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1 Changing your mind requires shifting the way streams of information lead to

2 a decision. Using in silico experiments we show how the cortico-basal ganglia-
3 thalamic (CBGT) circuits can feasibly implement shifts in the evidence accu-
4 mulation process. When action contingencies change, dopaminergic plasticity
5 redirects the balance of power, both within and between action representa-
6 tions, to divert the flow of evidence from one option to another. This finding
7 predicts that when competition between action representations is highest, the
8 rate of evidence accumulation is lowest. We then validate this prediction in
9 a sample of homo sapiens as they perform an adaptive decision-making task
10 while whole-brain hemodynamic responses are recorded. These results paint
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1 a holistic picture of how CBGT circuits manage and adapt the evidence accu-

12 mulation process in mammals.

13 One-sentence Summary: Interactions between cortical and subcortical circuits in the mam-
12 malian brain flexibly control the flow of information streams that drive decisions by shifting the

15 balance of power both within and between action representations.

« Introduction

17 Choice is fundamentally driven by information. The process of deciding between available ac-
18 tions is continually updated using incoming sensory signals, processed at a given accumulation
19 rate, until sufficient evidence is reached to trigger one action over the other (/, 2). The param-
20 eters of this evidence accumulation process are highly plastic, adjusting to both the reliability
21 of sensory signals (3—7) and previous choice history (8—13), to balance the speed of a given
22 decision with local demands to choose the right action.

23 We recently showed how environmental change influences the decision process by period-
24 ically switching the reward associated with a given action in a 2-choice task (7). This reward
25 contingency change induces competition between old and new action values, forcing a change-
26 of-mind about the most rewarding option. This internal competition prompts humans to dy-
27 namically reduce the rate at which they accumulate evidence (drift-rate, v, in a normative drift
2s  diffusion model, DDM (2)) and sometimes also increases the threshold of evidence they need to
29 trigger an action (boundary height, a) (7). The result is a change of the decision policy to a slow,
s exploratory state. Over time feedback-learning pushes the system back into an exploitative state
31 until the environment changes again (see also (/7)) and (12)).

32 Here we investigate the underlying neural mechanisms that drive dynamic decision policies
33 in a changing environment. We start with a set of theoretical experiments, using biologically re-

a4+ alistic spiking network models, to test how the cortico-basal ganglia-thalamic (CBGT) circuits
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ss influence the evidence accumulation process (/4—18). These experiments both explain previous
s results (7) and make specific predictions as to how competition between action representations
s7 drives changes in the decision policy. We then test these predictions in humans using a high-
ss powered, within-participant neuroimaging design, collecting data over thousands of trials where
s action-outcome contingencies change on a semi-random basis.

40
Left Action Right Action

A) CORTEX
‘C1= B
B) 3.0
Lgft Skow
G25 Right Fast
n
M
Q2.0
)
Q
© 1.5
o
o
€10
o
0.5
—0.10 -0.08 —0.06 —0.04 —0.02 0.00 -0.10 —0.08 —0.06 —0.04 —0.02 0.00
Time (s) Time (s)
0.8
fid
()
—
II 0.6
()
L
204
S
o
0.2
0 5 10 15 20 25 30 35 40
Block

41

«2 Fig. 1. Biologically based CBGT network dynamics and behavior. A) Each CBGT nucleus

a3 1s organized into left and right action channels with the exception of a common population


https://doi.org/10.1101/2022.10.03.510668
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.03.510668; this version posted November 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

¢ of striatal fast spiking interneurons (FSIs) and another of cortical interneurons (CxI). Values
s show encoded weights for a left action. Network schematic adapted from (/9). B) Firing rate
s profiles for D1-SPNs (left panel) and D2-SPNs (right panel) prior to stimulus onset (t=0) for
47 a left choice. D1-SPN activity in left and right channelsis shown in red and blue, respectively.
a8 Thick solid lines represent fast trials (short RTs) and thin dashed lines represent slow trials (long
a9 RTs). C) Choice probability for the CBGT network model. The reward for left and right actions
so changed every 10 trials, marked by vertical dashed lines. The horizontal dashed line represents

st chance performance.

» Results

ss CBGT circuits can control decision parameters under uncertainty

s« Both theoretical (9, 12, 14, 19-21) and experimental (/8) evidence suggest that the CBGT cir-
s5 cuits play a critical role in the evidence accumulation process (for a review see (22)). The
ss canonical CBGT circuit (Fig. 1A) includes two dissociable control pathways: the direct (fa-
s7 cilitation) and indirect (suppression) pathways (23, 24). A critical assumption of the canonical
ss  model is that the basal ganglia are organized into multiple ”channels” mapped to specific action
se representations (25,26), each containing a direct and indirect pathway. While a strict, segregated
s action channel organization may not accurately reflect the true underlying circuitry, striatal neu-
st rons have been shown to organize into task-specific spatiotemporal assemblies that qualitatively
e2 reflect independent action representations (27-37). Within these action channels, activation of
es the direct pathway, via cortical excitation of D1-expressing spiny projection neurons (SPNs) in
e« the striatum, releases GABAergic signals that can suppress activity in the CBGT output nucleus
es (internal segment of the globus pallidus, GPi, in primates or substantia nigra pars reticulata,
es SN, in rodents) (26, 32—34). This relieves the thalamus from tonic inhibition, thereby exciting

67 postsynaptic cortical cells and facilitating action execution. Conversely, activation of the indi-
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es rect pathway via D2-expressing SPNs in the striatum controls firing in the external segment of
so the globus pallidus (GPe) and the subthalamic nucleus (STN), resulting in strengthened basal
70 ganglia inhibition of the thalamus. This weakens drive to postsynaptic cortical cells and reduces
71 the likelihood that an action is selected in cortex.

72 Critically, the direct and indirect pathways converge in the GPi/SNr (35, 36). This suggests
73 that these pathways compete to control whether each specific action is selected (37). The ap-
7+ parent winner-take-all selection policy and action-channel like coding (27-317) also imply that
75 action representations themselves compete. Altogether, this neuroanatomical evidence suggests
76 that competition both between and within CBGT pathways controls the rate of evidence accu-
77 mulation during decision making (12, 15, 19).

