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Changing your mind requires shifting the way streams of information lead to1

a decision. Using in silico experiments we show how the cortico-basal ganglia-2

thalamic (CBGT) circuits can feasibly implement shifts in the evidence accu-3

mulation process. When action contingencies change, dopaminergic plasticity4

redirects the balance of power, both within and between action representa-5

tions, to divert the flow of evidence from one option to another. This finding6

predicts that when competition between action representations is highest, the7

rate of evidence accumulation is lowest. We then validate this prediction in8

a sample of homo sapiens as they perform an adaptive decision-making task9

while whole-brain hemodynamic responses are recorded. These results paint10
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a holistic picture of how CBGT circuits manage and adapt the evidence accu-11

mulation process in mammals.12

One-sentence Summary: Interactions between cortical and subcortical circuits in the mam-13

malian brain flexibly control the flow of information streams that drive decisions by shifting the14

balance of power both within and between action representations.15

Introduction16

Choice is fundamentally driven by information. The process of deciding between available ac-17

tions is continually updated using incoming sensory signals, processed at a given accumulation18

rate, until sufficient evidence is reached to trigger one action over the other (1, 2). The param-19

eters of this evidence accumulation process are highly plastic, adjusting to both the reliability20

of sensory signals (3–7) and previous choice history (8–13), to balance the speed of a given21

decision with local demands to choose the right action.22

We recently showed how environmental change influences the decision process by period-23

ically switching the reward associated with a given action in a 2-choice task (7). This reward24

contingency change induces competition between old and new action values, forcing a change-25

of-mind about the most rewarding option. This internal competition prompts humans to dy-26

namically reduce the rate at which they accumulate evidence (drift-rate, v, in a normative drift27

diffusion model, DDM (2)) and sometimes also increases the threshold of evidence they need to28

trigger an action (boundary height, a) (7). The result is a change of the decision policy to a slow,29

exploratory state. Over time feedback-learning pushes the system back into an exploitative state30

until the environment changes again (see also (11)) and (12)).31

Here we investigate the underlying neural mechanisms that drive dynamic decision policies32

in a changing environment. We start with a set of theoretical experiments, using biologically re-33

alistic spiking network models, to test how the cortico-basal ganglia-thalamic (CBGT) circuits34
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influence the evidence accumulation process (14–18). These experiments both explain previous35

results (7) and make specific predictions as to how competition between action representations36

drives changes in the decision policy. We then test these predictions in humans using a high-37

powered, within-participant neuroimaging design, collecting data over thousands of trials where38

action-outcome contingencies change on a semi-random basis.39

40

41

Fig. 1. Biologically based CBGT network dynamics and behavior. A) Each CBGT nucleus42

is organized into left and right action channels with the exception of a common population43
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of striatal fast spiking interneurons (FSIs) and another of cortical interneurons (CxI). Values44

show encoded weights for a left action. Network schematic adapted from (19). B) Firing rate45

profiles for D1-SPNs (left panel) and D2-SPNs (right panel) prior to stimulus onset (t=0) for46

a left choice. D1-SPN activity in left and right channelsis shown in red and blue, respectively.47

Thick solid lines represent fast trials (short RTs) and thin dashed lines represent slow trials (long48

RTs). C) Choice probability for the CBGT network model. The reward for left and right actions49

changed every 10 trials, marked by vertical dashed lines. The horizontal dashed line represents50

chance performance.51

Results52

CBGT circuits can control decision parameters under uncertainty53

Both theoretical (9, 12, 14, 19–21) and experimental (18) evidence suggest that the CBGT cir-54

cuits play a critical role in the evidence accumulation process (for a review see (22)). The55

canonical CBGT circuit (Fig. 1A) includes two dissociable control pathways: the direct (fa-56

cilitation) and indirect (suppression) pathways (23, 24). A critical assumption of the canonical57

model is that the basal ganglia are organized into multiple ”channels” mapped to specific action58

representations (25,26), each containing a direct and indirect pathway. While a strict, segregated59

action channel organization may not accurately reflect the true underlying circuitry, striatal neu-60

rons have been shown to organize into task-specific spatiotemporal assemblies that qualitatively61

reflect independent action representations (27–31). Within these action channels, activation of62

the direct pathway, via cortical excitation of D1-expressing spiny projection neurons (SPNs) in63

the striatum, releases GABAergic signals that can suppress activity in the CBGT output nucleus64

(internal segment of the globus pallidus, GPi, in primates or substantia nigra pars reticulata,65

SNr, in rodents) (26, 32–34). This relieves the thalamus from tonic inhibition, thereby exciting66

postsynaptic cortical cells and facilitating action execution. Conversely, activation of the indi-67
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rect pathway via D2-expressing SPNs in the striatum controls firing in the external segment of68

the globus pallidus (GPe) and the subthalamic nucleus (STN), resulting in strengthened basal69

ganglia inhibition of the thalamus. This weakens drive to postsynaptic cortical cells and reduces70

the likelihood that an action is selected in cortex.71

Critically, the direct and indirect pathways converge in the GPi/SNr (35, 36). This suggests72

that these pathways compete to control whether each specific action is selected (37). The ap-73

parent winner-take-all selection policy and action-channel like coding (27–31) also imply that74

action representations themselves compete. Altogether, this neuroanatomical evidence suggests75

that competition both between and within CBGT pathways controls the rate of evidence accu-76

mulation during decision making (12, 15, 19).77

To illustrate this process, we designed a spiking neural network model of the CBGT cir-78

cuits, shown in Fig. 1A, with dopamine-dependent plasticity occurring at the corticostriatal79

synapses (17, 38). The network performed a probabilistic 2-arm bandit task with switching re-80

ward contingencies ( (7); see Supp. Methods). The experimental task followed the same general81

structure as our prior work (7). In brief, the network selected one of two targets, each of which82

returned a reward according to a specific probability distribution. The relative reward probabil-83

ities for each target were held constant at 75% and 25% and the action-outcome contingency84

was changed every 10 trials, on average. For the purpose of this study we focus primarily on85

the neural and behavioral effects that occur around the switching of the optimal target. We86

used four different network instances (see Supp. Methods) as a proxy for simulating individual87

differences over human participants.88

Figure B shows the firing rates of dSPNs and iSPNs in the left action channel, time-locked89

to selection onset (when thalamic units exceed 30Hz, t=0), for both fast (<196ms) and slow90

