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Abstract 
 
 Roots are fundamental organs for plant development and response to their 
environment: they anchor the plant to its growth substrate, uptake nutrients and water vital to 
plant growth, and can sense and respond to a variety of biotic and abiotic stresses. The 
architecture of root systems and their growth are known to be strongly affected by the 
environmental conditions found in the soil. However, the acquisition of cell identities at the root 
meristem is still mainly viewed as ontogenetically driven, where a small number of stem cells 
generate all the cell types through stereotyped divisions followed by differentiation, along a 
simple developmental trajectory. The extent to which environmental cues precisely shape and 
affect these developmental trajectories remains an open question. We used single-cell RNA-
seq, combined with spatial mapping, to deeply explore the trajectories of cell states at the tip 
of Arabidopsis roots, known to contain multiple developing lineages. Surprisingly, we found 
that most lineage trajectories exhibit a stereotyped bifid topology with two developmental 
trajectories rather than one. The formation of one of the trajectories is driven by a strong and 
specific activation of genes involved in the responses to various environmental stimuli, that 
affects only of a subset of the cells in multiple cell types simultaneously, revealing another 
layer of patterning of cell identities in the root that is independent of cell ontogeny. We 
demonstrate the robustness of this environmentally responsive transcriptional state by 
showing that it is present in a mutant where cell type identities are greatly perturbed, as well 
as in different Arabidopsis ecotypes. We also show that the root can adapt the proportion of 
cells that acquire this particular state in response to environmental signals such as nutrient 
availability. The discovery of this cell state reveals new layers of cell identity that may underpin 
the adaptive potential of plant development. 
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Main text 

The root of Arabidopsis thaliana is a powerful model for studying cell differentiation in 

plants. In this organ, cell types are arranged in concentric layers around a central vascular 

bundle with a bilateral symmetry (Fig. 1A). Numerous morphological and genetic studies have 

demonstrated that each cell type corresponds to a cell lineage that is generated by a specific 

stem cell population maintained near the tip, in a region called the meristem 1. Within the cell 

lineages, with each new stem cell division, cells are displaced upwards and differentiate, 

thereby creating a longitudinal developmental trajectory where the spatial arrangement of cells 

recapitulates the temporal dynamics of differentiation (Fig. 1A). 

While transcriptional characterisation of root cell populations has previously focused 

on the analysis of bulk sorted lineages, the recent development of single-cell technologies is 

enabling more precise investigation of the spatio-temporal diversity of cellular states 2–6. 

Single-cell RNA-sequencing (scRNA-seq) has recently been used to better define the gene 

expression signatures of the known cell types of the Arabidopsis root and, by arranging cells 

of each lineage in developmental trajectories, more finely define the dynamics of gene 

expression during cell differentiation 7–14. While this has been crucial for identifying transient 

cellular states in some cell lineages, these studies have treated each lineage independently, 

overlooking potential layers of gene regulation that do not depend on the developmental origin 

of the cell. 

Here, we map each cellular state of the root, providing the most precise root cell atlas 

to date, by a combination of scRNA-seq and whole-mount in situ hybridization chain reaction 

(HCR) 15. We show that many cell lineages exhibit a more complex topology than anticipated 

by using cell trajectory analyses. We determine that these topologies are a result of a strong 

transcriptional signature superimposed upon the developmental identity of a subset of the cells 

in each lineage, and controlled by environmental cues and plant hormones. As a result, cell 

types in the root are in fact composed of subsets of cells whose function is modulated in 

response to environmental information perceived by the plant. 
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Results 

 
A high-resolution atlas of Arabidopsis root cell lineages reveals uncharacterized 

branching events in developmental trajectories 

To characterize cell states and their dynamics during root development, we generated 

a high-resolution scRNA-seq (10x Genomics) atlas of the wild type Arabidopsis root tip. 

Protoplasts were isolated from root tips of two different Arabidopsis ecotypes, mixed at the 

same concentration, and processed for single cell transcriptome profiling to enable 

disambiguation of bona fide single cells from background and doublets (see Methods) (Fig. 

1A, fig. S1, A to E). We obtained a total of 87,258 wild-type cells from 5 different ecotypes 

(accessions), and detected a total of 25,738 genes, with a median of 10,255 unique molecular 

identifiers (UMIs) and 3,199 genes detected per cell. After excluding 1,859 genes we detected 

as significantly affected by protoplast isolation (see Methods), we removed batch- and 

genotype-specific differences to create a reference atlas (Table S1, Fig. 1B) 16. 

We performed clustering and differential expression analyses to characterize the 

cellular heterogeneity within our dataset. In a first attempt to assign an identity to the 29 

resulting clusters, we compared our cluster-specific genes with published gene expression 

profiles of sorted populations of root cell types expressing fluorescent reporters (fig. S2) 6. 

Although some of the markers from sorted cells intersected with our cluster markers and 

allowed potential identification of some cell types, the dataset did not provide any specific 

marker for the lateral root cap, procambium, and xylem pole pericycle clusters. Moreover, the 

markers of several of our clusters were not enriched specifically in any sorted populations, 

making it difficult to clearly assign an identity. To circumvent this difficulty, we adapted a whole-

mount HCR 15 method to optimize it for Arabidopsis root tips and combined it with a clearing 

technique 17 in order to precisely map the expression of the 19 most specific cluster markers 

of our dataset (Fig. 1C). Using this method, we could identify all the known cell types of the 

root and, beyond this, subpopulations of the root cap (early, tip, and lateral) (Fig. 1D). Only 2 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.03.04.483008doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.04.483008
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

genes (AT3G23830 and AT3G25980) did not have cell type-specific expression patterns when 

examined by HCR, contrasting with their definition as cluster-specific markers. However, their 

associated clusters could be identified as the meristematic portion of the epidermis (cluster 

16) and early dividing cells in root cap formation (cluster 28) (see Methods). We annotated 

these clusters as “epidermis - meristem” and “root cap - dividing cells”.  

To demonstrate the value of our reference atlas and the precision of cell identification 

obtained with the in situ hybridization, we used it to annotate cells from all published 

Arabidopsis root tip datasets 7–10,12,13, with the Seurat label transfer method (Fig. 1E), and 

compared it to their original assignment. While all the cell types we characterized are present 

in the published studies except one, their original assignment was less precise. All other 

studies were missing at least one cell type or sub-cell type that we identified, such as the 

pericycle subdivision into phloem pole pericycle (PPP) and xylem pole pericycle (XPP), 

potentially due to their reliance on bulk sorted population gene expression data to assign cell 

identities, which we determined does not allow identification of all cell types of the root. This 

demonstrates the importance of precisely spatially resolving our single-cell data to validate 

cell states independently. 

A striking feature of our dataset (Fig. 1B) is the clear grouping of cells according to 

their developmental lineages (epidermis - root cap, cortex, endodermis, XPP, PPP, 

procambium, phloem, and xylem), confirming that the ontogenic signal is the strongest 

transcriptional component of cell identity. Within each of the lineages, cells can be ordered in 

trajectories that recapitulate the developmental transitions from an undifferentiated to a 

differentiated state. For this trajectory analysis, we focused on the Col-0 accession cells only, 

and subsetted the dataset into eight lineages that were treated independently (Fig. 2A). For 

each lineage, we performed sub-clustering of the cells (Fig. 2A) and calculated a “stemness 

score” (see Methods) that allowed identification of the cell with the most meristematic state, 

which was then considered as the starting point (t=0) of the trajectory (Fig. 2B, fig. S4). A 

partition-based graph abstraction (PAGA) method 18 was used to infer putative transitions 
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between clusters, thereby identifying the topology of the cell lineages (Fig. 2C), and the 

developmental directionality of the trajectories was determined by computing the diffusion 

pseudotime 18–20 from t=0 (Fig. 2B). The combination of both the PAGA and pseudotime 

reveals all the potential branching events occurring during development (Fig. 2C).  

The “epidermis - root cap” lineage exhibits the most complex topology, with the inferred 

trajectories recapitulating known developmental events: the split of epidermal cells into hair 

cells and non-hair cells, and the split of the root cap into a part that will grow laterally and a 

part that will grow towards the tip and converge with columella cells to form the sloughing 

border cells 21 (Fig. 2C). While those branching events are known to happen in vivo, to date 

no root single-cell analysis has been able to identify them, further highlighting the resolution 

of our cell annotations and trajectory analyses. We used the root cap trajectories to 

demonstrate that we can identify trajectory- and pseudotime-specific variable genes, including 

genes known to be involved at different stages of root cap development, for instance the Dof 

transcription factor (TF) CDF4 expressed in the differentiating columella 22, SMB activated in 

early root cap development 23, the ROOT CAP POLYGALACTURONASE (RCPG) expressed 

at the tip, or BFN1 expressed laterally at the programmed cell death site II 24, further validating 

the imputed developmental trajectories (Fig. 2D). 

For all the other lineages, except phloem and xylem that are composed of different cell 

types, the trajectories are expected to be linear with a single transition from an undifferentiated 

to a differentiated state, recapitulating the longitudinal arrangement of cells. Unexpectedly, the 

PAGA analysis shows that all other cell types of the root have not one but two branches in 

their trajectory that diverge at a very early pseudotime point (Fig. 2, B and C). To independently 

verify that this topology really corresponds to two branches (“branch 1” and “branch 2”) 

diverging from an earlier developmental starting point, and not a misassignment of t=0, we 

performed whole-mount HCR of two genes that are expressed in early and late stages of XPP 

development based on the scRNA-seq data (Fig. 2E). We observe that XTH21, which is 

expected to be expressed early in both XPP branches, is indeed detected in all XPP cells 

close to the meristem, while the late XPP branch 1 marker AT3G47510 only starts to be 
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detected much further away from the root tip and is not homogeneously detected across XPP 

cells. This confirms the branching nature of these trajectories over development, which reveals 

two previously unidentified in vivo alternate cellular states.  

We also validated the endodermis trajectory by looking at the expression pattern of the 

casparian strip formation regulator CASP1 by whole-mount HCR (Fig. 2F). CASP1 is strongly 

expressed at a late converging state between branch 1 and branch 2 in the endodermis, but 

starts to be expressed earlier in branch 2 endodermis cells. We found that CASP1 mRNA is 

indeed strongly detected throughout the endodermis in late differentiated states, but was found 

to be detected in only a subset of the cells closer to the meristem (Fig. 2G). While CASP genes 

tend to be enriched in branch 2, branch 1 is enriched for PHO1;H3, a marker for passage cells 

25, which are a specific population of un-suberized cells in the differentiated endodermis that 

act as cellular gatekeeper, controlling access to the root interior 26. Thus, the branching event 

we observe early in endodermis formation might be involved in the specification of passage 

cells before the onset of suberisation. 

