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Abstract 23 

As part of the CHAPS randomized clinical trial, we sequenced a segment of the bacterial 16S 24 

rRNA gene from foreskin tissue of 144 adolescents from South Africa and Uganda collected 25 

during surgical penile circumcision after receipt of 1 to 2 doses of placebo, emtricitabine with 26 

tenofovir disoproxil fumarate, or emtricitabine with tenofovir alafenamide. We found a large 27 

proportion of Corynebacterium in addition to other anaerobic species. Cutibacterium acnes was 28 

more abundant among participants from South Africa than Uganda, though this made no 29 

difference in surgical recovery. We did not find a difference in bacterial populations by 30 

treatment received nor bacterial taxa that were differentially abundant between participants 31 

who received placebo versus active drug. Using RNAseq libraries from foreskin tissue of the 32 

same participants, we found negative correlations between the relative abundance of bacterial 33 

taxa and the expression of genes downstream of the innate response to bacteria and regulation 34 

of the inflammatory response. When participants were divided into clusters based on bacterial 35 

community composition, two main clusters emerged which were distinguished by high and 36 

low bacterial diversity. Random forest classification showed higher expression of NFATC3 and 37 

SELENOS and lower expression of STAP1 and NLRP6 in the higher diversity group compared 38 

to the lower. Our results show no difference in the tissue microbiome of the foreskin with short-39 

course PrEP but that bacterial taxa were largely inversely correlated with gene expression, 40 

consistent with non-inflammatory colonization.  41 

Author Summary 42 

We investigated the bacterial community of the foreskin of the penis. Previous studies found 43 

increased inflammation with certain anaerobic bacteria from swabs taken under the foreskin, 44 
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but we found that higher relative abundances of the bacteria were correlated with lower 45 

expression of inflammatory genes. We did not find different bacteria in participants who 46 

received medicine to prevent HIV. Understanding the relationship between bacteria and 47 

inflammation in the penis will help us to understand how interventions like penile circumcision 48 

reduce the risk of acquiring sexually transmitted infections such as HIV. 49 

  50 
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Introduction 51 

HIV remains a significant global health challenge despite substantial clinical, public health, and 52 

basic science research efforts. While condom use (1, 2), pre-exposure prophylaxis (PrEP) (3), and 53 

medical penile circumcision (4) are effective at reducing HIV incidence in men, the contribution 54 

of the penile microbiome to these mechanisms has not been fully explored. Previous work has 55 

shown a predominance of anaerobic species in the microbiota of swabs taken from the coronal 56 

sulcus or urethra (5-15) and have reported associations between species such as Prevotella and 57 

increased mucosal inflammation, HIV target cell density and risk of HIV acquisition (8, 16). 58 

Following circumcision, the surface microbiota shifts to be dominated by more aerobic species 59 

as found on other skin surfaces (10, 17, 18). Thus far, no data exist as to the microbiota of the 60 

foreskin itself, and its relation to tissue inflammation. 61 

Antiretrovirals (ARVs) are used for both treatment and prevention of HIV, and limited data 62 

have shown a complex relationship with bacteria. When applied as topical vaginal pre-exposure 63 

prophylaxis, L. crispatus was shown to endocytose Tenofovir (TFV) then either actively 64 

metabolize or release it back into the environment (19). Similarly, Gardnerella vaginalis and other 65 

anaerobes have been shown to metabolize TFV (20) or block its entry into cells by secretion of 66 

adenine (19). Antiretrovirals may also theoretically alter bacteriophage populations which can 67 

dramatically reshape the bacterial component of the microbiome which they infect (21). At the 68 

rectal mucosa, small studies have investigated the effects of oral emtricitabine (FTC) with 69 

tenofovir disoproxil fumarate (TDF) on the bacterial microbiome and innate inflammatory 70 

pathways in men who have sex with men (MSM) and transwomen (22-25) but with varying 71 

results. 72 
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Within the CHAPS clinical trial, young men were randomized to 1 to 2 doses of placebo, 73 

emtricitabine with tenofovir disoproxil fumarate, or emtricitabine with tenofovir alafenamide , 74 

prior to medical penile circumcision. Foreskin tissue was collected and subject to both 16S 75 

rRNA sequencing and RNASeq. to characterize the bacterial microbiome and inflammatory 76 

gene expression. We hypothesized that short courses of PrEP, as utilized in a dose-finding trial, 77 

would not result in significant changes to the bacterial microbiome of the foreskin, but that 78 

there would be a relationship between the microbiota and inflammatory gene expression. 79 

