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Abstract

Roots are fundamental organs for plant development and response to their
environment: they anchor the plant to its growth substrate, uptake nutrients and water vital to
plant growth, and can sense and respond to a variety of biotic and abiotic stresses. The
architecture of root systems and their growth are known to be strongly affected by the
environmental conditions found in the soil. However, the acquisition of cell identities at the root
meristem is still mainly viewed as ontogenetically driven, where a small number of stem cells
generate all the cell types through stereotyped divisions followed by differentiation, along a
simple developmental trajectory. The extent to which environmental cues precisely shape and
affect these developmental trajectories remains an open question. We used single-cell RNA-
seq, combined with spatial mapping, to deeply explore the trajectories of cell states at the tip
of Arabidopsis roots, known to contain multiple developing lineages. Surprisingly, we found
that most lineage trajectories exhibit a stereotyped bifid topology with two developmental
trajectories rather than one. The formation of one of the trajectories is driven by a strong and
specific activation of genes involved in the responses to various environmental stimuli, that
affects only of a subset of the cells in multiple cell types simultaneously, revealing another
layer of patterning of cell identities in the root that is independent of cell ontogeny. We
demonstrate the robustness of this environmentally responsive transcriptional state by
showing that it is present in a mutant where cell type identities are greatly perturbed, as well
as in different Arabidopsis ecotypes. We also show that the root can adapt the proportion of
cells that acquire this particular state in response to environmental signals such as nutrient
availability. The discovery of this cell state reveals new layers of cell identity that may underpin
the adaptive potential of plant development.
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Main text

The root of Arabidopsis thaliana is a powerful model for studying cell differentiation in
plants. In this organ, cell types are arranged in concentric layers around a central vascular
bundle with a bilateral symmetry (Fig. 1A). Numerous morphological and genetic studies have
demonstrated that each cell type corresponds to a cell lineage that is generated by a specific
stem cell population maintained near the tip, in a region called the meristem '. Within the cell
lineages, with each new stem cell division, cells are displaced upwards and differentiate,
thereby creating a longitudinal developmental trajectory where the spatial arrangement of cells
recapitulates the temporal dynamics of differentiation (Fig. 1A).

While transcriptional characterisation of root cell populations has previously focused
on the analysis of bulk sorted lineages, the recent development of single-cell technologies is
enabling more precise investigation of the spatio-temporal diversity of cellular states 2.
Single-cell RNA-sequencing (scRNA-seq) has recently been used to better define the gene
expression signatures of the known cell types of the Arabidopsis root and, by arranging cells
of each lineage in developmental trajectories, more finely define the dynamics of gene
expression during cell differentiation "~'*. While this has been crucial for identifying transient
cellular states in some cell lineages, these studies have treated each lineage independently,
overlooking potential layers of gene regulation that do not depend on the developmental origin
of the cell.

Here, we map each cellular state of the root, providing the most precise root cell atlas
to date, by a combination of scRNA-seq and whole-mount in situ hybridization chain reaction
(HCR) . We show that many cell lineages exhibit a more complex topology than anticipated
by using cell trajectory analyses. We determine that these topologies are a result of a strong
transcriptional signature superimposed upon the developmental identity of a subset of the cells
in each lineage, and controlled by environmental cues and plant hormones. As a result, cell
types in the root are in fact composed of subsets of cells whose function is modulated in

response to environmental information perceived by the plant.
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Results

A high-resolution atlas of Arabidopsis root cell lineages reveals uncharacterized

branching events in developmental trajectories

To characterize cell states and their dynamics during root development, we generated
a high-resolution scRNA-seq (10x Genomics) atlas of the wild type Arabidopsis root tip.
Protoplasts were isolated from root tips of two different Arabidopsis ecotypes, mixed at the
same concentration, and processed for single cell transcriptome profiling to enable
disambiguation of bona fide single cells from background and doublets (see Methods) (Fig.
1A, fig. S1, A to E). We obtained a total of 87,258 wild-type cells from 5 different ecotypes
(accessions), and detected a total of 25,738 genes, with a median of 10,255 unique molecular
identifiers (UMIs) and 3,199 genes detected per cell. After excluding 1,859 genes we detected
as significantly affected by protoplast isolation (see Methods), we removed batch- and

genotype-specific differences to create a reference atlas (Table S1, Fig. 1B) ™°.

We performed clustering and differential expression analyses to characterize the
cellular heterogeneity within our dataset. In a first attempt to assign an identity to the 29
resulting clusters, we compared our cluster-specific genes with published gene expression
profiles of sorted populations of root cell types expressing fluorescent reporters (fig. S2) °.
Although some of the markers from sorted cells intersected with our cluster markers and
allowed potential identification of some cell types, the dataset did not provide any specific
marker for the lateral root cap, procambium, and xylem pole pericycle clusters. Moreover, the
markers of several of our clusters were not enriched specifically in any sorted populations,
making it difficult to clearly assign an identity. To circumvent this difficulty, we adapted a whole-
mount HCR "® method to optimize it for Arabidopsis root tips and combined it with a clearing
technique '" in order to precisely map the expression of the 19 most specific cluster markers
of our dataset (Fig. 1C). Using this method, we could identify all the known cell types of the

root and, beyond this, subpopulations of the root cap (early, tip, and lateral) (Fig. 1D). Only 2
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genes (AT3G23830 and AT3G25980) did not have cell type-specific expression patterns when
examined by HCR, contrasting with their definition as cluster-specific markers. However, their
associated clusters could be identified as the meristematic portion of the epidermis (cluster
16) and early dividing cells in root cap formation (cluster 28) (see Methods). We annotated

these clusters as “epidermis - meristem” and “root cap - dividing cells”.

To demonstrate the value of our reference atlas and the precision of cell identification
obtained with the in situ hybridization, we used it to annotate cells from all published

Arabidopsis root tip datasets "~'01213

, with the Seurat label transfer method (Fig. 1E), and
compared it to their original assignment. While all the cell types we characterized are present
in the published studies except one, their original assignment was less precise. All other
studies were missing at least one cell type or sub-cell type that we identified, such as the
pericycle subdivision into phloem pole pericycle (PPP) and xylem pole pericycle (XPP),
potentially due to their reliance on bulk sorted population gene expression data to assign cell
identities, which we determined does not allow identification of all cell types of the root. This

demonstrates the importance of precisely spatially resolving our single-cell data to validate

cell states independently.

A striking feature of our dataset (Fig. 1B) is the clear grouping of cells according to
their developmental lineages (epidermis - root cap, cortex, endodermis, XPP, PPP,
procambium, phloem, and xylem), confirming that the ontogenic signal is the strongest
transcriptional component of cell identity. Within each of the lineages, cells can be ordered in
trajectories that recapitulate the developmental transitions from an undifferentiated to a
differentiated state. For this trajectory analysis, we focused on the Col-0 accession cells only,
and subsetted the dataset into eight lineages that were treated independently (Fig. 2A). For
each lineage, we performed sub-clustering of the cells (Fig. 2A) and calculated a “stemness
score” (see Methods) that allowed identification of the cell with the most meristematic state,
which was then considered as the starting point (t=0) of the trajectory (Fig. 2B, fig. S4). A

partition-based graph abstraction (PAGA) method ' was used to infer putative transitions
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between clusters, thereby identifying the topology of the cell lineages (Fig. 2C), and the
developmental directionality of the trajectories was determined by computing the diffusion
pseudotime '®% from t=0 (Fig. 2B). The combination of both the PAGA and pseudotime
reveals all the potential branching events occurring during development (Fig. 2C).

The “epidermis - root cap” lineage exhibits the most complex topology, with the inferred
trajectories recapitulating known developmental events: the split of epidermal cells into hair
cells and non-hair cells, and the split of the root cap into a part that will grow laterally and a
part that will grow towards the tip and converge with columella cells to form the sloughing
border cells ?' (Fig. 2C). While those branching events are known to happen in vivo, to date
no root single-cell analysis has been able to identify them, further highlighting the resolution
of our cell annotations and trajectory analyses. We used the root cap trajectories to
demonstrate that we can identify trajectory- and pseudotime-specific variable genes, including
genes known to be involved at different stages of root cap development, for instance the Dof
transcription factor (TF) CDF4 expressed in the differentiating columella 2, SMB activated in
early root cap development 2, the ROOT CAP POLYGALACTURONASE (RCPG) expressed
at the tip, or BFN1 expressed laterally at the programmed cell death site 1 24, further validating
the imputed developmental trajectories (Fig. 2D).

For all the other lineages, except phloem and xylem that are composed of different cell
types, the trajectories are expected to be linear with a single transition from an undifferentiated
to a differentiated state, recapitulating the longitudinal arrangement of cells. Unexpectedly, the
PAGA analysis shows that all other cell types of the root have not one but two branches in
their trajectory that diverge at a very early pseudotime point (Fig. 2, B and C). To independently
verify that this topology really corresponds to two branches (“‘branch 1” and “branch 2”)
diverging from an earlier developmental starting point, and not a misassignment of t=0, we
performed whole-mount HCR of two genes that are expressed in early and late stages of XPP
development based on the scRNA-seq data (Fig. 2E). We observe that XTH21, which is
expected to be expressed early in both XPP branches, is indeed detected in all XPP cells

close to the meristem, while the late XPP branch 1 marker AT3G47510 only starts to be
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detected much further away from the root tip and is not homogeneously detected across XPP
cells. This confirms the branching nature of these trajectories over development, which reveals
two previously unidentified in vivo alternate cellular states.

