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Abstract 

About 15% of human cancer cases are attributed to viral infections. To date, virus expression in 

tumor tissues has been mostly studied by aligning tumor RNA sequencing reads to databases 

of known viruses. To allow identification of divergent viruses and rapid characterization of the 

tumor virome, we developed viRNAtrap, an alignment-free pipeline to identify viral reads and 

assemble viral contigs. We apply viRNAtrap, which is based on a deep learning model trained 

to discriminate viral RNAseq reads, to 14 cancer types from The Cancer Genome Atlas (TCGA). 

We find that expression of exogenous cancer viruses is associated with better overall survival. 

In contrast, expression of human endogenous viruses is associated with worse overall survival. 

Using viRNAtrap, we uncover expression of unexpected and divergent viruses that have not 

previously been implicated in cancer. The viRNAtrap pipeline provides a way forward to study 

viral infections associated with different clinical conditions.  

 

 

Introduction 

Viral infections have a causal role in approximately 15% of all cancer cases worldwide1. Viruses 

linked to cancer are generally divided into direct carcinogens, which drive an oncogenic 

transformation through viral oncogene expression, and indirect carcinogens, which may lead to 

cancer through mutagenesis associated with infection and inflammation. To date, seven viruses 

have been classified as direct carcinogenic agents in humans2. Among these, the high-risk 

subtypes of human papillomavirus (HPV) are the causative agent of approximately 5% of human 

cancers. Chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infections are associated 

with most hepatocellular carcinoma cases. More recently, advances in sequencing technologies 

have contributed to better appreciation of the high burden of viral infections in cancer, 

exemplified by the Kaposi's sarcoma herpesvirus and the Merkel cell polyomavirus, which were 

discovered based on nucleic acid subtraction to cause Kaposi's sarcoma and Merkel cell 

carcinoma, respectively2. The discovery of oncogenic viruses, starting with the Rous sarcoma 

virus3, has been critical for understanding mechanisms driving cancer evolution and for 
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improving cancer prevention and intervention strategies. However, the burden of viral infections 

in cancer is thought to remain underappreciated by much of the cancer research community4. 

Since the advent of next-generation sequencing, new viral strains are typically identified from 

large-scale DNA or RNA sequencing data based on sequence similarity to known viruses. The 

Cancer Genome Atlas (TCGA) has become a principal resource for identification of viral 

sequences in cancer tissues. Several studies screened TCGA DNA sequencing data to 

characterize known viruses in cancers5,  and analyze host integration sites for viruses such as 

HBV that integrate into the human genome6. Other studies used RNA sequencing to screen for 

known viruses in the human transcriptome7,8,9,10, and to discover novel viral isolates10. Most 

recently, a few studies combined DNA and RNA sequencing to quantify presence of known 

cancer-associated viruses in human cancers11,12. However, the set of sequenced viral clades 

and the set of viral clades known to infect humans are both incomplete. Viruses and cancers 

have rapidly evolving genomes, and a new cancer-associated virus may have little sequence 

similarity to known viruses isolated outside of the tumor micro-environment. This issue is 

exacerbated when analyzing short reads, which are typical to RNA sequencing technologies. 

Therefore, discovery of new and divergent cancer viruses remains highly challenging with 

existing strategies13. For detection of bacterial viruses from metagenomic DNA sequencing, 

several machine and deep learning techniques have been recently developed. These methods 

overcome some of the limitations associated with homology-based approaches and rapidly 

identify viral reads including novel and divergent viruses14,15,16,17. This suggests that deep 

learning methods to detect viral reads from RNA sequencing have a similar potential to uncover 

novel and divergent viruses in human tissues. 

Here, we develop a framework, named viRNAtrap, that employs a deep learning model to 

accurately distinguish viral reads from RNA sequencing, and utilizes the model scores to 

assemble viral contigs. We apply viRNAtrap to 14 cancer types from TCGA (selected based on 

potential viral relevance to oncogenesis), to characterize the landscape of viral infections in the 

human cancer transcriptome. We demonstrate the ability of viRNAtrap to identify different types 

of viruses that are expressed in tumors by constructing three viral databases and comparing 

viRNAtrap findings to sequences in those databases. We first evaluate known cancer-associated 

viruses that are expressed in different tumor types. Then, we curate a database of potentially 
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functional human endogenous retroviruses (HERVs) and analyze expression patterns of 

different HERVs across human cancers to find that HERV expression is associated with poor 

survival rates. Finally, we employ viRNAtrap to identify divergent viruses that are expressed in 

tumor tissues. Notably, we identify Redondoviridae members that are expressed in head and 

neck carcinomas, a Siphoviridae member that is expressed in 10% of high grade serous ovarian 

cancers, and a Betairidovirinae member that is expressed in more than 25% of endometrial 

cancer samples. In summary, we present the first deep learning-based method to identify viruses 

from human RNA sequencing and demonstrate its ability to rapidly characterize viruses that are 

expressed in tumors and uncover viral instances that have not been previously found in these 

samples using alignment-based methods. viRNAtrap can be applied to identify new viruses that 

are expressed in a variety of other malignancies, introducing new avenues to study viral 

diseases.   

  

 

 

Results 

The viRNAtrap framework 

To identify viruses in the human transcriptome, we first trained a neural network to distinguish 

viral reads based on short sequences. We collected positive (viral) and negative (human) 

transcripts that were segmented into 48bp fragments and divided into training and test sets 

(Figure 1a, Methods). We used different metrics to evaluate the ability of the model to identify 

viral sequences based on short segments. The model yielded test-set performance: area under 

the receiver operating characteristic curve (AUROC) of 0.81, area under the precision recall 

curve (AUPRC) of 0.82 (Figure 1b), accuracy of 0.71, recall of 0.83, precision of 0.67 and F1-

score of 0.74 (Figure 1c). Examining the average model performance across segments from 

different human viruses, we find that human single-stranded DNA viruses from taxon 

Monodnaviria were assigned with high confidence, whereas, for RNA viruses, we observed more 

variation in model confidence. For example, the model confidently predicted the viral origin of 
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sequences from Ebola and influenza viruses but assigned borderline scores to sequences from 

several Phenuiviridae members such as Dabie bandavirus (Figure 1d, Supplementary Table 1). 

