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Abstract

As part of the CHAPS randomized clinical trial, we sequenced a segment of the bacterial 16S
rRNA gene from foreskin tissue of 144 adolescents from South Africa and Uganda collected
during surgical penile circumcision after receipt of 1 to 2 doses of placebo, emtricitabine with
tenofovir disoproxil fumarate, or emtricitabine with tenofovir alafenamide. We found a large
proportion of Corynebacterium in addition to other anaerobic species. Cutibacterium acnes was
more abundant among participants from South Africa than Uganda, though this made no
difference in surgical recovery. We did not find a difference in bacterial populations by
treatment received nor bacterial taxa that were differentially abundant between participants
who received placebo versus active drug. Using RNAseq libraries from foreskin tissue of the
same participants, we found negative correlations between the relative abundance of bacterial
taxa and the expression of genes downstream of the innate response to bacteria and regulation
of the inflammatory response. When participants were divided into clusters based on bacterial
community composition, two main clusters emerged which were distinguished by high and
low bacterial diversity. Random forest classification showed higher expression of NFATC3 and
SELENOS and lower expression of STAP1 and NLRP6 in the higher diversity group compared
to the lower. Our results show no difference in the tissue microbiome of the foreskin with short-
course PrEP but that bacterial taxa were largely inversely correlated with gene expression,

consistent with non-inflammatory colonization.

Author Summary

We investigated the bacterial community of the foreskin of the penis. Previous studies found

increased inflammation with certain anaerobic bacteria from swabs taken under the foreskin,
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but we found that higher relative abundances of the bacteria were correlated with lower
expression of inflammatory genes. We did not find different bacteria in participants who
received medicine to prevent HIV. Understanding the relationship between bacteria and
inflammation in the penis will help us to understand how interventions like penile circumcision

reduce the risk of acquiring sexually transmitted infections such as HIV.
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Introduction

HIV remains a significant global health challenge despite substantial clinical, public health, and
basic science research efforts. While condom use (1, 2), pre-exposure prophylaxis (PrEP) (3), and
medical penile circumcision (4) are effective at reducing HIV incidence in men, the contribution
of the penile microbiome to these mechanisms has not been fully explored. Previous work has
shown a predominance of anaerobic species in the microbiota of swabs taken from the coronal
sulcus or urethra (5-15) and have reported associations between species such as Prevotella and
increased mucosal inflammation, HIV target cell density and risk of HIV acquisition (8, 16).
Following circumcision, the surface microbiota shifts to be dominated by more aerobic species
as found on other skin surfaces (10, 17, 18). Thus far, no data exist as to the microbiota of the

foreskin itself, and its relation to tissue inflammation.

Antiretrovirals (ARVs) are used for both treatment and prevention of HIV, and limited data
have shown a complex relationship with bacteria. When applied as topical vaginal pre-exposure
prophylaxis, L. crispatus was shown to endocytose Tenofovir (TFV) then either actively
metabolize or release it back into the environment (19). Similarly, Gardnerella vaginalis and other
anaerobes have been shown to metabolize TFV (20) or block its entry into cells by secretion of
adenine (19). Antiretrovirals may also theoretically alter bacteriophage populations which can
dramatically reshape the bacterial component of the microbiome which they infect (21). At the
rectal mucosa, small studies have investigated the effects of oral emtricitabine (FTC) with
tenofovir disoproxil fumarate (TDF) on the bacterial microbiome and innate inflammatory
pathways in men who have sex with men (MSM) and transwomen (22-25) but with varying

results.
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Within the CHAPS clinical trial, young men were randomized to 1 to 2 doses of placebo,
emtricitabine with tenofovir disoproxil fumarate, or emtricitabine with tenofovir alafenamide ,
prior to medical penile circumcision. Foreskin tissue was collected and subject to both 16S
rRNA sequencing and RNASeq. to characterize the bacterial microbiome and inflammatory
gene expression. We hypothesized that short courses of PrEP, as utilized in a dose-finding trial,
would not result in significant changes to the bacterial microbiome of the foreskin, but that

there would be a relationship between the microbiota and inflammatory gene expression.

