

1 **Bacterial Microbiome and Host Inflammatory**

2 **Gene Expression in Foreskin Tissue**

3 **Short title: Bacterial Microbiome of Foreskin Tissue**

4 Brandon S. Maust^{a,b}, Stefan Petkov^c, Carolina Herrera^d, Colin Feng^a, Bryan P. Brown^{a,b}, Limakatso

5 Lebina^e, Daniel Opoka^{f,g}, Andrew Ssemata^{f,g}, Natasha Pillay^e, Jennifer Serwanga^{f,g}, Portia

6 Seatlholo^e, Patricia Namubiru^{f,g}, Geoffrey Odoch^{f,g}, Susan Mugaba^{f,g}, Thabiso Seiphetlo^h, Clive M.

7 Gray^{h,i}, Pontiano Kaleebu^{f,g}, Emily L. Webb^j, Neil Martinson^e, Francesca Chiodi^{c*}, Julie Fox^{k*},

8 Heather B. Jaspan^{a,b,h*#}, on behalf of the CHAPS team

9 ^aCenter for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA

10 ^bDivision of Infectious Disease, Dept of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA

11 ^c Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

12 ^d Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, U.K.

13 ^e Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa

14 ^f Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda

15 ^g London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda

16 ^h Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

17 ⁱ Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University,
18 Cape Town, South Africa

19 ^j Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, U.K.

20 ^k Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Kings College, London, U.K.

21 * Authors contributed equally (ordered alphabetically)

22 # corresponding author, email hbjaspan@gmail.com

23 Abstract

24 As part of the CHAPS randomized clinical trial, we sequenced a segment of the bacterial 16S
25 rRNA gene from foreskin tissue of 144 adolescents from South Africa and Uganda collected
26 during surgical penile circumcision after receipt of 1 to 2 doses of placebo, emtricitabine with
27 tenofovir disoproxil fumarate, or emtricitabine with tenofovir alafenamide. We found a large
28 proportion of *Corynebacterium* in addition to other anaerobic species. *Cutibacterium acnes* was
29 more abundant among participants from South Africa than Uganda, though this made no
30 difference in surgical recovery. We did not find a difference in bacterial populations by
31 treatment received nor bacterial taxa that were differentially abundant between participants
32 who received placebo versus active drug. Using RNAseq libraries from foreskin tissue of the
33 same participants, we found negative correlations between the relative abundance of bacterial
34 taxa and the expression of genes downstream of the innate response to bacteria and regulation
35 of the inflammatory response. When participants were divided into clusters based on bacterial
36 community composition, two main clusters emerged which were distinguished by high and
37 low bacterial diversity. Random forest classification showed higher expression of *NFATC3* and
38 *SELENOS* and lower expression of *STAP1* and *NLRP6* in the higher diversity group compared
39 to the lower. Our results show no difference in the tissue microbiome of the foreskin with short-
40 course PrEP but that bacterial taxa were largely inversely correlated with gene expression,
41 consistent with non-inflammatory colonization.

42 Author Summary

43 We investigated the bacterial community of the foreskin of the penis. Previous studies found
44 increased inflammation with certain anaerobic bacteria from swabs taken under the foreskin,

45 but we found that higher relative abundances of the bacteria were correlated with lower
46 expression of inflammatory genes. We did not find different bacteria in participants who
47 received medicine to prevent HIV. Understanding the relationship between bacteria and
48 inflammation in the penis will help us to understand how interventions like penile circumcision
49 reduce the risk of acquiring sexually transmitted infections such as HIV.

50

51 **Introduction**

52 HIV remains a significant global health challenge despite substantial clinical, public health, and
53 basic science research efforts. While condom use (1, 2), pre-exposure prophylaxis (PrEP) (3), and
54 medical penile circumcision (4) are effective at reducing HIV incidence in men, the contribution
55 of the penile microbiome to these mechanisms has not been fully explored. Previous work has
56 shown a predominance of anaerobic species in the microbiota of swabs taken from the coronal
57 sulcus or urethra (5-15) and have reported associations between species such as *Prevotella* and
58 increased mucosal inflammation, HIV target cell density and risk of HIV acquisition (8, 16).
59 Following circumcision, the surface microbiota shifts to be dominated by more aerobic species
60 as found on other skin surfaces (10, 17, 18). Thus far, no data exist as to the microbiota of the
61 foreskin itself, and its relation to tissue inflammation.

62 Antiretrovirals (ARVs) are used for both treatment and prevention of HIV, and limited data
63 have shown a complex relationship with bacteria. When applied as topical vaginal pre-exposure
64 prophylaxis, *L. crispatus* was shown to endocytose Tenofovir (TFV) then either actively
65 metabolize or release it back into the environment (19). Similarly, *Gardnerella vaginalis* and other
66 anaerobes have been shown to metabolize TFV (20) or block its entry into cells by secretion of
67 adenine (19). Antiretrovirals may also theoretically alter bacteriophage populations which can
68 dramatically reshape the bacterial component of the microbiome which they infect (21). At the
69 rectal mucosa, small studies have investigated the effects of oral emtricitabine (FTC) with
70 tenofovir disoproxil fumarate (TDF) on the bacterial microbiome and innate inflammatory
71 pathways in men who have sex with men (MSM) and transwomen (22-25) but with varying
72 results.

73 Within the CHAPS clinical trial, young men were randomized to 1 to 2 doses of placebo,
74 emtricitabine with tenofovir disoproxil fumarate, or emtricitabine with tenofovir alafenamide ,
75 prior to medical penile circumcision. Foreskin tissue was collected and subject to both 16S
76 rRNA sequencing and RNASeq. to characterize the bacterial microbiome and inflammatory
77 gene expression. We hypothesized that short courses of PrEP, as utilized in a dose-finding trial,
78 would not result in significant changes to the bacterial microbiome of the foreskin, but that
79 there would be a relationship between the microbiota and inflammatory gene expression.

80 **Materials and Methods**

81 **Cohort and Specimen Collection**

82 The Combined HIV Adolescent PrEP and Prevention Study (CHAPS) was a randomized
83 controlled trial that enrolled 144 men living without HIV aged 13-24 years between 2019 and
84 2021 from the Chris Hani Baragwanath Academic Hospital in Soweto, South Africa (n=72) and
85 the Entebbe Regional Referral Hospital in Entebbe, Uganda (n=72). Inclusion criteria were male
86 sex at birth, hemoglobin > 9 g/dL, weight > 35 kg, two successive negative rapid HIV antibody
87 tests, and clinical eligibility for surgical circumcision (26). Exclusion criteria were conditions
88 precluding circumcision or receipt of the study medications. Participants were randomized to
89 placebo versus FTC with either TDF or tenofovir alafenamide (TAF) for 1-2 days prior to
90 surgical penile circumcision to investigate ARV dosing for on-demand PrEP.

91 All participants underwent a physical exam at study entry and completed survey instruments
92 including sexual history at the randomization visit. At the circumcision visit, they provided
93 midstream urine for *Chlamydia trachomatis* (CT) and *Neisseria gonorrhoea* (GC) testing via nucleic
94 acid amplification testing (NAAT) prior to surgery. If an asymptomatic sexually transmitted
95 infection was diagnosed, antibiotic treatment was prescribed at the post-operative visit.

96 Penile circumcision was performed using the dorsal slit method and the removed prepuce was
97 placed immediately in cold Dulbecco's Modified Eagle Medium and shipped on ice within 1
98 hour (median 30 minutes) to the local laboratories in Uganda (Medical Research
99 Council/Uganda Virus Research Institute) and South Africa (Perinatal HIV Research Unit in
100 Johannesburg) for processing. Smaller, 5–7 mm²-sized sections were stored dry at -80° C until
101 the samples were transported on dry ice to the Seattle Children's Research Institute, U.S.A for
102 microbiome studies and to the Karolinska Institutet, Sweden for transcriptome analyses.

103 **Ethics and Human Subjects**

104 Ethical clearance to conduct the CHAPS trial was obtained from the South African Health
105 Products Regulatory Authority (20181004), the Uganda Virus Research Institute research and
106 ethics committee (GC/127/18/12/680), Uganda National Council of Science and Technology
107 (HS 2534), Uganda National Drug Authority (618/NDA/DPS/09/2019), and the London School
108 of Hygiene and Tropical Medicine research ethics committee (Ref:17403). Informed written
109 consent was collected from all participants. The Swedish Ethics Review Authority approved the
110 transcriptome studies of the collected specimens at the Karolinska Institutet (2020-00941). The
111 ethics approval for the microbiome analysis was granted by the Seattle Children's Institutional
112 Review Board (STUDY00003430).