We also validated the endodermis trajectory by looking at the expression pattern of the
casparian strip formation regulator CASP1 by whole-mount HCR (Fig. 2F). CASP1 is strongly
expressed at a late converging state between branch 1 and branch 2 in the endodermis, but
starts to be expressed earlier in branch 2 endodermis cells. We found that CASP7 mRNA is
indeed strongly detected throughout the endodermis in late differentiated states, but was found
to be detected in only a subset of the cells closer to the meristem (Fig. 2G). While CASP genes
tend to be enriched in branch 2, branch 1 is enriched for PHO1;H3, a marker for passage cells
% which are a specific population of un-suberized cells in the differentiated endodermis that
act as cellular gatekeeper, controlling access to the root interior 2°. Thus, the branching event
we observe early in endodermis formation might be involved in the specification of passage
cells before the onset of suberisation.

Importantly, when we assign identities to cells from published Arabidopsis root
scRNA-seq datasets using our reference atlas and incorporating the branch identities, all
datasets have cells assigned to both branches for all affected cell types, with similar genes
found to be branch-specific (Fig. S5), demonstrating that this diversity of cell states is a robust
feature of roots when characterized at single cell resolution.

While we expected to observe gradients of gene expression in each root lineage that
recapitulate changing cellular states throughout differentiation, the observation of two
alternate states on top of the pseudotime differentiation axes of multiple lineages
demonstrates that another level of complexity exists in most cell types, which was not

previously anticipated.

A common transcriptional signature drives the branching of multiple lineages
In order to globally identify the cell type-, branch-, and pseudotime-specific

transcriptional signatures, and the specificities and commonalities between them at the whole
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root level, we used self-organizing maps (SOM) to detect modules of co-expressed genes in
our Col-0 dataset. We identified 64 distinct modules, composed of 78 to 791 genes each (Table
S2), and visualized their average scaled expression across the eight cell lineages over
pseudotime (Fig. 3A) and their associated GO terms (Fig. 3B).

Modules specific to each cell type of the root were detected, many of which contain
genes known to be expressed in the respective lineages. For instance, genes related to
secondary cell wall formation and xylem development were enriched in xylem specific modules
(57, 58), the “root hair differentiation” term was enriched in epidermal modules 34-35, and the
casparian strip formation genes CASP1-5 associated with the “cell-cell junction assembly” term
were enriched in the late converging endodermis state and earlier in branch 2 (module 41)
(Fig. 3B, Table S2).

We found branch-specific gene modules for all lineages that exhibited a branch split,
from the endodermis inwards. For instance, module 39 is composed of genes particularly
enriched in branch 1 of the endodermis but not branch 2, and module 54 is enriched in branch
1 of phloem and PPP lineages (Fig. 3A). Crucially, we found that the majority of the branch-
specific modules affect multiple cell types simultaneously, and are always enriched in the same
branch. We identified a group of five modules (modules 47-51) that are specifically enriched in
branch 1 of multiple cell types (endodermis, PPP, XPP, procambium, phloem, and xylem),
revealing a common gene expression signature specific to a subset of the cells in all of these
distinct lineages, regardless of their developmental origin (Fig. 3A, fig. S6), and which would
be responsible for the bifurcation observed in the PAGA trajectories (Fig. 2C). We note that,
although the branch 1-specific genes are always enriched in multiple lineages simultaneously,
some variation can be observed in the level of enrichment across different cell types,
suggesting that this transcriptional state is not exactly equivalent in all cell types. This
hypothesis of a common co-expression signature superimposed upon distinct developmental
identities is further supported by the observation that the number of genes and transcripts
detected in branch 1 as compared to branch 2 is systematically higher, in all cell types (fig. S7,

A and B). However, the formation of the branches is not a result of a coverage (number of
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UMIls per cell) artefact, as demonstrated by downsampling analyses (fig. S8). This is also
observed for cells assigned as branch 1 or branch 2 in our reanalysis of published Arabidopsis
root scRNA-seq datasets (fig. S7C), although the branching and associated transcriptional
states were not previously discerned in these studies. Moreover, the five branch-specific
modules, and in particular module 47, contain a high proportion of transcription factors, which
could underpin the increase in detected transcripts and genes specifically in those cells (Fig.
3A).

We note that although the PAGA analysis did not detect two branches for the epidermal
hair cell and non-hair cell trajectories, a small branch with the lowest number of genes and
UMIs that does not express the branch 1-specific genes can also be observed in the epidermal
cell types, suggesting that higher resolution profiling might detect analogous epidermal
branching (fig. S8, A and B). In the cortex, however, the branching event identified in the
pseudotime analysis does not appear to result from the same superimposed state that is
common to other lineages, and was not considered in subsequent analyses.

Assessment of protoplast isolation responsive-genes verified that this branch-specific
gene signature is not due to sample preparation, since genes in these modules were not
particularly up- or down-regulated after cell dissociation (fig. S9). Importantly, we
independently validated the existence of this cellular state in vivo in a subset of the cells of
many distinct types by performing whole-mount HCR of one of the branch 1-specific genes of
module 47, the Dof transcription factor VDOF1 (Fig. 3C). We confirmed that VDOF1 is detected
in multiple cell types simultaneously, and only in a subset of the cells. Notably, we did not
detect a specific spatial arrangement of cells that express the gene, with the radial expression
exhibiting variability along the longitudinal axis.

Together, these co-expressed gene modules demonstrate that a gene co-expression
signature common to a subset of cells from multiple lineages drives the formation of the branch
1 state, highlighting another layer of regulation of cell identities at the root tip, independent

from the developmental lineages.
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The branch-specific transcriptional signature is linked to environmental responses

To investigate the function and origin of this gene co-expression signature we assessed
gene ontology (GO) terms enriched in the different branch-specific modules, including by
grouping the branch-specific modules 47-51 that display highly similar enrichment patterns
(Fig. 3C). Branch 1-specific genes are strongly associated with processes involved in response
to stimuli and response to hormones, in particular to abscisic acid (ABA). Module 39,
specifically enriched in the endodermal branch 1, contains 4 ABA-responsive TFs (ABF1,
ABF2, ATHB-5, and ATHB-6) known to mediate transcriptional regulation of ABA stress

responses 273

, suggesting that this hormone pathway is particularly active in this subset of
the endodermis cells. In modules 47-51, which are specifically enriched in branch 1 in multiple
stele cell types, 50% of the genes associated with the term “response to hormone” are linked
to other GO terms involving ABA (fig. S10). In particular, 14 genes involved in the “regulation
of abscisic acid-activated signaling pathway” were found in these modules, including two
members the C2-DOMAIN ABA-RELATED protein family (CAR6, CAR11), known to enhance
ABA sensitivity by targeting its receptors to the plasma membrane *?, two ABA receptors
(PYL5, PYL8) **% the co-receptor and negative regulator ABI/1 3°% the kinase SRK2D %%,
and three transcription factors known to mediate some ABA responses (MYB33, NAC096,
SRM1) 42 (Fig. 3D, fig. S11). The receptor PYL8 seems to be particularly important for the
regulation of ABA signaling in the root, compared to the other member of the PYL multigenic
family. PYL8 levels are specifically increased by ABA treatments while no significant effect
was observed for PYL1 and PYL4 *3, and PYLS8 is the only receptor of this family that known
to play a non-redundant role in ABA sensitivity in the root *. Altogether, this suggests that ABA
signaling pathways are more active in the branch 1 cells and may be driving, at least partially,
their specific patterns of gene expression.

In addition to these hormone response links, the GO terms “circadian clock” and
“regulation of circadian clock” were found exclusively enriched in the branch 1-specific
modules (Fig. 3C). Among the branch 1 module expressed genes associated with these terms,

we found the core clock genes TOC1 and CCA1 “°, as well as other modulators of the clock
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including ZTL “6, BZO2H3 #, the effectors of light signaling and entrainment of the clock FAR1
8 and PHYB #°, and the members of the REVEILLE family RVE2, RVE4, RVE6, and EPR1 %>
%2 the expression of which is clock-regulated (Fig. 3D, fig. S11). This strongly indicates a
potential circadian input or output to the branch-specific state.

Overall these functional enrichment analyses strongly suggest that the cellular state
responsible for the branching events of multiple lineages is linked to responses to various
environmental stimuli, therefore henceforth it will be referred to as the “environmentally
responsive state” (ERS), with “branch 1” and “branch 2” corresponding to ERS-positive (ERS+)
and ERS-negative (ERS-) cells, respectively.

To investigate what is driving the ERS, we sought to identify putative cell-autonomous
regulators of the different gene modules, by selecting TFs whose predicted binding target
genes are enriched in the same module the TF is expressed in, using the Arabidopsis DAP-
seq dataset *® and the predicted binding similarities from Cis-BP2 . We identified 104 putative
transcriptional regulators for 31 of the gene modules (Fig. 4A). Among these predicted cell-
autonomous regulators, 42 were previously described as playing a role in the development of
the cell type they are enriched in, indicating our approach is effective at identifying important
regulators.

