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Abstract

Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic
responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic
review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), GIx
(Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus
domain, and brain region, and analysed by determining standardized effect sizes. The quality of
individual studies was rated. When results were analysed by metabolite type small to moderate
effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of
stimulus domain and brain region, but no significant effects were observed for GABA. Further
analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary
depending on the time course of stimulation and data acquisition. Here, we establish effect sizes
and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of

standardised reporting and minimal best practice for fMRS research.
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Introduction
1. Background

y-aminobutyric acid (GABA) and glutamate (Glu), the main inhibitory and excitatory
neurotransmitters in the brain, respectively, are critical for normal neurological function. GABA
and Glu play an important role in perception (Edden et al., 2009; Puts et al., 2011), learning (Floyer-
Lea et al., 2006), memory (Jo et al., 2014), and other behavioural functions (Paredes and Agmo,
1992; Donahue et al., 2010). GABA and Glu are known to interact, due to the fact that GABA is
synthesized by using glutamic acid decarboxylase (GAD) by removing an a-carboxyl group from
Glu (Cai et al., 2012). Several lines of evidence suggest that an imbalance in GABAergic and
glutamatergic function is associated with neurological, neurodevelopmental, and neuropsychiatric
disorders (Li et al., 2019; Tang et al., 2021; Nakahara et al., 2022). The interplay of GABA and Glu
is of strong interest due to their role in excitatory and inhibitory (E/I balance) which was theorised
to play important part in healthy brain function and that the disruption of E/I balance is shared by

several psychiatric disorders (Yizhar et al., 2011; Ferguson and Gao, 2018).

In humans, Magnetic Resonance Spectroscopy (MRS) is the only technique that allows for
the non-invasive in vivo measurement of wide range of neurometabolites including GABA and Glu
(Mullins et al., 2014; Schir et al., 2016; Harris et al., 2017). MRS allows for the quantification of
endogenous brain metabolites based on their chemical structure. *H-proton containing
metabolites each have their own distinct chemical environment and thus appear differently along
a “chemical shift” axis, although with substantial overlap. Recent developments in MRS

instrumental and acquisition technique have broadened our knowledge of brain neurochemistry
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in both clinal and research domains, and this has been extensively reviewed (Duarte et al., 2012;

Faghihi et al., 2017).

While baseline GABA and Glu levels have been associated with typical and atypical brain
function and behaviour (Coghlan et al., 2012; Horder et al., 2018), metabolite levels assessed at
rest limit interpretation; as they cannot provide information on the temporal dynamics of GABA
and Glu, which may provide insight into typical or atypical function, the relationship between
GABA and Glu, task-related changes, and responses to pharmacological intervention. This has led
to anincreased interest in functional MRS studies, which have the potential to measure a dynamic

neurochemical system.
1.1 Functional MRS

Functional MRS (fMRS) refers to the use of MRS to estimate metabolite changes in
response to external stimulation by acquiring data at different time point associated with changes
in stimulus presentation. Typically, MRS spectra result from an averaged signal from repeated
measurements (transients) to improve signal to noise ratio (SNR) as metabolites have an
inherently low SNR due to their low concentration. A single transient refers to the data collected
in each repeat (repetition time, TR) during the MRS acquisition. The often-used term ‘averages’ in
MRS stems from the averaging of these transients for a single ‘average’ spectrum. Functional MRS
uses the same approach but tend to measure the signal in shorter durations, or average a smaller
set of transients, than in static MRS. In this study, we refer to the number of repeated acquisitions
per time point as transients to avoid confusion with the act of spectral averaging. It should be
noted that different acquisition sequences exist for MRS, with the most popular single-voxel MRS
sequences being spin-echo point-resolved spectroscopy (PRESS) (Bottomley, 1987), stimulated
echo acquisition mode (STEAM) (Frahm et al., 1989), semi localization by adiabatic selective
refocusing (sLASER)(Oz and Tk&¢, 2011), and spin-echo full intensity acquired localised (SPECIAL)
(Kuwabara et al., 1995). Details on these approaches are beyond the scope of this work but details

can be found in recent consensus work (Peek et al., 2020; Lin et al., 2021).

fMRS has been used to study wide range of brain chemistry, includes high-concentration

metabolites, such as N-acetyl aspartate, creatine, and choline, to low-concentration metabolites
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98  such as lactate (see (Prichard, 1992; Chen et al., 1993; Henning, 2018; Wilson et al., 2019; Peek et
99 al.,, 2020)). While the fMRS of Glu, and particularly that of GABA is of immense interest due to their
100  critical role in brain function, fMRS of these other metabolites is not yet well-established due to
101  technical considerations (e.g., an absence of lactate at baseline) and perhaps more difficult

102  interpretation of its outcomes).

103 Glu and GABA overlap considerably with signals from glutamine (GIn) and glutathione
104  (GSH), particularly at clinical field strength (3 T) (see 1.4). Still, despite these challenges, fMRS of
105 GABA and Glu has been used to study neurochemical changes associated with various type of
106  exogenous change, including pain (Gutzeit et al., 2013; Cleve et al., 2015), visual stimulation
107  (Mangia et al., 2007; Apsvalka et al., 2015; Bednarik et al., 2015), working memory (Woodcock et
108 al., 2018), learning and memory (Stanley et al., 2017), and motor tasks (Schaller et al., 2014;
109  Kolasinski et al., 2019). However, substantial inconsistencies between studies exist in terms of
110  acquisition, analysis, findings, and interpretation. To date, the body of fMRS literature on Glu and
111 GABA has not been systematically evaluated and analysed. From hereon we refer to MRS studies

112 of GABA and Glu as ‘fMRS’.
113 1.2 Limitations in estimating GABA and Glu

114 The measurement of GABA and Glu is challenging and contributes to variability across
115  studies. GABA has a low concentration within the brain (1 - 2 mM), and its signal overlaps with
116  high-concentration metabolites like NAA and creatine, as well as very similar chemical shift
117  between Glu, GIn, and GSH. Spectral-editing techniques such as MEscher-Garwood Point-REsolved
118  SpectroScopy (MEGA-PRESS) are often used to improve GABA resolution (Mescher et al., 1998;
119  Edden and Barker, 2007; Near et al., 2011). These approaches rely on J-difference editing of the
120  GABA signal, removing unwanted signal from the spectrum. For a technical review, see (Puts and
121  Edden, 2012; Mullins et al., 2014; Wilson et al., 2019; Deelchand et al., 2021). Spectral-editing
122 MRS techniques typically requires more transients (in the order of 8 minutes; 240+ transients for
123 voxel sizes of 27 ml based on consensus for adequate data acquisition at 3T) compared to non-
124  edited sequences for Glu (64 transients for voxel sizes of 8 ml at 3T) (Peek et al., 2020; Lin et al.,

125  2021). Differences in MRS sequences, especially editing sequences, may affect the ability to
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126  interpret and reproduce studies (Terpstra et al., 2016; Baeshen et al., 2020). Whether linear-
127  combination modelling approaches can successfully and reliably separate Glu from GIn, GABA and
128  GSHremains inconclusive (Sanaei Nezhad et al., 2018; ZolIner et al., 2021) and thus, the composite

129  measure Glx (= Glu + GIn) is commonly reported.
130
131 1.3 Heterogeneity in fMRS approaches

132 There is little homogeneity regarding MRS experimental design, stimulus type, brain region and
133  the quality of MRS acquisition and analysis methods — all of which often depends on the research
134  question. fMRS can typically be performed using two types of experimental paradigms, block-
135  designs or event-related designs (Mullins, 2018). Block designs contrast metabolite measurements
136  between acquisition blocks that are often long in duration and contain numerous stimuli and
137  transients. Event-related approaches rely on time-locking stimulus onset with the MRS acquisition
138  and allow for the investigation of transient metabolite levels changes immediately after stimulus
139  onset (stimulus-locked). Block approaches typically have more SNR as more transients are
140  averaged across per spectrum and from the summation of responses presented in close
141  succession but have limited interpretability of stimulus-locked neurochemical responses. Effect
142  sizes are heterogeneous, with reported observed effect sizes (if at all reported) range from 2% to
143  18% change from baseline for visual stimulation, and up to 18% change from baseline for painful
144  stimulation (Gussew et al., 2010; Mullins, 2018; Stanley and Raz, 2018). Event-related designs are
145  more tightly associated with stimulus timings, but often suffer from low SNR due to a limited
146  number of transients being averaged across. Both approaches are limited by multiple unknowns
147  such as: the response function describing the delay between stimulus and neurotransmitter

148  change, optimal acquisition duration and timing, and optimal data analysis techniques.
149  1.4. Our approach

150 One prior meta-analysis of fMRS studies focused exclusively on Glu (Mullins, 2018),
151  however, no meta-analysis it yet to investigate the fMRS of GABA. With increasing interest in GABA
152  and the popular concept of excitation-inhibition balance (E/I), a comprehensive meta-analysis of

153  both GABA and Glu is of strong interest. We then further investigate potential factors that could
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154  affect outcomes in fMRS studies including fMRS design, MRS parameters, quality of MRS studies

155  and other source of bias.

156

157 2. Materials and Methods

158 2.1 Search strategy and Inclusion criteria

159 A systematic search of databases (Pubmed, Ovid Medline, and Google Scholar) was
160 performed using a search Boolean generated from litserchr package in R (Grames et al., 2019)
161 combined with additional search terms based on discussion with co-author NAP (For search termes,
162  see Supplementary Table 1). After the initial search on 21°t May 2021, the abstract of each article
163  was screened to identify relevant studies using the metagear package in R (Lajeunesse, 2016). The
164  studies that met the following criteria were included: 1) use of in-vivo fMRS to measure
165 neurometabolites in the brain; 2) the study investigated changes in GABA or Glutamate (both Glu
166  and Glx) in response to non-invasive stimuli or tasks; 3) the study participants were healthy adult
167  humans or the study contained a healthy human control group (no psychiatric or neurological
168  condition); 4) the study had a baseline or control condition; 5) the study was published in a peer-
169 reviewed journal, and was written in English or translated to English via Google Translate. Relevant
170  articles from the reference sections of included studies were identified and manually added to the

171  analysis after being discussed with a senior author (NAP).
172
173 2.2 Study selection and data extraction

174 Following PRISMA and PROSPERO guidelines for systematic evidence synthesis, we pre-
175  registered this meta-analysis on Prospero (CRD42021257339) and identified relevant literature
176  (Tricco et al.,, 2018). A two-stage method was used for study selection (Furlan et al., 2009). In the
177  first stage, potentially relevant titles and abstracts were independently assessed by two
178  investigators (DP and NAP). If the abstract was inconclusive, the full text was retrieved and

179  assessed for eligibility. In the second stage, the investigators independently assessed the full text
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180  of potential studies selected in the first stage for their eligibility. A third investigator (JH) was

181  consulted if disagreements persisted in both stages. Reasons for exclusion were documented.

182  Two investigators (DP and NAP) independently extracted the data using an identical extraction
183  sheet. Data were extracted into four main topics of interest: 1) neurometabolite levels during
184  fMRS; 2) study characteristics (i.e., sample size, age, gender); 3) reported MRS acquisition
185  parameters according to the MRS-Q (e.g., MRS sequence, MRS paradigm and timing, voxel size,
186  TE, TR, pre- and post-processing); and 4) bibliometric data (e.g., authors, year of publication, and

187  type of publication).

