

1 mRNA decapping machinery targets *LBD3/ASL9* transcripts to allow developmental changes in
2 *Arabidopsis*

3 Zhangli Zuo¹, Milena Edna Roux², Jonathan Renaud Chevalier¹, Yasin F. Dagdas³, Takafumi
4 Yamashino⁴, Søren Diers Højgaard¹, Emilie Knight⁵, Lars Østergaard⁵, Eleazar Rodriguez¹ & Morten
5 Petersen^{1,*}

6 ¹ Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark

7 ² Novo Nordisk, Regulatory Affairs Durable Devices and Needles, Søborg, Denmark

8 ³ Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria

9 ⁴ Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Nagoya, Japan

10 ⁵ Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United
11 Kingdom

12
13 *Corresponding author. Tel: +45 35322127; E-mail: shutko@bio.ku.dk

14 **Abstract**

15 Multicellular organisms perceive and transduce multiple cues to optimize development and cell state
16 switching. Key transcription factors drive developmental changes, but transitions also require the
17 attenuation of previous states and removal of negative regulators. Here, we report shared developmental
18 defects in apical hook, primary and lateral root growth in multiple decapping deficient mutants. The
19 mRNA levels of *LATERAL ORGAN BOUNDARIES DOMAIN 3 (LBD3)/ASYMMETRIC LEAVES 2-*
20 *LIKE 9 (ASL9)* transcription factor are directly regulated by mRNA decapping machinery. More
21 specifically, *ASL9* transcripts accumulate in decapping deficient plants and can be found in complexes
22 with decapping components. Accumulation of *ASL9* inhibits apical hook, primary root growth and lateral
23 root formation. Interestingly, exogenous auxin application restores lateral roots formation in both *ASL9*
24 over-expressors and mRNA decay-deficient mutants. Moreover, mutations in the cytokinin transcription
25 factors type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs) *ARR10* and *ARR12* restore the
26 developmental defects caused by over-accumulation of capped *ASL9* transcript upon *ASL9*
27 overexpression. Most importantly, loss-of-function of *asl9* partially restores apical hook, primary root
28 growth and lateral root formation in decapping deficient mutants. Thus, the mRNA decay machinery
29 directly targets *ASL9* transcripts for decay to balance cytokinin/auxin responses during development.

30 **Introduction**

31 Understanding normal tissue development requires information about diverse cellular mechanisms
32 controlling gene expression. Much work has focused on of the transcriptional networks that govern stem
33 cell differentiation. For example, ectopic expression of Yamanaka factors may lead to induced
34 pluripotency in mice and humans (Takahashi and Yamanaka, 2006; Yu et al., 2007). Similarly, ectopic
35 expression of *LATERAL ORGAN BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES2-LIKE (ASL)*
36 genes is sufficient to induce spontaneous proliferation of pluripotent cell masses in plants, a
37 reprogramming process triggered *in vitro* by complementary/Yin-Yang phytohormones auxin and
38 cytokinin (Fan et al., 2012; Schaller et al., 2015). Auxin and cytokinin responses are essential for a vast
39 number of developmental processes in plants including post-embryonic reprogramming and formation of
40 the apical hook to protect the meristem during germination in darkness (Chaudhury et al., 1993; Hu et
41 al., 2017) as well as lateral root (LR) formation (Jing and Strader, 2019). Loss-of-function mutants in

42 genes that regulate auxin-dependent transcription such as *auxin-resistant1* exhibit defective hooking and
43 LR formation (Estelle and Somerville, 1987; Lehman et al., 1996). In addition, type-B ARABIDOPSIS
44 RESPONSE REGULATORS (B-ARRs) ARR1, ARR10 and ARR12 work redundantly to activate
45 cytokinin transcriptional responses which regulated by negative feedback type-A ARR in shoot
46 development and LR formation (Riefler et al., 2006; Ishida et al., 2008; Xie et al., 2018). Exogenous
47 cytokinin application disrupts LR initiation by blocking pericycle founder cell transition from G2 to M
48 phase (Li et al., 2006). Thus, reshaping the levels of certain transcription factors leads to changes in
49 cellular identity. As developmental programming must be tightly regulated to prevent spurious
50 development, the expression of these transcription factors may be controlled at multiple levels (Tatapudy
51 et al., 2017). However, most developmental studies focus on their transcription rates and overlook the
52 contribution of mRNA stability or decay to these events (Crisp et al., 2016).

53 Eukaryotic mRNAs contain stability determinants including the 5' 7-methylguanosine triphosphate cap
54 (m7G) and the 3' poly-(A) tail. mRNA decay is initiated by deadenylation, followed by degradation via
55 either 3'-5' exosomal exonucleases and SUPPRESSOR OF VCS (SOV)/DIS3L2 or via the 5'-3'
56 exoribonuclease activity of the decapping complex (Garneau et al., 2007; Sorenson et al., 2018). This
57 complex includes the decapping holoenzyme composed of the catalytic subunit DCP2 and its cofactor
58 DCP1 along with other factors (DCP5, DHH1, VCS, LSM1-7 complex and PAT1), and the
59 exoribonuclease XRN that degrades monophosphorylated mRNA. As a central platform, PAT1 (Protein
60 Associated with Topoisomerase II, PAT1b in mammals) forms a heterooctameric complex with
61 LSM(Like-sm)1-7 at 3' end of a mRNA to engage transcripts containing deadenylated tails thereafter
62 recruits other decapping factors and interacts with them using different regions, these decapping complex
63 and mRNAs can aggregate into distinct cytoplasmic foci called processing bodies (PBs) (Brengues et al.,
64 2005; Balagopal and Parker, 2009; Ozgur et al., 2010; Chowdhury et al., 2014; Charenton et al., 2017;
65 Lobel et al., 2019). Beyond *DCP* genes, deletion of *PAT1* gene in yeast exhibits the strongest temperature
66 sensitive phenotype compared to other decapping factors genes (Bonnerot et al., 2000).

67 mRNA decay regulates mRNA levels and thereby impacts cellular state switching (Newman et al., 2017;
68 Essig et al., 2018). We and others have shown that the decapping machinery is involved in stress and
69 immune responses (Xu and Chua, 2012; Merret et al., 2013; Roux et al., 2015; Perea-Resa et al., 2016;
70 Crisp et al., 2017; Yu et al., 2019), and that RNA binding proteins can target selected mRNAs for decay

71 (Gerstberger et al., 2014; Perea-Resa et al., 2016; Yu et al., 2019). Postembryonic lethality (Xu et al.,
72 2006) and stunted growth phenotypes (Xu and Chua, 2009; Perea-Resa et al., 2012) associated with
73 disturbance of the decay machinery indicate the importance of mRNA decapping and decay machinery
74 during plant development. However, while much has been learned about how mRNA decapping regulates
75 plant stress responses (Perea-Resa et al., 2016; Yu et al., 2019; Zuo et al., 2021), far less is known about
76 how decapping contributes to plant development.

77 *Arabidopsis dcp1, dcp2 and vcs* mutants display postembryonic lethality whereas *lsm1alsm1b* and *dcp5*
78 knock-down mutants only exhibit abnormal development. *Arabidopsis* encodes two *LSM1* genes and
79 three *PAT* paralogs and *lsm1alsm1b* double and *pat* triple mutants are dwarfs and *dcp5* displays a delayed
80 growth phenotype (Xu et al., 2006; Xu and Chua, 2009; Perea-Resa et al., 2012; Zuo et al., 2022a; Zuo
81 et al., 2022b). All these differences suggest that mutations in mRNA decay components may cause
82 pleiotropic phenotypes not directly linked to mRNA decapping and decay deficiencies (Riehs-Kearnan
83 et al., 2012; Gloggnitzer et al., 2014; Roux et al., 2015). For example, it has been proposed that lethality
84 in some mRNA decay loss-of-function mutants is not due to decay deficiencies *per se*, but to the
85 activation of immune receptors which evolved to surveil microbial manipulation of the decay machinery
86 (Roux et al., 2015). In line with this, loss-of-function of *AtPAT1* inappropriately triggers the immune
87 receptor SUMM2, and *Atpat1* mutants consequently exhibit dwarfism and autoimmunity (Roux et al.,
88 2015). Thus, PAT1 is under immune surveillance and PAT proteins are best studied in SUMM2 loss-of-
89 function backgrounds.

90 Here we study the impact of perturbed mRNA decapping during development. For this, we have analyzed
91 3 sequential mRNA decapping mutants *dcp2-1*, *dcp5-1* and *pat* triple mutant (*pat1-1path1-4path2-1*
92 *lsumm2-8*) mRNA decay-deficient mutants, revealing that the mRNA decay machinery directly
93 regulates the important developmental regulator *ASL9*. Thus, when mRNA decay is disrupted, *ASL9*
94 accumulates and contributes to inhibit cells from forming apical hooks and lateral roots. Moreover,
95 interference with a cytokinin pathway and/or exogenous auxin application restores the developmental
96 defects in both *ASL9* over-expressing plants and in mRNA decay deficient mutants. Markedly, mutation
97 in *asl9* also partially restores the developmental defects including apical hook and lateral root formation
98 and primary root elongation in decapping mutants. These observations indicate that the mRNA decay
99 machinery is fundamental to developmental decision making.

100 **Results**

101 **mRNA decapping deficiency causes deregulation of apical hooking**

102 We and others have reported that mutants of mRNA decay components exhibit abnormal developmental
103 phenotypes including postembryonic death and stunned growth (Xu et al., 2006; Xu and Chua, 2009;
104 Perea-Resa et al., 2012; Roux et al., 2015; Zuo et al., 2022b), indicating mRNA decay may be needed
105 for proper development. To assess this, we explored readily scorable phenotypic evidence of defective
106 decision-making during development. Since apical hooking can be exaggeratedly induced by exogenous
107 application of ethylene or its precursor ACC, we germinated seedlings in darkness in the presence or
108 absence of ACC (Bleecker et al., 1988; Guzman and Ecker, 1990). Interestingly, all the mRNA decapping
109 mutants tested, *dcp2-1*, *dcp5-1* and *pat* triple mutant were hookless and unable to make the exaggerated
110 apical hook under ACC treatment (Fig. 1A, B, S1A&B) being that *dcp2-1* exhibit the strongest hookless
111 phenotype. Since *dcp2-1* is postembryonic lethal, we used seeds from a parental heterozygote to score
112 for hook formation, and subsequently confirmed by genotyping that all hookless seedlings were *dcp2-1*
113 homozygotes. This indicates that mRNA decapping is required for the commitment to apical hooking.
114 Supporting this notion, ACC treatment led to a massive increase of DCP5-GFP (Chicois et al., 2018) and
115 Venus-PAT1 (Zuo et al., 2022b) foci in hook regions (Fig. 1C). Collectively, these data show that mRNA
116 decay may be involved in apical hook formation.

