe.

603 **b**, Admixture plots for the AM Mesoamerican accessions ($K = 2$) grouped by geographic origin (i.e., 604 latitude and state), which identifies two main subgroups (M1 and M2). **c**, Admixture plots for the AM 605 Andean accessions ($K = 4$) grouped by geographic origin (i.e., latitude and state), which identifies three 606 Andean genetic subgroups (A1, A2 and A3). A fourth cluster in four accessions, based on the whole- 607 set ADMIXTURE analysis ($K = 2$), was induced by the occurrence of Mesoamerican alleles with 608 AM_M1/AM_M2 components (supplementary Note 4). **d**, Neighbour-joining tree and seed pictures of 609 the 66 pure American accessions. **e**, Spatial interpolation of the geographic distributions of the EU 610 Mesoamerican (M1 and M2) and EU Andean (A1, A2 and A3) ancestry components in Europe, as 611 inferred by ChromoPainter analysis. **f**, Primary and secondary domestications of Mesoamerican and 612 Andean genetic groups/races in America. Loss of photoperiod sensitivity during secondary 613 domestication was a relevant factor for the introduction of the Andean A1/Nueva Granada and A3/Chile 614 and for the Mesoamerican M2/ Mesoamerica ancestries in Europe (solid arrow). Genetic group M1 615 (Durango-Jalisco race) was successfully introduced into Europe after introgression from other genetic 616 groups characterised by little or no photoperiod sensitivity (dashed arrow). Genetic group A2 (Peru 617 race) was not introduced into Europe due to its high photoperiod sensitivity (discontinuous and 618 truncated line).

619

620

621

622 **Figure 2. Genetic structure, molecular phenotyping and flowering data.**

623 **a, b**, Molecular phenotypes (PCA1 from 1493 putative secondary metabolites, $H^2 > 0.65$ over the entire 624 dataset) of (a) 94 American accessions and (b) 96 European accessions confirm the subdivision into the 625 two main groups based on the admixture coefficient (derived from nuclear genomic data, $K = 2$). 626 Intermediate phenotypes and genotypes are seen in Europe. **c**, Violin plots showing the distribution of

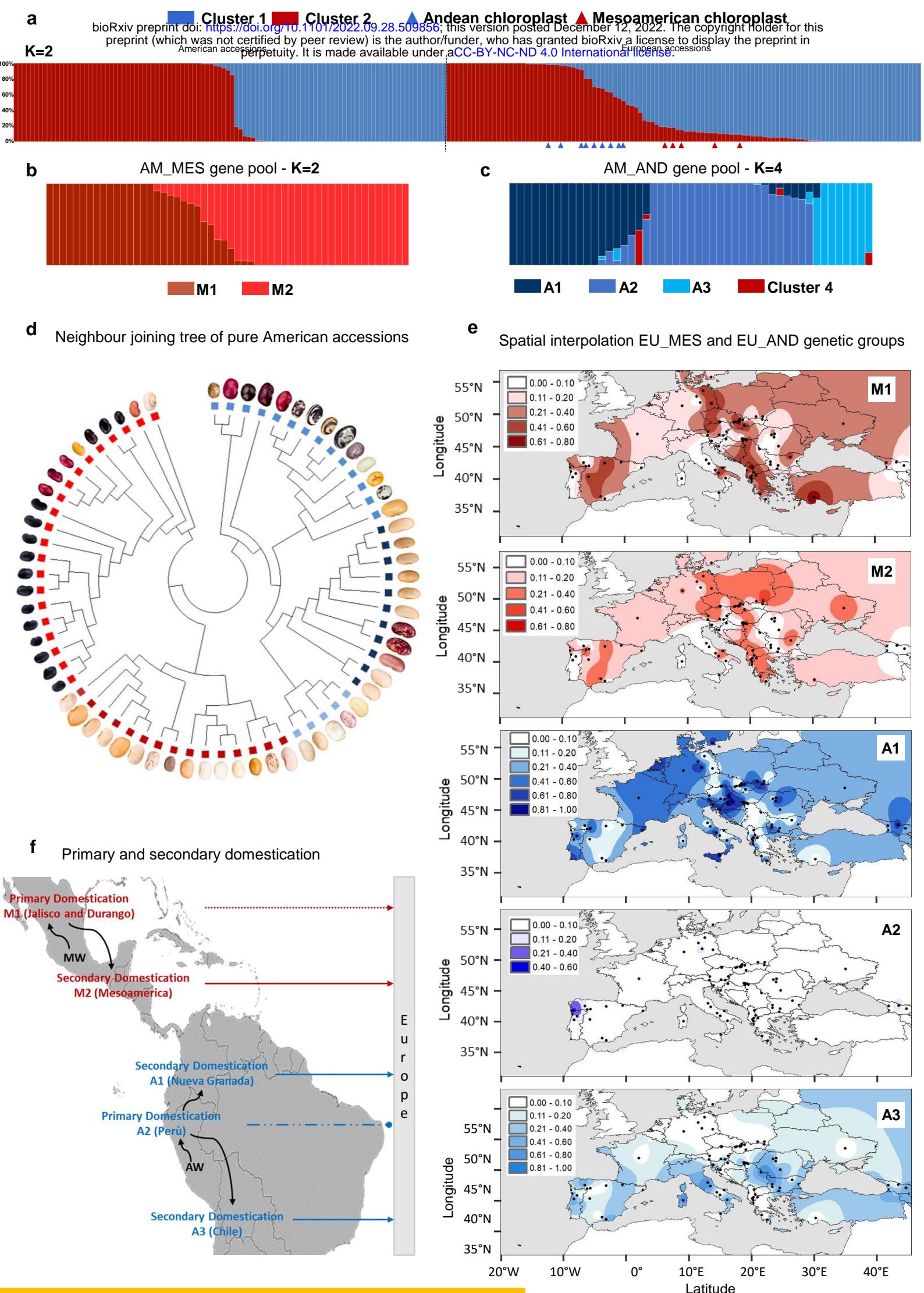
627 PCA1 values related to secondary metabolites showing high heritability ($H^2 > 0.65$) by genetic
628 subgroups in the American and European accessions. PCA1 was used as a representative molecular
629 phenotype, and it explains 25.7% of the total variance for these traits. **d**, Violin plots showing the
630 distribution of PCA1 values related to the days to flowering (DTF) and photoperiod sensitivity (PS) by
631 genetic subgroups in the American and European accessions. PCA1 was used as a representative
632 phenotypic trait for DTF and PS, and it explains 68.8% of the total variance for these traits. **e**,
633 Proportions of the genetic memberships – P(AM_A1), P(AM_A2), P(AM_A3), P(AM_M1),
634 P(AM_M2), P(SAND), and P(SMES) – inferred from the donor accessions and composing the
635 American and European accessions (grouped as mainly AM_A1, AM_A2, AM_A3_AM_M1,
636 AM_M2, EU_A1, EU_A3, EU_M1, EU_M2, and EU_MIX) are shown in the pie charts below the
637 corresponding groups and flowering data (number and percentage of individuals with delayed or no
638 flowering) in northern and southern Europe, related to the corresponding groups.