Materials and Methods 80 

Cohort and Specimen Collection 81 

The Combined HIV Adolescent PrEP and Prevention Study (CHAPS) was a randomized 82 

controlled trial that enrolled 144 men living without HIV aged 13-24 years between 2019 and 83 

2021 from the Chris Hani Baragwanath Academic Hospital in Soweto, South Africa (n=72) and 84 

the Entebbe Regional Referral Hospital in Entebbe, Uganda (n=72). Inclusion criteria were male 85 

sex at birth, hemoglobin > 9 g/dL, weight > 35 kg, two successive negative rapid HIV antibody 86 

tests, and clinical eligibility for surgical circumcision (26). Exclusion criteria were conditions 87 

precluding circumcision or receipt of the study medications. Participants were randomized to 88 

placebo versus FTC with either TDF or tenofovir alafenamide (TAF) for 1-2 days prior to 89 

surgical penile circumcision to investigate ARV dosing for on-demand PrEP.  90 

All participants underwent a physical exam at study entry and completed survey instruments 91 

including sexual history at the randomization visit. At the circumcision visit, they provided 92 

midstream urine for Chlamydia trachomatis (CT) and Neisseria gonorrhea (GC) testing via nucleic 93 

acid amplification testing (NAAT) prior to surgery. If an asymptomatic sexually transmitted 94 

infection was diagnosed, antibiotic treatment was prescribed at the post-operative visit. 95 
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Penile circumcision was performed using the dorsal slit method and the removed prepuce was 96 

placed immediately in cold Dulbecco’s Modified Eagle Medium and shipped on ice within 1 97 

hour (median 30 minutes) to the local laboratories in Uganda (Medical Research 98 

Council/Uganda Virus Research Institute) and South Africa (Perinatal HIV Research Unit in 99 

Johannesburg) for processing. Smaller, 5–7 mm2-sized sections were stored dry at -80° C until 100 

the samples were transported on dry ice to the Seattle Children’s Research Institute, U.S.A for 101 

microbiome studies and to the Karolinska Institutet, Sweden for transcriptome analyses. 102 

Ethics and Human Subjects 103 

Ethical clearance to conduct the CHAPS trial was obtained from the South African Health 104 

Products Regulatory Authority (20181004), the Uganda Virus Research Institute research and 105 

ethics committee (GC/127/18/12/680), Uganda National Council of Science and Technology 106 

(HS 2534), Uganda National Drug Authority (618/NDA/DPS/09/2019), and the London School 107 

of Hygiene and Tropical Medicine research ethics committee (Ref:17403). Informed written 108 

consent was collected from all participants. The Swedish Ethics Review Authority approved the 109 

transcriptome studies of the collected specimens at the Karolinska Institutet (2020-00941). The 110 

ethics approval for the microbiome analysis was granted by the Seattle Children’s Institutional 111 

Review Board (STUDY00003430).  112 

Specimen Processing 113 

16S rRNA Analysis 114 

At the time of analysis, vials were thawed and approximately 25 mg of tissue was dissected and 115 

processed by a customized Qiagen PowerSoil Pro protocol for extraction of DNA using a 116 

QIAcube instrument, available at: https://dx.doi.org/10.17504/protocols.io.4r3l2774jg1y/v1. A 117 

negative extraction control consisting of solution CD1 without specimen was also included. The 118 
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specimens from each collection site were extracted on single plates. The resulting total DNA 119 

was diluted 1:4 to reduce PCR inhibition.  120 

The 16S rRNA gene V3-V4 region was amplified using 319F/806R universal primers for 20 121 

cycles of PCR as previously described (27) for each specimen along with a negative PCR control 122 

reaction consisting of mastermix without DNA template for each replicate and evenly and 123 

staggered genomic DNA from mock bacterial libraries (BEI Resources) as positive sequencing 124 

controls. The amplified products were purified using Agencourt AMPure XP beads (Beckman 125 

