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Proteome capacity constraints favor respiratory ATP generation

Abstract

Cells face competing metabolic demands. These include efficient use of both limited substrates
and limited proteome capacity, as well as flexibility to deal with different environments. Flexibility
requires spare enzyme capacity, which is proteome inefficient. ATP generation can occur via
fermentation or respiration. Fermentation is much less substrate-efficient, but often assumed to be
more proteome efficient !, thereby favoring fast-growing cells engaging in aerobic glycolysis +
8, Here, however, we show that mitochondrial respiration is actually more proteome-efficient than
aerobic glycolysis. Instead, aerobic glycolysis arises from cells maintaining the flexibility to grow
also anaerobically. These conclusions emerged from an unbiased assessment of metabolic
regulatory mechanisms, integrating quantitative metabolomics, proteomics, and fluxomics, of two
budding yeasts, Saccharomyces cerevisiae and Issatchenkia orientalis, the former more
fermentative and the latter respiratory. Their energy pathway usage is largely explained by
differences in proteome allocation. Each organism’s proteome allocation is remarkably stable
across environmental conditions, with metabolic fluxes predominantly regulated at the level of
metabolite concentrations. This leaves extensive spare biosynthetic capacity during slow growth
and spare capacity of their preferred bioenergetic machinery when it is not essential. The greater
proteome-efficiency of respiration is also observed in mammals, with aerobic glycolysis occurring
in yeast or mammalian cells that maintain a fermentation-capable proteome conducive to both

aerobic and anaerobic growth.

Introduction

Metabolism is subject to physical constraints. Given the law of conservation of matter, to maintain
homeostasis, limited metabolic inputs must balance with outputs (‘flux balance’). These outputs
include high energy cofactors (most importantly ATP), building blocks for cell replication, and
waste. The resources, including physical space and protein synthesis capacity, to sustain these
fluxes are also limited. Thus, cells are under pressure to produce their required metabolic fluxes

efficiently. As proteins catalyze most metabolic reactions and comprise the majority of biomass in
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many cell types, the challenges of limited biosynthetic machinery and physical space can be

viewed largely as constraints on proteome capacity >3°17.

To manage proteome capacity, cells tailor protein expression to their conditions '#2!. For example,
rapidly growing cells express copious ribosomes 82223 This requires less expression of other
protein types, such as anabolic and catabolic enzymes (e.g. those required for assimilating limiting
quantities of nitrogen 24, or breaking down non-preferred carbon sources 2!>%). Conversely, under
less favorable conditions, ribosome expression falls to make room for other proteins. Perfect

proteome tailoring, however, is not necessarily feasible or desirable ¢3¢

, as proteome remodeling
is expensive and spare enzyme capacity can allow cells to quickly ramp up fluxes to deal with

changing conditions.

An important case of metabolic tailoring involves energy production from fermentation versus
respiration. Respiration is by far more energy-efficient, producing roughly 10-fold more ATP per
glucose *!. Nevertheless, many organisms ferment, producing organic waste, even when oxygen is
available (‘aerobic glycolysis’). Aerobic glycolysis is associated with fast growing cells including
bacteria, yeast and cancer cells *%. Indeed, as their growth accelerates, both Escherichia coli and

S. cerevisiae switch from respiration to fermentation >32.

Why do cells engage in aerobic glycolysis when it is so much less energy-efficient than respiration?
One possibility involves a ‘rate-yield tradeoff” =33, More specifically, it is often believed that
fermentation is capable of producing ATP faster per unit enzyme expression, i.e. more ‘proteome
efficient’ *-!7. The proteome efficiency of glycolysis versus respiration, however, has not been

carefully experimentally tested in eukaryotes.

Here we examine this question, building from an extensive systems-level analysis of metabolism
in two evolutionarily distant budding yeasts (separated by 200 million years 3%): S. cerevisiae
(Baker’s yeast) and 1. orientalis (also known as Candida krusei and Pichia kudriavzevii, a species
abundant in fermented food, fruit, and soil with favorable properties for bioengineering) 34, We
find that, across diverse environmental conditions spanning a broad range of growth rates, the

proteome of each yeast varies only modestly, with metabolic flux explained primarily by
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86  metabolite levels. Across the yeasts, however, metabolic flux differences are explained mainly by
87  proteome allocation, with 1. orientalis expressing more respiratory enzymes and outcompeting S.
88  cerevisiae across diverse aerobic contexts. Both in /. orientalis and in respiring S. cerevisiae,
89  quantitative measurements show that respiration is actually several-fold more proteome efficient
90 than glycolysis. Similar results are attained in mammalian tissues and cancer cells. The origin of
91 aerobic glycolysis accordingly does not lie in proteome efficiency, but rather in a proteome

92  hedging strategy where cells maintain spare glycolytic capacity in preparation for potential future