78 To illustrate this process, we designed a spiking neural network model of the CBGT cir-
79 cuits, shown in Fig. 1A, with dopamine-dependent plasticity occurring at the corticostriatal
so synapses (/7, 38). The network performed a probabilistic 2-arm bandit task with switching re-
st ward contingencies ( (7); see Supp. Methods). The experimental task followed the same general
g2 structure as our prior work (7). In brief, the network selected one of two targets, each of which
ss returned a reward according to a specific probability distribution. The relative reward probabil-
s+ ities for each target were held constant at 75% and 25% and the action-outcome contingency
ss was changed every 10 trials, on average. For the purpose of this study we focus primarily on
ss the neural and behavioral effects that occur around the switching of the optimal target. We
&7 used four different network instances (see Supp. Methods) as a proxy for simulating individual
ss differences over human participants.

89 Figure B shows the firing rates of dSPNs and iSPNs in the left action channel, time-locked
90 to selection onset (when thalamic units exceed 30Hz, t=0), for both fast (<196ms) and slow
ot (> 314.5ms) decisions. As expected, the dSPNs show a ramping of activity as decision onset

92 1is approached and the slope of this ramp scales with response speed. In contrast, we see that
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93 1SPN firing is sustained during slow movements and weakly ramps during fast movements.
o« However, iSPN firing was relatively insensitive to left versus right decisions. This is consistent
o5 with our previous work showing that differences in direct pathways track primarily with choice
9 while indirect pathway activity modulates overall response speeds (12, 19) as supported by
o7 experimental studies (39—41).

98 We then modeled the behavior of the CBGT network using a hierarchical version of the
99 DDM (42), a canonical formalism for the process of evidence accumulation during decision-
10 making (2) (Fig. 2A). This model returns four key parameters with distinct influences on
101 evidence accumulation. The drift rate (v) represents the rate of evidence accumulation, the
102 boundary height (a) represents the amount of evidence required to cross the decision threshold,
13 nondecision time (%) is the delay in the onset of the accumulation process, and starting bias (z)
104 1s a bias to begin accumulating evidence for one choice over another (see Methods section).

10 We tracked internal estimates of action-value and environmental change using trial-by-trial
106 estimates of two ideal observer parameters, the belief in the value of the optimal choice (AB)
17 and change point probability (£2), respectively (see (3, 7) and Methods for details). Using these
108 estimates, we evaluated how a suspected change in the environment and the belief in optimal
109 choice value influenced underlying decision parameters. Consistent with prior observations in
110 humans (7) we found that both v and a were the most pliable parameters across experimental
111 conditions for the network. Specifically, we found that the model mapping A B to drift rate and
112 () to boundary height and the model mapping A B to drift rate provided equivocal best fits to the
113 data over human participants (ADICyy; = —29.85 £+ 12.76 and ADICy = —22.60 + 7.28,
11a  respectively; see (43) and Methods for guidelines on model fit interpretation). All other models
115 failed to provide a better fit than the null model (Supp. Table 2). Consistent with prior work
11s  (7), we found that the relationship between () and the boundary height was unreliable (mean

17 Bao = 0.069+0.152; mean p = 0.232+0.366). However, drift rate reliably increased with A B
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s in three of four participants (mean S,.ap = 0.934 4 0.386; mean p < 0.001; 4/4 participants
119 p < 0.001; Supp. Table 3).

120 These effects reflect a stereotyped trajectory around a change point, whereby v immediately
121 plummets and a briefly increases, with a quickly recovering and v slowly growing as reward
122 feedback reinforces the new optimal target (7). Because prior work has shown that the change
123 1n v is more reliable than changes in a (7) and because v determines the direction of choice, we
124 focus the remainder of our analysis on the control of v.

125 To test whether these shifts in v are driven by competition within and between action chan-
126 nels, we predicted the network’s decision on each trial using a LASSO-PCR classifier trained
127 on the pre-decision firing rates of the network (see Measuring neural action representations).
128 The cross-validated accuracy for the four simulated participants is shown in Figure B. This
129 model was able to predict the chosen action with ~ 70% accuracy (72-77%) for each simulated
130 participant, with an overall accuracy of ~ 74%. Examining the encoding pattern in the simu-
131 lated network, we see lateralized activation over left and right action channels (Fig. 1A), with
132 opposing weights in GPi and thalamus, and, to a lesser degree, contralateral encoding in STN
133 and in both indirect and direct SPNs in striatum. We do not observe contralateral encoding in
13a  cortex, which likely reflects the emphasis on basal ganglia structures and lumped representation
135 of cortex in the model design.

136 To quantify the competition between action channels, we took the unthresholded prediction
137 from the LASSO-PCR classifier, 7;, and calculated its distance from the optimal target (i.e.,
13s target with the highest reward probability) on each trial (Supp. Fig. 3; Fig. 2C). This provided
139 an estimate of the classifier’s uncertainty driven by the separability of pre-decision activity
120 across action channels. In other words, the distance from the optimal target should increase
141 with increased co-activation of circuits that represent opposing actions.

142 If the competition in action channels is also driving v, then there should be a negative cor-
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relation between the classifier’s uncertainty and v, particularly around a change point. Indeed,
this is exactly what we see (Fig. 2D). In fact, the classifier’s uncertainty and v are consistently
negatively correlated across all trials in every simulated participant and in aggregate (Fig. 2E).
Thus, in our model of the CBGT pathways, competition between action representations drives

changes in v in response to environmental change.
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Fig. 2. Competition between action plans should drive evidence accumulation. A) Decision
parameters were estimated by modeling the joint distribution of reaction times and responses
within a drift diffusion framework. B) Classification performance for single-trial left and right
actions shown as an ROC curve. The gray dashed line represents chance performance. C) Pre-
dicted left and right responses. The distance of the predicted response from the optimal choice
represents classifier uncertainty for each trial. For example, here the predicted probability of
a left response on the first trial y;, is 0.8. The distance from the optimal choice on this trial
and, thereby, the classifier uncertainty u;,, is 0.2. D) Change-point-evoked classifier uncer-

tainty (lavender) and drift rate (green). The change point is marked by a dashed line. E) The
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159 association between classifier uncertainty and drift rate. Results for individual participants are
1e0 presented along with aggregated results.

161

w Homo sapiens adapt decision policies in response to change

s To test the predictions of our model, a sample of primates (Homo sapiens, n=4) played a dy-
164 namic two-armed bandit task under experimental conditions similar to those used for the sim-
1es  ulated CBGT network and prior behavioral work (7) as whole brain hemophysiological signals
1es  were recorded using functional magnetic resonance imaging (fMRI). On each trial, participants
1e7  were presented with a male and female Greeble (44). The goal was to select the Greeble most
1es  likely to give a reward. Selections were made by pressing a button with their left or right hand
160 to indicate the left or right Greeble on the screen. We collected 2700 trials over 45 runs from
170 nine separate imaging sessions per participant. Consistent with our within-participant design,
171 statistical analyses estimated effects on a single-participant basis.
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1es  Fig. 4. Competition between action plans drives evidence accumulation in humans. A)
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186

187 Overall, speed and accuracy across conditions matched what we observed in previous ex-
188 periments (Experiment 2 in (7)). Specifically, we see a consistent effect of change point on both
18o  RT and accuracy that matches the behavior of our network (Supp. Fig. 2; Supp. Table 1).