Candidate regulators identified for the branch-specific modules are in agreement with
the enriched GO terms identified above (Fig. 4A). The ABA-responsive ATHBS and ATHB6
were found in the endodermis specific module 39. In the modules 47-51 enriched in the ERS+
cells of multiple cell types, we identified several TFs whose expression is circadian-regulated,
including a group of Dof cycling factors CDF2, CDF3, and CDF5, and the REVEILLE genes
RVE2, RVE4, RVE6, and EPR1 that encode known modulators of the clock. We also found
the mediator of ABA responses ABF4. More generally the ERS-specific modules 47-51 are
enriched for genes with an ABA-responsive element binding motif in their vicinity (Table S3).
This TF-binding analysis further demonstrates the involvement of ABA and the circadian clock

in the regulation of this ERS, as genes enriched specifically in this cellular state are not only
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annotated as part of their biological processes but also putative targets of their regulators
based on TF DNA binding data.

Next, to better predict the effective cell-autonomous TF targets in vivo and the structure
of the regulatory network per module, we combined the genome-wide binding sites predicted
by DAP-seq and the co-expression modules identified by scRNA-seq. We investigated the TF-
target gene network of the ERS-specific modules 47-49, revealing links between the module
genes belonging to the enriched ABA, hormonal, developmental, and circadian response GO
terms (Fig. 4B). Although the circadian clock has been shown to regulate ABA biosynthesis
and signaling, and ABA has been demonstrated to feedback on the clock *°, we only found a
putative link between this pathways at the root tip: several cycling Dof and also RVE2 are
predicted as regulating the expression of CAR6, CAR11 and PYLS8, which are three enhancers
of ABA sensitivity.

In sum, the ERS that is present in only a proportion of cells regardless of their lineage
is strongly linked to pathways involved in the plant response to its environment, in particular
through a specific signature of activation of ABA-related genes, a hormone known to play a
crucial role in the response to stresses, as well as, unexpectedly, various key regulators of

circadian responses.

Branching events are maintained despite developmental perturbations

We hypothesized that the ERS is superimposed on, and independent from,
developmental identities because of the observation that it affects multiple cell types.
Therefore, we next asked whether the ERS would be maintained upon developmental
perturbations of cell types. To do so, we investigated cell identity alterations in the scr-3 line
that has a premature stop codon in the SCARECROW (SCR) gene *°, which encodes a
transcription factor that controls various cell identity processes in the endodermis and stele ',
which exhibit the ERS.

We first characterized global changes in cell type composition by scRNA-seq of the

scr-3 mutant root tip (Fig. 5A), using the Col-0 cells of our reference atlas to assign identities

11


https://doi.org/10.1101/2022.03.04.483008
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.04.483008; this version posted April 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

to the mutant cells. Multiple cell types are affected in the scr mutant (Fig. 5B, fig. S12). As
expected, both the endodermis and protoxylem were strongly depleted in scr-3 as compared
to our five Col-0 replicates, and correspond to two well-characterized phenotypes of scr: the

presence of a single ground tissue layer °"°°

and the ectopic formation of metaxylem in place
of protoxylem *°. We also found other unexpected cell types to be affected in the mutant (Fig.
5B, fig. S12). First, the columella, which was not reported to be altered in a previous study
characterizing the single-cell phenotype of scr-4 7, is significantly depleted in scr-3. This is
consistent with a previous report showing that columella stem cells in scr-1 abnormally express
markers of differentiated root cap cells . Second, both the XPP and PPP identities are
strongly reduced in the mutant (Fig. 5B). While the columella and pericycle cell types are
depleted in the scr-3 dataset, their corresponding layers are present physically in scr-3 °7.
Thus, this phenotype is not caused by a morphological defect, but rather by the modification
of the cell identities. We found that the root cap and procambium cells, which are cell types
adjacent to the columella and pericycle in the root, are significantly over-represented in the
mutant (Fig. 5B, fig. S12). We hypothesize that the cells that physically correspond to columella
and pericycle in the wild-type root have respectively acquired a root cap and procambium
identity in scr-3. Therefore, we demonstrate that a mutation in the SCR gene leads to a broad
range of cell identity alterations, some of which were not previously described. Despite these
major alterations in cell identity, with some cell types lost and others present ectopically
compared to wild type, we detect cells assigned to the ERS for all cell types of the stele (Fig.
5C) and observe its associated branching in the UMAP representation.

In the mutant ground tissue layer, we observe that cells transition from a cortex to an
endodermis identity, as recently reported by scRNA-seq characterization . Despite the
endodermis identity not being present at early stages of development, both ERS+ and ERS-
endodermal cells are detected in our scr-3 dataset (Fig. 5D). Three different developmental
paths for the ground tissue layer are apparent: one that will differentiate into ERS+ endodermis,
another into ERS- endodermis, and a third that will remain cortex (Fig. 5D). This further

supports that the branching events caused by the ERS are not regulated developmentally and
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formed by division events early in development, but rather are states superimposed on multiple

cell lineage identities regardless of their cell type and developmental stage.

Nutrient availability modulates the proportion of ERS+ cells

The genes and GO terms enriched in the ERS+ cells are strongly associated with
responses to various environmental stimuli, and because of the link between the branching
events and the passage cell marker PHO1;H3 (Fig. 2F), whose expression is affected under

2561 we next aimed to characterize the effect

phosphate-, zinc-, and iron-deficiency conditions
of nutrient availability on the ERS.

We utilized scRNA-seq to compare the composition of cell transcriptional states in root
tips grown on two different concentrations of plant basal growth media (full [1x] versus half
[0.5x] concentration Murashige and Skoog [MS] media), thereby subjecting the plants to
different concentrations of nutrients and vitamins. This range is commonly used in Arabidopsis
studies and does not drastically affect root growth. We generated a dataset of 54,164 single
cells, with 25,185 from seedlings grown on full MS and 28,979 from seedlings on half MS, each
condition having two biological replicates (Fig. 5E). All cell types were detected in the dataset,
at a similar proportion for each condition and replicate (fig. S13, A and B). We investigated
differentially expressed genes (DEGs) between the two nutrient conditions for each cell type.
Lower nutrient availability induced cell-type specific changes in the expression of 846 genes
(average log fold-change = 0.25, adjusted p-value < 0.05, t-test) (Fig. 5F, Table S4). For
example, we detected an increase in the expression of genes involved in trichoblast formation
in hair cells (cluster 9), multiple CASP genes in the endodermis (cluster 7), lignin biosynthetic
regulators in multiple cell types (cluster 8), and various water transporters enriched in the
cortex (cluster 10). The modulation of the formation of hair cells and the casparian strip and
the ability to transport water are expected to be affected by changes in nutrient availability, and
seedlings grown on half MS had a higher density of hair cells (fig. S14). We found that 174
(20%) of the DEGs are specifically enriched in ERS+ cells, down-regulated under lower

nutrient availability conditions (cluster 1), and associated with GO terms linked to response to
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environmental stimuli and ABA (Fig. 5F). This suggests that the proportion of cells affected by
this superimposed state could be modulated under different nutrient availability concentrations.

To test this hypothesis we compared the proportion of cells assigned as ERS+ vs ERS-
for the endodermis and stele cell types, in the two different nutrient concentrations. We used
a permutation test to compare each replicate of the dataset, allowing us to account for any
sub-sampling effect that could contribute to the differences in proportion of cells in each branch
(Fig. 5G). We found that ERS+ cells are significantly depleted (FDR < 0.05) in half MS as
compared to full MS conditions in most cell types tested, consistent with the down-regulation
of ERS-specific genes (Fig. 5F). We also observed a significant increase (FDR < 0.05) in the
proportion of cells assigned as ERS- endodermis cells, which expresses the casparian strip
regulators earlier in development. More generally, although not always significantly, ERS- cells
tend to be more abundant in the lower nutrient availability condition.

These results demonstrate that this superimposed state is environmentally regulated.
Variation in abiotic factors in these experiments, such as nutrient availability and osmotic
pressure, can alter the transcriptional states of the root by modulating the proportion of cells
that acquire the ERS, potentially to adjust the physiology of the root to different environmental

conditions.

ERS-encoded natural variation in root environmental responses

Arabidopsis accessions, which evolved under a variety of natural environments, offer
a unique opportunity to study the molecular basis of the response to different environmental
conditions. Since each of the replicate experiments performed for this study contained a mix
of cells from two Arabidopsis accessions (Fig. 1A), we took advantage of this to explore the
differences in cellular states, at the single-cell level, between five Arabidopsis accessions (Col-
0, Ws-2, Cvi-0, C24, and Ler), and particularly in the ERS. The ERS was detected in all
accessions and was taken into account when assigning identities to the cells, in order to
identify cell state-specific DEGs in pairwise comparisons between accessions. The detected

DEGs (average log fold-change = 0.25, adjusted p-value < 0.05, t-test) are predominantly
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specific to one accession rather than shared between multiple (fig. S15), therefore we focused
on the genes that are differentially expressed in one accession compared to the other four,
and investigated the affected cell identities and associated biological processes (Fig. 6A,
Table S5).

Overall, the accession-specific DEGs are strongly associated with GO terms related to
response to stresses and stimuli (Fig. 6A). The extent of differential expression differed
between cell types; a larger proportion of genes was differentially expressed in the cells of the
root cap and ERS+ cells in the stele, compared with other cell types. This was particularly
apparent for upregulated DEGs in Ws-2, the category with the highest number of genes, which
are associated with cellular processes linked to environmental responses such as heat
acclimation. Furthermore, the number of DEGs is often higher in ERS+ cells as compared to
ERS- cells of the same cell types, in multiple accession-specific comparisons. This further
highlights that environmental responses are encoded in the ERS in the root.