188 Concentrations of GABA, Glu and GIx were taken as reported by the study, mean and
189  standard deviation (SD; meanmetab) Or as percentage change from baseline (%changemetab). While
190 it is possible to perform a meta-analysis on all data calculated as %changemetab, the SD of these
191  two types of data are on different scales and therefore should not be combined together (Higgins,
192  2011). Our approach allows data points to be combined while avoiding secondary calculation of
193  data. The data, whether time point or time-course data, were considered as separate datapoints
194 and compared to 'rest' or ‘baseline’, as long as the actual data are reported separately.
195 Dependence of time-course data is discussed below in section 2.5. If numerical data were not
196  explicitly reported, imputation methods recommended by the Cochrane handbook were used
197  (Higgins et al., 2011). Data not reported in-text but in figures were extracted using
198  WebPlotDigitizer ( Rohatgi, 2021). The time from the start of the MRS acquisition to the time of
199 metabolite measurement was also extracted. Differences between brain regions (voxels) were
200 considered independent and therefore data from multiple brain regions acquired in a single study
201  were extracted as independent datapoints (Peek et al., 2020). If limited studies of specific voxels

202  were available, we grouped them based on a broader brain region (e.g., ‘frontal’, or ‘parietal’).
203
204 2.3 Quality assessment

205 The Risk of Bias Assessment tool for Non-randomized Studies (RoBANS) (Kim et al., 2013a)
206  was used to determine the quality of the methodological design and reporting. MRS-Q (Peek et

207 al, 2020) and https://osf.io/8s7i9/, is a quality appraisal tool specifically designed for the
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208  systematic review of MRS studies. The MRS-Q was used to assess whether the reported acquisition
209 methods satisfy the minimal best practice in MRS. The MRS-Q allows for assessing both the
210  acquisition approach and whether reporting was adequate (Peek et al., 2020), and is in line with
211  the recently published MRSInMRS (Lin et al., 2021). As the MRS-Q was designed for static MRS, its
212  application for functional MRS experiments is discussed further in the Discussion). Studies were
213 categorised into “low-quality” and “high-quality” based on the adequacy of reported MRS
214  parameters. Studies that reported sufficient spectroscopy parameters and satisfy the consensus
215  for adequate data acquisition were classified as ‘high quality’, studies that reported insufficient
216  spectroscopy parameters or did not satisfy the consensus for adequate data acquisition were
217  classified as ‘low quality’, and studies with not enough information to classify were considered
218  ‘unsure’. While we used these terms (as per these guidelines) these do not always reflect that the
219  study itself of low quality but perhaps did not report sufficient information per recommendation.
220  We should also consider these in the context of history. As detailed below, we analyse data with
221 and without inclusion of “low-quality” papers, but also perform a more dimensional approach,
222 testing the association between effect size and acquisition parameters. Two investigators (DP and
223  NAP) independently assessed the quality of each study using both tools. Disagreements were

224  discussed and resolved by consensus with a third investigator (JH).
225
226 2.4 Publication bias

227 Data were assessed for publication bias separately for each metabolite (GABA and Glu/Glx).
228 The effect sizes were then aggregated for each metabolite within each study to avoid non-
229 independence effects using Egger’s regression and trim-and-fill test (Duval and Tweedie, 2000;
230 Bowden et al,, 2015; Nakagawa et al., 2021). For the trim-and-fill test, a random-effects model
231  was used on aggregated data, thus not accounting for non-independent effect sizes. Then, the
232 Knapp and Hartung method (IntHout et al., 2014) was used to test for publication bias instead of
233 the Wald test (Z-tests) as it has been suggested to have better performance on trim-and-fill

234  approaches (Nakagawa et al., 2021).
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235  Aggregate effect sizes for each study were calculated by the ‘aggregate’ function from the metafor
236  package in R (Viechtbauer, 2010). Compound symmetric structure (CS) and a conservative rho
237  value of 0.7 were applied as per Rosenthal (1986). Data are visualized using funnel plots (Begg and

238  Mazumdar, 1994, Sterne and Egger, 2001) with standard error (SE) as a measure of uncertainty.
239
240 2.5 Data analysis

241 The meta-analysis was performed on the extracted data to estimate effect sizes in each
242  study using the Meta-Essentials tool in R (Suurmond et al., 2017). Standardized mean differences
243  and 95% confidence intervals (Hedge’s G) were calculated from the mean metabolite
244  concentration change from baseline and/or the percentage change from baseline (% change), as
245  well as through their standard deviation, allowing us to compare data reported in different units.
246 If not specified, the first rest period was selected as baseline condition to calculate the mean

247  difference for all MRS designs (block, event-related and time course data).

248 Since data extracted from time courses are considered dependent, their effect sizes should
249  be considered dependent as well. Therefore, time course data were first analysed separately and
250 then sub-grouped within-study with a random variance component (Tau) weighting separately for
251  each sub-group (Hak et al., 2016; Suurmond et al., 2017). Studies that did not allow for effect size
252 calculation due to missing information (e.g., concentration or %change) were included in the
253  systematic review but not in the meta-analysis. Heterogeneity of data was evaluated using I?
254  (Higgins et al., 2003). The |2 statistic is an estimate of proportion of variance in effect size that
255  reflects real heterogeneity. |2 is a relative measure with a range from 0 to 100. Low I suggests no
256  heterogeneity in data and no effect of moderator or potential clustering within the data. A high I?
257  suggests there are external factors and biases driving the dispersions of effect sizes, which should

258  resultin further sub-group analysis (Hak et al., 2016; Borenstein et al., 2021).

259 Most of the effect size estimates extracted in this current study consisted of time series
260 data, or several datapoints came from a single study (i.e., multiple outcomes from the same
261  participants, for example, rest versus stimulation conditions). This led to statistical dependency

262  between measures, which can lead to errors in variance estimation of the combined effect size

10


https://doi.org/10.1101/2022.09.07.506899
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.07.506899; this version posted October 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

263  (Borenstein et al., 2021). To take the relationships among outcomes into account, robust variance
264  estimation (RVE) was used. RVE has the advantage of approximating the dependence structure
265  rather than requiring exact dependence values between effect sizes, as these are unknown for
266  most of the studies included (Pustejovsky and Tipton, 2021). We used a conservative correlation
267  coefficient of 0.7 for all observations (i.e. pre- and post- observations; time course data) in

268  accordance to Rosenthal (1986)’'s recommendations.

269 Our main aim was to identify general patterns in the fMRS responses of GABA, Glu and Glx.
270  We then sub-grouped the data and analysed it based on type of stimulation, type of paradigm (i.e.,
271  block or event-related), and acquisition and analysis parameters (i.e., time, number of transients
272  per time point). Beyond stimulation type we also analysed the data by brain area (region of
273  interest). Because of variation in voxel location and limited available data for specific voxels we
274  optedto analyse these data by region to ensure collation of data. We grouped the ROls to optimize
275  the number of studies yet retain a semblance of functional relevance. For example, motor cortex
276 and medial prefrontal cortex were categorized as ‘frontal region’. We were also interested to
277  establish whether there was an association between effect size and quality of acquisition (based
278  on the MRS-Q). We first performed subgroup analysis on high-quality versus low-quality studies.
279  We then estimated the correlation coefficient between effect size and number of transients and
280  voxel size using Spearman’s rho. Finally, we explored effect size as function of time using LOESS
281  (locally weighted least squares regression) fitting to investigate the non-linear trend of metabolite
282  changes over the course of an acquisition, as an exploratory step to inform on potential temporal
283  dynamics of the metabolite response (Ruppert and Wand, 1994). We do not expect this to be
284  linear, nor do we have any a priori expectations regarding the non-linear trajectory. Only
285  metabolite levels during stimulation periods were taken into account for this analysis; metabolite
286  levels during breaks or periods of rest in between stimulation periods were excluded. The start of

287 MRS acquisition was considered ast=0s.
288 3. Results

289 3.1 Study selection

11


https://doi.org/10.1101/2022.09.07.506899
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.07.506899; this version posted October 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

290 The initial search returned 3,385 studies. After automatic removal of duplicates, 3,383 studies
291  were eligible for abstract screening. 3,329 studies were excluded in the abstract screening stage
292  for the following reasons: additional duplicate studies (n = 538); irrelevant topic (n = 2,778); and
293  animal studies (n = 13). This resulted in 54 studies eligible for full-text screening, resulting in an
294  additional four studies excluded due to insufficient detail, and one study excluded due to it being
295  a meta-analysis. Finally, a total of 49 studies were included in this study. A PRISMA flow diagram

296  can be found in Figure 1.

Identification of new studies via databases

c
K}
‘g’ Records identified from:
= Databases (n = 3,385)
3
o
Records screened Records excluded
(n =3,383) (n=3,329)

(=)
g Reports sought for retrieval Reports not retrieved
o (n=54) (n=0)
3]
(%}

Reports assessed for eligibility Mth?:::li)s(iclez:id :1 )

(n=49) Insufficient detail reported (n = 4)

8
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298  Figure 1: PRISMA flow diagram (Page et al., 2021; Haddaway et al., 2022)
299

300 3.2 Study characteristics

301 3.2.1 Spectroscopy
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302 Thirty-one of the fMRS studies were performed on 3 T MR-systems, 15 at 7 T, two studies were
303 performed at 4 T, and one study at 1.5 T. The most commonly (18 studies) used non-spectral-
304 editing sequence was PRESS (Bottomley, 1984; Klose, 2008) six studies used STEAM, and five
305 studies used sLASER. For spectral-editing sequences, 10 studies used MEGA-PRESS, six used
306  SPECIAL, two studies used MEGA-sLASER, and one study used each of BASING or STRESS. Two
307 studies reported the use of more than one editing sequence (Table 1). To measure fMRS GABA,
308 10 studies used MEGA-PRESS, three studies used SPECIAL, two studies used MEGA-sLASER, two
309  studies used MEGA-sLASER, two studies used sLASER and one study used STEAM. To measured
310 Glu and Glx, 18 studies used PRESS, 10 studies used MEGA-PRESS, six studies used STEAM, six
311  studies used SPECIAL, five studies used sLASER, one study used each of BASING or STRESS.

312  3.2.2 Neurometabolites

313 Fifteen studies investigated only Glu levels, seven studies investigated only Glx, nine studies
314  reported both Glu and Glx levels. Seven studies investigated both Glu and GABA, while ten studies

315 investigated both Glx and GABA, and one study reported only GABA. See Table 1 for details.
316  3.2.3 Stimulus domains and brain regions

317 We grouped studies into 8 stimulus domain categories. These domains were visual (n = 20),
318  pain(n=8), learning (n =7), cognition (n =5), motor (n =4), stress (n =2), tDCs (n = 1), and exercise
319  (n = 3). Studies were considered to fall into the visual domain if they contained visual stimulation
320 (i.e., flashing checker board, rotating checker board, visual attention tracking, and video clips) the
321  pain domain if they contained stimulus that elicit pain (i.e., heat pain, dental pain and electric
322  shock) learning domain if they contained learning paradigm (i.e., object recognition,
323  reinforcement learning, n-back task (for short-term memory/implicit learning and working
324  memory), cognition if they contained cognitive task (i.e., Stroop task, imaginary swimming and
325  categorization of either object or abstract stimuli) , motor if they contained motor response (i.e.,
326  hand clenching and finger tapping), stress if they contained psychological stress, and
327 pharmacological stress and exercise if they contained measurement of evaluation of heart rate to

328 exercise.
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329 The studies were grouped in six different brain regions of interest (ROI). The most studied ROI
330 was the occipital ROI for Glu/Glx and GABA. Additional details of MR-parameters and fMRS
331  experiment designs are presented in Table 1. Figures 2A and 2B summarise studies by brain ROls

332  investigated for Glx/Glu and GABA, respectively, and additionally reports on stimulus domain.