190 To address how a change in the environment shifted underlying decision dynamics, we used
191 a hierarchical DDM modeling approach (42) as we did with the network behavior (see Methods
192 for details). Given previous empirical work (7) and the results from our CBGT network model
193 showing that only v and, less reliably, a respond to a shift in the environment (7), we focused
194 our subsequent analysis on these two parameters. Consistent with the predictions from our
155 CBGT model, we found equivocal fits for the model mapping both AB to v and € to a and
196 a simpler model mapping AB to v (see Supp. Table 2 for average results). This pattern was
197 fairly consistent at the participant level, with 3/4 participants showing A B modulating v (Supp.
1es  Table 3). These results suggest that as the belief in the value of the optimal choice approaches

190 the reward value for the optimal choice, the rate of evidence accumulation increases.

11
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200 Taken altogether, we confirm that humans rapidly shift how quickly they accumulate evi-
201 dence (and, to some degree, how much evidence they need to make a decision) in response to
202 a change in action-outcome contingencies. This mirrors the decision parameter dynamics pre-
203 dicted by the CBGT model. We next evaluated how this change in decision policy tracks with

204 competition in neural action representations.

s Measuring action representations in the brain

206 'To measure competition in action representations, we first needed to determine how individual
207 regions (i.e., voxels) contribute to single decisions. For each participant, trial-wise responses
208 at every voxel were estimated by means of a general linear model (GLM), with trial modeled
209 as a separate condition in the design matrix. Therefore, the BM estimated at voxel v reflected
210 the magnitude of the evoked response on trial . As in the CBGT model analysis, these whole-
211 brain, single-trial responses were then submitted to a LASSO-PCR classifier to predict left/right
212 response choices. The performance of the classifier for each participant was evaluated with a
213 45-fold cross-validation, iterating through all runs so that each one corresponded to the hold-out
214 test set for one fold.

215 Our classifier was able to predict single trial responses well above chance for each of the
216 four participants (Fig. A and B), with mean prediction accuracy ranging from 65% to 83%
217 (AUCs from 0.72 to 0.92). Thus, as with the CBGT network model, we were able to reliably
218 predict trial-wise responses for each participant. Fig 3C shows the average encoding map for
219 our model as an illustration of the influence of each voxel on our model predictions (Supp. Fig.
220 4 displays individual participant maps). These maps effectively show voxel-tuning towards
221 rightward (blue) or leftward (red) responses. Qualitatively, we see that cortex, striatum, and
222 thalamus all exhibit strongly lateralized influences on contralateral response prediction. Indeed,

223 when we average the encoding weights in terms of principal CBGT nuclei (Fig. 3D), we confirm

12
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224 that these three regions largely predict contralateral responses. Supp. Fig. 5 provides a more
225 detailed summary of the encoding weights across multiple cortical and subcortical regions.

226 These results show that we can reliably predict single-trial choices from whole-brain hemo-
227 dynamic responses for individual participants. Further, key regions of the CBGT pathway con-
228 tribute to these predictions. Next, we set out to determine whether competition between these
220 representations for left and right actions correlates with changes in the drift rate, as predicted

230 by the CBGT network model (Fig. 2C).

= Competition between action representations may drive drift-rate

232 To evaluate whether competition between action channels correlates with the magnitude of v on
233 each trial, as the CBGT network predicts (Fig. 2C), we focused our analysis on trials surround-
23 ing the change point, following analytical methods identical to those described in the previous
235 section and shown in Fig. 2C.

236 Consistent with the CBGT network model predictions, following a change point, v shows
237 a stereotyped drop and recovery as observed in the CBGT network (Fig. 2C) and prior be-
238 havioral work (7) (Fig. 4A). This drop in v tracked with a relative increase in classifier uncer-
239 tainty, and subsequent recovery, in response to a change in action-outcome contingencies (mean
220 bootstrapped 5: —0.021 to —0.001; ¢ range: —3.996 to —1.326; ps; = 0.057, pse < 0.001;
241 pg3 < 0.001; pgs = 0.080, pay < 0.001). As with the CBGT network simulations (Fig. 2D),
22 we also observe a consistent negative correlation between v and classifier uncertainty over all
243 trials, irrespective of their position to a change point, in each participant and in aggregate (Fig.
244 4B; Spearman’s p range: —0.08 to —0.04; p range: < 0.001 to 0.043).

245 These results clearly suggest that, as predicted by our CBGT network simulations and prior
26 work (12, 17,45), competition between action representations drives changes in the rate of evi-

247 dence accumulation during decision making in humans.

13
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«  DIScussion

249 We investigated the underlying mechanisms that drive shifts in decision policies when the rules
250 of the environment change. We first tested an implementation-level theory of how CBGT net-
251 works contribute to changes in decision policy parameters. This theory predicted that the rate
252 of evidence accumulation is driven by competition across action representations. Using a high-
253 powered within-participants fMRI design conducted with four human primates, wherein each
254 participant served as an independent replication test, we found evidence consistent with our
255 CBGT network simulations. Specifically, as action-outcome contingencies change, thereby in-
256 creasing uncertainty of optimal choice, decision policies shift with a rapid decrease in the rate of
257 evidence accumulation, followed by a gradual recovery to baseline rates as new contingencies
258 are learned (see also (7)). These results empirically validate prior theoretical and computa-
259 tional work predicting that competition between neural populations encoding distinct actions
260 modulates how information is used to drive a decision (9, 12, 14, 20, 21).