93  hypoxia.
94

95  Results
96

97  Metabolic fluxes in S. cerevisiae and 1. orientalis

98  We first characterized aerobic growth and metabolism of S. cerevisiae and I. orientalis in glucose

99  minimal medium (Fig. Sla). L. orientalis grows faster than S. cerevisiae (n = 0.52 vs. 0.39 h'!),
100 respires much more, consumes less glucose, and excretes less ethanol (Fig. S1a). We then resolved
101 flux through the entire metabolic network with 1*C metabolic flux analysis (Fig. 1). Specifically,
102 we developed genome-scale metabolic models of both yeasts including complete atom mapping
103 4!, The models were then constrained by flux balance and experimentally derived extracellular
104  fluxes, biomass fluxes, and isotope labeling (from two distinct '*C-tracer strategies: [1,2-
105  BCi]glucose and [U-'3Cg]glucose, each at 1:1 molar ratio with unlabeled glucose). This enabled
106  comprehensive yeast metabolic flux analysis, at a rigor previously achieved only in prokaryotes
107 4142
108
109  BC-tracing resolved key internal flux branch points. For example, [1,2-'3Cz]glucose revealed
110 markedly higher [M+1] pyruvate labeling in 1. orientalis (Fig. S1b), reflecting greater oxidative
111 pentose phosphate pathway (PPP) flux in this yeast species (Fig. 1). The same tracer also reveals
112 greater [M+1] tricarboxylic acid (TCA) cycle intermediates in /. orientalis (Fig. S1c), consistent
113 with higher oxidative TCA cycle flux relative to S. cerevisiae, where clockwise TCA flux was
114  truncated at a-ketoglutarate (Fig. 1). The greatest difference between the two yeasts is in the way
115  glucose is catabolized. Namely, S. cerevisiae prefers carbon-inefficient fermentation, and

116  correspondingly makes most ATP from glycolysis and consumes most NADH via ethanol
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117  fermentation (Fig. 1, Fig. S1d). In contrast, . orientalis prefers respiration for ATP production,
118  and re-oxidizes NADH by a blend of complex I and the quinone oxidoreductase Ndel, the
119  knockout of which impairs 1. orientalis but not S. cerevisiae growth 43 (Fig. 1, Fig. Sle).

120

121  Flux control across environmental conditions

122 When nutrients become scarce, cells adjust metabolic fluxes and growth. Such fluxes can be
123 controlled through enzyme concentration (kea[E] in the Michaelis-Menten kinetics), active site
124 occupancy ([S])/([S]+Km)), or allosteric regulation (Fig. 2a). To assess flux control mechanisms in
125 8. cerevisiae and I. orientalis, we grew each yeast in aerobic chemostats at diverse growth rates
126  controlled by limiting glucose, ammonia, or phosphate availability (Fig. 2b). In each nutrient
127  environment, we measured enzyme concentrations via quantitative proteomics, metabolite
128  concentrations via metabolomics, and metabolic fluxes via '3C-informed fluxomics (Fig. 2c).
129  Fluxes aligned remarkably closely with growth rate in both yeasts (Fig. S2a), with the exception
130  of metabolic switching to respiration and the PPP (relative to glycolysis) in glucose-limited S.
131  cerevisiae, which renders glucose-limited S. cerevisiae metabolically similar to /. orientalis (Fig.
132 S2, b and c). On average, 53% of flux variation in S. cerevisiae and 71% in I. orientalis was
133 explained by growth rate alone.

134

135 The corresponding metabolomics and proteomics data provide a valuable resource for
136  understanding the biochemical basis by which these fluxes are achieved, especially in the non-
137  model yeast. For example, they can be assessed on a reaction-by-reaction basis to identify
138  physiologically meaningful metabolic regulators ** (Fig. S3a showing glyceraldehyde-3-phosphate
139  dehydrogenase, or GAPD, as an example). We were able to identify allosteric regulation in 19 out
140  of 51 examined reactions in /. orientalis (Supplementary Table). Seven of these regulations have
141  also been reported in S. cerevisiae, including classical ones such as citrate inhibition of

31 and fructose-1,6-bisphosphate activation of pyruvate kinase 4. Our

142 phosphofructokinase
143 analysis also revealed multiple previously unappreciated regulatory interactions. For example,
144 ATP inhibits 1. orientalis GAPD, a novel interaction that we biochemically verified (Fig. S3, a-c).
145  Overall, the integration of in vivo enzyme and metabolite concentrations via Michaelis-Menten
146  kinetics explained the vast majority of flux variation across physiological conditions (Fig. 2d).

147  This reflects enzyme concentration, active site occupancy, and allosteric regulation by metabolites
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148  collectively accounting for most yeast flux control, without the need to invoke other mechanisms
149  like enzyme covalent modification or localization.

150

151  Flux control by enzyme concentration

152 Cells contain extensive programs for regulating protein levels. Across nutrient conditions, however,
153  we observed remarkably stable enzyme concentrations. In contrast, both metabolic fluxes and
154  metabolite concentrations varied much more than enzymes (Fig. 2c, Fig. S2a). For some reactions,
155  enzyme levels even show negative correlation with flux (negative Pearson’s R in Fig. 2d with
156  enzyme only). We assessed the extent of physiological flux control residing in enzymes and
157  metabolites based on their metabolic leverage, the product of their physiological concentration
158  variation across conditions and their flux control coefficient based on the best-supported kinetic
159  model from the above quantitative analysis of physiological metabolic regulation. Across 51
160  evaluable reactions, we found that, across nutrient conditions, metabolites exert much more
161  metabolic leverage than enzymes (Fig. 2e, Fig. S3d).