Materials and Methods

Cohort and Specimen Collection

The Combined HIV Adolescent PrEP and Prevention Study (CHAPS) was a randomized
controlled trial that enrolled 144 men living without HIV aged 13-24 years between 2019 and
2021 from the Chris Hani Baragwanath Academic Hospital in Soweto, South Africa (n=72) and
the Entebbe Regional Referral Hospital in Entebbe, Uganda (n=72). Inclusion criteria were male
sex at birth, hemoglobin > 9 g/dL, weight > 35 kg, two successive negative rapid HIV antibody
tests, and clinical eligibility for surgical circumcision (26). Exclusion criteria were conditions
precluding circumcision or receipt of the study medications. Participants were randomized to
placebo versus FTC with either TDF or tenofovir alafenamide (TAF) for 1-2 days prior to

surgical penile circumcision to investigate ARV dosing for on-demand PrEP.

All participants underwent a physical exam at study entry and completed survey instruments
including sexual history at the randomization visit. At the circumcision visit, they provided
midstream urine for Chlamydia trachomatis (CT) and Neisseria gonorrhea (GC) testing via nucleic
acid amplification testing (NAAT) prior to surgery. If an asymptomatic sexually transmitted

infection was diagnosed, antibiotic treatment was prescribed at the post-operative visit.
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96  Penile circumcision was performed using the dorsal slit method and the removed prepuce was

97  placed immediately in cold Dulbecco’s Modified Eagle Medium and shipped on ice within 1

98  hour (median 30 minutes) to the local laboratories in Uganda (Medical Research

99  Council/Uganda Virus Research Institute) and South Africa (Perinatal HIV Research Unit in
100  Johannesburg) for processing. Smaller, 5-7 mm’-sized sections were stored dry at -80° C until
101  the samples were transported on dry ice to the Seattle Children’s Research Institute, U.S.A for

102  microbiome studies and to the Karolinska Institutet, Sweden for transcriptome analyses.

103  Ethics and Human Subjects

104  Ethical clearance to conduct the CHAPS trial was obtained from the South African Health

105  Products Regulatory Authority (20181004), the Uganda Virus Research Institute research and
106  ethics committee (GC/127/18/12/680), Uganda National Council of Science and Technology
107  (HS 2534), Uganda National Drug Authority (618/NDA/DPS/09/2019), and the London School
108 of Hygiene and Tropical Medicine research ethics committee (Ref:17403). Informed written

109 consent was collected from all participants. The Swedish Ethics Review Authority approved the
110  transcriptome studies of the collected specimens at the Karolinska Institutet (2020-00941). The
111  ethics approval for the microbiome analysis was granted by the Seattle Children’s Institutional

112 Review Board (STUDY00003430).

113 Specimen Processing
114  16S rRNA Analysis

115  Atthe time of analysis, vials were thawed and approximately 25 mg of tissue was dissected and
116  processed by a customized Qiagen PowerSoil Pro protocol for extraction of DNA using a

117 QIlAcube instrument, available at: https:.//dx.doi.org/10.17504/protocols.io.4r312774jgly/v1. A

118 negative extraction control consisting of solution CD1 without specimen was also included. The
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119  specimens from each collection site were extracted on single plates. The resulting total DNA

120 was diluted 1:4 to reduce PCR inhibition.

121  The 16S rRNA gene V3-V4 region was amplified using 319F/806R universal primers for 20

122  cycles of PCR as previously described (27) for each specimen along with a negative PCR control
123  reaction consisting of mastermix without DNA template for each replicate and evenly and

124 staggered genomic DNA from mock bacterial libraries (BEI Resources) as positive sequencing
125  controls. The amplified products were purified using Agencourt AMPure XP beads (Beckman
126  Coulter) and submitted to an additional 10 rounds of PCR with indexing primers (lllumina).
127  The resulting libraries were pooled by volume with specimens at 100x the positive controls. The
128  resulting library comprising all participants was purified using a MinElute PCR purification
129  column (Qiagen), followed by the QiaQuick gel extraction kit (Qiagen). The cleaned library was
130 quantitated using gPCR (NEBNext Library Quant Kit for Illumina), then pooled with PhiX,

131  denatured, and loaded onto a MiSeq instrument (Illumina) with a v3 2x300 flow cell following

132  the manufacturer’s protocol.