117 **mRNA decay machinery targets *ASL9* for decay**

118 To search for transcripts responsible for the hookless phenotype, we revisited our previous RNA-seq data
119 for *pat* triple mutant (Zuo et al., 2022b) and verified that transcripts of *ASL9* (*ASYMMETRIC LEAVES*
120 *2-LIKE 9*, also named *LBD3*, *LOB DOMAIN-CONTAINING PROTEIN 3*) accumulated specifically in
121 *pat* triple mutants (Zuo et al., 2022b). *ASL9* belongs to the large AS2/LOB (*ASYMMETRIC LEAVES*
122 *2/LATERAL ORGAN BOUNDARIES*) family (Matsumura et al., 2009) which includes key regulators
123 of organ development (Xu et al., 2016). Interestingly, the *ASL9* homologue *ASL4* negatively regulates
124 brassinosteroids accumulation to limit growth in organ boundaries, and overexpression of *ASL4* impairs
125 apical hook formation and leads to dwarfed growth (Bell et al., 2012). While *ASL4* mRNA did not
126 accumulate in *pat* triple mutants (Data Set S1), we hypothesized that *ASL9* could also interfere with

127 apical hook formation. We therefore analyzed mRNA levels of *ASL9* in ACC-treated seedlings and
128 verified that all 3 mRNA decapping mutants *dcp2-1*, *dcp5-1* and *pat* triple mutants accumulated up to
129 30-fold higher levels of *ASL9* transcript compared to ACC treated Col-0 seedlings (Fig. 2A).
130 Concordantly, two over-expressor lines of *ASL9* Col-0/*oxASL9* and Col-0/*oxASL9-VP16* (Naito et al.,
131 2007) also exhibited hookless phenotypes (Fig. 2B&C). However, we did not observe any changes
132 including tighter apical hooks in *asl9-1* mutants (Fig. S1C&D) suggesting other members of the
133 AS2/LOB family act redundantly in this process. Nevertheless, these results indicate that apical hook
134 formation in mRNA decapping deficient mutants is compromised, in part, due to misregulation of *ASL9*.

135 To determine whether *ASL9* is a target of the decapping complex, we performed 5'-RACE assays and
136 found more capped *ASL9* in mRNA decapping mutant seedlings compared to Col-0 (Fig 2D). We also
137 assayed for capped *ASL9* transcripts in ACC and mock-treated mRNA decapping mutants. By calculating
138 the ratio between capped versus total *ASL9* transcripts, we verified that with ACC treatment, mRNA
139 decapping mutants accumulated significantly higher levels of capped *ASL9* transcripts than Col-0 (Fig.
140 2E). Moreover, RNA immunoprecipitation (RIP) revealed enrichment of *ASL9* in DCP5-GFP and Venus-
141 PAT1 plants compared to a free YFP control line (YFP-WAVE) (Fig. 2F), indicating mRNA decapping
142 components directly bind *ASL9* transcripts. These data confirms that *ASL9* mRNA can be found in
143 mRNA decapping complexes, and that mRNA decapping contributes to ACC-induced apical hook
144 formation by regulating *ASL9* mRNA levels.

145 **Accumulation of *ASL9* suppresses LR formation and primary root growth**

146 LR formation is another example of post embryonic decision making. In *Arabidopsis* the first stage of
147 LR formation requires that xylem pericycle pole cells change fate to become LR founder cells, a process
148 positively regulated by auxin and negatively regulated by cytokinin and ethylene (Jung and McCouch,
149 2013; Weijers et al., 2018). As *ASL9* has been implicated in cytokinin signaling (Naito et al., 2007) and
150 the cytokinin signaling repressors type-A ARR genes *ARR3*, *ARR4*, *ARR8* and *ARR15* and the auxin
151 efflux gene *PIN5*, auxin induced gene *SAUR23* and *IAA19* and auxin biosynthesis gene *TAR2* are
152 repressed in both *pat* triple mutant and Col-0/*oxASL9* (Fig. S2), we therefore examined LR formation in
153 *dcp5-1* and *pat* triple mutants and in both *ASL9* over-expressors. LR formation was almost absent in
154 *dcp5-1*, *pat* triple mutants, Col-0/*oxASL9* and Col-0/*oxASL9-VP16* (Fig. 3A, B, S3A&B). However, like

155 seen for apical hooking, *asl9-1* also appeared to display normal LR formation (Fig. S3C&D).
156 Nevertheless, LR formation defects in *dcp5-1* and *pat* triple mutants indicates that mRNA decapping is
157 required for the commitment to LR formation, a process positively regulated by auxin. Supporting this
158 notion, auxin treatment led to a massive increase of DCP5-GFP and Venus-PAT1 foci in root regions.
159 As primary root development is also regulated by auxin signaling (Billou et al., 2005; Brumos et al.,
160 2018), we examined primary root growth in mRNA decapping mutants and *ASL9* over-expressor. Again
161 *dcp5-1*, *pat* triple mutants, Col-0/*oxASL9* and Col-0/*oxASL9-VP16* exhibit reduced primary root length
162 (Fig 3A&B). Collectively, these data indicate mRNA decapping machinery, targeting *ASL9*, contributes
163 to LR formation and primary root extension.

164 **165 Interference of a cytokinin pathway and/or exogenous auxin restores developmental defects of
ASL9 over-expressor and mRNA decay deficient mutants**

166 *ASL9* has been implicated in cytokinin signaling (Naito et al., 2007) in which ARR1, ARR10 and ARR12
167 are responsible for activation of cytokinin transcriptional responses (Ishida et al., 2008; Xie et al., 2018)
168 and cytokinin acts antagonistically with auxin. Apical hooking and lateral root formation are classic
169 examples of auxin dependent developmental reprogramming (Peer et al., 2011). Since cytokinin
170 signaling repressor genes and auxin responsive genes are repressed in both mRNA decay mutants and in
171 Col-0/*oxASL9*, we hypothesized that the developmental defects of mRNA decay mutants and Col-
172 0/*oxASL9* are due to repressed auxin responses possibly caused by persistent cytokinin signaling (Fig
173 S3). To test this, we examined the developmental phenotype of *ASL9* over-expressors in *arr10-5arr12-1*
174 mutants (Ishida et al., 2008). Interestingly, all apical hooking, LR formation and primary root
175 elongation phenotypes of *ASL9* over-expressors were largely restored in this background (Fig. 4). To
176 study this in more detail, we introduced the indirect auxin-responsive reporter *DR5::GFP* in Col-0, *dcp5-1*
177 and *dcp2-1*. We found increased GFP signals in the concave side of Col-0 hook region but not in *dcp5-1*
178 or *dcp2-1* and the overall GFP signals in *dcp2-1* were markedly lower than Col-0 (Fig. S4). We also
179 examined *DR5-GFP* signal in root area of 7-day old Col-0 and *dcp5-1* seedlings, again, overall GFP
180 signal in *dcp5-1* were strikingly lower than Col-0 (Fig S5). Collectively these data indicate repressed
181 auxin responses during apical hook and root developmental processes in the decapping mutants. We then
182 applied exogenous auxin to mRNA decay mutants *dcp5-1* and *pat* triple and Col-0/*oxASL9*. This showed
183 that 0.2 μ M IAA could partially restore LR formation in *dcp5-1*, *pat* triple and Col-0/*oxASL9* (Fig. S6).

184 These findings indicate that the mRNA decay machinery targets *ASL9* to help keep cytokinin/auxin
185 responses balanced during development.

186 ***ASL9* directly contributes to apical hooking, LR formation and primary root growth**

187 The overexpression of *ASL9* is sufficient to suppress apical hook and lateral root development and
188 primary root growth. To examine if *ASL9* accumulation directly contributes to the developmental defects
189 in decapping mutants, we crossed *asl9-1* and *dcp5-1* to generate *dcp5-1/asl9-1* double mutants. We then
190 germinated *dcp5-1/asl9-1* seedlings in darkness in the presence or absence of ACC and in both conditions
191 *dcp5-1/asl9-1* made more stringent hooks than *dcp5-1* but not as tight as Col-0 or *asl9-1* did, indicating
192 that the loss-of-function of *asl9* can partially suppress *dcp5-1* hookless phenotype (Fig. 5A &B).
193 Moreover, the LR and primary root phenotype of *dcp5-1* was also partially restored by mutating *ASL9*
194 (Fig 5C-E). Overall, our data indicates that *ASL9* directly contributes to apical hooking, LR development
195 and primary root growth.

196 **Discussion**

197 Cellular state switching requires massive overhauls of gene expression (Miyamoto et al., 2015). Apart
198 from unlocking effectors needed to install a new program, previous states or programs also need to be
199 terminated (Tatapudy et al., 2017; Rodriguez et al., 2020). We report here that mRNA decay is required
200 for certain auxin dependent developmental processes. The stunted growth phenotype and downregulation
201 of developmental and auxin responsive mRNAs in the mRNA decapping mutant (Zuo et al., 2022b)
202 supports a model in which defective clearance of mRNAs hampers decision making upon hormonal
203 perception. Apical hooking and LR formation are classic examples of auxin-dependent developmental
204 processes (Peer et al., 2011). In line with this, we and others observed that mRNA decay-deficient
205 mutants are impaired in apical hooking (Fig. 1) and LR formation (Fig. 3) (Perea-Resa et al., 2012; Jang
206 et al., 2019). Interestingly, among the transcripts upregulated in these decay-deficient mutants was that
207 of capped *ASL9/LBD3* (Fig. 2), which is involved in cytokinin signaling (Naito et al., 2007). Cytokinin
208 and auxin can act antagonistically (Su et al., 2011), and cytokinin can both attenuate apical hooking
209 (Tantikanjana et al., 2001) and directly affect LR founder cells to prevent initiation of lateral root
210 primordia (Laplaze et al., 2007). Our findings that defective processing during those developmental

211 events in mRNA decay-deficient mutants involves *ASL9* was supported by our observation that *ASL9*
212 mRNA is directly regulated by the decapping machinery and that Col-0/*oxASL9* transgenic lines cannot
213 reprogram to attain an apical hook or to form LRs (Fig. 2&3) while loss-of-function of *asl9* partially
214 restores the developmental defects in the decapping deficient mutants (Fig. 5). In line with this, we
215 speculate that the inability to terminate cytokinin-dependent programs prevents the correct execution of
216 auxin-dependent reprogramming in mRNA decay-deficient mutants. This is supported by the observation
217 that auxin responses in the *dcp5-1* and *dcp2-1* mutants are repressed (Fig. S4&5) and treating *dcp5-1*,
218 *pat* triple and Col-0/*oxASL9* with exogenous auxin partially restores LR formation (Fig. S6). In line with
219 this, the defects in both apical hooking and LR formation of *ASL9* over-expressing plants are largely
220 restored by knocking out 2 cytokinin signaling activator genes *ARR10* and *ARR12* (Fig. 4).