162

163  Indeed, within both yeast species, flux changes across physiological conditions correlate better
164  with pathway substrate concentration changes than pathway enzyme concentration changes (based
165  on median of fold change across pathway components) (Fig. 2, f-1). The maintenance of enzyme
166  concentrations with reduced growth and metabolic flux suggests substantial spare enzyme capacity,
167  which may facilitate rapid growth acceleration when nutrient conditions improve 26274647,

168

169  In contrast to metabolite-dominant flux control within each yeast in response to changing nutrient
170  environment, flux differences between S. cerevisiae and I. orientalis strongly aligned with enzyme
171  concentrations (Fig. 2, j-k). Given the 200 million years of evolution separating these two species
172 3% we expected that there might be substantial differences in enzyme properties that change
173  metabolic flux between the two organisms. Highly expressed proteins, including central metabolic
174  enzymes, however remained strongly conserved between the two yeasts at the protein sequence
175  level (Fig. S4). Correspondingly, enzyme abundances account for a large fraction of flux variation,
176  including the greater glycolysis flux in §. cerevisiae and faster TCA turning and oxidative
177  phosphorylation in I orientalis (Fig. 2k). Thus, within the tested yeast species, flux is

178  predominately regulated at the level of metabolite concentrations and active site occupancy. In
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179  contrast, flux differences between these yeast species is predominately explained by enzyme
180  concentrations.

181

182  Proteome-efficiency of ATP generation

183  We next examined overall proteome allocation of both yeasts with absolute proteomic
184  quantification calibrated by UPS2 standard, and found that metabolic genes (enzymes, transporters,
185  and mitochondrial proteins) together accounted for just over half of the proteome in both species,
186  with the other major proteome sectors being translation (mostly ribosomes) and transcriptional
187  machinery (Fig. 3a). The fractional proteome allocation to these three major sectors was nearly
188  1identical across the two yeasts. The major difference was within the metabolic sector, which had
189  three major components: anabolic, glycolytic, and respiratory (the latter being composed of
190  mitochondrial, TCA, and oxidative phosphorylation proteins). The anabolic enzymes constituted
191  a similar proteome fraction in both species, but there was a major reallocation between the two
192 other sectors: S. cerevisiae expresses more glycolytic proteins, and 1. orientalis more respiratory
193  proteins.

194

195  Together, our absolute proteome quantitation and flux analyses enabled quantification of ATP
196  production per protein mass (i.e. proteome efficiency) of glycolysis and respiration in both species.
197  We obtained the ATP flux from the genome-scale model, which included a mechanistic ratio of 3
198  ATP produced for every 10 protons translocated by ATP synthase *%. Including both TCA and
199  oxidative phosphorylation proteins (but not other mitochondrial proteins) as the proteome cost of
200  respiration, we found that, in batch culture, respiration is more proteome-efficient than glycolysis
201  in both yeasts (Fig. 3b).

202

203  Despite comparing favorably to glycolysis, respiration in glucose-rich batch-cultured S. cerevisiae
204  was much less proteome-efficient than in I orientalis. Besides the absence of proton-pumping
205  complex I in S. cerevisiae, we hypothesized that this also reflects spare respiratory capacity when
206  glucose is abundant. Consistent with this, the proteome-efficiency of S. cerevisiae respiration
207  increased (and of glycolysis fell) under glucose limitation (Fig. 3¢, Fig. S5). In contrast, since /.
208  orientalis defaults to respiration even when glucose is abundant, proteome-efficiency was

209  unaffected by glucose availability.
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210

211 Part of glycolytic and TCA flux is diverted to biosynthesis, and glycolytic flux is needed to
212 generate respiratory substrate. We further assessed proteome efficiency of ATP generation of
213 fermentation (turning glucose to ethanol) and respiration (turning glucose to CO») by calculating
214  a flux-partitioned proteome cost 2, which counts glycolytic proteins in the cost of respiration and
215  discounts flux diverted to other pathways. In both yeasts, this flux-partitioned analysis identified
216  respiration as the more proteome-efficient ATP production pathway (Fig. S6, a-b). Similarly, even
217  if counting all mitochondrial proteins into respiration’s proteome cost, respiration remains more
218  proteome-efficient than glycolysis in /. orientalis and glucose-limited S. cerevisiae (Fig. S6, c-d).
219

220  Benefit of aerobic glycolysis

221  In S. cerevisiae, rate-yield tradeoff was believed to underlie the switching to carbon-inefficient
222 fermentation at faster growth '“"!7. Our data reveals, however, that respiration is both more energy-
223 and proteome-efficient than glycolysis. Such efficiency would be expected to lead to greater fitness.
224

225  Consistently, 1. orientalis outcompetes S. cerevisiae in co-culture under conditions requiring
226  respiratory ATP production (ethanol, glucose limitation). Importantly, however, it also
227  outcompetes under conditions where fermentation is a viable strategy (abundant glucose, nitrogen
228  limitation, phosphorus limitation, and even sucrose as the sole carbon source, which S. cerevisiae
229  can ferment on while /. orientalis alone cannot metabolize and presumably takes in glucose and
230  fructose liberated by S. cerevisiae) (Fig. 4a, Fig. S7).