113 **Specimen Processing**

114 *16S rRNA Analysis*

115 At the time of analysis, vials were thawed and approximately 25 mg of tissue was dissected and
116 processed by a customized Qiagen PowerSoil Pro protocol for extraction of DNA using a
117 QIAcube instrument, available at: <https://dx.doi.org/10.17504/protocols.io.4r3l2774jg1y/v1>. A
118 negative extraction control consisting of solution CD1 without specimen was also included. The

119 specimens from each collection site were extracted on single plates. The resulting total DNA
120 was diluted 1:4 to reduce PCR inhibition.

121 The *16S* rRNA gene V3-V4 region was amplified using 319F/806R universal primers for 20
122 cycles of PCR as previously described (27) for each specimen along with a negative PCR control
123 reaction consisting of mastermix without DNA template for each replicate and evenly and
124 staggered genomic DNA from mock bacterial libraries (BEI Resources) as positive sequencing
125 controls. The amplified products were purified using Agencourt AMPure XP beads (Beckman
126 Coulter) and submitted to an additional 10 rounds of PCR with indexing primers (Illumina).
127 The resulting libraries were pooled by volume with specimens at 100x the positive controls. The
128 resulting library comprising all participants was purified using a MinElute PCR purification
129 column (Qiagen), followed by the QiaQuick gel extraction kit (Qiagen). The cleaned library was
130 quantitated using qPCR (NEBNext Library Quant Kit for Illumina), then pooled with PhiX,
131 denatured, and loaded onto a MiSeq instrument (Illumina) with a v3 2x300 flow cell following
132 the manufacturer's protocol.

133 Sequences were de-multiplexed using Illumina's BaseSpace workflow. Primers and adapters
134 were removed by cutadapt 2.7 (28). Sequences were further trimmed for quality, then filtered
135 and merged using dada2 1.22.0 (29) to generate amplicon sequence variants (ASVs). Taxa were
136 annotated using the Silva 138.1 database (30) with additional genital-associated species (31)
137 using a 100% nucleotide identity threshold. The phyloseq 1.40.0 (32) and vegan 2.6-2 (33) R
138 packages were used to manipulate ASV tables and calculate diversity measures. ASV sequences
139 were aligned using ssu-align 0.1.1 (34), and a maximum likelihood phylogeny was generated
140 using PhyML 3.3.20220408 (35) with a GTR substitution model. Contaminating sequences were
141 identified by their presence in negative controls for the extraction and PCR amplification or
142 mock community using decontam 1.16.0 (36) and microfiltR (37). After decontamination,

143 specimens with fewer than 25-fold as many reads than extraction and PCR controls were
144 excluded. For differential abundance analysis, decontaminated ASVs were filtered with
145 prevalence $\geq 10\%$ and relative abundance threshold of 1×10^{-4} before combining counts for all
146 ASVs classified as the same species. ALDEx2 1.28.1 (38), ANCOM-BC 1.6.2 (39), and DESeq2
147 1.36.0 (40) (using the poscounts factors estimation) were used for differential abundance testing
148 to overcome the documented limited power and accuracy of these tools when used individually
149 on 16S data sets which contain a high proportion of zero counts (41, 42).

150 *RNAseq of Foreskin Tissue*

151 Foreskin samples were disrupted and homogenized using a Tissuelyzer (Qiagen) and total RNA
152 isolated using the RNeasy Kit (Qiagen) according to manufacturer's instructions. RNA was
153 subjected to quality control with Agilent Bioanalyzer (Agilent). To construct libraries suitable
154 for Illumina sequencing, the Illumina stranded mRNA prep ligation sample preparation
155 protocol was used with starting concentration of 200 ng total RNA. The protocol includes
156 mRNA isolation, cDNA synthesis, ligation of adapters and amplification of indexed libraries.
157 The yield and quality of the amplified libraries were analysed using Qubit by (Thermo Fisher)
158 and the Agilent Tapestation (Agilent). The indexed cDNA libraries were normalized and
159 combined, and the pools were sequenced on the Illumina Novaseq 6000 S4 flowcell to generate
160 150 bp paired-end reads.

161 Sample demultiplexing was performed using bcl2fastq 2.20.0 (Illumina), and quality and
162 adapter trimming of reads was performed using Cutadapt 2.8 (28). Sample quality was assessed
163 using FastQC 0.11.8 (Babraham Bioinformatics) and MultiQC 1.7 (43). Reads were aligned to the
164 Ensembl GRCh38 reference genome using STAR 2.6.1d (44). Counts for each gene were
165 obtained using featureCounts 1.5.1 (45).

166 The Gene Ontology (GO) term “inflammatory response” (GO:0006954) selected 860 putative
167 inflammatory genes which were filtered to only those with at least two copies detected in at
168 least 90% of specimens. RNA read counts were normalized then transformed by centered log
169 ratio (CLR). The 16S ASVs were filtered and combined as described for the differential
170 abundance analysis and also CLR-transformed. We calculated the correlation between the gene
171 counts and bacterial relative abundances, then filtered for $r > 0.4$ and Benjamani-Hochberg-
172 adjusted p-value < 0.05 . The resulting genes were manually inspected for their most relevant
173 GO annotation and grouped according to their immunological function and pro- or anti-
174 inflammatory nature ([Supplemental table S1](#)).

175 Normalized gene counts were used to perform random forest feature selection as implemented
176 in the Boruta R package 7.0.0 (46). Only the importance measures of statistically significant
177 ($p < 0.01$) features were reported.

178 **Statistical Analyses**

179 All statistical analyses were performed in R version 4. Alpha diversity comparisons were
180 evaluated using the Wilcoxon rank sum test. Beta diversity was compared using Permutational
181 Multivariate of Variance (PERMANOVA) using the adonis2 function of the vegan R package.
182 The relationship between treatment arm and CST was assessed using multinomial logistic
183 regression. RNAseq and 16S taxa correlations were calculated using Pearson coefficient. A
184 significance threshold of $\bullet = 0.05$ was used for the differential abundance hypothesis testing.

185 **Data Availability**

186 The 16S raw reads and RNASeq libraries will be deposited in the National Center for
187 Biotechnology Information Short Read Archive and European Bioinformatics Institute
188 (respectively) upon publication. R code to reproduce the analysis is available at

189 https://github.com/bmaust/CHAPS_. The completed STORMS (Strengthening The
190 Organizing and Reporting of Microbiome Studies) checklist (47) for this project is located at
191 <https://doi.org/10.5281/zenodo.7269027>.

192 Results

193 *Clinical STI testing*

194 No participants reported STI symptoms, and no physical exams revealed urethral discharge or
195 other genital abnormality. None of the participants had clinical balanoposthitis or evidence of
196 macroscopic inflammation. No GC infections were diagnosed, but NAAT for seven participants
197 was positive for CT: five from Uganda and two from South Africa.

198 *Microbiome 16S sequencing*

199 After filtering and contamination removal, 137 specimens from the 144 enrolled participants
200 had sufficient bacterial DNA reads to proceed with analysis. The identified bacterial taxa
201 include a variety of skin-associated Gram-positive and genital-associated anaerobic species in
202 addition to Gram-negative enterics (Fig. 1). *Corynebacterium* was the most prevalent and
203 abundant genus, appearing in 132 (97%) of specimens at median relative abundance of 34%
204 (range: 0.14% to 98%). Anaerobic species were highly abundant, including bacteria that are
205 commonly found in bacterial vaginosis, an inflammatory dysbiosis of the vagina, including
206 *Prevotella*, *Anaerococcus*, *Finegoldia* and *Porphyromonas*. There were no ASVs in the *Chlamydiaceae*
207 family which includes *C. trachomatis*.

