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Abstract

Spatial transcriptomics extends single cell RNA sequencing (scRNA-seq) by providing spatial
context for cell type identification and analysis. Imaging-based spatial technologies such as
Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH) can achieve single-cell
resolution, directly mapping single cell identities to spatial positions. MERFISH produces an
intrinsically different data type than scRNA-seq and a technical comparison between the two
modalities is necessary to ascertain how to best integrate them. We performed MERFISH on
mouse liver and kidney and compared the resulting bulk and single-cell RNA statistics with
those from the Tabula Muris Senis cell atlas as well as from two Visium datasets. MERFISH
quantitatively reproduced the bulk RNA-seq and scRNA-seq results with improvements in
overall dropout rates and sensitivity. Finally, we found that MERFISH independently resolved
distinct cell types and spatial structure in both liver and kidney. Computational integration with
the Tabula Muris Senis atlas did not enhance these results. We conclude that compared to
scRNA-seq, MERFISH provides a quantitatively comparable method for measuring single-cell
gene expression and can robustly identify cell types without the need for computational
integration with scRNA-seq reference atlases.
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Introduction

Named “Method of the Year” by Nature Methods in 2021 (Marx 2021), spatial transcriptomics
promises to revolutionize biological investigation by allowing researchers to study cells’
transcriptomes in their native spatial context. Recently, a plethora of various spatial
transcriptomics techniques have arisen, including platforms such as Slide-Seq (Stickels et al.
2021), 10x Visium (Stahl et al. 2016), Seq-FISH (Eng et al. 2019), MERFISH (K. H. Chen et al.
2015), STARmap (X. Wang et al. 2018), and GeoMX Digital Spatial Profiler (Merritt et al. 2020),
to name a few examples. These techniques all involve different fundamental mechanisms,
ranging from traditional RNA sequencing performed on spatially barcoded chips to
single-molecule fluorescence microscopy (Moses and Pachter 2022).

A microscopy-based method, MERFISH provides a particularly compelling approach to
complement pre-existing single-cell RNA sequencing (scRNA-seq) techniques. While it can only
study hundreds to a few thousands of genes, MERFISH makes up for this limitation by offering
single-molecule capability. This results in subcellular spatial resolutions that are orders of
magnitude finer than sequencing-based spatial approaches, which are currently limited to
spatial resolutions at the length scale of a single cell or greater. Thus, MERFISH can deeply
study a target list of genes of interest with spatial context, drawing upon and complementing
pre-existing insights offered by traditional single cell analysis.

Since MERFISH is still relatively new, it lacks a systematic technical comparison with RNA
sequencing technologies, especially at the single-cell level. Additionally, while MERFISH has
provided numerous insights in cell culture (K. H. Chen et al. 2015; Moffitt, Hao, Wang, et al.
2016; Moffitt, Hao, Bambah-Mukku, et al. 2016; Xia et al. 2019), only recently has MERFISH
been successfully used in tissue samples, notably in the mouse brain (Moffitt et al. 2018; X.
Wang et al. 2018; G. Wang et al. 2020; Zhang et al. 2020) and fetal liver (Liu et al. 2020; Lu et
al. 2021). Evaluating its potential for further biomedical research necessitates a technical
analysis in other types of tissue. As MERFISH relies on a limited probe panel of marker genes, it
is crucial to ascertain if MERFISH measurements are independently sufficient and informative to
conduct single-cell bioinformatic analysis such as cell type clustering and identification, or if they
need to be augmented with reference scRNA-seq atlases using computational methods.

In this paper, we used the Vizgen MERSCOPE platform to conduct a technical comparison
between MERFISH and RNA sequencing in mouse liver and kidney tissues. By comparing the
insights from MERFISH with traditional bulk and scRNA-seq results from Tabula Muris Senis
(Schaum et al. 2020, The Tabula Muris Consortium 2020) as well as with data from two Visium
spatial transcriptomics datasets (Dixon et al. 2022; Guilliams et al. 2022), we explored the
advantages and limitations of MERFISH for bioinformatic analysis. After establishing that the
statistics exhibited by both imaging and sequencing modalities were fairly similar, with
MERFISH exhibiting superior dropout rates and sensitivity, we examined MERFISH’s ability to
identify different cell types. Intriguingly, MERFISH was able to distinguish between different cell
types in liver and kidney tissue with standard single-cell bioinformatics analysis, even with only
a 307-gene panel containing marker genes split between three organs. Furthermore, we were
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able to resolve clear structure in the spatial distribution of these cell types, for example in spatial
patterning of pericentral and periportal hepatocytes and endothelial cells in mouse liver as well
as of podocytes in mouse kidney.

We then integrated our MERFISH measurements with Tabula Muris Senis using a couple of
computational methods (Lopez et al. 2018; Korsunsky et al. 2019; Kang et al. 2021; Xu et al.
2021) to automatically predict cell type annotations and investigate what additional insights were
offered via computational integration. Interestingly, computational integration did not enhance
cell type identification, indicating that MERFISH data alone can sufficiently resolve distinct cell
types. While most cell types were similarly labeled by integration or manual annotation, some
cell types like podocytes were consistently misclassified by the integration methods. We
ascertained that these errors stemmed from intrinsic differences in RNA statistics between
MERFISH and scRNA-seq, rather than from the integration methods themselves.

Results

MERFISH utilizes a combination of single-molecule fluorescence in-situ hybridization (smFISH)
and combinatorial labeling of RNA transcripts with optical barcoding to achieve a highly
multiplexed, single-molecule readout of transcriptional activity in fixed samples (K. H. Chen et al.
2015). Here, we briefly describe the essence of the technique as applied in this work.

MERFISH provides targeted labeling of RNA transcripts by using a preselected gene panel,
where each transcript is assigned a unique binary barcode (Sl Fig 1A). These barcodes are
error robust, allowing for reliable transcript identification even with several hundreds of genes
(Moffitt, Hao, Wang, et al. 2016). After hybridizing a sample with encoding probes that effectively
imprint the desired barcodes onto each RNA species, the barcode is then detected by
sequential rounds of multichannel imaging, flowing in different subsets of fluorescently labeled
readout probes to hybridize with the barcode region of encoding probes. Fluorescent spots are
computationally decoded into their respective binary barcodes wherein the presence of a spot
indicates a “1” and absence indicates a “0” (S| Fig 1A). These barcodes and their intracellular
positions are combined with cell nucleus and boundary staining, allowing for segmentation and
measurement of gene expression at single cell resolution.