231

232 If respiration is both more energy- and proteome-efficient than glycolysis, why does aerobic
233 glycolysis occur? One possibility is the production of a toxic product that impairs competitors:
234 ethanol 4%, Another is carbon resource competition, essentially quick uptake of glucose '331,
235  These might help S. cerevisiae compete with bacteria, but did not against /. orientalis (Fig. 4a).
236

237  We wondered whether the benefit of acrobic glycolysis might instead not be during aerobic growth,
238  but rather in hedging for oxygen limitation (hypoxia) '3. S. cerevisiae was repeatedly exposed to
239  oxygen limitation during human baking and winemaking 2. But oxygen limitation can also occur

240  readily naturally, due to oxygen’s limited solubility (co2 =230 ymol/L) and slow diffusion in water


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

241 (D = 2.3x10” m?%/s). We measured the dissolved oxygen at the bottom of unstirred S. cerevisiae
242 and I orientalis cultures, and found that oxygen depletion occurred at relatively low culture
243 density (Fig. S8). Notably, S. cerevisiae outcompeted /. orientalis in fully or cyclically oxygen-
244 depleted co-cultures (Fig. 4a, Fig. S7). Consistently, we observed about 60% growth rate reduction
245  in I orientalis but not S. cerevisiae upon oxygen depletion or pharmacological inhibition of
246 electron transport chain complex III by antimycin (Fig. 4b). Both oxygen depletion and antimycin
247  increased glucose uptake rate by more than two-fold in 1. orientalis (Fig. 4c), which is mediated
248 by about 3-fold higher expression of glycolytic proteins (Fig. 4d). Notably, this glycolytic protein
249  expression came at the expense of ribosomal proteins, consistent with the growth defect in
250  anaerobic /. orientalis (Fig. 4d, Fig. S9).

251

252  Proteomic hedging and aerobic glycolysis

253  Both I orientalis and S. cerevisiae can tailor their respiratory versus glycolytic enzyme expression
254  to environmental conditions. But this tailoring is incomplete: 1. orientalis partially retains
255  respiratory enzyme and mitochondrial protein expression in hypoxia (Fig. 4d), while S. cerevisiae
256  retains high glycolytic enzymes in aerobic conditions (Fig. 2g).

257

258  To explore the consequences of incomplete proteome tailoring, we assembled a coarse-grained
259  quantitative model of yeast growth and metabolism, where growth is limited both by ATP
260  generation (fermentative or respiratory) and by translational machinery, jointly constrained by
261  proteome capacity (Fig. 4e and Extended Data Note). Growth optimization is performed to find
262  the optimal respiratory and glycolytic proteome allocation (fr and fg, respectively). This minimal
263  model captures the proteome tradeoff between optimal aerobic and anaerobic growth (Fig. 4e).
264  While optimal aerobic growth is achieved via respiratory ATP production, when the proteome is
265  constrained to always contain enough glycolytic enzyme for rapid anaerobic growth, aerobic
266  glycolysis emerges as an optimal strategy (Fig. 4f).

267

268  Mammalian ATP generation

269  We were curious if the greater proteome efficiency of respiration generalizes from yeast to
270  mammals. To investigate this, we quantified the proteome efficiency of glycolysis and respiration

271  in cultured cancer cells and mouse tissues (Fig. 5). ATP flux was from previous reports or
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272  estimated based on reported oxygen consumption rates °*%° (Fig. 5a). The proteome fraction
273 allocated to glycolysis and respiration was computed from published proteomics data 37, which
274  shows that mouse tissues in general have greater respiratory proteome capacity like in /. orientalis,
275  whereas cancer cell lines have more glycolytic proteome like in S. cerevisiae (Fig. 5b). Overall,
276  the proteome efficiency of both glycolysis and respiration was lower in mammals than in yeast,
277  consistent with mammals being under less stringent selection for proteome -efficiency.
278  Nevertheless, in both cultured cancer cells and in vivo tissues, respiration was the more proteome-
279  efficient ATP generation pathway (Fig. 5c). Thus, in both yeast and mammals, mitochondrial
280  respiration is more proteome-efficient than glycolysis.

281

282  Discussion

283  Here we report in-depth proteomic, metabolomic, and metabolic flux characterization of two
284  divergent budding yeasts across various environmental conditions. The resulting data reveal
285  principles of yeast metabolism and its regulation. Prior integrative ‘omic analysis of E. coli and S.
286  cerevisiae concluded that metabolism is substantially ‘self-regulated’, i.e. that changes in
287  metabolic flux are caused more by metabolites themselves than transcriptional and translational
288  reprogramming of enzyme levels *+3%° This conclusion is reinforced by analogous analysis of 1.
289  orientalis here, which shows even less proteome variation across most environmental conditions
290  than S. cerevisiae, and yet greater dominance of metabolic flux control by metabolites themselves.
291

292 In contrast to the limited impact of the proteome on flux control within each species, across the
293 two species, metabolic differences are mainly encoded by protein abundances. Given that these
294 two yeasts diverged roughly 200 million years ago, the ability to explain most of their metabolic
295  differences through enzyme concentrations — rather than changes in the properties of enzymes
296  themselves — is notable, and speaks to the importance of proteome allocation in driving metabolic
297  divergence even across long timescales °©'.

298

299  The most striking metabolic difference between 1. orientalis and S. cerevisiae is that, in the
300 presence of abundant glucose, the former respires while the latter engages in aerobic glycolysis.
301  We show that, across a wide range of aerobic conditions, the more respiratory yeast grows faster

302 and has superior competitive fitness. This aligns with respiration requiring less of the cell’s

10
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303  precious proteome capacity to achieve the same growth-required ATP flux. Quantitative analysis
304 of mammalian cancer cells and tissues demonstrates that respiration is also more proteome-
305 efficient than glycolysis in mammals.