208 Unsupervised partition around medoids clustering separated the unweighted Unifrac
209 distances into two community structure types (CST) with distinct community structure
210 (PERMANOVA $R^2 = 0.25$ with $p < 0.001$) and alpha diversity ($p=2.39 \times 10^{-19}$) (Fig. 2). Two clusters

211 maximized the silhouette score with acceptable within sum of squares and gap statistics. CST1
212 was highly diverse with a median Shannon index of 3.05. CST2 was dominated by
213 *Corynebacterium tuberculostearicum* and *Finegoldia magna* and, with median relative abundances
214 of 21% and 9.6%, respectively. CST2 also had a significantly lower median Shannon index of
215 1.68 (Wilcoxon unpaired exact, $p = 2.39 \times 10^{-19}$). Though *F. magna* and *C. tuberculostearicum* were
216 also abundant in CST1 (median relative abundances of 4.6% and 2.5%), they shared high
217 relative abundance with *Anaerococcus*, *Campylobacter*, *Fenollarria*, *Finegoldia*, *Ezakiella*, *Mobiluncus*,
218 and *Peptinophilis* species without a clear dominant taxon.

219 *Microbiome differences by study site*

220 The 137 participants with 16S data included 69 (50.3%) individuals from South Africa and 68
221 (49.7%) from Uganda. We compared microbiota between the two study sites and found no
222 differences in within-participant alpha diversity (Shannon entropy) or between-participant beta
223 diversity (unweighted Unifrac distance) (**Fig. 3, A and B**). Differential abundance testing
224 identified *Cutibacterium acnes* as significantly higher in participants from South Africa compared
225 to those from Uganda by ALDEx2 with a CLR difference of 3.3 between sites (Wilcoxon rank
226 test with Benjamani-Hochberg correction $p=0.0184$). ANCOM-BC identified the same ASV with
227 a significant q-value (0.0079), but the log₂fold change of 1.87 failed to meet the effect size
228 threshold. DESeq2 did not identify any taxa as significantly differentially abundant. (**Fig. 3, C-E**).
229

230 *Microbiome differences by parent study treatment arm*

231 We performed similar analyses for the bacterial populations in participants who received active
232 drug versus placebo. The participants with 16S data were equally distributed among treatment
233 arms with FTC-TAF and FTC-TDF (n=59 and 62, respectively, $\bullet^2 p=0.437$). All 16 participants

234 who received placebo had sufficient sequences for analysis. We found no differences in alpha or
235 beta diversity (Fig. 4, A and B) between placebo and FTC-TAF or FTC-TDF regimens.
236 Combining both treatment groups and comparing to placebo, no species were significantly
237 differentially abundant by any of the three tools (Fig. 4, C-D). An un-annotated *Dialister* species
238 was identified with statistically significantly higher abundance in participants who received
239 active drug by ANCOM-BC but did not meet the effect size threshold at only 1.9-fold more
240 abundant. The treatment arm was not a significant predictor of the CSTs identified above
241 (p=0.32 for placebo, p=0.99 for FTC/TAF, p=0.88 for FTC/TDF).

242 *Inflammatory genes and bacterial taxa*

243 Forty inflammatory genes showed significant correlation with 31 bacterial species (Table 1). Six
244 genes had insufficient evidence for inflammatory function and were therefore excluded. The
245 remaining 34 genes were primarily pro-inflammatory with negative correlation to bacterial
246 species (Fig. 5) without difference by environmental niche. IL-15 was the most frequently
247 correlated gene, with significant negative correlations to seven bacterial taxa not typically
248 associated with invasive infection: *Brevibacterium luteolum*, *Corynebacterium urealyticum*, *Dietzia*
249 *timorensis*, and unannotated species in the *Cutibacterium*, *Corynebacterium*, *Dietzia*, and
250 *Nosocomiicoccus* genera. The majority of the bacterial taxa significantly correlated with other
251 genes were gram-positive organisms which frequently colonize the skin. The CLR-transformed
252 relative abundance of *Corynebacterium massiliense*, in particular, was associated with
253 significantly lower expression of genes involved in regulation of inflammatory responses and
254 neutrophil chemotaxis and activation. Anaerobes also found in the oral cavity such as
255 *Parvimonas* and *Porphyromonas* were also correlated with primarily lower expression of
256 inflammatory genes. However, the oral anaerobe *Rothia amarae* was associated with higher
257 expression of the regulatory factor *GHSR* and an unclassified species also in the *Rothia* genus

258 was associated with higher expression of the pro-inflammatory gene *REG3G*. Species in three
259 genera canonically associated with BV, *Atopobium*, *Prevotella*, and *Sneathia*, were correlated with
260 lower expression of inflammatory genes, but one unannotated *Prevotella* ASV was negatively
261 correlated with *ZFP36*, an immune regulatory gene.

262 **Table 1** Bacterial taxa and human gene correlations

Taxon (Genus species)	Gene Symbol	Pearson corr	adj p
(Unknown Muribaculaceae family)	ADAMTS12	-0.404	5.90E-04
(Unknown Muribaculaceae family)	TUSC2	-0.497	2.63E-06
<i>Aliicoccus</i> (unclassified sp)	IL15	-0.557	2.41E-08
<i>Anaerococcus lactolyticus</i>	ODAM	0.479	8.41E-06
<i>Arcanobacterium</i> (unclassified sp)	CXCL9	-0.415	3.31E-04
<i>Atopobium</i> (unclassified sp)	JAM3	-0.420	2.64E-04
<i>Brevibacillus</i> (unclassified sp)	IL1RN	-0.401	6.89E-04
<i>Brevibacterium luteolum</i>	IL15	-0.563	1.48E-08
<i>Campylobacter</i> (unclassified sp)	CCL11	0.492	3.68E-06
<i>Campylobacter</i> (unclassified sp)	ITGB2	-0.465	2.03E-05
<i>Campylobacter</i> (unclassified sp)	RIPK2	-0.461	2.55E-05
<i>Corynebacterium confusum</i>	FPR3	-0.402	6.46E-04
<i>Corynebacterium confusum</i>	MS4A2	-0.439	9.72E-05
<i>Corynebacterium confusum</i>	SMPDL3B	-0.543	7.86E-08
<i>Corynebacterium coyleae</i>	APOA2	0.542	8.40E-08
<i>Corynebacterium genitalium</i>	BDKRB2	-0.474	1.14E-05
<i>Corynebacterium genitalium</i>	POLB	-0.434	1.23E-04
<i>Corynebacterium genitalium</i>	PPBP	0.414	3.52E-04
<i>Corynebacterium massiliense</i>	CAMK1D	-0.405	5.56E-04
<i>Corynebacterium massiliense</i>	DAB2IP	-0.595	7.04E-10
<i>Corynebacterium massiliense</i>	KDM6B	-0.482	6.95E-06
<i>Corynebacterium massiliense</i>	LILRB4	-0.419	2.83E-04
<i>Corynebacterium massiliense</i>	PLCG2	-0.412	4.01E-04
<i>Corynebacterium massiliense</i>	PRCP	-0.469	1.51E-05
<i>Corynebacterium massiliense</i>	RELA	-0.454	3.88E-05
<i>Corynebacterium massiliense</i>	SPATA2	-0.556	2.43E-08
<i>Corynebacterium riegelii</i>	APOA2	0.516	6.69E-07
<i>Corynebacterium urealyticum</i>	IL15	-0.607	2.22E-10
<i>Cutibacterium</i> (unclassified sp)	IL15	-0.650	1.75E-12
<i>Cutibacterium</i> (unclassified sp)	S1PR3	-0.407	5.03E-04
<i>Cutibacterium</i> (unclassified sp)	TLR1	-0.402	6.55E-04
<i>Cutibacterium acnes</i>	GPRC5B	-0.405	5.46E-04
<i>Dermabacter vaginalis</i>	FOS	-0.401	6.84E-04
<i>Dietzia</i> (unclassified sp)	IL15	-0.583	2.48E-09
<i>Dietzia timorensis</i>	IL15	-0.470	1.49E-05
<i>Enhydrobacter</i> (unclassified sp)	HDAC4	-0.423	2.21E-04
<i>Lactobacillus iners</i>	BDKRB2	-0.440	8.68E-05
<i>Lactobacillus iners</i>	POLB	-0.428	1.72E-04
<i>Lactobacillus iners</i>	PSTPIP1	-0.423	2.21E-04
<i>Mycoplasma spermophilum</i>	IL9	0.432	1.36E-04
<i>Nosocomiicoccus</i> (unclassified sp)	IL15	-0.424	2.11E-04
<i>Nosocomiicoccus</i> (unclassified sp)	SMPDL3B	-0.489	4.44E-06
<i>Parvimonas</i> (unclassified sp)	RIPK2	-0.430	1.44E-04
<i>Parvimonas micra</i>	CCL18	-0.409	4.56E-04
<i>Porphyromonas somerae</i>	C4A	-0.409	4.52E-04
<i>Prevotella bergensis</i>	CXCR6	-0.430	4.52E-04

<i>Prevotella_7</i> (unclassified sp)	ZFP36	-0.464	1.51E-04
<i>Rothia</i> (unclassified sp)	REG3G	0.534	2.18E-05
<i>Rothia amarae</i>	EGFR	-0.468	1.62E-07
<i>Rothia amarae</i>	GHSR	0.480	1.66E-05
<i>Sneathia amnii</i>	XCR1	-0.419	7.99E-06

263

264 We performed a similar analysis, grouping bacterial ASVs at the genus level (Supplemental
265 table S2). Eight genes showed correlation with nine bacterial genera. As expected, all the
266 correlated genes and bacterial genera were also identified in the species-level analysis.