S| Figure 1B summarizes the experimental workflow. After designing a gene panel barcode
scheme, we hybridized encoding probes to a tissue sample and imaged it (see Methods and
Materials for detailed overview of protocol). The resulting raw images contained the necessary
information to decode RNA transcript counts. Staining with a combination of DAPI and
membrane protein antibodies produced a fluorescent readout on cell nuclei and boundaries.
Using the MERIin image analysis and Cellpose segmentation packages (Emanuel et al. 2020;
Stringer et al. 2021), these raw images were processed to obtain positions of single RNA
transcripts and segmented geometries of individual cells, respectively. These data were then
post-processed to calculate more parsimonious summary statistics, such as individual cell
volumes and single-cell count matrices of each RNA species.
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In this work, we investigated a 307-gene panel in mouse liver and kidney. The genes were
selected to be differentially expressed cell type marker genes for mouse liver, kidney, or
pancreas (see Methods and Materials for more details). Fourteen datasets were collected from
mouse liver (5), kidney (4), and pancreas (5). Of these, all five of the pancreas samples and two
of the kidney samples did not yield enough RNA for downstream analysis (Section S1 and Sl
Fig 2). Furthermore, one of the kidney samples only yielded enough transcripts for bulk RNA
analysis. In addition, only one of the liver samples was stained for DAPI and cell boundary
antibodies that allowed for single cell segmentation. The other four were used for bulk RNA
analysis only. Thus, the bulk RNA analysis in this paper utilized five liver and two kidney
samples, and the single-cell RNA analysis utilized one liver and one kidney sample.

Example workflow

Figure 1 shows an example of the data acquisition and image analysis procedure for a ~1cm?
mouse kidney tissue sample (Fig 1A). Zoomed-in images are acquired for various fields of view
(FOVs). Each image consists of a z-stack of seven z-positions, with a space of 0.7 microns
between each z-position. Each FOV is first imaged for DAPI and cell boundary antibody stains
as shown in Figures 1B and 1C. Then, multiple rounds of hybridization begin and the various
smFISH signals are acquired as shown in Figure 1D for a single bit.

From examining the presence, absence, and colocalization of individual smFISH spots, the
digital barcodes of unique RNA species can be decoded using computational image analysis
(Fig. 1E, colored points; see Methods and Materials for details). The cell boundary antibody
stain and DAPI channels can be used to segment and produce single cell boundaries (Fig. 1E,
black). These result in processed images containing the single cell boundaries and decoded
transcript positions, which are then used for downstream bioinformatic analysis.

Sample quality and RNA integrity are critical to successful MERFISH analysis. We computed
the average density of detected RNA transcripts for each tissue and compared this number with
the RNA integrity number (RIN), a common metric for measuring RNA quality (Schroeder et al.
2006). The two metrics correlated quite well (Section S1 and Sl Fig 2), and we discarded
measurements with RIN score lower than 4. All five liver datasets passed this margin, as well as
two kidney datasets.

Comparison of MERFISH results with bulk RNA-seq

First, we examined noise in MERFISH measurements by comparing bulk RNA transcript counts
between technical replicates. Figure 2A and 2B show total log-transformed counts of detected
RNA transcripts for each gene in the panel between two technical replicates taken from the
same tissue block in mouse liver and kidney. Both tissues exhibited high correlation, with R =
0.99 and R = 0.95 for liver and kidney, respectively. MERFISH replicates are extremely
reproducible.

Then, we compared bulk MERFISH results with bulk RNA-seq data from Tabula Muris Senis
(Schaum et al. 2020). Since the mice used in this study were three months old, we only
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considered those mice from Tabula Muris Senis that were also three months old. Figure 2C and
2D show the total log-transformed counts per gene in mouse liver and kidney between the two
types of technologies, with some marker genes highlighted for illustrative purposes. Each point
represents the RNA count for a single gene, averaged across different experimental samples for
the corresponding technology. While the correlation was lower than between MERFISH
technical replicates, it was still apparent (R = 0.61 and R = 0.58 for liver and kidney,
respectively), albeit slightly lower than previous MERFISH studies in cell culture (Xia et al.
2019). Furthermore, MERFISH systematically detected more transcripts than bulk RNA-seq,
with fold-change increases of ~10x to over ~1000x.

As an additional point of comparison, we examined bulk MERFISH results together with another
spatial transcriptomics technology, the sequencing-based Visium assay (10x Genomics). We
used two publicly available datasets for the mouse liver (Guilliams et al. 2022) and kidney
(Dixon et al. 2022), respectively, and conducted the same correlation analysis as before. Since
Visium is not a single-cell technology, we reasoned that this bulk analysis would be the best way
to compare the two. For each Visium dataset, we created a pseudo-bulk measurement by
simply summing up all of the detected RNA in the sample and then compared these data with
the bulk MERFISH results.

Figure 2E and 2F show the results of this pseudo-bulk comparison for the mouse liver and
kidney, respectively, with some marker genes highlighted. Like before, each point represents the
RNA count for a single gene, averaged across different experimental samples for the
corresponding technology. In both tissues bulk MERFISH results correlated well with Visium (R
= 0.65 and R = 0.69 for liver and kidney, respectively). Thus, at the bulk level, we conclude that
MERFISH quantitatively agrees with both RNA-seq and Visium technologies.

Analysis and quality control of single-cell MERFISH results

After image acquisition we extracted 2D segmented cell boundaries and decoded RNA
transcripts positions as shown for sample zoomed-in views at a single z-position in Fig. 3A
(liver) and Fig. 3E (kidney). Using the segmented boundaries in the median z-position (i.e. 4th of
7), we assigned transcripts to cells by treating each cell’s 2D boundary as a cookie cutter and
associating every transcript in the whole 3D volume that lay within the boundary’s xy
coordinates with that cell. Segmentation quality was variable, with some cells possessing
segmented boundaries that appeared quite reliable and others possessing aberrant segmented
boundaries. These discrepancies were due to low-quality cell boundary and/or DAPI stain
signals, resulting in the image analysis software constructing segmented boundaries in the
empty spaces between cells (Fig. 3A and 3E, white arrows). Not all detected RNA transcripts lay
inside segmented boundaries — the percentage of transcripts assignable to cells was around
70% for both the liver and kidney. The remaining 30% likely consisted of both extracellular RNA
as well as RNA near the peripheries of cells that lay slightly outside the segmented boundaries.

We developed a quality control protocol to filter out these low quality cells. From the data, we
generated distributions of single-cell 2D areas and total counts per cell (Fig. 3B, C, F, and G).
We calculated a per-cell alignment metric with the DAPI signal which we designate the average
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DAPI score. This score is the average DAPI intensity within the xy borders of each segmented
cell in the median (i.e. fourth) z-slice (Fig. 3D and 3H). A well segmented cell would intuitively
have a high average DAPI score due to good alignment between the segmentation and the
DAPI signal whereas a poorly segmented cell would have a lower score.