133  Sequences were de-multiplexed using lllumina’s BaseSpace workflow. Primers and adapters
134 were removed by cutadapt 2.7 (28). Sequences were further trimmed for quality, then filtered
135 and merged using dada2 1.22.0 (29) to generate amplicon sequence variants (ASVs). Taxa were
136  annotated using the Silva 138.1 database (30) with additional genital-associated species (31)

137  using a 100% nucleotide identity threshold. The phyloseq 1.40.0 (32) and vegan 2.6-2 (33) R

138  packages were used to manipulate ASV tables and calculate diversity measures. ASV sequences
139  were aligned using ssu-align 0.1.1 (34), and a maximum likelihood phylogeny was generated
140  using PhyML 3.3.20220408 (35) with a GTR substitution model. Contaminating sequences were
141  identified by their presence in negative controls for the extraction and PCR amplification or

142  mock community using decontam 1.16.0 (36) and microfiltR (37). After decontamination,
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143  specimens with fewer than 25-fold as many reads than extraction and PCR controls were

144 excluded. For differential abundance analysis, decontaminated ASVs were filtered with

145  prevalence >= 10% and relative abundance threshold of 1x10*before combining counts for all
146  ASVsclassified as the same species. ALDEx2 1.28.1 (38), ANCOM-BC 1.6.2 (39), and DESeq2
147  1.36.0 (40) (using the poscounts factors estimation) were used for differential abundance testing
148  to overcome the documented limited power and accuracy of these tools when used individually

149  on 16S data sets which contain a high proportion of zero counts (41, 42).
150 RNAseq of Foreskin Tissue

151  Foreskin samples were disrupted and homogenized using a Tissuelyzer (Qiagen) and total RNA
152  isolated using the RNeasy Kit (Qiagen) according to manufacturer’s instructions. RNA was

153  subjected to quality control with Agilent Bioanalyzer (Agilent). To construct libraries suitable
154  for lllumina sequencing, the lllumina stranded mMRNA prep ligation sample preparation

155  protocol was used with starting concentration of 200 ng total RNA. The protocol includes

156  mRNA isolation, cDNA synthesis, ligation of adapters and amplification of indexed libraries.
157  Theyield and quality of the amplified libraries were analysed using Qubit by (Thermo Fisher)
158 and the Agilent Tapestation (Agilent). The indexed cDNA libraries were normalized and

159  combined, and the pools were sequenced on the lllumina Novaseq 6000 S4 flowcell to generate

160 150 bp paired-end reads.

161  Sample demultiplexing was performed using bcl2fastg 2.20.0 (Illumina), and quality and

162  adapter trimming of reads was performed using Cutadapt 2.8 (28). Sample quality was assessed
163  using FastQC 0.11.8 (Babraham Bioinformatics) and MultiQC 1.7 (43). Reads were aligned to the
164  Ensembl GRCh38 reference genome using STAR 2.6.1d (44). Counts for each gene were

165 obtained using featureCounts 1.5.1 (45).
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166  The Gene Ontology (GO) term “inflammatory response” (GO:0006954) selected 860 putative
167  inflammatory genes which were filtered to only those with at least two copies detected in at
168  least 90% of specimens. RNA read counts were normalized then transformed by centered log
169  ratio (CLR). The 16S ASVs were filtered and combined as described for the differential

170  abundance analysis and also CLR-transformed. We calculated the correlation between the gene
171 counts and bacterial relative abundances, then filtered for r >0.4 and Benjamani-Hochberg-

172  adjusted p-value < 0.05. The resulting genes were manually inspected for their most relevant
173 GO annotation and grouped according to their immunological function and pro- or anti-

174  inflammatory nature ( ).

175 Normalized gene counts were used to perform random forest feature selection as implemented
176  inthe Boruta R package 7.0.0 (46). Only the importance measures of statistically significant

177  (p<0.01) features were reported.

178  Statistical Analyses

179  All statistical analyses were performed in R version 4. Alpha diversity comparisons were

180 evaluated using the Wilcoxon rank sum test. Beta diversity was compared using Permutational
181  Multivariate of Variance (PERMANOVA) using the adonis2 function of the vegan R package.
182  The relationship between treatment arm and CST was assessed using multinomial logistic

183  regression. RNAseq and 16S taxa correlations were calculated using Pearson coefficient. A

184  significance threshold of « = 0.05 was used for the differential abundance hypothesis testing.