We clustered the DEGs from each category based upon their expression pattern
across the five accessions (fig. S16, A to J) and retained the eighteen clusters that had
enriched GO terms (Fig. 6B). Among them, nine clusters correspond to genes that are
enriched in a branch-specific manner, seven in ERS+ cells of multiple cell types and two in
ERS- cells. While accession-specific DEGs enriched in ERS+ cells are almost always
associated with responses to environmental stimuli, DEGs enriched in ERS- cells are involved
in more structural and general cellular processes such as cytoskeleton organization and
respiratory electron transport, again highlighting the strong association of the ERS to
environmental responses.

Arabidopsis ecotypes have evolved in different environments, which is reflected in the
genes that are differentially expressed among them. We show that a large proportion of
accession-specific DEGs known to be involved in environmental responses are part of the
superimposed ERS active state. This suggests that the new cell identity parameter we have

defined is likely involved in the response to different natural environments.
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Discussion

Through deep characterization of root cell transcriptional states coupled to HCR spatial
mapping, we have identified an alternate developmental trajectory for most root cell types, in
particular the endodermis and the many stele cell types. This alternate path, which we term
the environmentally responsive state (ERS), corresponds to a strong and specific
transcriptional activity signature that is superimposed on a subset of the cells of multiple cell
types simultaneously. Therefore, the identity of cells in the root tip can globally be
characterized by three factors: 1) the lineage that defines the cell type, which is stable during
development, 2) the developmental stage the cells are at, and 3) the presence or absence of
an additional environmentally responsive state, which can vary based on environmental
conditions

Although an ERS can be detected in multiple lineages, it is not equivalent for all cell
types. Some of the genes are enriched in all ERS+ cells regardless of their developmental
origin, but other ERS-specific genes are restricted to a few lineages, suggesting that there is
a level of cell-type specificity in the acquisition of this transcriptional state, probably due to the
underlying regulatory networks established in each cell type.

This cellular state (ERS+) is characterized by the expression of genes involved in the
responses to various stimuli and stresses, the activation of the ABA signaling pathway -
especially in the endodermis - as well as an enrichment for regulators and effectors of the
circadian clock. While ABA signaling has been demonstrated to be important for the

62,63’ and

modulation of root growth in response to salt stress, particularly in the endodermis
the circadian clock is known to be influenced by various types of external and internal inputs
6 as well as hormones such as ABA %%, here we provide the first demonstration that a network
of pathways regulating the response to environmental cues are spatially restricted to a subset
of gatekeeper cells of the root tip, and likely co-regulated. Future efforts will be required to

identify the environmental cues and regulatory pathways that determine and control which

cells will acquire the ERS.
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We have demonstrated that the proportion of cells that acquire the ERS in each cell
type can be modulated by environmental factors such as nutrient availability. Notably, we
found a link between the branched states in the endodermis and a passage cell marker,
suggesting that the regulation of the proportion of ERS+ cells could be a patterning event that
pre-determines, early in development, the number of passage cells to be formed, thereby
adapting the ability of the root to communicate with its environment. The discovery of this
cellular state reveals new layers of complexity and cell specialization within the root, and
opens the way to a better understanding of the role and integration of environmental stimuli in

the modulation of root development.
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Methods

Plant material and growth conditions

Seeds from wild type Arabidopsis thaliana ecotypes Col-0, Ws-2, Cvi-0, c24 and Ler, and scr-
3 (Col-0 background, NASC stock code N3997) were sterilized and densely sown in row on
1x (or 0.5x, when testing the effect of nutrient concentration) Murashige and Skoog basal
medium with vitamins (Austratec) plates supplemented with 1% sucrose (pH 5.7), and
stratified in the dark at 4°C for two days. Plates were subsequently grown in long day
conditions (16h light, 8h dark) at 22°C. 6-7 days after germination (dag), root tips (up to ~3mm)
were collected for protoplast isolation using sharp tweezers. Seedlings used in all experiments
were grown in the exact same conditions, and collected and processed at the same time of
the day, except for 2 out of the 10 replicates used to generate the single-cell atlas, which were
performed in a different lab as part of a pilot experiment.

Protoplast isolation and scRNA-seq

For each genotype, root tips were placed in 15ml of protoplasting solution % [1.25% w/v
cellulase, 0.3% w/v macerozyme, 0.4M D-mannitol, 20mM MES (pH 5.7), 20mM KCI, 10mM
CaCly, 0.5% w/v BSA, and 5mM B-mercaptoethanol in ultrapure water] and incubated at room
temperature for 1 hour on a tube rotator. The solution was subsequently filtered through a
70um and a 40um cell strainer (Falcon) to separate protoplasts from undissociated tissue.
Cells were centrifuged for 5 minutes at 500 x g in a swinging bucket centrifuge. The pellet was
resuspended in 15ml of protoplast resuspension buffer [0.4M D-mannitol, 20mM MES (pH
5.7), 20mM KCI, 10mM CaCl,, and 0.5% w/v BSA in ultrapure water] and centrifuged at 500 x
g for 5 minutes. Cells were resuspended in the protoplast resuspension buffer, and filtered
through a 35um cell strainer Snap Cap (Falcon). The final concentration was adjusted to 900-
1,200 cells/pl. Protoplasts from two Arabdiopsis accessions were mixed in equimolar
quantities and barcoded with a Chromium Controller (10X Genomics). Libraries were
generated with reagents from a Single Cell Gene Expression kit (10X Genomics, Single Cell
3’ Library kit) according to the manufacturer’s instructions. Libraries were sequenced either
on an lllumina NextSeq 500 or a NovaSeq 6000, following recommendations of 10X
Genomics.

Preprocessing

Reads were mapped using a modified version of the 10x Genomics CellRanger pipeline
(v1.3.0) . Internally, CellRanger uses STAR to perform read alignments, and the pipeline
was modified to allow the specification of STAR insertion and deletion alignment penalties, as
well as the minimum and maximum allowed intron size ®. Reads were mapped to a version
of the Arabidopsis (TAIR10) genome with ambiguous base codes placed at SNP positions for
the genotypes sequenced, as identified by the Arabidopsis 1001 genomes project %. Reads
were mapped with the following STAR parameters: --alignintronMin=10, --
alignintronMax=5000, --scoreDelOpen=-1, --scoreDelBase=-1, --scorelnsOpen=-1, --
scorelnsBase=-1.

Cell genotyping
SNP UMIs were counted per cell using the countsnps command in the sctools package
(https://github.com/timoast/sctools). Cells were then genotyped and cell doublets identified by
performing density-based clustering on the SNP UMI counts for each genotype, implemented
in the sctools genotype function. To classify cells at the border between those classified as
“cell” and “background”, cells were further clustered in 30-dimensional principal component
space using single cell gene expression data with an established graph-based clustering
algorithm ="', Low UMI count droplets identified as “border” cells by sctools were given a
“background” classification if they were assigned to a cluster with greater than 20%
background droplets, otherwise they were classified as cells. This dimension reduction and
clustering was performed using Seurat version 2.0.1 %73,
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Reference Atlas generation

Normalization and feature selection

The Seurat v3 R package was used for data normalization, cell filtering, batch correction,
dimension reduction, and cell clustering '®23, First, data were scaled to a total of 10,000
molecules and log-normalized. Cells with <200 expressed genes were removed, and genes
expressed in <3 cells were removed. For each sample, the top 5,000 highly variable genes
(HVGs) were detected wusing a variance-stabilizing transformation, using the
FindVariableFeatures function in Seurat with the parameters selection.method="vst” and
nfeatures=5000. Genes affected by protoplast isolation were removed from this set of HVGs
(see ‘“Identification of genes affected by protoplast isolation” section below for more
information).

Dataset integration

Technical differences between batches were removed using the data integration methods
described by Stuart et al. °. First, canonical correlation (CC) vectors were calculated between
each pair of datasets, using the log-normalized expression of HVGs. Next, L2 normalization
was applied to these CC vectors to correct for differences in scale between datasets. Anchor
cells were then identified between each pair of datasets, using the first 30 CC vectors and the
closest 5 neighbor cells. This was performed using the FindIintegrationAnchors function in
Seurat v3.0.0 with the arguments anchor.features=3000, dims=1:30, eps=1. An integrated
expression matrix was then produced using the IntegrateData function in Seurat v3.0.0 with
default parameters. To produce an integrated expression matrix enabling the identification of
common cell states across all experiments, we first ran this integration procedure using all
anchor pairs identified between each pair of datasets. This matrix was used for downstream
dimension reduction, clustering, and cell type classification. We also created a second
integrated matrix that retained genotype-specific expression differences, while removing
differences due to batch, but first filtering out cross-genotype anchor pairs from the integration
procedure.

Cell clustering and visualization

The integrated expression matrix, described above, was used for all clustering and low-
dimensional visualization of cells. The same set of 3,000 variable genes used for integration
were used to calculate the top principal components, using the augmented implicitly restarted
Lanczos bidiagonalization algorithm (IRLBA) "*. The top 50 principal components (PCs) were
used to perform UMAP dimensionality reduction ’°. Cell clustering was performed in the same
50-dimension PC space, using a graph based method as described previously ®". First, a k-
nearest neighbor graph was constructed (k=30), and converted into a weighted shared nearest
neighbor graph, with the graph weights representing the overlap between neighborhoods.
Cells were then grouped into clusters through the identification of highly interconnected nodes
in the graph, using the smart local moving algorithm 7®. These steps were performed using the
FindClusters function in Seurat v3.0.0.