Based on the trained neural network, we built a computational framework (Figure 1a, Methods) 

to identify viral contigs from tumor RNAseq and applied the framework to 7272 samples from 14 

cancer types in The Cancer Genome Atlas (TCGA)18, from which 6717 were tumor samples and 

555 were non-cancer samples matched to a cancer sample from the same individual 

(Supplementary Table 2). In pre-processing, we extracted reads that were not aligned to the 

human genome (hg19) or to the phiX phage19 that was identified as a frequent contaminant. The 

computational framework, named viRNAtrap, was then applied to unaligned RNA reads (to 

reduce the running time of viRNAtrap), to detect viral reads and assemble predicted viral contigs. 

Finally, in post-processing analysis, we used blastn20 to compare the assembled viral contigs to 

three curated viral databases. We identified viral contigs originating from reference viruses that 

are expected in cancer tissues, human endogenous viruses, and candidate novel or more 

divergent viruses, which are expressed in different cancer types  
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 Figure 1. Training and evaluation of the viRNAtrap framework. 
(a) A schematic overview of the viRNAtrap framework. Unmapped reads were extracted and 

given as input to the neural network, to extract the viral reads and assemble viral contigs, that 

were compared against three viral databases using blastn. 

(b) Receiver-operating characteristic and precision-recall curves showing the model 

performance when viRNAtrap was applied to the test set.  

(c) Bar plots showing different metrics to evaluate the model performance for the test set. 

(d) A phylogenetic tree showing the model scores for sequences from different human viruses 

with the respective virus classification (using average assigned score for each virus).     

 