221 *Arabidopsis* contains 42 *LBD/ASL* genes (Matsumura et al., 2009), among these genes *LBD16*, *LBD17*,
222 *LBD18* and *LBD29* control lateral roots formation and regulate plant regeneration (Fan et al., 2012) and
223 overexpression of another member *ASL4* also impairs apical hook (Bell et al., 2012). The partial
224 restoration of apical hooking and LR formation caused by *asl9* mutation in *dcp5-1* (Fig. 5) suggest that
225 other *ASLs* and/or non-*ASL* genes may also contribute to the developmental defects in decapping mutants.
226 Besides lateral root formation, it was recently reported that *Arabidopsis* *LBD3*, together with *LBD4*,
227 functions as rate-limiting components in activating and promoting root secondary growth, which is also
228 tightly regulated by auxin and cytokinin, indicating that *LBDs* balance primary and secondary root
229 growth (Smetana et al., 2019; Xiao et al., 2020; Smith et al., 2020; Ye et al., 2021).

230 Deadenylated mRNA can be degraded via either 3'-5' exosomal exonucleases and SUPPRESSOR OF
231 VCS (SOV)/DIS3L2 or via the 5'-3' exoribonuclease activity of the decapping complex (Garneau et al.,
232 2007; Sorenson et al., 2018). Sorenson et al. (2018) found that *ASL9* expression is dependent on both
233 VCS and SOV based on their transcriptome analysis, so that *ASL9* might be a substrate of both pathways
234 (Sorenson et al., 2018). While more direct data is needed to conclude whether SOV can directly regulate
235 *ASL9* mRNA levels, we have shown that *ASL9* is a target of the mRNA decapping machinery. However,
236 since the Col-0 accession is a *sov* mutant and has no developmental defects, the SOV decay pathway
237 probably only plays a minor role. The function of PBs in mRNA regulation has been controversial since
238 mRNAs in PBs may be sequestered for degradation or re-enter polysomal translation complexes (Franks
239 and Lykke-Andersen, 2008). Yeast *PAT1* has also been found to repress translation (Coller and Parker,

240 2005) and a recent study has confirmed that PBs function as mRNA reservoirs in dark-grown *Arabidopsis*
241 seedlings (Jang et al., 2019). These data open the possibility that *ASL9* might be also regulated at the
242 protein level by the decapping machinery. Nevertheless, our finding of direct interaction of *ASL9*
243 transcripts with DCP5 and PAT1, together with the accumulation of capped *ASL9* in mRNA decay
244 mutants, indicates that *ASL9* misregulation in *dcp2-1*, *dcp5-1* and *pat* triple mutants is at least in part due
245 to mRNA decapping deficiency (Fig. 2).

246 Materials and Methods

247 Plant materials and growth conditions

248 *Arabidopsis thaliana* ecotype Columbia (Col-0) was used as a control. All mutants used in this study are
249 listed in Table S1. T-DNA insertion lines for AT5G13570(*DCP2*) *dcp2-1* (Salk_000519),
250 At1g26110 (*DCP5*) *dcp5-1* (Salk_008881) and double mutant *arr10-5/arr12-1* has been described (Xu
251 et al., 2006; Ishida et al., 2008; Xu and Chua, 2009). The T-DNA line for for AT1g16530 (*ASL9*) is
252 SAIL_659_D08 with insertion in the first exon. Primers for newly described T-DNA lines are provided
253 in Table S2. *pat* triple mutant, Venus-PAT1 and DCP5-GFP transgenic line have also been described
254 (Zuo et al., 2022b; Chicois et al., 2018). The YFP WAVE line was from NASC (Nottingham, UK)
255 (Geldner et al., 2009). Col-0/*oxASL9* line has been described before (Naito et al., 2007).

256 Plants were grown in 9×9cm or 4×5cm pots at 21°C with 8/16hrs light/dark regime, or on plates
257 containing Murashige–Skoog (MS) salts medium (Duchefa), 1% sucrose and 1% agar with 16/8hr
258 light/dark.

259 Plant treatments

260 For ethylene triple response assays, seeds were plated on normal MS and MS+50μM ACC, vernalized
261 96hrs and placed in the dark at 21°C for 4 days before pictures were taken. Apical hook angle is defined
262 as 180° minus the angle between the tangential of the apical part with the axis of the lower part of the
263 hypocotyl, in the case of hook exaggeration, 180° plus that angle is defined as the angle of hook curvature
264 (Vandenbussche et al., 2010). Cotyledon and hook regions of etiolated seedlings were collected after
265 placing in the dark at 21°C for 4 days for gene expression and XRN1 assay. For LR formation assays,

266 seeds on MS plates were vernalized 96hrs and grown with 16/8 hrs light/dark at 21°C vertically for 10
267 days. For external IAA application for LR formation experiments, seeds on MS plates were vernalized
268 96hrs and grown with 16/8 hrs light/dark at 21°C for 7 days and the seedlings were moved to MS or
269 MS+IAA plates and grown vertically for 7 days.

270 **Cloning and transgenic lines**

271 pGreenIIM DR5V2-ntdtomato/DR5-n3GFP has been published previously (Liao et al., 2015).
272 Arabidopsis transformation was done by floral dipping (Clough and Bent, 1998). *arr10-5arr12-1*/
273 *oxASL9* was generated by vacuum infiltrating *arr10-5arr12-1* with *A. tumefaciens* strain EHA101
274 harbouring pSK1-ASL9(Naito et al., 2007). Transformants were selected on hygromycin (30 mg/L)
275 or methotrexate (0.1mg/L) MS agar, and survivors tested for transcript expression by qRT-PCR and
276 protein expression by immuno-blotting.

277 **Protein extraction, SDS-PAGE and immunoblotting**

278 Tissue was ground in liquid nitrogen and 4×SDS buffer (novex) was added and heated at 95°C for 5 min,
279 cooled to room temperature for 10min, samples were centrifuged 5min at 13000 rpm. Supernatants were
280 separated on 10% SDS-PAGE gels, electroblotted to PVDF membrane (GE Healthcare), blocked in 5%
281 (w/v) milk in TBS-Tween 20 (0.1%, v/v) and incubated 1hr to overnight with primary antibodies (anti-
282 GFP (AMS Biotechnology 1:5.000)). Membranes were washed 3 × 10 min in TBS-T (0.1%) before 1hr
283 incubation in secondary antibodies (anti-rabbit HRP or AP conjugate (Promega; 1: 5.000)).
284 Chemiluminescent substrate (ECL Plus, Pierce) was applied before camera detection. For AP-conjugated
285 primary antibodies, membranes were incubated in NBT/BCIP (Roche) until bands were visible.

286 **Confocal microscopy**

287 Imaging was done using a Leica SP5 inverted microscope. The confocal images were analyzed with
288 Zen2012 (Zeiss) and ImageJ software. Representative maximum intensity projection images of 10 Z-
289 stacks per image have been shown in Fig. 1,3&S4.

290 **RNA extraction and qRT-PCR**

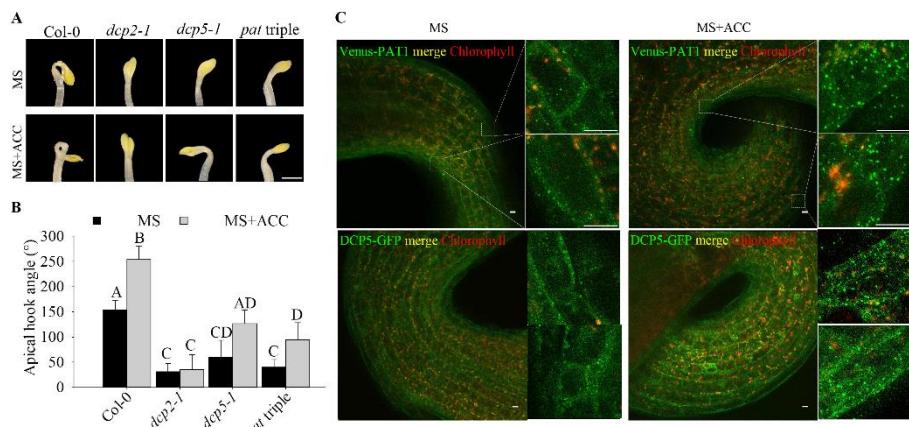
291 Total RNA from tissues was extracted with TRIzol™ Reagent (Thermo Scientific), 2 μ g total RNA were
292 treated with DNase I (Thermo Scientific) and reverse transcribed into cDNA using RevertAid First
293 Strand cDNA Synthesis Kit according to the manufacturer's instructions (Thermo Scientific). The *ACT2*
294 gene was used as an internal control. qPCR analysis was performed on a Bio-RAD CFX96 system with
295 SYBR Green master mix (Thermo Scientific). Primers are listed in Table S2. All experiments were
296 repeated at least three times each in technical triplicates.