  Importantly, when we assign identities to cells from published Arabidopsis root 

scRNA-seq datasets using our reference atlas and incorporating the branch identities, all 

datasets have cells assigned to both branches for all affected cell types, with similar genes 

found to be branch-specific (Fig. S5), demonstrating that this diversity of cell states is a robust 

feature of roots when characterized at single cell resolution. 

 While we expected to observe gradients of gene expression in each root lineage that 

recapitulate changing cellular states throughout differentiation, the observation of two 

alternate states on top of the pseudotime differentiation axes of multiple lineages 

demonstrates that another level of complexity exists in most cell types, which was not 

previously anticipated. 

 
A common transcriptional signature drives the branching of multiple lineages 

In order to globally identify the cell type-, branch-, and pseudotime-specific 

transcriptional signatures, and the specificities and commonalities between them at the whole 
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root level, we used self-organizing maps (SOM) to detect modules of co-expressed genes in 

our Col-0 dataset. We identified 64 distinct modules, composed of 78 to 791 genes each (Table 

S2), and visualized their average scaled expression across the eight cell lineages over 

pseudotime (Fig. 3A) and their associated GO terms (Fig. 3B). 

Modules specific to each cell type of the root were detected, many of which contain 

genes known to be expressed in the respective lineages. For instance, genes related to 

secondary cell wall formation and xylem development were enriched in xylem specific modules 

(57, 58), the “root hair differentiation” term was enriched in epidermal modules 34-35, and the 

casparian strip formation genes CASP1-5 associated with the “cell-cell junction assembly” term 

were enriched in the late converging endodermis state and earlier in branch 2 (module 41) 

(Fig. 3B, Table S2).  

We found branch-specific gene modules for all lineages that exhibited a branch split, 

from the endodermis inwards. For instance, module 39 is composed of genes particularly 

enriched in branch 1 of the endodermis but not branch 2, and module 54 is enriched in branch 

1 of phloem and PPP lineages (Fig. 3A). Crucially, we found that the majority of the branch-

specific modules affect multiple cell types simultaneously, and are always enriched in the same 

branch. We identified a group of five modules (modules 47-51) that are specifically enriched in 

branch 1 of multiple cell types (endodermis, PPP, XPP, procambium, phloem, and xylem), 

revealing a common gene expression signature specific to a subset of the cells in all of these 

distinct lineages, regardless of their developmental origin (Fig. 3A, fig. S6), and which would 

be responsible for the bifurcation observed in the PAGA trajectories (Fig. 2C). We note that, 

although the branch 1-specific genes are always enriched in multiple lineages simultaneously, 

some variation can be observed in the level of enrichment across different cell types, 

suggesting that this transcriptional state is not exactly equivalent in all cell types. This 

hypothesis of a common co-expression signature superimposed upon distinct developmental 

identities is further supported by the observation that the number of genes and transcripts 

detected in branch 1 as compared to branch 2 is systematically higher, in all cell types (fig. S7, 

A and B). However, the formation of the branches is not a result of a coverage (number of 
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UMIs per cell) artefact, as demonstrated by downsampling analyses (fig. S8). This is also 

observed for cells assigned as branch 1 or branch 2 in our reanalysis of published Arabidopsis 

root scRNA-seq datasets (fig. S7C), although the branching and associated transcriptional 

states were not previously discerned in these studies. Moreover, the five branch-specific 

modules, and in particular module 47, contain a high proportion of transcription factors, which 

could underpin the increase in detected transcripts and genes specifically in those cells (Fig. 

3A). 

We note that although the PAGA analysis did not detect two branches for the epidermal 

hair cell and non-hair cell trajectories, a small branch with the lowest number of genes and 

UMIs that does not express the branch 1-specific genes can also be observed in the epidermal 

cell types, suggesting that higher resolution profiling might detect analogous epidermal 

branching (fig. S8, A and B). In the cortex, however, the branching event identified in the 

pseudotime analysis does not appear to result from the same superimposed state that is 

common to other lineages, and was not considered in subsequent analyses. 

Assessment of protoplast isolation responsive-genes verified that this branch-specific 

gene signature is not due to sample preparation, since genes in these modules were not 

particularly up- or down-regulated after cell dissociation (fig. S9). Importantly, we 

independently validated the existence of this cellular state in vivo in a subset of the cells of 

many distinct types by performing whole-mount HCR of one of the branch 1-specific genes of 

module 47, the Dof transcription factor VDOF1 (Fig. 3C). We confirmed that VDOF1 is detected 

in multiple cell types simultaneously, and only in a subset of the cells. Notably, we did not 

detect a specific spatial arrangement of cells that express the gene, with the radial expression 

exhibiting variability along the longitudinal axis.  

Together, these co-expressed gene modules demonstrate that a gene co-expression 

signature common to a subset of cells from multiple lineages drives the formation of the branch 

1 state, highlighting another layer of regulation of cell identities at the root tip, independent 

from the developmental lineages. 
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The branch-specific transcriptional signature is linked to environmental responses 

To investigate the function and origin of this gene co-expression signature we assessed 

gene ontology (GO) terms enriched in the different branch-specific modules, including by 

grouping the branch-specific modules 47-51 that display highly similar enrichment patterns 

(Fig. 3C). Branch 1-specific genes are strongly associated with processes involved in response 

to stimuli and response to hormones, in particular to abscisic acid (ABA). Module 39, 

specifically enriched in the endodermal branch 1, contains 4 ABA-responsive TFs (ABF1, 

ABF2, ATHB-5, and ATHB-6) known to mediate transcriptional regulation of ABA stress 

responses 27–31, suggesting that this hormone pathway is particularly active in this subset of 

the endodermis cells. In modules 47-51, which are specifically enriched in branch 1 in multiple 

stele cell types, 50% of the genes associated with the term “response to hormone” are linked 

to other GO terms involving ABA (fig. S10). In particular, 14 genes involved in the “regulation 

of abscisic acid-activated signaling pathway” were found in these modules, including two 

members the C2-DOMAIN ABA-RELATED protein family (CAR6, CAR11), known to enhance 

ABA sensitivity by targeting its receptors to the plasma membrane 32, two ABA receptors 

(PYL5, PYL8) 33,34, the co-receptor and negative regulator ABI1 35–37, the kinase SRK2D 38,39, 

and three transcription factors known to mediate some ABA responses (MYB33, NAC096, 

SRM1) 40–42 (Fig. 3D, fig. S11). The receptor PYL8 seems to be particularly important for the 

regulation of ABA signaling in the root, compared to the other member of the PYL multigenic 

family. PYL8 levels are specifically increased by ABA treatments while no significant effect 

was observed for PYL1 and PYL4 43, and PYL8 is the only receptor of this family that known 

to play a non-redundant role in ABA sensitivity in the root 44. Altogether, this suggests that ABA 

signaling pathways are more active in the branch 1 cells and may be driving, at least partially, 

their specific patterns of gene expression. 

In addition to these hormone response links, the GO terms “circadian clock” and 

“regulation of circadian clock” were found exclusively enriched in the branch 1-specific 

modules (Fig. 3C). Among the branch 1 module expressed genes associated with these terms, 

we found the core clock genes TOC1 and CCA1 45, as well as other modulators of the clock 
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including ZTL 46, BZO2H3 47, the effectors of light signaling and entrainment of the clock FAR1 

48 and PHYB 49, and the members of the REVEILLE family RVE2, RVE4, RVE6, and EPR1 50–

52, the expression of which is clock-regulated (Fig. 3D, fig. S11). This strongly indicates a 

potential circadian input or output to the branch-specific state. 

Overall these functional enrichment analyses strongly suggest that the cellular state 

responsible for the branching events of multiple lineages is linked to responses to various 

environmental stimuli, therefore henceforth it will be referred to as the “environmentally 

responsive state” (ERS), with “branch 1” and “branch 2” corresponding to ERS-positive (ERS+) 

and ERS-negative (ERS-) cells, respectively. 

To investigate what is driving the ERS, we sought to identify putative cell-autonomous 

regulators of the different gene modules, by selecting TFs whose predicted binding target 

genes are enriched in the same module the TF is expressed in, using the Arabidopsis DAP-

seq dataset 53 and the predicted binding similarities from Cis-BP2 54. We identified 104 putative 

transcriptional regulators for 31 of the gene modules (Fig. 4A). Among these predicted cell-

autonomous regulators, 42 were previously described as playing a role in the development of 

the cell type they are enriched in, indicating our approach is effective at identifying important 

regulators.  

Candidate regulators identified for the branch-specific modules are in agreement with 

the enriched GO terms identified above (Fig. 4A). The ABA-responsive ATHB5 and ATHB6 

were found in the endodermis specific module 39. In the modules 47-51 enriched in the ERS+ 

cells of multiple cell types, we identified several TFs whose expression is circadian-regulated, 

including a group of Dof cycling factors CDF2, CDF3, and CDF5, and the REVEILLE genes 

RVE2, RVE4, RVE6, and EPR1 that encode known modulators of the clock. We also found 

the mediator of ABA responses ABF4. More generally the ERS-specific modules 47-51 are 

enriched for genes with an ABA-responsive element binding motif in their vicinity (Table S3). 

This TF-binding analysis further demonstrates the involvement of ABA and the circadian clock 

in the regulation of this ERS, as genes enriched specifically in this cellular state are not only 
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annotated as part of their biological processes but also putative targets of their regulators 

based on TF DNA binding data. 

Next, to better predict the effective cell-autonomous TF targets in vivo and the structure 

of the regulatory network per module, we combined the genome-wide binding sites predicted 

by DAP-seq and the co-expression modules identified by scRNA-seq. We investigated the TF-

target gene network of the ERS-specific modules 47-49, revealing links between the module 

genes belonging to the enriched ABA, hormonal, developmental, and circadian response GO 

terms (Fig. 4B). Although the circadian clock has been shown to regulate ABA biosynthesis 

and signaling, and ABA has been demonstrated to feedback on the clock 55, we only found a 

putative link between this pathways at the root tip: several cycling Dof and also RVE2 are 

predicted as regulating the expression of CAR6, CAR11 and PYL8, which are three enhancers 

of ABA sensitivity.  

In sum, the ERS that is present in only a proportion of cells regardless of their lineage 

is strongly linked to pathways involved in the plant response to its environment, in particular 

through a specific signature of activation of ABA-related genes, a hormone known to play a 

crucial role in the response to stresses, as well as, unexpectedly, various key regulators of 

circadian responses. 