Coulter) and submitted to an additional 10 rounds of PCR with indexing primers (Illumina). 126 

The resulting libraries were pooled by volume with specimens at 100x the positive controls. The 127 

resulting library comprising all participants was purified using a MinElute PCR purification 128 

column (Qiagen), followed by the QiaQuick gel extraction kit (Qiagen). The cleaned library was 129 

quantitated using qPCR (NEBNext Library Quant Kit for Illumina), then pooled with PhiX, 130 

denatured, and loaded onto a MiSeq instrument (Illumina) with a v3 2x300 flow cell following 131 

the manufacturer’s protocol. 132 

Sequences were de-multiplexed using Illumina’s BaseSpace workflow. Primers and adapters 133 

were removed by cutadapt 2.7 (28). Sequences were further trimmed for quality, then filtered 134 

and merged using dada2 1.22.0 (29) to generate amplicon sequence variants (ASVs). Taxa were 135 

annotated using the Silva 138.1 database (30) with additional genital-associated species (31) 136 

using a 100% nucleotide identity threshold. The phyloseq 1.40.0 (32) and vegan 2.6-2 (33) R 137 

packages were used to manipulate ASV tables and calculate diversity measures. ASV sequences 138 

were aligned using ssu-align 0.1.1 (34), and a maximum likelihood phylogeny was generated 139 

using PhyML 3.3.20220408 (35) with a GTR substitution model. Contaminating sequences were 140 

identified by their presence in negative controls for the extraction and PCR amplification or 141 

mock community using decontam 1.16.0 (36) and microfiltR (37). After decontamination, 142 
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specimens with fewer than 25-fold as many reads than extraction and PCR controls were 143 

excluded. For differential abundance analysis, decontaminated ASVs were filtered with 144 

prevalence >= 10% and relative abundance threshold of 1x10-4 before combining counts for all 145 

ASVs classified as the same species. ALDEx2 1.28.1 (38), ANCOM-BC 1.6.2 (39), and DESeq2 146 

1.36.0 (40) (using the poscounts factors estimation) were used for differential abundance testing 147 

to overcome the documented limited power and accuracy of these tools when used individually 148 

on 16S data sets which contain a high proportion of zero counts (41, 42). 149 

RNAseq of Foreskin Tissue 150 

Foreskin samples were disrupted and homogenized using a Tissuelyzer (Qiagen) and total RNA 151 

isolated using the RNeasy Kit (Qiagen) according to manufacturer’s instructions. RNA was 152 

subjected to quality control with Agilent Bioanalyzer (Agilent). To construct libraries suitable 153 

for Illumina sequencing, the Illumina stranded mRNA prep ligation sample preparation 154 

protocol was used with starting concentration of 200 ng total RNA. The protocol includes 155 

mRNA isolation, cDNA synthesis, ligation of adapters and amplification of indexed libraries. 156 

The yield and quality of the amplified libraries were analysed using Qubit by (Thermo Fisher) 157 

and the Agilent Tapestation (Agilent). The indexed cDNA libraries were normalized and 158 

combined, and the pools were sequenced on the Illumina Novaseq 6000 S4 flowcell to generate 159 

150 bp paired-end reads.  160 

Sample demultiplexing was performed using bcl2fastq 2.20.0 (Illumina), and quality and 161 

adapter trimming of reads was performed using Cutadapt 2.8 (28). Sample quality was assessed 162 

using FastQC 0.11.8 (Babraham Bioinformatics) and MultiQC 1.7 (43). Reads were aligned to the 163 