Quality control filters were established as follows: segmented cells that were unreasonably small
or large were discarded by establishing low-area and high-area cutoffs of 200 um?and 3000 pm?
in the distribution of cell areas (Fig. 3B and 3F). A minimum cutoff of total RNA transcript count
per cell of 80 was established to filter out cells with sparse statistics (Fig. 3C and 3G). Both the
mouse liver and kidney datasets exhibited bimodality in the median average DAPI score per cell
(Fig. 3D and 3H), and a cutoff of 400 was established in order to retain cells with a high score.
This allowed us to filter out segmented cells that were actually composed of empty space (Fig.
3A and 3E, white arrows).

This quality control procedure resulted in 34,217 liver cells and 126,547 kidney cells being
retained out of 83,410 and 212,090 originally segmented cells, respectively. This corresponds to
yields of 41% and 60% for the liver and kidney dataset, respectively.

Comparison of single-cell MERFISH results with scRNA-seq

Using segmented data we constructed single-cell RNA count matrices in order to compare the
single-cell MERFISH results with the three-month Tabula Muris Senis scRNA-seq data (The
Tabula Muris Consortium 2020). First we examined the distribution of total RNA transcript
counts per cell shown in Figures 4A and 4B for mouse liver and kidney. For a proper
comparison the Tabula Muris Senis data were reduced to a subset containing the same 307
genes as the MERFISH gene panel. In the liver, the MERFISH distribution quantitatively agreed
with scRNA-seq (Fig 4A). In the kidney, the distributions agreed up to total counts of
approximately 1000 transcripts/cell, after which the MERFISH distribution drops to zero while
the scRNA-seq distribution continues.

We hypothesize that this is due to the fact that the gene panel contained a few highly abundant
genes in mouse liver and kidney such as C7gc and Gpx3 respectively (Section S2 and Sl Fig 3).
For the minority of cells containing extremely high numbers of transcripts (i.e. over 1000 per
cell), the smFISH spots in the MERFISH images would be too dense due to overcrowding of
RNA molecules, preventing accurate identification of single RNA transcripts. Examination of
single-cell distributions of these abundant genes verified this hypothesis as the distributions
resulting from MERFISH agreed with those from scRNA-seq for cells with low overall transcript
counts but not for cells with high overall transcript counts (Section S2 and Sl Fig 3). This effect
was more pronounced in the kidney than in the liver, reflecting the increased discrepancy in
overall RNA count distributions in the kidney (Fig 4B).

Next, we examined the dropout rate between the technologies, shown in Fig 4C and 4D. For
each cell in a given tissue, this was defined as the fraction of genes with zero counts out of the
whole 307-gene panel. For both technologies, the dropout rates were high (> 0.7) due to the fact
that the gene panel contained marker genes specific for liver, kidney, and pancreas.
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Nevertheless, the relative difference in the distribution between technologies was informative. In
both the liver and kidney, while both technologies possessed cells with high dropout rates (>
0.8), MERFISH possessed a larger fraction of cells with lower dropout rates (between 0.7 and
0.8) compared to scRNA-seq. Thus, we conclude that MERFISH results in systematically lower
dropout rates than scRNA-seq.

We then investigated whether either technology was more sensitive than the other (Fig 4E and
4F). While the previous analysis of dropout rates quantified the number of genes detected per
cell, we now quantified the number of cells in which each gene was detected. To do so, we
calculated the fraction of cells that had non-zero counts for each gene. If the two technologies
had identical sensitivities, then a scatter plot of this fraction for each gene between technologies
would fall on the x=y line. Bias in either direction would indicate that one technology was more
sensitive. In both the liver (Fig 4E) and the kidney (Fig 4F) MERFISH systematically detected
genes in higher proportions of cells than scRNA-seq. Thus, for this gene panel, MERFISH is
more sensitive than scRNA-seq.

Finally, we investigated possible detection of false positives (i.e. incorrectly decoded RNA
transcripts) in MERFISH. To do so, we reasoned that the pancreas marker genes in the panel
could be used as an effective control — substantial detection of these pancreas genes in the
MERFISH data would indicate a nontrivial false positive rate. Figures 4G and 4H show the
mean transcript count of six pancreas marker genes (Ace2, Chga, Cldn3, Bambi, Hhex, Pcsk2)
among cells with non-zero counts in both the MERFISH and Tabula Muris Senis datasets. The
standard errors of the mean were also calculated but were too small to visualize. For
comparison, a liver and kidney marker gene (Hmgcs2 and Kcnj1, respectively) are shown as
well. The values for both MERFISH and scRNA-seq were similar for the pancreas genes with a
few exceptions likely due to expected dropouts in sScRNA-seq (Ace2, Chga, Pcsk2), indicating
that both technologies have comparable false positive rates. In addition, the expression levels of
Hmgcs2 were high in liver and low in kidney, and the expression levels of Kcnj1 were low in liver
and high in kidney, as expected. There was a slight discrepancy in the measured expression of
the highly expressed Hmgcs2 transcript in liver between MERFISH and scRNA-seq, probably
due to the molecular crowding effect already discussed. Together these data indicated that the
effective false positive rates were low in MERFISH and scRNA-seq.

To investigate the statistical properties of MERFISH data more deeply, we compared the mean
RNA counts for each gene between MERFISH and scRNA-seq, across cells that possessed
nonzero counts for that gene (Fig 5A and 5B for liver and kidney, respectively). We only
considered genes that had at least 50 cells with nonzero counts in each dataset, to filter out
genes with ambiguous means due to low sample size. In the liver (Fig 5A) there was a decent
concordance and correlation of the means between MERFISH and scRNA-seq around the x=y
line (R = 0.61), while in the kidney (Fig 5B) the correlation was slightly worse (R = 0.48).
Furthermore, in the kidney there was less concordance — the scRNA-seq mean RNA counts
were systematically higher across genes. We hypothesized that this was due to a combination
of the overcrowding effect mentioned earlier, which would reduce the number of cells in
MERFISH detected with high RNA counts, with the segmentation procedure performing worse in
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the kidney and potentially failing to account for RNA transcripts located further away from cell
nuclei.

scRNA-seq RNA counts are well modeled by the negative binomial distribution (Griin, Kester,
and van Oudenaarden 2014; Kharchenko, Silberstein, and Scadden 2014). While this has also
been demonstrated to hold for smFISH (So et al. 2011), similar analysis is more sparse for
MERFISH, although recent results suggest that MERFISH statistics are also overdispersed and
captured with the negative binomial distribution (Zhao et al. 2022). We investigated this by
examining the mean-variance relationship of RNA counts for both MERFISH and scRNA-seq for
the genes shown in Fig 5A and 5B, again only for cells with nonzero counts. We opted to only
examine cells with nonzero counts since MERFISH and scRNA-seq possessed different dropout
rates (Fig 4C and 4D). Figure 5C and 5D show this relationship for the liver and kidney,
respectively. As a reference, the case where RNA counts follow a Poisson distribution (i.e. the
variance equals the mean) is shown in the black dashed line. For both the scRNA-seq (orange
dots) and MERFISH (blue dots) data, the variance is smaller than the mean for genes with low
expression and higher than the mean for genes with high expression. Thus, both scRNA-seq
and MERFISH possess overdispersed statistics for abundant genes. While this is expected for
scRNA-seq, these results are novel in the case of MERFISH.