14


https://doi.org/10.1101/2022.09.07.506899
http://creativecommons.org/licenses/by-nc-nd/4.0/

333

Table 1. Studies characteristic

Author Neurometa Design Stimulatio Area vox Sample size/Age  Scanner/Strength/Sequ  MRS-Q QUALITY
name bolites n el (SD)/Gender (% nce/(TR/TE) ms/Number
(ml) Female) of transients
Apsvalkaet Glu block/e Learning LeftLOC 8 13/21.85(1.91)  Philips/ 3T/ High
al., (2015) vent- yrs/ 53.85% PRESS/(1500/105)/264
related
Archibald et  Glu,Glx block Pain ACC 11.2 18/ 26.28 (3.68)  Philips/3T/PRESS/(4000/ High
al., (2020) 5 yrs/ 50% 22)/32
Bednafik et  Glu,GABA block Visual V1 8 15/ 33(13) yrs/ Agilent/7T/sLASER/(500 High
al.,(2015) 53.33% 0/26)/32
Bezalel et Glx, GABA event- Learning  dACC 10 37/ Med=26 Siemens/3T/MEGA- Low
al., (2019) related yrs/56.76% PRESS/(2000/68)/144
Boillat et al., Glu, GABA block Visual 0ocC 5.83 Nc=21/Ne=41/24 Siemens/7T/SPECIAL High
(2020) 2 .95(2.83) /(7500/16)/176
yrs/36.59%
Chenetal, GlIx, GABA block Motor M1 9 13/26(3) yrs/50%  Philips/7T/MEGA- High
(2017) sLASER/(5000/72)/40
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Chiappelliet Glu block Pain dACC 12 21/37.6(15.2) Siemens/3T/PR- High
al., (2018) yrs/42.86% STEAM/(2000/6.5,TM=1
0)/128

Cleve etal.,, Glx, GABA event-  Pain ACC 8.64 Nc=15/Ne=10/24 Siemens/3T/MEGA- Low
(2015) A related (1.6) yrs/100% PRESS/(3000/68)/128
Cleve etal.,, Glx, GABA event-  Pain 0ocC 10.5 14/24(1.6) Siemens/3T/MEGA- Low
(2015) B related yrs/100% PRESS/(3000/68)/128
Cleve et Glx, GABA block Pain Left 15.6  27/24(3) yrs/0%  Siemens/3T/MEGA- Low
al., (2017) insular 8 PRESS/(1800/68)/192

cortex
Coxonetal.,, Glx, GABA block Excercise  SM 8 10/29.4(10.72) Siemens/3T/MEGA- Low
(2018) A yrs/20% PRESS/(1500/68)/96
Coxonetal.,, Glx, GABA block Exercise DLPFC 8 8/29.4(10.72) Siemens/3T/MEGA- Low
(2018) B yrs/20% PRESS/(1500/68)/96
Dennis et Glu block Exercise 0ocC 8 11 /30 Siemens/7T/SPECIAL/(4  High
al., (2015) yrs/63.64% 500/8.50)/60
Dwyer et Glu, GABA block Visual 0ocC 19.3 20/29yrs/45%  GE/3T/MEGA- High
al., (2021) 44 PRSS/(1500/68)/600
Fernandes Glu block Visual V1 12 6 /25-30 yrs/50%  Philips/7T/sLASER/(500  High
etal, 0/144)/60
(2020)
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Floyeretal., GABA block Learning M1 8 13/25yrs/ n/a Varian/ 3T/MEGA- Unsure
(2006) PRESS/(<i>/68)/192

Frank etal., GlIx, GABA block Visual PIVC 15.6  20/24(1) yrs/ Siemens/3T/PRESS/(300 High
(2021) A 25 70% 0/30)/128

Frank etal., GlIx, GABA block Visual PIVC 15.6  20/24(1) yrs/70% Siemens/3T/MEGA- Low
(2021) B 25 PRESS/(1500/68)/256

Gussew et Glu event-  Pain insular 2 6/31.1(11.1) Siemens/3T/PRESS/(500 Low
al., (2010) related cortex yrs/100% 0/30)/32

Gutzeit et Glu, Glx block Pain insular 15.0 10/ 24-51 yrs Philips/3T/PRESS/(2000/ High
al., (2011) cortex 4 /0% 30)/80

Gutzeit et Glu, GlIx block Pain insular 9.6  16/33.1yrs/0% Philips/3T/PRESS/(2000/ High
al., (2013) cortex 30)/96

Hasler et al.,, Glx block Stress PFC 18 10/ 28.7 (9)yrs/  GE/3 T/ MEGA-PRESS/ High
(2010) 40% (1500/68)/ 128

Huang et Glx block Cognitive ~ MPFC 9 46/ 18-29 yrs/ Philips / 3 T/ PRESS / High
al.,, (2015) A 56.52% (3000/24)/ 128

Huang et Glx block Cognitive  auditory  9.36 47/18-30yrs/ Philips / 3 T/ PRESS / High
al,, (2015) B cortex 56.25% (3000/24)/ 128

Ipetal, Glu block Visual 0ocC 8 18/ 28.71(5.62) Siemens/7T/sLASER/(40  High (Low* for
(2017) yrs / 50% 00/36)/ 728 (sliding moving
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window: width= 4, transients
moving average =3) analysis)
Jahngetal,, Glu, Glx block Visual parietal— 15.6 23 Yong Philips / 3 T/ PRESS / High
(2016) posterior 25 healthy27.82 (2000/35)/ 36
cingulate (5.79) yrs/ 24 Old
cortex healthy 69.67

(6.58) yrs/

42.55%
Jelenetal.,, Glu, Glx block Learning  ACC 12 14/ 33.8 (10.5) GE /3 T/PRESS/(2000/ Low
(2019) yrs/ 50% 105)/ 8
Kim et al., Glx block Visual ACC 7.2  23/38.4(10)yrs/ Siemen/3T/PRESS/ High
(2013b) 100% (2000/30)/ 96
Kim et al., Glx block Visual ACC 7.2  20/40.6 (8.8) Siemen /3 T/ PRESS / High
(2014) yrs/ 100% (2000/30)/ 96
Kolasinski et Glu, GABA block Motor M1 8 Nc=14,Ne =18/ Siemens/7T/sLASER/ High
al., (2019) 24.3 (4.8) yrs/ (36/5000)/ 64

37.5%
Koush et al.,, GlIx, GABA block Visual VC, PCC 14 20/ 29 (8.5) yrs/  Bruker spectrometer /  High
(2021a) (VC) 50% 4T/ MEGA-sLASER /

27 (2700/70.7)/ 360
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(PC

C)
Kihnetal, Glu, GABA block Cognitive  ACC 17.5 19/25(1.7)yrs/  Siemens/3T/SPECIAL  Low
(2016) 57.89% / (3000/8.5)/ 256
Kurcyus et Glx, GABA block Visual 0ocC 15.6 25/26.9(2.65) Siemens / 3 T/ MEGA- High
al., (2018) A 25 yrs/28% PRESS / (2000/68)/ 256
Kurcyus et Glx, GABA block Resting 0ocC 15.6 25/27.4(3.14) Siemens / 3 T/ MEGA- High
al,, (2018) B 25 yrs/52% PRESS / (1500/68)/ 256
Lally et al.,, Glu event-  Cognitive  LOC 8 14/ 23.79 (3.9) Siemen /3 T/ PRESS / High
(2014) related yrs/ 42.86% (3000/40)/ 303
Lin et al., Glu, GABA block Visual DLPFC 8 9/ 25 (3) yrs/ Philips / 7 T/ STEAM / High
(2012) 30% (3000/15)/ 32
Lynnetal., Glu block Visual DLPFC 45 9/243(3.5)yrs/ Siemen/3T/PRESS/ Low
(2018a) 0% (4000/32)/ 8
Maddock et  Glx block Excercise  visual 18.7 8/25yrs/62.5% GE/1.5T/interleaved, Low
al., (2011) cortex 5 J-editing / (1500/144)/

50

Mangia et Glu block Visual visual 8.8 12/19-26yrs/ Magnex Scientific/ 7T/  High
al., (2007) cortex n/a% STEAM / (5000/6 ms,

T™M=32)/64
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Martinez- Glu block Visual visual 8 14/ 18-33 yrs/ Siemens /7 T/ sSLASER /  High
Maestro et cortex 57.14% (4000/40)/ 320
al., (2019)
Mekle et al.,, Glu, GABA block Visual visual 8 20/ 29vyrs/45%  Siemens /7 T/ SPECIAL  High
(2017) cortex / (5000/6.0)/ 128
Michels et Glx, GABA block Learning left 30 16/ 28 yrs/ GE /3 T/ MEGA-PRESS/ High
al., (2012) DLPFC 43.75% (1800/68 )/ 320
Mullins et Glu, Glx block Pain Bilateral 8 8/ 24 yrs/ n/a Varian /4 T/ STEAM / High
al., (2005) ACC (2000/20)/ 256
Schaller et Glu block Visual visual 8.8 Nc=4, Ne=6/ Siemens /7 T/ SPECIAL/ Low
al. (2013) cortex 20-28 yrs/ 10% (5000/6)/ 80
Schaller et Glu block Motor motor 5.78 11/18-26yrs/ Siemens /7 T/ SPECIAL/ High
al.,, (2014) cortex 18.18% (7500/12 )/ 176
Siniatchkin  Glx block Visual visual 8 10/ 20.3 (3.2) Philips / 3 T/ PRESS / High
et al,, cortex yrs/ 60% (2000/37)/ 128
(2012)
Staggetal, Glx, GABA block tDCS L 8 11/ 27 yrs/ Siemens/Varian MRI Unsure
(2009) sensorim 90.91% system / 3 T/ MEGA-

otor PRESS / (<i>/68 )/ 96

cortex
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Stanley et Glu block Learning  Hippoca  6.12 16/ 25 (2) yrs/ Siemens /3 T/ PRESS Low
al., (2017) mpus 43.75% with OVS / (3375/23)/
32
Tayloretal., Glu, Glx block Cognitive  ACC 8 16/ 23.9 (4.7) Agilent /7 T/ STEAM / High (Low* for
(2015a) yrs/ 31.25% (3000/10)/ 80 moving
transients
analysis)
Tayloretal., Glu, Glx block Cognitive  ACC 8 7/39.8 (3.8) yrs/  Agilent/ 7 T/ STEAM / High
(2015b) n/a% (3000/10)/ 80
Vijayakumar Glx block Learning  DLPFC 8 22/ 62.55 (6.6) GE /3 T/PRESS/ High
ietal., yrs/ 50% (2000/30)/ 128
(2020)
Volovyk and  Glu, Glx block Motor left 6 41/29.7 (4.7) Siemens /3 T/ PR- Low
Tal et al,, sensory- yrs/ 56.1% STRESS / (2000/15 ms )/
(2020) motor 608,768
cortex
Woodcock  Glu block Learning  DLPFC 45 16/18-30vyrs/ Siemens /3 T/ PRESS / Low

etal.,, 2018
(2018)

43.75%

(4000/23)/ 16
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334
335
336
337
338
339
340
341

Woodcock  Glu block Learning/ DLPFC 45 19/27.5(3.9) Siemens /3 T/ PRESS / Low
et al,, Stress yrs/ 15.79% (4000/23)/ 16
(2019)

<i>:insufficient information; ACC: Anterior cingulate cortex; dACC: Dorsal Anterior cingulate cortex; DLPFC: Dorsolateral prefrontal cortex; GABA:
Gamma aminobutyric acid; Glu: Glutamate; Glx: Gluatamate + Glutamine; LOC: Lateral occipital complex; LOC: Lateral Occipital Cortex; M1: primary
mortor cortex; MC: Motor cortex; MEGAPRESS: MEscher-garwood point-resolved spectroscopy; MPFC: Medial prefrontal cortex; MPFC: Medial
prefrontal cortex; ms: mill-second; OC: Occipital cortex; PCC: Posterior cingulate cortex; PFC: Prefrontal cortex; PIVC: Parieto-insular vestibular
cortex; PRESS: Spin-echo point-resolved spectroscopy; PR-STRESS: STEAM+PRESS pulse sequence; SC: Somatosensory cortex; sLASER: Semi
localization by adiabatic selective refocusing; SM: Sensorimotor cortex; SPECIAL: spin-echo full intensity acquired localized; STEAM: Stimulated echo

acquisition mode; T: tesla; tDCS: Transcranial direct current stimulation; V1: primary visual cortex; yrs: years old.
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344  Figure 2: (A) Brain ROIs and stimulus domains of included fMRS studies of Glu/Glx. (B) Brain ROls
345  and stimulus domains of included fMRS studies of GABA. Note that brain ROIs were generalized

346 by the authors to optimize inclusion.
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347