185 Data Availability

186  The 16S raw reads and RNASeq libraries will be deposited in the National Center for
187  Biotechnology Information Short Read Archive and European Bioinformatics Institute

188  (respectively) upon publication. R code to reproduce the analysis is available at
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189  https://github.com/bmaust/CHAPS/. The completed STORMS (Strengthening The

190  Organizing and Reporting of Microbiome Studies) checklist (47) for this project is located at

191 https://doi.org/10.5281/zenodo.7269027.

192 Results

193  Clinical STI testing

194  No participants reported STl symptoms, and no physical exams revealed urethral discharge or
195  other genital abnormality. None of the participants had clinical balanoposthitis or evidence of
196  macroscopic inflammation. No GC infections were diagnosed, but NAAT for seven participants

197  was positive for CT: five from Uganda and two from South Africa.
198  Microbiome 16S sequencing

199  After filtering and contamination removal, 137 specimens from the 144 enrolled participants
200  had sufficient bacterial DNA reads to proceed with analysis. The identified bacterial taxa

201  include a variety of skin-associated Gram-positive and genital-associated anaerobic species in
202  addition to Gram-negative enterics (Fig. 1). Corynebacterium was the most prevalent and

203  abundant genus, appearing in 132 (97%) of specimens at median relative abundance of 34%
204  (range: 0.14% to 98%). Anaerobic species were highly abundant, including bacteria that are

205 commonly found in bacterial vaginosis, an inflammatory dysbiosis of the vagina, including
206  Prevotella, Anaerococcus, Finegoldia and Porphyromonas. There were no ASVs in the Chlamydiaceae

207  family which includes C. trachomatis.

208  Unsupervised partition around medioids clustering separated the unweighted Unifrac
209  distances into two community structure types (CST) with distinct community structure

210 (PERMANOVA R’ =0.25 with p < 0.001) and alpha diversity (p=2.39x10") (Fig. 2). Two clusters
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211  maximized the silhouette score with acceptable within sum of squares and gap statistics. CST1
212 was highly diverse with a median Shannon index of 3.05. CST2 was dominated by

213  Corynebacterium tuberculostearicum and Finegoldia magna and, with median relative abundances
214 of 21% and 9.6%, respectively. CST2 also had a significantly lower median Shannon index of
215  1.68 (Wilcoxon unpaired exact, p = 2.39x10™). Though F. magna and C. tuberculostearicum were
216  also abundant in CST1 (median relative abundances of 4.6% and 2.5%), they shared high

217  relative abundance with Anaerococcus, Campylobacter, Fenollaria, Finegoldia, Ezakiella, Mobiluncus,

218  and Peptinophilis species without a clear dominant taxon.
219  Microbiome differences by study site

220  The 137 participants with 16S data included 69 (50.3%) individuals from South Africa and 68
221  (49.7%) from Uganda. We compared microbiota between the two study sites and found no

222  differences in within-participant alpha diversity (Shannon entropy) or between-participant beta
223  diversity (unweighted Unifrac distance) (Fig. 3, A and B). Differential abundance testing

224 identified Cutibacterium acnes as significantly higher in participants from South Africa compared
225  tothose from Uganda by ALDEx2 with a CLR difference of 3.3 between sites (Wilcoxon rank
226  test with Benjamani-Hochberg correction p=0.0184). ANCOM-BC identified the same ASV with
227  asignificant g-value (0.0079), but the log,fold change of 1.87 failed to meet the effect size

228  threshold. DESeqg2 did not identify any taxa as significantly differentially abundant. (Fig. 3, C-

229 E).
230  Microbiome differences by parent study treatment arm

231  We performed similar analyses for the bacterial populations in participants who received active
232  drug versus placebo. The participants with 16S data were equally distributed among treatment

233 arms with FTC-TAF and FTC-TDF (n=59 and 62, respectively, = p=0.437). All 16 participants
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234 who received placebo had sufficient sequences for analysis. We found no differences in alpha or
235  beta diversity (Fig. 4, A and B) between placebo and FTC-TAF or FTC-TDF regimens.

236  Combining both treatment groups and comparing to placebo, no species were significantly

237  differentially abundant by any of the three tools (Fig. 4, C-D). An un-annotated Dialister species
238  was identified with statistically significantly higher abundance in participants who received

239  active drug by ANCOM-BC but did not meet the effect size threshold at only 1.9-fold more

240  abundant. The treatment arm was not a significant predictor of the CSTs identified above

241  (p=0.32 for placebo, p=0.99 for FTC/TAF, p=0.88 for FTC/TDF).