261 Our findings here align with prior work on the role of competition in the regulation of
262 evidence accumulation. In the decision-making context, the ratio of dSPN to iSPN activation
263 within an action channel has been linked to the drift-rate of single-action decisions (/4—16,
264 37). In the motor control context, this competition manifests as movement vigor (46—48). Yet,
265 our results show how competition across channels drives drift-rate dynamics. So how do we
266 reconcile these two effects? Mechanistically, the strength of each action channel is defined by
267 the relative difference between dSPN and iSPN influence. In this way, competition across action
268 channels is defined by the relative balance of direct and indirect pathway activation within each
260 channel. Greater direct vs. indirect pathway competition in one action channel, relative to
270 another, makes that action decision relatively slow and reduces the overall likelihood that it is

271 selected. This mechanism is consistent with prior theoretical (12, 45) and empirical work (/8).
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272 While our current work postulates a mechanism by which changes in action-outcome con-
273 tingencies drive changes in evidence accumulation through plasticity within the CBGT circuits,
274 the results presented here are far from conclusive. For example, our model of the underlying
275 neural dynamics predicts that the certainty of individual action representations is encoded by
276 the competition between direct and indirect pathways (see also (12, 38, 45)). Thus, external
277 perturbation of dSPN (or iSPN) firing, say with optogenetic methods, during decision-making
278 should causally impact the evidence accumulation rate and, subsequently, the speed (or slow)
279 the speed at which the new action-outcome contingencies are learned. Indeed, there is already
280 some evidence for this outcome (see (/8), but also (49) for contrastive evidence).

281 Our model, however, has very specific predictions with regards to disruptions of each path-
252 way within an action representation. Disrupting the balance of dSPN and 1SPN efficacy should
253 selectively impact the drift-rate (and, to a degree, onset bias; see (45)), while non-specific dis-
234 ruption of global iSPN efficacy across action representations should selectively disrupt bound-
285 ary height (and, to a degree, accumulation onset time; see again (45)).

286 Thus, increasing the difference between dSPN and iSPN firing in the channel representing
257 the new optimal-action, say by selective excitation of the relevant dSPNs, should speed up the
288 time to resolve the credit assignment problem during learning. This would result in faster and
289 more accurate learning following an environmental change and lead to characteristic signatures
200 1n the distribution of reaction times, as well as choice probabilities, reflective of a shift in evi-

291 dence accumulation rate. Of course, testing these predictions is left to future work.

. Conclusion

293 As the world changes and certain actions become less optimal, successful behavioral adapta-
204 tion requires flexibly changing how sensory evidence drives decisions. Our simulations and

205 hemophysiological experiments in human primates show how this process can occur within the

15
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CBGT circuits. Here, a shift in action-outcome contingencies induces competition between en-
coded action plans by modifying the relative balance of direct and indirect pathway activity in
CBGT circuits,both within and between action channels, slowing the rate of evidence accumu-
lation to promote adaptive exploration. If the environment subsequently remains stable, then
this learning process accelerates the rate of evidence accumulation for the optimal decision by
increasing the strength of action representations for the new optimal choice. This highlights
how these macroscopic systems promote flexible, effective decision-making under dynamic en-

vironmental conditions.
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a2 Supp. Fig. 1. Simulated CBGT nuclei firing rates for a left decision. Each panel shows the
a3 firing rates for each CBGT nucleus 100 ms prior to a left decision. The decision threshold for
a4 thalamus (30 spikes/second) is marked with a horizontal gray line. Note that the y axes have

05 different limits for each nucleus due to differences of scale in their firing rates.
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a7 Supp. Fig. 2. Simulated and human behavior. Change point evoked reaction times are shown
a8 in red and accuracy, or the probability of selecting the optimally rewarding choice, is shown in
a0 green. Chance is marked as a green horizontal dashed line. The change point is marked by the
a0 vertical gray line. A) Simulated behavior. B) Human behavior.
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413 Supp. Fig. 3. Analysis method. Step 1. Behavioral response collection and DDM (Drift
s14 - Diffusion Model) parameter estimation. In the case of the simulated CBGT network, this step
415 involved simulating responses to experimental manipulations. Step 2. Preprocessing and single-
a6 trial estimates of the hemodynamic response. Step 3. Singular Value Decomposition and Logis-

417 tic regression with an L1 penalty. After crossvalidation, this outputs a predicted response (left
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418 or right), here coded as 0 or 1. Step 4. Calculating classifier uncertainty from cross-validated
419 response prediction. The further the predicted response from the inflection point of the logis-
a0 tic function, the more certain the prediction. The distance of this predicted response from the
«21 optimal choice represents classifier uncertainty for each trial. Here, the predicted probability of
a2 a left response ;1 1s 0.2. The distance from the optimal choice on this trial, and, thereby, the

a3 classifier uncertainty is 0.2.
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Right Hemi.

424
«2s Supp. Fig. 4. Encoding maps in standardized space for each participant. Rows represent
26 individual participants. Columns refer to left and right views of the whole brain. Thalamus and

427 striatum are shown beneath each cortical map. Values are z-scored.
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averaged data. C) The full set of human CBGT encoding weights for all captured nodes from
whole-brain imaging. Gray error bars represent 95% Cls over participants. Left hemisphere
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s Tables
Table S1. Behavior
Simulated Human
Sim. Part.  RT(s) Accuracy Human Part.  RT (s) Accuracy
1 0.604 0.59 1 0.553 0.538
2 0.559 0.624 2 0.537 0.541
3 0.608 0.61 3 0.531 0.553
4 0.596 0.648 4 0.54 0.511
All 0.592+£0.176  0.618 All 0.540£0.076  0.536

a7 Supp. Table 1. Behavior. Simulated and human reaction time (in seconds) and accuracy.
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438

a9 Supp. Table 2. Model fits. Deviance Information Criterion (DIC) values for regression models

440

tested.

Table S2. Model fits

Simulated

AB Q ADIChun ADIChest
| v a -29.85+12.76 -4.49 £5.91
Il a v -23.94 £22.56 -10.40 £11.22
1] - v -6.16 +4.24  -28.19 +13.62
v v - -22.60 £7.28 -11.74 £14.80
Vv - a -7.04 £11.06 -27.30 +£8.16
Vi a - -17.724+21.49 -16.62 +11.88
Vil - - 0.00 £0.00 -34.34 +£15.97

Human

AB Q ADIChun ADIChest
| v a -14.90 £20.58 -1.52 £1.04
Il a v -0.44 £1.11  -15.99 +18.56
1] - v -1.47 £1.30 -14.96 +£18.56
\% v - -13.80 £16.61 -2.63 £3.62
Vv - a -1.03 £4.46  -15.40 £15.60
Vi a - 1.00 £0.71  -17.42 £19.52
Vil - - 0.00 £0.00 -16.43 +19.53
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Table S3. Human model fits by participant

Part. AB Q ADIChun ADIChe.:

| 1 v a 0.61 -2.32
1] 1 a v 0.08 -1.79
1] 1 - v -1.71 0.00
v 1 v - 113 -2.84
v 1 - a -0.36 -1.35
Vi 1 a - 1.93 -3.64
Vil 1 - - 0.00 -1.71
| 2 v a -9.91 -1.73
1l 2 a v -0.69 -10.95
i 2 - v -1.17 -10.47
v 2 v - -11.64 0.00
v 2 - a 1.89 -13.52
Vi 2 a - 0.46 -12.10
Vil 2 - - 0.00 -11.64
| 3 v a -45.08 0.00
1] 3 a v -1.85 -43.23
1] 3 - v -3.07 -42.01
v 3 v - -37.41 -7.68
) 3 - a -7.53 -37.55
Vi 3 a - 1.16 -46.25
Vil 3 - - 0.00 -45.08
| 4 v a -5.23 -2.05
1] 4 a v 071 -7.99
1] 4 - v 0.07 -7.35
v 4 v - -7.28 0.00
v 4 - a 1.90 -9.18
Vi 4 a - 043 -7.70
Vil 4 - - 0.00 -7.28

441

a2 Supp Table 3. Human model fits by participant.