348 3.3 Quality assessment
349 3.3.1 MRS-Q

350 Most studies (n =31/49, 63.3%) satisfied the MRS-Q criteria of standardized reporting and best
351  practice and were assessed to be of high quality (Figure 3A). Eighteen studies (36.7%) were
352  assessed as low quality due to inadequate MRS parameters according to MRS-Q, mostly due to an
353  insufficient number of transients or small voxel sizes (see Discussion for further consideration of
354  using baseline MRS quality assurance approaches for fMRS). Among these low-quality studies, nine
355  used spectral-edited fMRS(Maddock et al., 2011; Schaller et al., 2013; Cleve et al., 2015, 2017,
356  Kihnetal., 2016; Coxon et al., 2018; Bezalel et al., 2019; Volovyk and Tal, 2020; Frank et al., 2021),
357  while eight were non-edited (Gussew et al., 2010; Taylor et al., 2015a; Betina Ip et al., 2017,
358  Stanley et al,, 2017; Lynn et al., 2018a; Woodcock et al., 2018, 2019; Jelen et al., 2019). For high
359  quality studies, nine studies used spectral-edited fMRS (Hasler et al., 2010; Michels et al., 2012;
360 Schalleretal., 2014; Dennis et al., 2015, 2015; Chen et al., 2017; Mekle et al., 2017; Kurcyus et al.,
361 2018; Boillat et al., 2020; Dwyer et al., 2021) and 24 were non-edited (Mullins et al., 2005; Mangia
362 etal, 2007; Gutzeit et al., 2011, 2013; Lin et al., 2012; Siniatchkin et al., 2012; Kim et al., 2013b,
363  2014; Lally et al., 2014; Apsvalka et al., 2015; Bednafik et al., 2015; Huang et al., 2015; Taylor et
364  al, 2015b, 2015a; Jahng et al., 2016; Betina Ip et al., 2017; Chiappelli et al., 2018; Kolasinski et al.,
365  2019; Martinez-Maestro et al., 2019; Archibald et al., 2020; Fernandes et al., 2020; Vijayakumari
366 et al, 2020; Frank et al., 2021; Koush et al., 2021b). Two edited-fMRS studies (Floyer-Lea et al,,
367 2006; Stagg et al., 2009) reported insufficient information regarding the MRS parameters and

368 were identified as ‘unsure’.
369
370 3.3.2 RoBANS

371 The risks of biases assessed using the ROBANS are summarized in Figure 3B. According to the
372  RoBANS assessment, all but one study was considered to have a high risk of bias due to non-
373  blinding of outcome, primarily due to participants or experimenters being aware of

374  receiving/delivering a functional paradigm. Only one study explicitly reported blinding of outcome.
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375  Given the nature of fMRS experiment as a pre-post intervention study, some fMRS experiment
376  designs might be impossible to blind. While there may be potential bias due to the MRS examiner
377  or participant being aware of the stimulus being given, the order of stimuli is often unknown to
378  participant and therefore ‘blind’ to the stimulus paradigm. Yet, this bias needs to be considered
379  as it may impact the results (e.g., participant may behave differently when the purpose is known,
380 experiments may bias their analysis based on the paradigm). Blinding criteria are likely more

381 relevant for pharmacological studies than for typical fMRS experiments.

382 fMRS studies are often required to exclude data with unsatisfactory spectral quality. While
383  this is common in MRS, based on the RoBANS criteria, studies with incomplete outcome data
384  would be identified as high risk. Given above criteria, 55.1% of studies were considered high-risk.
385  Twenty-two studies (44.9%) stated that all data were included. Two studies (4.1%) were of high
386  risk of bias for selective outcome reporting as they did not fully report all available outcomes. Bias
387 of inadequate measurement was also identified via the MRS-Q by assessing whether studies
388  reported adequate MRS parameters; 70% of all studies included were assessed to be at low risk of

389  bias in this domain. No study reported potential bias in selection of participants.

390
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391 Dt Software
392  Figure 3: (A) MRS-Q assessment of MRS studies (B) Risk of Bias Assessment Tool for
393  Nonrandomized Studies (ROBANS) quality.

394 3.4 Publication bias

395 The summary for the Egger’s and Trim-and-fill test for publication bias are showed in Table 2.

396
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397 Table 2. A summary of the publication bias results from both Egger’s test and Trim-and-fill test

Data Metabolite Estimate Egger’s test Adjusted Trim-and-fill
aggregated estimate test
effect size effect size

Mean Glu/Glx 0.09 Bias -0.791 No case

p <0.001 added
Glu 0.21 Bias 0.857 No case
p <0.001 added
Glx 0.07 Bias -0.478 No case
p=0.034 added
GABA -0.26 No bias -0.881 No case
p=0.302 added
%Change Glu/Glx 0.12 Bias -1.607 No case
p<0.01 added
Glu 0.11 Bias -1.707 No case
p<0.01 added
Glx 0.14 Some bias -0.863 No case
p=0.092 added
GABA -0.10 No bias -0.198 No case
p=0.887 added

398
399 3.4.1 Egger’s regression test and funnel plot

400 Egger’s regression test (Egger et al., 1997) is a quantitative asymmetry test based on a simple
401  regression model. The funnel plot illustrates the effect size of each study on the x-axis and
402  standard error on the y-axis, without the publication bias the studies should roughly followed the
403  funnel shape with symmetric distribution of datapoints (Lin and Chu, 2018). No asymmetry in small
404  and large effect sizes was found for GABA (both %changecasa and meancasa). However, Egger’s
405  test suggested significant asymmetry (p < 0.05) for Glu/Glx, as well as for Glu and GIx when
406  analyzed separately, except for %changecix. Supplementary Table 2 shows the results from the
407  Egger’s regression test including the estimated effect sizes adjusted for publication bias.
408  Supplementary Figure 1 shows the funnel plot using SE as a measure of uncertainty, color coded
409 by stimulus domain. These data suggest that studies of Glu/Glx were asymmetrical due to an
410 absence of small effect size positive direction studies.
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411

412 3.4.2 Trim-and-fill

413 The trim-and-fill method is a non-parametric test that was used to visualize and correct data
414  asymmetry due to publication bias (Duval and Tweedie, 2000). The principle of the method is to
415  ‘trim’ the studies with publication bias causing plot asymmetry, and to use the trimmed funnel
416  plot to estimate the estimated the true centre of the funnel plot, then ‘filling’ or added the

417  trimmed studies and their missing counterpart studies (not reported due to publication bias).
418 Based on the method, no study was added via the trim-and-fill test; therefore, the estimated

419  effect sizes remained the same. All data demonstrated moderate to high heterogeneity with 12
420  values of 60% - 90% (Supplementary Table 3). This means that the variability and inconsistency
421  across study are from the true heterogeneity in the data and not by chance (Higgins et al., 2003).
422  Trim-and-fill analysis suggested there were no potential missing studies due to bias

423  (Supplementary Figure 2). Due to presence of between-study heterogeneity in this current study,
424  theinterpretation of these results needs to be treated with care (Terrin et al., 2003; loannidis

425  and Trikalinos, 2007; Shi and Lin, 2019).

426
427 3.5 Meta-analysis
428 3.5.1 Effect of fMRS-design

429 Neurometabolite levels across all studies

430 When we considered change in metabolite levels across studies regardless of stimulus
431 domain, brain ROI, or other factors (e.g., voxel size, number of transients), meangi, and meangix
432  increased significantly compared to the respective baseline condition (Hedge’s Gglu_mean = 0.37,
433  95% Cl: 0.09—0.645, |12 = 86.83 and Geix_mean = 0.29, 95% Cl: 0.035 — 0.555, 12 = 87.71 respectively).
434  The percentage change between baseline and active conditions in Glu was positive on average
435  (Hedge’s Geiu pct = 0.47, 95% Cl: 0.158 — 0.789, 1> = 82.81). No significant change was observed for

436  GABA studies for either mean or percentage change when compared to baseline (Figure 4A).

437 Neurometabolite levels by type of paradigm
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When effect sizes were computed by type of paradigm regardless of brain ROl and stimulus
domain, block designs showed lower confidence intervals in effect size relative to event-related
designs and a significant overall positive change in Glu/Glx for both mean and %change (Hedge’s
Golu/Glx-mean = 0.27, 95% Cl: 0.064 — 0.475, I = 86.28; Hedge’s Golu/cix-%change = 0.36, 95% Cl: 0.124 —
0.605, |12 =86.28) (Figure 4B). A significant reduction in mean GABA was observed for event-related
designs (Hedge’s Geaea = -0.76, 95% Cl: -1.285 — -0.227, 1> = 0.11), but no significant change was
observed for block paradigms. It must be noted that the significant effect observed here is of one

study only, thus the interpretation of the result must be treated with care.

(A) Overall effect sizes by type of data and metabolite irrespective of stimulus domains

Metabolite Hedges' g (95% Cl) P Value df I2
Glu
mean (N= 19) 0.37 (0.09 - 0.645) & 0.0124* 17.76 86.83
%change (N =13) 0.47 (0.158 - 0.789) o 0.0068* 11.89 82.81
Glx
mean (N= 16) 0.29 (0.035 - 0.555) —I—| 0.0288* 14.78 87.71
%change (N= 9) 0.27 (-0.025 - 0.562) }—I—{ 0.0676 7.94 80.88
GABA
mean (N= 11) -0.04 (-0.469 - 0.386) L | 0.8341 9.96 90.98
%change (N = 10) -0.01 (-0.25 - 0.232) » 0.9333 8.98 85.77
T T T 1
=05 0 0.5 1

(B) Overall effect sizes by type of paradigm and metabolite

Metabolite Hedges' g (95% CI) P Value df I2 type
Event-related paradigm
Glu/GIx (N = 3) 0.13 (-0.488 - 0.748) o 0.4599 1.99 64.09 mean
Glu/GIx (N = 2) 0.9 (-3.494 - 5.287) = 0.2341 1 75.76 %change
GABA (N=1) -0.76 (-1.285 - -0.227) al 0.0254* 2 0.11 mean
GABA (N =2) -0.23 (-6.048 - 5.594) = 0.7069 1 84.96 %change
Block paradigm
Glu/GIx (N = 27) 0.27 (0.064 - 0.475) =] 0.0123* 256 86.28 mean
Glu/GIx (N =17) 0.36 (0.124 - 0.605) :l\ 0.0054* 15.82 82.58 %change
GABA (N =10) 0.03 (-0.406 - 0.476) —l—{ 0.8629 8.96 90.64 mean
GABA (N = 8) 0.04 (-0.183 - 0.269) # 0.6678 6.99 86.75 %change

L I AN I AN I AR E A I B B B |
-6 -5-4-3-2-10 1 2 3 4 5 6

Figure 4: (A) Overall effect sizes by type of data and metabolite irrespective of stimulus domains.
(B) Overall effect sizes by type of paradigm and metabolite. N: number of studies included; Glu/Glx:

Glu or Glx studies; I%: I2index for heterogeneity. A high |12 suggests there are external factors and
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450 biases driving the dispersion of effect sizes. *Statistically significant at p < 0.05, and at p < 0.01

451  when the degrees of freedom < 4 for RVE t-tests.

452

453  3.5.2 Neurometabolite levels by stimulus domains

454 All stimulus domains that demonstrated a significant change from baseline contained only
455  oneindividual study with 3 to 9 within-study outcomes (i.e., were driven by single studies that had
456  multiple results at different timepoint, metabolite changes as a function of time or different types
457  of stimuli within a single study). The percentage in GABA level increased positively during exercise
458  (Hedge’s Geaga-mean = 0.46, 95% Cl: 0.023 — 0.906, |12 = 0.7). On the other hand, the %changeaciy/six
459  was positive during learning (Hedge’s Gaiu/cix-%change = 0.29, 95% Cl: 0.106 — 0.469, 1 =0.23), mean
460  GABA showed negative change from baseline (Hedge’s Geaga-mean = -0.76, 95% Cl: -1.285 —-0.227,
461 1?2 =0.11) during learning. Mean GABA and %change in GABA showed significant change in the
462  opposite direction in the motor domain (Hedge’s Ggaga-mean = -0.76, 95% Cl: -1.485 — -0.044, |? =
463  0.6; Hedge’s Gaasa-schange = 0.32, 95% Cl: 0.184 — 0.459, 12 = 0). Stress stimulation was associated
464  with a significant negative change for GABA (Hedge’s Geasa-mean = -0.87, 95% Cl: -1.609 —-0.129, |2
465 =0.69). During transcranial direct current stimulation, GABA showed a negative %change (Hedge’s
466  Goppa-%change = -0.12, 95% Cl: -0.238 —-0.006, 1> = 0). There were no significant changes related to
467  visual stimulation for any measure of Glu/Glx and GABA (Figure 5). Again, it must be highlighted
468  thatonly 1-2 studies were included in these results with statistical significance, thus these findings

469 need to be interpreted cautiously.