297 **In Vitro XRN1 Susceptibility Assay**

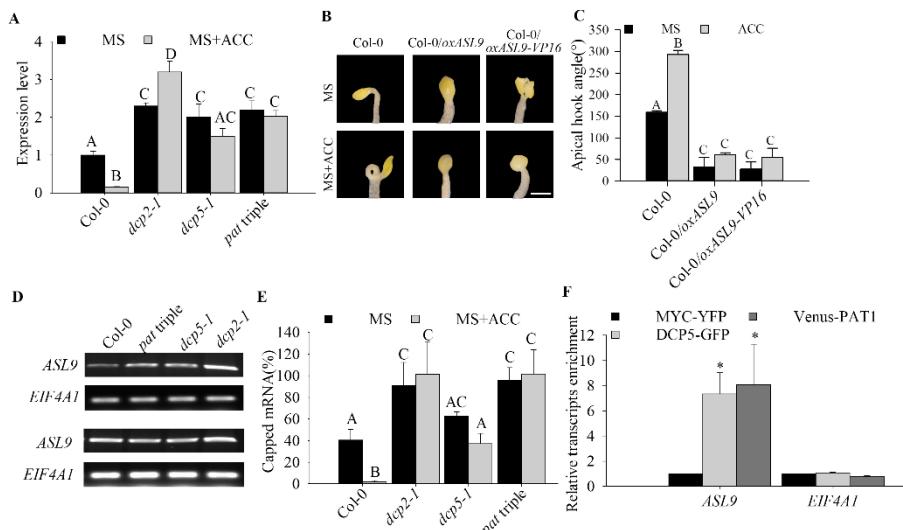
298 Transcripts XRN1 susceptibility was determined as described (Mukherjee et al. 2012; Kiss et al., 2016)
299 with some modification. Total RNA was extracted from tissues using the NucleoSpin® RNA Plant kit
300 (Machery-Nagel). 1 μ g RNA was incubated with either 1 unit of XRN1 (New England Biolabs) or water
301 for 2hr at 37°C, loss of ribosomal RNA bands on gel electrophoresis was used to ensure XRN1 efficiency,
302 after heating inactivation under 70°C for 10min, half of the digest was then reverse transcribed into
303 random primed cDNA with RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). Capped
304 target transcript accumulation was measured by comparing transcript levels from XRN1-treated versus
305 mock-treated samples using qPCR (EIF4A1 serves as inner control) for the individual genotypes
306 (Mukherjee et al. 2012; Roux et al., 2015; Kiss et al., 2016).

307 **RIP assay**

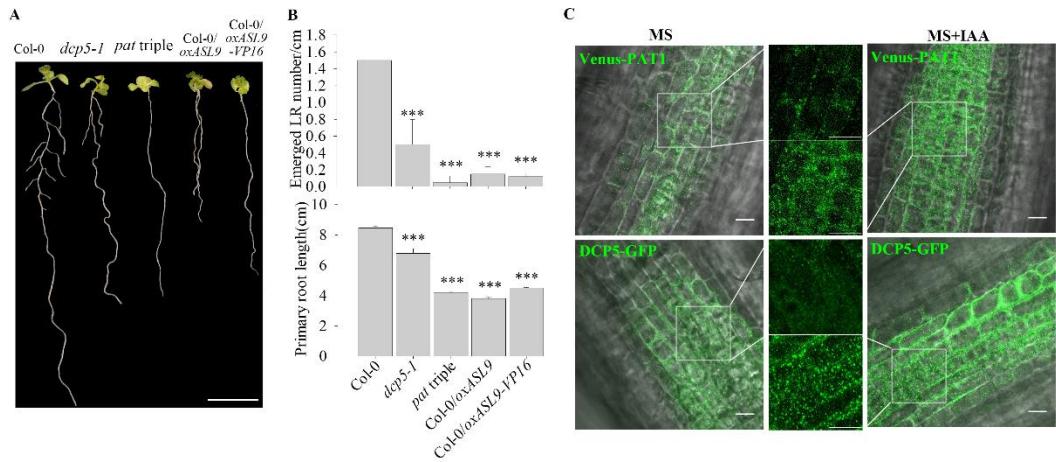
308 RIP was performed as previously described (Streitner et al., 2012). 1.5g tissues were fixated by vacuum
309 infiltration with 1% formaldehyde for 20min followed by 125 mM glycine for 5min. Tissues were ground
310 in liquid nitrogen and RIP lysis buffer (50mM Tris-HCl pH 7.5; 150mM NaCl; 4mM MgCl2; 0.1% Igepal;
311 5 mM DTT; 100 U/mL Ribolock (Thermo Scientific); 1 mM PMSF; Protease Inhibitor cocktail (Roche))
312 was added at 1.5mL/g tissue powder. Following 15 min centrifugation at 4°C and 13000rpm,
313 supernatants were incubated with GFP Trap-A beads (Chromotek) for 4 hours at 4°C. Beads were washed
314 3 times with buffer (50 mM Tris-HCl pH 7.5; 500 mM NaCl; 4 mM MgCl2; 0.5 % Igepal; 0.5 % Sodium
315 deoxycholate; 0.1 % SDS; 2 M urea; 2 mM DTT before RNA extraction with TRIzol™ Reagent (Thermo
316 Scientific)). Transcript levels in input and IP samples were quantified by qPCR, and levels in IP samples
317 were corrected with their own input values and then normalized to YFP WAVE lines for enrichment.

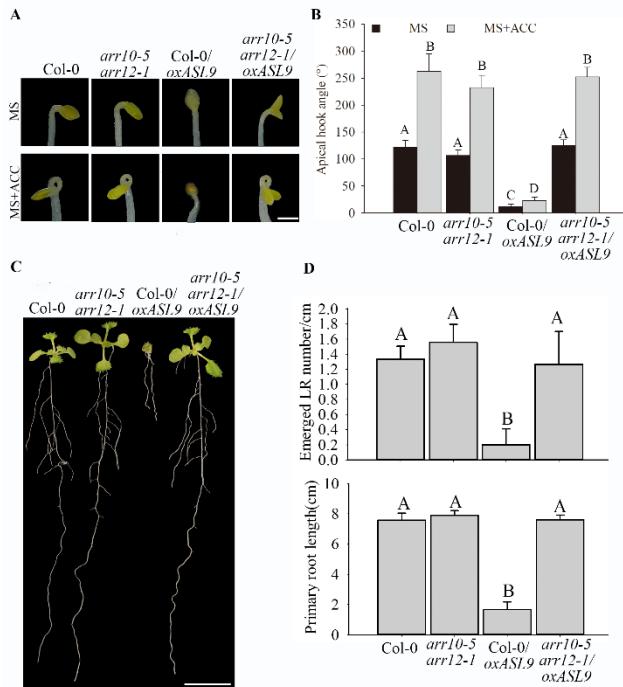

318 **5'-RACE assay**

319 5'-RACE assay was performed using the First Choice RLM-RACE kit (Thermo Scientific) following
320 manufacture's instruction. RNAs were extracted from 4-day-old etiolated seedlings with the
321 NucleoSpin® RNA Plant kit (Machery-Nagel), and PCRs were performed using a low (26-28) or high
322 (30-32) number of cycles. Specific primers for the 5' RACE adapter and for the genes tested are listed in
323 Table S2.


324 **Statistical analysis**

325 Statistical details of experiments are reported in the figures and legends. Systat software was used for
326 data analysis. Statistical significance between groups was determined by one-way ANOVA (analysis of
327 variance) followed by Holm-Sidak test.


328 **Figures**


329 **Fig 1. mRNA decapping deficiency causes deregulation of apical hooking.** Hook phenotypes (A) and
330 apical hook angles (B) in triple response to ACC treatment of etiolated Col-0, *dcp2-1*, *dcp5-1* and *pat*
331 triple seedlings. The experiment was repeated 3 times, and representative pictures are shown. The scale
332 bar indicates 1mm. (C) Representative confocal microscopy pictures of hook regions following ACC
333 treatment. Dark-grown seedlings with either Venus-PAT1 or DCP5-GFP on MS or MS+ACC plates for
334 4 days. Scale bars indicate 10 μ m. Bars marked with the same letter are not significantly different from
335 each other (P-value>0.05).

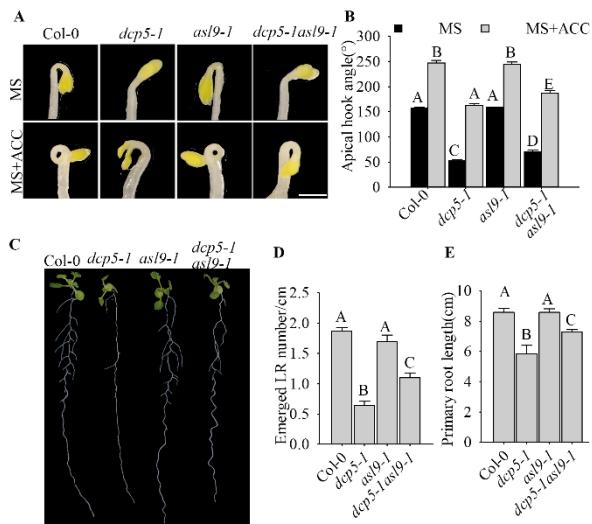
336 **Fig 2. mRNA decay machinery targets ASL9 for decay.** (A) ASL9 mRNA levels in cotyledons and
337 hook regions of dark-grown Col-0, *dcp2-1*, *dcp5-1* and *pat* triple seedlings under control or ACC
338 treatment. Error bars indicate SE (n = 3). Hook phenotypes(B) and apical hook angles(C) of triple
339 response to ACC treatment of etiolated seedlings of Col-0, Col-0/oxASL9 and Col-0/oxASL9-VP16. The
340 experiment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1mm.
341 (D) Accumulation of capped transcripts of ASL9 analyzed in 4-day-old MS grown etiolated seedlings of
342 Col-0, *pat* triple, *dcp5-1* and *dcp2-1* by 5'-RACE-PCR. RACE-PCR products obtained using a low
343 (upper panel) and high (bottom panel) number of cycles are shown. EIF4A1 RACE-PCR products were
344 used as loading control. (E) Capped ASL9 transcript levels in cotyledons and hook regions of dark-
345 grown Col-0, *dcp2-1*, *dcp5-1* and *pat* triple seedlings. Error bars indicate SE (n = 3). (F) Both DCP5 and
346 PAT1 can bind ASL9 transcripts. 4-day dark-grown plate seedlings with DCP5-GFP or Venus-PAT1 were
347 taken for the RIP assay. ASL9 transcript levels were normalized to those in RIP of MYC-YFP as a non-
348 binding control. EIF4A1 was used as a negative control. Error bars indicate SE (n=3).