This overdispersion is well captured with the negative binomial distribution — the insets in Fig 5C
and 5D show the full distribution of RNA counts for the liver and kidney marker genes Hmgcs2
and Kcnj1, respectively (blue bars), along with fits to the negative binomial distribution (red
lines). Additionally, the mean-variance relationship for both MERFISH and scRNA-seq are
remarkably similar in both liver and kidney. Together, the data indicate that for our gene panel,
MERFISH and scRNA-seq RNA counts exhibit quantitatively similar RNA count statistics that
are well modeled by a negative binomial distribution, for cells possessing nonzero counts.

Single cell and spatial analysis of MERFISH results

We explored MERFISH’s ability to resolve distinct liver cell types on its own using the
segmented single-cell results. First, we visualized a low-dimensional embedding using UMAP
(Mclnnes et al. 2018) and conducted unsupervised clustering using the leiden algorithm (Traag,
Waltman, and van Eck 2019).

With just the 307-gene panel we observed clear separation of clusters corresponding to various
liver cell types in the UMAP plot (Fig 6A, left). By examining the most informative genes
representative of each group, we were able to assign cell type identities to the various clusters.
The three right plots in Fig 6A show expression levels of some marker genes for periportal
hepatocytes (cyp2f2), endothelial cells (ptprb), and Kupffer (clec4f) cells.

As expected, the bulk of the cells were hepatocytes. Notably, the data were able to resolve
between different subpopulations of hepatocytes with both periportal and pericentral
hepatocytes clearly represented in the data (Fig 6A, brown and pink). We were also able to
distinguish between periportal and pericentral endothelial cells (Fig 6A, gray and olive). Finally,
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we detected a very small number of bile duct epithelial cells (Fig 6A, cyan; 60 cells out of 34,217
total).

Projecting these cell type annotations onto the spatial plot of mouse liver allowed us to observe
clear spatial structure of the different cell types (Fig 6B). In particular, the periportal and
pericentral hepatocytes and endothelial cells exhibited spatial segregation via prominent
maze-like patterning. Focusing on this zonation revealed clear co-localization of periportal
hepatocytes and endothelial cells, as well as of pericentral hepatocytes and endothelial cells
(Fig 6B, inset; Section S3; S| Fig 4). A DAPI stain of the sample is shown in Fig 6C for
reference.

To see if we could further enhance our signal quality, we integrated the MERFISH liver dataset
with the annotated Tabula Muris Senis liver cell atlas (The Tabula Muris Consortium 2020) using
scVI (Lopez et al. 2018). To do so, we retained mice from the atlas that were three months old,
in addition to non-hepatocyte cells from the one-month dataset to increase cell diversity as the
three-month data primarily consisted of hepatocytes (see Methods and Materials). Altogether
2321 liver cells from scRNA-seq were used. We then subsetted these data to the same
307-gene panel as the MERFISH data and then trained an scVI model to combine the two
datasets. Details of the analysis are given in Section S4 and the combined UMAP in the joint
embedding is shown in Sl Fig 5A. Finally, we used scANVI (Xu et al. 2021) to predict cell type
labels in the MERFISH dataset from the annotations from Tabula Muris Senis (S| Fig 5B). The
resulting spatial plot with projected scANVI cell type annotations (Fig 6D) qualitatively
reproduced the spatial results from the MERFISH data alone (Fig 6B).

Comparisons of cell type frequencies between the scRNA-seq reference, MERFISH data, and
scANVI integration are shown in Figure 6E. There was a discrepancy between scRNA-seq and
MERFISH in the frequencies of hepatocyte subpopulations, likely because the tissue sample
used here did not contain the whole liver and thus lacked a globally representative population of
hepatocytes. The scRNA-seq reference contained other hepatocytes and endothelial cells that
were neither periportal nor pericentral. These cell types were not readily detected in the manual
annotation scheme used for the MERFISH data. More notably, MERFISH detected substantially
fewer immune and Kupffer cells and more hepatic stellate cells than the scRNA-seq reference,
hinting at the fact that in situ hybridization technologies could offer a more accurate estimate of
cell type proportions since scRNA-seq may overestimate immune cell counts (Wu et al. 2019;
Denisenko et al. 2020; Ding et al. 2020; Koenitzer et al. 2020; Slyper et al. 2020). Additionally,
bile duct epithelial cells were not detected in the scRNA-seq reference and thus were not
predicted by scANVI. An independent integration using Harmony and Symphony (Korsunsky et
al. 2019; Kang et al. 2021) yielded similar results (Section S5 and Sl Fig 6).

To directly compare the manual annotations with the predicted annotations from scANVI, we
calculated the confusion matrix of cell annotations between the two methods. Each entry /, j in
the matrix was defined as the fraction of cells manually annotated with label i that were
predicted with label j in scANVI. Thus, perfect agreement would result in the diagonal elements
possessing values of 1 and all other off-diagonal elements possessing values of zero. For the
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liver data, there was generally high agreement between the two methods (Fig 6F). Because bile
duct epithelial cells were not present in the scRNA-seq reference, there was obviously no
agreement between scANVI and the manual MERFISH annotations. In addition, the manual
MERFISH annotations did not label any “other” endothelial cells or hepatocytes, so those rows
are blank.

We then repeated this analysis for the MERFISH kidney data. The left panel in Fig 7A shows a
UMAP plot of the MERFISH data alone from a single tissue sample, where we could resolve
distinct clusters with the leiden algorithm. Clusters were annotated as before by examining the
most informative genes in each cluster. The three right plots in Figure 7A show the example
marker genes kcnj1, clu, and podx/, which along with other marker genes allowed us to detect
Loop of Henle epithelial cells, distal convoluted tubule epithelial cells, and podocytes,
respectively. While the kidney contains many more known cell types than the liver, we were able
to resolve broad categories of cell types, including endothelial cells, various epithelial cell
groups, and podocytes. We did not detect fibroblasts via manual annotation; however, even in
the scRNA-seq reference they were extremely rare (< 1% of cells).