470
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Metabolite Hedges' g (95% CI) P Value df I type
Cognitive

Glu/Glx (N = 3) 0.33 (-0.085 - 0.736) fu 0.075 1.89 48.91 mean

Glu/Glx (N = 2) 0.06 (-0.074 - 0.193) ] 0.1118 1 66.12 %change
Excercise

GIu/Glx (N = 3) 0.2 (-0.519 - 0.916) e 0.3554 2 76.63 mean

GABA (N=1) 0.46 (0.023 - 0.906) u 0.0422* 6 0.7 mean
Learning

Glu/GIx (N =7) 0.05 (-0.156 - 0.259) [ 0.5659 5.99 76.49 mean

Glu(N=1) 0.29 (0.106 - 0.469) | 0.0072* 7 0.23 %change

GABA (N=1) -0.76 (-1.285 - -0.227) e 0.0254* 2 0.1 mean

GABA (N =2) 0.16 (-3.874 - 4.189) _ 0.7063 1 93.88 %change
Motor

Glu/Glx (N = 2) 0.91 (-5.72 - 7.534) f { 0.3322 1 96.22 mean

Glu/Glx (N = 2) 0.55 (-1.526 - 2.632) f - i 0.1831 1 29.05 %change

GABA (N=1) -0.76 (-1.485 - -0.044) ] 0.0422* 4 0.6 mean

GABA (N=1) 0.32 (0.184 - 0.459) | 9e-04* 7 0 %change
Pain

Glu/Glx (N = 4) 0.46 (-0.392 - 1.307) e 0.1815 2.88 83.94 mean

Glu/GlIx (N = 5) 0.51 (-0.181 - 1.198) | 0.1098 3.97 83.61 %change

GABA (N=2) -0.29 (-5.009 - 4.425) } | 0.5756 1 85.87 %change
Stress

Glu/GlIx (N = 2) -0.22 (-2.582 - 2.148) [ — 0.4514 1 52.12 mean

GABA (N=1) -0.87 (-1.609 - -0.129) fa] 0.0334* 3 0.69 mean
tDCS

GIx (N=1) -0.07 (-0.309 - 0.167) 0.5096 8 0.49 %change

GABA (N=1) -0.12 (-0.238 - -0.006) 0.0415* 8 0 %change
Visual

Glu/GlIx (N = 9) 0.33 (-0.222 - 0.875) 0.2062 7.88 88.78 mean

Glu/Glx (N = 8) 0.53 (-0.01 - 1.069) 0.0534 6.96 88.74 %change

GABA (N =6) 0.09 (-0.43 - 0.615) 0.6687 4.99 90.7 mean

GABA (N=4) 0(-0.426 - 0.418) 0.9762 3 89.52 %change

| I N B B B N B B BN B B B
6-56-4-3-2-101 2 3 4567 8

471

472  Figure 5: Overall effect sizes by type of stimulus and metabolite. N: number of studies included;
473  Glu/GlIx: Glu or Glx studies; 1°: 17 index for heterogeneity. A high |2 suggests there are external
474  factors and biases driving the dispersions of effect sizes. * Statistically significant at p <0.05, and

475  at p <0.01 when the degrees of freedom < 4 for RVE t-tests.

476
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477  3.5.3 Neurometabolite levels by ROI studied

478 When we investigated the neurometabolites by ROI, only a few studies were included for
479  each metabolite. Across neurometabolites, regardless of stimulus domain, every ROl except for
480 the limbic ROl showed a significant difference in neurometabolite levels compared to the baseline
481  condition. The occipital ROl comprised most of the studies included (n = 22 across metabolites).
482  Pooled effect sizes from six studies in occipital ROls observed an overall increase by %change of
483  Glu/Glx (Hedge’s Galu/Gix-%change = 0.84, 95% Cl: 0.089 - 1.588, |12 = 88.73). This was surprising since
484  stimulation in the visual domain themselves showed no significant effect. This may be because the
485  effect of visual stimulation was not only tested in visual cortex but across different ROIs (see Figure
486 2 and Table 1). Significant increases compared to the baseline condition were also observed for
487  frontal %changecasa (Hedge’'s Geapa-schange = 0.35, 95% Cl: 0.046 — 0.649, 12 =80.86) and insular
488  meanaiyaix level (Hedge’'s Galu/cix-mean = 0.52, 95% Cl: 0.094 — 0.95, 1> = 75.97). Due to limited
489  available data, temporal and parietal ROl only had one study included for each analysis, except for
490 percentage change in parietal GABA. While significant differences were observed, these data show
491  very low heterogeneity (1> = 0 — 0.23). This might suggest a potential bias in over- or under-
492  estimating the observed effects since these results are from within-study outcomes. Data by ROIs

493  are shown in Figure 6.
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Metabolite/ROI Hedges' g (95% CI) P Value df I2 type
Frontal
Glu/GIx (N = 9) 0.33 (-0.184 - 0.854) 0.1751 7.92 91.03 mean
Glu/Glx (N = 3) 0.36 (-0.169 - 0.887) - 0.0995 1.99 57.13 %change
GABA (N = 3) -0.32 (-2.565 - 1.92) —=—o 0.5992 2 91.94 mean
GABA (N =3) 0.35 (0.046 - 0.649) ] 0.0384* 2 80.86 %change
Insular
Glu/GlIx (N = 4) 0.52 (0.094 - 0.95) = 0.0309* 2.81 75.97 mean
Glu/GIx (N = 3) 0.29 (-0.945 - 1.517) i 0.417 1.96 78.63 %change
Limbic
Glu/GIx (N = 5) 0.08 (-0.284 - 0.454) - 0.5587 3.98 68.26 mean
Glu/GIx (N = 6) 0.38 (-0.142 - 0.904) - 0.1202 4.98 86.83 %change
GABA (N=2) 0 (-9.899 - 9.906) - 0.997 1 96.51 mean
GABA (N=2) -0.44 (-1.378 - 0.489) - 0.1043 1 94.55 %change
Occipital
Glu/GlIx (N = 9) 0.28 (-0.166 - 0.734) - 0.1831 7.95 86.89 mean
Glu/GlIx (N = 6) 0.84 (0.089 - 1.588) - 0.0348* 4.97 88.73 %change
GABA (N=4) -0.02 (-0.863 - 0.815) = 0.9332 3 92.61 mean
GABA (N =3) -0.23 (-1.555 - 1.086) = 0.5244 2 87.75 %change
Parietal
GIx (N=1) -0.07 (-0.339 - 0.197) Bl 0.5408 6 0.38 mean
Glx (N=1) -0.07 (-0.309 - 0.167) H 0.5096 8 0.49 %change
GABA (N=1) 0.46 (0.023 - 0.906) fuf 0.0422* 6 0.7 mean
GABA (N=2) -0.14 (-0.369 - 0.086) N 0.0801 1 78.69 %change
Temporal
Glu(N=1) 0.29 (0.106 - 0.469) i 0.0072* 7 0.23 %change
Glx (N=1) -0.09 (-0.095 - -0.095) L] o+ 1 0 mean
GABA (N=1) 0.02 (0.019 - 0.019) . 0* 1 0 mean

rrrrrrrrrrrrrrrrrr1rTl

-10

-8 -6 -4 -2 012345678910

Figure 6: Overall effect sizes by ROls. Glu/Glx: Glu or Glx studies; N: number of studies included;
12: 12 index for heterogeneity. A high 1% suggests there are external factors and biases driving the
dispersions of effect sizes. * Statistically significant at p < 0.05, and at p < 0.01 when the degrees

of freedom < 4 for RVE t-tests.

3.5.4 Effect sizes in relation to time

Several studies had time-course data available, and we were therefore able to explore
effect sizes based on ‘time-in-acquisition’ (see Figure 7). The results show different temporal
fluctuation for GABA/GIu/GIx in different stimulus domains. The fitted line (LOESS) suggests
potential metabolic response patterns; GABA tends to start high but then decreases with
increasing time-in-acquisition in learning paradigms. For Glu/GlXmean, three studies were included
for exercise stimulus and one study was included for each of visual, learning and stress. For
meangasa, one study was included for visual stimulus. For %changeciycx, four studies were
included for visual stimulus, two studies for learning, and one study each for motor and cognitive.

For %changeGABA, one study was included for motor stimulus. The %changeciycix tends to
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514

increase with increasing stimulation for visual paradigms only. There were no clear patterns for

meangasa and meangiy/cix. It should be noted that while this is interesting, the amount of available

data included is too small to make a firm conclusion.
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515  Figure 7: Effect size of each study in relation to time of data acquisition during fMRS. Only
516  metabolite levels during stimulus periods were included. Time O s is considered the start of the

517 MRS acquisition. The size of dots represents the weight of the effect size.

518
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519

520 3.6 Effect of fMRS-parameters
521  3.6.1 Effect of quality based on the MRS-Q

522  Supplementary Figure 3 illustrates data when only ‘high quality’ studies were included. Generally,
523  Glu/Glx show a positive trend while GABA shows a small negative trend for meangasa compared
524  to baseline. These findings are in agreement with section 3.5.1 where we did not consider study
525  quality. Unlike in section 3.5.1, however, the change in meangiy/cix Was not significant from
526  baseline, while %changeaciu/eix Was significant, with higher effect size from baseline compared to
527  3.5.1 (Hedge’s Goiu/cixmean = 0.24, 95% Cl: -0.066 — 0.553, |2 = 85.04, p = 0.045). GABA data show
528 an overall lower effect for both mean and %change and did not reach statical significance,

529 consistent with section 3.5.1.

530  Figure 8 shows data for Glu/Glx and GABA by stimulus domains across high-quality studies only.
531  Several domains contained only a single high-quality study, therefore, results in domains such as
532  stress (GIxand GABA) and motor (GABA) remained relatively the same. Meangi, shows a difference
533  for the motor domain when only high-quality studies were included, indicating an increase of Glu-
534  mean compared to the baseline condition (Hedge’s Geiy-mean = 0.37, 95% Cl: 0.004 — 0.743, 1 = 0).
535  Exercise, learning, pain, and visual domain remained non-statistically significant for all metabolite

536  types.

537
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Metabolite Hedges' g (95% Cl) P Value df 12 type
Excercise

Glu(N=1) 0.17 (-0.101 - 0.449) }—l—{ 0.1917 1 0.7 mean
Learning

GIu/GIx (N = 3) -0.09 (-0.601 - 0.419) —— 0.5214 2 82.95 mean

GABA (N=1) 0.46 (-0.814 - 1.741) e 0.3317 3 0.92 %change
Motor

Glu/GlIx (N = 2) 0.55 (-1.526 - 2.632) & 0.1831 1 29.05 %change

Glu (N=1) 0.37 (0.004 - 0.743) o] 0.0485* 4 0 mean

GABA (N=1) -0.76 (-1.485 - -0.044) l—l—1 0.0422* 4 0.6 mean

GABA (N=1) 0.32 (0.184 - 0.459) || 9e-04* 7 0 %change
Pain

Glu/Glx (N = 4) 0.46 (-0.392 - 1.307) —a— 0.1815 2.88 83.94 mean

Glu/GIx (N = 2) 0.23 (-2.373 - 2.84) = 0.4589 1 78.55 %change
Stress

GIx (N=1) -0.41 (-0.765 - -0.062) }—I—{ 0.0333* 3 0 mean

GABA (N=1) -0.87 (-1.609 - -0.129) — 0.0334* 3 0.69 mean
Visual

Glu/GlIx (N = 86) 0.41 (-0.585 - 1.41) 0.3361 4.95 90.7 mean

Glu/GlIx (N = 5) 0.6 (—-0.396 - 1.602) 0.1689 3.98 92.03 %change

GABA (N=4) 0.31 (-0.333 - 0.956) 0.2216 2.99 90.37 mean

GABA (N =3) -0.01 (-0.802 - 0.792) 0.9797 2 92.66 %change

T T T T

-25-2-156-1-050 05 1 15 2 25 3

Figure 8: Meta-analysis of only ‘high quality’ studies as assessed by MRS-Q pooled based on
stimulus domains. N: number of studies included; I%: 17 index for heterogeneity. A high 12 suggests
there are external factors and biases driving the dispersions of effect sizes. *Statistically significant

at p <0.05, and at p <0.01 when the degrees of freedom < 4 for RVE t-tests.