 
Branching events are maintained despite developmental perturbations 

We hypothesized that the ERS is superimposed on, and independent from, 

developmental identities because of the observation that it affects multiple cell types. 

Therefore, we next asked whether the ERS would be maintained upon developmental 

perturbations of cell types. To do so, we investigated cell identity alterations in the scr-3 line 

that has a premature stop codon in the SCARECROW (SCR) gene 56, which encodes a 

transcription factor that controls various cell identity processes in the endodermis and stele 1, 

which exhibit the ERS.  

We first characterized global changes in cell type composition by scRNA-seq of the 

scr-3 mutant root tip (Fig. 5A), using the Col-0 cells of our reference atlas to assign identities 
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to the mutant cells. Multiple cell types are affected in the scr mutant (Fig. 5B, fig. S12). As 

expected, both the endodermis and protoxylem were strongly depleted in scr-3 as compared 

to our five Col-0 replicates, and correspond to two well-characterized phenotypes of scr: the 

presence of a single ground tissue layer 57,58 and the ectopic formation of metaxylem in place 

of protoxylem 59. We also found other unexpected cell types to be affected in the mutant (Fig. 

5B, fig. S12). First, the columella, which was not reported to be altered in a previous study 

characterizing the single-cell phenotype of scr-4 13, is significantly depleted in scr-3. This is 

consistent with a previous report showing that columella stem cells in scr-1 abnormally express 

markers of differentiated root cap cells 60. Second, both the XPP and PPP identities are 

strongly reduced in the mutant (Fig. 5B). While the columella and pericycle cell types are 

depleted in the scr-3 dataset, their corresponding layers are present physically in scr-3 57. 

Thus, this phenotype is not caused by a morphological defect, but rather by the modification 

of the cell identities. We found that the root cap and procambium cells, which are cell types 

adjacent to the columella and pericycle in the root, are significantly over-represented in the 

mutant (Fig. 5B, fig. S12). We hypothesize that the cells that physically correspond to columella 

and pericycle in the wild-type root have respectively acquired a root cap and procambium 

identity in scr-3. Therefore, we demonstrate that a mutation in the SCR gene leads to a broad 

range of cell identity alterations, some of which were not previously described. Despite these 

major alterations in cell identity, with some cell types lost and others present ectopically 

compared to wild type, we detect cells assigned to the ERS for all cell types of the stele (Fig. 

5C) and observe its associated branching in the UMAP representation. 

In the mutant ground tissue layer, we observe that cells transition from a cortex to an 

endodermis identity, as recently reported by scRNA-seq characterization 13. Despite the 

endodermis identity not being present at early stages of development, both ERS+ and ERS- 

endodermal cells are detected in our scr-3 dataset (Fig. 5D). Three different developmental 

paths for the ground tissue layer are apparent: one that will differentiate into ERS+ endodermis, 

another into ERS- endodermis, and a third that will remain cortex (Fig. 5D). This further 

supports that the branching events caused by the ERS are not regulated developmentally and 
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formed by division events early in development, but rather are states superimposed on multiple 

cell lineage identities regardless of their cell type and developmental stage. 

 
Nutrient availability modulates the proportion of ERS+ cells 

 The genes and GO terms enriched in the ERS+ cells are strongly associated with 

responses to various environmental stimuli, and because of the link between the branching 

events and the passage cell marker PHO1;H3 (Fig. 2F), whose expression is affected under 

phosphate-, zinc-, and iron-deficiency conditions 25,61, we next aimed to characterize the effect 

of nutrient availability on the ERS. 

 We utilized scRNA-seq to compare the composition of cell transcriptional states in root 

tips grown on two different concentrations of plant basal growth media (full [1x] versus half 

[0.5x] concentration Murashige and Skoog [MS] media), thereby subjecting the plants to 

different concentrations of nutrients and vitamins. This range is commonly used in Arabidopsis 

studies and does not drastically affect root growth. We generated a dataset of 54,164 single 

cells, with 25,185 from seedlings grown on full MS and 28,979 from seedlings on half MS, each 

condition having two biological replicates (Fig. 5E). All cell types were detected in the dataset, 

at a similar proportion for each condition and replicate (fig. S13, A and B). We investigated 

differentially expressed genes (DEGs) between the two nutrient conditions for each cell type. 

Lower nutrient availability induced cell-type specific changes in the expression of 846 genes 

(average log fold-change ≥ 0.25, adjusted p-value < 0.05, t-test) (Fig. 5F, Table S4). For 

example, we detected an increase in the expression of genes involved in trichoblast formation 

in hair cells (cluster 9), multiple CASP genes in the endodermis (cluster 7), lignin biosynthetic 

regulators in multiple cell types (cluster 8), and various water transporters enriched in the 

cortex (cluster 10). The modulation of the formation of hair cells and the casparian strip and 

the ability to transport water are expected to be affected by changes in nutrient availability, and 

seedlings grown on half MS had a higher density of hair cells (fig. S14). We found that 174 

(20%) of the DEGs are specifically enriched in ERS+ cells, down-regulated under lower 

nutrient availability conditions (cluster 1), and associated with GO terms linked to response to 
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environmental stimuli and ABA (Fig. 5F). This suggests that the proportion of cells affected by 

this superimposed state could be modulated under different nutrient availability concentrations. 

 To test this hypothesis we compared the proportion of cells assigned as ERS+ vs ERS- 

for the endodermis and stele cell types, in the two different nutrient concentrations. We used 

a permutation test to compare each replicate of the dataset, allowing us to account for any 

sub-sampling effect that could contribute to the differences in proportion of cells in each branch 

(Fig. 5G). We found that ERS+ cells are significantly depleted (FDR < 0.05) in half MS as 

compared to full MS conditions in most cell types tested, consistent with the down-regulation 

of ERS-specific genes (Fig. 5F). We also observed a significant increase (FDR < 0.05) in the 

proportion of cells assigned as ERS- endodermis cells, which expresses the casparian strip 

regulators earlier in development. More generally, although not always significantly, ERS- cells 

tend to be more abundant in the lower nutrient availability condition. 

 These results demonstrate that this superimposed state is environmentally regulated. 

Variation in abiotic factors in these experiments, such as nutrient availability and osmotic 

pressure, can alter the transcriptional states of the root by modulating the proportion of cells 

that acquire the ERS, potentially to adjust the physiology of the root to different environmental 

conditions. 

 
ERS-encoded natural variation in root environmental responses 

 Arabidopsis accessions, which evolved under a variety of natural environments, offer 

a unique opportunity to study the molecular basis of the response to different environmental 

conditions. Since each of the replicate experiments performed for this study contained a mix 

of cells from two Arabidopsis accessions (Fig. 1A), we took advantage of this to explore the 

differences in cellular states, at the single-cell level, between five Arabidopsis accessions (Col-

0, Ws-2, Cvi-0, C24, and Ler), and particularly in the ERS. The ERS was detected in all 

accessions and was taken into account when assigning identities to the cells, in order to 

identify cell state-specific DEGs in pairwise comparisons between accessions. The detected 

DEGs (average log fold-change ≥ 0.25, adjusted p-value < 0.05, t-test) are predominantly 
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specific to one accession rather than shared between multiple (fig. S15), therefore we focused 

on the genes that are differentially expressed in one accession compared to the other four, 

and investigated the affected cell identities and associated biological processes (Fig. 6A, 

Table S5).  

 Overall, the accession-specific DEGs are strongly associated with GO terms related to 

response to stresses and stimuli (Fig. 6A). The extent of differential expression differed 

between cell types; a larger proportion of genes was differentially expressed in the cells of the 

root cap and ERS+ cells in the stele, compared with other cell types. This was particularly 

apparent for upregulated DEGs in Ws-2, the category with the highest number of genes, which 

are associated with cellular processes linked to environmental responses such as heat 

acclimation. Furthermore, the number of DEGs is often higher in ERS+ cells as compared to 

ERS- cells of the same cell types, in multiple accession-specific comparisons. This further 

highlights that environmental responses are encoded in the ERS in the root. 

 We clustered the DEGs from each category based upon their expression pattern 

across the five accessions (fig. S16, A to J) and retained the eighteen clusters that had 

enriched GO terms (Fig. 6B). Among them, nine clusters correspond to genes that are 

enriched in a branch-specific manner, seven in ERS+ cells of multiple cell types and two in 

ERS- cells. While accession-specific DEGs enriched in ERS+ cells are almost always 

associated with responses to environmental stimuli, DEGs enriched in ERS- cells are involved 

in more structural and general cellular processes such as cytoskeleton organization and 

respiratory electron transport, again highlighting the strong association of the ERS to 

environmental responses. 

 Arabidopsis ecotypes have evolved in different environments, which is reflected in the 

genes that are differentially expressed among them. We show that a large proportion of 

accession-specific DEGs known to be involved in environmental responses are part of the 

superimposed ERS active state. This suggests that the new cell identity parameter we have 

defined is likely involved in the response to different natural environments. 
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Discussion 

 Through deep characterization of root cell transcriptional states coupled to HCR spatial 

mapping, we have identified an alternate developmental trajectory for most root cell types, in 

particular the endodermis and the many stele cell types. This alternate path, which we term 

the environmentally responsive state (ERS), corresponds to a strong and specific 

transcriptional activity signature that is superimposed on a subset of the cells of multiple cell 

types simultaneously. Therefore, the identity of cells in the root tip can globally be 

characterized by three factors: 1) the lineage that defines the cell type, which is stable during 

development, 2) the developmental stage the cells are at, and 3) the presence or absence of 

an additional environmentally responsive state, which can vary based on environmental 

conditions  

Although an ERS can be detected in multiple lineages, it is not equivalent for all cell 

types. Some of the genes are enriched in all ERS+ cells regardless of their developmental 

origin, but other ERS-specific genes are restricted to a few lineages, suggesting that there is 

a level of cell-type specificity in the acquisition of this transcriptional state, probably due to the 

underlying regulatory networks established in each cell type. 