639 **Figure 3. Mapping introgression in the European common bean using ChromoPainter.**

640 **a**, Proportion of introgressed genome in the Mesoamerican (EU_MES; $n = 43$) and Andean (EU_AND;
641 $n = 71$) groups. **b, c**, Boxplots showing the median length of the introgressed blocks identified in each
642 of the EU_AND and EU_MES accessions across all of the chromosomes (b) and the median length of
643 the introgressed blocks identified in each of the EU_AND and EU_MES individuals by chromosome
644 (c).

645 **Figure 4. Boxplots of 0π averaged over 100-kb non-overlapping sliding windows, linkage**
646 **disequilibrium (LD) decay and inter-chromosomal linkage disequilibrium and genetic load.**

647 **a**, Genetic diversity computed using whole chromosomes and the unmasked dataset. **b**, Genetic
648 diversity computed after the admixture masking process using whole chromosomes and LD decay
649 according to the physical distance. **c**, Comparative LD decay in the American and European accessions.
650 **d**, Genome-wide measure of genetic load in the American and European accessions. The ratios are
651 shown for missense (up) and loss-of-function (down) over synonymous mutations in the different
652 groups. AM_M* and AM_A* are the admixed American accessions (not pure American individuals).
653 **e**, Private inter-chromosomal LD in American and European accessions (left), in the Mesoamerican and

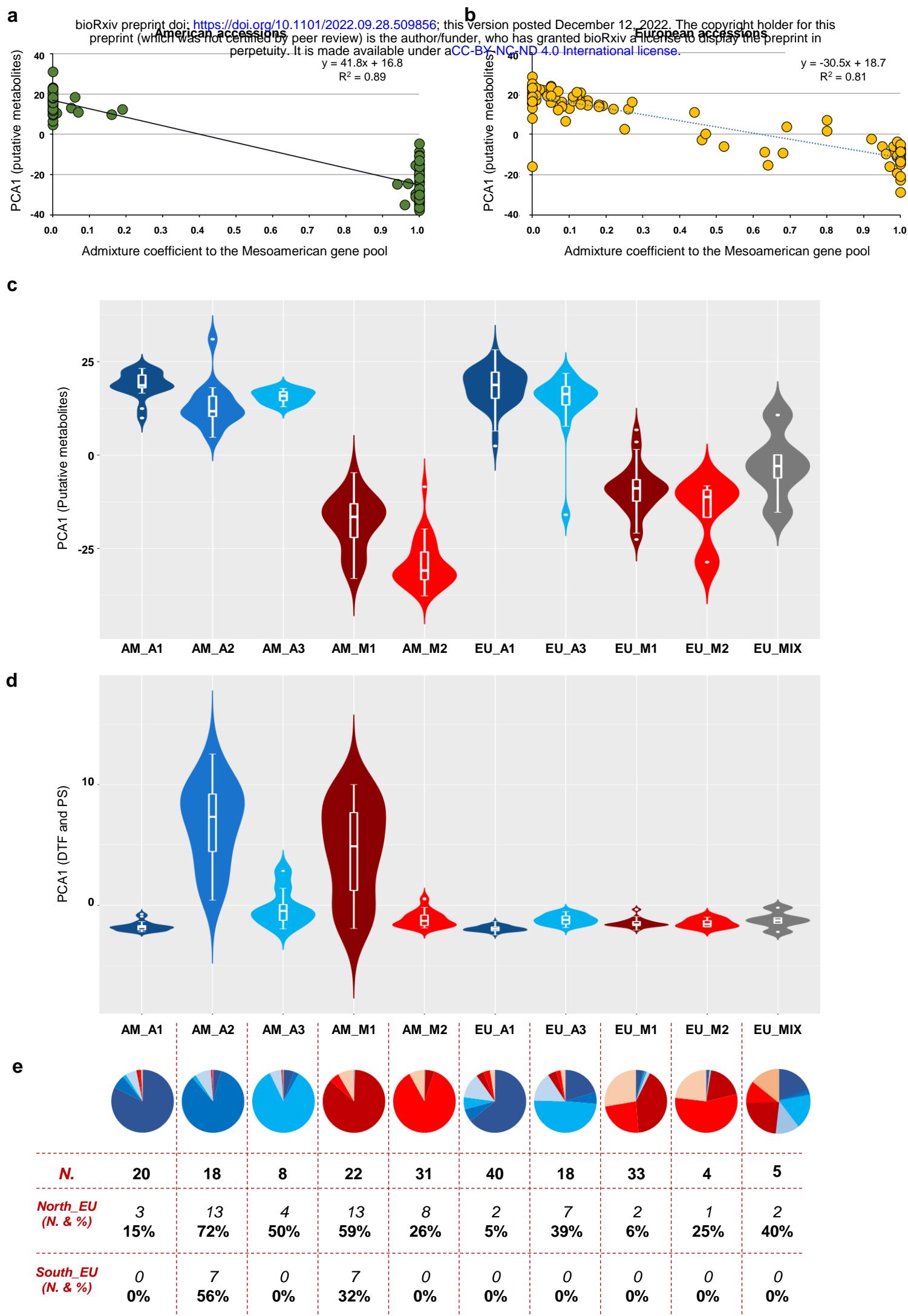
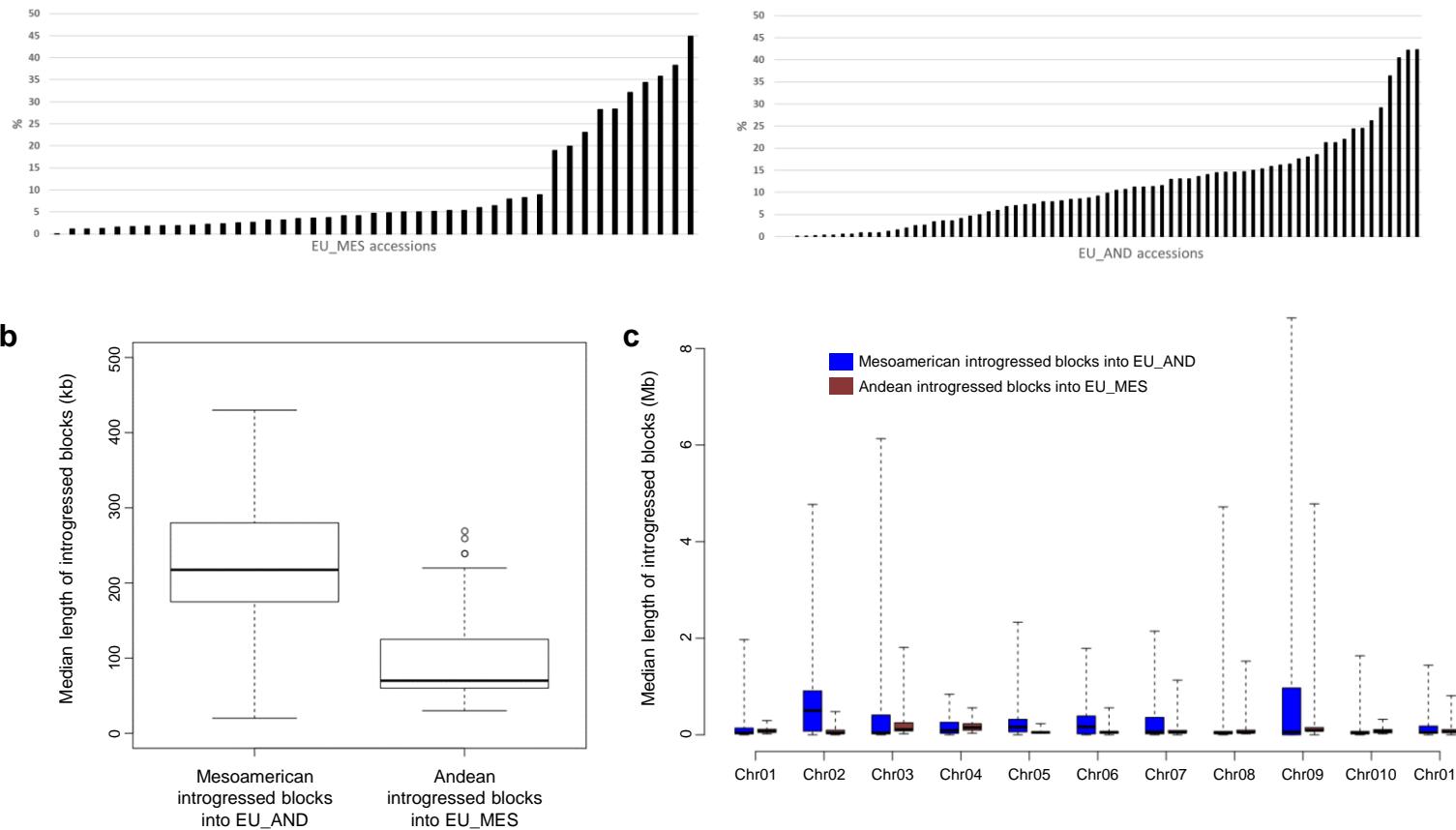