3.6.2 Effect of number of transients and voxel size

First, we assessed whether effect size was correlated with the number of transients and
voxel size. The number of transients mentioned here is the number of transients that was
averaged across for metabolite quantification (e.g., per acquisition block or per one window width
for sliding window analysis). There was statistically significant relationship between effect size and
the number of transients for meang (p = -0.3, p = 0.0062). All other metabolites showed no
significant relationship with number of transients (meangasa: p = 0.021, p = 0.9, meangix: p =-0.27,

p = 0.084). Percentage change in GABA (%changecgasa: p =-0.21, p = 0.079), Glu (%changeqiu: p =
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552 -0.15,p =0.11), and Glx (%changeai:p = -0.26, p = 0.2) showed no significant correlations between

553  number of transients and effect size (Figure 9).

554
Mean value data
® Cognitve ©® Leaning *° Pain Visual
® Excercise Motor ® Stress
GABA Glu Glx
47 p=0.021,p=09 p =-0.3, p=0.0062 p=-027,p=0.084
_g 2-
5 e o2
] ® ) )
T ﬁ o0 aN ,,,
01 @ g @ - ' 4
)
[
p3
0 200 400 600 0 200 400 600 8000 200 400 600  80C
Number of averages
% Change data
Learning Motor ® Pain ® tDCS Visual
GABA Glu Glx
21 p=-0.21,p=0.079 p=-015p=0.11 p=-026p=02
@
N i O
o 5 : ®
=) & ®
3 ® 1 . ]
% 01 ' Q - | B ‘ N . ® @
‘IEI‘ . [ J
1
0 100 200 300 0 100 200 0 100 200 300
555 Number of averages

556  Figure 9: Relationship between effect size and number of transients used in included studies. The
557  size of each dot represents the weight of effect size. met: metabolites; GABA: y-Aminobutyric acid;

558  Glu: Glutamate; GIx: Glutamine + Glutamate.
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559 To analyse the association between effect size and number of transients, we binned
560 studies based on the number of transients. Most of the studies used a number of transients in the
561 range of 65-128 and 129-256 for metabolite quantification (n = 13 for each bin). A small increase
562  inpercentage GABA (Hedge’s Geaga-%change = 0.23 —0.32) and a small decrease in meangasa (Hedge’s
563  Ggasa-mean=-0.76) were observed for studies with a limited number of transients (1-32 and 33-64).
564  However, these significant results included data from only one study (Figure 10). The results were
565 inconclusive when analysing these data by stimulus type, as only 1-4 studies were included for

566  each stimulus type (Supplementary Figure 4).

Metabolite/transient Hedges' g (95% Cl) P Value df | type
1-32
Glu/Glx (N = 6) 0.73 (-0.028 - 1.495) = 0.0561 4.94 87.34 mean
Glu (N =4) 0.45 (-0.077 - 0.986) B 0.0722 2.94 71.64 %change
GABA (N = 2) 0.36 (-3.898 - 4.611) e 0.4799 1 87.19 mean
GABA (N=1) 0.23 (0.171 - 0.285) ] 0* 19 0 %change
33-64
Glu/Glx (N =4) 0.25 (-0.135 - 0.626) ol 0.1295 2.86 64.27 mean
Glu/GIx (N = 3) 0.81 (-1.857 - 3.481) : 0.3197 1.99 89.95 %change
GABA (N=1) -0.76 (~1.485 - -0.044) f 0.0422* 4 0.6 mean
GABA (N=1) 0.32 (0.184 - 0.459) o 9e-04* 7 0 %change
65-128
Glu/GIx (N = 6) 0.02 (-0.535 - 0.579) 8 0.9216 4.86 85.95 mean
Glu/GIx (N = 3) 0.27 (-1.183 - 1.732) - 0.5014 1.99 85.92 %change
GABA (N = 2) -0.13 (-9.865 - 9.609) } ! 0.8947 1 96.68 mean
GABA (N = 2) -0.07 (-0.848 - 0.705) f 0.4503 1 0 %change
129-256
Glu/GIx (N = 3) -0.01 (-0.338 - 0.309) } 0.8682 2 25.38 mean
Glu/Glx (N =4) 0.3 (-0.233 - 0.835) o 0.1702 2.98 84.69 %change
GABA (N = 3) 0.01 (-1.909 - 1.928) = 0.985 2 93.26 mean
GABA (N = 3) 0.01 (-0.342 - 0.37) fn 0.8808 1.99 82.63 %change
257-512
Glu/Glx (N = 4) 0.04 (-0.456 - 0.527) 2 0.8334 2.99 72.83 mean
GIx (N=1) 0.46 (-7.085 - 8.003) = 0.5811 1 0.95 %change
GABA (N =2) 0.05 (-5.327 - 5.43) ! 0.9233 1 96.89 %change
513-1028
Glu/GIx (N =2) 0.62 (-9.459 - 10.709) o 0.5754 1 97.53 mean

I T T T T T T T 1
-10 =75 -5 -25 0 25 5 75 10

567

568  Figure 10: Influence of range of transient width on metabolite levels. N: number of studies
569 included; I%: 17 index for heterogeneity. A high I> suggests there are external factors and biases
570 driving the dispersions of effect sizes. *Statistically significant at p <0.05, and at p <0.01 when the

571  degrees of freedom < 4 for RVE t-tests.
572

573 The relationship between voxel size and effect size was different based on type of data
574  (mean or %change) (Figure 11). For MRS studies reported in mean metabolite levels, the effect

575  sizes showed a negative relationship with voxel size (meangasa: p = 0.42, p = 0.012; meangiu: p =
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576  0.066, p=0.55; meangix: p=-0.42, p =0.0059). Conversely, in studies reporting %change from the
577  baseline condition, we observed a positive relationship between effect size and voxel size for all
578  type of metabolite (%changecaea: p = 0.12, p=0.3; (%changecis: p = 0.19, p = 0.043; (%changegcix:
579 p=0.41, p=0.039). Only meangi, and %changecasa did not demonstrate a significant relationship

580  with voxel size (Figure 11).

Mean data %Change data
met == GABA == Glu =#= GIx met == GABA == Glu =#= GIx
2] p=012,p=03
=0 p=004

=0.19 . p=0.043

p=041,p=0.039

LU

|
Hedges'g
o
,j( -
o -

111 1] 11 11t | | Lo in .| |
10 20 30 10 20 30
581 Voxel size (ml) Voxel size (ml)

582  Figure 11. Effect size of each study in relation to voxel size in milliliters. The line represents a
583  linear regression line for visual purposes only. p: Spearman’s rho; met: metabolites; GABA: y-
584  Aminobutyric acid; Glu: Glutamate; Glx: Glutamine+Glutamate.

585

586

587 Discussion

588 1. Summary of the findings

589 We systematically evaluated and synthesized the fMRS literature on GABA and Glu/Glx to
590 date (mid 2021). Overall, results show a wide variability in effect sizes and directionality for both

591  Glu/Glx and GABA when generalized across design and stimulus domain. Most of the Glu/Glx
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592  studies showed positive trends (increases) during stimulation compared to baseline (at rest), while
593  GABA studies generally showed negative trends (decreases) compared to baseline. The increase
594 in Glu/Glx levels is in agreement with several animal studies showing an association between
595  neuronal activation and Glu/Glx in response to task or stimuli (Just and Faber, 2019; Takado et al.,
596  2021), which also correlates with BOLD signal activation (Just et al., 2013; Baslow et al., 2016; Just
597 and Sonnay, 2017). Significant changes in Glu and Glx from baseline only had a small to average
598 effectsize (Hedge’s Galuandaix= 0.29 - 0.47). Although changes in GABA compared to baseline were
599 not statistically significant across studies, the general directionality of decreased GABA levels is
600 consistent with a previous narrative review by Duncan et al (2014) suggesting that GABA tends to
601  be negatively correlated with task-evoked neuronal responses, as well as with studies showing
602 thatinhibition tends to decrease during repeated stimulation or learning (Stagg et al., 2011; Heba
603 etal, 2016; Kolasinski et al., 2019). Ultimately, this meta-analysis shows that current fMRS works
604  show large variety within domain and stimulus type, small effect sizes, and susceptibility to factors
605  beyond experimenter control. While standardised reporting is becoming more widespread in MRS
606 field, MRS does not always adhere to the same principles and additional reporting standards need
607 tobedeveloped. This includes thorough reporting stimulus details and analysis methods, including
608 open access to analysis code and stimulation paradigms, as these are likely driving the
609  heterogeneity as well. This review revealed several important factors that need to be considered

610  when performing and interpreting MRS studies, which are detailed in the following sections.
611

612 2. Effect of fMRS design

613 2.1 Effect of fMRS paradigm: block paradigm or event-related

614 In the current meta-analysis, the magnitude of effect sizes was observed to be smaller for
615  block designs than event-related designs. This is in agreement with a previous meta-analysis of
616  fMRS of Glu (Mullins, 2018). However, block designs provided more consistent results for Glu/Glx
617  from tighter 95%CIl of the averaged effect sizes compared to event-related designs, suggesting
618  that block paradigms may be better at capturing Glu/Glx changes. On the other hand, event-

619 related paradigms showed a wider range of confidence intervals compared to block design (event-
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620 related: 95% Cl of -0.23 to 5.59, Block: 95% CI of -0.406 — 0.605). Although speculative, perhaps
621  the most relevant difference between these two paradigms is that they are likely probing different
622  brain processes, i.e., fast-acting neurochemical response through event-related designs and

623  slower homeostatic processing or plasticity in block paradigms.

624 Block designs have the potential advantage of robust metabolite quantification as signal
625 averaging is performed during a sustained stimulus. Habituation and adaptation to repeated
626  stimulation with a potential summative effect likely plays a key role in block designs (Michels et
627 al, 2012; Betina Ip et al., 2017; Ligneul et al., 2021). Signal averaging over a longer time course
628  has been shown to smooth out any task-based dynamics of neural activity (Mangia et al., 2007,
629  Mullins, 2018) and brain homeostasis during long stimulation blocks might lead to dismissal of, or

630  minimal, metabolic changes (Mangia et al., 2012; ApsSvalka et al., 2015).

631 These limitations can be overcome by time-locking fMRS to stimulus onset and assessing
632  metabolic changes with higher temporal resolution. The temporal resolution of the event-related
633  approach can be brought to under 30 seconds or less, allowing for measurement of a relatively
634  fast response at the cost of increased measurement uncertainty of the individual time point due
635 to decreased SNR. Several approaches have been implemented to successfully improve temporal
636  resolution without sacrificing SNR, including sliding window, and/or averaging over participants,

637 which will be discussed further in Section 3.1.