306

307  Prior careful evaluation of proteome efficiency in E. coli reached a seemingly opposite conclusion,
308 finding that acetate fermentation is favored for its proteome efficiency 2. Acetate overflow
309 metabolism in E. coli, however, involves a blend of glycolytic and respiratory ATP generation
310  with 4 NADH feeding into the electron transport chain for each glucose. This provides an ATP
311  yield of about 12 per glucose, the majority of which is made via the oxidative phosphorylation
312  (compared to 2 ATP per glucose in yeast or mammalian aerobic glycolysis). Thus, aerobic
313  ‘fermentation’ in E. coli is proteome efficient only because it generates substantial respiratory ATP.
314

315  Overall, supported by our data in S. cerevisiae and I. orientalis, we propose that cells of a given
316  type tend to have a characteristic metabolic proteome that varies only modestly across conditions.
317  In this nearly fixed enzyme network, changing substrate levels induce different fluxes, providing
318  metabolic flexibility without the need for extensive proteome remodeling. A benefit of such
319  proteome constancy is that cells are prepared in advance for changing metabolic environments.
320  One of the most important metabolic fluctuations cells face is shifting oxygen availability ©2. We
321  thus posit that aerobic glycolysis occurs not because it is beneficial per se, but as a side effect of
322  maintaining a fermentative proteome that effectively supports both aerobic and anaerobic growth.

323

11


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

324
325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Reference

1.

10.

1.

Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and Competition in the Evolution of
ATP-Producing Pathways. Science 292, 504-507 (2001).

Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome
allocation. Nature 528, 99—-104 (2015).

Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect
tradeoffs in cellular economics. Mol. Syst. Biol. 5,323 (2009).

Crabtree, H. G. Observations on the carbohydrate metabolism of tumours. Biochem. J. 23,
536545 (1929).

De Deken, R. H. The Crabtree Effect: A Regulatory System in Yeast. J. Gen. Microbiol. 44,
149-156 (1966).

Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg Effect:
The Metabolic Requirements of Cell Proliferation. Science 324, 1029—1033 (2009).
DeBerardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab.
2, 127-129 (2020).

Wolfe, A. J. The Acetate Switch. Microbiol. Mol. Biol. Rev. 69, 12—50 (2005).

Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T. Prediction of Microbial
Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters. PLoS
Comput. Biol. 8, 1002575 (2012).

O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. @. Genome- scale
models of metabolism and gene expression extend and refine growth phenotype prediction.
Mol. Syst. Biol. 9, 693 (2013).

Mori, M., Hwa, T., Martin, O. C., De Martino, A. & Marinari, E. Constrained Allocation Flux

Balance Analysis. PLOS Comput. Biol. 12, €1004913 (2016).

12


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

348  12. Salvy, P. & Hatzimanikatis, V. The ETFL formulation allows multi-omics integration in
349 thermodynamics-compliant metabolism and expression models. Nat. Commun. 11, 30 (2020).
350 13. Wortel, M. T., Noor, E., Ferris, M., Bruggeman, F. J. & Liebermeister, W. Metabolic enzyme
351 cost explains variable trade-offs between microbial growth rate and yield. PLOS Comput. Biol.
352 14, €1006010 (2018).

353 14. Sanchez, B. J. et al. Improving the phenotype predictions of a yeast genome-scale metabolic
354 model by incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935 (2017).

355 15. Oftadeh, O. et al. A genome-scale metabolic model of Saccharomyces cerevisiae that
356 integrates expression constraints and reaction thermodynamics. Nat. Commun. 12, 4790
357 (2021).

358 16. Elsemman, 1. E. et al. Whole-cell modeling in yeast predicts compartment-specific proteome
359 constraints that drive metabolic strategies. Nat. Commun. 13, 801 (2022).

360 17. Chen, Y. & Nielsen, J. Energy metabolism controls phenotypes by protein efficiency and
361 allocation. Proc. Natl. Acad. Sci. 116, 1759217597 (2019).

362 18. You, C. et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling.
363 Nature 500, 301-306 (2013).

364 19. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying Absolute Protein Synthesis
365 Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell 157, 624—635
366 (2014).

367  20. Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein.
368 Nature 436, 588-592 (2005).

369  21. Keren, L. et al. Massively Parallel Interrogation of the Effects of Gene Expression Levels on

370 Fitness. Cell 166, 1282-1294.e18 (2016).

13


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

371  22. Bosdriesz, E., Molenaar, D., Teusink, B. & Bruggeman, F. J. How fast-growing bacteria
372 robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J.
373 282, 2029-2044 (2015).

374  23. Peebo, K. et al. Proteome reallocation in Escherichia coli with increasing specific growth rate.
375 Mol. Biosyst. 11, 1184-1193 (2015).

376  24. Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource
377 allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).

378  25. Gancedo, J. M. Yeast Carbon Catabolite Repression. Microbiol. Mol. Biol. Rev. 62, 334-361
379 (1998).

380  26. Metzl-Raz, E. ef al. Principles of cellular resource allocation revealed by condition-dependent
381 proteome profiling. eLife 6, €28034 (2017).