(> 314.5ms) decisions. As expected, the dSPNs show a ramping of activity as decision onset91

is approached and the slope of this ramp scales with response speed. In contrast, we see that92
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iSPN firing is sustained during slow movements and weakly ramps during fast movements.93

However, iSPN firing was relatively insensitive to left versus right decisions. This is consistent94

with our previous work showing that differences in direct pathways track primarily with choice95

while indirect pathway activity modulates overall response speeds (12, 19) as supported by96

experimental studies (39–41).97

We then modeled the behavior of the CBGT network using a hierarchical version of the98

DDM (42), a canonical formalism for the process of evidence accumulation during decision-99

making (2) (Fig. 2A). This model returns four key parameters with distinct influences on100

evidence accumulation. The drift rate (v) represents the rate of evidence accumulation, the101

boundary height (a) represents the amount of evidence required to cross the decision threshold,102

nondecision time (t) is the delay in the onset of the accumulation process, and starting bias (z)103

is a bias to begin accumulating evidence for one choice over another (see Methods section).104

We tracked internal estimates of action-value and environmental change using trial-by-trial105

estimates of two ideal observer parameters, the belief in the value of the optimal choice (∆B)106

and change point probability (Ω), respectively (see (3, 7) and Methods for details). Using these107

estimates, we evaluated how a suspected change in the environment and the belief in optimal108

choice value influenced underlying decision parameters. Consistent with prior observations in109

humans (7) we found that both v and a were the most pliable parameters across experimental110

conditions for the network. Specifically, we found that the model mapping ∆B to drift rate and111

Ω to boundary height and the model mapping ∆B to drift rate provided equivocal best fits to the112

data over human participants (∆DICnull = −29.85 ± 12.76 and ∆DICnull = −22.60 ± 7.28,113

respectively; see (43) and Methods for guidelines on model fit interpretation). All other models114

failed to provide a better fit than the null model (Supp. Table 2). Consistent with prior work115

(7), we found that the relationship between Ω and the boundary height was unreliable (mean116

βa∼Ω = 0.069±0.152; mean p = 0.232±0.366). However, drift rate reliably increased with ∆B117
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in three of four participants (mean βv∼∆B = 0.934 ± 0.386; mean p < 0.001; 4/4 participants118

p < 0.001; Supp. Table 3).119

These effects reflect a stereotyped trajectory around a change point, whereby v immediately120

plummets and a briefly increases, with a quickly recovering and v slowly growing as reward121

feedback reinforces the new optimal target (7). Because prior work has shown that the change122

in v is more reliable than changes in a (7) and because v determines the direction of choice, we123

focus the remainder of our analysis on the control of v.124

To test whether these shifts in v are driven by competition within and between action chan-125

nels, we predicted the network’s decision on each trial using a LASSO-PCR classifier trained126

on the pre-decision firing rates of the network (see Measuring neural action representations).127

The cross-validated accuracy for the four simulated participants is shown in Figure B. This128

model was able to predict the chosen action with ≈ 70% accuracy (72-77%) for each simulated129

participant, with an overall accuracy of ≈ 74%. Examining the encoding pattern in the simu-130

lated network, we see lateralized activation over left and right action channels (Fig. 1A), with131

opposing weights in GPi and thalamus, and, to a lesser degree, contralateral encoding in STN132

and in both indirect and direct SPNs in striatum. We do not observe contralateral encoding in133

cortex, which likely reflects the emphasis on basal ganglia structures and lumped representation134

of cortex in the model design.135

To quantify the competition between action channels, we took the unthresholded prediction136

from the LASSO-PCR classifier, ŷt, and calculated its distance from the optimal target (i.e.,137

target with the highest reward probability) on each trial (Supp. Fig. 3; Fig. 2C). This provided138

an estimate of the classifier’s uncertainty driven by the separability of pre-decision activity139

across action channels. In other words, the distance from the optimal target should increase140

with increased co-activation of circuits that represent opposing actions.141

If the competition in action channels is also driving v, then there should be a negative cor-142
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relation between the classifier’s uncertainty and v, particularly around a change point. Indeed,143

this is exactly what we see (Fig. 2D). In fact, the classifier’s uncertainty and v are consistently144

negatively correlated across all trials in every simulated participant and in aggregate (Fig. 2E).145