242  Inflammatory genes and bacterial taxa

243  Forty inflammatory genes showed significant correlation with 31 bacterial species (Table 1). Six
244 genes had insufficient evidence for inflammatory function and were therefor excluded. The
245  remaining 34 genes were primarily pro-inflammatory with negative correlation to bacterial

246  species (Fig. 5) without difference by environmental niche. IL-15 was the most frequently

247  correlated gene, with significant negative correlations to seven bacterial taxa not typically

248  associated with invasive infection: Brevibacterium luteolum, Corynebacterium urealyticum, Dietzia
249  timorensis, and unannotated species in the Cutibacterium, Corynebacterium, Dietzia, and

250  Nosocomiicoccus genera. The majority of the bacterial taxa significantly correlated with other
251  genes were gram-positive organisms which frequently colonize the skin. The CLR-transformed
252  relative abundance of Corynebacterium massilliense, in particular, was associated with

253  significantly lower expression of genes involved in regulation of inflammatory responses and
254 neutrophil chemotaxis and activation. Anaerobes also found in the oral cavity such as

255  Parvimonas and Porphyromonas were also correlated with primarily lower expression of

256  inflammatory genes. However, the oral anaerobe Rothia amarae was associated with higher

257  expression of the regulatory factor GHSR and an unclassified species also in the Rothia genus
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258  was associated with higher expression of the pro-inflammatory gene REG3G. Species in three
259 genera canonically associated with BV, Atopobium, Prevotella, and Sneathia, were correlated with
260  lower expression of inflammatory genes, but one unannotated Prevotella ASV was negatively

261  correlated with ZFP36, an immune regulatory gene.

262  Table 1 Bacterial taxa and human gene correlations

Gene Pearson
Taxon (Genus species) Symbol corr adj p
(Uknown Muribaculaceae family) ADAMTS12 -0.404 5.90E-04
(Uknown Muribaculaceae family) TUSC2 -0.497 2.63E-06
Aliicoccus (unclassified sp) IL15 -0.557 2.41E-08
Anaerococcus lactolyticus ODAM 0.479 8.41E-06
Arcanobacterium (unclassified sp) CXCL9 -0.415 3.31E-04
Atopobium (unclassified sp) JAM3 -0.420 2.64E-04
Brevibacillus (unclassified sp) ILARN -0.401 6.89E-04
Brevibacterium luteolum IL15 -0.563 1.48E-08
Campylobacter (unclassified sp) CCL11 0.492 3.68E-06
Campylobacter (unclassified sp) ITGB2 -0.465 2.03E-05
Campylobacter (unclassified sp) RIPK2 -0.461 2.55E-05
Corynebacterium confusum FPR3 -0.402 6.46E-04
Corynebacterium confusum MS4A2 -0.439 9.72E-05
Corynebacterium confusum SMPDL3B -0.543 7.86E-08
Corynebacterium coyleae APOA2 0.542 8.40E-08
Corynebacterium genitalium BDKRB2 -0.474 1.14E-05
Corynebacterium genitalium POLB -0.434 1.23E-04
Corynebacterium genitalium PPBP 0.414 3.52E-04
Corynebacterium massiliense CAMK1D -0.405 5.56E-04
Corynebacterium massiliense DAB2IP -0.595 7.04E-10
Corynebacterium massiliense KDM6B -0.482  6.95E-06
Corynebacterium massiliense LILRB4 -0.419 2.83E-04
Corynebacterium massiliense PLCG2 -0.412 4.01E-04
Corynebacterium massiliense PRCP -0.469 1.51E-05
Corynebacterium massiliense RELA -0.454  3.88E-05
Corynebacterium massiliense SPATA2 -0.556 2.43E-08
Corynebacterium riegelii APOA2 0.516 6.69E-07
Corynebacterium urealyticum IL15 -0.607 2.22E-10
Cutibacterium (unclassified sp) IL15 -0.650 1.75E-12
Cutibacterium (unclassified sp) S1PR3 -0.407 5.03E-04
Cutibacterium (unclassified sp) TLR1 -0.402 6.55E-04
Cutibacterium acnes GPRC5B -0.405 5.46E-04
Dermabacter vaginalis FOS -0.401 6.84E-04
Dietzia (unclassified sp) IL15 -0.583  2.48E-09
Dietzia timorensis IL15 -0.470  1.49E-05
Enhydrobacter (unclassified sp) HDAC4 -0.423 2.21E-04
Lactobacillus iners BDKRB2 -0.440 8.68E-05
Lactobacillus iners POLB -0.428 1.72E-04
Lactobacillus iners PSTPIP1 -0.423 2.21E-04
Mycoplasma spermatophilum IL9 0.432 1.36E-04
Nosocomiicoccus (unclassified sp) IL15 -0.424 2.11E-04
Nosocomiicoccus (unclassified sp) SMPDL3B -0.489 4.44E-06
Parvimonas (unclassified sp) RIPK2 -0.430 1.44E-04
Parvimonas micra CCL18 -0.409 4.56E-04
Porphyromonas somerae C4A -0.409 4.52E-04