382  27. O’Brien, E. J., Utrilla, J. & Palsson, B. O. Quantification and Classification of E. coli Proteome
383 Utilization and Unused Protein Costs across Environments. PLOS Comput. Biol. 12, 1004998
384 (2016).

385  28. Yu, R. et al. Nitrogen limitation reveals large reserves in metabolic and translational capacities
386 of yeast. Nat. Commun. 11, 1881 (2020).

387  29. Postma, E., Verduyn, C., Scheffers, W. A. & Van Dijken, J. P. Enzymic analysis of the crabtree
388 effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ.
389 Microbiol. 55, 468-477 (1989).

390  30. Christodoulou, D. ef al. Reserve Flux Capacity in the Pentose Phosphate Pathway Enables
391 Escherichia coli’s Rapid Response to Oxidative Stress. Cell Syst. 6, 569-578.e7 (2018).

392 31. Lehninger, A. L., Nelson, D. L. & Cox, M. M. Lehninger principles of biochemistry. (W.H.

393 Freeman, 2005).

14


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

394  32. Van Hoek, P., Van Dijken, J. P. & Pronk, J. T. Effect of Specific Growth Rate on Fermentative
395 Capacity of Baker’s Yeast. Appl. Environ. Microbiol. 64, 42264233 (1998).

396  33. Bachmann, H. ef al. Availability of public goods shapes the evolution of competing metabolic
397 strategies. Proc. Natl. Acad. Sci. 110, 14302—-14307 (2013).

398  34. Shen, X.-X. et al. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum.
399 Cell 175, 1533-1545.e20 (2018).

400  35. Radecka, D. et al. Looking beyond Saccharomyces : the potential of non-conventional yeast
401 species for desirable traits in bioethanol fermentation. FEMS Yeast Res. 15, fov053 (2015).
402  36. Fatma, Z., Schultz, J. C. & Zhao, H. Recent advances in domesticating non-model
403 microorganisms. Biotechnol. Prog. 36, (2020).

404  37. Xiao, H., Shao, Z., Jiang, Y., Dole, S. & Zhao, H. Exploiting Issatchenkia orientalis SD108
405 for succinic acid production. Microb. Cell Factories 13, 121 (2014).

406  38. Suthers, P. F. et al. Genome-scale metabolic reconstruction of the non-model yeast
407 Issatchenkia orientalis SD108 and its application to organic acids production. Metab. Eng.
408 Commun. 11, €00148 (2020).

409  39. Cao, M. et al. A genetic toolbox for metabolic engineering of Issatchenkia orientalis. Metab.
410 Eng. 59, 87-97 (2020).

411  40. Douglass, A. P. et al. Population genomics shows no distinction between pathogenic Candida
412 krusei and environmental Pichia kudriavzevii: One species, four names. PLOS Pathog. 14,
413 €1007138 (2018).

414  41. Gopalakrishnan, S. & Maranas, C. D. 13C metabolic flux analysis at a genome-scale. Metab.

415 Eng. 32, 12-22 (2015).

15


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

416  42. McCloskey, D., Young, J. D., Xu, S., Palsson, B. O. & Feist, A. M. Modeling Method for
417 Increased Precision and Scope of Directly Measurable Fluxes at a Genome-Scale. Anal. Chem.
418 88, 3844-3852 (2016).

419  43. Luttik, M. A. H. et al. The Saccharomyces cerevisiac NDE1 and NDE2 Genes Encode
420 Separate Mitochondrial NADH Dehydrogenases Catalyzing the Oxidation of Cytosolic
421 NADH. J. Biol. Chem. 273, 2452924534 (1998).

422 44. Hackett, S. R. et al. Systems-level analysis of mechanisms regulating yeast metabolic flux.
423 Science 354, aaf2786—aaf2786 (2016).

424 45, Schomburg, D., Schomburg, 1. & Chang, A. Springer handbook of enzymes. (Springer, 2007).
425  46. Reznik, E. et al. Genome-Scale Architecture of Small Molecule Regulatory Networks and the
426 Fundamental Trade-Off between Regulation and Enzymatic Activity. Cell Rep. 20, 26662677
427 (2017).

428  47. Jansen, M. L. A. et al. Prolonged selection in aerobic, glucose-limited chemostat cultures of
429 Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology 151,
430 1657-1669 (2005).

431  48. Symersky, J. et al. Structure of the c10 ring of the yeast mitochondrial ATP synthase in the
432 open conformation. Nat. Struct. Mol. Biol. 19, 485-491 (2012).

433  49. Zhou, N. et al. Coevolution with bacteria drives the evolution of aerobic fermentation in
434 Lachancea kluyveri. PLOS ONE 12, 0173318 (2017).

435  50. Dashko, S., Zhou, N., Compagno, C. & Piskur, J. Why, when, and how did yeast evolve
436 alcoholic fermentation? FEMS Yeast Res. 14, 826-832 (2014).

437  51. MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental

438 populations of yeast. Nature 441, 498-501 (2006).

16


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

439  52. Dekker, W. J. C., Wiersma, S. J., Bouwknegt, J., Mooiman, C. & Pronk, J. T. Anaerobic
440 growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or
441 supplementation of unsaturated fatty acids. FEMS Yeast Res. 19, f0z060 (2019).

442 53. Martin, A. W. & Fuhrman, F. A. The Relationship between Summated Tissue Respiration and
443 Metabolic Rate in the Mouse and Dog. Physiol. Zool. 28, 18-34 (1955).