Identification of genes affected by protoplast isolation

Plants were prepared as for scRNA-seq, described above. Four replicates each of dissociated
and of non-dissociated root tips were compared. For dissociated samples, root tips were
placed in the protoplasting solution for 1 hour at RT, as for scRNA-seq. After this incubation,
samples were centrifuged for 5 minutes at 500 x g, the supernatant was removed, and the
tissues were snap-frozen in liquid nitrogen and ground into a powder. For non-dissociated
samples, root tips were collected and directly snap-frozen and ground into powder in liquid
nitrogen. Bulk RNA-seq libraries were generated using the TruSeq stranded mRNA kit
(Numina). Bulk RNA-seq libraries were sequenced on the lllumina HiSeq 1500 (single end,
101 cycles). RNA-seq read quality was assessed using FastQC and MultiQC """®. RNA-seq
reads were trimmed with Trimmomatic v0.36 with the following parameters:
ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36 "°. Reads were aligned to the TAIR10 genome using STAR ¢ with the following
parameters: --alignintronMax 5000, --alignintronMin 10, --readFilesCommand zcat,--
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quantMode GeneCounts, --outSAMtype BAM SortedByCoordinate. Differentially expressed
genes due to the cell dissociation were identified using the DESeq2 R package ¥°, with a
Benjamini Hochberg adjusted p-value <0.001 and a log2 fold change in expression >2. This
experiment was repeated twice, and genes that were identified as differentially expressed in
both experiments were taken as the set of genes affected by protoplast isolation.

Identification of markers from sorted cell populations

Raw sequencing data from Li et al. was downloaded from SRA (PRJNA323955) . Reads were
trimmed to remove sequencing adapters and low quality bases using trimmomatic 8' with
parameters ILLUMINACLIP: TruSeq2-PE.fa:2:30:10, LEADING:3, TRAILING:3,
SLIDINGWINDOW:4:15, MINLEN:36. Genes were quantified using kallisto quant 8 with -b
100 to perform 100 bootstrap samples, using the TAIR10 CDS sequences. Differentially
expressed genes specific for each FACS-sorted cell population were then identified using
DESeq2 ®® with default parameters. Differentially expressed genes were then filtered to retain
genes that were unique to one cell type, had a false discovery rate (Benjamin-Hochberg) <0.2,
and a log2 fold change >1 compared to the mean expression across all other cell types.

Whole-mount in situ HCR

Probe design

Candidate cluster markers for our reference atlas were generated using the FindAllMarkers
function in Seurat, with the only.pos = TRUE parameter. To select the best target genes,
cluster markers were filtered based on the following criteria: the gene should be detected
almost only in the cluster(s) it is enriched in, and have a large portion of its coding sequence
that doesn’t share homology with other Arabidopsis genes, to allow for design of highly specific
probes for these sequences. Split probes for our target genes were designed and synthesized
by Molecular Instruments (www.molecularinstruments.com).

Sample fixation and dehydration

The procedure is similar to the one described in ®. Roots were collected at 6 dag, as for
scRNA-seq, and immediately placed in FAA [20% formaldehyde, 5% acetic acid, 50% ethanol,
in ultrapure water] for 1 hour at RT. Samples were then dehydrated in successive 10 min
washes at RT: once in 70% ethanol, once in 90% ethanol, twice in 100% ethanol. Samples
were washed twice in 100% methanol and left in the second wash at -20°C overnight (or up
to a few weeks).

Permeabilization, protease digestion

Roots were rehydrated in a series of 5 min washes at RT in 75%, 50%, 25% methanol in
DPBS-T [0.1% Tween 20 in DPBS], and incubated in 1x cell wall digestion solution [10x stock:
250mg macerozyme, 250mg cellulase, 125mg pectolyase, 375mg pectinase in 50ml ultrapure
water] in DPBS-T. After a wash in DPBS-T, samples were fixed in 10% (v/v) formaldehyde
[37% solution, Sigma-Aldrich] in DPBS-T for 15 minutes at RT and washed twice in DPBS-T.
Roots were incubated in 1ml Proteinase K buffer [0.1M Tris-HCI (pH 8), 50mM EDTA (pH 8)
in ultrapure water] with 8ul Proteinase K (10mg/ml) for 15 min at 37°C. After two washes in
DPBS-T, samples were fixed in 10% (v/v) formaldehyde [37% solution, Sigma-Aldrich] in
DPBS-T for 15 minutes at RT and washed twice in DPBS-T.

Probe hybridization and amplification

We followed the third-generation in situ hybridization chain reaction procedure developed by
Molecular Instruments, and described in '°, but the dextran sulfate used in the Amplification
Buffer had to be replaced by a low molecular weight dextran sulfate in order to preserve the
root structure.
Roots were pre-hybridized in the 30% probe hybridization buffer for 30 min at 37°C, then
placed in the probe solution [1ul of probe mixture in 500ul of 30% probe hybridization buffer],
and incubated at 37°C overnight.

Samples were washed twice in the 30% probe wash buffer for 30 min at 37°C, then washed
twice in 5x SSCT for 10 min at RT. Samples were placed in the Amplification Buffer for 30min
at RT. In the meantime, fluorescently labeled hairpins were prepared by snap cooling 10ul of
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3uM stock in the hairpin storage buffer. We only used HCR amplifiers coupled to Alexa 647
fluorophores in this study. The hairpin solution was prepared by adding the snap-cooled
hairpins to 500ul of amplification buffer. Samples were placed in the hairpin solution and
incubated overnight at RT in the dark. They were subsequently washed three times in 5x
SSCT for 20 min at RT.

Clearing

Samples were incubated in ClearSee " in the dark for three days.

Cell wall staining and sample mounting

Cell walls were stained by incubating samples in 1ml ClearSee + 2ul calcofluor solution
[50mg/ml in DMSO] for 2 hours, in the dark. Samples were washed in ClearSee for 1 hour, in
the dark, and mounted in ClearSee in a chamber made with a square coverslip and double-
sided tape. The chamber was sealed using top coat nail polish, and the samples were imaged
on the same day.

Imaging

Mounted roots were imaged using a Nikon Ti-E inverted motorized microscope with Nikon
A1Si spectral detector confocal system, and a water immersion objective. Calcofluor white
and the Alexa 647-coupled amplifiers were excited at 405 nm and 640 nm, respectively. Seven
to eight images were taken per root along the differentiation axis. Images were processed
using Fiji ®°. Images of the same roots were stitched using the Grid/Collection stitching plugin
8 and the brightness/contrast was adjusted for each image based on the signal detected. 3D
views of the root were obtained with the 3D viewer plugin &, and optical sections with the
Orthogonal Views method in Fiji.

Identification of clusters 16 and 28

The first, AT3G23830 (RBGA4), is detected in the meristem in various cell types including the
epidermis (Fig. 1D). The cluster it is enriched in (cluster 16) is located between the
differentiated epidermal clusters (hair cells and non-hair cells) and the early root cap clusters
(Fig. 1B), suggesting that it represents meristematic cells of the epidermis. We have annotated
this cluster as “epidermis - meristem”. The second, AT3G25980 (MADZ2), involved in cell
division, is sporadically detected in different cell types in the meristematic region (Fig. 1D). Its
associated cluster (cluster 28) in the dataset (Fig. 1B) appears to link the “epidermis -
meristem” cluster to the “root cap - early” cluster. To test whether this cluster represents a
specific population of mitotic cells in the early events of root cap formation, or an artifactual
grouping of all dividing cells of the dataset, we regressed cell cycle effects out and looked at
the influence on clustering (fig. S3, A to C). Cells that belong to cluster 28 still cluster together
after regression and are also associated with early root cap and epidermis clusters,
demonstrating that it corresponds to the known early formative cell division occurring in the
epidermis/root cap lineage 2'. We named this cluster “root cap - dividing cells”.

Cell cycle regression

We used the CellCycleScoring function in Seurat to assign a cell cycle score to each cell of
our reference atlas based on the expression of S phase marker genes [E2Fc (AT1G47870),
E2Fb (AT5G22220), DPa (AT5G02470), CDKG;2 (AT1G67580), E2Fa (AT2G36010), DPb
(AT5G03415), CYCA3;1 (AT5G43080), CYCA3;2 (AT1G47210), KRP5 (AT3G24810), KRP2
(AT3G50630), KRP6 (AT3G19150), KRP3 (AT5G48820), WEE (AT1G02970), KRP4
(AT2G32710), CYCD4;2 (AT5G10440)], and of G2/M phase marker genes [CYCB1;1
(AT4G37490), CYCB2;1 (AT2G17620), CDKB2;2 (AT1G20930), CYCB3;1 (AT1G16330),
CYCA2;2 (AT5G11300), CYCA2;4 (AT1G80370), CYCA1;1 (AT1G44110), CYCA2;1
(AT5G25380), CDKD;1 (AT1G73690), CDKB2;1 (AT1G76540), CKS2 (AT2G27970),
CYCB1;2 (AT5G06150), CYCD3;1 (AT4G34160), CCS52B (AT5G13840), CYCA2;3
(AT1G15570), CCS52A2 (AT4G11920), CYCB2;3 (AT1G20610), CYCB1,;3 (AT3G11520)]
obtained from 8. This score is used to provide a predicted classification of the cell cycle phase,
and to regress out cell cycle effects using the vars.to.regress = c(“S.Score”, “G2M.Score”) in
the function ScaleData.
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After regression, the top 50 principal components were calculated and used for UMAP
dimensionality reduction. Cell clustering was performed in the same 50-dimension PC space,
using FindNeighbors and FindClusters functions in Seurat, as for the atlas.