654 Andean European accessions (middle), and considering genomic regions under selection (S) in the
655 Mesoamerican and Andean European accessions (right).

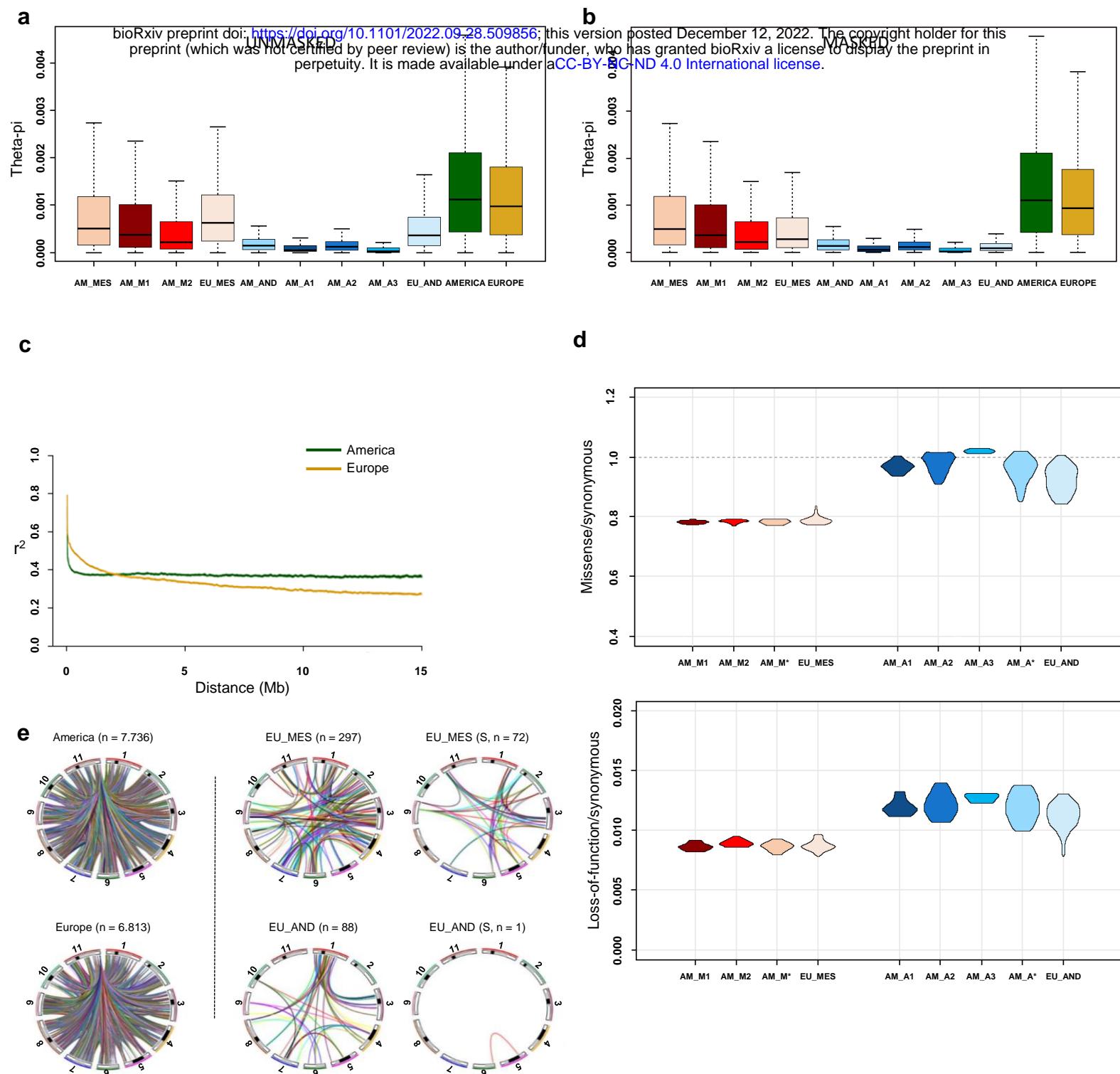
656 **Figure 5. Candidate genes for adaptation.**