444 54, Zielinski, D. C. et al. Systems biology analysis of drivers underlying hallmarks of cancer cell
445 metabolism. Sci. Rep. 7, 41241 (2017).

446  55. Bartman, C. R. et al Slow TCA flux implies low ATP production in tumors.
447 http://biorxiv.org/lookup/doi/10.1101/2021.10.04.463108 (2021)
448 doi:10.1101/2021.10.04.463108.

449  56. Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D. & Mering, C. Version 4.0 of
450 PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines.
451 PROTEOMICS 15, 31633168 (2015).

452  57. Gholami, A. M. et al. Global Proteome Analysis of the NCI-60 Cell Line Panel. Cel/ Rep. 4,
453 609620 (2013).

454  58. Fendt, S. et al. Unraveling condition-dependent networks of transcription factors that control
455 metabolic pathway activity in yeast. Mol. Syst. Biol. 6, 432 (2010).

456  59. Millard, P., Smallbone, K. & Mendes, P. Metabolic regulation is sufficient for global and
457 robust coordination of glucose uptake, catabolism, energy production and growth in
458 Escherichia coli. PLOS Comput. Biol. 13, €1005396 (2017).

459  60. Gerosa, L. et al. Pseudo-transition Analysis Identifies the Key Regulators of Dynamic

460 Metabolic Adaptations from Steady-State Data. Cell Syst. 1, 270-282 (2015).

17


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

461  61. Kito, K. et al. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression
462 Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of
463 Gene Duplication. Mol. Cell. Proteomics 15, 218-235 (2016).

464  62. Dewhirst, M. W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate

465 angiogenesis and radiotherapy response. Nat. Rev. Cancer 8, 425437 (2008).
466

467  Acknowledgement

468

469  We thank the members of Rabinowitz lab for discussion on experiments and the manuscript; S.
470  Silverman and J. Avalos for yeast strains, L. Ryazanova for help with proteomics experiment, P.
471  F. Suthers for discussion on the genome-scale model, M. Gupta for discussion on protein
472  regulation, N. Piyush and Z. Zhang for advice on competitive fitness, and Z.-Y. Wu for
473  experimental support. This work was funded by DOE grant DE-SC0018260 and the DOE Center
474  for Advanced Bioenergy and Bioproducts Innovation (Award Number DE-SC0018420). Any
475  opinions, findings, conclusions or recommendations expressed in this publication are those of the
476  author(s) and do not necessarily reflect the views of the U.S. Department of Energy.

477

478  Author contributions

479

480 Y.S., M.W. and J.D.R. designed this study. Y.S. performed most of the experiments and data
481  analysis. H.V.D. designed and performed genome-scale metabolic flux analysis with the input
482 from Y.S., J.ILH., and C.D.M. E.C., H.B., and A.S. performed proteomics measurement. C.M.C.
483  performed nutrient limited culture and measurement. R.P.R. designed and performed enzyme
484  purification and qPCR. J.P. performed enzyme purification and competitive growth experiments.
485  Z.F. created mutant yeast strains with the input from H.Z., and contributed to enzyme purification.
486 S.D.and Y.Y. contributed to yeast growth measurement. V.T. contributed to enzyme purification.
487 T.X. contributed to metabolomics measurements. D.W. contributed to enzyme constrained
488  modeling. L.Y. contributed to oxygen consumption measurement. Y.S. and J.D.R. wrote the

489  manuscript with input from all co-authors.

18


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

490

491
492

19


https://doi.org/10.1101/2022.08.10.503479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503479; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[ 230 million years —I
S.cerevisiae | b =0.39 h-! l.orientalis | p = 0.52 h-! pathway
glycolysis
h
oo expres
27 ‘ 10 ‘
26 ’ 8 .
M y ! ”

2
glyc3p TP

NAD+
NADHJ 51 EtOH
ADP NAD+
w3 k
NADH
OAA «—PYR = AceAld

¢

|

1
glyc3p Ll
NAD+
EtOH
NADHJ 17
ADP H FNAM
ATP
NADH

OAA<2— PYR = AceAld

NADHg6 (ndi) 0-8 | 10 NADHg6 (nde) complex | 6 ¥ 12 NADHq7
[}/\. NAD+ AcCoA U< NADH NAD+ AcCoA & NADH
0 3 §
NADH 0.7 NAD+ ' NADH 6 NAD+
ATPS ATPS

NAD+
ATP e NADH
21 ' ADP aKG

ATP TCA NAD+
NADH
104 k ADP aKes

0 mitochondria 5 mitochondria
493
494  Figure 1. Genome-scale flux analysis shows more active respiratory metabolism in 7
495  orientalis.
496
497  Metabolic flux (in mmol/gDW/h) of S. cerevisiae (CEN.PK) and /. orientalis (SD108) in aerobic
498  exponential growth in YNB with 20 g/L glucose. Fluxes are best estimate from genome-scale '3C-
499  informed metabolic flux analysis (MFA), with the input data including metabolite '3C labeling
500 from two '*C-glucose tracers (each with n = 3 or 4 biological replicates) and consumption and
501  excretion fluxes (at least n = 3 biological replicates). Color represents metabolic pathways:
502  glycolysis in red, oxidative phosphorylation (ox phos) in blue, TCA in green, and PPP in orange.
503  Numbers represents flux in mmol/h/gDW.
504
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506  Figure 2. Flux change is explained by metabolites within yeast species, and by enzymes across

507  yeasts. (Legend continues on next page.)
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508  Figure 2. Flux change is explained by metabolites within yeast species, and by enzymes across
509  yeasts.