 This cellular state (ERS+) is characterized by the expression of genes involved in the 

responses to various stimuli and stresses, the activation of the ABA signaling pathway - 

especially in the endodermis - as well as an enrichment for regulators and effectors of the 

circadian clock. While ABA signaling has been demonstrated to be important for the 

modulation of root growth in response to salt stress, particularly in the endodermis 62,63, and 

the circadian clock is known to be influenced by various types of external and internal inputs 

64 as well as hormones such as ABA 55, here we provide the first demonstration that a network 

of pathways regulating the response to environmental cues are spatially restricted to a subset 

of gatekeeper cells of the root tip, and likely co-regulated. Future efforts will be required to 

identify the environmental cues and regulatory pathways that determine and control which 

cells will acquire the ERS.  
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We have demonstrated that the proportion of cells that acquire the ERS in each cell 

type can be modulated by environmental factors such as nutrient availability. Notably, we 

found a link between the branched states in the endodermis and a passage cell marker, 

suggesting that the regulation of the proportion of ERS+ cells could be a patterning event that 

pre-determines, early in development, the number of passage cells to be formed, thereby 

adapting the ability of the root to communicate with its environment. The discovery of this 

cellular state reveals new layers of complexity and cell specialization within the root, and 

opens the way to a better understanding of the role and integration of environmental stimuli in 

the modulation of root development. 
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Methods 
 
Plant material and growth conditions 
Seeds from wild type Arabidopsis thaliana ecotypes Col-0, Ws-2, Cvi-0, c24 and Ler, and scr-
3 (Col-0 background, NASC stock code N3997) were sterilized and densely sown in row on 
1x (or 0.5x, when testing the effect of nutrient concentration) Murashige and Skoog basal 
medium with vitamins (Austratec) plates supplemented with 1% sucrose (pH 5.7), and 
stratified in the dark at 4°C for two days. Plates were subsequently grown in long day 
conditions (16h light, 8h dark) at 22°C. 6-7 days after germination (dag), root tips (up to ~3mm) 
were collected for protoplast isolation using sharp tweezers. Seedlings used in all experiments 
were grown in the exact same conditions, and collected and processed at the same time of 
the day, except for 2 out of the 10 replicates used to generate the single-cell atlas, which were 
performed in a different lab as part of a pilot experiment. 
 
Protoplast isolation and scRNA-seq 
For each genotype, root tips were placed in 15ml of protoplasting solution 65 [1.25% w/v 
cellulase, 0.3% w/v macerozyme, 0.4M D-mannitol, 20mM MES (pH 5.7), 20mM KCl, 10mM 
CaCl2, 0.5% w/v BSA, and 5mM β-mercaptoethanol in ultrapure water] and incubated at room 
temperature for 1 hour on a tube rotator. The solution was subsequently filtered through a 
70μm and a 40μm cell strainer (Falcon) to separate protoplasts from undissociated tissue. 
Cells were centrifuged for 5 minutes at 500 x g in a swinging bucket centrifuge. The pellet was 
resuspended in 15ml of protoplast resuspension buffer [0.4M D-mannitol, 20mM MES (pH 
5.7), 20mM KCl, 10mM CaCl2, and 0.5% w/v BSA in ultrapure water] and centrifuged at 500 x 
g for 5 minutes. Cells were resuspended in the protoplast resuspension buffer, and filtered 
through a 35μm cell strainer Snap Cap (Falcon). The final concentration was adjusted to 900-
1,200 cells/μl. Protoplasts from two Arabdiopsis accessions were mixed in equimolar 
quantities and barcoded with a Chromium Controller (10X Genomics). Libraries were 
generated with reagents from a Single Cell Gene Expression kit (10X Genomics, Single Cell 
3’ Library kit) according to the manufacturer’s instructions. Libraries were sequenced either 
on an Illumina NextSeq 500 or a NovaSeq 6000, following recommendations of 10X 
Genomics. 
 
Preprocessing 
Reads were mapped using a modified version of the 10x Genomics CellRanger pipeline 
(v1.3.0) 66. Internally, CellRanger uses STAR to perform read alignments, and the pipeline 
was modified to allow the specification of STAR insertion and deletion alignment penalties, as 
well as the minimum and maximum allowed intron size 67. Reads were mapped to a version 
of the Arabidopsis (TAIR10) genome with ambiguous base codes placed at SNP positions for 
the genotypes sequenced, as identified by the Arabidopsis 1001 genomes project 68. Reads 
were mapped with the following STAR parameters: --alignIntronMin=10, --
alignIntronMax=5000, --scoreDelOpen=-1, --scoreDelBase=-1, --scoreInsOpen=-1, --
scoreInsBase=-1. 

Cell genotyping 
SNP UMIs were counted per cell using the countsnps command in the sctools package 
(https://github.com/timoast/sctools). Cells were then genotyped and cell doublets identified by 
performing density-based clustering on the SNP UMI counts for each genotype, implemented 
in the sctools genotype function. To classify cells at the border between those classified as 
“cell” and “background”, cells were further clustered in 30-dimensional principal component 
space using single cell gene expression data with an established graph-based clustering 
algorithm 69–71. Low UMI count droplets identified as “border” cells by sctools were given a 
“background” classification if they were assigned to a cluster with greater than 20% 
background droplets, otherwise they were classified as cells. This dimension reduction and 
clustering was performed using Seurat version 2.0.1 72,73. 
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Reference Atlas generation 
Normalization and feature selection 
The Seurat v3 R package was used for data normalization, cell filtering, batch correction, 
dimension reduction, and cell clustering 16,72,73. First, data were scaled to a total of 10,000 
molecules and log-normalized. Cells with <200 expressed genes were removed, and genes 
expressed in <3 cells were removed. For each sample, the top 5,000 highly variable genes 
(HVGs) were detected using a variance-stabilizing transformation, using the 
FindVariableFeatures function in Seurat with the parameters selection.method=“vst” and 
nfeatures=5000. Genes affected by protoplast isolation were removed from this set of HVGs 
(see “Identification of genes affected by protoplast isolation” section below for more 
information). 
Dataset integration 
Technical differences between batches were removed using the data integration methods 
described by Stuart et al. 16. First, canonical correlation (CC) vectors were calculated between 
each pair of datasets, using the log-normalized expression of HVGs. Next, L2 normalization 
was applied to these CC vectors to correct for differences in scale between datasets. Anchor 
cells were then identified between each pair of datasets, using the first 30 CC vectors and the 
closest 5 neighbor cells. This was performed using the FindIntegrationAnchors function in 
Seurat v3.0.0 with the arguments anchor.features=3000, dims=1:30, eps=1. An integrated 
expression matrix was then produced using the IntegrateData function in Seurat v3.0.0 with 
default parameters. To produce an integrated expression matrix enabling the identification of 
common cell states across all experiments, we first ran this integration procedure using all 
anchor pairs identified between each pair of datasets. This matrix was used for downstream 
dimension reduction, clustering, and cell type classification. We also created a second 
integrated matrix that retained genotype-specific expression differences, while removing 
differences due to batch, but first filtering out cross-genotype anchor pairs from the integration 
procedure. 
Cell clustering and visualization 
The integrated expression matrix, described above, was used for all clustering and low-
dimensional visualization of cells. The same set of 3,000 variable genes used for integration 
were used to calculate the top principal components, using the augmented implicitly restarted 
Lanczos bidiagonalization algorithm (IRLBA) 74. The top 50 principal components (PCs) were 
used to perform UMAP dimensionality reduction 75. Cell clustering was performed in the same 
50-dimension PC space, using a graph based method as described previously 69–71. First, a k-
nearest neighbor graph was constructed (k=30), and converted into a weighted shared nearest 
neighbor graph, with the graph weights representing the overlap between neighborhoods. 
Cells were then grouped into clusters through the identification of highly interconnected nodes 
in the graph, using the smart local moving algorithm 76. These steps were performed using the 
FindClusters function in Seurat v3.0.0. 
 

Identification of genes affected by protoplast isolation 
Plants were prepared as for scRNA-seq, described above. Four replicates each of dissociated 
and of non-dissociated root tips were compared. For dissociated samples, root tips were 
placed in the protoplasting solution for 1 hour at RT, as for scRNA-seq. After this incubation, 
samples were centrifuged for 5 minutes at 500 x g, the supernatant was removed, and the 
tissues were snap-frozen in liquid nitrogen and ground into a powder. For non-dissociated 
samples, root tips were collected and directly snap-frozen and ground into powder in liquid 
nitrogen. Bulk RNA-seq libraries were generated using the TruSeq stranded mRNA kit 
(Illumina). Bulk RNA-seq libraries were sequenced on the Illumina HiSeq 1500 (single end, 
101 cycles). RNA-seq read quality was assessed using FastQC and MultiQC 77,78. RNA-seq 
reads were trimmed with Trimmomatic v0.36 with the following parameters: 
ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:36 79. Reads were aligned to the TAIR10 genome using STAR 67 with the following 
parameters: --alignIntronMax 5000, --alignIntronMin 10, --readFilesCommand zcat,--
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quantMode GeneCounts, --outSAMtype BAM SortedByCoordinate. Differentially expressed 
genes due to the cell dissociation were identified using the DESeq2 R package 80, with a 
Benjamini Hochberg adjusted p-value <0.001 and a log2 fold change in expression >2. This 
experiment was repeated twice, and genes that were identified as differentially expressed in 
both experiments were taken as the set of genes affected by protoplast isolation. 
 
Identification of markers from sorted cell populations 
Raw sequencing data from Li et al. was downloaded from SRA (PRJNA323955) 6. Reads were 
trimmed to remove sequencing adapters and low quality bases using trimmomatic 81 with 
parameters ILLUMINACLIP:TruSeq2-PE.fa:2:30:10, LEADING:3, TRAILING:3, 
SLIDINGWINDOW:4:15, MINLEN:36. Genes were quantified using kallisto quant 82 with -b 
100 to perform 100 bootstrap samples, using the TAIR10 CDS sequences. Differentially 
expressed genes specific for each FACS-sorted cell population were then identified using 
DESeq2 83 with default parameters. Differentially expressed genes were then filtered to retain 
genes that were unique to one cell type, had a false discovery rate (Benjamin-Hochberg) <0.2, 
and a log2 fold change >1 compared to the mean expression across all other cell types. 
 