Identifying reference tumor viruses 

Viral
Classification

1

0.5

NC_038914NC_038524NC_040620NC_033781
NC_040688NC_040805

NC_038523

NC_023891
NC_039086NC_027779

NC_040806

NC_0
14

95
6

NC_0
38

52
5

NC_0
34

61
6

NC
_0

34
50

5

N
C

_0
38

72
8

N
C

_0
35

21
2

N
C

_0
34

48
7

N
C

_0
43

58
7

N
C

_0
43

61
7

N
C

_0
34

49
7

NC
_0

12
77

7

N
C

_0
14

40
6

N
C

_0
14

40
7

N
C

_0
20

10
6

N
C

_0
18

10
2

N
C

_0
15

15
0

N
C

_0
14

36
1

N
C

_0
24

11
8

N
C

_0
34

25
3

N
C

_0
19

02
8

N
C

_0
16

15
5

1 60930_
C

N

62
09

10
_

C
N N

C
_013060

N
C

_019027
N

C
_013443

NC_015373

NC_055339

NC_055344

NC_015374
NC_038350

NC_035213

NC_043445

NC_039024

NC_039025

NC_026435N
C

_055342
NC_026436

NC_009528
NC_026426

NC_020805
NC_038283

NC_034443

NC_043585

NC_043616
NC_014373
NC_014372
NC_045512
NC_034490

NC_038294
NC_019843
NC_034480

NC_026432

NC_026428

NC_025343

NC_026425

NC_043452

NC_015413

NC_035889

NC_018137

NC_026431

NC_011203

NC_034486

NC_024781

NC_055330

NC_001664

NC_020810

NC_055332

NC_007605

NC_015375

NC_055331

NC_055340

NC_034479

NC_043586

NC_055230

NC_035469

N
C

_039192
N

C
_055343

N
C

_039191
N

C
_038351

N
C

_022518

N
C

_012776
N

C
_024494

N
C

_043451
N

C
_018138

N
C

_039193
N

C
_026433

N
C

_026434

NC
_0

43
61

5

NC
_0

34
50

6
NC

_0
55

52
3

NC
_0

38
39

2

NC
_0

38
72

7

NC
_0

23
88

8

NC_0
17

99
5

NC_0
14

95
3

NC_0
13

03
5

NC_0
21

48
3

NC_0
17

99
4

NC_0
17

99
6

NC
_0

16
15

7

NC_040803

NC_017997

NC_014185

NC_014952

NC_022095

NC_017993

NC_022892
NC_038522

NC_019023
NC_040550

NC_040804
NC_040619

NC_040691

NC_014954NC_014955
NC_026946

NC_014469

NC_028125NC_027528

25
26

20
_

C
NN

C
_039062

N
C

_039063
N

C
_034385

N
C

_012800

N
C

_012798

N
C

_023984

N
C

_012802

N
C

_025961
N

C
_012801

N
C

_035758

N
C

_011800

N
C

_025114

N
C

_012986

N
C

_012957

NC_038356

NC_038358

NC_038353

NC_038360

NC_038355

NC_038359

NC_038352

NC_038357

NC_038354

NC_038361

NC_014093

NC_025726

NC_014068

NC_014095

NC_038347

NC_014089

NC_025727

NC_020498

NC_030297

NC_014097

NC_038345
NC_038346

N
C

_038337

N
C

_022789

NC_017091

NC_012564

NC_012729

NC_012042
NC_039050

NC_024888

NC_030449
NC_040306NC_024694NC_038726NC_034498

NC_035211

NC_038605
NC_038609
NC_038594
NC_038604
NC_038596
NC_038606
NC_038613
NC_038600
NC_038610

NC_038418

NC_023874

NC_038595

NC_038412

NC_038417

NC_038413

NC_036877

NC_038415

NC_038416

NC_032682

NC_021568

NC_038414

NC_039215

NC_022788NC_018401NC_038496NC_028459NC_038497NC_030447NC_030448

NC_038611

NC_040309

NC_038612

NC_038603

NC_038602

NC_038307

NC_038598

NC_032480

N
C

_0
15

41
1

N
C

_0
15

41
2

N
C

_0
24

49
5

N
C

_0
43

45
0

N
C

_0
18

13
6 274420_

C
N

N
C

_0
24

49
6

N
C

_0
55

34
1

NC
_0

38
42

6

NC
_0

26
42

7

NC
_0

24
07

0
NC

_0
44

85
6

NC
_0

39
89

7
NC

_0
44

85
3

NC
_0

44
85

4
N

C
_0

44
04

5
N

C
_0

40
87

6
N

C
_0

44
93

2
N

C
_0

26
43

7
N

C
_0

26
42

4
N

C
_0

39
47

5
N

C
_0

44
04

6
N

C
_0

26
42

3

N
C

_0
39

47
7

NC
_0

44
85

5
NC

_0
29

64
7

NC_0
30

79
1

NC_0
26

81
7

NC_0
38

43
6

NC_0
27

99
8

NC_0
38

59
9

NC_0
38

60
7

NC_0
26

43
8

NC_0
26

42
2

NC_0
26

42
9

NC_038597

NC_030454

NC_035475
NC_039070

NC_035474

NC_038601
NC_038608

NC_022089

Anelloviridae

Monodnaviria

Riboviria
Varidnaviria

Duplodnaviria

Model score

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating
characteristic curves

Test AUROC = 0.81

Test set
0.0

0.2

0.4

0.6

0.8

1.0

Accuracy
Recall
Precision
F1 score

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

precision recall curves

Test AUPRC  = 0.82

b

c

a

P
re

di
ct

 v
ira

l r
ea

ds

TACCTGGGTACCA  

RNA-seq Reads

48 bp reads

Embedding
     Layer

Convolutional Neural Network
         Component

Fully Connected
    Layers

Pre
   Processing

hg19
Phix

Bowtie 2 
   alignment

U
nm

ap
pe

d 
R

ea
ds

Post-
 Processing
BLAST

Reference
 viruses

Human
  endogenous
    viruses 

Contig
  Assembly

High 
  model score

Low
  model score

Vi
ra

l c
on

tig
s

d

Other viruses

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.26.497658doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.26.497658
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

We first characterized the presence of known cancer-associated human viruses in different 

tumor types. High-risk human Alphapapillomavirus strains (HR-ɑHPVs) were most frequently 

detected; the type observed in the majority of TCGA samples is HPV16. This is expected 

because HR- ɑHPVs, such as HPV16 and HPV18, underlie approximately 5% of cancer cases 

worldwide21 while low-risk human Alphapapillomavirus (LR-ɑHPV) strains, such as HPV54 and 

HPV201, are mostly associated with the development of genital warts but not cancer22. We found 

at least one HR-ɑHPV in 288 CESC samples (286 squamous cell carcinoma samples and 2 

non-cancer samples). We found 61 HNSC samples, and a total of 14 samples across other 

cancer types, that contain a contig from at least one HR-ɑHPV (Figure 2a). LR-ɑHPVs were 

identified in a small set of samples mostly from matched non-cancer tissues, including cervix 

and head and neck (Figure 2a, Supplementary Table 3). 

Hepatitis B virus (HBV) is the second most frequently detected virus across TCGA samples. 

HBV infections and Hepatitis C virus (HCV) infections are two primary causes of liver cancer 

and may co-occur in a patient11. We found HBV expression in 85 LIHC tumor samples and 7 

non-cancer samples, and HCV in 13 LIHC tumor samples. HBV was also found in a few tumor 

samples and matched non-cancer samples from other cancer types (Figure 2a). By comparing 

the samples predicted as virus-positive by vRNAtrap to the samples annotated as virus-positive 

in the TCGA clinical annotations, we found that the true positive rates of viRNAtrap were above 

95% for HR-ɑHPVs (in CESC and HNSC), and for HCV and HBV in LIHC, supporting that 

viRNAtrap correctly identifies samples expressing known cancer viruses (Supplementary Figure 

1). In addition, viRNAtrap found adeno-associated virus 2 (AAV2) in 8 LIHC samples, 6 from 

tumors and 2 from non-cancer samples. AAV2 is a small DNA virus that has the potential to 

integrate into human genes and contribute to oncogenesis, although the current evidence is 

insufficient for AAV2 to be included in the consensus list of oncogenic viruses23,24. A recent study 

that addressed discrepancies in AAV2 expression across TCGA samples found at least one 

AAV2 read in 11 LIHC samples23. However, in three of these samples only one AAV2 read was 

found, which is not sufficient for detection with the viRNAtrap pipeline. Notably, previous studies 

that systematically characterized viral presence across TCGA did not identify AAV2 in  more 

than six LIHC samples11,23, demonstrating the sensitivity of viRNAtrap compared to other 

computational methods.  We additionally detected AAV2 in one KIRC sample, one PAAD sample 

and one matched non-cancer sample from LUAD (Figure 2a).  
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We found several samples that express human polyomaviruses, especially polyomaviruses 6 

and 7. Most notably, we found seven BRCA samples and two HNSC samples that express 

polyomaviruses. We additionally found Parvovirus B19 sequences in a few samples25 (three 

cancer and one matched non-cancer); this virus has been mostly associated with normal 

tissues26, but was also previously identified in isolated tumor cases27,28. We investigated possible 

genomic correlates of the expression of these viruses, including the tumor mutation burden 

(TMB, the rate of somatic mutations in a tumor, which is a biomarker and is annotated for all 

TCGA samples), and the chromosome-level aneuploidy (Methods). We found that HR-ɑHPV-

positive samples have lower TMB and aneuploidy levels compared to HR-ɑHPV-negative 

samples (Figure 2b). In contrast, LIHC cancer patients positive for HBV showed significantly 

higher TMB compared to HBV-negative samples (Figure 2b). We additionally examined the 

association between viral expression and overall survival. We found that HR-ɑHPV-positive 

HNSC patients have significantly better survival compared to HR-ɑHPV-negative patients 

(Figure 2c), in agreement with previous studies29,30. Notably, we found a positive and significant 

association between viral presence and overall survival of LIHC patients with HBV or AAV2, and 

of KIRC patients with torqueviruses (Figure 2c).  
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Figure 2. Reference human viruses expressed in different tumor types. 