510  (a) Flux change can be achieved through change in either enzyme or substrate level via Michaelis-
511  Menten kinetics.

512 (b) Multi-omics data were obtained in steady-state yeast grown in nutrient-limited continuous
513 culture or nutrient-replete batch culture.

514  (c¢) Genome-wide metabolic flux, protein abundance, and metabolite concentrations in 1. orientalis
515 across growth conditions. Values are normalized to the geometric mean across all the conditions.
516  Metabolomics, mean of n = 3 technical replicates (independent sampling from continuous culture).
517  Proteomics, n = 1 biological replicate. Fluxomics, best estimates from '3C-MFA similar to Fig. 1.
518  (d) Distribution of Pearson’s R for 51 reactions between measured flux and flux predicted from
519  Michaelis-Menten kinetics accounting for different variables: concentration of enzyme, reactant,
520  and best data-supported allosteric regulator (if any).

521  (e) Partition of metabolic control among enzyme, reactants, and regulator for 51 reactions in /.
522  orientalis.

523  (f-k) Correlation between flux and metabolite concentration (f-h) or between flux and enzyme
524 concentration (i-k). Data within an organism (f,g,1,j) compares nutrient limited to batch conditions.
525  Data across organisms (h,k) compares S. cerevisiae to 1. orientalis. Each point represents median
526  flux and concentration fold change for the pathway. Pearson’s R and p value are shown. Symbols
527  in (h, k) are diamonds, CEN.PK in batch culture; circle, FY4 in batch culture; triangle, FY4 in
528  nutrient limitation at 0.22 h!. Black line shows slope = 1. Other pathways (folate, sugar, nucleic
529  acid, lipid, amino acid) are plotted in different shades of grey.

530

531
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533  Figure 3. Proteome efficiency across nutrient conditions in S.cerevisiae and 1. orientalis.

534

535  (a) Proteome allocation of S. cerevisiae (CEN.PK) and . orientalis in exponentially growing batch
536  culture. Mean + SE, n = 4 biological replicates.

537  (b) ATP fluxes (from '*C-informed MFA), proteome mass fraction (of whole cell dry weight), and
538  proteome efficiency for glycolysis and respiration in exponentially growing aerobic glucose-fed
539  batch culture. ATP fluxes are shown as mean + SE based on '*C-MFA confidence interval.
540  Proteome efficiency is shown as mean + SE, with error propagated from flux and proteome fraction
541  measurements.

542  (c) Proteome efficiency of respiration and glycolysis across different nutrient conditions in S.
543  cerevisiae (left) and I orientalis (right). For raw data, see Fig. S5. Solid line shows linear
544  regression in glucose replete conditions (Batch, N-limit, and P-limit). Dashed line is glucose-

545  depleted conditions (C-limit). P values are from ANOVA of linear model.
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Figure 4. Aerobic glycolysis emerges from anaerobically primed proteome.

(a) Fitness of I orientalis and S. cerevisiae measured in competitive co-culture. Relative
abundance of the two yeasts was measured by qPCR at 4 to 6 time points and used to obtain fitness.
See method for details. Mean + SE, n = 3 or 4 biological replicates.

(b-c) Specific growth rates (b) and glucose consumption rates (c) for batch-cultured S. cerevisiae
and /. orientalis with oxygen (blue), without oxygen (light grey), and with 10 uM antimycin (dark
grey). Mean = SE, n = 6 or 7 biological replicates.

(d) Proteome allocation in /. orientalis in above conditions. Mean + SE, n=3 biological replicates.
Arrows show fold change in translational and glycolytic proteome compared to aerobic condition.
(e) Respiro-fermentative growth rate (i) was predicted from a proteome-constrained coarse-
grained model parameterized with proteome efficiency measured from S. cerevisiae. Glycolytic
(fc) and respiratory proteome fraction (fr), are mass fractions of whole cell dry weight. Optimal

proteome fractions in aerobic and anaerobic condition were indicated as stars. Measured proteome
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560 fractions in glucose-fed batch cultures of I orientalis (aerobic, +O»; or anaerobic, -O3) and S.
561  cerevisiae (aerobic, +O) are shown in circles.

562  (f) Experimental glucose consumption (Jgrc) and ethanol excretion (Jeron) rates (symbols, in
563  mmol/h/gDW) and prediction from proteome-constrained model (lines) under high (S. cerevisiae)
564  or low (I. orientalis) glycolytic capacity (fc relative to its anaerobic optimum, fG.anac). Literature
565  data was obtained from Van Hoek 1998 32,

566
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568  Figure 5. Respiratory ATP production is more proteome efficient than glycolysis in
569  mammals.

570  (a) Ratio between glycolytic and respiratory ATP production in . orientalis, S. cerevisiae, NCI60
571  cancer cell lines, and mouse tissues. For yeasts, each data point represents a nutrient condition.
572 For cancer cell lines and mouse tissues, each point represents an individual cell line or tissue.

573  (b) As in (a), for proteome allocation.

574  (c) Corresponding glycolytic versus respiratory proteome efficiency.
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