Pseudotime trajectory analyses

For the trajectory analyses, a new Seurat v2 object was created using Col-0 cells only and the
batch-corrected data. Data was scaled and HVGs were detected using the FindVariableGenes
function in Seurat v2 with the arguments x.low.cutoff = 0, and y.cutoff = -0.1. The genes
affected by protoplast isolation we identified were removed from the set of variable genes.
Principal components were computed and the top 30 PCs were used for UMAP dimensionality
reduction, to generate the UMAP plot shown in Fig. 2 A and B.

The Col-0 dataset was then subsetted into eight objects corresponding to the developmental
lineages: epidermis-root cap, cortex, endodermis, phloem pole pericycle, xylem pole pericycle,
procambium, phloem, xylem. Each lineage dataset was then processed independently for the
following steps.

“Stemness score” calculation

The diffusion pseudotime analysis required the identification of a cell that will be considered
as t=0 at the starting point of the trajectory. Therefore, we developed an approach for
identifying the “most meristematic” cell in each lineage.

We took advantage of the epidermis-root cap lineage having a cluster that is identified as
meristematic, which links the epidermal clusters to the early root cap clusters. We first
identified the markers specific to the meristematic state in the epidermis-root cap lineage, We
generated a list of marker genes for all clusters of our reference atlas with the FindAlIMarkers
function with only.pos = TRUE argument. We defined the markers specific to the clusters 16,
9, and 12 as “early markers” for the meristematic region, and the markers specific to clusters
0,1,3,4,5,8,19, 25, 26, 27, and 28 as “late markers” for differentiated stages in the lineage.
We expect genes common to the “early markers” and “late markers” to be specific to the
lineage, but the genes specific to “early markers” to be specific to the meristematic zone. We
therefore then subtracted the genes from the “early markers” that were also present in the
“late markers” set, and used this meristematic gene list in the AddModuleScore (Seurat v2) to
identify the cells that express this module of meristematic genes the highest in each lineage.
We named this score the “stemness score” (plotted on UMAPs in fig. S4) and the cell with the
highest score in each lineage is defined as t=0.

Sub-clustering and partition-based abstracted graph (PAGA)

HVGs were defined for each lineage object using the FindVariableGenes function (Seurat v2),
with different x.low.cutoff and y.cutoff values. After removing genes affected by protoplast
isolation from the HVGs, 40 PCs were computed and an elbow plot was generated using
PCEIbowPlot (Seurat v2) to determine the number of PCs that capture the majority of the
variation in the data. This number of PCs varies between lineages (epidermis-root cap: 18;
cortex: 8; endodermis: 8; XPP: 8; PPP: 7; phloem: 10; procambium: 10; xylem: 10).

Seurat lineage objects were then converted into AnnData objects using the Convert function
(Seurat v2), in order to be processed with Scanpy %. We first computed a neighborhood graph
of observations, using the approximate nearest neighbor search within UMAP, with
scanpy.pp.neighbors. The n_pcs argument was set, for each lineage, to the number of PCs
determined above with the Elbow plot. Cells were subsequently clustered using the Louvain
algorithm 8" with scanpy.tl.louvain. The resolution was adapted to each lineage, and, in
some cases, some of the clusters had to be subsequently sub-clustered to increase PAGA
clarity by using scanpy.tl.louvain with the restrict_to argument.

A partition-based abstracted graph (PAGA) was generated to quantify the connectivity
between the lineage-specific clusters obtained above '® using scanpy.tl.paga, and plotted with
scanpy.pl.paga_compare, adjusting the threshold argument for each lineage.

The PAGAs obtained for the eight lineages are shown in Fig. 2C.

Diffusion pseudotime

The cell of the lineage with the highest “stemness score” was annotated as the “root” cell. A
diffusion map 229 was generated using scanpy.tl.diffmap, and the diffusion pseudotime '®1°
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was calculated to infer the progression of cells through geodesic distance along the graph,
using scanpy.tl.dpt.

Both the sub-clustering and pseudotime assignment per cell were copied to the meta data of
the original Col-0 Seurat object, and visualized in the UMAP plots in Fig. 2 A and B.

Identification of genes with cell type- and pseudotime-dependent expression in the root
cap (Fig. 2D)

A subsetted Seurat object (v3) containing only Col-0 columella and root cap cells was created.
Genes that were detected in <175 cells were removed. Cells were categorized into bins of 100
cells, based on the developmental trajectory they belong to (columella, root cap - early, root
cap - tip, and root cap - lateral) and their pseudotime assignment. The average expression of
the detected genes was calculated for each bin using AverageExpression (Seurat v3).

The obtained matrix of average gene expression per bin was scaled and subdivided into 12
clusters, using the kmeans function in R. The genes of one of the clusters, which did not show
an interesting expression pattern, were removed from the scaled matrix. A heatmap showing
the expression pattern of the remaining genes across all bins was generated using
ComplexHeatmap in R *.

Assigning cell identities to published scRNA-seq datasets

Our reference atlas was subdivided into 82 clusters, and clusters were annotated based on
the identities of the Col-0 cells obtained with the trajectory analyses (cell types and
developmental branches).

Raw count matrices for Col-0 cells from six studies were downloaded and used to
create new Seurat objects. Cells with <200 expressed genes were removed, and genes
expressed in <3 cells were removed. The data was log-normalized and the top 5,000 HVGs
were detected using FindVariableFeatures (Seurat v3). Genes affected by protoplast isolation
were removed from the HVGs.

Anchors between our reference atlas and the other datasets were identified using
FindTransferAnchors in Seurat v3, specifying our atlas as the reference, using our genotype-
corrected and batch-corrected integrated data as the reference assay, and the object we want
to assign identities to as the query. The TransferData function (Seurat v3) was subsequently
used to calculate, for each cell, a prediction score for each identity, based on the set of anchors
previously identified and the annotations of the 82 clusters of the atlas. Cells were assigned
the identity that has the highest prediction score.

7-10,12,13

Identification of genes differentially expressed between branch 1 and branch 2.

For our dataset and each of the published datasets, genes differentially between branch 1 and
branch 2 of the endodermis, phloem pole pericycle, xylem pole pericycle, and procambium
were identified using a t-test and the FindMarkers function in Seurat (v3), with the default
average log fold-change threshold (0.25). A heatmap showing the average log fold-change (in
natural log) for all the genes that were found differentially expressed in at least one of the
comparisons was generated using ComplexHeatmap (fig. S5).

UMI downsampling

Because the number of transcripts detected in branch 1 was systematically higher as
compared to branch 2, we tested whether the branching events could be the result of coverage
artefact by downsampling the UMIs to a similar rate in all cells. We chose to downsample the
number of UMI to 4,000, which is the lowest median value of UMI per cell in the clusters of
our dataset (cells that have a lower UMI count will not be downsampled). We used the
SampleUMI function in Seurat (v4) to generate three independent downsampled count
matrices, with the max.umi parameter set to 4,000. Each downsampled matrix was used to
generate a new Seurat object that will be processed similarly to our original dataset (log-
normalization, scaling, variable features, PCA, UMAP, clustering). An adjusted rand index was
calculated using the adj.rand.index function of the fossil package in R, to compare cell
clustering before and after UMI downsampling.
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Identification of gene co-expression modules using self-organizing maps (SOMs)

We used a SOM unsupervised machine learning approach to reduce the high dimensionality
of the expression matrix and to cluster genes based on co-expression patterns. The matrix
containing the scaled batch-corrected expression of genes across all Col-0 cells, except the
genes affected by protoplast isolation, was used as an input for the oposSOM pipeline (v2.2)
9.9 via the opossom.new function with the following parameters: dim.1stLviISom=60,

feature.centralization=FALSE, sample.quantile.normalization=FALSE,
activated.modules=list(“reporting”=FALSE, “primary.analysis’=TRUE,
“sample.similarity.analysis” = FALSE, “geneset.analysis” =FALSE,

“geneset.analysis.exact’=FALSE, “group.analysis”=FALSE, “difference.analysis’=FALSE.
The SOM was then generated using the opossom.run function.

The metagenes in the SOM were subsequently clustered based on their Pearson correlation
coefficients, using oposSOM. The following default parameters in the oposSOM source code
for the correlation clustering were modified in order to optimize cluster specificity. In the
pipeline.detectCorrelationModules function, the threshold for the correlation coefficient in the
clustering was changed to 0.945 (default value: 0.9), and the minimal cluster length to 10
(default value: env$preferences$dim.1stLviSom / 2). This resulted in smaller, and more
specific co-expression modules. However, as a consequence, a number of small modules
(<75 genes) were generated that had expression patterns almost identical to other bigger
modules (>75 genes). We discarded these smaller modules and focused on the analysis of
the 64 remaining modules, the composition of which is shown in Table S2.

The average scaled expression per module, across all cells, was calculated using the
scale.data matrix of the Col-0 Seurat object. Cells were categorized into bins of 100 cells
based on their assigned developmental trajectory and pseudotime. An average of the average
scaled module expression was calculated per bin, and plotted using ComplexHeatmap (Fig.
3A).

UMAP plot of gene expression using schex

Because cells in UMAP plots are often plotted on top of each other, obscuring information and
biasing interpretation, we used schex * in order to bin cells into hexagonal cells for visualizing
gene or module expression. Hexagon bins were created for our Col-0 Seurat object, using the
make_hexabin function with the parameter nbins = 150. Plot_hexbin_gene was subsequently
used to visualize the scale expression of genes, or the calculated average scaled expression
of genes from a co-expression module. The color scale was adjusted for each plot using
scale_fill_viridis_c.