Whole-mount in situ HCR 
Probe design 
Candidate cluster markers for our reference atlas were generated using the FindAllMarkers 
function in Seurat, with the only.pos = TRUE parameter. To select the best target genes, 
cluster markers were filtered based on the following criteria: the gene should be detected 
almost only in the cluster(s) it is enriched in, and have a large portion of its coding sequence 
that doesn’t share homology with other Arabidopsis genes, to allow for design of highly specific 
probes for these sequences. Split probes for our target genes were designed and synthesized 
by Molecular Instruments (www.molecularinstruments.com). 
Sample fixation and dehydration 
The procedure is similar to the one described in 84. Roots were collected at 6 dag, as for 
scRNA-seq, and immediately placed in FAA [20% formaldehyde, 5% acetic acid, 50% ethanol, 
in ultrapure water] for 1 hour at RT. Samples were then dehydrated in successive 10 min 
washes at RT: once in 70% ethanol, once in 90% ethanol, twice in 100% ethanol. Samples 
were washed twice in 100% methanol and left in the second wash at -20°C overnight (or up 
to a few weeks). 
Permeabilization, protease digestion 
Roots were rehydrated in a series of 5 min washes at RT in 75%, 50%, 25% methanol in 
DPBS-T [0.1% Tween 20 in DPBS], and incubated in 1x cell wall digestion solution [10x stock: 
250mg macerozyme, 250mg cellulase, 125mg pectolyase, 375mg pectinase in 50ml ultrapure 
water] in DPBS-T. After a wash in DPBS-T, samples were fixed in 10% (v/v) formaldehyde 
[37% solution, Sigma-Aldrich] in DPBS-T for 15 minutes at RT and washed twice in DPBS-T. 
Roots were incubated in 1ml Proteinase K buffer [0.1M Tris-HCl (pH 8), 50mM EDTA (pH 8) 
in ultrapure water] with 8μl Proteinase K (10mg/ml) for 15 min at 37°C. After two washes in 
DPBS-T, samples were fixed in 10% (v/v) formaldehyde [37% solution, Sigma-Aldrich] in 
DPBS-T for 15 minutes at RT and washed twice in DPBS-T. 
Probe hybridization and amplification 
We followed the third-generation in situ hybridization chain reaction procedure developed by 
Molecular Instruments, and described in 15, but the dextran sulfate used in the Amplification 
Buffer had to be replaced by a low molecular weight dextran sulfate in order to preserve the 
root structure. 
Roots were pre-hybridized in the 30% probe hybridization buffer for 30 min at 37°C, then 
placed in the probe solution [1μl of probe mixture in 500μl of 30% probe hybridization buffer], 
and incubated at 37°C overnight. 
Samples were washed twice in the 30% probe wash buffer for 30 min at 37°C, then washed 
twice in 5x SSCT for 10 min at RT. Samples were placed in the Amplification Buffer for 30min 
at RT. In the meantime, fluorescently labeled hairpins were prepared by snap cooling 10μl of 
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3μM stock in the hairpin storage buffer. We only used HCR amplifiers coupled to Alexa 647 
fluorophores in this study. The hairpin solution was prepared by adding the snap-cooled 
hairpins to 500μl of amplification buffer. Samples were placed in the hairpin solution and 
incubated overnight at RT in the dark. They were subsequently washed three times in 5x 
SSCT for 20 min at RT. 
Clearing 
Samples were incubated in ClearSee 17 in the dark for three days. 
Cell wall staining and sample mounting 
Cell walls were stained by incubating samples in 1ml ClearSee + 2μl calcofluor solution 
[50mg/ml in DMSO] for 2 hours, in the dark. Samples were washed in ClearSee for 1 hour, in 
the dark, and mounted in ClearSee in a chamber made with a square coverslip and double-
sided tape. The chamber was sealed using top coat nail polish, and the samples were imaged 
on the same day. 
Imaging 
Mounted roots were imaged using a Nikon Ti-E inverted motorized microscope with Nikon 
A1Si spectral detector confocal system, and a water immersion objective. Calcofluor white 
and the Alexa 647-coupled amplifiers were excited at 405 nm and 640 nm, respectively. Seven 
to eight images were taken per root along the differentiation axis. Images were processed 
using Fiji 85. Images of the same roots were stitched using the Grid/Collection stitching plugin 
86, and the brightness/contrast was adjusted for each image based on the signal detected. 3D 
views of the root were obtained with the 3D viewer plugin 87, and optical sections with the 
Orthogonal Views method in Fiji. 
 
Identification of clusters 16 and 28 
The first, AT3G23830 (RBGA4), is detected in the meristem in various cell types including the 
epidermis (Fig. 1D). The cluster it is enriched in (cluster 16) is located between the 
differentiated epidermal clusters (hair cells and non-hair cells) and the early root cap clusters 
(Fig. 1B), suggesting that it represents meristematic cells of the epidermis. We have annotated 
this cluster as “epidermis - meristem”. The second, AT3G25980 (MAD2), involved in cell 
division, is sporadically detected in different cell types in the meristematic region (Fig. 1D). Its 
associated cluster (cluster 28) in the dataset (Fig. 1B) appears to link the “epidermis - 
meristem” cluster to the “root cap - early” cluster. To test whether this cluster represents a 
specific population of mitotic cells in the early events of root cap formation, or an artifactual 
grouping of all dividing cells of the dataset, we regressed cell cycle effects out and looked at 
the influence on clustering (fig. S3, A to C). Cells that belong to cluster 28 still cluster together 
after regression and are also associated with early root cap and epidermis clusters, 
demonstrating that it corresponds to the known early formative cell division occurring in the 
epidermis/root cap lineage 21. We named this cluster “root cap - dividing cells”. 
 
Cell cycle regression 
We used the CellCycleScoring function in Seurat to assign a cell cycle score to each cell of 
our reference atlas based on the expression of S phase marker genes [E2Fc (AT1G47870), 
E2Fb (AT5G22220), DPa (AT5G02470), CDKG;2 (AT1G67580), E2Fa (AT2G36010), DPb 
(AT5G03415), CYCA3;1 (AT5G43080), CYCA3;2 (AT1G47210), KRP5 (AT3G24810), KRP2 
(AT3G50630), KRP6 (AT3G19150), KRP3 (AT5G48820), WEE (AT1G02970), KRP4 
(AT2G32710), CYCD4;2 (AT5G10440)], and of G2/M phase marker genes [CYCB1;1 
(AT4G37490), CYCB2;1 (AT2G17620), CDKB2;2 (AT1G20930), CYCB3;1 (AT1G16330), 
CYCA2;2 (AT5G11300), CYCA2;4 (AT1G80370), CYCA1;1 (AT1G44110), CYCA2;1 
(AT5G25380), CDKD;1 (AT1G73690), CDKB2;1 (AT1G76540), CKS2 (AT2G27970), 
CYCB1;2 (AT5G06150), CYCD3;1 (AT4G34160), CCS52B (AT5G13840), CYCA2;3 
(AT1G15570), CCS52A2 (AT4G11920), CYCB2;3 (AT1G20610), CYCB1;3 (AT3G11520)] 
obtained from 88. This score is used to provide a predicted classification of the cell cycle phase, 
and to regress out cell cycle effects using the vars.to.regress = c(“S.Score”, “G2M.Score”) in 
the function ScaleData. 
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After regression, the top 50 principal components were calculated and used for UMAP 
dimensionality reduction. Cell clustering was performed in the same 50-dimension PC space, 
using FindNeighbors and FindClusters functions in Seurat, as for the atlas. 
 
Pseudotime trajectory analyses 
For the trajectory analyses, a new Seurat v2 object was created using Col-0 cells only and the 
batch-corrected data. Data was scaled and HVGs were detected using the FindVariableGenes 
function in Seurat v2 with the arguments x.low.cutoff = 0, and y.cutoff = -0.1. The genes 
affected by protoplast isolation we identified were removed from the set of variable genes. 
Principal components were computed and the top 30 PCs were used for UMAP dimensionality 
reduction, to generate the UMAP plot shown in Fig. 2 A and B. 
The Col-0 dataset was then subsetted into eight objects corresponding to the developmental 
lineages: epidermis-root cap, cortex, endodermis, phloem pole pericycle, xylem pole pericycle, 
procambium, phloem, xylem. Each lineage dataset was then processed independently for the 
following steps. 
“Stemness score” calculation 
The diffusion pseudotime analysis required the identification of a cell that will be considered 
as t=0 at the starting point of the trajectory. Therefore, we developed an approach for 
identifying the “most meristematic” cell in each lineage.  
We took advantage of the epidermis-root cap lineage having a cluster that is identified as 
meristematic, which links the epidermal clusters to the early root cap clusters. We first 
identified the markers specific to the meristematic state in the epidermis-root cap lineage, We 
generated a list of marker genes for all clusters of our reference atlas with the FindAllMarkers 
function with only.pos = TRUE argument. We defined the markers specific to the clusters 16, 
9, and 12 as “early markers” for the meristematic region, and the markers specific to clusters 
0, 1, 3, 4, 5, 8, 19, 25, 26, 27, and 28 as “late markers” for differentiated stages in the lineage. 
We expect genes common to the “early markers” and “late markers” to be specific to the 
lineage, but the genes specific to “early markers” to be specific to the meristematic zone. We 
therefore then subtracted the genes from the “early markers” that were also present in the 
“late markers” set, and used this meristematic gene list in the AddModuleScore (Seurat v2) to 
identify the cells that express this module of meristematic genes the highest in each lineage. 
We named this score the “stemness score” (plotted on UMAPs in fig. S4) and the cell with the 
highest score in each lineage is defined as t=0. 
Sub-clustering and partition-based abstracted graph (PAGA) 
HVGs were defined for each lineage object using the FindVariableGenes function (Seurat v2), 
with different x.low.cutoff and y.cutoff values. After removing genes affected by protoplast 
isolation from the HVGs, 40 PCs were computed and an elbow plot was generated using 
PCElbowPlot (Seurat v2) to determine the number of PCs that capture the majority of the 
variation in the data. This number of PCs varies between lineages (epidermis-root cap: 18; 
cortex: 8; endodermis: 8; XPP: 8; PPP: 7; phloem: 10; procambium: 10; xylem: 10). 
Seurat lineage objects were then converted into AnnData objects using the Convert function 
(Seurat v2), in order to be processed with Scanpy 20. We first computed a neighborhood graph 
of observations, using the approximate nearest neighbor search within UMAP, with 
scanpy.pp.neighbors. The n_pcs argument was set, for each lineage, to the number of PCs 
determined above with the Elbow plot. Cells were subsequently clustered using the Louvain 
algorithm 89–91, with scanpy.tl.louvain. The resolution was adapted to each lineage, and, in 
some cases, some of the clusters had to be subsequently sub-clustered to increase PAGA 
clarity by using scanpy.tl.louvain with the restrict_to argument. 
A partition-based abstracted graph (PAGA) was generated to quantify the connectivity 
between the lineage-specific clusters obtained above 18 using scanpy.tl.paga, and plotted with 
scanpy.pl.paga_compare, adjusting the threshold argument for each lineage. 
The PAGAs obtained for the eight lineages are shown in Fig. 2C. 
Diffusion pseudotime 
The cell of the lineage with the highest “stemness score” was annotated as the “root” cell. A 
diffusion map 20,92,93 was generated using scanpy.tl.diffmap, and the diffusion pseudotime 18,19 
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was calculated to infer the progression of cells through geodesic distance along the graph, 
using scanpy.tl.dpt. 
Both the sub-clustering and pseudotime assignment per cell were copied to the meta data of 
the original Col-0 Seurat object, and visualized in the UMAP plots in Fig. 2 A and B. 
 