Prevotella bergensis CXCR6 -0.430 4.52E-04
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Prevotella_7 (unclassified sp) ZFP36 -0.464 1.51E-04
Rothia (unclassified sp) REG3G 0.534 2.18E-05
Rothia amarae EGFR -0.468 1.62E-07
Rothia amarae GHSR 0.480 1.66E-05
Sneathia amnii XCR1 -0.419 7.99E-06

263

264  We performed a similar analysis, grouping bacterial ASVs at the genus level (
265 ). Eight genes showed correlation with nine bacterial genera. As expected, all the

266  correlated genes and bacterial genera were also identified in the species-level analysis.

267  We conducted a separate query of associations between inflammatory genes and the CSTs

268  described in Fig. 2A distinguished by high and low diversity bacterial populations. In the

269 random forest classification, four features achieved statistical significance. Nuclear Factor of
270  Activated T cells 3 (NFATC3) and Selenoprotein S (SELENOS) showed higher expression in the
271  highly diverse CST1 relative to CST2, while Signal Transducing Adapter Family Member 1

272  (STAP1) and Nod-like Receptor Pyrin domain-containing 6 (NLRP6) showed lower expression

273 (Fig. 6).

274 DIiscussion

275  Our study is the first of which we are aware to analyze the tissue-level microbiome of the

276  foreskin. Consistent with previous reports using penile swabs (5-18, 48), the bacteria we

277  identified are predominated by taxa commonly colonizing the skin (chiefly Corynebacteria spp)
278 (49, 50) in addition to anaerobic bacteria such as Prevotella, Dialister, Murdochiella, Peptoniphilus,
279  and Negativicoccus. These anaerobic species have been associated with increased inflammation
280 and HIV acquisition in uncircumcised men (8) and bacterial vaginosis in women (51). In the

281  foreskin, we describe two major CSTs, one significantly more diverse than the other. We did not
282  identify bacterial species that were differentially abundant between participants receiving

283  placebo compared to emtricitabine with either of the two forms of tenofovir. While vaginal-
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284  associated species such as Lactobacillus and Gardnerella take up tenofovir from their environment
285 (19, 20), further studies of more prolonged ARV use may better elucidate whether there is an

286  effect on bacterial or viral communities of the penis.

287  The overall composition of the bacterial community did not appear to differ by study site;

288  however, we did find Cutibacterium acnes to be significantly more abundant in South African
289  than Ugandan participants. C. acnes is typically resident in the deep dermis in association with
290  sebaceous glands and hair follicles (52), which our study sampled by digesting full-thickness
291  specimens rather than resuspending skin swabs. While its contribution to its namesake acne
292  wvulgaris is debated, it is otherwise non-pathogenic in immunocompetent hosts without artificial
293  material (52). It is frequently identified in surgical cultures, with unclear significance to sterility,
294 likely due to its resistance to surgical sterilization techniques and transection of deep dermal
295  structures during surgery (53). The differential abundance we observed may have been caused
296 by different surgical preparation at the two sites or by an actual difference in bacterial

297  populations. As there were no surgical complications observed during the study, the difference

298  does not appear to have clinical significance.