Thus, in our model of the CBGT pathways, competition between action representations drives146

changes in v in response to environmental change.147

148

149

Fig. 2. Competition between action plans should drive evidence accumulation. A) Decision150

parameters were estimated by modeling the joint distribution of reaction times and responses151

within a drift diffusion framework. B) Classification performance for single-trial left and right152

actions shown as an ROC curve. The gray dashed line represents chance performance. C) Pre-153

dicted left and right responses. The distance of the predicted response from the optimal choice154

represents classifier uncertainty for each trial. For example, here the predicted probability of155

a left response on the first trial ŷt1 is 0.8. The distance from the optimal choice on this trial156

and, thereby, the classifier uncertainty ut1 , is 0.2. D) Change-point-evoked classifier uncer-157

tainty (lavender) and drift rate (green). The change point is marked by a dashed line. E) The158
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association between classifier uncertainty and drift rate. Results for individual participants are159

presented along with aggregated results.160

161

Homo sapiens adapt decision policies in response to change162

To test the predictions of our model, a sample of primates (Homo sapiens, n=4) played a dy-163

namic two-armed bandit task under experimental conditions similar to those used for the sim-164

ulated CBGT network and prior behavioral work (7) as whole brain hemophysiological signals165

were recorded using functional magnetic resonance imaging (fMRI). On each trial, participants166

were presented with a male and female Greeble (44). The goal was to select the Greeble most167

likely to give a reward. Selections were made by pressing a button with their left or right hand168

to indicate the left or right Greeble on the screen. We collected 2700 trials over 45 runs from169

nine separate imaging sessions per participant. Consistent with our within-participant design,170

statistical analyses estimated effects on a single-participant basis.171

172
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173

Fig. 3. Single-trial prediction of action plan competition in humans. A) Overall classifi-174

cation accuracy for single-trial actions for each participant. Each point corresponds to the per-175

formance for each cross-validation fold. B) Classification performance for single-trial actions176

shown as an ROC curve. The gray dashed line represents chance performance. C) Participant-177

averaged encoding weight maps in standard space for both hemispheres. D) The mean encoding178

weights within each CGBT node in both hemispheres. See encoding weight scale above for ref-179

erence.180
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181

182

Fig. 4. Competition between action plans drives evidence accumulation in humans. A)183

Classifier uncertainty (lavender) and estimated drift rate (v̂; green) dynamics. B) The associa-184

tion between classifier uncertainty and drift rate by participant and in aggregate.185

186

Overall, speed and accuracy across conditions matched what we observed in previous ex-187

periments (Experiment 2 in (7)). Specifically, we see a consistent effect of change point on both188

RT and accuracy that matches the behavior of our network (Supp. Fig. 2; Supp. Table 1).189

To address how a change in the environment shifted underlying decision dynamics, we used190

a hierarchical DDM modeling approach (42) as we did with the network behavior (see Methods191

for details). Given previous empirical work (7) and the results from our CBGT network model192

showing that only v and, less reliably, a respond to a shift in the environment (7), we focused193

our subsequent analysis on these two parameters. Consistent with the predictions from our194

CBGT model, we found equivocal fits for the model mapping both ∆B to v and Ω to a and195

a simpler model mapping ∆B to v (see Supp. Table 2 for average results). This pattern was196

fairly consistent at the participant level, with 3/4 participants showing ∆B modulating v (Supp.197

Table 3). These results suggest that as the belief in the value of the optimal choice approaches198

the reward value for the optimal choice, the rate of evidence accumulation increases.199
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Taken altogether, we confirm that humans rapidly shift how quickly they accumulate evi-200

dence (and, to some degree, how much evidence they need to make a decision) in response to201

a change in action-outcome contingencies. This mirrors the decision parameter dynamics pre-202

dicted by the CBGT model. We next evaluated how this change in decision policy tracks with203

competition in neural action representations.204

Measuring action representations in the brain205

To measure competition in action representations, we first needed to determine how individual206

regions (i.e., voxels) contribute to single decisions. For each participant, trial-wise responses207

at every voxel were estimated by means of a general linear model (GLM), with trial modeled208

as a separate condition in the design matrix. Therefore, the β̂t,v estimated at voxel v reflected209

the magnitude of the evoked response on trial t. As in the CBGT model analysis, these whole-210

brain, single-trial responses were then submitted to a LASSO-PCR classifier to predict left/right211

response choices. The performance of the classifier for each participant was evaluated with a212

45-fold cross-validation, iterating through all runs so that each one corresponded to the hold-out213

test set for one fold.214

Our classifier was able to predict single trial responses well above chance for each of the215

four participants (Fig. A and B), with mean prediction accuracy ranging from 65% to 83%216

(AUCs from 0.72 to 0.92). Thus, as with the CBGT network model, we were able to reliably217

predict trial-wise responses for each participant. Fig 3C shows the average encoding map for218

our model as an illustration of the influence of each voxel on our model predictions (Supp. Fig.219

4 displays individual participant maps). These maps effectively show voxel-tuning towards220

rightward (blue) or leftward (red) responses. Qualitatively, we see that cortex, striatum, and221

thalamus all exhibit strongly lateralized influences on contralateral response prediction. Indeed,222

when we average the encoding weights in terms of principal CBGT nuclei (Fig. 3D), we confirm223
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that these three regions largely predict contralateral responses. Supp. Fig. 5 provides a more224

detailed summary of the encoding weights across multiple cortical and subcortical regions.225

These results show that we can reliably predict single-trial choices from whole-brain hemo-226

dynamic responses for individual participants. Further, key regions of the CBGT pathway con-227

tribute to these predictions. Next, we set out to determine whether competition between these228

representations for left and right actions correlates with changes in the drift rate, as predicted229

by the CBGT network model (Fig. 2C).230

Competition between action representations may drive drift-rate231

To evaluate whether competition between action channels correlates with the magnitude of v on232

each trial, as the CBGT network predicts (Fig. 2C), we focused our analysis on trials surround-233

ing the change point, following analytical methods identical to those described in the previous234

section and shown in Fig. 2C.235

Consistent with the CBGT network model predictions, following a change point, v shows236

a stereotyped drop and recovery as observed in the CBGT network (Fig. 2C) and prior be-237

havioral work (7) (Fig. 4A). This drop in v tracked with a relative increase in classifier uncer-238

tainty, and subsequent recovery, in response to a change in action-outcome contingencies (mean239

bootstrapped β: −0.021 to −0.001; t range: −3.996 to −1.326; pS1 = 0.057, pS2 < 0.001;240

pS3 < 0.001; pS3 = 0.080, pAll < 0.001). As with the CBGT network simulations (Fig. 2D),241

we also observe a consistent negative correlation between v and classifier uncertainty over all242

trials, irrespective of their position to a change point, in each participant and in aggregate (Fig.243