Ensembl GRCh38 reference genome using STAR 2.6.1d (44). Counts for each gene were 164 

obtained using featureCounts 1.5.1 (45). 165 
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The Gene Ontology (GO) term “inflammatory response” (GO:0006954) selected 860 putative 166 

inflammatory genes which were filtered to only those with at least two copies detected in at 167 

least 90% of specimens. RNA read counts were normalized then transformed by centered log 168 

ratio (CLR). The 16S ASVs were filtered and combined as described for the differential 169 

abundance analysis and also CLR-transformed. We calculated the correlation between the gene 170 

counts and bacterial relative abundances, then filtered for r >0.4 and Benjamani-Hochberg-171 

adjusted p-value < 0.05. The resulting genes were manually inspected for their most relevant 172 

GO annotation and grouped according to their immunological function and pro- or anti-173 

inflammatory nature (Supplemental table S1). 174 

Normalized gene counts were used to perform random forest feature selection as implemented 175 

in the Boruta R package 7.0.0 (46). Only the importance measures of statistically significant 176 

(p<0.01) features were reported. 177 

Statistical Analyses 178 

All statistical analyses were performed in R version 4. Alpha diversity comparisons were 179 

evaluated using the Wilcoxon rank sum test. Beta diversity was compared using Permutational 180 

Multivariate of Variance (PERMANOVA) using the adonis2 function of the vegan R package. 181 

The relationship between treatment arm and CST was assessed using multinomial logistic 182 

regression. RNAseq and 16S taxa correlations were calculated using Pearson coefficient. A 183 

significance threshold of • = 0.05 was used for the differential abundance hypothesis testing. 184 

Data Availability 185 

The 16S raw reads and RNASeq libraries will be deposited in the National Center for 186 

Biotechnology Information Short Read Archive and European Bioinformatics Institute 187 

(respectively) upon publication. R code to reproduce the analysis is available at 188 
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https://github.com/bmaust/CHAPS/. The completed STORMS (Strengthening The 189 

Organizing and Reporting of Microbiome Studies) checklist (47) for this project is located at 190 

https://doi.org/10.5281/zenodo.7269027. 191 

Results 192 

Clinical STI testing 193 

No participants reported STI symptoms, and no physical exams revealed urethral discharge or 194 

other genital abnormality. None of the participants had clinical balanoposthitis or evidence of 195 

macroscopic inflammation. No GC infections were diagnosed, but NAAT for seven participants 196 

was positive for CT: five from Uganda and two from South Africa.  197 

Microbiome 16S sequencing 198 

After filtering and contamination removal, 137 specimens from the 144 enrolled participants 199 

had sufficient bacterial DNA reads to proceed with analysis. The identified bacterial taxa 200 

include a variety of skin-associated Gram-positive and genital-associated anaerobic species in 201 

addition to Gram-negative enterics (Fig. 1). Corynebacterium was the most prevalent and 202 

abundant genus, appearing in 132 (97%) of specimens at median relative abundance of 34% 203 

(range: 0.14% to 98%). Anaerobic species were highly abundant, including bacteria that are 204 

commonly found in bacterial vaginosis, an inflammatory dysbiosis of the vagina, including 205 

Prevotella, Anaerococcus, Finegoldia and Porphyromonas. There were no ASVs in the Chlamydiaceae 206 

family which includes C. trachomatis.  207 

Unsupervised partition around medioids clustering separated the unweighted Unifrac 208 

distances into two community structure types (CST) with distinct community structure 209 

(PERMANOVA R2 = 0.25 with p < 0.001) and alpha diversity (p=2.39x10-19) (Fig. 2). Two clusters 210 
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maximized the silhouette score with acceptable within sum of squares and gap statistics. CST1 211 

was highly diverse with a median Shannon index of 3.05. CST2 was dominated by 212 

Corynebacterium tuberculostearicum and Finegoldia magna and, with median relative abundances 213 

of 21% and 9.6%, respectively. CST2 also had a significantly lower median Shannon index of 214 

1.68 (Wilcoxon unpaired exact, p = 2.39x10-19). Though F. magna and C. tuberculostearicum were 215 

also abundant in CST1 (median relative abundances of 4.6% and 2.5%), they shared high 216 

relative abundance with Anaerococcus, Campylobacter, Fenollaria, Finegoldia, Ezakiella, Mobiluncus, 217 

and Peptinophilis species without a clear dominant taxon.  218 

Microbiome differences by study site 219 

The 137 participants with 16S data included 69 (50.3%) individuals from South Africa and 68 220 