267 We conducted a separate query of associations between inflammatory genes and the CSTs
268 described in Fig. 2A distinguished by high and low diversity bacterial populations. In the
269 random forest classification, four features achieved statistical significance. Nuclear Factor of
270 Activated T cells 3 (*NFATC3*) and Selenoprotein S (*SELENOS*) showed higher expression in the
271 highly diverse CST1 relative to CST2, while Signal Transducing Adapter Family Member 1
272 (*STAP1*) and Nod-like Receptor Pyrin domain-containing 6 (*NLRP6*) showed lower expression
273 (Fig. 6).

274 Discussion

275 Our study is the first of which we are aware to analyze the tissue-level microbiome of the
276 foreskin. Consistent with previous reports using penile swabs (5-18, 48), the bacteria we
277 identified are predominated by taxa commonly colonizing the skin (chiefly *Corynebacteria* spp)
278 (49, 50) in addition to anaerobic bacteria such as *Prevotella*, *Dialister*, *Murdochella*, *Peptoniphilus*,
279 and *Negativicoccus*. These anaerobic species have been associated with increased inflammation
280 and HIV acquisition in uncircumcised men (8) and bacterial vaginosis in women (51). In the
281 foreskin, we describe two major CSTs, one significantly more diverse than the other. We did not
282 identify bacterial species that were differentially abundant between participants receiving
283 placebo compared to emtricitabine with either of the two forms of tenofovir. While vaginal-

284 associated species such as *Lactobacillus* and *Gardnerella* take up tenofovir from their environment
285 (19, 20), further studies of more prolonged ARV use may better elucidate whether there is an
286 effect on bacterial or viral communities of the penis.

287 The overall composition of the bacterial community did not appear to differ by study site;
288 however, we did find *Cutibacterium acnes* to be significantly more abundant in South African
289 than Ugandan participants. *C. acnes* is typically resident in the deep dermis in association with
290 sebaceous glands and hair follicles (52), which our study sampled by digesting full-thickness
291 specimens rather than resuspending skin swabs. While its contribution to its namesake acne
292 *vulgaris* is debated, it is otherwise non-pathogenic in immunocompetent hosts without artificial
293 material (52). It is frequently identified in surgical cultures, with unclear significance to sterility,
294 likely due to its resistance to surgical sterilization techniques and transection of deep dermal
295 structures during surgery (53). The differential abundance we observed may have been caused
296 by different surgical preparation at the two sites or by an actual difference in bacterial
297 populations. As there were no surgical complications observed during the study, the difference
298 does not appear to have clinical significance.

299 Our inflammatory gene analysis primarily identified an inverse relationship between
300 expression of genes associated with response to bacteria and skin commensals such as
301 *Corynebacterium* and *Cutibacterium*, consistent with non-inflammatory colonization. IL-15, the
302 most commonly correlated gene, is a pleotropic cytokine secreted by a narrow range of cell
303 types, in foreskin tissue including epithelial cells, fibroblasts, Langerhans cells, and monocytes
304 (54). It has broad immunostimulatory function, promoting NK cell differentiation and survival
305 (55), inflammatory cytokine production by macrophages (56) and dendritic cells (57), neutrophil
306 activation, survival, and phagocytosis (58), germinal center B cell proliferation (59), CD8⁺ T cell
307 survival (60), and it is required for development of skin-resident memory CD8⁺ T cells (61). Its

308 lower expression correlating with higher relative abundances of non-pathogenic bacteria is
309 consistent with reduced inflammatory signaling corresponding to increased bacterial growth.

310 When examining gene expression between the participant groups with higher and lower
311 diversity bacterial communities, we did not confirm previous findings in the penis (8, 10, 16)
312 and vagina (62) that high bacterial diversity, particularly with anaerobic taxa, is associated with
313 increased inflammation. While we frequently identified anaerobic taxa, individual species
314 showed lower prevalence than in studies using surface swabs. This may have reduced our
315 power to detect an inflammatory association. Another explanation could be in the structure of
316 our experiment: rather than measuring secreted cytokines, we processed the entire tissue
317 specimen for bulk RNAseq, which likely included many cells not directly interacting with
318 bacteria or immune cells. Alternatively, the pre-procedure sterilization or the surgery itself may
319 have preferentially removed inflammatory species. The sterilization or collection could also
320 have altered host-bacterial interactions, though the rapid timeframe makes this explanation
321 seem less likely. Lastly, the bacterial strains in our cohort may employ different metabolic or
322 virulence strategies that render them less inflammatory. Unfortunately, our experiment was not
323 structured to investigate this possibility.

324 In the vagina, high diversity communities are highly inflammatory (62) and associated with
325 higher risk of adverse outcomes including HIV acquisition (63, 64) and preterm birth (65). The
326 foreskin microbiome had two obvious CSTs, one highly diverse CST1 and a less diverse CST2.
327 We hypothesized that the more diverse CST1 would be associated with higher levels of genes
328 related to inflammation, as in the vagina. However, when comparing gene expression between
329 CST1 versus CST2 specimens, random forest feature selection identified four genes that are not
330 directly involved in the canonical innate antibacterial response pathways, such as TNF- α and IL-
331 6. While named for its key activity in T-Cell Receptor (TCR) signaling, NFAT family members

332 play a broad role in cell differentiation in the immune system and beyond (66), including in B
333 cells (67), Toll-like receptor (TLR) signaling in monocytes (68), and proliferation in perivascular
334 tissue (69) and keratinocytes (70). Higher expression of NFATC3 in CST1 specimens may
335 represent increased signaling from any of these cell types. SELENOS is up-regulated by
336 cytokines such as IL-1• and TNF-• via NF-•B and in turns acts to suppress cytokine secretion in
337 macrophages (71). Its higher expression in CST1 samples is consistent with increased
338 suppression of chronic inflammation. STAP1 has the best evidence for signaling downstream of
339 the B-Cell Receptor (BCR) (72), and lower expression could represent a response to sustained
340 signaling (although this was not supported by the expected changes in other genes). NLRP6 is
341 both an inducer and a component of the inflammasome, binds directly to the lipopolysaccharide
342 of gram negative or lipoteichoic acid of gram positive bacterial cell membranes, and plays both
343 a pro- and anti-inflammatory role in tissues such as liver, kidney, and intestine (73). Given these
344 contrasting roles, the effects of its lower expression are difficult to predict with available data.
345 None of the identified genes plays a first-line role in regulating bacterial sensing or
346 inflammatory response.

347 In summary, we report on the first tissue-level examination of the bacterial microbiome of the
348 foreskin, without apparent effect of brief antiretroviral drug exposure. Correlating bacterial
349 species with RNAseq data revealed largely negative correlations with genes involved in the
350 inflammatory response, consistent with maintenance of immune tolerance.

351 **Acknowledgements**

352 This study is part of the EDCTP2 programme supported by the European Union (grant number
353 RIA2016MC-1616). BSM was supported by NIH training grant T32HD007233. Research reported
354 in this publication was supported by the National Institute of Allergy and Infectious Diseases of

355 the National Institutes of Health under award number R21AI165144 to Heather Jaspan. The
356 study received support by a grant from the Swedish Research Council (Francesca Chiodi;
357 Vetenskapsrådet (VR) 2019-04596). The funders had no role in study design, data collection, and
358 interpretation, or the decision to submit the work for publication. The authors declare that no
359 conflict of interest exists.