349 **Fig 3. Accumulation of ASL9 suppresses LR formation and primary root growth.** Phenotypes (A),
350 emerged LR density and primary root length (B) of 10-day old seedlings of Col-0, *dcp5-1*, *pat* triple,
351 Col-0/*oxASL9* and Col-0/*oxASL9*-*VP16*. The experiment was repeated 4 times, and representative
352 pictures are shown. The scale bar indicates 1cm. Bars marked with the same letter are not significantly
353 different from each other (P-value>0.05). (C) Representative confocal microscopy pictures of root
354 regions from 7-day old seedlings with either Venus-PAT1 or DCP5-GFP treated with MS or MS+0.2
355 μ IAA for 15min. Scale bars indicate 10 μ m.

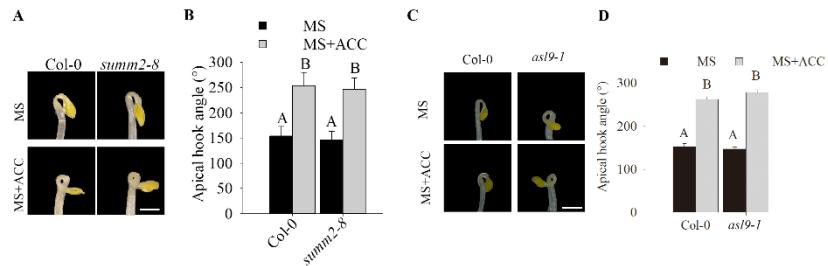
356 **Fig 4. *ARR10* and *ARR12* loss-of-function restores apical hook, LR formation and primary root**

357 **elongation in *ASL9* over-expressor.** Hook phenotypes (A) and apical hook angles (B) in triple

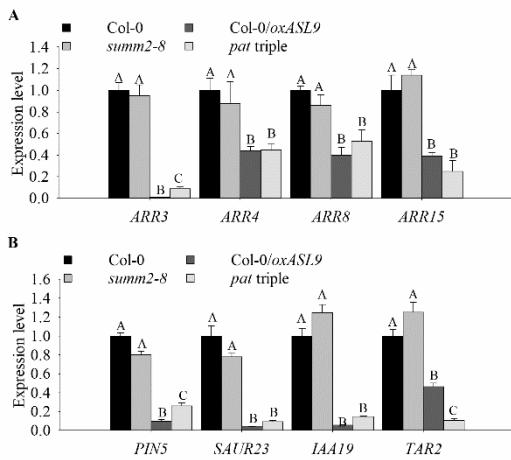
358 responses to ACC treatment of etiolated Col-0, *arr10-5arr12-1*, Col-0/*oxASL9* and *arr10-5arr12-*

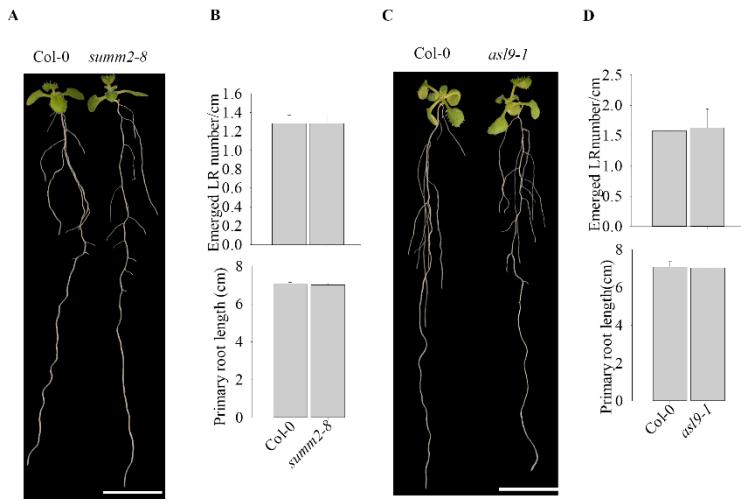

359 *1/oxASL9* seedlings. The treatment was repeated 3 times, and representative pictures are shown. The

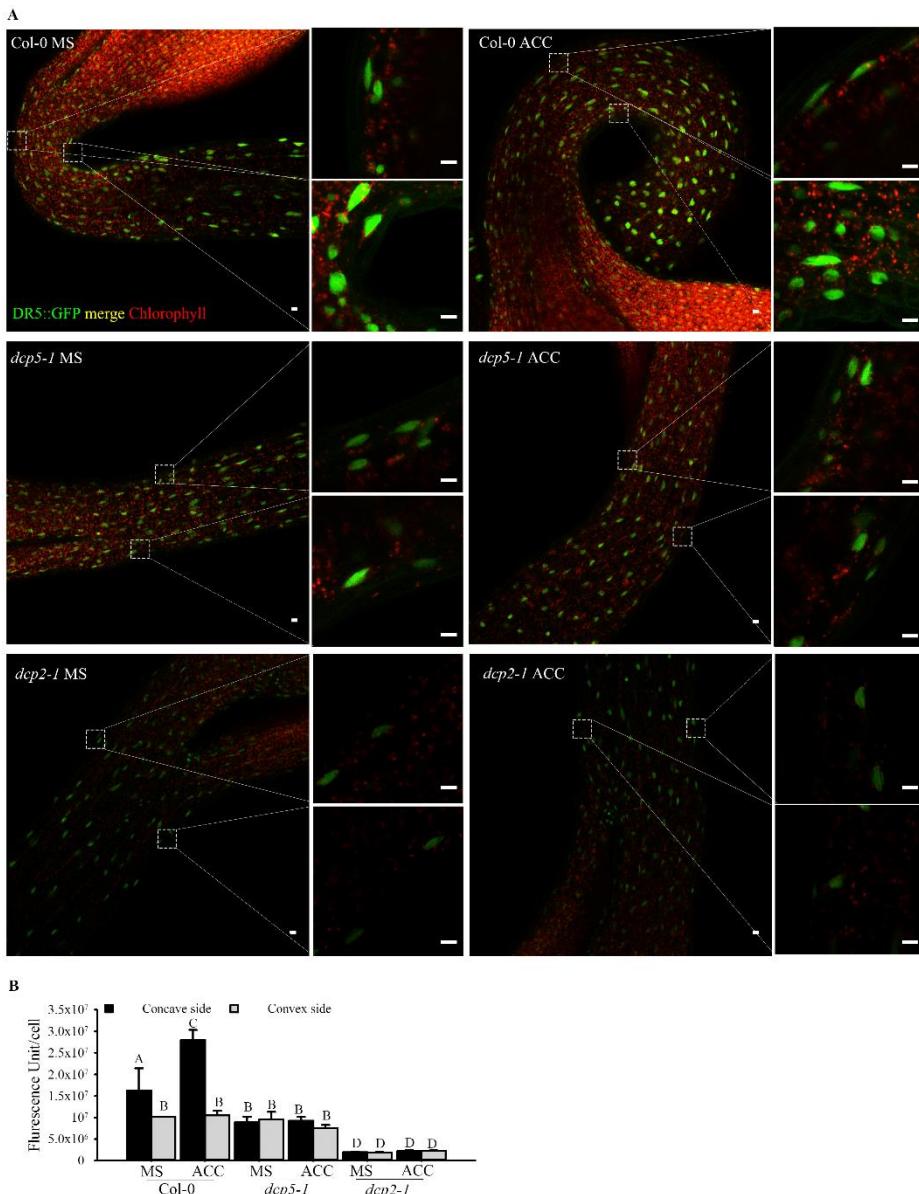
360 scale bar indicates 1mm. Phenotypes (C), emerged LR density and primary root length (D) of 10-day

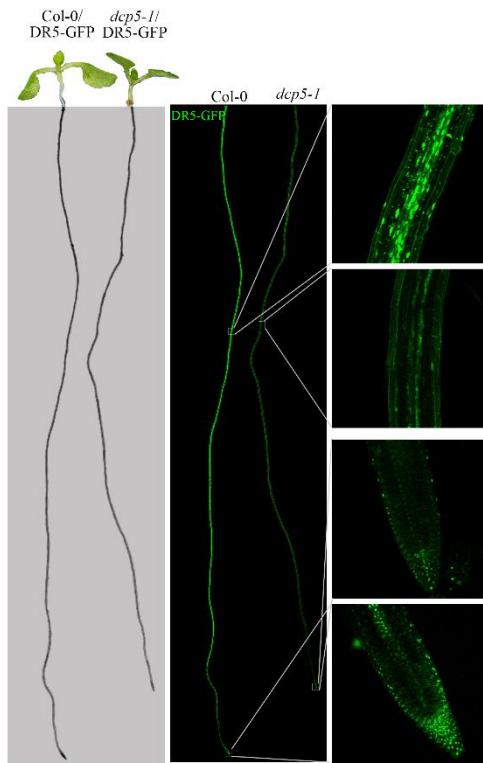

361 old seedlings of Col-0, *arr10-5arr12-1*, Col-0/*oxASL9* and *arr10-5arr12-1/oxASL9*. Treatment was

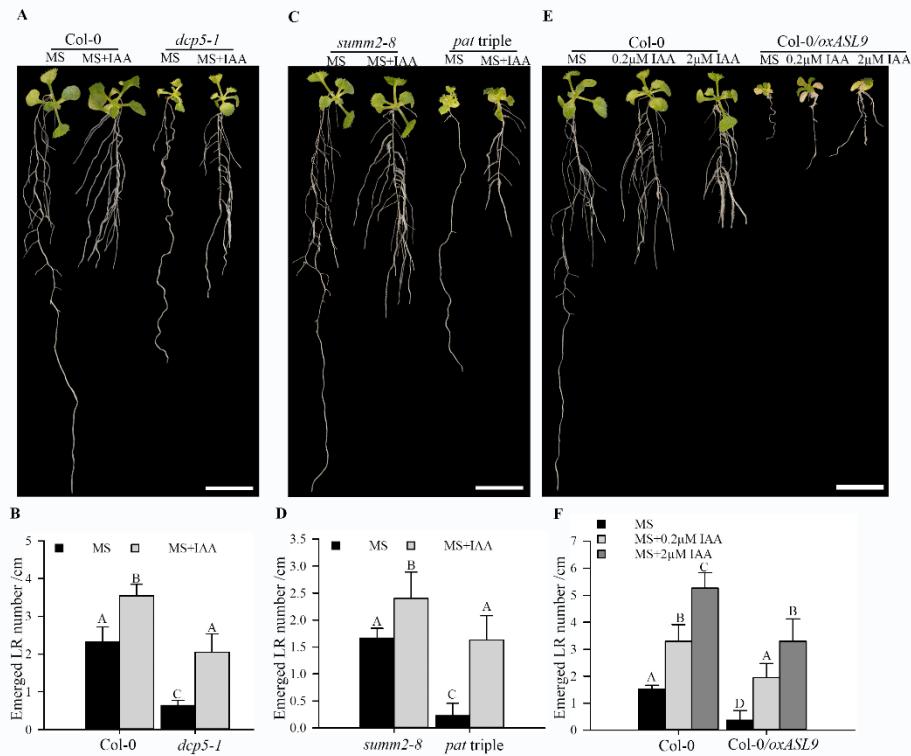
362 repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. Bars marked with


363 the same letter are not significantly different from each other (P-value>0.05).