(a) Heatmap showing the total number of virus-positive samples identified from RNA-sequencing 

in different tumor tissues. Top panels show the fraction of tumor and non-cancer samples in 

which viruses were identified. Right panels show the number of viruses found in tumor and non-

cancer samples. 

(b) Violin plots comparing the tumor mutation burden (TMB) and the number of chromosome-

level copy number alteration (CNA) between cancer patients where expression of specific 

viruses, the high-risk alpha papilloma or hepatitis B viruses, was detected vs those patients 

where expression of those viruses was not detected.  Black dots represent the medians, and the 

boundaries of the violin plots refer to the maximum and minimum values, respectively. 
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(c) Kaplan-Meier curves comparing the survival rates between patients where viral reads were 

detected (blue curves) vs those where viral reads were not detected (red curves). The log rank 

and proportional hazards (PH) p-values are reported.  

 

Uncovering expression patterns of HERVs in cancer tissues 

To further demonstrate the utility of viRNAtrap, we analyzed the expression of HERVs across 

different tumor types in TCGA (HERVs were not used to train the viRNAtrap model). HERVs 

constitute approximately 8% of the human genome; most HERV sequences are remnants of 

ancestral retroviral infection that became fixed in the germline DNA31,32. While HERV proteins 

are found expressed in different conditions including cancer tissues, the impact of HERVs on 

cancer progression and clinical outcomes is not well understood33,34,35,36,37. Specifically, the 

HERV-K family, which most recently integrated to the human genome and is one of the most 

abundant HERV families in the human genome (along with HERV-H), was previously reported 

in tumor tissues and cell lines38,39. 

To comprehensively characterize HERV members that are expressed in different tumors, we 

established a database of potentially functional HERVs that were extracted from the human 

genome (Methods). The viRNAtrap contigs were aligned against this database, to identify 

patterns of HERV expression in the 14 cancer types considered throughout this study. 

As expected, we found that the most abundantly expressed HERV families are HERV-K and 

HERV-H. The fraction of samples expressing different individual HERV members was used to 

cluster tumor types. Interestingly, we found that squamous cell carcinomas (including cervical, 

lung, and head and neck) are clustered together based on the proportional distribution of 

expressed HERV members (Figure 3a). The HERVs that are most abundantly expressed across 

different cancers include some that are in proximity to cancer-associated genes or single 

nucleotide polymorphisms (SNPs) (Supplementary Table 4). Specifically, one HERV-H member 

(chr2:204826665-204832368) is located 365bp from the ICOS (Inducible T-cell costimulatory) 

gene, which has been associated with tumor immune responses40,41,42,43. In addition, one 

HERV9 member (chrX:150718827-150731816) is located 330bp from the PASD1 cancer/testis 

antigen gene (each of these two HERVs are found in 10 TCGA samples, Supplementary Table 

4). 
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We investigated associations between HERV transcript presence and patients’ overall survival 

(Figure 3b). We find that patients with HERV-K- and HERV-H-positive cancer samples have 

significantly lower overall survival compared to HERV-K- and HERV-H-negative patients in 

COAD, KIRC, UCEC and LIHC. Notably, every significant association that we identified between 

HERV presence and overall survival in these cancer types is negative (Supplementary Table 5). 

One HERV-H member (chr22:28138295-28141118) whose expression is significantly 

associated with poor survival in colon cancer is located 3146bp from the MN1 (meningioma 1) 

gene, whose high expression has been previously associated with poor survival of colorectal 

cancer patients44. 

To investigate the link between HERV expression and poor survival, we compared the TMB and 

aneuploidy scores between patients expressing HERVs and those without HERV expression. 

HERVs that were associated with poor survival were not associated with TMB or aneuploidy 

(Supplementary Table 6). We found that HERVs associated with poor overall survival were 

generally more likely to be expressed in the presence of somatic mutations in frequently mutated 

cancer driver genes, such as TP53, KRAS, ARID1A and PTEN (using hyper-geometric 

enrichment, Supplementary Table 7). However, we did not find a strong association with 

mutations in any specific gene, and HERV expression was found even in samples with no 

somatic mutations in any of these genes (Figure 3c, d, Supplementary Table 8) 
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Figure 3. Human endogenous retroviruses (HERVs) expressed in different cancer types 

(a) Heatmap clustogram clustering the proportion of HERVs across different tumor types. The 

rows are 14 TCGA tumor types. The 36 columns are the 36 distinct HERVs with the highest 

expression in human cancers, mapped to unique regions in the genome (Supplementary Table 

5). 

(b) Kaplan-Meier curves comparing the survival rates between patients in which any HERV 

reads were detected (blue curves) versus those in which no HERV reads were detected (red 

curves). The log rank and proportional hazards (PH) p-values are reported. 

(c), (d) Heatmap showing somatic mutations in major cancer driver genes (selected as the most 

frequently mutated driver genes in these samples, upper panel) and the expression of HERVs 

that are significantly associated with survival in colorectal and endometrial cancers (c) and in 

renal and hepatocellular cancers (d).   

 

 

Finding divergent viruses in human cancer 
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We next investigated tumor expression of divergent viruses that have rarely or never been 

previously reported in human cancers. We aligned the contigs produced by viRNAtrap against 

a database of viruses (Methods) from different hosts that were not expected to be found in tumor 

tissues, including human, bat, mouse, insect, plant, and bacterial viruses. (Figure 4a). We found 

multiple contigs of mosaic plant viruses in distinct samples from most tumor types, especially 

adenocarcinomas. For example, watermelon mosaic virus was found in 3 colorectal cancer 

samples, and Bermuda grass latent virus, which was previously reported in a COAD sample10, 

was identified in multiple samples from three cancer types (COAD, LIHC, UCEC; Figure 4a). 