657 Schematic representation of the regulatory networks underlying the four major flowering pathways in
658 *Arabidopsis thaliana*. The genes involved in the photoperiod, vernalisation, autonomous and gibberellin
659 pathways that lead to the transition from vegetative to flowering are shown below the corresponding
660 pathway. Additional genes belonging to secondary pathways and that interact with the main regulatory
661 flowering networks are shown in italic. *Phaseolus vulgaris* orthologues were identified using
662 OrthoFinder. Genes with signatures of selection and adaptive introgression, and those located in GWA
663 peaks for days to flowering and growth habit in common bean, are highlighted as follows: yellow
664 hexagons – common bean orthologues of *LHY* (Phvul.009G259400, Phvul.009G259650) and *VRN1*
665 and *RTV1* (Phvul.011G050600) showing private inter-chromosomal linkage disequilibrium (LD) in the
666 EU_M pool (*Supplementary Note 7*); pink hexagons – common bean orthologues of *LD*
667 (Phvul.001G204600), *NUC* (Phvul.001G204700), *CGA1* and *GNC* (Phvul.003G137100) showing
668 private inter-chromosomal LD in the EU_M pool (*Supplementary Note 7*); red outlines – at least one
669 orthologous gene in common bean showing signature of selection, introgression and with a significant
670 differentiation (F_{ST} index) between American and European accessions ($p < 0.05$); orange outlines – at
671 least one orthologous gene in common bean showing a signature of selection with no significant F_{ST} (p
672 < 0.05); blue asterisks – at least one orthologous gene in common bean showing a signature of
673 introgression; dashed blue outlines – at least one orthologous gene in common bean located within 50
674 kb centered on a significant GWA peak for days to flowering (DTF); dashed green outlines – at least
675 one orthologous gene in common bean located within 50 kb centered on a significant GWA peak for
676 growth habit (GH); arrows – positive regulation of gene expression; truncated arrows – repression of
677 gene expression; solid lines – direct interactions; dashed lines – indirect interactions in *A. thaliana*. The
678 candidate genes for adaptation or post-domestication of the common bean in European environments,
679 orthologous to those involved in flowering-related pathways, are shown in parentheses: *UBP12/13*
680 (Phvul.007G234000); *LHY* (Phvul.009G259400, Phvul.009G259650); *LUX* (Phvul.011G062100);

681 *PIL5* (Phvul.001G168700); *CIB2* (Phvul.008G133600); *LRB1* (Phvul.006G109600); *DRIP1/2*
682 (Phvul.001G157400, Phvul.007G177500); *VRN1*, *RTV1* (Phvul.011G050600); *UBC1/2*
683 (Phvul.003G191900); *LD* (Phvul.001G204600); *TFL1*, *ATC* (Phvul.001G189200); *GA2OX4*
684 (Phvul.006G120700); *CGA1*, *GNC* (Phvul.003G137100); *GAI*, *RGA1*, *RGL1*, *RGL2*
685 (Phvul.001G230500); *LMII* (Phvul.001G184800, Phvul.001G184900); *SIC* (Phvul.008G182500);
686 *CRP* (Phvul.008G142400); *MYB30* (Phvul.008G041500); *NUC* (Phvul.001G154800,
687 Phvul.001G204700, Phvul.011G074100); *SUC9* (Phvul.004G085100, Phvul.004G085400,
688 Phvul.004G085594); *CYP715A1* (Phvul.007G071500). Refer to SN8_ Supplemental Dataset 15 for
689 detailed information on each candidate gene (i.e., selection, top selection, F_{ST} , introgression and GWA
690 data).

691
692


Figure 2. Genetic structure, molecular phenotyping and flowering data.