364 **Fig 5. ASL9 directly contributes to apical hooking, LR formation and primary root elongation.**
365 Hook phenotypes (A) and apical hook angles (B) in triple responses to ACC treatment of etiolated Col-
366 0, *dcp5-1*, *asl9-1* and *dcp5-1asl9-1* seedlings. The treatment was repeated 3 times, and representative
367 pictures are shown. The scale bar indicates 1mm. Phenotypes (C), emerged LR density (D) and primary
368 root length (E) of 10-day old seedlings of Col-0, *dcp5-1*, *asl9-1* and *dcp5-1asl9-1*. Treatment was
369 repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. Bars marked with
370 the same letter are not significantly different from each other (P-value>0.05).


371 **Fig S1. Apical hook in *summ2-8* and *asl9-1* mutants.** Hook phenotypes (A) and apical hook angles (B)
372 in triple responses to ACC treatment of etiolated seedlings of Col-0 and *summ2-8*. Hook phenotypes (C)
373 and apical hook angles (D) in triple responses to ACC treatment of etiolated Col-0 and *asl9-1* seedlings.
374 The treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1mm.


375 **Fig S2. Cytokinin and auxin related genes expression in mRNA decay deficient mutant and *ASL9***
376 **over-expressor.** Cytokinin pathway repressor genes(A) *ARR3*, *ARR4*, *ARR8* and *ARR15* and auxin
377 pathway genes(B) *PIN5*, *SAUR23*, *IAA19* and *TAR2* expression levels in 10-day-old seedlings of Col-0,
378 *summ2-8*, Col-0/*oxASL9* and *pat1-1path1-4path2-1summ2-8*. The experiment was repeated 3 times,
379 and representative pictures are shown. Bars marked with the same letter are not significantly different
380 from each other (P-value>0.05).


381 **Fig S3. LR formation and primary root growth in *summ2-8* and *asl9-1* mutants.** Phenotypes (A)
382 emerged LR density and primary root length (B) of 10-day old seedlings of Col-0 and *summ2-8*.
383 Phenotypes (C) emerged LR density and primary root length (D) of 10-day old seedlings of Col-0 and
384 *asl9-1*. The scale bar indicates 1cm.

385 **Fig S4. Decapping mutants *dcp5-1* and *dcp2-1* exhibit repressed auxin responses in apical hook**
386 **regions.** Representative confocal microscopy pictures(A) and quantification(B) of GFP signals in
387 concave and convex side of apical hook regions of Col-0, *dcp5-1* and *dcp2-1* expressed with DR5::GFP
388 following ACC treatment. Seeds of Col-0/DR5::GFP, *dcp5-1*/DR5::GFP and *dcp2-1*/DR5::GFP on MS
389 or MS+ACC plates were vernalized 96hr and grown in dark for 4 days. Scale bars indicate 10 μ m. Bars
390 marked with the same letter are not significantly different from each other (P-value>0.05).

391 **Fig S5. Decapping mutants *dcp5-1* exhibit repressed auxin responses in Root regions.** Representative
392 confocal microscopy pictures of GFP signals in root regions of 7-day old seedling of Col-0 and *dcp5-1*
393 expressed with DR5::GFP. Seeds of Col-0/DR5::GFP and *dcp5-1*/DR5::GFP on MS plates were
394 vernalized 96hr and grown vertically for 7 days. Scale bars indicate 10 μ m.

395 **Fig S6. Auxin restores LR formation in mRNA decay deficient mutants and Col-0/oxASL9.**

396 Phenotypes(A) and emerged LR density(B) of 14-day old seedlings of *summ2-8* and *pat1-1path1-4path2-1summ2-8* on MS or MS with 0.2 μ M IAA. Phenotypes (C) and emerged LR density (D) of 14-
397 day old seedlings of Col-0 and *dcp5-1* on MS or MS with 0.2 μ M IAA. Phenotypes (E) and emerged
398 LR density (F) of 14-day old seedlings of Col-0 and Col-0/*oxASL9* on MS, MS with 0.2 μ M IAA or MS
399 with 2 μ M IAA. Seeds on MS plates were vernalized 96hrs and grown with 16/8 hrs light/dark at 21°C
400 for 7 days. The seedlings were moved to MS or MS+IAA plates and grown vertically for 7 days. The
401 treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm.
402 Bars marked the same letter are not significantly different from each other (P-value>0.05).
403

404

Table S1. Mutants used in this study

Mutant	Information	Source
<i>path1-4</i>	7bp deletion in Exon 2, frame shift and early stop codon	Zuo et al., 2022b
<i>path2-1</i>	35bp deletion in Exon 2, frame shift, early stop codon	Zuo et al., 2022b
<i>asl9-1</i>	SAIL_659_D08, T-DNA insertion in Exon 1	NASC (Nottingham, UK)
<i>pat1-1</i>	Salk_040660, T-DNA insertion in Exon 5	Roux et al., 2015
<i>summ2-8</i>	SAIL_1152A06, T-DNA insertion in Exon 1	Zhang et al., 2012
<i>dcp5-1</i>	Salk_008881, T-DNA insertion in 3'-UTR	Xu and Chua, 2009
<i>dcp2-1</i>	Salk_000519, T-DNA insertion in Exon 3	Xu et al., 2006
<i>arr10-5</i>	Salk_098604, T-DNA insertion in Exon 5	Ishida et al., 2008
<i>arr12-1</i>	Salk_054752, T-DNA insertion in Exon 3	Ishida et al., 2008

405

Table S2. Primers used in this study

Primer	Sequence	Use
genotyping		
LBb1.3	ATTTGCCGATTCGGAAC	Genotyping Salk lines
SAIL LB3	CATCTGAATTCATAACCAATCTC	Genotyping Sail lines
SAIL_659_D08 LP	ATGTTGTACGTTGATTGGGG	SAIL_659_D08 genotyping
SAIL_659_D08 RP	TATTCTTACACGCGGTTCG	SAIL_659_D08 genotyping
DCP2LP	TGATGGGGTTTGTTCAGTC	<i>dcp2</i> genotyping
DCP2RP	ACTATGATCAATGAGTGGCGG	<i>dcp2</i> genotyping
qPCR		
ASL9 for	CAAAAGGGTCACAGACACGGAA	qPCR of <i>ASL9</i>
ASL9 rev	GGCCTCGTACACCATCGAATC	qPCR of <i>ASL9</i>
EIF4A1F	GATCTGCACCAGAAGGCACA	qPCR of <i>EIF4A1</i>
EIF4A1R	CCCAGTACCAAGACTGAGCCTGTTG	qPCR of <i>EIF4A1</i>
ARR3F	GAAACTCGCCGACGTGAAAC	qPCR of <i>ARR3</i>
ARR3R	TCCACAAGCGAAGTTGCAGA	qPCR of <i>ARR3</i>
ARR4F	ATGGCCAGAGACGGTGGTGTTC	qPCR of <i>ARR4</i>
ARR4R	ATCTAATCCGGGACTCCTCATC	qPCR of <i>ARR4</i>
ARR8F	GACCCAAATGCACTCTACATC	qPCR of <i>ARR8</i>
ARR8R	CTCTTCAGCTCCTCTTCCAAAC	qPCR of <i>ARR8</i>
ARR15F	GACGACTGTTGAGAGTGGGAC	qPCR of <i>ARR15</i>
ARR15R	CTCCTCTGCTCCTCTATCATAAC	qPCR of <i>ARR15</i>
PIN5-FW	CCATCGGCTCTATTGTCCTTG	qPCR of <i>PIN5</i>
PIN5-RV	GCGACGAGCACAGGTAGAGA	qPCR of <i>PIN5</i>
SAUR23 F	ATTCAAACTTCAGACAAAAGAAATGG	qPCR of <i>SAUR23</i>
SAUR23 R	ACAAGGAAACAACTCTATCTCTAACT	qPCR of <i>SAUR23</i>
IAA19 F	GGTGACAACGTGGAATACGTTACCA	qPCR of <i>IAA19</i>
IAA19 R	CCCGGTAGCATCCGATCTTTCA	qPCR of <i>IAA19</i>
TAR2 F	CATGATTGGCTTACTATTGGCCACAG	qPCR of <i>TAR2</i>
TAR2 R	GTCTTCACCAAAGCCCATCCAATC	qPCR of <i>TAR2</i>
ARR10F	GCTTCTGATGCTGGTCCCTT	qPCR of <i>ARR10</i>
ARR10R	CAATCACCTCCGAGAAATCA	qPCR of <i>ARR10</i>
ARR12F	CTCCACGATGAAGCAGGAA	qPCR of <i>ARR12</i>
ARR12R	AACTAAACCCCTCCATATCCAAA	qPCR of <i>ARR12</i>
5'-RACE		
ASL9 inner	GGCCTCGTACACCATCGAATC	RACE inner PCR
ASL9 outer	ATGTCGATGTCACTGTAGAAG	RACE outer PCR
EIF4A1 inner	GGTTCTCTGAAGACCCATGGCATC	RACE inner PCR
EIF4A1 outer	CCCAGTACCAAGACTGAGCCTGTTG	RACE outer PCR

407 **Acknowledgments**

408 We thank Qi-Jun Chen for Phee401, Nam-Hai Chua for *dcp5-1* and *dcp2-1* seeds and Damien Garcia for
409 DCP5-GFP marker line seeds. Special thanks to John Mundy for advice throughout the project and
410 critically reading the manuscript. This work was supported by the Novo Nordisk Fonden and the
411 Hartmanns Fond to MP (NNF18OC0052967 and A32638), the Institute Strategic Programme grant
412 (BB/P013511/1) to the John Innes Centre and a PhD scholarship from China Scholarship Council to ZZ
413 (201504910714).