Mosaic plant viruses have been previously detected in human faeces45,46, which could suggest 

viral entry and travel through the digestive tract. However, it is unclear how mosaic plant viruses 

would reach other tumor tissues, such as the liver and the endometrium, and whether these are 

associated with an unidentified source of laboratory contamination.   

 

Notably, we identified expression in five head and neck carcinoma samples of a Vientovirus, a 

member of the recently characterized human virus family Redondoviridae that is associated with 

human oro-respiratory tract47 (Figure 4a, Supplementary Table 9). We also found expression of 

a Gemycircularvirus HV-GcV148 in distinct samples from several cancer types, and Cutavirus 

expression in one COAD and one CESC sample each. We additionally detected human 

coxsackievirus49 in a COAD sample, confirming a previous report10.  

  

We also found expression of a few arthropod viruses in TCGA, almost exclusively in UCEC 

samples (Figure 4a), most notable of which is Armadillidium vulgare iridescent virus (IIV31)50. 

We detected reads that align to IIV31 proteins in 152 endometrial cancer samples (which 

constitute more than 25% of endometrial cancer samples studied). While we did not find previous 

reports of IIV31 in these samples, reads that align to the same strain were recently detected in 

a few DNA sequencing samples, but were filtered because these were not included in databases 

of multiple pipelines12. IIV31 is in Betairidovirinae; members of this subfamily of dsDNA viruses 

infect a wide variety of arthropods, including common insect parasites of humans51. One study 

speculated on the role of Betairidovirinae transmitted by mosquitos in human disease52, but, to 

our knowledge, their presence in humans has not been reported before. While Betairidovirinae 

are not considered to be pathogens of vertebrates, one study showed that the model 
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Betairidovirinae insect iridovirus 6 (IIV6) was lethal to mice after injection, while heat-inactivated 

IIV6 was not53. Additional studies have shown that Betairidovirinae can infect vertebrate 

predators of infected insects as well as several vertebrate cell lines54. Therefore, Betairidovirinae 

may opportunistically infect vertebrates, including humans.   

 

We identified different IIV31 genes expressed in UCEC samples, and samples positive for IIV31 

proteins originate from different batches and sequencing centers (Supplementary Table 10). In 

addition, we found that IIV31 presence was strongly and positively associated with overall 

survival (Figure 4b), and negatively associated with TMB and chromosome-level aneuploidy 

(Figure 4c, d). We did not identify a path to contamination by IIV31; the multiple origins of IIV31-

positive samples and significant associations between IIV31 expression and other cancer 

properties both suggest that IIV31 is not a contaminant. Of the most highly expressed IIV31 

proteins, we found an IAP apoptosis inhibitor homolog and serine/threonine protein kinases that 

were individually associated with poor overall survival (YP_009046765, YP_009046752 and 

YP_009046774, respectively), as well as a RAD50 homolog (YP_009046808, Supplementary 

Figure 2, Supplementary Table 10).  

 

We found significant positive association between IIV31 and CIBERSORT55 inferred CD8 T cell 

frequency and Treg frequency (Figure 4d). These findings, together with the association with 

improved survival suggest that IIV31 could be linked with a different infection, either directly or 

indirectly. We explored the association of IIV31 infection with Trichomonas vaginalis (TV)56 

infection. TV is a single-celled protozoan  pathogen that infects the human urogenital tract57, and 

has been associated with increased risk of cervical cancer, which is enhanced by HPV 

coinfection58. We found that TV is expressed in multiple UCEC tumor samples (we verified 21 

TV positive tumors with strict alignment parameters, due to high false positive rate when aligning 

against TV transcripts). Indeed, TV positive samples are highly enriched with IIV31 positive 

samples (Fisher exact test p-value = 1.4e-8). Both TV and IIV31 are significantly associated with 

PTEN mutations, which are linked to better survival in endometrial cancers59 (whereas presence 

of IIV31 is also associated with mutations in CTNNB1 and PIK3R1, Figure 4e).  
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We additionally identified Geobacillus virus E2 expression in 33 ovarian cancer samples; this 

virus is likely the most frequently expressed virus in high grade serous ovarian cancer. To further 

validate the presence of the Geobacillus virus E2, we applied viRNAtrap to cell line data from 

CCLE60. We identified the COV318 cell line as Geobacillus virus E2-positive and identified the 

OVISE cell line as a virus-negative control. Through qRT-PCR we validated the expression E2 

in the predicted-positive cell line COV318 (Figure 4f).  These results verify that Geobacillus virus 

E2, which was never found in ovarian cancer before, is indeed expressed in ovarian cancer cells, 

and that viRNAtrap can be used to sensitively detect virus-positive samples. Geobacillus 

bacteria has been previously detected in multiple ovarian cancer samples61,62. While we could 

not pinpoint the Geobacillus species harboring the phage, it is likely within those previously found 

in ovarian cancer samples61,62.  

 

We found murine leukemia virus63 expression in distinct samples from five cancer types. 

However, murine leukemia virus contamination has been reported for cell culture due to human 

DNA preparation64. 

Our method additionally detected a novel virus in a matched non-cancer sample from one HNSC 

patient, with protein similarity to Pteropus (fruit bat)-associated Gemycircularvirus and several 

other gemycircularviruses (Supplementary Table 9).  
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Figure 4. Unexpected and divergent viruses infecting different host taxa across TCGA 
samples. 
(a) Unexpected and divergent viruses expressed in TCGA samples. Each row in the matrix 

represents one virus and the entry in each column indicates the number of cancer samples of 

each type in which each virus was detected. The canonical hosts of each virus are depicted at 

the left of the matrix. At right, the aggregate number of tumor and normal samples containing 

reads of each virus are shown in a bar plot.  