360 **References**

- 361 1. Weller S, Davis K. Condom effectiveness in reducing heterosexual HIV transmission. Cochrane
362 Database Syst Rev. 2002(1):CD003255.
- 363 2. Silverman BG, Gross TP. Use and effectiveness of condoms during anal intercourse. A review.
364 Sex Transm Dis. 1997;24(1):11-7.
- 365 3. Spinner CD, Boesecke C, Zink A, Jessen H, Stellbrink HJ, Rockstroh JK, et al. HIV pre-exposure
366 prophylaxis (PrEP): a review of current knowledge of oral systemic HIV PrEP in humans. Infection.
367 2016;44(2):151-8.
- 368 4. Friedman B, Khoury J, Petersiel N, Yahalom T, Paul M, Neuberger A. Pros and cons of
369 circumcision: an evidence-based overview. Clin Microbiol Infect. 2016;22(9):768-74.
- 370 5. Nelson DE, Dong Q, Van der Pol B, Toh E, Fan B, Katz BP, et al. Bacterial communities of the
371 coronal sulcus and distal urethra of adolescent males. PLoS One. 2012;7(5):e36298.
- 372 6. Carda-Díéguez M, Cárdenas N, Aparicio M, Beltrán D, Rodríguez JM, Mira A. Variations in
373 Vaginal, Penile, and Oral Microbiota After Sexual Intercourse: A Case Report. Front Med (Lausanne).
374 2019;6:178.
- 375 7. Onywera H, Williamson AL, Ponomarenko J, Meiring TL. The Penile Microbiota in
376 Uncircumcised and Circumcised Men: Relationships With HIV and Human Papillomavirus Infections
377 and Cervicovaginal Microbiota. Front Med (Lausanne). 2020;7:383.
- 378 8. Prodger JL, Abraham AG, Tobian AA, Park DE, Aziz M, Roach K, et al. Penile bacteria associated
379 with HIV seroconversion, inflammation, and immune cells. JCI Insight. 2021;6(8).
- 380 9. Liu CM, Hungate BA, Tobian AA, Ravel J, Prodger JL, Serwadda D, et al. Penile Microbiota and
381 Female Partner Bacterial Vaginosis in Rakai, Uganda. mBio. 2015;6(3):e00589.
- 382 10. Galiwango RM, Park DE, Huibner S, Onos A, Aziz M, Roach K, et al. Immune milieu and
383 microbiome of the distal urethra in Ugandan men: impact of penile circumcision and implications for
384 HIV susceptibility. Microbiome. 2022;10(1):7.
- 385 11. Li M, Mao JX, Jiang HH, Huang CM, Gao XH, Zhang L. Microbiome Profile in Patients with
386 Adult Balanoposthitis: Relationship with Redundant Prepuce, Genital Mucosa Physical Barrier Status and
387 Inflammation. Acta Derm Venereol. 2021;101(5):adv00466.
- 388 12. Mehta SD, Zhao D, Green SJ, Agingu W, Otieno F, Bhaumik R, et al. The Microbiome
389 Composition of a Man's Penis Predicts Incident Bacterial Vaginosis in His Female Sex Partner With High
390 Accuracy. Front Cell Infect Microbiol. 2020;10:433.
- 391 13. Mehta SD, Nandi D, Agingu W, Green SJ, Bhaumik DK, Bailey RC, et al. Vaginal and Penile
392 Microbiome Associations with HSV-2 in Women and their Male Sex Partners. J Infect Dis. 2020.
- 393 14. Onywera H, Williamson AL, Cozzuto L, Bonnin S, Mbulawa ZZA, Coetzee D, et al. The penile
394 microbiota of Black South African men: relationship with human papillomavirus and HIV infection. BMC
395 Microbiol. 2020;20(1):78.
- 396 15. Plummer EL, Vodstrcil LA, Danielewski JA, Murray GL, Fairley CK, Garland SM, et al.
397 Combined oral and topical antimicrobial therapy for male partners of women with bacterial vaginosis:

398 Acceptability, tolerability and impact on the genital microbiota of couples - A pilot study. PLoS One.
399 2018;13(1):e0190199.

400 16. Liu CM, Prodger JL, Tobian AAR, Abraham AG, Kigozi G, Hungate BA, et al. Penile Anaerobic
401 Dysbiosis as a Risk Factor for HIV Infection. *mBio*. 2017;8(4).

402 17. Liu CM, Hungate BA, Tobian AA, Serwadda D, Ravel J, Lester R, et al. Male circumcision
403 significantly reduces prevalence and load of genital anaerobic bacteria. *mBio*. 2013;4(2):e00076.

404 18. Price LB, Liu CM, Johnson KE, Aziz M, Lau MK, Bowers J, et al. The effects of circumcision on the
405 penis microbiome. *PLoS One*. 2010;5(1):e8422.

406 19. Taneva E, Sinclair S, Mesquita PM, Weinrick B, Cameron SA, Cheshenko N, et al. Vaginal
407 microbiome modulates topical antiretroviral drug pharmacokinetics. *JCI Insight*. 2018;3(13).

408 20. Klatt NR, Cheu R, Birse K, Zevin AS, Perner M, Noël-Romas L, et al. Vaginal bacteria modify HIV
409 tenofovir microbicide efficacy in African women. *Science*. 2017;356(6341):938-45.

410 21. Sutton TDS, Hill C. Gut Bacteriophage: Current Understanding and Challenges. *Front Endocrinol*
(Lausanne). 2019;10:784.

412 22. Fulcher JA, Li F, Cook RR, Zabih S, Louie A, Okochi H, et al. Rectal Microbiome Alterations
413 Associated With Oral Human Immunodeficiency Virus Pre-Exposure Prophylaxis. *Open Forum Infect*
414 *Dis*. 2019;6(11):ofz463.

415 23. Dubé MP, Park SY, Ross H, Love TMT, Morris SR, Lee HY. Daily HIV pre-exposure prophylaxis
416 (PrEP) with tenofovir disoproxil fumarate-emtricitabine reduced Streptococcus and increased
417 Erysipelotrichaceae in rectal microbiota. *Sci Rep*. 2018;8(1):15212.

418 24. Perler BK, Reinhart EM, Montgomery M, Maynard M, Shapiro JM, Belenky P, et al. Evaluation of
419 the Microbiome in Men Taking Pre-exposure Prophylaxis for HIV Prevention. *AIDS Behav*. 2021.

420 25. Hughes SM, Levy CN, Calientes FL, Stekler JD, Pandey U, Vojtech L, et al. Treatment with
421 Commonly Used Antiretroviral Drugs Induces a Type I/III Interferon Signature in the Gut in the Absence
422 of HIV Infection. *Cell Rep Med*. 2020;1(6):100096.

423 26. Nash S, Dietrich J, Ssemata AS, Herrera C, O'Hagan K, Else L, et al. Combined HIV Adolescent
424 Prevention Study (CHAPS): comparison of HIV pre-exposure prophylaxis regimens for adolescents in
425 sub-Saharan Africa-study protocol for a mixed-methods study including a randomised controlled trial.
426 *Trials*. 2020;21(1):900.

427 27. Dabee S, Mugo N, Mudhune V, McLellan-Lemal E, Peacock S, O'Connor S, et al. Genital
428 microbiota of women using a 90 day tenofovir or tenofovir and levonorgestrel intravaginal ring in a
429 placebo controlled randomized safety trial in Kenya. *Sci Rep*. 2022;12(1):12040.

430 28. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
431 *EMBnetjournal*. 2011;17(1):10.

432 29. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution
433 sample inference from Illumina amplicon data. *Nat Methods*. 2016;13(7):581-3.

434 30. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA
435 gene database project: improved data processing and web-based tools. *Nucleic acids research*.
436 2013;41(Database issue).

437 31. Brown BP. Updated 16S databases for marker gene taxonomic assignment. 2021.

438 32. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and
439 graphics of microbiome census data. *PLoS One*. 2013;8(4):e61217.