29


https://doi.org/10.1101/2022.10.03.510668
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.03.510668; this version posted November 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s Materials & Methods

44 Simulations

a5 We simulated neural dynamics and behavior using a biologically based, spiking cortico-basal
ws  ganglia-thalamic (CBGT) network model (17, 19). The network representing the CBGT circuit
a7 1s composed of 9 neural populations: cortical interneurons (CxI), excitatory cortical neurons
as  (Cx), striatal D1/D2-spiny projection neurons (dASPNs/iSPNs), striatal fast-spiking interneurons
a9 (FSI), the internal (GPi) and external globus pallidus (GPe), the subthalamic nucleus (STN), and
ss0 the thalamus (Th). All the neuronal populations are segregated into two action channels with the
a5t exception of cortical (CxI) and striatal interneurons (FSIs). Each neuron in the population was
42 modeled with an integrate-fire-or-burst-model (50), and a conductance-based synapse model
a3 was used for NMDA, AMPA and GABA receptors. The neuronal and network parameters
ss4  (inter-nuclei connectivity and synaptic strengths) were tuned to obtain realistic baseline firing
455 rates for all the nuclei. The details of the model are described in our previous work (/9) as well
56 as in the appendix for the sake of completeness.

457 Corticostriatal weights for D1 and D2 neurons in striatum were modulated by phasic dopamine
sss  to model the influence of reinforcement learning on network dynamics. The details of STDP
ss9  learning are described in detail in previous work (38), but key details are shown below. As a
a0 result of these features of the CBGT network, it was capable of learning under realistic experi-
st mental paradigms with probabilistic reinforcement schemes (i.e. under reward probabilities and

42 unstable action-outcome values).
43 Threshold for CBGT network decisions

a4 A decision between the two competing actions (“left” and “right”) was considered to be made
s6s  when either of the thalamic subpopulations reached a threshold of 30Hz. This threshold was

a6 set based on the network dynamics for the chosen parameters with a aim to obtain realistic
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se7 reaction times. The maximum time allowed to reach a decision was 1000ms. If none of the
a8 thalamic subpopulations reach the threshold of 30Hz, no action was considered to be taken.
a9 Such trials were dropped from further analysis. Reaction/decision times were calculated as time
a0 from stimulus onset to decision (either subpopulation reaches the threshold). The ”slow” and
ann “fast” trials were categorized as reaction times > 75th percentile (314.5ms) and reactions time
a2 < 50th percentile (196.0ms), respectively, of the reaction time distributions. The firing rates
473 of the CBGT nuclei during the reaction times were used for prediction analysis as discussed in

474 Section .
a5 Corticostriatal weight plasticity

a7e  The corticostriatal weights are modified by a dopamine-mediated STDP rule, where the pha-
477 sic dopamine is modulated by reward prediction error. The internal estimate of the reward is
a7 calculated at every trial by a Q-learning algorithm which is subtracted from the reward associ-
479 ated with the experimental paradigm to yield a trial-by-trial estimate of the reward prediction
a0 error. The effect of dopaminergic release is receptor dependent; a rise in dopamine promotes
ss1  potentiation for D1-SPNs and depression for D2-SPNs. The degree of change in the weights is
42 dependent on an eligibility trace which is proportional to the coincidental pre-synaptic (cortical)
ss3  and post-synaptic (striatal) firing rates. The STDP rule is described in detail in (38) as well as

s8¢ 1n the appendix.
sss In silico experimental design

ass  We follow the paradigm of a 2 arm bandit task, where the CBGT network learns to consistently
a7 choose the rewarded action until the block changes (i.e the reward contingencies switch), at
sss which point the CBGT network re-learns the rewarded action (reversal learning). Each session
ss9 consists of 40 trials with a block change every 10 trials. The reward probabilities represent a

a0 conflict of (75%, 25%); that is, in a left block, 75% of the left actions are rewarded, whereas
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a9t 25% of the right actions are rewarded. The inter-trial-interval in network time is fixed to 600ms.
492 To maximize the similarity between the CBGT network simulations and our human data, we
s93 randomly varied the initialization of the network such that neurons with a specific connection
a94 probability were randomly chosen for each simulated subject, with the background input to the
s9s nuclei for each simulated subject as a mean-reverting random walk (noise was drawn from the

a9s  normal distribution N(0,1)). These means are listed in Supp. Table 4.
a7 Participants

a8 Four neurologically healthy adult human primates (two female, all right-handed, 29-34 years
a0 0ld) were recruited and paid $30 per session, in addition to a performance bonus and a bonus
soo for completing all nine sessions. These participants were recruited from the local university
so1  population.

502 All procedures were approved by the Carnegie Mellon University Institutional Review Board.
sos All research participants provided informed consent to participate in the study and consent to

s« publish any research findings based on their provided data.
sos Experimental design

sos The experiment used male and female Greebles (44) as selection targets. Participants were
so7 first trained to discriminate between male and female Greebles to prevent errors in perceptual
sos discrimination from interfering with selection on the basis of value. Using a two-alternative
so0 forced choice task, participants were presented with a male and female Greeble and asked to
stio  select the female, with the male and female Greeble identities resampled on each trial. Partic-
s11 1pants received binary feedback regarding their selection (correct or incorrect). This criterion
stz task ended after participants reached 95% accuracy. After reaching perceptual discrimination
si3 criterion for each session, each participant was tested under nine reinforcement learning con-

s1a  ditions composed of 300 trials each, generating 2700 trials per participant in total. Data were
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s15  collected from four participants in accordance with a replication-based design, with each partic-
si6  1pant serving as a replication experiment. Participants completed these sessions in randomized
si7 order. Each learning trial presented a male and female Greeble (44), with the goal of selecting
sis  the gender identity of the Greeble that was most rewarding. Because individual Greeble identi-
sto  ties were resampled on each trial, the task of the participant was to choose the gender identity
s20 rather than the individual identity of the Greeble which was most rewarding.