(b) Kaplan-Meier curves comparing the survival rates between patients in which IIV31 reads 

were detected (blue curves) vs those where viral reads were not detected (red curves). The log 

rank and proportional hazards (PH) p-values are reported. 

(c) Box plots comparing the chromosome-level copy number alteration (CNA, top panel) and the 

tumor mutation burden (TMB, bottom panel) between cancer patients where IIV31 is found (blue) 

and patients where IIV31 is not found (red). 
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(d) Box plots comparing CIBERSORT-inferred proportions of regulatory T cells (Tregs) and CD8 

T cells between patients positive and negative for IIV31. 

(f) Trichomonas vaginalis and mutations in PTEN, CTNNB1 and PIK3R1 are significantly 

associated with IIV31 presence. Fisher’s exact test p-values are provided. 

© Bar plot comparing the fold change (relative to GAPDH) between the COV318 cell line that 

was predicted as Geobacillus-positive, and the OVISE cell line that was used as control. The t-

test p-value is provided. 

 

 

Discussion 

Identification of viruses from tumor RNA sequencing allows for the potential discovery of new 

carcinogenic agents and mechanisms. Discovery of novel and divergent viral species that 

contribute to cancer initiation and progression is crucial for development of new therapeutics, 

including vaccinations, screening practices, and antimicrobial treatments. Viruses are currently 

identified from sequencing reads based on similarity to known viruses65. However, when 

studying viruses from short reads, typical with Illumina-based RNA sequencing, reads originating 

from divergent viruses may share little sequence similarity to known viruses, rendering the 

identification of novel viruses highly challenging.  

To address this challenge, we developed viRNAtrap, a new, alignment-free framework to identify 

viral reads from RNAseq and assemble viral contigs. The contigs detected by viRNAtrap can be 

aligned to different viral databases, as we demonstrate in this study, to rapidly identify viral 

expression of interest in tumor samples. We curate a database of HERVs that comprise intact 

retroviral genes in the human genome and survey the expression of these viruses across 

different cancer tissues. Through a database of divergent viruses, we demonstrate that 

viRNAtrap identifies viruses in TCGA samples that were not detected in previous studies. This 

is enabled through an integrative method that uses the model scores to assemble viral reads 

rather than aligning short divergent reads to viral databases or applying de-novo assembly to 

many unmapped reads. Importantly, the output of viRNAtrap can be alternatively used as input 

to motif search tools, to potentially identify highly divergent viruses. Because the deep learning 

model underlying viRNAtrap was trained to distinguish viral from human sequences, the model 
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predictions for sequences derived from a range of other organisms is not defined. Future work 

could train models to identify viruses from a variety of other organisms, and, with the viRNAtrap 

framework, achieve higher sensitivity for viral detection.   

We used viRNAtrap to characterize viruses that are expressed across 14 cancer tissues from 

TCGA and analyze their genomic and survival correlates. Interestingly, we found that while the 

expression of exogenous cancer viruses is associated with improved survival, the expression of 

human endogenous viruses is strictly associated with poor survival rates. Expression of a virus 

of the subfamily Betairidovirinae, which are pathogens of insects, found in endometrial cancer 

tissues was similarly associated with significantly better overall patient survival. For all divergent 

viruses reported in this study, the presence and classification of multiple viral reads was verified 

by targeted blastn- and blastx-based sequence analyses in different samples.  

Perhaps, the most interesting divergent virus we found is IIV31 from the subfamily 

Betairidoovirinae, which was frequently detected in UCEC TCGA samples. Interestingly, IIV6, a 

very close relative of IIV31, can infect a variety of vertebrates including mice, and induces an 

immune response in mammalian tissues54,66. Thus, one possibility is that IIV31 is transmitted to 

the uterus through another insect, such as the crab louse. While we have not yet confirmed the 

source of this virus, our results imply that its presence may be a direct or indirect consequence 

of Trichomonas vaginalis infection. Therefore, it shows that viRNAtrap is sufficiently powerful to 

identify a previously unknown viral transcript in tumor samples, whether oncogenic or neutral. 

Through this analysis, we also identified TV reads in multiple endometrial cancer samples, 

indicating a possible new association between TV and endometrial cancer, similar to the known 

association of TV with cervical cancer58. One of the established pathogenic mechanisms of TV 

infection in humans, which may also explain the frequent HPV coinfection, is that TV secretes 

exosomes that have the effect of suppressing CXCL867. Interestingly, low expression of CXCL8, 

like infection with TV, has been associated with favorable prognosis in cervical cancer68. Thus, 

it is possible that the presence of IIV31 is a secondary infection in patients already infected with 

TV or some other pathogen that suppresses the human anti-viral response.  

Importantly, we identified E2 Geobacillus virus in 10% of high-grade, serous ovarian cancers, 

making it the most frequently expressed virus in this cancer type. We experimentally verified that 

E2 Geobacillus is indeed expressed in cell lines. We also found expression of a Redondoviridae 
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member in head and neck cancers that was not previously reported69. This finding calls for a 

study of the role of Redondoviridae in tumor initiation and progression, as this family of viruses 

was only recently detected in humans and associated with different clinical conditions.   

In conclusion, we developed viRNAtrap, a new software for alignment free identification of 

viruses from RNAseq, allowing rapid characterization of viral expression and detection of 

divergent viruses. We applied it to tumor tissues from TCGA, uncovering expression patterns of 

different groups of viruses. We report previously unrecognized associations between several 

forms of cancer and several unexpected viral clades, including viral clades canonically found in 

produce and in insect parasites of humans.  Future studies may employ viRNAtrap to find viruses 

that contribute to other malignancies.  