4B; Spearman’s ρ range: −0.08 to −0.04; p range: < 0.001 to 0.043).244

These results clearly suggest that, as predicted by our CBGT network simulations and prior245

work (12, 17, 45), competition between action representations drives changes in the rate of evi-246

dence accumulation during decision making in humans.247
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Discussion248

We investigated the underlying mechanisms that drive shifts in decision policies when the rules249

of the environment change. We first tested an implementation-level theory of how CBGT net-250

works contribute to changes in decision policy parameters. This theory predicted that the rate251

of evidence accumulation is driven by competition across action representations. Using a high-252

powered within-participants fMRI design conducted with four human primates, wherein each253

participant served as an independent replication test, we found evidence consistent with our254

CBGT network simulations. Specifically, as action-outcome contingencies change, thereby in-255

creasing uncertainty of optimal choice, decision policies shift with a rapid decrease in the rate of256

evidence accumulation, followed by a gradual recovery to baseline rates as new contingencies257

are learned (see also (7)). These results empirically validate prior theoretical and computa-258

tional work predicting that competition between neural populations encoding distinct actions259

modulates how information is used to drive a decision (9, 12, 14, 20, 21).260

Our findings here align with prior work on the role of competition in the regulation of261

evidence accumulation. In the decision-making context, the ratio of dSPN to iSPN activation262

within an action channel has been linked to the drift-rate of single-action decisions (14–16,263

37). In the motor control context, this competition manifests as movement vigor (46–48). Yet,264

our results show how competition across channels drives drift-rate dynamics. So how do we265

reconcile these two effects? Mechanistically, the strength of each action channel is defined by266

the relative difference between dSPN and iSPN influence. In this way, competition across action267

channels is defined by the relative balance of direct and indirect pathway activation within each268

channel. Greater direct vs. indirect pathway competition in one action channel, relative to269

another, makes that action decision relatively slow and reduces the overall likelihood that it is270

selected. This mechanism is consistent with prior theoretical (12, 45) and empirical work (18).271
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While our current work postulates a mechanism by which changes in action-outcome con-272

tingencies drive changes in evidence accumulation through plasticity within the CBGT circuits,273

the results presented here are far from conclusive. For example, our model of the underlying274

neural dynamics predicts that the certainty of individual action representations is encoded by275

the competition between direct and indirect pathways (see also (12, 38, 45)). Thus, external276

perturbation of dSPN (or iSPN) firing, say with optogenetic methods, during decision-making277

should causally impact the evidence accumulation rate and, subsequently, the speed (or slow)278

the speed at which the new action-outcome contingencies are learned. Indeed, there is already279

some evidence for this outcome (see (18), but also (49) for contrastive evidence).280

Our model, however, has very specific predictions with regards to disruptions of each path-281

way within an action representation. Disrupting the balance of dSPN and iSPN efficacy should282

selectively impact the drift-rate (and, to a degree, onset bias; see (45)), while non-specific dis-283

ruption of global iSPN efficacy across action representations should selectively disrupt bound-284

ary height (and, to a degree, accumulation onset time; see again (45)).285

Thus, increasing the difference between dSPN and iSPN firing in the channel representing286

the new optimal-action, say by selective excitation of the relevant dSPNs, should speed up the287

time to resolve the credit assignment problem during learning. This would result in faster and288

more accurate learning following an environmental change and lead to characteristic signatures289

in the distribution of reaction times, as well as choice probabilities, reflective of a shift in evi-290

dence accumulation rate. Of course, testing these predictions is left to future work.291

Conclusion292

As the world changes and certain actions become less optimal, successful behavioral adapta-293

tion requires flexibly changing how sensory evidence drives decisions. Our simulations and294

hemophysiological experiments in human primates show how this process can occur within the295
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CBGT circuits. Here, a shift in action-outcome contingencies induces competition between en-296

coded action plans by modifying the relative balance of direct and indirect pathway activity in297

CBGT circuits,both within and between action channels, slowing the rate of evidence accumu-298

lation to promote adaptive exploration. If the environment subsequently remains stable, then299

this learning process accelerates the rate of evidence accumulation for the optimal decision by300

increasing the strength of action representations for the new optimal choice. This highlights301

how these macroscopic systems promote flexible, effective decision-making under dynamic en-302

vironmental conditions.303
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Materials and Methods Supplementary Text395

Figs. S1 to S5396

Tables S1 to S8397

Supp. References (0)398

No supplementary data included (see Data Availability section above)399

Figures400

401

Supp. Fig. 1. Simulated CBGT nuclei firing rates for a left decision. Each panel shows the402

firing rates for each CBGT nucleus 100 ms prior to a left decision. The decision threshold for403

thalamus (30 spikes/second) is marked with a horizontal gray line. Note that the y axes have404

different limits for each nucleus due to differences of scale in their firing rates.405
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406

Supp. Fig. 2. Simulated and human behavior. Change point evoked reaction times are shown407

in red and accuracy, or the probability of selecting the optimally rewarding choice, is shown in408

green. Chance is marked as a green horizontal dashed line. The change point is marked by the409

vertical gray line. A) Simulated behavior. B) Human behavior.410

411

412

Supp. Fig. 3. Analysis method. Step 1. Behavioral response collection and DDM (Drift413