Identification of genes with cell type- and pseudotime-dependent expression in the root 
cap (Fig. 2D) 
A subsetted Seurat object (v3) containing only Col-0 columella and root cap cells was created. 
Genes that were detected in <175 cells were removed. Cells were categorized into bins of 100 
cells, based on the developmental trajectory they belong to (columella, root cap - early, root 
cap - tip, and root cap - lateral) and their pseudotime assignment. The average expression of 
the detected genes was calculated for each bin using AverageExpression (Seurat v3). 
The obtained matrix of average gene expression per bin was scaled and subdivided into 12 
clusters, using the kmeans function in R. The genes of one of the clusters, which did not show 
an interesting expression pattern, were removed from the scaled matrix. A heatmap showing 
the expression pattern of the remaining genes across all bins was generated using 
ComplexHeatmap in R 94. 
 
Assigning cell identities to published scRNA-seq datasets 
Our reference atlas was subdivided into 82 clusters, and clusters were annotated based on 
the identities of the Col-0 cells obtained with the trajectory analyses (cell types and 
developmental branches). 
Raw count matrices for Col-0 cells from six studies 7–10,12,13 were downloaded and used to 
create new Seurat objects. Cells with <200 expressed genes were removed, and genes 
expressed in <3 cells were removed. The data was log-normalized and the top 5,000 HVGs 
were detected using FindVariableFeatures (Seurat v3). Genes affected by protoplast isolation 
were removed from the HVGs. 
Anchors between our reference atlas and the other datasets were identified using 
FindTransferAnchors in Seurat v3, specifying our atlas as the reference, using our genotype-
corrected and batch-corrected integrated data as the reference assay, and the object we want 
to assign identities to as the query. The TransferData function (Seurat v3) was subsequently 
used to calculate, for each cell, a prediction score for each identity, based on the set of anchors 
previously identified and the annotations of the 82 clusters of the atlas. Cells were assigned 
the identity that has the highest prediction score. 
 
Identification of genes differentially expressed between branch 1 and branch 2. 
For our dataset and each of the published datasets, genes differentially between branch 1 and 
branch 2 of the endodermis, phloem pole pericycle, xylem pole pericycle, and procambium 
were identified using a t-test and the FindMarkers function in Seurat (v3), with the default 
average log fold-change threshold (0.25). A heatmap showing the average log fold-change (in 
natural log) for all the genes that were found differentially expressed in at least one of the 
comparisons was generated using ComplexHeatmap (fig. S5). 
 
UMI downsampling 
Because the number of transcripts detected in branch 1 was systematically higher as 
compared to branch 2, we tested whether the branching events could be the result of coverage 
artefact by downsampling the UMIs to a similar rate in all cells. We chose to downsample the 
number of UMI to 4,000, which is the lowest median value of UMI per cell in the clusters of 
our dataset (cells that have a lower UMI count will not be downsampled). We used the 
SampleUMI function in Seurat (v4) to generate three independent downsampled count 
matrices, with the max.umi parameter set to 4,000. Each downsampled matrix was used to 
generate a new Seurat object that will be processed similarly to our original dataset (log-
normalization, scaling, variable features, PCA, UMAP, clustering). An adjusted rand index was 
calculated using the adj.rand.index function of the fossil package in R, to compare cell 
clustering before and after UMI downsampling. 
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Identification of gene co-expression modules using self-organizing maps (SOMs) 
We used a SOM unsupervised machine learning approach to reduce the high dimensionality 
of the expression matrix and to cluster genes based on co-expression patterns. The matrix 
containing the scaled batch-corrected expression of genes across all Col-0 cells, except the 
genes affected by protoplast isolation, was used as an input for the oposSOM pipeline (v2.2) 
95,96, via the opossom.new function with the following parameters: dim.1stLvlSom=60, 
feature.centralization=FALSE, sample.quantile.normalization=FALSE, 
activated.modules=list(“reporting”=FALSE, “primary.analysis”=TRUE, 
“sample.similarity.analysis” = FALSE, “geneset.analysis” =FALSE, 
“geneset.analysis.exact”=FALSE, “group.analysis”=FALSE, “difference.analysis”=FALSE. 
The SOM was then generated using the opossom.run function. 
The metagenes in the SOM were subsequently clustered based on their Pearson correlation 
coefficients, using oposSOM. The following default parameters in the oposSOM source code 
for the correlation clustering were modified in order to optimize cluster specificity. In the 
pipeline.detectCorrelationModules function, the threshold for the correlation coefficient in the 
clustering was changed to 0.945 (default value: 0.9), and the minimal cluster length to 10 
(default value: env$preferences$dim.1stLvlSom / 2). This resulted in smaller, and more 
specific co-expression modules. However, as a consequence, a number of small modules 
(<75 genes) were generated that had expression patterns almost identical to other bigger 
modules (>75 genes). We discarded these smaller modules and focused on the analysis of 
the 64 remaining modules, the composition of which is shown in Table S2. 
The average scaled expression per module, across all cells, was calculated using the 
scale.data matrix of the Col-0 Seurat object. Cells were categorized into bins of 100 cells 
based on their assigned developmental trajectory and pseudotime. An average of the average 
scaled module expression was calculated per bin, and plotted using ComplexHeatmap (Fig. 
3A). 
 
UMAP plot of gene expression using schex 
Because cells in UMAP plots are often plotted on top of each other, obscuring information and 
biasing interpretation, we used schex 97 in order to bin cells into hexagonal cells for visualizing 
gene or module expression. Hexagon bins were created for our Col-0 Seurat object, using the 
make_hexabin function with the parameter nbins = 150. Plot_hexbin_gene was subsequently 
used to visualize the scale expression of genes, or the calculated average scaled expression 
of genes from a co-expression module. The color scale was adjusted for each plot using 
scale_fill_viridis_c. 
 
Gene ontology enrichment per gene co-expression module 
Gene Ontology (GO) enrichment analysis was performed using the PANTHER 98 
Overrepresentation Test (Fisher’s exact test with Bonferroni correction). Genes were 
annotated using the GO Ontology database (biological process) 99, and all Arabidopsis genes 
were used as the reference gene list. Results with a corrected p-value <0.05 were considered 
significant. 
PANTHER analysis results are sorted “hierarchically” in order to understand the hierarchical 
relations between enriched functional classes. Sorting is done only by the most specific 
subclass first, with its parent terms indented directly below it. These are all related classes in 
an ontology, and are often interpretable as a group rather than individually. Because the 64 
modules had many enriched GO terms, some of which are related, only one term (the most 
specific one) per hierarchical group was selected per module. After this selection, a few very 
similar terms were filtered manually. The selected terms and the modules they are enriched 
in were plotted in Fig. 3B using ggplot2. 
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Identification of candidate regulators using transcription factor (TF) target gene 
enrichment 
Putative TF targets genes were inferred from the DAP-seq dataset 53. The ‘Motifs in peaks (P-
value ≤ 1E-04)” BED file (http://neomorph.salk.edu/dap_web/pages/browse_table_aj.php) 
was used as a DNA binding database for the profiled TFs of the DAP-seq dataset.  
500bp promoter coordinates for Arabidopsis genes were extracted using the promoters 
function in GenomicRanges 100, genes(TxDb.Athaliana.BioMart.plantsmart28) as an 
annotation for Arabidopsis genes, and the arguments upstream = 500, downstream = 50. For 
each TF, the binding coordinates were extracted from the Motif in Peaks .bed file and 
intersected with the promoter coordinates using the subsetByOverlaps function in 
GenomicRanges. Every gene that has a binding motif for the TF in the 500bp region upstream 
of its TSS is considered a putative target gene. For TFs that were not profiled in the DAP-seq 
studies but, according to the cisBP2 study 54, have a strong similarity in their DNA binding 
domains with another TF that was studied by DAP-seq, their target genes were considered to 
be the same as the TF profiled by DAP-seq. 
In order to identify candidate cell-autonomous regulators in the gene co-expression modules 
we characterized, we looked for TFs in modules whose putative target genes are enriched in 
the same module the TF is expressed in. Only TFs whose putative targets could be inferred 
with the methodology described above could be tested. For each gene co-expression module, 
an enrichment test (hypergeometric test) was performed using the enrichment function of the 
bc3net package in R, with the genes in the module as the candidate genes, all Arabidopsis 
genes used as reference, and a list with the putative target genes for TFs in the module as 
the gene sets. A false discovery rate was used to correct for multiple testing and target genes 
were considered enriched in the module if the adjusted p-value was < 0.05. 
For the enrichment of ABRE at the vicinity of genes (Table S3) a similar test was performed, 
per module, using the combined putative targets of AREB3 (AT3G56850) and ABF2 
(AT1G45249). 
For candidate regulators of modules 47-49, the target genes list was reduced to the putative 
target genes that are part of the same co-expression module as the regulator. A network was 
generated using Cytoscape 101. 
 
Analysis of cell states in scr-3 mutant root tips  
UMAP generation and label transfer 
A Seurat object was created with the batch-corrected scr-3 data. The data was scaled and 
PCs computed with RunPCA. The top 30 PCs were used for UMAP dimensionality reduction. 
An identity was assigned to each cell using the same label transfer method in Seurat as the 
one we used for the published scRNA-seq datasets,described above. Anchors between our 
Col-0 object and the scr-3 object were identified using FindTransferAnchors in Seurat v3, 
specifying our Col-0 object as the reference, and batch-corrected data as the reference assay. 
The TransferData function was subsequently used to predict an identity for each mutant cell, 
based on the set of anchors previously identified and using the developmental branched 
identified in the trajectory analysis to annotate the Col-0 reference cells. 
Comparison of cell type composition between scr-3 and wild type 
Differences in cell type composition between scr-3 and wild type Col-0 cells were assessed 
using the scProportionTest package in R 102. To test if the differences in cell proportion 
between two conditions isn’t simply a consequence of randomly sampling a number of cells, 
this package uses a monte-carlo/permutation test. Cells from both samples are pooled 
together and then randomly segregated back into two conditions, maintaining the original 
sample size. The proportional difference between the two conditions for each cell identity is 
calculated and compared to the observed proportional difference. This process is repeated 
1,000 times, and the p-value represents the number of simulations where the simulated 
proportional difference was at least as extreme than observed (plus one) over the total number 
of simulations (plus one). This test was performed between the scr-3 sample and each Col-0 
replicate independently, which are approximately the same size. A cell type was considered 
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significantly enriched or depleted if FDR < 0.05 and |log2(fold difference)|>0.58, in each 
comparison. 
Early- and late- genes score in ground tissue lineage 
The “early genes score” corresponds to the “stemness score” calculated with genes specific 
to the early stages of epidermis development in the epidermis-root cap lineage, but the 
AddModuleScore was applied to scr-3 cells. 
The “late genes score” was similarly calculated using genes specific to late stages of epidermis 
differentiation in the epidermis-root cap lineage. This time, positive markers for clusters 3, 8, 
19, 25, and 27 (late epidermal stages) of our reference atlas were identified and combined. 
From this list of markers we subtracted the genes that were specifically enriched in other 
clusters of the lineage (0, 1, 4, 5, 9, 12, 16, 26, 28). We used these “late genes” as features 
in the AddModuleScore function, applied to scr-3 cells. 
 