Figure 7B shows the corresponding mouse kidney spatial plot, with cell type labels projected
from this annotation process. We observed clear stratification of the kidney into different layers —
epithelial proximal tubule cells were localized to the cortex (Fig 7B, pink); Loop of Henle
epithelial cells were localized to the medulla (Fig 7B, red). Endothelial cells were more uniformly
distributed throughout the kidney sample (Fig 7B, blue). Notably, we also discovered clusters of
podocytes (Fig 7B, olive), a cell type that only exists in glomeruli (Brunskill et al. 2011),
multicellular structures that exist dispersed throughout the kidney cortex. A DAPI stain is shown
for reference in Figure 7C.

We then again used scVI to integrate the kidney MERFISH data with the Tabula Muris Senis
kidney scRNA-seq reference atlas. Because the reference scRNA-seq kidney data were more
comprehensive than the liver data, we used only three-month-old mouse data. 2327 kidney
scRNA-seq cells were used in total. This resulted in the joint UMAP plot shown in S| Fig 5C.

Using scANVI, we then predicted cell types in the MERFISH data from the annotations in Tabula
Muris Senis (Sl Fig 5D). Although the spatial kidney plot with predicted scANVI cell type labels
exhibited qualitatively similar spatial structure (Fig 7D) to the spatial results from MERFISH
alone (Fig 7B), it did produce some clear artifacts. For example, podocytes only exist in spatial
clusters concentrated in glomeruli in the cortex, but the integration predicted the existence of a
large podocyte population that lay in the medulla (Fig 7D, olive).

A comparison of the relative cell type frequencies between the scRNA-seq reference, MERFISH
results, and scANVI integration is shown in Fig 7E. The kidney sample here covered the entire
organ unlike the liver sample in Figure 6; therefore the agreement between MERFISH and
scRNA-seq was much more quantitatively apparent (Fig 7E, blue and green). The major
differences were that MERFISH detected more endothelial cells, Loop of Henle epithelial cells,
and collecting duct epithelial cells than scRNA-seq, as well as fewer podocytes. The scANVI
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integration produced many more discrepancies (Fig 7E, orange), such as an abnormally high
podocyte and pericyte count compared to scRNA-seq.

Examining the confusion matrix clarified these aberrations (Fig 7F). Although most cell type
annotations agreed well between the manual and scANVI annotations, both pericytes and
podocytes were poorly predicted by scANVI compared to the manual annotation. In particular,
more podocytes were predicted by scANVI to be endothelial cells compared to those podocytes
that were correctly labeled. Integration with Harmony and Symphony reproduced the scVI and
scANVI results, including these discrepancies (Section S5 and Sl Fig 6).

Section S6 and Sl Fig 7 explore the basis of this mislabeling in further detail. To summarize, for
certain cell types (e.g. podocytes) the MERFISH data are systematically different enough from
the same cell types in the scRNA-seq reference that any integration method likely would fail. In
other words, the integration performs well for matching cells with similar gene expression
profiles together, but the two dataset types themselves are fundamentally different enough that
the integration is not well posed. We refer the reader to Section S6 for a more detailed
description of this investigation and conclude that the MERFISH-alone manual annotation is
more reliable than computational integration for these cell types.

Discussion

MERFISH and other evolving spatial transcriptomic technologies offer a paradigm shift in
transcriptomic analysis by combining subcellular spatial resolution with single cell segmentation
ability. While MERFISH promises to extend single-cell transcriptomic analysis to the spatial
domain, it is unclear as to what extent MERFISH measurements are quantitatively comparable
to those from traditional RNA sequencing technologies. A technical comparison with existing
RNA sequencing data is necessary to fully understand the similarities and differences between
the two modalities. An important question is if MERFISH independently enables cell type
identification or if it requires computational integration with more comprehensive reference
scRNA-seq databases.

Here, we used MERFISH to measure the RNA profiles of 307 liver, kidney, or pancreas cell type
marker genes in mouse liver and kidney. By utilizing a fixation and clearing protocol in
conjunction with an automated microfluidics setup and fluorescence microscopy, we measured
single-molecule positions of the various genes in large (~1cm?) sections of fresh-frozen tissue.
Combining cell segmentation based on membrane antibody and DAPI stains, we obtained bulk
and single-cell RNA counts (Fig 1) that were then compared with the pre-existing Tabula Muris
bulk and single cell RNA datasets.

We assessed technical noise by comparing RNA counts between technical replicates of mouse
liver and kidney samples, and found extremely high correlation between them (Fig 2A and 2B).
Bulk comparisons with Tabula Muris Senis and publicly available Visium spatial transcriptomics
data indicated relatively good agreement (Fig 2C-F). MERFISH typically produced bulk RNA
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counts that were several orders of magnitude higher than RNA sequencing, an important point
in its favor for the measurement of sparse genes.

We then investigated the single-cell RNA counts from our MERFISH measurements. We first
developed a quality control protocol to filter out poor cells based on metrics involving spatial
morphology, transcript counts, and alignment with DAPI nuclear fluorescence (Fig 3). From this
perspective, imaging-based transcriptomics methods such as MERFISH allow for easily
interpretable quality control as these metrics can be ultimately derived from raw images rather
than from downstream quantities. The predominant factor influencing signal quality was cell
segmentation. After quality control, about half of detected cells were filtered out from a
combination of low transcript count, extremal segmented cell areas, and/or poor alignment with
DAPI nuclear fluorescence. While this conservative filtering strengthens downstream signal
quality, it also poses the need for improved computational segmentation in the future to fully
harness the massive amounts of data contained in the raw images. Recent methods that boost
cell segmentation quality by using information from RNA transcript positions (Petukhov et al.
2021) or prior knowledge of cell type-specific gene expression (Littman et al. 2021) may further
refine segmentation quality and allow for improved construction of single cell RNA count
matrices from subcellular MERFISH signals. Such advances are necessary, as not all cell types
may be equally affected by quality control — for example, more oddly shaped cells such as
fibroblasts may likely be more difficult to segment and thus could systematically be excluded
during quality control. Improvements in protein antibody staining could also boost segmentation
quality in this regard and enable more robust detection of diverse cell types.

The filtered single cell MERFISH results were then compared with the Tabula Muris Senis
scRNA-seq database (Fig 4). We examined summary statistics in mouse liver and kidney,
starting with the total RNA counts per cell (Fig 4A and Fig 4B). For the most part, MERFISH
quantitatively reproduced the statistics from scRNA-seq. However, for the kidney, MERFISH
was unable to resolve a minority of cells that possessed about 1000 or more total RNA counts
from the 307-gene panel (Fig 4B).