a

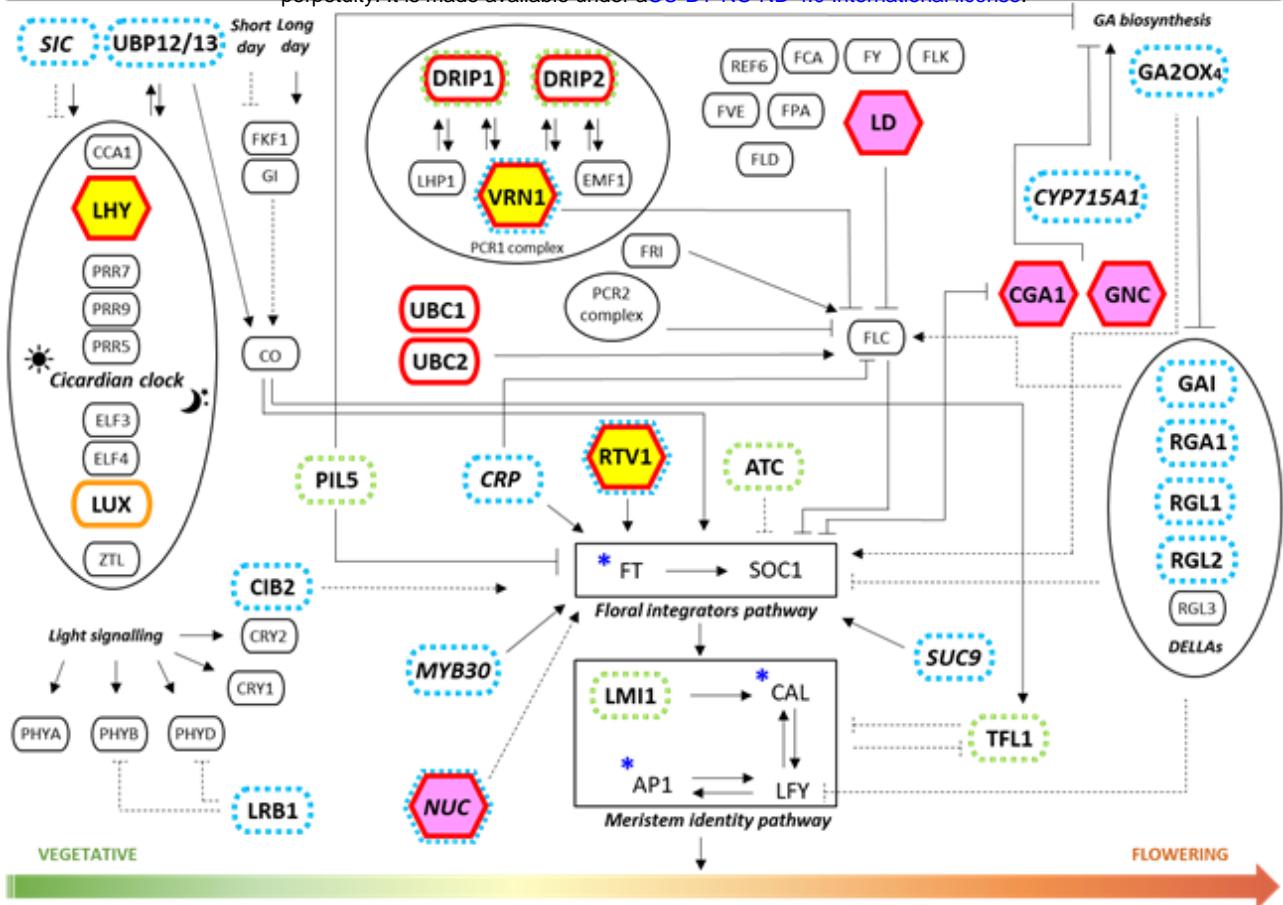

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.28.509856>; this version posted December 12, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 3. Mapping the introgression in the European common bean using Chromopainter.

Figure 4. Boxplots of $\theta\pi$ averaged over 100-kb non-overlapping sliding windows, linkage disequilibrium decay and inter-chromosomal linkage disequilibrium and genetic load.

Figure 5. Candidate genes for adaptation.

1 **Methods**

2 **Plant materials**

3 Original seeds for 218 common bean accessions (*P. vulgaris*) were collected from international gene banks
4 or individual institutional collections. We produced 199 single seed descent (SSD) lines by performing at
5 least three cycles of self-fertilisation. For the remaining 19 accessions, one seed per accession was sampled
6 directly from original seeds provided by the donor.

7 **Experimental design and phenotyping**

8 Plants were grown across 10 different environments in fields and greenhouses, applying long-day (7), short-
9 day (2) and intermediate photoperiod conditions. During the summers of 2016 and 2017, four field trials
10 were carried out in Italy (Villa d'Agri, Marsicovetere, Potenza) and in Germany (Gatersleben IPK)
11 (Supplementary Note 2.1). Six additional greenhouse experiments were performed under controlled
12 conditions in Golm (Potsdam, Germany), Potenza (Italy) and Villaviciosa (Spain) during 2016, 2017 and
13 2018 (Supplementary Note 2.2).

14 Classical phenotyping was carried out on the 199 SSD lines, focusing on two main traits: days to
15 flowering (DTF), defined as the number of days from sowing until 50% of plants showed at least one open
16 flower; and growth habit (GH), defined as determinacy vs indeterminacy on a single plant basis. Photoperiod
17 sensitivity (PS) was calculated as the ratio between DTF in long-day and short-day experiments.

18 Descriptive statistics were calculated for the different phenotypic traits using R (<https://cran.r-project.org/>) or JMP 7.0.0 (51). The restricted maximum likelihood (REML) model implemented in JMP
19 7.00 was used to calculate least square means (LSM) and the best linear unbiased predictors (BLUPs) of
20 each genotype. The REML model was also used to calculate the broad-sense heritability (h^2B) for each
21 quantitative trait by considering genotypes and environments as random effects. The distribution of DTF in
22 each environment and Pearson's pairwise correlation between environments were calculated using the
23 *corrplot* and *PerformanceAnalytics* R packages (52, 53).

25 Molecular phenotyping of the 199 accessions was performed on the first trifoliate fully-expanded
26 leaves harvested under long-day conditions in three biological replicates. Secondary metabolites were
27 measured as previously described (54). For non-targeted metabolomics, chromatogram peak detection and
28 integration were achieved using GeneData REFINER MS 10.0 (<http://www.genedata.com>). To explore the

29 molecular phenotypic diversity, we performed non-targeted metabolic fingerprinting by high-throughput
30 LC-MS analysis. Mass signals that were not detected in $\geq 50\%$ of the samples and/or those with a peak
31 intensity ≤ 1000 were excluded. Heritability was analysed as stated above, setting genotype and continent as
32 random effects. The heritability was calculated based on 190 accessions (94 from the Americas and 96 from
33 Europe) with more than one replicate.

34 **Sequencing, variant calling and annotation**

35 Genomic DNA was extracted from frozen young leaves of the 199 SSD lines grown in greenhouse and
36 directly from seeds of the remaining 19 accessions using the DNeasy Plant Mini Kit (Qiagen, Hilden,
37 Germany). It was sheared using a Covaris E220 device to fragments of ~ 550 bp and PCR-free libraries were
38 constructed using the KAPA HyperPrep Kit. Paired-end sequencing libraries were sequenced on Illumina
39 HiSeq2500 or HiSeq4000 devices and labelled with different barcodes.