440 33. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community
441 Ecology Package. *R Package*. <https://CRAN.R-project.org/package=vegan2020>.

442 34. Nawrocki EP. Structural RNA Homology Search and Alignment Using Covariance Models. St.
443 Louis, MO: Washington University in St. Louis; 2009.

444 35. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and
445 methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst*
446 *Biol*. 2010;59(3):307-21.

447 36. Davis N, Proctor D, Holmes S, Relman D, Callahan B. Simple statistical identification and
448 removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome*. 2018;6(1).

449 37. Brown BB. microfiltR. 1.2 ed. *R package*.

450 38. Fernandes AD, Reid JN, Macklaim JM, McMurrrough TA, Edgell DR, Gloor GB. Unifying the
451 analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing
452 and selective growth experiments by compositional data analysis. *Microbiome*. 2014;2:15.

453 39. Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. *Nat Commun*.
454 2020;11(1):3514.

455 40. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq
456 data with DESeq2. *Genome Biol*. 2014;15(12):550.

457 41. Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, et al. Microbiome
458 differential abundance methods produce different results across 38 datasets. *Nat Commun*.
459 2022;13(1):342.

460 42. Lin H, Peddada SD. Analysis of microbial compositions: a review of normalization and
461 differential abundance analysis. *NPJ Biofilms Microbiomes*. 2020;6(1):60.

462 43. Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple
463 tools and samples in a single report. *Bioinformatics*. 2016;32(19):3047-8.

464 44. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal
465 RNA-seq aligner. *Bioinformatics*. 2013;29(1):15-21.

466 45. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning
467 sequence reads to genomic features. *Bioinformatics*. 2014;30(7):923-30.

468 46. Kursa MB, Rudnicki WR. Feature Selection with the Boruta Package. *J Stat Softw*. 2010;36(11):1-
469 13.

470 47. Mirzayi C, Renson A, Genomic Standards C, Massive A, Quality Control S, Zohra F, et al.
471 Reporting guidelines for human microbiome research: the STORMS checklist. *Nat Med*. 2021;27(11):1885-
472 92.

473 48. Srinivasan S, Chambers LC, Tapia KA, Hoffman NG, Munch MM, Morgan JL, et al. Urethral
474 Microbiota in Men: Association of *Haemophilus influenzae* and *Mycoplasma penetrans* With
475 Nongonococcal Urethritis. *Clin Infect Dis*. 2021;73(7):e1684-e93.

476 49. Human Microbiome Project C. Structure, function and diversity of the healthy human
477 microbiome. *Nature*. 2012;486(7402):207-14.

478 50. Oh J, Byrd AL, Park M, Program NCS, Kong HH, Segre JA. Temporal Stability of the Human Skin
479 Microbiome. *Cell*. 2016;165(4):854-66.

480 51. Dabee S, Passmore JS, Heffron R, Jaspan HB. The Complex Link between the Female Genital
481 Microbiota, Genital Infections, and Inflammation. *Infect Immun*. 2021;89(5).

482 52. Achermann Y, Goldstein EJ, Coenye T, Shirtliff ME. *Propionibacterium acnes*: from commensal to
483 opportunistic biofilm-associated implant pathogen. *Clin Microbiol Rev*. 2014;27(3):419-40.

484 53. Lee MJ, Pottinger PS, Butler-Wu S, Bumgarner RE, Russ SM, Matsen FA, 3rd. *Propionibacterium*
485 persists in the skin despite standard surgical preparation. *J Bone Joint Surg Am*. 2014;96(17):1447-50.

486 54. Perera PY, Lichy JH, Waldmann TA, Perera LP. The role of interleukin-15 in inflammation and
487 immune responses to infection: implications for its therapeutic use. *Microbes Infect*. 2012;14(3):247-61.

488 55. Waldmann TA, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role
489 of this cytokine in NK cell differentiation and host response to intracellular pathogens. *Annu Rev
490 Immunol*. 1999;17:19-49.

491 56. Alleva DG, Kaser SB, Monroy MA, Fenton MJ, Beller DI. IL-15 functions as a potent autocrine
492 regulator of macrophage proinflammatory cytokine production: evidence for differential receptor subunit
493 utilization associated with stimulation or inhibition. *J Immunol*. 1997;159(6):2941-51.

494 57. Mattei F, Schiavoni G, Belardelli F, Tough DF. IL-15 is expressed by dendritic cells in response to
495 type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. *J
496 Immunol*. 2001;167(3):1179-87.

497 58. Girard D, Paquet ME, Paquin R, Beaulieu AD. Differential effects of interleukin-15 (IL-15) and IL-
498 2 on human neutrophils: modulation of phagocytosis, cytoskeleton rearrangement, gene expression, and
499 apoptosis by IL-15. *Blood*. 1996;88(8):3176-84.

500 59. Park CS, Yoon SO, Armitage RJ, Choi YS. Follicular dendritic cells produce IL-15 that enhances
501 germinal center B cell proliferation in membrane-bound form. *J Immunol*. 2004;173(11):6676-83.

502 60. Wu TS, Lee JM, Lai YG, Hsu JC, Tsai CY, Lee YH, et al. Reduced expression of Bcl-2 in CD8+ T
503 cells deficient in the IL-15 receptor alpha-chain. *J Immunol.* 2002;168(2):705-12.

504 61. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The developmental
505 pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. *Nat Immunol.* 2013;14(12):1294-301.

506 62. Anahtar MN, Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, et al.
507 Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract.
508 *Immunity.* 2015;42(5):965-76.

509 63. McClelland RS, Lingappa JR, Srinivasan S, Kinuthia J, John-Stewart GC, Jaoko W, et al.
510 Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of
511 HIV acquisition in African women from five cohorts: a nested case-control study. *Lancet Infect Dis.*
512 2018;18(5):554-64.

513 64. Masson L, Passmore JA, Liebenberg LJ, Werner L, Baxter C, Arnold KB, et al. Genital
514 inflammation and the risk of HIV acquisition in women. *Clin Infect Dis.* 2015;61(2):260-9.

515 65. Wylie KM, Wylie TN, Cahill AG, Macones GA, Tuuli MG, Stout MJ. The vaginal eukaryotic DNA
516 virome and preterm birth. *Am J Obstet Gynecol.* 2018;219(2):189.e1-e12.

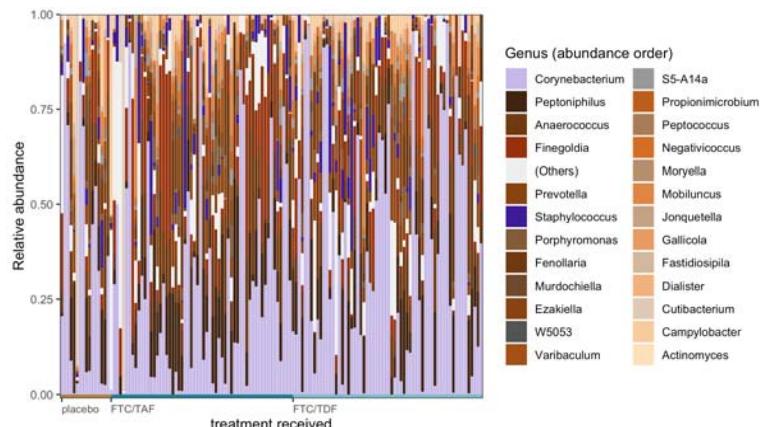
517 66. Horsley V, Pavlath GK. NFAT: ubiquitous regulator of cell differentiation and adaptation. *J Cell
518 Biol.* 2002;156(5):771-4.

519 67. Venkataraman L, Francis DA, Wang Z, Liu J, Rothstein TL, Sen R. Cyclosporin-A sensitive
520 induction of NF-AT in murine B cells. *Immunity.* 1994;1(3):189-96.

521 68. Minematsu H, Shin MJ, Celil Aydemir AB, Kim KO, Nizami SA, Chung GJ, et al. Nuclear
522 presence of nuclear factor of activated T cells (NFAT) c3 and c4 is required for Toll-like receptor-activated
523 innate inflammatory response of monocytes/macrophages. *Cell Signal.* 2011;23(11):1785-93.