638 It is likely that the optimal choice of paradigm depends on the targeted stimulus domain.
639  Any study with “long term” change (i.e., learning, memory, or even pharmacological approaches)
640  may consider using block paradigms as these hold an advantage of higher SNR (Jahng et al., 2016;
641 Bezalel et al., 2019; Vijayakumari et al., 2020). As previously discussed, block design often involves
642  repeatstimulation with the theorised summation brain response, while event-related designs with
643  fewer transients are likely to elicit a smaller response, which, even when averaged together, is not
644  driven by repeated summation of stimuli. While this is not the right approach to assess transient
645  responses, when someone is interested in more long-term changes, both our data and prior work
646  suggests block designs may be more robust (Jahng et al., 2016; Bezalel et al., 2019; Vijayakumari

647 etal.,2020). While this is speculative, our meta-analysis based on available data showed that block
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648  designs tend to have higher effect sizes than event-related designs. Nevertheless, careful fMRS
649  paradigm design might allow for investigation of both block and event-related analysis within the
650 same acquisition (ApSvalka et al., 2015; Stanley et al., 2017; Woodcock et al., 2018) through careful

651  study design, but this is not widely used.
652
653 2.2 Effect of stimulus domain

654 The directions and magnitudes of metabolic changes are influenced by stimulus domain. A
655  significant increase compared to baseline was observed for Glu/Glx in five domains (exercise,
656 learning, motor, stress, tDCs). Increased Glu/Glx during stimulation is in line with studies showing
657 that neuronal responses require increased energy metabolism and/or excitatory
658 neurotransmission. Although effect sizes were small, GABA concentrations tended to decrease in
659  response to stimulation, except for %change in the motor domain. This is in agreement with
660  previous studies demonstrating a negative relationship between regional neural activation and
661  GABA, and a deactivation of GABAergic mechanisms when excitation is required (Duncan et al,,
662  2014; Kiemes et al., 2021). It has been suggested that task-related GABA changes are more
663  robustly observed in stimulus paradigms with a change in behavioural performance (Ip and Bridge,
664  2021), such as learning (Frangou et al., 2018, 2019), motor or sensory performance (Stagg et al.,
665 2011; Heba et al., 2016; Kolasinski et al., 2019), and stress (Houtepen et al., 2017; Lynn et al,,
666  2018a); this is reflected in our meta-analysis results, and GABA changes do not appear particularly
667  robust. MRS studies in pain appeared to be most consistent, but most domains show huge
668  variation in their responses. GABA changes tend to be moderate at best and appear very domain-

669  and approach, specific.

670 The high 17 across stimulus domains observed in this meta-analysis reflects the high degree
671  of heterogeneity in results for different paradigms and stimuli even within stimulus domain. While
672  we expected some variation as stimulus parameters and stimulation approach will differ between
673  studies, we were surprised by this large heterogeneity. It should be noted that classification of
674  stimulation domains may vary depending on individual opinion and judgement. For example, we

675  grouped all visual stimulation fMRS studies into one category, despite differences in experimental
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676  design, stimulus intensity, and stimulus duration, which likely influenced the observed results
677  (Mullins, 2018; Stanley and Raz, 2018; Ip and Bridge, 2021). Especially in the visual domain, we
678 found a lot of heterogeneity, likely due to the variety in visual tasks including flashing checker
679  boards with different flickering frequency, movie or clip-videos as visual stimulus, rotating
680 checkerboard, and visual stimulations with variations in contrast level (Mangia et al., 2012; Kim et
681 al,2013b, 2014; Betina lp et al., 2017; Mekle et al., 2017; Bednafik et al., 2018; Martinez-Maestro
682 etal.,, 2019). Previous studies demonstrated regional cerebral blood flow change in linear function
683  with stimulus repetition rates that peaked at approximately 8 Hz then decline above this frequency
684  (Fox and Raichle, 1984; Bejm et al., 2019). Previous fMRI studies also reported BOLD response to
685 be depends on stimulus patterns (Krtger et al., 1998; Hoge et al., 1999). Similarly, perhaps

686  approaches with higher SNR (such as 7T) are more sensitive to changes (Mangia et al., 2012).

687 Combining visual stimulus studies was necessary, however, as separating them out further
688  would lead to single study analysis, which is not particularly useful for meta-analytical purposes.
689 However, we do know stimulus parameters can have different effects. Previous studies have
690 demonstrated a lack of both Glu and BOLD signal changes at low visual contrast level, whereas
691  only high stimulus intensity elicited a measurable and significant Glu response (Ip et al., 2019). This
692  suggests that stimuli used for fMRS are preferably ones with high-intensity to evoke a sufficiently
693  salient response (e.g., in a considerable number of neurons) to cause neurometabolite production
694  or spillover (Yashiro et al., 2005; Goncalves-Ribeiro et al., 2019), which leads to a measurable
695 transient change that can be measured with MRS. Additionally, MRS-derived neurometabolite
696  signals are non-specific and reflect all cellular component (e.g., cytosol, extracellular space, vesicle,
697  synaptic cleft, etc.). It is possible that a smaller brain response with less SNR (e.g., one induced by
698  repetitive stimulation) could be masked by other metabolic responses with higher SNR (e.g.,

699  energy usage, steady state).
700 2.3 Effect of ROI

701 Although we intended to study the effect of ROl on effect size, there was insufficient data
702  to draw firm conclusions. Despite the occipital ROl being the most studied ROl in fMRS (and MRS

703  in general, (Puts and Edden, 2012)), and with the benefit of high-quality spectra due to its
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704  homogenous field relative to other ROIs (Juchem and de Graaf, 2017), only %changeciu/cix wWas
705  significantly increased compared to baseline. A significant increase of GABA was demonstrated for
706  frontal and parietal ROIs which included fMRS studies of visual, exercise, motor, stress and learning
707  stimulus; all these involved some kind of repeated stimulation and likely to reflect plasticity. This
708 is consistent with the notion that both frontal and parietal regions play important roles in
709 regulating inhibitory control of behaviour (Aron et al., 2004; Narayanan and Laubach, 2017,
710  Hermans et al.,, 2018). An increase in Glu/Glx was demonstrated for insular cortex and other
711 temporal lobe regions. While we can only speculate why this appears to be more robust t, it might
712 be that there is less variation in the approach used for insular regions compared to other regions,
713 for example, visual studies. It is possible that paradigms targeting insular/parietal regions elicit
714  stronger responses in these regions than visual stimuli do in visual regions, but it might also be the
715  case that voxels have less heterogeneity (as heterogeneity even within occipital lobe is large, and

716  different occipital regions have very different roles).

717 The differences in both of direction and magnitude due to anatomical differences and
718  functional differences of ROIs are not surprising (Gordon et al., 2017; Zhang et al., 2020). Different
719  brain regions typically contain different tissue compositions (i.e., white and grey matter) (Pouwels
720  and Frahm, 1998; Amaral et al., 2013). Differences in tissue composition also leads to variation
721  in metabolism with grey matter having higher energy consumption compared to white matter
722  (Amaral et al,, 2013; Ford and Crewther, 2016), which in turn, affects GABA, Glu and Glx levels
723  (Raeetal, 2009; Rae, 2014) and see also next section. We were not able to determine the role of
724  tissue composition and subsequent partial volume correction, which accounts for much variation
725 in the estimation of GABA and GIx/Glu, due to limited available and reported data. Another
726  possible explanation for differences in effect sizes between ROIs could arises from increase SNR in
727  certain regions (e.g., occipital lobe) with close proximity to the receiver coil as well (Di Costanzo et
728 al, 2007; Minati et al., 2010). Nevertheless, further primary studies are required to further

729  elucidate the relationship between effect sizes and brain region.
730

731 2.4 Possible mechanisms underly metabolite changes
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732 While directional changes in the neurometabolite responses were observed in this meta-
733  analysis, the mechanisms underlying these changes remain unclear. Metabolite concentrations
734  obtained in fMRS studies originate from all cell compartments (i.e., cell body, cytosol, synaptic
735  cleft, etc.) (Puts and Edden, 2012). The brain’s response to external stimuli consists of a complex
736  interplay between neuronal mechanisms. This includes changes in blood flow, changes in
737  neurotransmitter transport, production and breakdown, and brain oxidative metabolism (Fox and
738  Raichle, 2007; Mangia et al., 2009; Takado et al., 2021). Besides neuronal synaptic activity,
739  metabolic processes also contribute to the neurometabolite levels measured in MRS (e.g., the TCA

740  cycle)(Dienel, 2012; Magistretti and Allaman, 2015).

741 Our finding of increased Glu/Glx during stimulation/tasks is in agreement with several
742  studies that link Glu and brain responses to stimulus such as perception, visual activation, motor
743  activation, learning, and memory (Gao et al., 2013; Magalhdes et al., 2019; Ligneul et al., 2021).
744  Glu plays a major role during activity-dependent energy demands as the most abundant amino-
745  acid and the main excitatory neurotransmitter in the brain (Ligneul et al., 2021). Increasing
746  evidence demonstrates the close regulation between glucose consumption and glutamate-
747  glutamine cycling (Sibson et al., 1998; Rothman et al., 2003), which was theorised to lead to
748  increasing Glu levels during the BOLD-activation period (Betina Ip et al., 2017; Vijayakumari et al.,
749  2018; Martinez-Maestro et al., 2019). Additionally, Glu is also a major determinant for neuronal
750  plasticity during periods of high neural activity as Glu influence the production of of brain-derived
751  neurotrophic factor (BDNF) which regulates survival, differentiation and synaptogenesis in the CNS
752  to change patterns of neuronal connectivity (Gongalves-Ribeiro et al.,, 2019; Valtcheva and
753  Venance, 2019). Indeed, Glu release by neurons and its uptake to astrocytes for recycling via
754  glutamineis thought to represent 70-80% of total brain glucose consumption (Hertz and Rothman,
755  2016). That said, it is not possible to differentiate metabolic Glu from vesicular or synaptic Glu,
756  and caution in the interpretation of Glu/Glx changes is important; one cannot simply extrapolate

757  these changes to changes in neurotransmission.

758 Previous studies have demonstrated the relationship between GABA as measured with MRS
759  and the gene encoding for glutamic acid decarboxylase (GAD) 67. GAD 67 is responsible for

760  converting Glu into GABA under baseline conditions and the majority of GABA production, and is
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761  present in both cell bodies (Marenco et al., 2010) and synapses. Therefore, MRS quantified GABA
762  is often said to reflect ‘inhibitory tone’ (Rae, 2014; Peek et al., 2020). The relationship between
763  GABA and neuronal activation (or deactivation) is less consistent, and often dependent on the task
764  used. Previous work has shown that increased GABA levels are associated with increased BOLD
765  signal in response to an interference task (Kihn et al., 2016) and in response to pharmacological
766  manipulation in rat brain (Chen et al.,, 2005). However, other studies have shown that higher
767  baseline GABA was associated with lower BOLD response amplitude (Muthukumaraswamy et al.,
768  2012; Rae, 2014; Stanley and Raz, 2018). It has been suggested that Glu/Glx and GABA changes in
769  response to stimulation comprise of both energy usage and neural process facilitating a shift into
770  new metabolic steady-state by shifting the excitation/inhibition equilibrium, linking these two
771  processes more directly (Just et al., 2013; Lynn et al., 2018b). A recent fMRS study in animals
772  models showed that increases in GABA after repeated tactile stimulation were consistent with
773  two-photon microscopy measures of increased inhibitory activity, and increases in Glu with
774  increased excitatory activity, suggesting that functional changes in GABA and Glu measured

775  through MRS are indeed reflective of increased inhibitory neurotransmission (Takado et al., 2021).
776
777 3. Effect of fMRS parameters

778 Beyond assessing fMRS through differences and changes in the ‘bulk” metabolite response
779  tostimulation, itis also important to investigate differences at the level of acquisition and analysis.
780 In this meta-analysis, we demonstrated the effect of MRS parameters such as number of

781  transients, voxel size, timing, and MRS quality limitations on reported metabolite concentrations.
782
783 3.1 Number of transients

784 The results reported in our meta-analysis illustrate the variability of methods used in fMRS
785  studies. For both Glu/Glx and GABA, effect sizes seem to be higher for a lower number of
786  transients, and effect size decreases as the number of transients increase. There are several

787  possible explanations for this; One is that low transient sizes lead to lower SNR and unreliable
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788  spectral quantification (Mikkelsen et al., 2018), which potentially lead to biased metabolite
789  concentration changes. Another possible explanation is that rapid changes in the first few minutes
790 due to neurotransmitter release might influence the effect sizes observed with a small number of
791  transients due to their higher temporal resolution (Mullins, 2018; Ligneul et al., 2021). On the
792  other hand, a larger number of transients might lead to lower effect size observed due the effect
793  being averaged out over a longer period of time (lp and Bridge, 2021), thus diluting any rapid
794  changes. Ultimately, conclusions are difficult to draw without a measurable ground truth, since
795  the spectral fitting process itself may introduce quantitative bias depending on SNR (and therefore
796  the width of the averaging window). Synthetic simulated data can be useful to elucidate the
797  accuracy, precision, and biases of spectral fitting when attempting to resolve small temporal

798 changes.