521 Probabilistic reward feedback was given in the form of points drawn from the normal dis-
s22 tribution N'(u = 3,0 = 1) and converted to an integer. These points were displayed at the
s23 center of the screen. For each run, participants began with 60 points and lost one point for
s24 each incorrect decision. To promote incentive compatibility (57, 52), participants earned a cent
s25 for every point earned. Reaction time was constrained such that participants were required to
s26 respond within between 0.1 s and 0.75 s from stimulus presentation. If participants responded
s27 In < 0.1s, > 0.75 s, or failed to respond altogether, the point total turned red and decreased by
s2s 5 points. Each trial lasted 1.5 s and reward feedback for a given trial was displayed from the
s29 time of the participant’s response to the end of the trial. To manipulate change point probability,
ss0 the gender identity of the most rewarding Greeble was switched probabilistically, with a change
ss1 - occurring every 10, 20, or 30 trials, on average. To manipulate the belief in the value of the
ss2 optimal target, the probability of reward for the optimal target was manipulated, with P set to
sss 0.65, 0.75, or 0.85. Each session combined one value of P with one level of volatility, such
ss« that all combinations of change point frequency and reward probability were imposed across
s35  the nine sessions. Finally, the position of the high-value target was pseudo-randomized on each

ss6  trial to prevent prepotent response selections on the basis of location.
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ss7  Behavioral analysis

sss  Statistical analyses and data visualization were conducted using custom scripts written in R (R
ss9  Foundation for Statistical Computing, version 3.4.3) and Python (Python Software Foundation,
ss0 version 3.5.5). Binary accuracy data were submitted to a mixed effects logistic regression anal-
se1 ysis with either the degree of conflict (the probability of reward for the optimal target) or the
se2  degree of volatility (mean change point frequency) as predictors. The resulting log-likelihood
sa3  estimates were transformed to likelihood for interpretability. RT data were log-transformed and
ssa  submitted to a mixed effects linear regression analysis with the same predictors as in the previ-
ss5 ous analysis. To determine if participants used ideal observer estimates to update their behavior,
ss6  two more mixed effects regression analyses were performed. Estimates of change point proba-
se7  bility and the belief in the value of the optimal target served as predictors of reaction time and
sa8  accuracy across groups. As before, we used a mixed logistic regression for accuracy data and a

s¢9  mixed linear regression for reaction time data.
sso  Estimating evidence accumulation using drift diffusion modeling

sst 1o assess whether and how much the ideal observer estimates of change point probability (£2)
ss2 - and the belief in the value of the optimal target (AB) (3, 7) updated the rate of evidence accu-
ss3  mulation (v), we regressed the change-point-evoked ideal observer estimates onto the decision
ss¢ parameters using hierarchical drift diffusion model (HDDM) regression (53). These ideal ob-
ss5  server estimates of environmental uncertainty served as a more direct and continuous measure
sss  of the uncertainty we sought to induce with our experimental manipulations. Using this more
ss7  direct approach, we pooled change point probability and belief across all conditions and used
sss these values as our predictors of drift rate and boundary height. Responses were accuracy-
sse  coded, and the belief in the difference between targets values was transformed to the belief in

seo the value of the optimal target (A Bopimaiy = Boptimaiy — Bsuboptimairy)- This approach allowed
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se1  US to estimate trial-by-trial covariation between the ideal observer estimates and the decision
se2 parameters.

To find the models that best fit the observed data, we conducted a model selection process
using Deviance Information Criterion (DIC) scores. A lower DIC score indicates a model that
loses less information. Here, a difference of two points from the lowest-scoring model cannot
rule out the higher scoring model; a difference of three to seven points suggests that the higher
scoring model has considerably less support; and a difference of 10 points suggests essentially
no support for the higher scoring model (43, 54). We evaluated the DIC scores for the set of

fitted models relative to an intercept-only regression model (DIC;tercept — DICmoder; )-
sss  MRI Data Acquisition

se¢+ Neurologically healthy human participants (N=4, 2 female) were recruited. Each participant
ses  was tested in nine separate imaging sessions using a 3T Siemens Prisma scanner. Session 1
ses 1ncluded a set of anatomical and functional localizer sequences (e.g., visual presentation of
se7  Greeble stimuli with no manual responses, and left vs. right button responses to identify motor
ses networks). Sessions 2-10 collected five functional runs of the dynamic 2-armed bandit task
seo (60 trials per run). Male and female “greebles” served as the visual stimuli for the selection
s targets (44), with each presented on one side of a central fixation cross. Participants were
s71 trained to respond within 1.5 seconds.

572 To minimize the convolution of the hemodynamic response from trial to trial, inter-trial
s73  intervals were sampled according to a truncated exponential distribution with a minimum of 4
s7+ s between trials, a maximum of 16 s, and a rate parameter of 2.8 s. To ensure that head position
575 was stabilized and stable over sessions, a CaseForge head case was customized and printed for
s76 each participant. The task-evoked hemodynamic response was measured using a high spatial

s77 (2mm? voxels) and high temporal (750ms TR) resolution echo planar imaging approach. This
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s7s  design maximized recovery of single-trial evoked BOLD responses in subcortical areas, as well
s7o as cortical areas with higher signal-to-noise ratios. During each functional run, eye-tracking
ss0 (EyeLink, SR Research Inc.), physiological signals (ECG, respiration, and pulse-oximetry via

ss1  the Siemens PMU system) were also collected for tracking attention and for artifact removal.
ss2  Preprocessing

ss3  TMRI data were preprocessed using the default pipeline of fMRIPrep (55), a standard toolbox
ss¢« for fMRI data preprocessing that provides stability to variations in scan acquisition protocols, a

sss minimal user manipulation, and easily interpretable, comprehensive output results reporting.
sss  Single-trial response estimation

ss7 By means of a univariate general linear model (GLM) within participant trial-wise responses at
sss  the voxel-level were estimated. Specifically, for each fMRI run preprocessed BOLD time series
ss9  were regressed onto a design matrix, where each task trial corresponded to a different column,
so and was modeled using a boxcar function convolved with the default hemodynamic response
so1 function given in SPM12. Thus, each column in the design matrix estimated the average BOLD
se2 activity within each trial. In order to account for head motion, the six realignment parameters (3
se3  rotations, 3 translations) were included as covariates. In addition, a high-pass filter (128 s) was
se¢ applied to remove low-frequency artifacts. Parameter and error variance were estimated using
sos the RobustWLS toolbox, which adjusts for further artifacts in the data by inversely weighting
s each observation according to its spatial noise (56).