We hypothesized that this was due to the presence of highly abundant genes resulting in
crowding of RNA molecules, bringing the density of fluorescent spots to a level exceeding that
of the diffraction limit of the microscope and thus obscuring the ability to resolve them. Because
MERFISH uses a barcode labeling scheme, this would then reduce signal quality in many genes
in the panel for these highly expressing cells. Our experience recommends that future
MERFISH experiments avoid highly expressing genes in the gene panel to ameliorate this
issue. Although the gene panel design implemented here included a filtering step based on
overall bulk RNA measurements (see Methods and Materials for description), future selection
criteria could incorporate total RNA counts from single-cell reference data as well (Section S2
and Sl Fig 3). We expect the dynamic range of MERFISH measurements in mouse liver and
kidney to be limited to cells that have under ~1000 labeled transcripts overall.

We also investigated measurement sensitivity by quantifying the number of genes measured per
cell as well as the number of cells that measured each gene. First we calculated the dropout
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rate in liver and kidney, defined as the fraction of genes in the panel possessing zero counts per
single cell (Fig 4C and Fig 4D). The distribution of dropout rates was shifted to lower values for
both the liver and kidney compared to scRNA-seq, suggesting that MERFISH was more
sensitive than scRNA-seq in those tissues. We then quantified per-gene sensitivity by examining
the fraction of cells that possessed non-zero counts for each gene in the 307-gene panel, for
both MERFISH and scRNA-seq (Fig 4E and Fig 4F). In both the liver and kidney, this fraction
was systematically larger for MERFISH than for scRNA-seq, again indicating MERFISH’s
increased sensitivity. Taken together, these results suggest that in situ hybridization
technologies like MERFISH can measure a more intrinsically correct view of RNA statistics than
a dissociative technology such as scRNA-seq.

Next we undertook an effective negative control by investigating several genes in the panel that
were marker genes for pancreas cell types. Examining the mean transcript count for these
genes revealed similarly low values for both MERFISH and scRNA-seq compared to expression
levels for positive marker genes (Fig 4G and 4H), indicating that MERFISH possessed low false
positive detection rates at a similar level to scRNA-seq. Overall, we conclude that MERFISH
possesses quantitatively similar overall statistical behavior to scRNA-seq, with minor
discrepancies such as the dynamic range issue discussed above.

To more deeply investigate the single-cell statistics of MERFISH, we examined the concordance
and correlation of mean RNA counts among cells with nonzero counts between MERFISH and
scRNA-seq (Fig 5A and 5B). In the liver the concordance and correlation were decently high,
while in the kidney the correlation was weaker and scRNA-seq produced systematically higher
counts (likely due to a combination of cell segmentation flaws and the overcrowding effect
mentioned earlier). Nevertheless, this quantitative correspondence prompted us to investigate if
MERFISH RNA counts could be modeled with similar statistics as scRNA-seq. Examining the
mean-variance relationship of the genes studied in Fig 5A and 5B indicated that among cells
with nonzero counts, MERFISH and scRNA-seq indeed possessed similar statistics (Fig 5C and
5D). Furthermore, like scRNA-seq, MERFISH RNA count distributions were well modeled by a
negative binomial distribution (Fig 5C and 5D, inset). Such analysis sheds further light on
questions of noise in transcriptomic measurements (Griin, Kester, and van Oudenaarden 2014),
as the statistical agreement between MERFISh and scRNA-seq suggest that distributions such
as the negative binomial actually capture true biological variability in cellular transcription rather
than technical noise due to measurement error.

Finally, we investigated MERFISH’s ability to resolve distinct cell types in mouse liver and
kidney and if computational integration of MERFISH data with a scRNA-seq reference atlas
could boost this resolving potential. Single cell analysis of the MERFISH data using UMAP and
leiden clustering indicated reasonably good separation of cell types in both liver and kidney (Fig
6A and 7A). These unsupervised clustering results were clean enough to enable manual
annotation of cell types based on representation of marker genes in the panel. After projecting
these single-cell annotations onto a spatial plot, we were able to resolve clear spatial structure
in both mouse liver and kidney samples (Fig 6B and 7B). The MERFISH data were able to
distinguish between different liver hepatocyte and endothelial cell populations, exemplified by
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different spatial patterning of periportal and pericentral hepatocytes and endothelial cells (Fig
6B). Notably, although canonical marker genes for pericentral and periportal endothelial cells
such as Whnt2 and DIl4 were not present in our gene panel, our MERFISH results could still
identify these cells mainly on the basis of their spatial co-localization with the pericentral and
periportal hepatocytes (Fig 6B, inset; Section S3; Sl Fig 4). Thus, the incorporation of spatial
information into analysis can greatly aid in annotation of cell types by comparing the annotations
with expected spatial patterning.

Interestingly, computational integration of the MERFISH data with the Tabula Muris Senis
scRNA-seq atlas using scVI did not noticeably improve cell type identification ability. The joint
UMAP plots for both liver and kidney were fairly noisy, especially for kidney (Sl Fig 5A and Sl
Fig 4C), suggesting that MERFISH and scRNA-seq exhibit systematically different statistics at
the individual RNA species level that hinder efficient harmonization. An additional complicating
factor is in the throughput of cells as the individual MERFISH datasets used here possessed
tens of thousands of cells, whereas the Tabula Muris Senis possessed only a few thousand total
cells for each organ. Therefore, future investigations of this sort of computational integration
should include a nuanced accounting of the imbalance in throughput between different
technological modalities.

After using scANVI to predict cell type labels in the MERFISH data from the annotations in the
Tabula Muris Senis dataset, we generated spatial plots of mouse liver and kidney with these
automatically generated labels (Fig 6D and 7D). Although the spatial patterning in the liver was
qualitatively similar to the results from the manual annotation, the spatial results of the scANVI
integration in the kidney produced a few artifacts. Direct comparison of cell type annotations
between the manual method and scANVI indicated quantitative agreement for the liver (Fig 6F)
and semi-quantitative agreement in the kidney (Fig 7F) with some exceptions for cell types such
as podocytes. These results and discrepancies were reproduced by integration using Harmony
and Symphony (S| Fig 6), suggesting that the underlying cause of the annotation disagreement
lay in the data rather than the integration method. Indeed, a deeper investigation into cell type
RNA profile similarities and differences between MERFISH and scRNA-seq indicated that this
was indeed the case (Sl Fig 7). Thus, while computational integration works for the most part,
we caution researchers to also manually annotate MERFISH data and check for potential
discrepancies between annotation methods.