Diffusion Model) parameter estimation. In the case of the simulated CBGT network, this step414

involved simulating responses to experimental manipulations. Step 2. Preprocessing and single-415

trial estimates of the hemodynamic response. Step 3. Singular Value Decomposition and Logis-416

tic regression with an L1 penalty. After crossvalidation, this outputs a predicted response (left417
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or right), here coded as 0 or 1. Step 4. Calculating classifier uncertainty from cross-validated418

response prediction. The further the predicted response from the inflection point of the logis-419

tic function, the more certain the prediction. The distance of this predicted response from the420

optimal choice represents classifier uncertainty for each trial. Here, the predicted probability of421

a left response ŷt1 is 0.2. The distance from the optimal choice on this trial, and, thereby, the422

classifier uncertainty is 0.2.423
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424

Supp. Fig. 4. Encoding maps in standardized space for each participant. Rows represent425

individual participants. Columns refer to left and right views of the whole brain. Thalamus and426

striatum are shown beneath each cortical map. Values are z-scored.427

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.10.03.510668doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510668
http://creativecommons.org/licenses/by-nc-nd/4.0/


428

Supp. Fig. 5. Encoding patterns by CBGT node. A) Simulated CBGT encoding weights.429

B) Human CBGT encoding weights for comparison with the simulated CBGT network re-430

sults. Each point represents the average result for each participant. Bars represent participant-431

averaged data. C) The full set of human CBGT encoding weights for all captured nodes from432

whole-brain imaging. Gray error bars represent 95% CIs over participants. Left hemisphere433

weights are marked in blue and right hemisphere weights are marked in red.434
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Tables435

436

Supp. Table 1. Behavior. Simulated and human reaction time (in seconds) and accuracy.437
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438

Supp. Table 2. Model fits. Deviance Information Criterion (DIC) values for regression models439

tested.440
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441

Supp Table 3. Human model fits by participant.442
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Materials & Methods443

Simulations444

We simulated neural dynamics and behavior using a biologically based, spiking cortico-basal445

ganglia-thalamic (CBGT) network model (11, 19). The network representing the CBGT circuit446

is composed of 9 neural populations: cortical interneurons (CxI), excitatory cortical neurons447

(Cx), striatal D1/D2-spiny projection neurons (dSPNs/iSPNs), striatal fast-spiking interneurons448

(FSI), the internal (GPi) and external globus pallidus (GPe), the subthalamic nucleus (STN), and449

the thalamus (Th). All the neuronal populations are segregated into two action channels with the450

exception of cortical (CxI) and striatal interneurons (FSIs). Each neuron in the population was451

modeled with an integrate-fire-or-burst-model (50), and a conductance-based synapse model452

was used for NMDA, AMPA and GABA receptors. The neuronal and network parameters453

(inter-nuclei connectivity and synaptic strengths) were tuned to obtain realistic baseline firing454

rates for all the nuclei. The details of the model are described in our previous work (19) as well455

as in the appendix for the sake of completeness.456

Corticostriatal weights for D1 and D2 neurons in striatum were modulated by phasic dopamine457

to model the influence of reinforcement learning on network dynamics. The details of STDP458

learning are described in detail in previous work (38), but key details are shown below. As a459

result of these features of the CBGT network, it was capable of learning under realistic experi-460

mental paradigms with probabilistic reinforcement schemes (i.e. under reward probabilities and461

unstable action-outcome values).462

Threshold for CBGT network decisions463

A decision between the two competing actions (“left” and “right”) was considered to be made464

when either of the thalamic subpopulations reached a threshold of 30Hz. This threshold was465

set based on the network dynamics for the chosen parameters with a aim to obtain realistic466
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reaction times. The maximum time allowed to reach a decision was 1000ms. If none of the467

thalamic subpopulations reach the threshold of 30Hz, no action was considered to be taken.468

Such trials were dropped from further analysis. Reaction/decision times were calculated as time469

from stimulus onset to decision (either subpopulation reaches the threshold). The ”slow” and470

”fast” trials were categorized as reaction times ≥ 75th percentile (314.5ms) and reactions time471

< 50th percentile (196.0ms), respectively, of the reaction time distributions. The firing rates472

of the CBGT nuclei during the reaction times were used for prediction analysis as discussed in473

Section .474

Corticostriatal weight plasticity475

The corticostriatal weights are modified by a dopamine-mediated STDP rule, where the pha-476

sic dopamine is modulated by reward prediction error. The internal estimate of the reward is477

calculated at every trial by a Q-learning algorithm which is subtracted from the reward associ-478

ated with the experimental paradigm to yield a trial-by-trial estimate of the reward prediction479

error. The effect of dopaminergic release is receptor dependent; a rise in dopamine promotes480

potentiation for D1-SPNs and depression for D2-SPNs. The degree of change in the weights is481

dependent on an eligibility trace which is proportional to the coincidental pre-synaptic (cortical)482

and post-synaptic (striatal) firing rates. The STDP rule is described in detail in (38) as well as483

in the appendix.484

In silico experimental design485

We follow the paradigm of a 2 arm bandit task, where the CBGT network learns to consistently486

choose the rewarded action until the block changes (i.e the reward contingencies switch), at487

which point the CBGT network re-learns the rewarded action (reversal learning). Each session488

consists of 40 trials with a block change every 10 trials. The reward probabilities represent a489

conflict of (75%, 25%); that is, in a left block, 75% of the left actions are rewarded, whereas490
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25% of the right actions are rewarded. The inter-trial-interval in network time is fixed to 600ms.491