597 Finally, estimated trial-wise responses were concatenated across runs and sessions and then
ses  stacked across voxels to give a matrix, Bt,v, of T (trial estimations) x V (voxels) for each partic-

599 ipant.
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so0 Single-trial response prediction

st A machine learning approach was applied to predict left/right greeble choices from the trial-
s2 Wise responses. First, using the trial-wise hemodynamic responses, we estimated the contrast
s0s 1n neural activation when the participant made a left versus right selection. A Lasso-PCR clas-
e« sifier (i.e. an L1-constrained principal component logistic regression) was estimated for each
s0s participant according to the below procedure.

606 First, a singular value decomposition (SVD) was applied to the input matrix X:
X =UsvT, (1)

so7 where the product matrix Z = U S represents the principal component scores, i.e. the projected
s0s values of X into the principal component space, and V7 an orthogonal matrix whose rows are
s0o the principal directions in feature space. Then the binary response variable y (Left/Right choice)
sto  was regressed onto Z, where the estimation of the 3 coefficients is participant to a L1 penalty
11 term C in the objective function:
N
B = argmin 3576 +C Y log(exp(—u(Z76)) + 1) @)
i=1
sz where § and Z include the intercept term, y; = {—1,1} and N is the number of observations.
s13  Projection of the estimated B coefficients back to the original feature (voxel) space was done to

s14 yield a weight map w = VB , which in turn was used to generate final predictions ¥:

1— e—smij

_ 3
= 3

y —=
e15s  where = denotes the vector of voxel-wise responses for a given trial (i.e. a given row in the

st X matrix). When visualizing the resulting weight maps, these were further transformed to

s17 encoded brain patterns. This step was performed to aid in correct interpretation in terms of
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18 the studied brain process, because doing this directly from the observed weights in multivariate
s19 classification (and regression) models can be problematic (57).

620 Here, the competition between left-right neural responses decreases classifier decoding ac-
e21 curacy, as neural activation associated with these actions becomes less separable. Therefore,
s22 classifier prediction serves as a proxy for response competition. To quantify uncertainty from
e2s this, we calculated the Euclidean distance of these decoded responses ¢ from the statistically
s2+ optimal choice on a given trial, opt_choice. This yielded a trial-wise uncertainty metric derived

e2s from the decoded competition between neural responses.

A~

U = d(y, opt_choice). 4)

626 The same analytical pipeline was used to calculate single trial responses for simulated data
s27 with a difference that trial-wise average firing rates of all nuclei from the simulations were used

e2s 1nstead of fMRI hemodynamic responses.
s20 Neuron model

s30 We used integrate-and-fire-or-burst model that models the membrane potential V() as

Ccil—‘t/ =—gr.(V(t) = Vi) — grh(®)H(V (t) = Vi) (V(t) — Vi) = Lyn(t) — Lut(t)  (5)
dh %ﬁt) ,when V' (t) >V},

dt | M) when V(t) <V,
h
st where gy, represents the leak conductance, V7, is the leak reversal potential and the first term
sz gr(V(t) — V1) is the leak current; a low threshold C'a®* current with maximum conductance as

e33 g7, gating variable h(t), a heaviside function H, reversal potential V; I, is the synaptic cur-

e« rent and I.,, is the external current. This neuron model is capable of producing post inhibitory
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ess bursts, regulated by the gating variable that decays with the time constant 7, , when the mem-
s brane potential reaches a certain threshold 1/}, and rises with time constant T;“ . However, when
37 gr 1s set to zero, the neuronal dynamics reduce to a leaky integrate and fire neuron. Currently,
sss  we model GPe and STN neuronal populations with bursty neurons and the remaining neuronal
ss0 populations with leaky integrate-and-fire neurons, with conductance-based synapses.

640

641 The synaptic current I, (¢) consists of three components, two excitatory currents corre-
ss2 sponding to AMPA and NMDA receptors and one inhibitory current corresponding to GABA

ss3  receptors, and is calculated as below:

gnmpassma (1) (V (1) — Vi)
Toyn = gameasampa(t)(V (t) — V) + 1 & o—0.062V(0)/357 + goasascasa(t)(V (1) — Vi)

where ¢g; represents the maximum conductance corresponding to the receptor ¢ € (AMPA,
NMDA and GABA), V; and Vg represent the excitatory and inhibitory reversal potentials, and

s; represents the gating variable for the channels, with dynamics given by:

d
SAMPA _ Zé(t _ tj) _ SAMPA
J

dt TAMPA

d
SNMDA _ a(l B SNMDA) Z(S<t _ tj) _ SNMDA

dt r TNMDA

dsGaBa _ Zé(t _ t]‘) _ SGABA

dt - TGABA

sss The gating variables for AMPA and GABA acts as leaky integrators that are increased by all
sss 1ncoming spikes, with an additional constraint for NMDA that ensures that the maximum value

s46  Of Syvpa remains below 1.
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647

The values of neuronal parameters for all the nuclei are listed in Table S4, external inputs to

sss  the CBGT nuclei are listed in Table S5, and the synaptic parameter values are listed in Table S6.

649

650

651

653

654

656

657

658

Table S4. Neuronal parameters

Parameter unit Cx
Tm (Membrane time constant) ms 20
Viest(resting membrane potential) mV -70
Vinreshola (threshold potential) mV -50
WL (leak reversal) mV -55
gr (low threshold Ca2t maximal conductance) mS/cm? 0
Vi (threshold potential for burst activation) mV -60
Vir(Ca2t reversal potential) mV 120
7, (burst duration in ms) ms 20
7-: (hyperpolarization duration) ms 100

Cxl

10
-70
-50
-55
0
-60
120
20
100

dSPN

20
-70
-50
-565
0
-60
120
20
100

iSPN

20
-70
-50
-565
0
-60
120
20
100

FSI

10

-70
-50
-565

-60
120
20

100

STN

20
-70
-50
-55
0.06
-60
120
20
100

Thalamus

27.78

Supp. Table 4. Neuronal parameters. Neuronal parameters for each nucleus are listed in the

left column, with values shown on the right.

Spike timing dependent plasticity rule

The plasticity rule we use is a dopamine modulated STDP rule also described in (38). All the

values of the relevant parameters are listed in Table S8. The weight update of a corticostriatal

synapse is controlled by three factors: 1) an eligibility trace, 2) the type of the striatal neuron

(iISPN/dSPN), and 3) the level of dopamine.