(49.7%) from Uganda. We compared microbiota between the two study sites and found no 221 

differences in within-participant alpha diversity (Shannon entropy) or between-participant beta 222 

diversity (unweighted Unifrac distance) (Fig. 3, A and B). Differential abundance testing 223 

identified Cutibacterium acnes as significantly higher in participants from South Africa compared 224 

to those from Uganda by ALDEx2 with a CLR difference of 3.3 between sites (Wilcoxon rank 225 

test with Benjamani-Hochberg correction p=0.0184). ANCOM-BC identified the same ASV with 226 

a significant q-value (0.0079), but the log2fold change of 1.87 failed to meet the effect size 227 

threshold. DESeq2 did not identify any taxa as significantly differentially abundant. (Fig. 3, C-228 

E).  229 

Microbiome differences by parent study treatment arm 230 

We performed similar analyses for the bacterial populations in participants who received active 231 

drug versus placebo. The participants with 16S data were equally distributed among treatment 232 

arms with FTC-TAF and FTC-TDF (n=59 and 62, respectively, •2 p=0.437). All 16 participants 233 
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who received placebo had sufficient sequences for analysis. We found no differences in alpha or 234 

beta diversity (Fig. 4, A and B) between placebo and FTC-TAF or FTC-TDF regimens. 235 

Combining both treatment groups and comparing to placebo, no species were significantly 236 

differentially abundant by any of the three tools (Fig. 4, C-D). An un-annotated Dialister species 237 

was identified with statistically significantly higher abundance in participants who received 238 

active drug by ANCOM-BC but did not meet the effect size threshold at only 1.9-fold more 239 

abundant. The treatment arm was not a significant predictor of the CSTs identified above 240 

(p=0.32 for placebo, p=0.99 for FTC/TAF, p=0.88 for FTC/TDF). 241 

Inflammatory genes and bacterial taxa 242 

Forty inflammatory genes showed significant correlation with 31 bacterial species (Table 1). Six 243 

genes had insufficient evidence for inflammatory function and were therefor excluded. The 244 

remaining 34 genes were primarily pro-inflammatory with negative correlation to bacterial 245 

species (Fig. 5) without difference by environmental niche. IL-15 was the most frequently 246 

correlated gene, with significant negative correlations to seven bacterial taxa not typically 247 

associated with invasive infection: Brevibacterium luteolum, Corynebacterium urealyticum, Dietzia 248 

timorensis, and unannotated species in the Cutibacterium, Corynebacterium, Dietzia, and 249 

Nosocomiicoccus genera. The majority of the bacterial taxa significantly correlated with other 250 

genes were gram-positive organisms which frequently colonize the skin. The CLR-transformed 251 

relative abundance of Corynebacterium massilliense, in particular, was associated with 252 

significantly lower expression of genes involved in regulation of inflammatory responses and 253 

neutrophil chemotaxis and activation. Anaerobes also found in the oral cavity such as 254 

Parvimonas and Porphyromonas were also correlated with primarily lower expression of 255 

inflammatory genes. However, the oral anaerobe Rothia amarae was associated with higher 256 

expression of the regulatory factor GHSR and an unclassified species also in the Rothia genus 257 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.08.29.505718doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.29.505718
http://creativecommons.org/licenses/by-nd/4.0/


was associated with higher expression of the pro-inflammatory gene REG3G. Species in three 258 

genera canonically associated with BV, Atopobium, Prevotella, and Sneathia, were correlated with 259 

lower expression of inflammatory genes, but one unannotated Prevotella ASV was negatively 260 