To maximize the similarity between the CBGT network simulations and our human data, we492

randomly varied the initialization of the network such that neurons with a specific connection493

probability were randomly chosen for each simulated subject, with the background input to the494

nuclei for each simulated subject as a mean-reverting random walk (noise was drawn from the495

normal distribution N(0,1)). These means are listed in Supp. Table 4.496

Participants497

Four neurologically healthy adult human primates (two female, all right-handed, 29-34 years498

old) were recruited and paid $30 per session, in addition to a performance bonus and a bonus499

for completing all nine sessions. These participants were recruited from the local university500

population.501

All procedures were approved by the Carnegie Mellon University Institutional Review Board.502

All research participants provided informed consent to participate in the study and consent to503

publish any research findings based on their provided data.504

Experimental design505

The experiment used male and female Greebles (44) as selection targets. Participants were506

first trained to discriminate between male and female Greebles to prevent errors in perceptual507

discrimination from interfering with selection on the basis of value. Using a two-alternative508

forced choice task, participants were presented with a male and female Greeble and asked to509

select the female, with the male and female Greeble identities resampled on each trial. Partic-510

ipants received binary feedback regarding their selection (correct or incorrect). This criterion511

task ended after participants reached 95% accuracy. After reaching perceptual discrimination512

criterion for each session, each participant was tested under nine reinforcement learning con-513

ditions composed of 300 trials each, generating 2700 trials per participant in total. Data were514
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collected from four participants in accordance with a replication-based design, with each partic-515

ipant serving as a replication experiment. Participants completed these sessions in randomized516

order. Each learning trial presented a male and female Greeble (44), with the goal of selecting517

the gender identity of the Greeble that was most rewarding. Because individual Greeble identi-518

ties were resampled on each trial, the task of the participant was to choose the gender identity519

rather than the individual identity of the Greeble which was most rewarding.520

Probabilistic reward feedback was given in the form of points drawn from the normal dis-521

tribution N (µ = 3, σ = 1) and converted to an integer. These points were displayed at the522

center of the screen. For each run, participants began with 60 points and lost one point for523

each incorrect decision. To promote incentive compatibility (51, 52), participants earned a cent524

for every point earned. Reaction time was constrained such that participants were required to525

respond within between 0.1 s and 0.75 s from stimulus presentation. If participants responded526

in ≤ 0.1 s, ≥ 0.75 s, or failed to respond altogether, the point total turned red and decreased by527

5 points. Each trial lasted 1.5 s and reward feedback for a given trial was displayed from the528

time of the participant’s response to the end of the trial. To manipulate change point probability,529

the gender identity of the most rewarding Greeble was switched probabilistically, with a change530

occurring every 10, 20, or 30 trials, on average. To manipulate the belief in the value of the531

optimal target, the probability of reward for the optimal target was manipulated, with P set to532

0.65, 0.75, or 0.85. Each session combined one value of P with one level of volatility, such533

that all combinations of change point frequency and reward probability were imposed across534

the nine sessions. Finally, the position of the high-value target was pseudo-randomized on each535

trial to prevent prepotent response selections on the basis of location.536
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Behavioral analysis537

Statistical analyses and data visualization were conducted using custom scripts written in R (R538

Foundation for Statistical Computing, version 3.4.3) and Python (Python Software Foundation,539

version 3.5.5). Binary accuracy data were submitted to a mixed effects logistic regression anal-540

ysis with either the degree of conflict (the probability of reward for the optimal target) or the541

degree of volatility (mean change point frequency) as predictors. The resulting log-likelihood542

estimates were transformed to likelihood for interpretability. RT data were log-transformed and543

submitted to a mixed effects linear regression analysis with the same predictors as in the previ-544

ous analysis. To determine if participants used ideal observer estimates to update their behavior,545

two more mixed effects regression analyses were performed. Estimates of change point proba-546

bility and the belief in the value of the optimal target served as predictors of reaction time and547

accuracy across groups. As before, we used a mixed logistic regression for accuracy data and a548

mixed linear regression for reaction time data.549

Estimating evidence accumulation using drift diffusion modeling550

To assess whether and how much the ideal observer estimates of change point probability (Ω)551

and the belief in the value of the optimal target (∆B) (3, 7) updated the rate of evidence accu-552

mulation (v), we regressed the change-point-evoked ideal observer estimates onto the decision553

parameters using hierarchical drift diffusion model (HDDM) regression (53). These ideal ob-554

server estimates of environmental uncertainty served as a more direct and continuous measure555

of the uncertainty we sought to induce with our experimental manipulations. Using this more556

direct approach, we pooled change point probability and belief across all conditions and used557

these values as our predictors of drift rate and boundary height. Responses were accuracy-558

coded, and the belief in the difference between targets values was transformed to the belief in559

the value of the optimal target (∆Boptimal(t) = Boptimal(t) − Bsuboptimal(t)). This approach allowed560
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us to estimate trial-by-trial covariation between the ideal observer estimates and the decision561

parameters.562

To find the models that best fit the observed data, we conducted a model selection process

using Deviance Information Criterion (DIC) scores. A lower DIC score indicates a model that

loses less information. Here, a difference of two points from the lowest-scoring model cannot

rule out the higher scoring model; a difference of three to seven points suggests that the higher

scoring model has considerably less support; and a difference of 10 points suggests essentially

no support for the higher scoring model (43, 54). We evaluated the DIC scores for the set of

fitted models relative to an intercept-only regression model (DICintercept −DICmodeli).