To compute these quantities for a given synapse, an activity trace of each neuron in the

pre-synaptic and post-synaptic populations is tracked via the equations

dAPRE

TPRE dt

dAposr
dt

TPOST

= AprpXpre(t) — Apre(t)

= APOSTXPOST(t) - APOST<t)

sss Where Xprp, Xpogr are spike trains, such that Apgrp and Appsr maintain a filtered record of
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synaptic spiking of the pre/post neuron, respectively, with spike impact parameters Aprg, Apost
and time constants Tprg, TPOST-

If the post-synaptic spike follows the spiking activity of the pre-synaptic population closely
enough in time, then eligibility trace (£) increases and allows for plasticity to occur. On the
other hand, if a pre-synaptic spike follows the spiking activity of the post-synaptic population,
then E decreases. In absence of any activity and spikes, the eligibility trace decays to zero with
a time constant 7. Putting these effets together, we obtain the equation

dE

e = Xrost(t)Apre(t) — Xpre(t)Arost(t) — E.

The synaptic weight update depends on the dopamine receptor type of the striatal neuron;
that is, if the neuron is a dSPN or iSPN. We assume that a phasic dopamine release promotes
long term potentiation (LTP) in dSPNs and long term depression (LTD) in iSPNs. This factor
is indicated by the learning rate parameter c,,,, which is set to a positive value for dSPNs and a

negative value for iSPNs. The weight update dynamics is given by:

dw
- = [w-x B(t) fx(Kpa) Winge — w)]* + [@w-x B(t) fx(Kpa)(w — W)™ (6)
where X € { dSPN, iSPN } with a,_gspy > 0 and o, _;spny < 0. Here, the weights of

the corticostriatal synapses are bounded between the maximal value W

max’

which depends on
the SPN type, and a minimal value of W,,,;,, = 0.001. The precise values used for all relevant
parameters are listed in Table S8.

In the weight update rule (6), K pa represents the dopamine level present. This quantity
changes as a result of phasic release of dopamine (increments of size D A;,,.), which is correlated
to the reward prediction error encountered in the environment. The parameter C's.,;. defines the
scaling between the reward prediction error and the amount of dopamine released, and Kp 4

obeys the equation
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Kpa
dt

Tpop = Cscale<DAinc(t) o KDA)é(t) — Kpa,

es1  Where
DAznc<t) = 7’(75) - Qchosen(t)

ss2 for reward r(t) and expected value Q) posen(t) of the chosen action. Trial-by-trial estimates of

ess the values of the actions (left/right) are maintained by a simple Q-update rule:

Qa(t + 1) - Qa(t) + Oéq<r(t) - Qa(t))

s« Where a € {left, right} and where o, represents the learning rate of the Q-values.
685 Finally, the function fx(Kpa) converts the level of dopamine into an impact on plasticity

ess 1n a way that depends on the identity X of the post-synaptic neuron, as follows:

Kpa, X = dSPN,
fx(Kpa) = K .
m, X = ’LSPN,

ss7  Where c sets the dopamine level where f;spy reaches half-maximum.

688
Table S5. External input to the CBGT populations

Population  Receptor  External input mean frequency  External input efficacy ~ Number of external connections

Cxl AMPA 3.7 1.2 640
Cx AMPA 23 2.0 800
dSPN AMPA 1.3 4.0 800
iSPN AMPA 1.3 4.0 800
FSl AMPA 3.6 1.55 800
GPi AMPA 0.8 5.9 800
GPe AMPA 4 2.0 800
GPe GABA 2 2.0 2000
STN AMPA 4.45 1.65 800
Thalmus AMPA 2.2 25 800

689

s Supp. Table 5. External inputs to CBGT nuclei. Each nucleus is listed on the left, with input
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1 frequency, efficacy, and number of connections listed by receptor.

Table S6. Synaptic parameters

Parameter

TAMPA
VE

TNMDA
TGABA

1%

o
693

6

©

695

unit

ms
mV
ms
ms
mV

Table

Value

0.6332

S7. CBGT connectivity

+ Supp. Table 6. Synaptic parameters. Parameters for the simulated synapses.

Connection type

Cx-dSPN
Cx-dSPN
Cx-iSPN
Cx-iSPN
Cx-FSI
Cx-Th
Cx-Th
Cx-Cx
Cx-Cx
Cx-Cxl
Cx-Cxl
Cxl-Cx
CxI-Cxl
dSPN-dSPN
dSPN-iSPN
dSPN-GPi
iSPN-iSPN
iSPN-dSPN
iSPN-GPe
FSI-FS
FSI-dSPN
FSI-iISPN
GPe-GPe
GPe-STN
GPe-GPi
STN-GPe
STN-GPe
STN-GPi
GPi-Th
Th-dSPN
Th-iSPN
Th-FSI
Th-Cx

696

Connection probability g (nS)

1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.13
0.13
0.0725
0.0725
0.5

1.0
0.45
0.45
1.0
0.45
0.5

1.0

1.0

1.0

1.0
0.067
0.067
1.0
0.1617
0.1617
1.0

1.0

1.0

1.0
0.83
0.83

0.015
0.02
0.015
0.02
0.43
0.025
0.035
0.0127
0.08
0.113
0.525
1.0
1.075
0.28
0.28
2.09
0.28
0.28
4.07
3.2583
1.77
1.66
1.75
0.35
0.058
0.07
1.51
0.038
0.033
0.38
0.38
0.1
0.03

Receptor

AMPA
NMDA
AMPA
NMDA
AMPA
AMPA
NMDA
AMPA
NMDA
AMPA
NMDA
GABA
GABA
GABA
GABA
GABA
GABA
GABA
GABA
GABA
GABA
GABA
GABA
GABA
GABA
AMPA
NMDA
GABA
GABA
AMPA
AMPA
AMPA
NMDA

ss7  Supp. Table 7. CBGT connectivity. Connection type and probability by nucleus and receptor.
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698
Table S8. Number of neurons in each CBGT population

Population =~ Number of neurons
Cx 204

Cxl 186

dSPN 75

iSPN 75

FSI 75

GPe 750

GPi 75

STN 750

Th 75

699

700 Supp. Table 8. Number of neurons in each CBGT nucleus.

701

Table S9. STDP parameters

Parameter Value
ApRE 0.8
AposT 0.04
TPRE 1 5
TPOST 6

TE 100
ay—_dspN 395
Qyw—iSPN -38.2
WﬁlSGI:N 0.055
W;SQIP;N 0.035
Wm'f’,n 0001
c 2.5
TDOP 2.0
Qg 0.6
Csca!e 85

702

703 Supp. Table 9. STDP parameters.
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