correlated with ZFP36, an immune regulatory gene. 261 

Table 1 Bacterial taxa and human gene correlations 262 

Taxon (Genus species) 
Gene 

Symbol 
Pearson 

corr adj p 
(Uknown Muribaculaceae family) ADAMTS12 -0.404 5.90E-04 
(Uknown Muribaculaceae family) TUSC2 -0.497 2.63E-06 
Aliicoccus (unclassified sp) IL15 -0.557 2.41E-08 
Anaerococcus lactolyticus ODAM 0.479 8.41E-06 
Arcanobacterium (unclassified sp) CXCL9 -0.415 3.31E-04 
Atopobium (unclassified sp) JAM3 -0.420 2.64E-04 
Brevibacillus (unclassified sp) IL1RN -0.401 6.89E-04 
Brevibacterium luteolum IL15 -0.563 1.48E-08 
Campylobacter (unclassified sp) CCL11 0.492 3.68E-06 
Campylobacter (unclassified sp) ITGB2 -0.465 2.03E-05 
Campylobacter (unclassified sp) RIPK2 -0.461 2.55E-05 
Corynebacterium confusum FPR3 -0.402 6.46E-04 
Corynebacterium confusum MS4A2 -0.439 9.72E-05 
Corynebacterium confusum SMPDL3B -0.543 7.86E-08 
Corynebacterium coyleae APOA2 0.542 8.40E-08 
Corynebacterium genitalium BDKRB2 -0.474 1.14E-05 
Corynebacterium genitalium POLB -0.434 1.23E-04 
Corynebacterium genitalium PPBP 0.414 3.52E-04 
Corynebacterium massiliense CAMK1D -0.405 5.56E-04 
Corynebacterium massiliense DAB2IP -0.595 7.04E-10 
Corynebacterium massiliense KDM6B -0.482 6.95E-06 
Corynebacterium massiliense LILRB4 -0.419 2.83E-04 
Corynebacterium massiliense PLCG2 -0.412 4.01E-04 
Corynebacterium massiliense PRCP -0.469 1.51E-05 
Corynebacterium massiliense RELA -0.454 3.88E-05 
Corynebacterium massiliense SPATA2 -0.556 2.43E-08 
Corynebacterium riegelii APOA2 0.516 6.69E-07 
Corynebacterium urealyticum IL15 -0.607 2.22E-10 
Cutibacterium (unclassified sp) IL15 -0.650 1.75E-12 
Cutibacterium (unclassified sp) S1PR3 -0.407 5.03E-04 
Cutibacterium (unclassified sp) TLR1 -0.402 6.55E-04 
Cutibacterium acnes GPRC5B -0.405 5.46E-04 
Dermabacter vaginalis FOS -0.401 6.84E-04 
Dietzia (unclassified sp) IL15 -0.583 2.48E-09 
Dietzia timorensis IL15 -0.470 1.49E-05 
Enhydrobacter (unclassified sp) HDAC4 -0.423 2.21E-04 
Lactobacillus iners BDKRB2 -0.440 8.68E-05 
Lactobacillus iners POLB -0.428 1.72E-04 
Lactobacillus iners PSTPIP1 -0.423 2.21E-04 
Mycoplasma spermatophilum IL9 0.432 1.36E-04 
Nosocomiicoccus (unclassified sp) IL15 -0.424 2.11E-04 
Nosocomiicoccus (unclassified sp) SMPDL3B -0.489 4.44E-06 
Parvimonas (unclassified sp) RIPK2 -0.430 1.44E-04 
Parvimonas micra CCL18 -0.409 4.56E-04 
Porphyromonas somerae C4A -0.409 4.52E-04 
Prevotella bergensis CXCR6 -0.430 4.52E-04 
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Prevotella_7 (unclassified sp) ZFP36 -0.464 1.51E-04 
Rothia (unclassified sp) REG3G 0.534 2.18E-05 
Rothia amarae EGFR -0.468 1.62E-07 
Rothia amarae GHSR 0.480 1.66E-05 
Sneathia amnii XCR1 -0.419 7.99E-06 
 263 

We performed a similar analysis, grouping bacterial ASVs at the genus level (Supplemental 264 

table S2). Eight genes showed correlation with nine bacterial genera. As expected, all the 265 

correlated genes and bacterial genera were also identified in the species-level analysis.  266 