299  Our inflammatory gene analysis primarily identified an inverse relationship between

300  expression of genes associated with response to bacteria and skin commensals such as

301 Corynebacterium and Cutibacterium, consistent with non-inflammatory colonization. IL-15, the
302  most commonly correlated gene, is a pleotropic cytokine secreted by a narrow range of cell

303  types, in foreskin tissue including epithelial cells, fibroblasts, Langerhans cells, and monocytes
304 (54). It has broad immunostimulatory function, promoting NK cell differentiation and survival
305  (55), inflammatory cytokine production by macrophages (56) and dendritic cells (57), neutrophil
306 activation, survival, and phagocytosis (58), germinal center B cell proliferation (59), CD8" T cell

307  survival (60), and it is required for development of skin-resident memory CD8" T cells (61). Its
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308 lower expression correlating with higher relative abundances of non-pathogenic bacteria is

309  consistent with reduced inflammatory signaling corresponding to increased bacterial growth.

310  When examining gene expression between the participant groups with higher and lower

311  diversity bacterial communities, we did not confirm previous findings in the penis (8, 10, 16)
312 and vagina (62) that high bacterial diversity, particularly with anaerobic taxa, is associated with
313 increased inflammation. While we frequently identified anaerobic taxa, individual species

314  showed lower prevalence than in studies using surface swabs. This may have reduced our

315  power to detect an inflammatory association. Another explanation could be in the structure of
316  our experiment: rather than measuring secreted cytokines, we processed the entire tissue

317  specimen for bulk RNAseq, which likely included many cells not directly interacting with

318  bacteria or immune cells. Alternatively, the pre-procedure sterilization or the surgery itself may
319  have preferentially removed inflammatory species. The sterilization or collection could also

320  have altered host-bacterial interactions, though the rapid timeframe makes this explanation

321  seem less likely. Lastly, the bacterial strains in our cohort may employ different metabolic or
322  virulence strategies that render them less inflammatory. Unfortunately, our experiment was not

323  structured to investigate this possibility.

324  In the vagina, high diversity communities are highly inflammatory (62) and associated with
325  higher risk of adverse outcomes including HIV acquisition (63, 64) and preterm birth (65). The
326  foreskin microbiome had two obvious CSTs, one highly diverse CST1 and a less diverse CST2.
327  We hypothesized that the more diverse CST1 would be associated with higher levels of genes
328 related to inflammation, as in the vagina. However, when comparing gene expression between
329  CST1 versus CST2 specimens, random forest feature selection identified four genes that are not
330 directly involved in the canonical innate antibacterial response pathways, such as TNF-a and IL-

331 6. While named for its key activity in T-Cell Receptor (TCR) signaling, NFAT family members
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332 play a broad role in cell differentiation in the immune system and beyond (66), including in B
333 cells (67), Toll-like receptor (TLR) signaling in monocytes (68), and proliferation in perivascular
334 tissue (69) and keratinocytes (70). Higher expression of NFATC3 in CST1 specimens may

335  represent increased signaling from any of these cell types. SELENOS is up-regulated by

336  cytokines such as IL-1= and TNF-« via NF-*B and in turns acts to suppress cytokine secretion in
337  macrophages (71). Its higher expression in CST1 samples is consistent with increased

338  suppression of chronic inflammation. STAP1 has the best evidence for signaling downstream of
339  the B-Cell Receptor (BCR) (72), and lower expression could represent a response to sustained
340  signaling (although this was not supported by the expected changes in other genes). NLRP6 is
341  both an inducer and a component of the inflammasome, binds directly to the lipopolysaccharide
342  of gram negative or lipoteichoic acid of gram positive bacterial cell membranes, and plays both
343  apro- and anti-inflammatory role in tissues such as liver, kidney, and intestine (73). Given these
344 contrasting roles, the effects of its lower expression are difficult to predict with available data.
345  None of the identified genes plays a first-line role in regulating bacterial sensing or

346  inflammatory response.

347  Insummary, we report on the first tissue-level examination of the bacterial microbiome of the
348  foreskin, without apparent effect of brief antiretroviral drug exposure. Correlating bacterial
349  species with RNAseq data revealed largely negative correlations with genes involved in the

350 inflammatory response, consistent with maintenance of immune tolerance.
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550  Fig. 5 Bacterial taxa and inflammatory gene associations by immune function
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Fig. 6 Random Forest Feature Importance comparing RNAseq results between CST 1 and CST 2
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