414 ZZ, MER, and MP conceived and designed the experiments. ZZ, MER, JRC, YD, TY, SDH, EK, LØ
415 and ER performed experiments. ZZ and MP analyzed the data. ZZ and MP wrote the manuscript.

416 The authors declare no competing interests.

417 Correspondence and requests for materials should be addressed to MP.

418

References

419

Balagopal, V., and Parker, R. (2009). Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. *Curr Opin Cell Biol* **21**, 403-408.

420

Bell, E.M., Lin, W.C., Husbands, A.Y., Yu, L.F., Jaganatha, V., Jablonska, B., Mangeon, A., Neff, M.M., Girke, T., and Springer, P.S. (2012). Arabidopsis LATERAL ORGAN BOUNDARIES negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. *P Natl Acad Sci USA* **109**, 21146-21151.

421

Billou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, and Scheres B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. *Nature* **433**, 39–44.

422

Bleecker, A.B., Estelle, M.A., Somerville, C., and Kende, H. (1988). Insensitivity to Ethylene Conferred by a Dominant Mutation in *Arabidopsis thaliana*. *Science* **241**, 1086-1089.

423

Bonnerot C, Boeck R, Lapeyre B. (2000) The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. *Mol Cell Biol* **20**:5939–5946.

424

Brengues, M., Teixeira, D., and Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. *Science* **310**, 486-489.

425

Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN. (2018). Local auxin biosynthesis is a key regulator of plant development. *Developmental Cell* **47**, 306–318.e5.

426

Charenton, C., Gaudon-Plesse, C., Fourati, Z., Taverniti, V., Back, R., Kolesnikova, O., Seraphin, B., and Graille, M. (2017). A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5 '-3 ' mRNA exonuclease in yeast. *P Natl Acad Sci USA* **114**, E9493-E9501.

427

Chaudhury, A.M., Letham, S., Craig, S., and Dennis, E.S. (1993). Amp1 - a Mutant with High Cytokinin Levels and Altered Embryonic Pattern, Faster Vegetative Growth, Constitutive Photomorphogenesis and Precocious Flowering. *Plant J* **4**, 907-916.

428

Chowdhury, A., Kalurupalle, S., and Tharun, S. (2014). Pat1 contributes to the RNA binding activity of the Lsm1-7-Pat1 complex. *Rna-a Publication of the Rna Society* **20**, 1465-1475.

429

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of *Arabidopsis thaliana*. *Plant J* **16**, 735-743.

430

Chicois, C., Scheer, H., Garcia, S., Zuber, H., Mutterer, J., Chicher, J., Hammann, P., Gagliardi, D., Garcia, D. (2018) The UPF1 interactome reveals interaction networks between RNA degradation and translation repression factors in *Arabidopsis*. *Plant J*. 96(1):119-132.

431

Coller, J., and Parker, R. (2005). General translational repression by activators of mRNA decapping. *Cell* **122**, 875-886.

432

Crisp, P.A., Ganguly, D., Eichten, S.R., Borevitz, J.O., and Pogson, B.J. (2016). Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. *Sci Adv* **2**.

433

Crisp, P.A., Ganguly, D.R., Smith, A.B., Murray, K.D., Estavillo, G.M., Searle, I., Ford, E., Bogdanovic, O., Lister, R., Borevitz, J.O., Eichten, S.R., and Pogson, B.J. (2017). Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in *Arabidopsis*. *Plant Cell* **29**, 1836-1863.

434

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21.

435

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21.

436

28

463 **Essig, K., Kronbeck, N., Guimaraes, J.C., Lohs, C., Schlundt, A., Hoffmann, A., Behrens, G.,**
464 **Brenner, S., Kowalska, J., Lopez-Rodriguez, C., Jemielity, J., Holtmann, H., Reiche, K.,**
465 **Hackermuller, J., Sattler, M., Zavolan, M., and Heissmeyer, V. (2018). Roquin targets**
466 **mRNAs in a 3'-UTR-specific manner by different modes of regulation. Nat Commun 9.**

467 **Estelle, M.A., and Somerville, C. (1987). Auxin-Resistant Mutants of Arabidopsis-Thaliana with an**
468 **Altered Morphology. Mol Gen Genet 206, 200-206.**

469 **Fan, M.Z., Xu, C.Y., Xu, K., and Hu, Y.X. (2012). LATERAL ORGAN BOUNDARIES DOMAIN**
470 **transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22, 1169-**
471 **1180.**

472 **Franks, T.M., and Lykke-Andersen, J. (2008). The Control of mRNA Decapping and P-Body**
473 **Formation. Mol Cell 32, 605-615.**

474 **Garneau, N.L., Wilusz, J., and Wilusz, C.J. (2007). The highways and byways of mRNA decay. Nat**
475 **Rev Mol Cell Bio 8, 113-126.**

476 **Geldner, N., Denervaud-Tendon, V., Hyman, D.L., Mayer, U., Stierhof, Y.D., and Chory, J.**
477 **(2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a**
478 **multicolor marker set. Plant J 59, 169-178.**

479 **Gerstberger, S., Hafner, M., and Tuschl, T. (2014). A census of human RNA-binding proteins. Nat**
480 **Rev Genet 15, 829-845.**

481 **Gloggnitzer, J., Akimcheva, S., Srinivasan, A., Kusenda, B., Riehs, N., Stampfl, H., Bautor, J.,**
482 **Dekrout, B., Jonak, C., Jimenez-Gomez, J.M., Parker, J.E., and Riha, K. (2014).**
483 **Nonsense-Mediated mRNA Decay Modulates Immune Receptor Levels to Regulate Plant**
484 **Antibacterial Defense. Cell Host Microbe 16, 376-390.**

485 **Guzman, P., and Ecker, J.R. (1990). Exploiting the Triple Response of Arabidopsis to Identify**
486 **Ethylene-Related Mutants. Plant Cell 2, 513-523.**

487 **Hu, Y.M., Vandenbussche, F., and Van Der Straeten, D. (2017). Regulation of seedling growth by**
488 **ethylene and the ethylene-auxin crosstalk. Planta 245, 467-489.**

489 **Ishida, K., Yamashino, T., Yokoyama, A., and Mizuno, T. (2008). Three type-B response**
490 **regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal**
491 **transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49, 47-57.**

492 **Jang, G.J., Yang, J.Y., Hsieh, H.L., and Wu, S.H. (2019). Processing bodies control the selective**
493 **translation for optimal development of Arabidopsis young seedlings. P Natl Acad Sci USA 116,**
494 **6451-6456.**

495 **Jing, H.W., and Strader, L.C. (2019). Interplay of Auxin and Cytokinin in Lateral Root**
496 **Development. Int J Mol Sci 20.**

497 **Jung, J.K.H., and McCouch, S. (2013). Getting to the roots of it: genetic and hormonal control of root**
498 **architecture. Front Plant Sci 4.**

499 **Karimi, M., Depicker, A., and Hilson, P. (2007). Recombinational cloning with plant gateway**
500 **vectors. Plant Physiol 145, 1144-1154.**

501 **Kiss, D.L., Oman, K.M., Dougherty, J.A., Mukherjee, C., Bunschuh, R., and Schoenberg, D.R.**
502 **(2016). Cap homeostasis is independent of poly(A) tail length. Nucleic Acids Res 44, 304-314.**

503 **Laplaze, L., Benkova, E., Casimiro, I., Maes, L., Vanneste, S., Swarup, R., Weijers, D., Calvo, V.,**
504 **Parizot, B., Herrera-Rodriguez, M.B., Offringa, R., Graham, N., Doumas, P., Friml, J.,**
505 **Bogusz, D., Beeckman, T., and Bennett, M. (2007). Cytokinins act directly on lateral root**
506 **founder cells to inhibit root initiation. Plant Cell 19, 3889-3900.**

507 **Lehman, A., Black, R., and Ecker, J.R.** (1996). HOOKLESS1, an ethylene response gene, is required
508 for differential cell elongation in the *Arabidopsis* hypocotyl. *Cell* **85**, 183-194.

509 **Li, X., Mo, X.R., Shou, H.X., and Wu, P.** (2006). Cytokinin-mediated cell cycling arrest of pericycle
510 founder cells in lateral root initiation of *Arabidopsis*. *Plant Cell Physiol* **47**, 1112-1123.

511 **Liao, C.Y., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., and Weijers, D.** (2015). Reporters for
512 sensitive and quantitative measurement of auxin response (vol 12, pg 207, 2015). *Nat Methods*
513 **12**, 1098-1098.

514 **Lobel, J.H., Tibble, R.W., Gross, J.D.** (2019). Pat1 activates late steps in mRNA decay by multiple
515 mechanisms. *P Natl Acad Sci USA* **116** (47), 23512-23517

516 **Malamy, J.E., and Benfey, P.N.** (1997). Organization and cell differentiation in lateral roots of
517 *Arabidopsis thaliana*. *Development* **124**, 33-44.

518 **Matsumura, Y., Iwakawa, H., Machida, Y., and Machida, C.** (2009). Characterization of genes in
519 the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in
520 *Arabidopsis thaliana*, and functional and molecular comparisons between AS2 and other family
521 members. *Plant J* **58**, 525-537.

522 **Merret, R., Descombin, J., Juan, Y.T., Favory, J.J., Carpentier, M.C., Chaparro, C., Charng,
523 Y.Y., Deragon, J.M., and Bousquet-Antonelli, C.** (2013). XRN4 and LARP1 Are Required
524 for a Heat-Triggered mRNA Decay Pathway Involved in Plant Acclimation and Survival during
525 Thermal Stress. *Cell Rep* **5**, 1279-1293.

526 **Miyamoto, T., Furusawa, C., and Kaneko, K.** (2015). Pluripotency, Differentiation, and
527 Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation.
528 *Plos Comput Biol* **11**.

529 **Mylle, E., Codreanu, M.C., Boruc, J., and Russinova, E.** (2013). Emission spectra profiling of
530 fluorescent proteins in living plant cells. *Plant Methods* **9**.

531 **Naito, T., Yamashino, T., Kiba, T., Koizumi, N., Kojima, M., Sakakibara, H., and Mizuno, T.**
532 (2007). A link between cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) that belongs
533 to the AS2/LOB (LATERAL ORGAN BOUNDARIES) family genes in *Arabidopsis thaliana*.
534 *Biosci Biotech Bioch* **71**, 1269-1278.