Testing the effect of media composition on cell states 
To test the effect of lowering nutrient concentration in the media, a set of plants grown on full 
(1x) MS or half (0.5x) MS were processed simultaneously in the exact same conditions, to 
avoid capturing other confounding effects. Two biological replicates were used per condition. 
Only Col-0 cells were used in these experiments, and therefore half of the doublets could not 
be removed based on SNP detection. However, doublets are expected to be present at the 
same rate in both conditions, hence not affecting the comparisons. 
Data processing and cell identity assignment 
A Seurat object with the four replicates was created. Cells with <200 expressed genes were 
removed, and genes expressed in <3 cells were removed. Data was log-normalized and 
scaled. The top 5,000 HVGs were detected using the FindVariableFeatures function in Seurat 
with the parameter nfeatures=5000. Genes affected by protoplast isolation were removed from 
this set of HVGs. PCs were computed and the top 30 PCs were used for UMAP dimensionality 
reduction. 
Identities were assigned to cells using the FindTransferAnchors and TransferData as 
described above. Our Col-0 dataset with batch-corrected data, and the different cell types 
annotations with and without the ERS, were used as a reference. 
Comparison of cell state composition 
To compare the proportion of cells in each cell state between the two nutrient conditions we 
used the scProportionTest package in R as described above for scr-3. A test was performed 
for each pairwise comparison possible using the four replicates. Cell proportions were 
considered significantly different if FDR < 0.05. 
Differential expression analysis 
A differential expression test (t-test) was performed between each full MS replicate and each 
half MS replicate, per cell state (i.e. cell type with or without the ERS [ERS+, ERS-]), using the 
FindMarkers function in Seurat (v3), and the test.use=”t” parameter. The default log fold-
change threshold used in this function is 0.25, and p-values are adjusted based on the 
Bonferroni correction. 
To avoid taking into account variation in expression in cells where genes are very lowly 
expressed, we measured the average expression of all detected genes per cell state using 
the AverageExpression function, and also the mean of the average expression across all cell 
states. We then subsetted the DE results per cell state to keep only the genes whose average 
expression in the cell state is higher than the mean of the average expression across all cell 
states. 
Genes that were systematically found up- or down-regulated in each of the four replicate 
comparisons were considered differentially expressed. 
The average expression of DEGs per cell state and per condition was calculated, scaled, and 
plotted, together with results of the DE test, using ComplexHeatmap with the following 
parameters for hierarchical clustering of genes: clustering_methods_rows = “ward.D2”, 
row_split = 10. 
GO term enrichment 
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A GO term enrichment was performed for each cluster of DEGs, using PANTHER and the GO 
Ontology database 99, as described above for the co-expression gene modules. Enriched 
terms were subsetted to keep only the most specific term per “hierarchical” group. 
 
Counting of hair cells 
Seedlings were grown vertically on full (1x) or half (0.5x) MS plates, as for scRNA-seq 
experiments. Pictures of the roots were taken at 6 dag, using a stereomicroscope (n = 16 for 
full MS, n = 23 for half MS, from two different plates each). A portion corresponding to 
approximately 2.5mm from the tip was selected for each root picture, and root hairs were 
counted manually using the Cell Counter plugin in Fiji. A significant difference in root hair 
density between the two conditions was determined using a Wilcoxon Rank sum test 
(wilcox.test function) in R. 
Note that the seedlings used for this quantification were in the “top” row of the plate (seeds 
are sown in two rows for scRNA-seq experiments). Roots of seedlings grown in the bottom 
row tend to have fewer root hairs (in both conditions). 
 