  

 

Methods  

Training a neural network to distinguish viral RNA sequencing reads  

The viRNAtrap framework is composed of two main components, illustrated in figure 1a. The 

first is a deep learning model, which was trained to accurately distinguish viral from human reads 

using RNA-sequencing. The second assembles the predicted viral reads into contigs. The 

trained neural network is composed of one 1D-convolutional layer and three fully connected 

layers, one of which is the final output layer. The RNA sequences were one-hot encoded to 

vectors that were given as input to the model. The learning rate was set to 0.0005, we used 64 

filters with ReLU as an activation function in the convolutional layer, followed by one pooling 

layer for feature extraction. The global extracted features from the convolutional layer are passed 

to three fully connected layers, to make a prediction based on a sigmoid activation function in 

the output layer. 

To train the model, we collected human and viral sequencing data. Coding sequences of human 

and other placentals viruses downloaded from the Virus Variation Resource70. Human 

transcripts for hg19 were downloaded from NCBI Human Genome Resources71. These 

sequences were segmented into 48bp segments, which is the read length for the RNAseq in 
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almost all tumor types in TCGA; only a few tumor types that were added chronologically last to 

TCGA used longer reads.  We used a 48bp window size for human transcripts and a 2bp window 

size for viral sequences, to balance the positive and negative data. Then, these were randomly 

split (where all segments of each transcript were considered together) into balanced train, 

validation, and test sets (n= 8,000,000, 800,000, and 2,558,044, respectively).  

We evaluated the performance of the model using the Area Under the Receiver Operating 

Characteristic Curve (AUROC), the Area Under the Precision Recall Curve (AUPRC), as well as 

accuracy, precision, recall, and F1-score, for the test dataset. We trained multiple models with 

different architectures and hyperparameters and then selected the model with highest average 

between the validation-set AUROC and recall. The model was trained using TensorFlow 2.6.0 

and Keras72. 

 

Assembling viral contigs from neural network predicted viral reads 

Once the viRNAtrap model predicts the probability of a viral origin of each read, reads with model 

scores more than 0.7 are used as seeds to assemble viral contigs. Viral contigs are assembled 

using iterative search for substrings with exact matches between 24bp k-mers. Each seed is 

complemented from the left and right ends using its left-most and right-most 24bp k-mers. For 

both the left and right assembly, reads containing the left or right most k-mers in a different 

position from the read that is being searched are identified. The read adding the maximal number 

of bases to the assembled contig is used to complement the left and right contigs. The model 

scores that were assigned to reads that are used to assemble each contig were averaged, and 

the assembly terminates if the average score is below 0.5. Finally, the right and left contigs are 

concatenated, to yield a complete viral contig. This algorithm was implemented in Python 3 and 

subsequently in C, which improved the running time by more than an order of magnitude for 

inputs with large numbers of reads.  

 

Data pre-processing 
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We downloaded RNA-sequencing data from Genomic Data Commons (GDC; 

https://portal.gdc.cancer.gov/)73 as BAM files. High quality reads were selected and mapped with 

Bowtie2 against hg19 (1000 Genomes version) and PhiX phage (NC_001422), and only the 

unmapped reads were kept. Then, we merged the paired end reads and converted them to fastq 

files, which were used as input to for the viRNAtrap framework, to yield predicted viral contigs. 

 

Viral databases 

Viral contigs yielded by the assembly component were used as inputs to blastn20. Three 

databases were used to search for viruses (with E-value threshold of 0.01):  

(1) RefSeq reference human viruses, downloaded from the National Center for Biotechnology 

Information (NCBI) 71, to which we added human papillomaviruses strains that are not in RefSeq 

from PAVE (https://pave.niaid.nih.gov)74. Reference viruses were searched using blastn, with 

default parameters except for a word size of 15 (lower than the default of 28), which was chosen 

to allow identification from short contigs. 

(2) more divergent viruses obtained from RVDB75 (https://hive.biochemistry.gwu.edu/rvdb/) 

which was then filtered to remove non-viral elements, endogenous viruses, and accessions that 

were consistently not verified using blastn against the nonredundant (nr) blast nucleotide 

database. 

(3) Human endogenous viruses. We curated a database of potentially functional HERVs through 

evaluation of viral protein completeness (in contrast to a previous study that evaluated HERV 

expression in distinct RNAseq datasets76). The initial genomic locations of reported HERV 

elements were downloaded from the HERVd HERV annotation database 

(https://herv.img.cas.cz)77. The nucleotide sequences in hg19 for each reported HERV were 

extracted using twoBitToFa78. We then applied blastx against NR with E-value cutoff of 1E-4, as 

well as a profile search79 against collected POL proteins, where the profile was obtained by 

collecting POL genes annotated in GenBank in lentiviruses (as of September 2016) and aligning 

their amino acid sequences using MAFFT80. Sequences with at least one identified retroviral 

protein motif of: POL/RT, GAG or ENV were extracted, yielding 3,044 HERVs that were 

considered for search in TCGA samples (Supplementary Table 5). 
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Analysis of divergent viruses  

All instances of divergent viruses identified in TCGA samples were verified using blastn against 

nr, to support that the virus strain is indeed the best match to a viral contig generated by 

viRNAtrap. Non-reference viruses (divergent viruses and viruses of non-human hosts) that were 

identified and verified in more than one sample were additionally searched using the STAR 

aligner81 across tumor types where these viruses were identified through viRNAtrap. The 

following accessions were additionally searched using STAR to increase sample coverage (as 

these were the most interesting divergent strains found across multiple samples): Bermuda 

grass latent virus (NC_032405), Armadillidium vulgare iridescent virus IIV31 (NC_024451), 

Geobacillus virus (NC_009552) and the Human lung-associated vientovirus (NC_055523)  

 

Genomic correlates of viral expression 

We correlated viral expression with genomic markers across TCGA samples. Chromosomal 

aneuploidy levels for TCGA samples were extracted from82 and the total number of 

chromosome-arm-level alterations was used. The tumor mutation burden was defined to be the 

total number of somatic mutations in each sample, downloaded from the Xena browser83 

(https://xenabrowser.net). CIBERSORT55 software was applied to TCGA samples using the 

default set of 22 immune-cell signatures. 