799 Given the approximate 10*times lower metabolite concentrations relative to water, and
800 thus low SNR, spectra are often collected with long acquisition times. These acquisition times are
801  often longer than the assumed temporal dynamics with fast metabolite changes in less than 1s
802  (Apsvalka et al., 2015; Bednarik et al., 2015; Mullins, 2018; Ligneul et al., 2021) which likely reflect
803  changes in visibility in existing metabolite pools. Several spectral averaging methods have been
804  applied to overcome this trade-off between temporal resolution and SNR (Kanowski et al., 2004;
805  Mikkelsen et al., 2018). One of these averaging methods included averages fMRS data across short
806  sequential acquisition blocks (Kolasinski et al., 2019). Others used time-locking to stimulus onset
807 followed by averaged transients acquired during stimulus presentation or baseline, comparing the
808  two, as event-related averaging (Lally et al., 2014 p.201; ApsSvalka et al., 2015; Stanley et al., 2017).
809  Some studies have averaged across a small number of transients but across participants to obtain
810  group-level spectra with higher temporal resolution (Apsvalka et al., 2015; Bednarik et al., 2015;
811  Fernandes et al., 2020). Others have applied a ‘sliding window’ or ‘moving averages’ approach (i.e.,
812  average transients in blocks then shifting the averaging over time by a certain transient window
813  width) to detect a dynamic trace of metabolite changes (Mangia et al., 2007; Schaller et al., 2013;
814  Fernandes et al., 2020; Rideaux, 2020).

815 Our results are in agreement with studies suggesting averaging across a small number of

816  transients has an advantage of higher temporal resolution for detecting rapid modulation of
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817  metabolite levels (Lally et al., 2014; Betina Ip et al., 2017; Ligneul et al., 2021). A longer averaging
818  window might be better associated with moving towards a new steady metabolism as described
819  above (Betinalp etal., 2017; Lynn et al., 2018a). Furthermore, the brain likely responds differently
820 to different types of stimuli, and in a region-specific manner, once again emphasising that task
821  design needs to be tailored towards the question of interest. Surprisingly, we know very little
822  about the actual temporal dynamics of these metabolites thus makes it difficult to a priori choose
823  the best acquisition strategy. Only a few studies were included to allow for the consideration of
824  the impact of transient width, which supports the urgent needs in of more primary studies of fMRS

825  with varying time windows.
826
827 3.2 fMRS timing

828 Our analysis allowed us to explore whether effect sizes change with time of acquisition.
829  While exploratory, these time-resolved fluctuation patterns suggest different response functions
830 for different brain regions or stimulus domains, and between GABA and Glu/Glx. Some studies
831  observed a fast Glu response early in a working memory task, but not later in the task (Woodcock
832 etal, 2018), while others observed Glu reaching a new steady state 1 to 2 minutes after stimulus
833  onset (Mangia et al., 2007; Schaller et al., 2013). Previous studies of GABA and Glx in response to
834  visual stimulation demonstrated concentration drifts over time in opposite directions while
835  participants were at ‘rest’ before stabilising (in steady state) after around 500 seconds (Rideausx,
836  2020). As discussed in previous sections, the time courses of neurometabolites in response to
837  stimulus domain are a topic of great interest and require further elucidation. This perhaps can be
838 achieved by varying the time of fMRS acquisition and stimulus onset in high-field MR at >3 T, while

839  aiming for the best temporal resolution possible.
840
841 3.3 Others MR-instrument-related limitations

842 fMRS is also sensitive to other instrument and acquisition-related limitations. MRS offers

843  low spatial specificity as large voxels (often >15 ml) are required for sufficient SNR. Reducing voxel
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844  size requires increasing acquisition time to maintain SNR, which is not only impractical, but also
845  increases the risk of scanner drift and participant motion, especially in clinically sensitive motion-
846  prone groups such as prenatal and people with neurodevelopmental conditions (Mikkelsen et al.,

847  2018; Hui et al., 2021; Ip and Bridge, 2021).
848
849  4.Quality assurance of MRS

850 Differences in fMRS parameters go hand-in-hand with quality assurance. There is no
851  consensus on minimally best practice for fMRS to date. Currently available quality assurance and
852  reporting metrics (MRS-Q and MRSInMRS) were designed for static MRS (Peek et al., 2020; Lin et
853 al, 2021), and do not take into account functional approaches where the averaged number of
854  transients is often lower to achieve better temporal resolution. Notably, many studies reported
855  here used smaller voxel sizes compared to consensus recommendation (~27 ml for edited MRS for
856 GABA, 3 T, and ~3.4 ml for unedited at 128 transients, 3T) (Lin et al., 2021). Smaller voxel size
857  inconsistent with consensus standards was often observed in particular for spectral editing of
858  GABA, and findings may be less reliable due to insufficient SNR. Here, we used standard language
859  for quality assessment (such as high or low quality) but should of course note that this language
860  often refers to studies not reporting sufficient information. It is our hope that with the increasing
861  consensus in reporting, this will become less of a concern. We should also note that some studies
862  used “low quality” approaches compared to the consensus now but need to see these in a
863  historical perspective. Despite several studies reporting inadequate fMRS parameters, our
864  sensitivity analysis based on study quality shows no extreme changes from analyses including all
865  studies. While there is room for improvement for reporting of MRS, most of the studies used
866  adequate TMRS scan parameters. It is possible that the number of transients is less important
867  when modelling time-course data and using within-participant designs. Establishing minimum
868  reporting standard in this early stage would greatly increase reproducibility in a field that offers

869  an almost unlimited number of data analysis strategies.
870

871 5. Sources of bias
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872 As discussed in the previous sections, there are various sources of bias in fMRS study
873  design, acquisition, and analysis parameters (i.e., brain area, voxel size, number of transients, and
874  metabolite unit, e.g., percentage change or mean concentration). Study quality assessments
875  further suggest that fMRS studies lack randomisation and blinding of participants. Additional risk
876  of bias could arise from selection of participants, for example, studies often using colleagues as
877  participants for the study. fMRS studies such as stress or pharmacological designs often use a pre-
878  post within-participant design, this introduces bias into the analysis (Ma et al., 2020) and
879  potentially leads to reporting of positive results (publication bias) (Rosenthal, 1979; Murphy and
880  Aguinis, 2019). Additional sources of bias were beyond the scope of this meta-analysis. These
881 include the general experiment design, such as population sampling and type of baseline condition
882  such as difference type of visual baseline condition of eyes close or a fixation cross (Ip et al., 2019;
883 Ip and Bridge, 2021), the choice of analysis approach including differences between spectral
884  modelling algorithms (Z6llner et al., 2021, 2022; Craven et al., 2022; Marjanska et al., 2022),
885  quantification and referencing (metabolite in institutional units [IU], absolute concentration or
886  ratio to creatine [Cr], etc.)(Porges et al., 2017), and how results are reported (e.g., reported only
887 in percentage change but not in concentration). In particular, the choice of quantification
888 reference compound might have a strong impact, although it is assumed typical reference
889  compounds such as Cr or NAA are unlikely to change with stimulation (Wilson et al., 2019). One
890 important parameter that needs further investigation and consensus treatment is linewidth
891  adjustment based on the BOLD signal. Since haemoglobin is paramagnetic when deoxygenated,
892  but diamagnetic when oxygenated, local magnetic susceptibility depends on the blood-oxygen
893  level. BOLD activation causes narrowed MRS lines and increased signal magnitude that can lead to
894  overestimation of metabolite levels if uncorrected (Zhu and Chen, 2001; Betina Ip et al., 2017). In

895  the present study, we did not have sufficient information to perform an analysis on these topics.

896 As shown in the results, the type of data reported (mean or %change) influences the effect
897  sizes observed. Most fMRS studies reported results as %change, followed by ratio to reference
898  molecule (e.g., tCr, NAA). Our meta-analysis avoids the secondary calculation of data by analysing
899  data as presented. For the sake of transparency and understanding these impacts, we suggest

900 reporting data in both comparative result (e.g., %change, change from baseline) and in mean
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901 metabolite concentration (e.g., ratio to reference metabolite, mmol/kg, institutional units) in the
902 future. These results often support and strengthen each other and increase comparability
903  between studies. Future study could investigate the Glu and GABA ratio as a theoretical index of
904  E/I balanced, although the exact relationship between MRS-derived Glu/GABA concentration and

905 E/I balanced is still under active debate (Steel et al., 2020; Rideaux, 2021).
906
907 6. Limitation of the current meta-analysis

908 Several limitations to this meta-analysis study need to be acknowledged when interpreting
909 this current work. While the data were considered based on data type (mean and %change), we
910 had to assume that the units included were on the same scale, and that reference metabolites
911  concentration (e.g., creatine or NAA) remained relatively unchanged (Steen et al., 2005; Rae,
912  2014). Another potential limitation is that we included all studies regardless of study quality as
913  assessed by both ROBANS and MRS-Q in our main meta-analysis. The sensitivity analysis of high-
914  quality studies according to MRS-Q suggested that the studies included showed interchangeable
915  results regardless of quality, and we recognize that the MRS-Q, while useful, does not fully apply
916 to functional MRS. While we aim to comprehensively include all fMRS studies to date,
917  unfortunately our search strategy may have missed out on more recent work, such as Ip et al.
918  (2019); we did not identify this paper through other means. Lastly, there was a lack of statistical
919  power for some stimulus domains and fMRS paradigm due to the small numbers of studies
920 included. Taken together, MRS is a field with enormous possibility, but with several sources of

921  bias and variability that need to be addressed.

922 In this current study, we employed the RVE method to synthesize effect sizes for each
923  stimulus domain from the multiple outcomes available (i.e., multiple within-study outcomes).
924  While some significant changes from baseline were noted in some stimulus domains, often they
925 led to single-study meta-analyses with several datasets from various timepoints included (varying
926  from 3-9) in each single-study per each domain. These results therefore need to be interpreted

927  with care as there is study-bias.

928
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929 7. Conclusion

930 We established effect sizes and directionality of the GABA, GIx and Glu response in all
931  currently available fMRS studies. Our results demonstrated relatively small effect sizes and large
932  heterogeneity, limiting the current state of fMRS as a technique in investigating neurodynamic
933  responses in the healthy brain. However, we attempt to address these limitations and hope that
934  advances in these approaches have promise for application in atypical brain function. fMRS of
935 clinical conditions is surprisingly under-studied, but holds promise for understanding a dynamic
936  system, with potential implications for drug response and diagnosis. As such, MRS holds great
937 potential to be used alongside other techniques to perturb GABA and Glutamate mechanisms,
938 including TMS and pharmacological challenges and assess the impact on the system in both typical
939  and atypical brain. Furthermore, combining fMRS with other imaging techniques, such as EEG or

940 fMRI, allows for associating (f)MRS with distinct neural mechanisms associated with E/I balance.

941 This meta-analysis highlights the urgent need for consensus for standardised reporting and
942  minimal best practices to improve the reproducibility of fMRS. Additionally, there remains a lack
943  of fundamental knowledge of fMRS, for example, with respect to metabolic time courses.
944  Establishing fMRS paradigms and parameters that evoke metabolic responses with high reliability
945  and reproducibility would be of great interest in this early state of the field as it would allow for
946  measuring atypical responses more readily, and ultimately lead to elucidation of underlying

947 mechanisms of brain function in both health and disease.
948

949
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