Arabidopsis accessions comparison 
Our reference atlas was subdivided into 82 clusters, and clusters were annotated based on 
the cell state annotation of Col-0 cells obtained with the trajectory analyses (cell types with or 
without the ERS [ERS+, ERS-]). 
Differential expression analysis 
The dataset is composed of different numbers of replicates per accession. For each possible 
inter-accession replicate pair, a differential expression test (t-test) was performed, per cell 
state, using the FindMarkers function in Seurat (v3), the test.use=”t” parameter and default 
log fold-change and p-value cutoffs. To avoid taking into account variation in expression in 
cells where genes are very lowly expressed, we measured the average expression of all 
detected genes per cell state, in Col-0 cells, using the AverageExpression function, and also 
the mean of the average expression across all cell states. We then subsetted the DE results 
per cell state to keep only the genes whose average expression in the cell state is higher than 
the mean of average expression across all cell states. Genes were considered DE between 
two accessions only if they were systematically up- or down-regulated in all possible replicate 
pairwise comparisons. 
For a gene to be called an accession-specific DEG, it had to be systematically DE in a given 
accession compared to the other four, but not be DE in any pairwise comparison between the 
remaining four accessions. Similarly, DEGs specific to two accessions had to be 
systematically DE in the two accessions as compared to the other three, but not be DE in any 
pairwise comparison between the remaining three accessions. As shown in fig. S15, most 
DEGs were specific to one accession, rather than two, hence we subsequently focused on 
those specific to one accession. 
Gene clustering 
For each category (up- or down-regulated in a specific accession), the average expression 
per DEGs per cell state and per accession was calculated, scaled, and plotted using 
ComplexHeatmap. The kmeans function was used to cluster DEGs based on their expression 
pattern, and the number of clusters was adjusted for each category. 
GO term enrichment 
A GO term enrichment was performed for each category of accession-specific DEGs (Fig. 6A) 
and for each cluster per category (fig. S16), using PANTHER and the GO Ontology database 
99, as described above for the co-expression gene modules. Enriched terms were subsetted 
to keep only the most specific term per “hierarchical” group. 
Only the clusters that have at least one enriched GO term were displayed in Fig. 6B. 
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EDVHG JUDSK DEVWUDFWLRQ �3$*$� DQG WKH SVHXGRWLPH LQIHUHQFH FDOFXODWHG LQ �%� UHYHDO WZR
GLVWLQFW GHYHORSPHQWDO EUDQFKHV DIIHFWLQJ PRVW RI WKH FHOO OLQHDJHV �QDPHG EUDQFK � DQG ���
�'� 3VHXGRWLPH�GHSHQGHQW H[SUHVVLRQ LQ WKH FROXPHOOD DQG URRW FDS� +HDWPDS VKRZLQJ
FOXVWHUV RI EUDQFK� DQG SVHXGRWLPH�VSHFLILF JHQHV DIIHFWLQJ WKH IRXU GLIIHUHQW EUDQFKHV RI WKH
URRW FDS� ([DPSOHV RI JHQHV NQRZQ WR EH H[SUHVVHG DW VSHFLILF VWDJHV DUH ODEHOHG RQ WKH
OHIW� &HOOV ZHUH RUGHUHG LQ SVHXGRWLPH IRU HDFK EUDQFK DQG ELQQHG LQ ELQV RI ����FHOOV� �(�
80$3 SORWV �WRS� DQG FRQIRFDO LPDJHV �ERWWRP� RI ZKROH�PRXQW +&5 VKRZLQJ WKH
H[SUHVVLRQ RI WZR ;33 PDUNHUV� ;7+�� �OHIW� DQG $7�*����� �ULJKW�� 2SWLFDO WUDQVYHUVH
VHFWLRQV �L IRU ;7+��� LL DQG LLL IRU $7�*������ VKRZ WKDW $7�*����� LV GHWHFWHG �LLL� DW
PXFK ODWHU GHYHORSPHQWDO VWDJHV �ǻW� WKDQ ;7+�� �L�� :KLOH ;7+�� LV GHWHFWHG
KRPRJHQHRXVO\ LQ WKH ;33 �L�� $7�*����� LV RQO\ GHWHFWHG LQ D SRUWLRQ RI WKH ;33 FHOOV �LLL�
\HOORZ DUURZ�� ZLWK VRPH FHOOV KDYLQJ QR IOXRUHVFHQW VLJQDO �LLL� ZKLWH DUURZ�� <HOORZ ³[´ PDUNV
[\OHP FHOOV� 6FDOH EDU  ��ȝP� �)� 80$3V DQG YLROLQ SORWV VKRZLQJ WKH H[SUHVVLRQ RI
&$63� DQG 3+2��+� LQ WKH HQGRGHUPLV� &$63� LV HQULFKHG LQ WKH GHYHORSPHQWDO EUDQFK ��
DQG 3+2��+� LQ EUDQFK �� �*� �' YLHZV DQG RSWLFDO VHFWLRQV VKRZLQJ WKH H[SUHVVLRQ RI
&$63� DW WKH URRW WLS E\ ZKROH�PRXQW +&5� &$63� LV H[SUHVVHG RQO\ LQ D VXEVHW RI WKH
HQGRGHUPDO FHOOV FORVH WR WKH PHULVWHP �L DQG LL�� DQG KRPRJHQHRXVO\ LQ WKH HQGRGHUPLV DW D
PRUH GLIIHUHQWLDWHG VWDJH �LLL DQG LY�� <HOORZ DQG ZKLWH DUURZV LQGLFDWH SRVLWLYH DQG QHJDWLYH
FHOOV�UHVSHFWLYHO\��6FDOH�EDU� ���ȝP�
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)LJ� �� &R�H[SUHVVLRQ JHQH PRGXOHV LGHQWLI\ D EUDQFK�VSHFLILF WUDQVFULSWLRQDO
VLJQDWXUH�FRPPRQ�WR�PXOWLSOH�FHOO�W\SHV
�$� +HDWPDS VKRZLQJ WKH H[SUHVVLRQ SDWWHUQ RI WKH �� PRGXOHV RI FR�H[SUHVVHG JHQHV
REWDLQHG IURP WKH VHOI�RUJDQL]LQJ PDS �620� DQDO\VLV� &HOOV ZHUH RUGHUHG LQ SVHXGRWLPH�
SHU GHYHORSPHQWDO EUDQFK� DQG JURXSHG LQ ELQV RI ����FHOOV HDFK� %DUSORWV VKRZ WKH QXPEHU
RI JHQHV DQG WUDQVFULSWLRQ IDFWRUV �7)V� SHU PRGXOH� 7KH FHOO W\SHV WKH PRGXOHV DUH HQULFKHG
LQ DUH OLVWHG RQ WKH ULJKW� %UDQFK ��VSHFLILF PRGXOHV DUH KLJKOLJKWHG LQ JUHHQ� �%� 'RWSORW RI
HQULFKHG *2 WHUPV SHU FR�H[SUHVVLRQ JHQH PRGXOH GHVFULEHG LQ �$�� 7HUPV DVVRFLDWHG ZLWK
WKH EUDQFK�� VSHFLILF �HQYLURQPHQWDOO\ UHVSRQVLYH VWDWH >(56@� PRGXOHV DUH KLJKOLJKWHG LQ
JUHHQ� �&� 80$3 SORW DQG FRQIRFDO LPDJHV VKRZLQJ WKH H[SUHVVLRQ RI 9'2)�� ZKLFK
EHORQJV WR D EUDQFK�� VSHFLILF PRGXOH� LQ WKH VF51$�VHT GDWDVHW DQG LQ YLYR GHWHFWLRQ DQG
YLVXDOL]DWLRQ E\ ZKROH PRXQW +&5� 0XOWLSOH WUDQVYHUVH RSWLFDO VHFWLRQV DORQJ WKH ORQJLWXGLQDO
D[LV RI WKH URRW DUH VKRZQ� 6FDOH EDU  ��ȝP� �'� )RFXV RQ WKH JHQHV DVVRFLDWHG ZLWK WKH
$%$� DQG FLUFDGLDQ�UHODWHG WHUPV� ZKLFK DUH VSHFLILFDOO\ HQULFKHG LQ EUDQFK�� VSHFLILF
PRGXOHV�
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)LJ� �� 3XWDWLYH FHOO�DXWRQRPRXV UHJXODWRUV RI WKH (56 FRQILUP $%$�UHVSRQVLYH DQG
FLUFDGLDQ�VLJQDWXUH
�$� 3UHGLFWHG FHOO�DXWRQRPRXV UHJXODWRUV �7)V� RI WKH FR�H[SUHVVLRQ JHQH PRGXOHV�
LGHQWLILHG E\ HQULFKPHQW RI 7) ELQGLQJ WDUJHW JHQHV LQ WKH PRGXOHV �QXPEHUHG RQ OHIW� WKDW
WKH\ DUH H[SUHVVHG LQ �)LVKHU¶V H[DFW WHVW� )'5 ������� +HDWPDS VKRZV WKH SURSRUWLRQ RI
JHQHV LQ HDFK PRGXOH WKDW DUH LGHQWLILHG DV WDUJHWV RI HDFK OLVWHG 7) UHJXODWRU� DQG EDUSORWV
VKRZ WKH QXPEHU RI SUHGLFWHG ELQGLQJ WDUJHWV LQ WKH JHQRPH DQG LQ WKH PRGXOH IRU HDFK 7)�
7KH WDUJHW VRXUFH FRORU NH\ LQGLFDWHV ZKHWKHU WKH WDUJHWV KDYH EHHQ GHWHUPLQHG GLUHFWO\ IRU
HDFK 7) E\ '$3�VHT RU LPSXWHG IURP D VLPLODU 7) XVLQJ WKH FLV�%3 ELQGLQJ VLPLODULW\
SUHGLFWLRQV� $VWHULVNV DQG FLUFOHV LQGLFDWH NQRZQ GHYHORSPHQWDO UHJXODWRUV RI WKH FHOO W\SH
WKH 7) LV HQULFKHG LQ DQG FLUFDGLDQ�UHJXODWHG JHQHV� UHVSHFWLYHO\� �%� 7)�WDUJHW QHWZRUNV LQ
(56 PRGXOHV ��� ��� DQG ��� 3XWDWLYH FHOO�DXWRQRPRXV UHJXODWRUV �VTXDUHV� DUH OLQNHG WR
WKHLU SUHGLFWHG WDUJHWV �FLUFOH� E\ DQ DUURZ� 5HJXODWRUV WKDW DUH DOVR WDUJHWV DUH LQGLFDWHG E\
UHG DUURZV� 2QO\ JHQHV DVVRFLDWHG ZLWK WKH HQULFKHG $%$�� KRUPRQH�� GHYHORSPHQW� DQG
FLUFDGLDQ�UHODWHG�WHUPV�DUH�KLJKOLJKWHG�
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)LJ� �� 7KH (56 LV PDLQWDLQHG XSRQ GHYHORSPHQWDO SHUWXUEDWLRQV RI FHOO LGHQWLWLHV DQG
PRGXODWHG�E\�QXWULHQW�DYDLODELOLW\
�$� 80$3 SORW RI FHOOV IURP VFU�� URRW WLS VF51$�VHT� &HOOV DUH FRORUHG E\ WKH FHOO W\SH WKH\
KDYH EHHQ DVVLJQHG WR� XVLQJ RXU &RO�� UHIHUHQFH DWODV� �%� 'RWSORW VKRZLQJ WKH SURSRUWLRQ
RI FHOOV RI HDFK FHOO W\SH LQ WKH PXWDQW DV FRPSDUHG WR WKH ILYH &RO�� UHSOLFDWHV� &HOO W\SHV
VLJQLILFDQWO\ RYHU� RU XQGHU�UHSUHVHQWHG �SHUPXWDWLRQ WHVW� )'5������ LQ VFU�� DV FRPSDUHG
WR HDFK RI WKH &RO�� UHSOLFDWHV DUH LQGLFDWHG �VHH ILJ� 6���� �&� &ORVH�XS RI WKH VWHOH FHOOV LQ
WKH VFU�� 80$3 SORW �LQGLFDWHG E\ ER[ LQ SDQHO �$��� &HOO DVVLJQPHQW WDNHV LQWR DFFRXQW WKH
HQYLURQPHQWDOO\ UHVSRQVLYH VWDWH �(56� EUDQFKLQJ HYHQWV� �'� &ORVH�XS RI WKH JURXQG WLVVXH
FHOOV LQ WKH VFU�� 80$3 SORW �LQGLFDWHG E\ ER[ LQ SDQHO �$��� $Q ³HDUO\´ DQG ³ODWH´ JHQH VFRUH
�VLPLODU WR WKDW VKRZQ LQ ILJ� 6�� KDV EHHQ FDOFXODWHG WR LQIHU WUDMHFWRU\ GLUHFWLRQ LQ VFU��
JURXQG WLVVXH FHOOV� 7KUHH GHYHORSPHQWDO SDWKV DUH GHWHFWHG� *URXQG WLVVXH FHOOV DUH
JURXSHG LQ ILYH GLIIHUHQW FOXVWHUV �SDWK � HDUO\� SDWK � ODWH� SDWK � HDUO\� SDWK � ODWH� SDWK ���
6WDFNHG EDUSORW VKRZV WKH SURSRUWLRQ RI FHOOV LQ HDFK SDWK WKDW KDV EHHQ DVVLJQHG WR WKH
FRUWH[ �� FRUWH[ �� HQGRGHUPLV �� DQG HQGRGHUPLV � LGHQWLWLHV� �(� 80$3 SORW RI FHOOV IURP
URRW WLSV JURZQ LQ GLIIHUHQW QXWULHQW DYDLODELOLW\ FRQGLWLRQV� IXOO ��[� RU KDOI ����[� FRQFHQWUDWLRQ
0XUDVKLJH DQG 6NRRJ �06� PHGLD �� UHSOLFDWHV SHU FRQGLWLRQ�� &HOOV DUH FRORUHG E\ FHOO
VWDWH� �)� &RPSDULVRQ RI FHOO VWDWH �(56� RU (56�� SURSRUWLRQ EHWZHHQ UHSOLFDWHV RI WKH
VDPH 06 FRQFHQWUDWLRQ �FRQWURO� RU GLIIHUHQW 06 FRQFHQWUDWLRQ FRQGLWLRQV� 3RLQW�UDQJH SORW
VKRZLQJ WKH FRQILGHQFH LQWHUYDO IRU WKH FHOO VWDWH �(56� RU (56�� SURSRUWLRQDO GLIIHUHQFH
EHWZHHQ UHSOLFDWHV� DV FRPSDUHG WR ���� UDQGRP SHUPXWDWLRQV� WR DFFRXQW IRU VXEVDPSOLQJ
HIIHFWV �VHH 0HWKRGV�� 6LJQLILFDQWO\ GLIIHUHQW SURSRUWLRQV �SHUPXWDWLRQ WHVW� )'5������ DUH
LQGLFDWHG LQ SLQN� �*� +HDWPDS VKRZLQJ WKH VFDOHG DYHUDJH H[SUHVVLRQ SHU FHOO VWDWH �(56�
RU (56�� RI JHQHV GLIIHUHQWLDOO\ H[SUHVVHG �'(� EHWZHHQ WKH KDOI ����[� DQG IXOO ��[� 06
PHGLD FRQGLWLRQV� LQ DW OHDVW RQH FHOO W\SH� *HQHV DUH FOXVWHUHG E\ WKHLU H[SUHVVLRQ SDWWHUQ�
%DUSORWV�LQGLFDWH�HQULFKHG�*2�WHUPV�SHU�FOXVWHU��FRORUHG�E\�HQULFKPHQW�S�YDOXH�
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)LJ�����1DWXUDO�YDULDWLRQ�LQ�WKH�HQYLURQPHQWDOO\�UHVSRQVLYH�VWDWH
�$� 0DWUL[ VKRZLQJ WKH QXPEHU RI FHOO W\SH�VSHFLILF GLIIHUHQWLDOO\ H[SUHVVHG JHQHV �'(*V�
EHWZHHQ $UDELGRSVLV DFFHVVLRQV DQG WKHLU DVVRFLDWHG *2 WHUPV� 0DWUL[ FRORU LQGLFDWHV WKH
QXPEHU RI '(*V� DQG DUURZ LQGLFDWHV WKH GLUHFWLRQ RI GLIIHUHQWLDO H[SUHVVLRQ LQ WKH LQGLFDWHG
DFFHVVLRQ� �%� +HDWPDS VKRZLQJ WKH H[SUHVVLRQ SDWWHUQ RI D VXEVHW LQ WKH FOXVWHUV RI
FR�H[SUHVVHG�DFFHVVLRQ�VSHFLILF�'(*V��ILJ��6����WKDW�KDYH�HQULFKHG�*2�WHUPV�
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