40 Sequencing data were aligned to the common bean reference genome v2.0 (15) using BWA-mem
41 v0.7.15 (55). Unmapped reads were mapped to the *P. vulgaris* chloroplast genome (NCBI NC_009259). In
42 both cases, SNPs were called using SAMtools (56) and Genome Analysis ToolKit (GATK) v3.6 (57; 58). In
43 SAMtools, duplicated reads were removed with *rmdup* and SNPs were discovered with *mpileup* for filtered
44 high-quality alignments ($-q 10$) and bases ($-Q 20$) and then genotyped with BCFtools (59). In GATK,
45 duplicated reads were sorted and filtered with Picard v2.4.1 (<http://broadinstitute.github.io/picard>). Variants
46 were then called according to GATK best practices and pre-filtered using the recommended parameters for
47 hard filtering. Chromosomal and overlapping SNPs reported by both methods were retained and the
48 genotypes produced by GATK were selected. We applied additional filtering with VCFtools (60) ($--minDP$
49 3 $--max-missing$ 0.5 $--maf$ 0.05) and excluded SNPs with proportions of heterozygous genotypes > 0.01 .
50 SNPs were annotated with SnpEff v4.3s (61).

51 **Population structure analysis**

52 Population structure analysis was applied to the SAMtools/GATK overlapping SNP callset, followed by
53 filtering to retain only genomic positions with a QUAL score ≥ 30 and a global depth of coverage between
54 1/3 and 4 times the mean value. Individual genotypes called using two reads or fewer were marked as
55 missing data. Imputation and phasing were performed with Beagle (62). ADMIXTURE v1.3 (13) was used
56 for population structure analysis. The unphased variants were filtered by taking one SNP every 250 kb using

57 VCFtools. In ADMIXTURE, we varied K from 1 to 20 in 20 replicates and applied the analysis
58 independently over the whole sample of American and European (n = 218) accessions or using the American
59 accessions only (AM, n = 104). We dealt with potential cryptic population structures within each pool as
60 previously described (16, 31, 32).

61 Population structure was inferred from chloroplast data using Bayesian Analysis of Population
62 Structure (BAPS) v5.3 (63, 64). Mixture analysis was used to determine the most probable K value
63 according to the data. *Clustering with linked loci* analysis was chosen to account for the linkage between
64 sites. Ten repetitions of the algorithm for each K value from 2 to 20 were applied. The relationships between
65 genotypes were determined using the neighbour-joining method in MEGA X (65) with a bootstrap value of
66 1000. Gaps and missing data were excluded.

67 **Chromosome painting**

68 Chromosome painting was applied to the phased variants in ChromoPainter v2.0 (20). The effective
69 population size (Ne) and mutation rates (Mu) were estimated individually for each accession using 10
70 iterations of the expectation–maximisation algorithm in ChromoPainter. The estimated parameters were
71 fixed in a new round of analysis producing the final chromosome painting of the recipient haplotypes. Donor
72 individuals were chosen as follows, according to their ancestry proportion inferred by admixture: (a)
73 Mesoamerican individuals with a q value > 0.99 in the admixture run (K = 3 using all American accessions),
74 and (b) Andean individuals with a q value consistently > 0.99 from K = 2 to K = 4 in the admixture run
75 restricted to Andean accessions. Donors were subdivided into the five groups inferred by ADMIXTURE
76 (AM_M1, AM_M2, AM_A1, AM_A2 and AM_A3) and were used to estimate their contribution to the
77 ancestry of each SNP in the recipient individuals. Individual SNP probabilities were then combined in 10-kb
78 non-overlapping sliding windows along chromosomes and each window in each recipient haplotype was
79 assigned to one of the five donor groups if a probability ≥ 0.8 was observed (Supplementary Note 4.2). The
80 total proportion of genetic material from the seven groups or “unknown” (genotypes assigned to none of the
81 groups) was computed for each recipient individual and for each chromosome (both pairs). The final
82 assignment of each recipient accession to the genepools was based on (a) the total proportion of windows
83 attributed to Mesoamerica or Andes, and (b) the number of chromosomes assigned to the two genepools
84 following the majority rule criterion.

85 The attribution of each genomic window to the seven groups was also used to estimate the length of
86 the introgressed blocks within each European accession. Each haplotype of the EU_AND accessions was
87 traversed, merging consecutive windows attributed to any of the Mesoamerican clusters. Bedtools (66) was
88 used to join windows within a maximum distance between elements of 50 kb to deal with artificially broken
89 introgressed blocks. The length of each Mesoamerican block in each EU_AND individual was recorded for
90 each chromosome and was then filtered to remove blocks composed of single windows (10 kb). The final
91 within-individual distribution of lengths was characterised by the median value due to the non-normal
92 distribution of the data.

93 For spatial analyses, the ecological data (resolution ~1 km²) were downloaded from WorldClim
94 (<http://www.worldclim.org>) (67) for a total of 19 bioclimatic variables and 24 monthly variables (SN4_
95 Supplemental Dataset 7). The vegan *R* package (68) was used to calculate the geographical and ecological
96 distances, the Mantel statistics, and the spatial autocorrelation. Initially, the Mantel statistics were tested by
97 10³ permutations and the autocorrelogram was calculated between 10 distance classes of nearly 540 km each,
98 determining the significance of the correlation in each class by 9999 permutations. We then applied
99 environmental association analysis with a multivariate correlation analysis between the p values (proportion
100 of membership to the five genetic groups) assigned to each European accession and the ecological variables
101 registered at the collection site.

102 **Genetic diversity**

103 The genetic diversity within groups of accessions, defined according to their geographic origin and genepool,
104 was quantified using the theta estimator $\theta\pi$ (69). The --site-pi VCFtools flag was used to obtain a per-SNP
105 estimate that was subsequently filtered according to the genome annotation, including only positions located:
106 (a) in callable regions, (b) in coding regions, and/or (c) in neutral regions (Supplementary Note 4.3). The per-
107 site $\theta\pi$ estimate was then summed up and divided by the size of each specific region to calculate a global
108 estimate. A raw estimate of $\theta\pi$ along chromosomes, averaged over 100-kb non-overlapping windows, was
109 also computed to highlight chromosomal regions with different levels of genetic diversity. To evaluate the
110 stability of the $\theta\pi$ estimate at different missing data levels, a masked dataset was obtained by filtering
111 introgressed alleles (identified by ChromoPainter) and alleles with an ambiguous assignment, within
112 European accessions. The --site-pi and --missing-site commands in VCFtools were used to obtain a per-site

113 $\theta\pi$ estimate and the proportion of missing data for each position, respectively. The global within-group $\theta\pi$
114 was computed for the callable, coding and neutral genomic partitions, excluding regions with an average
115 (over SNP) minimum mean proportion of non-masked individuals (PIND) from 0% to 100%.