MRI Data Acquisition563

Neurologically healthy human participants (N=4, 2 female) were recruited. Each participant564

was tested in nine separate imaging sessions using a 3T Siemens Prisma scanner. Session 1565

included a set of anatomical and functional localizer sequences (e.g., visual presentation of566

Greeble stimuli with no manual responses, and left vs. right button responses to identify motor567

networks). Sessions 2-10 collected five functional runs of the dynamic 2-armed bandit task568

(60 trials per run). Male and female ”greebles” served as the visual stimuli for the selection569

targets (44), with each presented on one side of a central fixation cross. Participants were570

trained to respond within 1.5 seconds.571

To minimize the convolution of the hemodynamic response from trial to trial, inter-trial572

intervals were sampled according to a truncated exponential distribution with a minimum of 4573

s between trials, a maximum of 16 s, and a rate parameter of 2.8 s. To ensure that head position574

was stabilized and stable over sessions, a CaseForge head case was customized and printed for575

each participant. The task-evoked hemodynamic response was measured using a high spatial576

(2mm3 voxels) and high temporal (750ms TR) resolution echo planar imaging approach. This577
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design maximized recovery of single-trial evoked BOLD responses in subcortical areas, as well578

as cortical areas with higher signal-to-noise ratios. During each functional run, eye-tracking579

(EyeLink, SR Research Inc.), physiological signals (ECG, respiration, and pulse-oximetry via580

the Siemens PMU system) were also collected for tracking attention and for artifact removal.581

Preprocessing582

fMRI data were preprocessed using the default pipeline of fMRIPrep (55), a standard toolbox583

for fMRI data preprocessing that provides stability to variations in scan acquisition protocols, a584

minimal user manipulation, and easily interpretable, comprehensive output results reporting.585

Single-trial response estimation586

By means of a univariate general linear model (GLM) within participant trial-wise responses at587

the voxel-level were estimated. Specifically, for each fMRI run preprocessed BOLD time series588

were regressed onto a design matrix, where each task trial corresponded to a different column,589

and was modeled using a boxcar function convolved with the default hemodynamic response590

function given in SPM12. Thus, each column in the design matrix estimated the average BOLD591

activity within each trial. In order to account for head motion, the six realignment parameters (3592

rotations, 3 translations) were included as covariates. In addition, a high-pass filter (128 s) was593

applied to remove low-frequency artifacts. Parameter and error variance were estimated using594

the RobustWLS toolbox, which adjusts for further artifacts in the data by inversely weighting595

each observation according to its spatial noise (56).596

Finally, estimated trial-wise responses were concatenated across runs and sessions and then597

stacked across voxels to give a matrix, β̂t,v, of T (trial estimations) x V (voxels) for each partic-598

ipant.599
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Single-trial response prediction600

A machine learning approach was applied to predict left/right greeble choices from the trial-601

wise responses. First, using the trial-wise hemodynamic responses, we estimated the contrast602

in neural activation when the participant made a left versus right selection. A Lasso-PCR clas-603

sifier (i.e. an L1-constrained principal component logistic regression) was estimated for each604

participant according to the below procedure.605

First, a singular value decomposition (SVD) was applied to the input matrix X:606

X = USV T , (1)

where the product matrix Z = US represents the principal component scores, i.e. the projected607

values of X into the principal component space, and V T an orthogonal matrix whose rows are608

the principal directions in feature space. Then the binary response variable y (Left/Right choice)609

was regressed onto Z, where the estimation of the β coefficients is participant to a L1 penalty610

term C in the objective function:611

β̂ = argmin
β

1

2
βTβ + C

N∑
i=1

log(exp(−yi(Z
T
i β)) + 1) , (2)

where β and Z include the intercept term, yi = {−1, 1} and N is the number of observations.612

Projection of the estimated β̂ coefficients back to the original feature (voxel) space was done to613

yield a weight map ŵ = V β̂, which in turn was used to generate final predictions ŷ:614

ŷ =
1− e−x·ŵ

1 + e−x·ŵ , (3)

where x denotes the vector of voxel-wise responses for a given trial (i.e. a given row in the615

X matrix). When visualizing the resulting weight maps, these were further transformed to616

encoded brain patterns. This step was performed to aid in correct interpretation in terms of617
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the studied brain process, because doing this directly from the observed weights in multivariate618

classification (and regression) models can be problematic (57).619

Here, the competition between left-right neural responses decreases classifier decoding ac-620

curacy, as neural activation associated with these actions becomes less separable. Therefore,621

classifier prediction serves as a proxy for response competition. To quantify uncertainty from622

this, we calculated the Euclidean distance of these decoded responses ŷ from the statistically623

optimal choice on a given trial, opt choice. This yielded a trial-wise uncertainty metric derived624

from the decoded competition between neural responses.625

Û = d(ŷ, opt choice). (4)

The same analytical pipeline was used to calculate single trial responses for simulated data626

with a difference that trial-wise average firing rates of all nuclei from the simulations were used627

instead of fMRI hemodynamic responses.628

Neuron model629

We used integrate-and-fire-or-burst model that models the membrane potential V (t) as630

C
dV

dt
= −gL(V (t)− VL)− gTh(t)H(V (t)− Vh)(V (t)− VT )− Isyn(t)− Iext(t) (5)

dh

dt
=


−h(t)

τ−h
, when V (t) ≥ Vh

(1−h(t))

τ+h
, when V (t) < Vh

where gL represents the leak conductance, VL is the leak reversal potential and the first term631

gL(V (t)−VL) is the leak current; a low threshold Ca2+ current with maximum conductance as632

gT , gating variable h(t), a heaviside function H , reversal potential VT ; Isyn is the synaptic cur-633

rent and Iext is the external current. This neuron model is capable of producing post inhibitory634
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bursts, regulated by the gating variable that decays with the time constant τ−h , when the mem-635

brane potential reaches a certain threshold Vh and rises with time constant τ+h . However, when636

gT is set to zero, the neuronal dynamics reduce to a leaky integrate and fire neuron. Currently,637

we model GPe and STN neuronal populations with bursty neurons and the remaining neuronal638

populations with leaky integrate-and-fire neurons, with conductance-based synapses.639