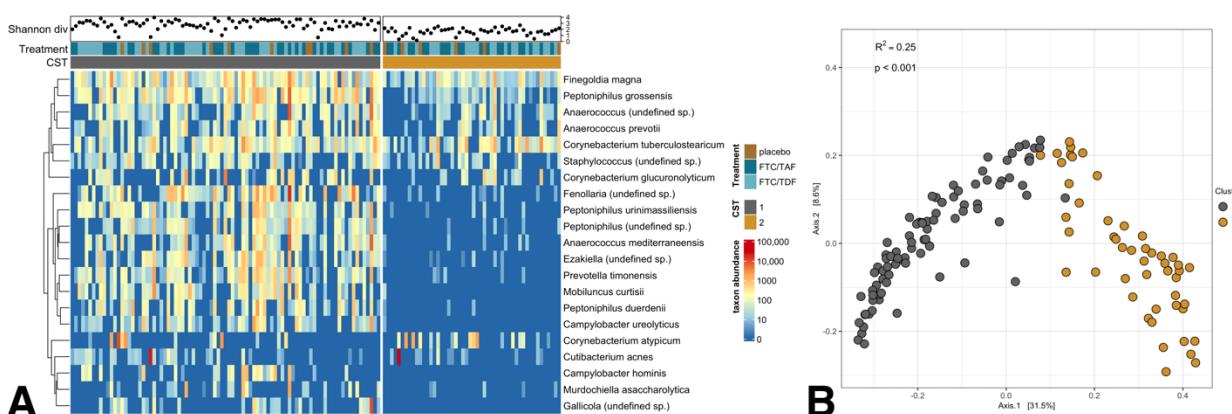
524 69. Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. Signals transduced by Ca(2+)/calcineurin and
525 NFATc3/c4 pattern the developing vasculature. *Cell.* 2001;105(7):863-75.

526 70. Santini MP, Talora C, Seki T, Bolgan L, Dotto GP. Cross talk among calcineurin, Sp1/Sp3, and
527 NFAT in control of p21(WAF1/CIP1) expression in keratinocyte differentiation. *Proc Natl Acad Sci U S
528 A.* 2001;98(17):9575-80.


529 71. Curran JE, Jowett JB, Elliott KS, Gao Y, Gluschenko K, Wang J, et al. Genetic variation in
530 selenoprotein S influences inflammatory response. *Nat Genet.* 2005;37(11):1234-41.

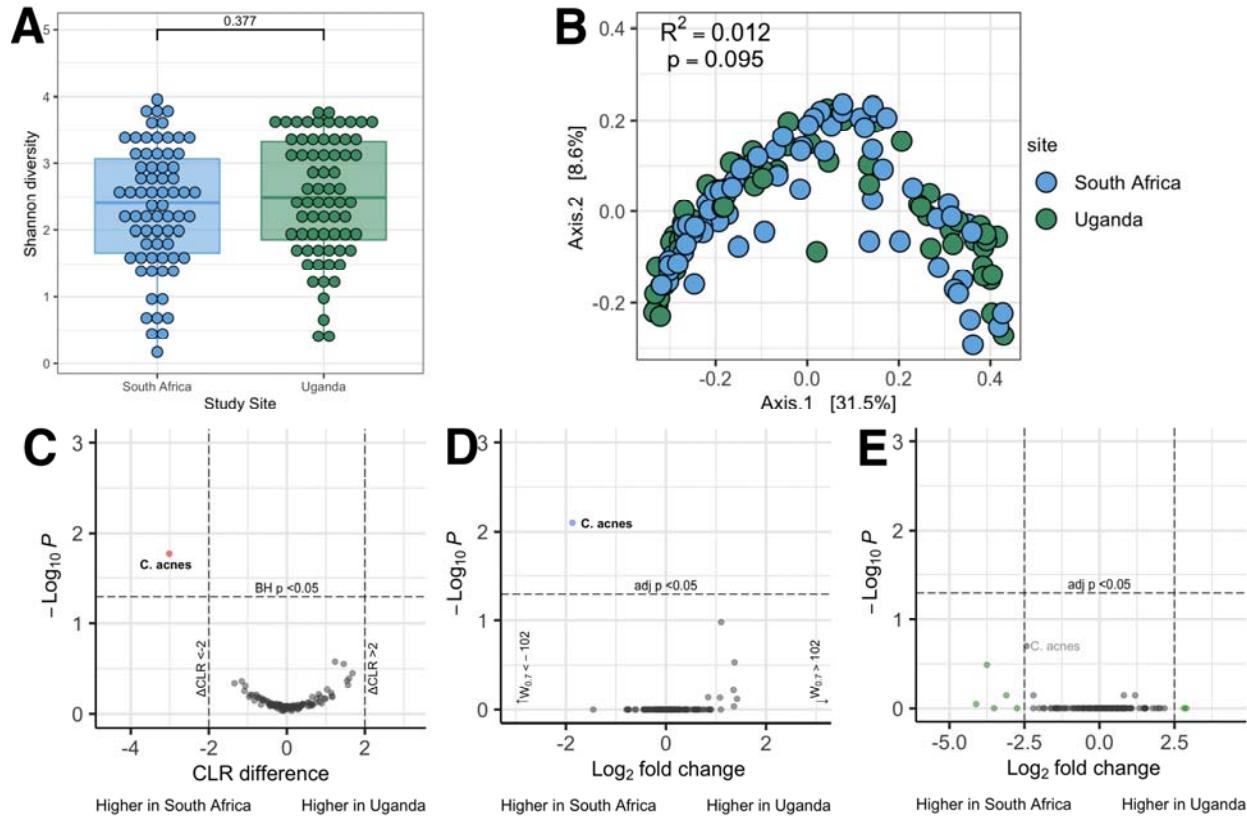
531 72. Ohya K, Kajigaya S, Kitanaka A, Yoshida K, Miyazato A, Yamashita Y, et al. Molecular cloning of
532 a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase. *Proc Natl Acad Sci U S A.*
533 1999;96(21):11976-81.

534 73. Angosto-Bazarraga D, Molina-Lopez C, Pelegrin P. Physiological and pathophysiological functions
535 of NLRP6: pro- and anti-inflammatory roles. *Commun Biol.* 2022;5(1):524.