We conducted a separate query of associations between inflammatory genes and the CSTs 267 

described in Fig. 2A distinguished by high and low diversity bacterial populations. In the 268 

random forest classification, four features achieved statistical significance. Nuclear Factor of 269 

Activated T cells 3 (NFATC3) and Selenoprotein S (SELENOS) showed higher expression in the 270 

highly diverse CST1 relative to CST2, while Signal Transducing Adapter Family Member 1 271 

(STAP1) and Nod-like Receptor Pyrin domain-containing 6 (NLRP6) showed lower expression 272 

(Fig. 6).  273 

Discussion 274 

Our study is the first of which we are aware to analyze the tissue-level microbiome of the 275 

foreskin. Consistent with previous reports using penile swabs (5-18, 48), the bacteria we 276 

identified are predominated by taxa commonly colonizing the skin (chiefly Corynebacteria spp) 277 

(49, 50) in addition to anaerobic bacteria such as Prevotella, Dialister, Murdochiella, Peptoniphilus, 278 

and Negativicoccus. These anaerobic species have been associated with increased inflammation 279 

and HIV acquisition in uncircumcised men (8) and bacterial vaginosis in women (51). In the 280 

foreskin, we describe two major CSTs, one significantly more diverse than the other. We did not 281 

identify bacterial species that were differentially abundant between participants receiving 282 

placebo compared to emtricitabine with either of the two forms of tenofovir. While vaginal-283 
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associated species such as Lactobacillus and Gardnerella take up tenofovir from their environment 284 

(19, 20), further studies of more prolonged ARV use may better elucidate whether there is an 285 

effect on bacterial or viral communities of the penis.   286 

The overall composition of the bacterial community did not appear to differ by study site; 287 

however, we did find Cutibacterium acnes to be significantly more abundant in South African 288 

than Ugandan participants. C. acnes is typically resident in the deep dermis in association with 289 

sebaceous glands and hair follicles (52), which our study sampled by digesting full-thickness 290 

specimens rather than resuspending skin swabs. While its contribution to its namesake acne 291 

vulgaris is debated, it is otherwise non-pathogenic in immunocompetent hosts without artificial 292 

material (52). It is frequently identified in surgical cultures, with unclear significance to sterility, 293 

likely due to its resistance to surgical sterilization techniques and transection of deep dermal 294 

structures during surgery (53). The differential abundance we observed may have been caused 295 

by different surgical preparation at the two sites or by an actual difference in bacterial 296 

populations. As there were no surgical complications observed during the study, the difference 297 

does not appear to have clinical significance. 298 

Our inflammatory gene analysis primarily identified an inverse relationship between 299 

expression of genes associated with response to bacteria and skin commensals such as 300 

Corynebacterium and Cutibacterium, consistent with non-inflammatory colonization. IL-15, the 301 

most commonly correlated gene, is a pleotropic cytokine secreted by a narrow range of cell 302 

types, in foreskin tissue including epithelial cells, fibroblasts, Langerhans cells, and monocytes 303 

(54). It has broad immunostimulatory function, promoting NK cell differentiation and survival 304 

(55), inflammatory cytokine production by macrophages (56) and dendritic cells (57), neutrophil 305 

activation, survival, and phagocytosis (58), germinal center B cell proliferation (59), CD8+ T cell 306 

survival (60), and it is required for development of skin-resident memory CD8+ T cells (61). Its 307 
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lower expression correlating with higher relative abundances of non-pathogenic bacteria is 308 

consistent with reduced inflammatory signaling corresponding to increased bacterial growth. 309 

When examining gene expression between the participant groups with higher and lower 310 

diversity bacterial communities, we did not confirm previous findings in the penis (8, 10, 16) 311 

and vagina (62) that high bacterial diversity, particularly with anaerobic taxa, is associated with 312 

increased inflammation. While we frequently identified anaerobic taxa, individual species 313 

showed lower prevalence than in studies using surface swabs. This may have reduced our 314 

power to detect an inflammatory association. Another explanation could be in the structure of 315 

our experiment: rather than measuring secreted cytokines, we processed the entire tissue 316 

specimen for bulk RNAseq, which likely included many cells not directly interacting with 317 