640

The synaptic current Isyn(t) consists of three components, two excitatory currents corre-641

sponding to AMPA and NMDA receptors and one inhibitory current corresponding to GABA642

receptors, and is calculated as below:643

Isyn = gAMPAsAMPA(t)(V (t)− VE) +
gNMDAsNMDA(t)(V (t)− VE)

1 + e−0.062V (t)/3.57
+ gGABAsGABA(t)(V (t)− VI)

where gi represents the maximum conductance corresponding to the receptor i ∈ (AMPA,

NMDA and GABA), VI and VE represent the excitatory and inhibitory reversal potentials, and

si represents the gating variable for the channels, with dynamics given by:

dsAMPA

dt
=

∑
j

δ(t− tj)−
sAMPA

τAMPA

dsNMDA

dt
= α(1− sNMDA)

∑
j

δ(t− tj)−
sNMDA

τNMDA

dsGABA

dt
=

∑
j

δ(t− tj)−
sGABA

τGABA

The gating variables for AMPA and GABA acts as leaky integrators that are increased by all644

incoming spikes, with an additional constraint for NMDA that ensures that the maximum value645

of sNMDA remains below 1.646
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The values of neuronal parameters for all the nuclei are listed in Table S4, external inputs to647

the CBGT nuclei are listed in Table S5, and the synaptic parameter values are listed in Table S6.648

649

650

Supp. Table 4. Neuronal parameters. Neuronal parameters for each nucleus are listed in the651

left column, with values shown on the right.652

653

Spike timing dependent plasticity rule654

The plasticity rule we use is a dopamine modulated STDP rule also described in (38). All the655

values of the relevant parameters are listed in Table S8. The weight update of a corticostriatal656

synapse is controlled by three factors: 1) an eligibility trace, 2) the type of the striatal neuron657

(iSPN/dSPN), and 3) the level of dopamine.658

To compute these quantities for a given synapse, an activity trace of each neuron in the

pre-synaptic and post-synaptic populations is tracked via the equations

τPRE
dAPRE

dt
= ∆PREXPRE(t) − APRE(t)

τPOST
dAPOST

dt
= ∆POSTXPOST (t) − APOST (t)

where XPRE, XPOST are spike trains, such that APRE and APOST maintain a filtered record of659
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synaptic spiking of the pre/post neuron, respectively, with spike impact parameters ∆PRE,∆POST660

and time constants τPRE, τPOST .661

If the post-synaptic spike follows the spiking activity of the pre-synaptic population closely662

enough in time, then eligibility trace (E) increases and allows for plasticity to occur. On the663

other hand, if a pre-synaptic spike follows the spiking activity of the post-synaptic population,664

then E decreases. In absence of any activity and spikes, the eligibility trace decays to zero with665

a time constant τE . Putting these effets together, we obtain the equation666

τE
dE

dt
= XPOST (t)APRE(t)−XPRE(t)APOST (t)− E.

The synaptic weight update depends on the dopamine receptor type of the striatal neuron;667

that is, if the neuron is a dSPN or iSPN. We assume that a phasic dopamine release promotes668

long term potentiation (LTP) in dSPNs and long term depression (LTD) in iSPNs. This factor669

is indicated by the learning rate parameter αw, which is set to a positive value for dSPNs and a670

negative value for iSPNs. The weight update dynamics is given by:671

dw

dt
= [αw−XE(t)fX(KDA)(W

X
max − w)]+ + [αw−XE(t)fX(KDA)(w −Wmin)]

− (6)

where X ∈ { dSPN, iSPN } with αw−dSPN > 0 and αw−iSPN < 0. Here, the weights of672

the corticostriatal synapses are bounded between the maximal value WX
max, which depends on673

the SPN type, and a minimal value of Wmin = 0.001. The precise values used for all relevant674

parameters are listed in Table S8.675

In the weight update rule (6), KDA represents the dopamine level present. This quantity676

changes as a result of phasic release of dopamine (increments of size DAinc), which is correlated677

to the reward prediction error encountered in the environment. The parameter Cscale defines the678

scaling between the reward prediction error and the amount of dopamine released, and KDA679

obeys the equation680
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τDOP
KDA

dt
= Cscale(DAinc(t)−KDA)δ(t)−KDA,

where681

DAinc(t) = r(t)−Qchosen(t)

for reward r(t) and expected value Qchosen(t) of the chosen action. Trial-by-trial estimates of682

the values of the actions (left/right) are maintained by a simple Q-update rule:683

Qa(t+ 1) = Qa(t) + αq(r(t)−Qa(t))

where a ∈ {left, right} and where αq represents the learning rate of the Q-values.684

Finally, the function fX(KDA) converts the level of dopamine into an impact on plasticity685

in a way that depends on the identity X of the post-synaptic neuron, as follows:686

fX(KDA) =


KDA, X = dSPN,

KDA

c+ |KDA|
, X = iSPN,

where c sets the dopamine level where fiSPN reaches half-maximum.687

688

689

Supp. Table 5. External inputs to CBGT nuclei. Each nucleus is listed on the left, with input690
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frequency, efficacy, and number of connections listed by receptor.691

692

693

Supp. Table 6. Synaptic parameters. Parameters for the simulated synapses.694

695

696

Supp. Table 7. CBGT connectivity. Connection type and probability by nucleus and receptor.697
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698

699

Supp. Table 8. Number of neurons in each CBGT nucleus.700

701

702

Supp. Table 9. STDP parameters.703
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