Gene ontology enrichment per gene co-expression module

Gene Ontology (GO) enrichment analysis was performed using the PANTHER %
Overrepresentation Test (Fisher's exact test with Bonferroni correction). Genes were
annotated using the GO Ontology database (biological process) *°, and all Arabidopsis genes
were used as the reference gene list. Results with a corrected p-value <0.05 were considered
significant.

PANTHER analysis results are sorted “hierarchically” in order to understand the hierarchical
relations between enriched functional classes. Sorting is done only by the most specific
subclass first, with its parent terms indented directly below it. These are all related classes in
an ontology, and are often interpretable as a group rather than individually. Because the 64
modules had many enriched GO terms, some of which are related, only one term (the most
specific one) per hierarchical group was selected per module. After this selection, a few very
similar terms were filtered manually. The selected terms and the modules they are enriched
in were plotted in Fig. 3B using ggplot2.
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Identification of candidate regulators using transcription factor (TF) target gene
enrichment

Putative TF targets genes were inferred from the DAP-seq dataset . The ‘Motifs in peaks (P-
value £ 1E-04)” BED file (http://neomorph.salk.edu/dap web/pages/browse table aj.php)
was used as a DNA binding database for the profiled TFs of the DAP-seq dataset.

500bp promoter coordinates for Arabidopsis genes were extracted using the promoters
function in GenomicRanges '®°, genes(TxDb.Athaliana.BioMart.plantsmart28) as an
annotation for Arabidopsis genes, and the arguments upstream = 500, downstream = 50. For
each TF, the binding coordinates were extracted from the Motif in Peaks .bed file and
intersected with the promoter coordinates using the subsetByOverlaps function in
GenomicRanges. Every gene that has a binding motif for the TF in the 500bp region upstream
of its TSS is considered a putative target gene. For TFs that were not profiled in the DAP-seq
studies but, according to the cisBP2 study **, have a strong similarity in their DNA binding
domains with another TF that was studied by DAP-seq, their target genes were considered to
be the same as the TF profiled by DAP-seq.

In order to identify candidate cell-autonomous regulators in the gene co-expression modules
we characterized, we looked for TFs in modules whose putative target genes are enriched in
the same module the TF is expressed in. Only TFs whose putative targets could be inferred
with the methodology described above could be tested. For each gene co-expression module,
an enrichment test (hypergeometric test) was performed using the enrichment function of the
bc3net package in R, with the genes in the module as the candidate genes, all Arabidopsis
genes used as reference, and a list with the putative target genes for TFs in the module as
the gene sets. A false discovery rate was used to correct for multiple testing and target genes
were considered enriched in the module if the adjusted p-value was < 0.05.

For the enrichment of ABRE at the vicinity of genes (Table S3) a similar test was performed,
per module, using the combined putative targets of AREB3 (AT3G56850) and ABF2
(AT1G45249).

For candidate regulators of modules 47-49, the target genes list was reduced to the putative
target genes that are part of the same co-expression module as the regulator. A network was
generated using Cytoscape "

Analysis of cell states in scr-3 mutant root tips

UMAP generation and label transfer

A Seurat object was created with the batch-corrected scr-3 data. The data was scaled and
PCs computed with RunPCA. The top 30 PCs were used for UMAP dimensionality reduction.
An identity was assigned to each cell using the same label transfer method in Seurat as the
one we used for the published scRNA-seq datasets,described above. Anchors between our
Col-0 object and the scr-3 object were identified using FindTransferAnchors in Seurat v3,
specifying our Col-0 object as the reference, and batch-corrected data as the reference assay.
The TransferData function was subsequently used to predict an identity for each mutant cell,
based on the set of anchors previously identified and using the developmental branched
identified in the trajectory analysis to annotate the Col-0 reference cells.

Comparison of cell type composition between scr-3 and wild type

Differences in cell type composition between scr-3 and wild type Col-0 cells were assessed
using the scProportionTest package in R '%2. To test if the differences in cell proportion
between two conditions isn’'t simply a consequence of randomly sampling a number of cells,
this package uses a monte-carlo/permutation test. Cells from both samples are pooled
together and then randomly segregated back into two conditions, maintaining the original
sample size. The proportional difference between the two conditions for each cell identity is
calculated and compared to the observed proportional difference. This process is repeated
1,000 times, and the p-value represents the number of simulations where the simulated
proportional difference was at least as extreme than observed (plus one) over the total number
of simulations (plus one). This test was performed between the scr-3 sample and each Col-0
replicate independently, which are approximately the same size. A cell type was considered
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significantly enriched or depleted if FDR < 0.05 and |log2(fold difference)|>0.58, in each
comparison.

Early- and late- genes score in ground tissue lineage

The “early genes score” corresponds to the “stemness score” calculated with genes specific
to the early stages of epidermis development in the epidermis-root cap lineage, but the
AddModuleScore was applied to scr-3 cells.

The “late genes score” was similarly calculated using genes specific to late stages of epidermis
differentiation in the epidermis-root cap lineage. This time, positive markers for clusters 3, 8,
19, 25, and 27 (late epidermal stages) of our reference atlas were identified and combined.
From this list of markers we subtracted the genes that were specifically enriched in other
clusters of the lineage (0, 1, 4, 5, 9, 12, 16, 26, 28). We used these “late genes” as features
in the AddModuleScore function, applied to scr-3 cells.

Testing the effect of media composition on cell states

To test the effect of lowering nutrient concentration in the media, a set of plants grown on full
(1x) MS or half (0.5x) MS were processed simultaneously in the exact same conditions, to
avoid capturing other confounding effects. Two biological replicates were used per condition.
Only Col-0 cells were used in these experiments, and therefore half of the doublets could not
be removed based on SNP detection. However, doublets are expected to be present at the
same rate in both conditions, hence not affecting the comparisons.

Data processing and cell identity assignment

A Seurat object with the four replicates was created. Cells with <200 expressed genes were
removed, and genes expressed in <3 cells were removed. Data was log-normalized and
scaled. The top 5,000 HVGs were detected using the FindVariableFeatures function in Seurat
with the parameter nfeatures=5000. Genes affected by protoplast isolation were removed from
this set of HVGs. PCs were computed and the top 30 PCs were used for UMAP dimensionality
reduction.

Identities were assigned to cells using the FindTransferAnchors and TransferData as
described above. Our Col-0 dataset with batch-corrected data, and the different cell types
annotations with and without the ERS, were used as a reference.

Comparison of cell state composition

To compare the proportion of cells in each cell state between the two nutrient conditions we
used the scProportionTest package in R as described above for scr-3. A test was performed
for each pairwise comparison possible using the four replicates. Cell proportions were
considered significantly different if FDR < 0.05.

Differential expression analysis

A differential expression test (t-test) was performed between each full MS replicate and each
half MS replicate, per cell state (i.e. cell type with or without the ERS [ERS+, ERS-]), using the
FindMarkers function in Seurat (v3), and the test.use="t" parameter. The default log fold-
change threshold used in this function is 0.25, and p-values are adjusted based on the
Bonferroni correction.

To avoid taking into account variation in expression in cells where genes are very lowly
expressed, we measured the average expression of all detected genes per cell state using
the AverageExpression function, and also the mean of the average expression across all cell
states. We then subsetted the DE results per cell state to keep only the genes whose average
expression in the cell state is higher than the mean of the average expression across all cell
states.

Genes that were systematically found up- or down-regulated in each of the four replicate
comparisons were considered differentially expressed.

The average expression of DEGs per cell state and per condition was calculated, scaled, and
plotted, together with results of the DE test, using ComplexHeatmap with the following
parameters for hierarchical clustering of genes: clustering_methods _rows = “ward.D2”,
row_split = 10.

GO term enrichment

27


https://doi.org/10.1101/2022.03.04.483008
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.04.483008; this version posted April 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A GO term enrichment was performed for each cluster of DEGs, using PANTHER and the GO
Ontology database *, as described above for the co-expression gene modules. Enriched
terms were subsetted to keep only the most specific term per “hierarchical” group.

Counting of hair cells

Seedlings were grown vertically on full (1x) or half (0.5x) MS plates, as for scRNA-seq
experiments. Pictures of the roots were taken at 6 dag, using a stereomicroscope (n = 16 for
full MS, n = 23 for half MS, from two different plates each). A portion corresponding to
approximately 2.5mm from the tip was selected for each root picture, and root hairs were
counted manually using the Cell Counter plugin in Fiji. A significant difference in root hair
density between the two conditions was determined using a Wilcoxon Rank sum test
(wilcox.test function) in R.

Note that the seedlings used for this quantification were in the “top” row of the plate (seeds
are sown in two rows for scRNA-seq experiments). Roots of seedlings grown in the bottom
row tend to have fewer root hairs (in both conditions).

Arabidopsis accessions comparison

Our reference atlas was subdivided into 82 clusters, and clusters were annotated based on
the cell state annotation of Col-0 cells obtained with the trajectory analyses (cell types with or
without the ERS [ERS+, ERS-]).