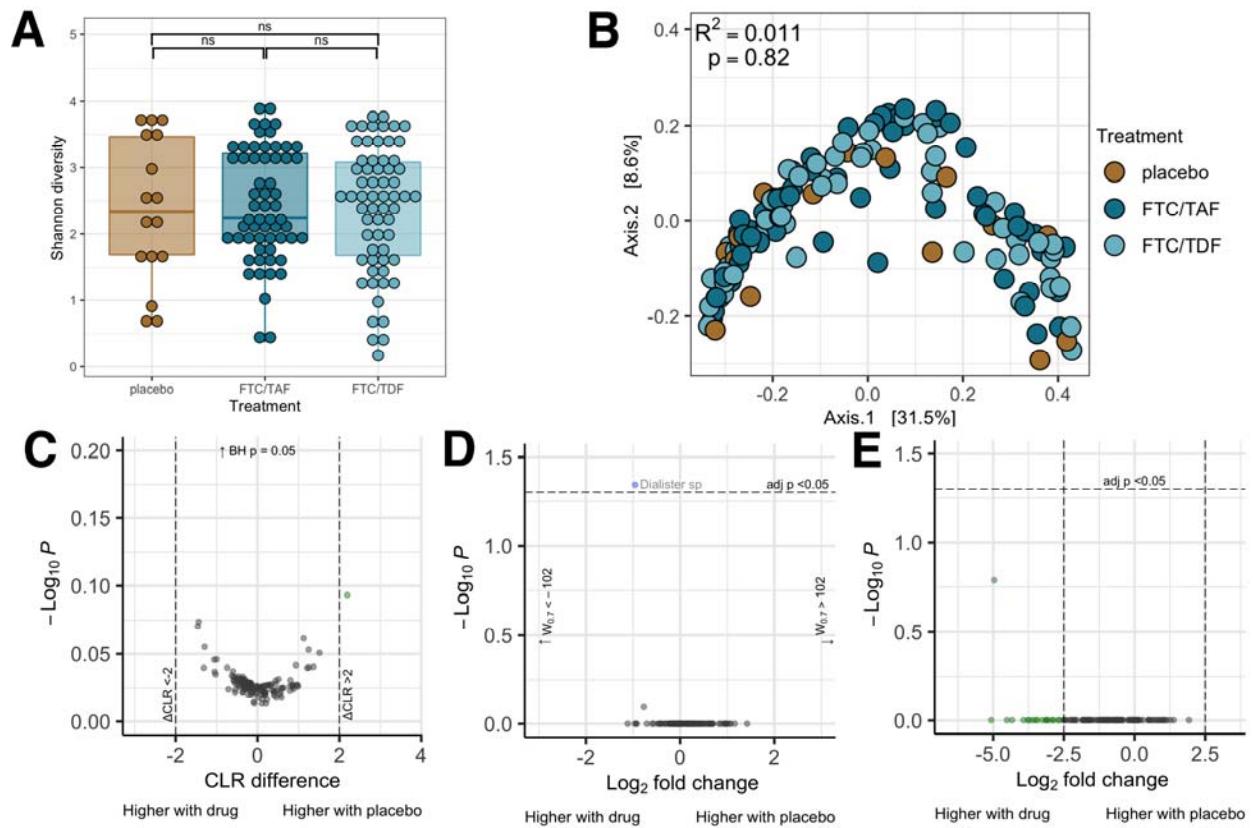

536

537 **Figures**

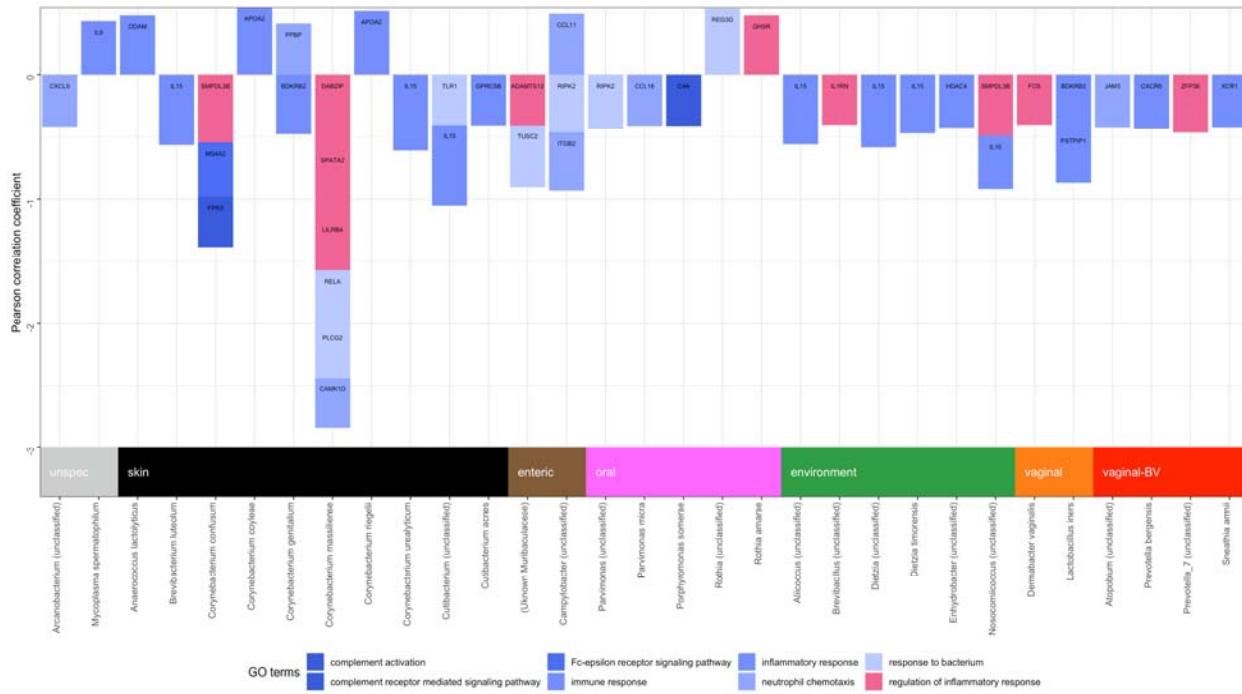
538 **Fig. 1** Top 25 most abundant bacterial genera across participants by study treatment received.


539 (anaerobic taxa in earth tones, aerobes in purples, uncultured or unidentified species in grays)

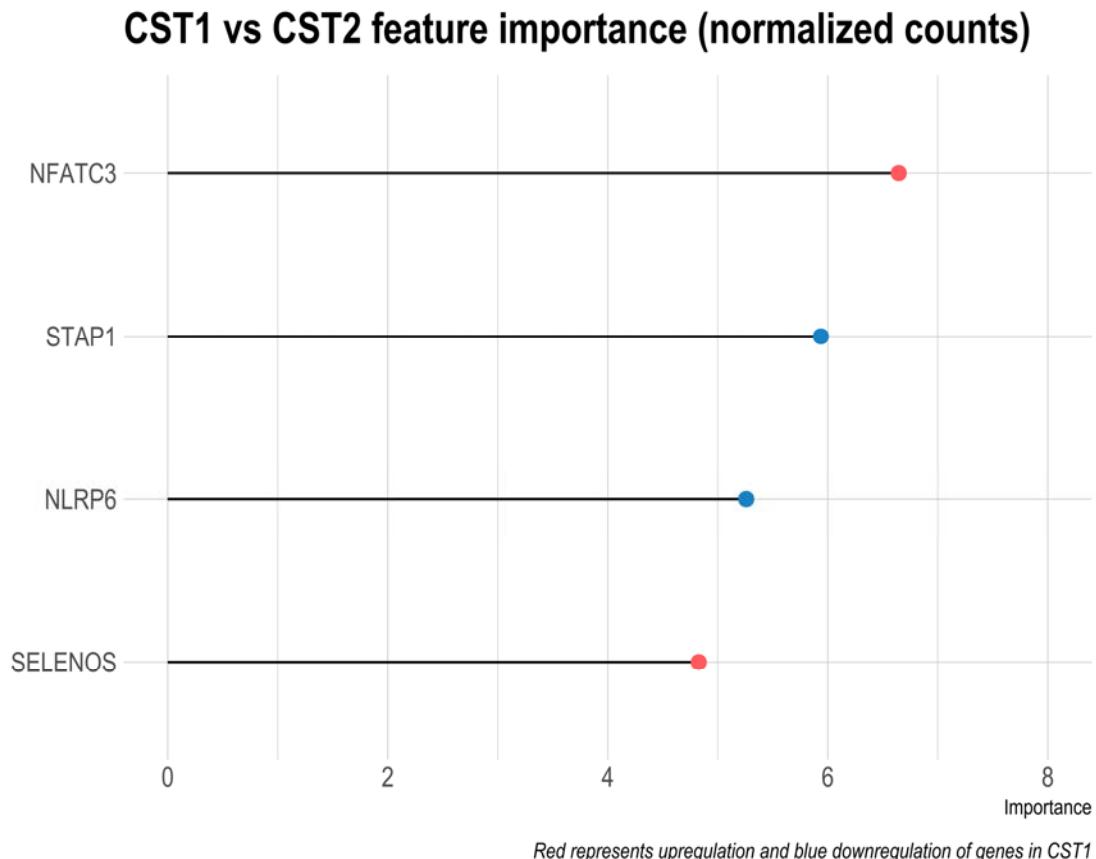
540 **Fig. 2** (A) Heatmap of top 25 bacterial species by CST, (B) PCoA ordination of bacterial beta


541 diversity by unweighted Unifrac distance, colored by CST

542


543

544 **Fig. 3** Comparisons by study site: alpha (A) and beta (B) diversity; differential abundance
545 testing with ALDEX2 (C), ANCOM-BC (D), and DESeq2 (E)


546

547 **Fig. 4** Analysis by treatment arm: alpha (A) and beta (B) diversity by drug received; differential
 548 abundance testing with ALDEx2 (C), ANCOM-BC (D), and DESeq2 (E)

549

550 **Fig. 5** Bacterial taxa and inflammatory gene associations by immune function

551

552 **Fig. 6** Random Forest Feature Importance comparing RNAseq results between CST 1 and CST 2

553 **Supplemental items**

554 Supplemental Table S1: Gene categorization

555 Supplemental Table S2: Bacterial genera and human gene correlations