bacteria or immune cells. Alternatively, the pre-procedure sterilization or the surgery itself may 318 

have preferentially removed inflammatory species. The sterilization or collection could also 319 

have altered host-bacterial interactions, though the rapid timeframe makes this explanation 320 

seem less likely. Lastly, the bacterial strains in our cohort may employ different metabolic or 321 

virulence strategies that render them less inflammatory. Unfortunately, our experiment was not 322 

structured to investigate this possibility. 323 

In the vagina, high diversity communities are highly inflammatory (62) and associated with 324 

higher risk of adverse outcomes including HIV acquisition (63, 64) and preterm birth (65). The 325 

foreskin microbiome had two obvious CSTs, one highly diverse CST1 and a less diverse CST2. 326 

We hypothesized that the more diverse CST1 would be associated with higher levels of genes 327 

related to inflammation, as in the vagina. However, when comparing gene expression between 328 

CST1 versus CST2 specimens, random forest feature selection identified four genes that are not 329 

directly involved in the canonical innate antibacterial response pathways, such as TNF-ɑ and IL-330 

6. While named for its key activity in T-Cell Receptor (TCR) signaling, NFAT family members 331 
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play a broad role in cell differentiation in the immune system and beyond (66), including in B 332 

cells (67), Toll-like receptor (TLR) signaling in monocytes (68), and proliferation in perivascular 333 

tissue (69) and keratinocytes (70). Higher expression of NFATC3 in CST1 specimens may 334 

represent increased signaling from any of these cell types. SELENOS is up-regulated by 335 

cytokines such as IL-1• and TNF-• via NF-•B and in turns acts to suppress cytokine secretion in 336 

macrophages (71). Its higher expression in CST1 samples is consistent with increased 337 

suppression of chronic inflammation. STAP1 has the best evidence for signaling downstream of 338 

the B-Cell Receptor (BCR) (72), and lower expression could represent a response to sustained 339 

signaling (although this was not supported by the expected changes in other genes). NLRP6 is 340 

both an inducer and a component of the inflammasome, binds directly to the lipopolysaccharide 341 

of gram negative or lipoteichoic acid of gram positive bacterial cell membranes, and plays both 342 

a pro- and anti-inflammatory role in tissues such as liver, kidney, and intestine (73). Given these 343 

contrasting roles, the effects of its lower expression are difficult to predict with available data. 344 

None of the identified genes plays a first-line role in regulating bacterial sensing or 345 

inflammatory response. 346 

In summary, we report on the first tissue-level examination of the bacterial microbiome of the 347 

foreskin, without apparent effect of brief antiretroviral drug exposure. Correlating bacterial 348 

species with RNAseq data revealed largely negative correlations with genes involved in the 349 

inflammatory response, consistent with maintenance of immune tolerance. 350 
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Fig. 1 Top 25 most abundant bacterial genera across participants by study treatment received. 538 

(anaerobic taxa in earth tones, aerobes in purples, uncultured or unidentified species in grays) 539 

 540 

Fig. 2 (A) Heatmap of top 25 bacterial species by CST, (B) PCoA ordination of bacterial beta 541 

diversity by unweighted Unifrac distance, colored by CST 542 
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 543 

Fig. 3 Comparisons by study site: alpha (A) and beta (B) diversity; differential abundance 544 

testing with ALDEx2 (C), ANCOM-BC (D), and DESeq2 (E) 545 
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 546 

Fig. 4 Analysis by treatment arm: alpha (A) and beta (B) diversity by drug received; differential 547 

abundance testing with ALDEx2 (C), ANCOM-BC (D), and DESeq2 (E) 548 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.08.29.505718doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.29.505718
http://creativecommons.org/licenses/by-nd/4.0/


 549 

Fig. 5 Bacterial taxa and inflammatory gene associations by immune function 550 
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 551 

Fig. 6 Random Forest Feature Importance comparing RNAseq results between CST 1 and CST 2 552 

Supplemental items 553 

Supplemental Table S1: Gene categorization 554 

Supplemental Table S2: Bacterial genera and human gene correlations 555 
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