To more quantitatively investigate MERFISH’s cell type resolving ability with and without
computational integration, we compared cell type proportions between Tabula Muris Senis,
MERFISH, and the integrated dataset in both mouse liver and kidney (Fig 6E and Fig 7E).
Especially for the kidney, MERFISH resulted in cell type proportions that were generally closer
to Tabula Muris Senis than the integrated dataset, further highlighting MERFISH’s potential as a
standalone technology. Interestingly, MERFISH detected far fewer immune cells than
scRNA-seq in both organs (Fig 6E and 7E), supporting the hypothesis that scRNA-seq might
overestimate immune cell counts and thus may not produce the most accurate reflection of
minority cell types (Wu et al. 2019; Denisenko et al. 2020; Ding et al. 2020; Koenitzer et al.
2020; Slyper et al. 2020). This was further highlighted by the fact that MERFISH detected more
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hepatic stellate cells in mouse liver compared to scRNA-seq (Fig 6E). In combination with the
increased measurement sensitivity discussed above (Fig 4 C-F), our results anchor MERFISH
as a technique that offers equivalent, if not better, overall biological signal compared to
scRNA-seq. MERFISH and other spatial technologies provide a more complete representation
of tissue cell types as fragile and rare cells may be lost in conventional tissue dissociation
protocols.

We conclude that with efficient gene panel design MERFISH cleanly resolves cell types and
spatial structure alone, and that computational integration with scRNA-seq reference datasets
provide similar signal with varying quality depending on cell type. Although here we opted to use
scVI and scANVI as well as Harmony and Symphony, many other computational methods exist,
such as Seurat (Stuart et al. 2019), Tangram (Biancalani et al. 2021), and Giotto (Dries et al.
2021) to name a few examples. Further work should be undertaken to systematically compare
these various integration methods for different tissue types and spatial measurement
technologies, especially in light of the discovered systematic differences between MERFISH and
scRNA-seq (Sl Fig 7).

Substantial care should be taken regarding the design and interpretation of the gene panel.
Because of the use of a scRNA-seq reference in creating the list of genes for the panel, the
strength of MERFISH is heavily reliant on the quality of the reference and the method of panel
construction. For example, the reference scRNA-seq dataset should be of sufficient sequencing
depth to avoid creating a gene list based on noisy data. The method of choosing marker genes
should also be robust. Although here we utilized simple differential expression analysis for
picking marker genes, several recent software packages have been released that enable more
nuanced approaches for marker gene panel creation (Aevermann et al. 2021; Missarova et al.
2021; X. Chen, Chen, and Thomson 2022).

Importantly, because of the bespoke nature of these panels, MERFISH data are best examined
in comparison to their parent scRNA-seq references. Comparing with other scRNA-seq datasets
should be taken with caution due to the strong batch effects between various scRNA-seq
datasets. In addition, MERFISH data will only be informative for the genes existing in the panel.
Here, we utilized a panel consisting only of marker genes, so investigations of other biological
effects such as e.g. cell state or metabolic activity are not possible. For future MERFISH
experiments interested in such properties, relevant genes for study should be added to the list
of marker genes already present in the panel. Because of the limited size of MERFISH gene
panels, there thus will always be a constraint on the number of genes available for study, and
efficient panel design is of paramount importance. For example, a follow-up study for the
experiments here could utilize a single panel for each tissue of interest, freeing up space on the
panels for non-marker genes relevant for effects such as cell cycle or state.

In light of these findings, we envision MERFISH primarily as a targeted approach for following
up on pre-existing scRNA-seq studies. Because the overall statistics of MERFISH
measurements are quantitatively comparable to those from scRNA-seq, and because MERFISH
data alone appear sufficient to robustly identify cell types and reproduce spatial structure, there
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appears to be no urgent need for computational integration between the two modalities, at least
in the context of cell type identification in liver and kidney.

Methods and Materials

Mouse tissue sample:

The mice in this study were C57Black6 females and harvested at the age of 3 months. The
tissues of interest were fresh-frozen, embedded in optimal cutting temperature (OCT) compound
and stored at -80°C until cryosectioning.

RNA quality measurement:
The Qiagen RNeasy Mini Kit was used to isolate RNA from tissue samples and the RIN score
was measured for each using the Agilent Tapestation system.

Design of gene panel:

The MERFISH gene panel consisted of 307 genes, requiring 22 bits per barcode and 8 rounds
of 3-color hybridization. The gene panel was designed by selecting the top 10 differentially
expressed genes in each cell type according to Tabula Muris Senis cell atlas scRNA-seq data
(The Tabula Muris Consortium 2020). Initially the list included 424 genes across 19 kidney, 19
liver and 11 pancreas cell types. Genes with fewer than 30 target regions per transcript or higher
than an abundance threshold of 800 FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) were removed from the list. The final 307 targetable genes possessed a total
abundance of ~9000 FPKM.

Cryosectioning, staining and hybridization:

Frozen OCT-embedded tissue was sectioned at -15°C to a thickness of 10 ym and mounted
onto a functionalized 20 mm coverslip treated with yellow green (YG) fluorescent microspheres.
The mounted tissues were then fixed with 4% PFA (Paraformaldehyde) in 1X PBS (Phosphate
Buffered Saline), washed with 1X PBS, and stored in 70% ethanol at 4°C for at least one day
and no more than one month before proceeding. Next, the cell boundary was stained using the
Vizgen Cell boundary Staining Kit (Catalog number: 10400009), a protein-based staining
reagent consisting of a Blocking Buffer Premix (PN: 20300012), a Primary Staining Mix (PN:
20300010, 0.5mg/ml) and a Secondary Staining Mix (PN: 20300011, 0.33mg/ml) that can label 3
plasma membrane proteins in cell. To perform the cell boundary staining, samples are first
incubated with Blocking solution supplemented with Rnase inhibitor for 1 hour at room
temperature. Then the sample is incubated with Primary Staining Solution diluted in Blocking
Buffer (1:100 dilution) at room temperature for 1 hour. The sample is washed 3 times with 1X
PBS, 5 minutes each time, and then incubated with Secondary Staining Solution diluted in
Blocking Buffer (1:33 dilution) at room temperature for 1 hour. After washing with 1XPBS 3
times, 5 minutes each time, the sample is post fixed with 4% PFA at room temperature for 15
minutes and washed with 1X PBS. The sample was then treated with 30% formamide in 2X
SSC (Saline Sodium Citrate, formamide buffer) before the encoding probe hybridization buffer
mix (MERFISH library mix) was applied. The sample was incubated for 36-48 hours in a 37°C
cell culture incubator while submerged in the MERFISH library mix.
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Gel embedding and tissue clearing:

After hybridization of encoding probes to mRNA transcripts was complete, the sample was
washed twice with a formamide buffer and embedded in an acrylamide/bis-acrylamide gel.
Polymerization catalyzed by ammonium persulfate and NNN’'Tetramethyl-ethylindiamin
(TEMED) took approximately 1.5 hours. Once gel formation was confirmed, the sample was
rinsed briefly with 2X SSC then incubated at 37°C in proteinase K supplemented clearing
solution (2% Sodium Dodecyl Sulfate (SDS), 0.5% Triton-X 100 in 2X SSC). After 1 day, the
tissue became transparent and was ready for imaging.