116 To detect patterns of private alleles, missense and synonymous variants were screened in American
117 and European accessions (Supplementary Note 4.3). Variants that were private to the European or American
118 groups were retained and divided into those with low (< 5%) and medium-high (> 5%) within-sample
119 frequencies. The genomic coordinates related to private alleles segregating at different frequencies in the
120 American and European groups of accessions were intersected with the gene annotations, and the burden of
121 missense and synonymous mutations was recorded for each gene element.

122 The magnitude of the genomic differentiation between and within America and Europe was
123 evaluated using the Weir & Cockerham estimator F_{ST} (70). We estimated the baseline differentiation between
124 and within the two continents. In addition, the F_{ST} was then computed in 10-kb non-overlapping sliding
125 windows between each pair of groups using VCFtools. The mean and the interquartile range (IQR) of the
126 windows-based distribution were used as a point estimate of the differentiation between groups and to
127 evaluate its dispersion.

128 **Comparison of the genetic structure, molecular phenotype and flowering data**

129 Analysis of variance (ANOVA) was used to evaluate differences between the genetic subgroups using the
130 first principal component related to DTF and PS (Supplementary Note 2.4) as representative phenotypic
131 traits.. Principal component 1 was obtained from the secondary metabolites with a high heritability of $H^2 >$
132 0.65 (Supplementary Note 2.3) and this was used as a phenotype for comparison between the genetic
133 subgroups.

134 **Tagging the signatures of adaptation in Europe**

135 The presence of *excess of introgression and selection* was investigated in Europe. To detect deviations from
136 the frequencies expected in the absence of demographic and selection forces, the ChromoPainter output was
137 parsed by tracing the assignment of each SNP to the corresponding Mesoamerican or Andean groups. For
138 each SNP, we computed the proportion of haplotypes assigned to the Mesoamerican or Andean groups. We
139 extracted the genomic coordinates of SNPs showing an unexpected proportion of Andean alleles (threshold:
140 EU_A, $71 \times 2 = 142$ haplotypes, plus 50% of the Mesoamerican ones, EU_M, $43 \times 2 \times 0.5 = 43$, $F_{obs} \geq$

141 0.811). The putative SNP targets of Mesoamerican introgression events were identified according to the
142 same rationale (threshold: EU_M, $43 \times 2 = 86$, plus the 50% of Andean ones, EU_A, $71 \times 2 \times 0.5 = 71$, Fobs
143 = 0.688). The Bedtools slop -b 2500 and merge -d 10000 functions were used to pass from SNP point
144 coordinates to 5-kb regions and then merge into larger genomic blocks if the relative distance between them
145 was < 10 kb. Only genomic regions supported by at least three SNPs were retained (Supplementary Note 6.1)

146 The hapFLK (37) method was used to identify selection signatures. The local genomic
147 differentiation along chromosomes, as measured by haplotypic F_{ST} , was compared to the expectation given
148 by the inferred genomic relationships between groups, considering the genetic drift within groups.
149 Accessions were subdivided into the AM_A (n = 30), AM_M (n = 36), EU_A (n = 71) and EU_M (n = 43)
150 groups and VCFtools was used to sample a single SNP every 250 kb. This set of SNPs was used to construct
151 a neighbour-joining tree and a kinship matrix according to the Reynolds' genetic distance matrix between the
152 four groups of accessions, constituting a genome-wide estimate of population structure. The hapFLK
153 statistics were then computed independently on each chromosome over the complete SNP dataset and
154 averaged over 20 expectation–maximisation cycles to fit the LD model. Initial analysis fixed the number of
155 haplotype clusters to five. A second run was conducted, selecting the appropriate number of haplotype
156 clusters based on the fastPHASE (71) cross-validation procedure, implemented in the *imputeqc* R package
157 (<https://github.com/inzilico/imputeqc>). VCFtools was used to extract a subset of SNPs spaced at least 100 kb
158 apart on each chromosome, and five independent copies of the SNP set were generated, randomly masking
159 10% of the variants. We then used fastPHASE v1.4.8 to impute the missing genotypes in each dataset,
160 setting the number of haplotype clusters to 5, 10, 20, 30, 40 and 50. The EstimateQuality function was used
161 to compute the proportion of wrongly imputed genotypes (Wp) for each combination, and the K value,
162 minimising the mean Wp proportion across the five SNP set replicates, was selected as the most supported
163 number of haplotype clusters. The analysis was replicated using all or only American accessions. The
164 scaling_chi2_hapflk.py script was used to scale hapFLK values and compute the corresponding p values.
165 The significant SNPs ($p < 10^{-3}$; FDR < 0.05) were extracted and bedtools was used to create a 10-kb region
166 centred on each significant SNP and to merge overlapping regions within a maximum distance of 5 kb. The
167 two sets of regions were merged forming the extended set (constituted by the union of the two sets) and the
168 restricted set (containing only regions supported by both runs). To pinpoint putative regions under selection

169 in Europe, the extended and restricted sets were intersected with the F_{ST} window analysis, and only regions
170 containing at least one F_{ST} window located in the top 5% or top 1% were retained.

171 **Linkage disequilibrium (LD)**

172 The relationship between LD and physical distance along chromosomes was evaluated in America and
173 Europe, and successively within the American subgroups. PopLDdecay (72) was used to compute the
174 correlation (r^2) between allele frequencies at pairs of SNPs along the chromosomes, setting a minimum
175 minor allele frequency of 0.1 and a maximum distance between SNPs of 5 Mb.

176 The level of inter-chromosomal LD was also evaluated. VCFtools was used to sample one SNP
177 every 10 kb and compute r^2 between pairs of markers located on different chromosomes. The analysis was
178 performed independently over the American subgroups, using only SNPs that were segregating within each
179 group of accessions with a minor allele frequency > 0.05 , and only pairs of SNPs showing an r^2 value ≥ 0.8
180 were retained. Multiple pairs of SNPs pointing to the same chromosomal regions were merged if within a
181 distance of 100 kb from each other and only pairs of regions spanning at least 500 kb on each side were
182 retained. The whole analysis was also repeated including only SNPs falling in the putative regions under
183 selection, decreasing the minimum width of retained regions from 500 kb to 50 kb. Link plots showing high-
184 LD regions were produced using Rcircos (73).