 

Experimental validation of the Geobacillus virus E2 in ovarian cancer cell lines.   

Reverse-transcriptase qPCR (RT-qPCR) RNA was extracted using TRIzol reagent (Invitrogen, 

cat. no. 15596026). Extracted RNA was used for reverse-transcriptase PCR using a High-

capacity cDNA reverse transcription kit (Thermo Fisher, cat. no. 4368814). Quantitative PCR 

was performed using a QuantStudio 3 real-time PCR system. GAPDH was used as an internal 

control. The fold change was calculated using the 2-ΔΔCt method. The primers used for reverse-

transcriptase qPCR are: GAPDH forward, GTCTCCTCTGACTTCAACAGCG and reverse, 

ACCACCCTGTTGCTGTAGTAGCCAA; Geobacillus virus E2 terminase forward, 
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TTGCGATGCGTACTCAGACT and reverse, CTCTTTTTGGTCAGCAGCGG Primers were 

obtained using NCBI primer design tool as shown in the attached word document. The primers 

were synthesized by Integrated DNA Technologies IDT. 

 

Identification of Trichomonas vaginalis-positive samples 

UCEC unmapped (to hg19) reads were aligned to the reference genome of Trichomonas 

vaginalis (GCF_000002825)56 strain G3 using blastn20 with E-value < 1e-8 and more than 90% 

identity. These thresholds were set to remove false positives that were frequent when aligning 

against Trichomonas vaginalis when examining both blastn20 and STAR aligner81. TV reads for 

each TV-positive sample were verified by manual inspection of the output alignments.  

 

Statistical methods 

Survival analysis, including Kaplan Meier curves plots, log rank test and proportional hazards 

test p-values were obtained using the Python lifelines package (v0.26.4)84. P-values comparing 

TMB and aneuploidy between two groups correspond were computed with two-sided Wilcoxon 

rank-sum tests. Heatmap clustograms were generated through seaborn clustermap. 

 

Data Availability  

The raw FASTQ files are available from the Genome Data Commons (GDC) after receiving 

permission via dbGaP. The viRNAtrap package is available through GitHub: 

https://github.com/AuslanderLab/virnatrap 

Pre- and post-processing scripts, as well as fasta files of viral databases, will be made available 

upon publication.  
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Supplementary Information for: Characterizing the landscape of viral expression in 
cancer by deep learning 

 

 

Supplementary Tables 

 

Supplementary Table 1. Average model scores assigned to different human viruses plotted in 
Figure 1d. Model scores were averaged across all 48 bp segments for each virus, using 2bp 
window size. 

 

Supplementary Table 2. TCGA sample information of 7272 samples from 14 cancer types 
used throughout this study 

 

Supplementary Table 3. RefSeq viruses identified in 7272 TCGA samples from 14 cancer 
types, together with tumor mutation burden (TMB), chromosome level copy number alterations 
(CNA) overall survival time and death (0=survival, 1=death) for each TCGA sample considered 
in this study.  

 

Supplementary Table 4. Human endogenous viruses identified in 7272 TCGA samples from 
14 cancer types. The ERV identifier can be mapped via Supplementary Table 5 to the hg19 
genomic interval that contains the ERV.  

 

Supplementary Table 5. Intact retroviral genes, chromosomal location (hg19 assembly) and 
human gene and distance (measured as minimum between the number of bp from the start 
and end of each gene, where intronic HERVs are not distinguished) of each HERV to the 
nearest gene identified in TCGA tumor samples. The distance from the nearest SNP 
(dist_from_SNP) and the phenotype associated with the nearest SNP (SNP distance) are 
provided, and -1 values are assigned if no disease associated SNP was found located near a 
HERV. 

 

Supplementary Table 6. Associations between HERV presence and tumor mutation burden 
or chromosomal aneuploidy across the 14 cancer types from TCGA. The values correspond to 
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one sided Wilcoxon rank-sum p-values. TMB_greater and TCNA_greater test whether the 
TMB or CNA is greater in the presence of each HERV, and TMB_less and TCNA_less test 
whether the TMB or CNA is lower in the presence of each HERV. 

 

Supplementary Table 7. Hyper-geometric enrichment p-values evaluating enrichment 
between somatic mutations in 10 frequently mutated cancer driver genes, and the expression 
of 36 HERVs that were found frequently expressed in cancer tissues.  

 

Supplementary Table 8. Somatic mutations in frequently mutated cancer driver genes for 
cancer types in which HERV expression was associated with poor survival, and HERVs 
identified in TCGA samples within these cancer types. 

 

Supplementary Table 9. Divergent unexpected viruses found expressed in 7272 samples 
from 14 cancer types from TCGA used throughout this study. 

 

 

Supplementary Table 10. The IIV31 proteins identified in endometrial cancer (UCEC) 
samples with the tumor mutation burden and chromosomal aneuploidy scores. -1 values are 
assigned to samples with RNA sequencing data that did not have mutation or copy number 
information to evaluate the TMB or CNA. 

 

 

Supplementary Figures 
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Supplementary Figure 1. The proportions of TCGA samples that are identified as virus-positive 
by viRNAtrap that were also verified as virus-positive through TCGA clinical information. From 
left to right: HR-HPV-positive in CESC, HR-HPV-positive in HNSC, HBV-positive in LIHC and 
HCV-positive in LIHC. HR-HPV: high-risk human papilloma virus; HBV: hepatitis B virus; HCV: 
hepatitis C virus. 
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Supplementary Figure 2. Clinical and genomic correlates of Armadillidium vulgare iridescent 
virus (IIV31) expression in endometrial cancers.  

(a) Heatmaps showing IIV31 proteins expressed in different tumors, microsatellite instability, 
chromosomal aneuploidy, and tumor mutation burden (TMB) across endometrial cancer 
samples.  
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(b) Kaplan-Meier survival curves comparing survival based on presence (blue) or absence 
(red) of different IIV31 proteins in endometrial cancer samples.  
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