535 **Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., Toyooka, K.,
536 Matsuoka, K., Jinbo, T., and Kimura, T.** (2007). Development of series of gateway binary
537 vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. *J*
538 *Biosci Bioeng* **104**, 34-41.

539 **Newman, R., Ahlfors, H., Saveliev, A., Galloway, A., Hodson, D.J., Williams, R., Besra, G.S.,
540 Cook, C.N., Cunningham, A.F., Bell, S.E., and Turner, M.** (2017). Maintenance of the
541 marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1.
542 *Nat Immunol* **18**, 683-.

543 **Ozgur, S., Chekulaeva, M., and Stoecklin, G.** (2010). Human Pat1b Connects Deadenylation with
544 mRNA Decapping and Controls the Assembly of Processing Bodies. *Mol Cell Biol* **30**, 4308-
545 4323.

546 **Peer, W.A., Blakeslee, J.J., Yang, H.B., and Murphy, A.S.** (2011). Seven Things We Think We
547 Know about Auxin Transport. *Mol Plant* **4**, 487-504.

548 **Perea-Resa, C., Hernandez-Verdeja, T., Lopez-Cobollo, R., Castellano, M.D., and Salinas, J.**
549 (2012). LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure
550 Normal *Arabidopsis* Development. *Plant Cell* **24**, 4930-4947.

551 **Perea-Resa, C., Carrasco-Lopez, C., Catala, R., Tureckova, V., Novak, O., Zhang, W.P.,**
552 **Sieburth, L., Jimenez-Gomez, J.M., and Salinas, J.** (2016). The LSM1-7 Complex
553 Differentially Regulates Arabidopsis Tolerance to Abiotic Stress Conditions by Promoting
554 Selective mRNA Decapping. *Plant Cell* **28**, 505-520.

555 **Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen,**
556 **H.B., Lacy, M., Austin, M.J., Parker, J.E., Sharma, S.B., Klessig, D.F., Martienssen, R.,**
557 **Mattsson, O., Jensen, A.B., and Mundy, J.** (2000). Arabidopsis MAP kinase 4 negatively
558 regulates systemic acquired resistance. *Cell* **103**, 1111-1120.

559 **Riefler, M., Novak, O., Strnad, M., and Schmulling, T.** (2006). Arabidopsis cytokinin receptor
560 mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root
561 development, and cytokinin metabolism. *Plant Cell* **18**, 40-54.

562 **Riehs-Kearnan, N., Gloggnitzer, J., Dekrout, B., Jonak, C., and Riha, K.** (2012). Aberrant growth
563 and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by
564 autoimmune-like response. *Nucleic Acids Res* **40**, 5615-5624.

565 **Rodriguez, E., Chevalier, J., Olsen, J., Ansbol, J., Kapousidou, V., Zuo, Z.L., Svenning, S.,**
566 **Loefke, C., Koameda, S., Drozdowskyj, P.S., Jez, J., Durnberger, G., Kuenzl, F.,**
567 **Schutzbier, M., Mechtler, K., Ebstrup, E.N., Lolle, S., Dagdas, Y., and Petersen, M.**
568 (2020). Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic
569 cells. *Embo J* **39**.

570 **Roux, M.E., Rasmussen, M.W., Palma, K., Lolle, S., Regue, A.M., Bethke, G., Glazebrook, J.,**
571 **Zhang, W.P., Sieburth, L., Larsen, M.R., Mundy, J., and Petersen, M.** (2015). The mRNA
572 decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor
573 SUMM2. *Embo J* **34**, 593-608.

574 **Schaller, G.E., Bishopp, A., and Kieber, J.J.** (2015). The Yin-Yang of Hormones: Cytokinin and
575 Auxin Interactions in Plant Development. *Plant Cell* **27**, 44-63.

576 **Smetana, O., Mäkilä, R., Lyu, M., Amiryousefi, A., Rodríguez, F. S., Wu, M., Solé-Gil, A.,**
577 **Gavarrón, M. L., Siligato, R., Miyashima, S., Roszak, P., Blomster, T., Reed, J.W., Broholm,**
578 **A., and Mähönen, A. P.** (2019). High levels of auxin signalling define the stem-cell organizer of
579 the vascular cambium. *Nature* **565**, 485-489.

580 **Smit, M. E., McGregor, S. R., Sun, H., Gough, C., Bågman, A.M., Soyars, C. L., Kroon, J. T.,**
581 **Gaudinier, A., Williams, C. J., Yang, X.** (2020) A PXY-mediated transcriptional network
582 integrates signaling mechanisms to control vascular development in Arabidopsis. *Plant*
583 *Cell*, **32**, 319-335

584 **Sorenson, R.S., Deshotel, M.J., Johnson, K., Adler, F.R., and Sieburth, L.E.** (2018). Arabidopsis
585 mRNA decay landscape arises from specialized RNA decay substrates, decapping- mediated
586 feedback, and redundancy. *P Natl Acad Sci USA* **115**, E1485-E1494.

587 **Streitner, C., Koster, T., Simpson, C.G., Shaw, P., Danisman, S., Brown, J.W.S., and Staiger, D.**
588 (2012). An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction
589 with transcripts in Arabidopsis thaliana. *Nucleic Acids Res* **40**, 11240-11255.

590 **Su, Y.H., Liu, Y.B., and Zhang, X.S.** (2011). Auxin-Cytokinin Interaction Regulates Meristem
591 Development. *Mol Plant* **4**, 616-625.

592 **Takahashi, K., and Yamanaka, S.** (2006). Induction of pluripotent stem cells from mouse embryonic
593 and adult fibroblast cultures by defined factors. *Cell* **126**, 663-676.

594 **Tantikanjana, T., Yong, J.W.H., Letham, D.S., Griffith, M., Hussain, M., Ljung, K., Sandberg, G., and Sundaresan, V.** (2001). Control of axillary bud initiation and shoot architecture in
595 Arabidopsis through the SUPERSHOOT gene. *Gene Dev* **15**, 1577-1588.

596 **Tatapudy, S., Aloisio, F., Barber, D., and Nystul, T.** (2017). Cell fate decisions: emerging roles for
598 metabolic signals and cell morphology. *Embo Rep* **18**, 2105-2118.

599 **Vandenbussche F., Petrášek J., Žádníková P., Hoyerová K., Pešek B., Raz V., Swarup R., Bennett M., Zažímalová E., Benková E., and Van Der Straeten D.** (2010) The auxin influx
600 carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook
602 development in *Arabidopsis thaliana* seedlings. *Development* **137** (4): 597–606.

603 **Weijers, D., Nemhauser, J., and Yang, Z.B.** (2018). Auxin: small molecule, big impact. *J Exp Bot*
604 **69**, 133-136.

605 **Xiao, W., Molina, D., Wunderling, A., Ripper1, D., Vermeer, J.E.M., Ragni, L.** (2020) Pluripotent
606 pericycle cells trigger different growth outputs by integrating developmental cues into distinct
607 regulatory modules. *Current Biology* **30**, 4384–4398

608 **Xie, M.T., Chen, H.Y., Huang, L., O'Neil, R.C., Shokhirev, M.N., and Ecker, J.R.** (2018). A B-
609 ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot
610 development. *Nat Commun* **9**.

611 **Xu, C., Luo, F., and Hochholdinger, F.** (2016). LOB Domain Proteins: Beyond Lateral Organ
612 Boundaries. *Trends Plant Sci* **21**, 159-167.

613 **Xu, J., and Chua, N.H.** (2009). *Arabidopsis Decapping 5* Is Required for mRNA Decapping, P-Body
614 Formation, and Translational Repression during Postembryonic Development. *Plant Cell* **21**,
615 3270-3279.

616 **Xu, J., and Chua, N.H.** (2012). Dehydration stress activates *Arabidopsis MPK6* to signal DCP1
617 phosphorylation. *Embo J* **31**, 1975-1984.

618 **Xu, J., Yang, J.Y., Niu, Q.W., and Chua, N.H.** (2006). *Arabidopsis DCP2, DCP1, and VARICOSE*
619 form a decapping complex required for postembryonic development. *Plant Cell* **18**, 3386-3398.

620 **Ye, L., Wang, X., Lyu, M., Siligato, R., Eswaran, G., Vainio, L., Blomster, T., Zhang, J., and
621 Mähönen, A. P.** (2021) Cytokinins initiate secondary growth in the *Arabidopsis* root through a
622 set of LBD genes. *Current Biology* **31**, 3365-3373.

623 **Yu, J.Y., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J.,
624 Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., and Thomson, J.A.** (2007). Induced
625 pluripotent stem cell lines derived from human somatic cells. *Science* **318**, 1917-1920.

626 **Yu, X., Li, B., Jang, G.J., Jiang, S., Jiang, D.H., Jang, Y.Y., Wu, S.H., Shan, L.B., and He, P.**
627 (2019). Orchestration of Processing Body Dynamics and mRNA Decay in *Arabidopsis*
628 Immunity. *Cell Rep* **28**, 2194-+.

629 **Zhang, Z.B., Wu, Y.L., Gao, M.H., Zhang, J., Kong, Q., Liu, Y.A., Ba, H.P., Zhou, J.M., and
630 Zhang, Y.L.** (2012). Disruption of PAMP-Induced MAP Kinase Cascade by a *Pseudomonas*
631 *syringae* Effector Activates Plant Immunity Mediated by the NB-LRR Protein SUMM2. *Cell Host Microbe* **11**, 253-263.

632 **Zuo, Z., Roux, M.E., Sæmundsson, H.P., Müller, M., Munne Bosch, S., and Petersen, M.** (2021).
633 The *Arabidopsis thaliana* mRNA decay factor PAT1 functions in osmotic stress responses and
634 decaps ABA-responsive genes. *Febs Lett*, **595**:253-263.

635 **Zuo, Z., Roux, M.E., Rodriguez, E., and Petersen, M.** (2022a). mRNA decapping factors LSM1 and
636 PAT paralogs are involved in TuMV viral infection. *Mol Plant Microbe Interact.* **449** 35(2):
637 125-130,

638

639 **Zuo,Z., Roux,M.E., Dagdas, Y., Rodriguez, E., and Petersen, M.** (2022b). PAT mRNA decapping
640 factors function specifically and redundantly during development in Arabidopsis. BioRxiv
641 2022.07.06.498930; doi: <https://doi.org/10.1101/2022.07.06.498930>