185 **Genome-wide association study (GWAS)**

186 GWAS was carried out for the growth habit, flowering time and photoperiod sensitivity data (Supplementary
187 Note 2.4). First we ran a single-locus mixed linear model (MLM) in the R package MVP (74)
188 (<https://github.com/XiaoleiLiuBio/MVP>). Bonferroni correction at $\alpha = 0.01$ was applied as the significance
189 threshold for each trait. The analysis was then conducted using the multi-locus stepwise linear mixed-model
190 (MLMM) [75] (<https://github.com/Gregor-Mendel-Institute/MultLocMixMod>). By applying a stepwise
191 approach, this includes the most significant SNPs as cofactors in the mixed model. The mBonf criterion was
192 used to identify the optimal results with Bonferroni correction at $\alpha = 0.01$.

193 **Investigation on the putative function of candidate genes for adaptation**

194 Common bean genes orthologous to *A. thaliana* and legume genes were identified using Orthofinder (76).
195 The putative function of poorly-characterised genes was predicted based on orthologous relationships and
196 literature screening. The orthologue and known genes involved in DTF, GH and PS were screened against

197 the GWAS results. Genes within 50 kb on either side of each significant SNP associated with DTF and GH,
198 and genes located within selection scan and introgression scan regions, were investigated by GO term
199 enrichment analysis (biological process, cellular component and molecular function) using Metascape (77)
200 (<http://metascape.org>).

201

202 **References**

203 51. JMP®, Version 7.0.0. SAS Institute Inc., Cary, NC, 1989–2012

204 52. Wei T, Simko V (2017) R package "corrplot": Visualization of a Correlation Matrix (Version 0.84).
205 Available from <https://github.com/taiyun/corrplot>

206 53. Peterson BG, Peter CP, Boudt K, Bennett R, Ulrich J, Zivot E, Cornilly D, Hung E, Lestel M, Balkissoon
207 K, Wuertz D, Christidis AA, Martin RD, Zhou Z, Shea JM (2020) PerformanceAnalytics: Econometric
208 Tools for Performance and Risk Analysis (Version 2.0.4). Available from
209 <https://github.com/braverock/PerformanceAnalytics>

210 54. Perez de Souza L, Scossa F, Proost S, Bitocchi E, Papa R, Tohge T and Fernie AR (2019) Multi-tissue
211 integration of transcriptomic and specialized metabolite profiling provides tools for assessing the
212 common bean (*Phaseolus vulgaris*) metabolome. Plant J, 97: 1132-
213 1153. <https://doi.org/10.1111/tpj.14178>

214 55. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
215 arXiv:1303.3997 [q-bio.GN].

216 56. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and
217 population genetical parameter estimation from sequencing data. Bioinformatics 27:2987-2993.

218 57. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D,
219 Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: A MapReduce framework for
220 analyzing next-generation DNA sequencing data. Genome Res. 20:1297-1303.

221 58. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T,
222 Shakir K, Roazen D, Thibault J, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D,
223 Gabriel S, DePristo MA (2013) From FastQ data to high confidence variant calls: the Genome Analysis
224 Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11 10 11-33.

225 59. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy
226 SA, Davies RM, Li H (2021) GigaScience, Volume 10, Issue 2,
227 giab008, <https://doi.org/10.1093/gigascience/giab008>

228 60. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth
229 GT, Sherry ST, McVean G (2011) The variant call format and VCFtools. Bioinformatics. 2011,
230 27(15):2156-8.

231 61. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu XY, Ruden DM (2012) A
232 program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in
233 the genome of *Drosophila melanogaster* strain w(1118); iso-2; iso-3. Fly 6:80-92.

234 62. Browning S R and Browning B L (2007) Rapid and accurate haplotype phasing and missing data
235 inference for whole genome association studies by use of localized haplotype clustering. Am J Hum
236 Genet 81:1084-1097. doi:10.1086/521987

237 63. Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between
238 populations. Genetics 163(1):367-74. doi: 10.1093/genetics/163.1.367. PMID: 12586722; PMCID:
239 PMC1462429.

240 64. Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for
241 learning genetic structures of populations. BMC Bioinformatics 9, 539 <https://doi.org/10.1186/1471-2105-9-539>

243 65. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics
244 Analysis across Computing Platforms. Mol. Biol. Evol. 35(6):1547–49. doi:
245 10.1093/MOLBEV/MSY096.

246 66. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features,
247 Bioinformatics, Volume 26, Issue 6, 15, 841–842, <https://doi.org/10.1093/bioinformatics/btq033>

248 67. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate
249 surfaces for global land areas. Int. J. Climatol., 25, 1965–1978.

250 68. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB,
251 Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology
252 Package. R package version 2.5-7. <https://CRAN.R-project.org/package=vegan>

253 69. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. *Genetics*,
254 105(2):437-60.

255 70. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure.
256 *evolution*, 1358-1370.

257 71. Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype
258 data: applications to inferring missing genotypes and haplotypic phase. *Am. J. Hum. Genet.*, 78(4):629-
259 44.

260 72. Zhang C, Dong SS, Xu JY, He WM, Yang TL (2019) PopLDdecay: a fast and effective tool for linkage
261 disequilibrium decay analysis based on variant call format files. *Bioinformatics*, Volume 35, Issue 10,
262 1786–1788, <https://doi.org/10.1093/bioinformatics/bty875>

263 73. Zhang H, Meltzer P, Davis S (2013) RCircos: an R package for Circos 2D track plots *BMC*
264 *bioinformatics*, 14(1):244.

265 74. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. *Nat.*
266 *genet.*, 44(7), 821.

267 75. Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nordborg M (2012) An efficient multi-
268 locus mixed-model approach for genome-wide association studies in structured populations. *Nat. genet.*,
269 44(7), 825.

270 76. Di Vittori V, Bitocchi E, Rodriguez M, Alseekh S, Bellucci E, Nanni L, Gioia T, Marzario S, Logozzo G,
271 Rossato M, De Quattro C, Murgia ML, Ferreira JJ, Campa A, Xu C, Fiorani F, Sampathkumar A,
272 Fröhlich A, Attene G, Delledonne M, Usadel B, Fernie AR, Rau D, Papa R (2021) Pod indehiscence in
273 common bean is associated with the fine regulation of PvMYB26. *J. Exp. Bot.*, Volume 72, Issue 5, 27
274 February 2021, Pages 1617–1633, <https://doi.org/10.1093/jxb/eraa553>

275 77. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanasichuk O, Benner C, Chanda SK
276 (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. *Nat.*
277 *Commun.* 10, 1523. <https://doi.org/10.1038/s41467-019-09234-6>

278