Differential expression analysis

The dataset is composed of different numbers of replicates per accession. For each possible
inter-accession replicate pair, a differential expression test (t-test) was performed, per cell
state, using the FindMarkers function in Seurat (v3), the test.use="t" parameter and default
log fold-change and p-value cutoffs. To avoid taking into account variation in expression in
cells where genes are very lowly expressed, we measured the average expression of all
detected genes per cell state, in Col-0 cells, using the AverageExpression function, and also
the mean of the average expression across all cell states. We then subsetted the DE results
per cell state to keep only the genes whose average expression in the cell state is higher than
the mean of average expression across all cell states. Genes were considered DE between
two accessions only if they were systematically up- or down-regulated in all possible replicate
pairwise comparisons.

For a gene to be called an accession-specific DEG, it had to be systematically DE in a given
accession compared to the other four, but not be DE in any pairwise comparison between the
remaining four accessions. Similarly, DEGs specific to two accessions had to be
systematically DE in the two accessions as compared to the other three, but not be DE in any
pairwise comparison between the remaining three accessions. As shown in fig. S15, most
DEGs were specific to one accession, rather than two, hence we subsequently focused on
those specific to one accession.

Gene clustering

For each category (up- or down-regulated in a specific accession), the average expression
per DEGs per cell state and per accession was calculated, scaled, and plotted using
ComplexHeatmap. The kmeans function was used to cluster DEGs based on their expression
pattern, and the number of clusters was adjusted for each category.

GO term enrichment

A GO term enrichment was performed for each category of accession-specific DEGs (Fig. 6A)
and for each cluster per category (fig. S16), using PANTHER and the GO Ontology database
% as described above for the co-expression gene modules. Enriched terms were subsetted
to keep only the most specific term per “hierarchical” group.

Only the clusters that have at least one enriched GO term were displayed in Fig. 6B.
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Fig. 1. A high-resolution single-cell atlas of the Arabidopsis root tip

(A) Schematic representation of the root tip, the experimental procedures to obtain
protoplasts and perform single-cell RNA-seq, and in silico strategy for identifying singlets
and multiplets. (B) UMAP plot of our reference atlas of 87,258 cells from five Arabidopsis
accessions. Cells are colored by clusters whose identity is determined by whole-mount in
situ hybridization chain reaction (HCR). (C) Violin plot showing the cluster-specific
expression of 19 markers used for determining cluster identity via whole-mount HCR. (D)
Whole-mount HCR of the 19 markers identified in (C) for precise cell type assignment of the
clusters. Scale bar = 50um. (E) Dotplot showing the representation in published root
single-cell datasets of the different root cell types we identified in this study. Dot size
represents the percentage of cells within a cell type. Cell assignments were obtained by
transferring cell labels from our reference atlas. Red rectangles indicate cell types detected
in our atlas but not detected in the published study’s original assignment, and orange
rectangles show cell types that were detected in the other study but at a lower definition of
cell identity.
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Fig. 2. Pseudotime analysis reveals unexpected complexity in cell lineage trajectories
(A) UMAP plot of the Col-0 cells showing the different cell lineage subdivisions treated
independently in the pseudotime analyses. Cells are colored by subclusters in each lineage.
(B) UMAP plot showing the diffusion pseudotime assignment for each cell, per lineage. t=0
corresponds to the cell with the highest “stemness score” (see fig. S5) and t=1 represents
the most distinct state from t=0 in the lineage. (C) Developmental trajectories obtained by
combining the connectivity between the subclusters shown in (A) computed in a partition
based graph abstraction (PAGA) and the pseudotime inference calculated in (B) reveal two
distinct developmental branches affecting most of the cell lineages (named branch 1 and 2).
(D) Pseudotime-dependent expression in the columella and root cap. Heatmap showing
clusters of branch- and pseudotime-specific genes affecting the four different branches of the
root cap. Examples of genes known to be expressed at specific stages are labeled on the
left. Cells were ordered in pseudotime for each branch and binned in bins of 100-cells. (E)
UMAP plots (top) and confocal images (bottom) of whole-mount HCR showing the
expression of two XPP markers: XTH21 (left) and AT3G47510 (right). Optical transverse
sections (i for XTH21; ii and iii for AT3G47510) show that AT3G47510 is detected (iii) at
much later developmental stages (At) than XTH271 (i). While XTHZ21 is detected
homogeneously in the XPP (i), AT3G47510 is only detected in a portion of the XPP cells (iii,
yellow arrow), with some cells having no fluorescent signal (iii, white arrow). Yellow “x” marks
xylem cells. Scale bar = 50um. (F) UMAPs and violin plots showing the expression of
CASP1 and PHO1;H3 in the endodermis. CASP1 is enriched in the developmental branch 2,
and PHO1;H3 in branch 1. (G) 3D views and optical sections showing the expression of
CASP1 at the root tip by whole-mount HCR. CASP1 is expressed only in a subset of the
endodermal cells close to the meristem (i and ii), and homogeneously in the endodermis at a
more differentiated stage (iii and iv). Yellow and white arrows indicate positive and negative
cells respectively. Scale bar = 50um.
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Fig. 3. Co-expression gene modules identify a branch-specific transcriptional
signature common to multiple cell types

(A) Heatmap showing the expression pattern of the 64 modules of co-expressed genes
obtained from the self-organizing map (SOM) analysis. Cells were ordered in pseudotime,
per developmental branch, and grouped in bins of 100-cells each. Barplots show the number
of genes and transcription factors (TFs) per module. The cell types the modules are enriched
in are listed on the right. Branch 1-specific modules are highlighted in green. (B) Dotplot of
enriched GO terms per co-expression gene module described in (A). Terms associated with
the branch-1 specific (environmentally responsive state [ERS]) modules are highlighted in
green. (C) UMAP plot and confocal images showing the expression of VDOF1, which
belongs to a branch-1 specific module, in the scRNA-seq dataset and in vivo detection and
visualization by whole mount HCR. Multiple transverse optical sections along the longitudinal
axis of the root are shown. Scale bar = 50um. (D) Focus on the genes associated with the
ABA- and circadian-related terms, which are specifically enriched in branch-1 specific
modules.
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Fig. 4. Putative cell-autonomous regulators of the ERS confirm ABA-responsive and
circadian signature

(A) Predicted cell-autonomous regulators (TFs) of the co-expression gene modules,
identified by enrichment of TF binding target genes in the modules (numbered on left) that
they are expressed in (Fisher’s exact test, FDR <0.05). Heatmap shows the proportion of
genes in each module that are identified as targets of each listed TF regulator, and barplots
show the number of predicted binding targets in the genome and in the module for each TF.
The target source color key indicates whether the targets have been determined directly for
each TF by DAP-seq or imputed from a similar TF using the cis-BP binding similarity
predictions. Asterisks and circles indicate known developmental regulators of the cell type
the TF is enriched in and circadian-regulated genes, respectively. (B) TF-target networks in
ERS modules 47, 48, and 49. Putative cell-autonomous regulators (squares) are linked to
their predicted targets (circle) by an arrow. Regulators that are also targets are indicated by
red arrows. Only genes associated with the enriched ABA-, hormone-, development- and
circadian-related terms are highlighted.
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Fig. 5. The ERS is maintained upon developmental perturbations of cell identities and
modulated by nutrient availability

(A) UMAP plot of cells from scr-3 root tip scRNA-seq. Cells are colored by the cell type they
have been assigned to, using our Col-0 reference atlas. (B) Dotplot showing the proportion
of cells of each cell type in the mutant as compared to the five Col-0 replicates. Cell types
significantly over- or under-represented (permutation test, FDR<0.05) in scr-3 as compared
to each of the Col-0 replicates are indicated (see fig. S12). (C) Close-up of the stele cells in
the scr-3 UMAP plot (indicated by box in panel (A)). Cell assignment takes into account the
environmentally responsive state (ERS) branching events. (D) Close-up of the ground tissue
cells in the scr-3 UMAP plot (indicated by box in panel (A)). An “early” and “late” gene score
(similar to that shown in fig. S5) has been calculated to infer trajectory direction in scr-3
ground tissue cells. Three developmental paths are detected. Ground tissue cells are
grouped in five different clusters (path 1 early, path 1 late, path 2 early, path 2 late, path 3).
Stacked barplot shows the proportion of cells in each path that has been assigned to the
cortex 1, cortex 2, endodermis 1, and endodermis 2 identities. (E) UMAP plot of cells from
root tips grown in different nutrient availability conditions: full (1x) or half (0.5x) concentration
Murashige and Skoog (MS) media (2 replicates per condition). Cells are colored by cell
state. (F) Comparison of cell state (ERS+ or ERS-) proportion between replicates of the
same MS concentration (control) or different MS concentration conditions. Point-range plot
showing the confidence interval for the cell state (ERS+ or ERS-) proportional difference
between replicates, as compared to 1000 random permutations, to account for subsampling
effects (see Methods). Significantly different proportions (permutation test, FDR<0.05) are
indicated in pink. (G) Heatmap showing the scaled average expression per cell state (ERS+
or ERS-) of genes differentially expressed (DE) between the half (0.5x) and full (1x) MS
media conditions, in at least one cell type. Genes are clustered by their expression pattern.
Barplots indicate enriched GO terms per cluster, colored by enrichment p-value.
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Fig. 6. Natural variation in the environmentally responsive state

(A) Matrix showing the number of cell type-specific differentially expressed genes (DEGSs)
between Arabidopsis accessions and their associated GO terms. Matrix color indicates the
number of DEGs, and arrow indicates the direction of differential expression in the indicated
accession. (B) Heatmap showing the expression pattern of a subset in the clusters of
co-expressed accession-specific DEGs (fig. S16) that have enriched GO terms.
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