Imaging:

The gel embedded and cleared sample was washed repeatedly with 2X SSC to reduce
autofluorescence from residual SDS in the gel. Then the first set of fluorescent probes
(hybridization buffer A1) was pre-hybridized to the cell boundary. After 15 minutes, the sample
was incubated in Wash Buffer from the Vizgen Imaging Reagent Kit for 10 minutes and gently
assembled into the flow cell (Bioptechs, FCS2). The reagents (Wash buffer, Imaging Buffer,
Rinse Buffer, Extinguishing Buffer) and hybridization buffers (up to 8) were loaded into the fluidic
system, which was controlled by a user interface on a desktop computer. After priming the
system, the flow cell was inserted into the fluidic path and Imaging Buffer was delivered to the
sample.

Using a Nikon Eclipse Ti2 inverted microscope equipped with a 10X objective and 405nm laser
channel, a low resolution mosaic was constructed from the resulting DAPI signal. Then the
region of interest was selected, generating a text file containing a list of position coordinates.
This position list, along with the corresponding fluidics recipe configuration file, was inputted to
the automated fluidics and imaging control program. Using a 60X oil immersion objective, 8
rounds of 3-color imaging were performed. The cell boundary and DAPI stains were imaged at 7
focal planes on the z axis for each tiled field of view (FOV). Imaging was followed by incubation
in Extinguishing Buffer, Rinse Buffer, Hybridization Buffer (corresponding to the subsequent
round of MERFISH readout probes), Wash Buffer, and Imaging Buffer. In each round,
fluorescent probes were imaged at 7 focal planes on the z axis using 749 nm, 638 nm and 546
nm laser illumination. In addition, a single image of the fiducial beads was acquired at each FOV
using 477 nm illumination. The resulting raw images stack was saved in various .dax files. As a
point of reference, the raw images from a single run of MERFISH for a ~1cm? tissue sample
contain about 1 TB of data.

Image Analysis:

To process the raw image files from the MERFISH experiments, we utilized the MERIin image
analysis pipeline (Emanuel et al. 2020). Here we briefly describe the pipeline. Initially, image
stacks obtained from different MERFISH rounds are aligned to correct for microscope stage drift
by maximizing their cross-correlation with fiducial bead images. The aligned images are then
passed through a high-pass filter to remove background noise, as well as a deconvolution
process to clarify the RNA spots in preparation for bit-calling i.e decoding a bit as 1 or 0 based
on fluorescence detection (Guo et al. 2019).
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Individual RNA molecule barcodes are then decoded from using a pixel-based decoding
algorithm that utilizes filters based on area and intensity. Then, an adaptive barcoding scheme is
used to correct misidentified barcodes that do not correspond to any barcodes in the codebook.
The level of correction can be set to a user-specified final misidentification rate. Here, we set the
misidentification rate to 5%.

Then, cells are segmented by utilizing the information from the nuclear DAPI and cell membrane
antibody stains with the Cellpose software package (Stringer et al. 2021). The decoded RNA
molecules are partitioned into individual cells to generate single-cell RNA count matrices. To do
so, the xy segmentation from the median z-slice was used (the 4th position out of 7). After
projecting this segmentation up and down through all z-positions, all detected transcripts in all
z-positions that lay within the xy boundaries of a cell were assigned to that cell. Note that the
whole pipeline is run for each imaging field-of-view and then tiled over the entire sample
imaging area of ~1cm?.

Comparison with Tabula Muris Senis reference cell atlas:

Comparisons of bulk and single-cell MERFISH results were done with the bulk and
droplet-based single-cell RNA-seq results in Tabula Muris Senis (Schaum et al. 2020, The
Tabula Muris Consortium 2020). To remove the effects of age, we subsetted both reference
datasets to mice that were three months old.

Comparison with publicly available Visium dataset:

Comparisons of pseudo-bulk counts between Visium and MERFISH results were done with
publicly available Visium datasets for mouse liver and kidney (Dixon et al. 2022; Guilliams et al.
2022). The pseudo-bulk counts computed per each dataset were averaged over replicates for
five Visium datasets for mouse liver. For the mouse kidney Visium dataset, we used one sham
dataset that Dixon et al. 2022 used in their study as a control (healthy mouse).

Single-cell bioinformatic analysis:

Single-cell MERFISH and RNA-seq results were analyzed using scanpy (Wolf, Angerer, and
Theis 2018). All results were preprocessed by filtering out cells with low counts, extremal
segmented areas, and low average DAPI scores as mentioned in the main text (Fig 3). The
comparative analyses in Figure 4 and 5 used the raw counts that resulted from the
preprocessing. For the single-cell analysis in Figures 6 and 7, the data were further normalized
to a total count of 10,000 transcripts per cell, log-transformed, and scaled such that each gene
possessed zero mean and unit variance across cells.

For cell type identification and annotation of MERFISH results alone, principal components were
first computed using scanpy’s tl.pca() function with default settings. Then, neighborhood graphs
were computed using scanpy’s pp.neighbors() function. UMAP plots and leiden clustering were
calculated using fl.umap() and tl.leiden(). To annotate the computed clusters, we examined the
top differentially expressed genes in each cluster using the tl.rank_genes_groups() function and
compared with known marker genes for the various cell types.


https://doi.org/10.1101/2022.03.04.483068
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.04.483068; this version posted September 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

19

Integration of MERFISH data with scRNA-seq reference using scVI and scANVI:

For integrated analysis with scVI and scANVI, the Tabula Muris Senis scRNA-seq data were
subsetted to retain the same 307 genes as the MERFISH data. For mouse liver, the
three-month data did not possess many non-hepatocyte cells, so we included non-hepatocyte
data from the one-month data to increase cell diversity. For mouse kidney, we used only
three-month data. The MERFISH and scRNA-seq datasets were concatenated, and then we
trained a joint model using scVI’s default settings. The resulting neighborhood graph and UMAP
plots were computed on the scVI latent space. For cell type annotation transfer, scCANVI was
run using 20 epochs and 100 samples per label.

The liver cell type annotations in Tabula Muris Senis were revised after consultation with tissue
experts. Furthermore, the kidney cell type annotations were overly specific, so we
coarse-grained them into broader categories.

Integration of MERFISH data with scRNA-seq reference using Harmony and Symphony:
To integrate MERFISH data with Tabula Muris Senis using Harmony and Symphony, we
subsetted the scRNA-seq first using the same method mentioned above (“Integration of
MERFISH data with scRNA-seq reference using scVI and scANVI). We then used Harmony and
Symphony on the subsetted scRNA-seq to build a reference using the function
symphony::buildReference with the following settings: 100 Harmony clusters, 100 variable
genes to choose per group, and 20 principal components. The cell type annotations of
MERFISH data were then predicted using the functions mapQuery with default settings and
knnPredict with k=5 neighbors.

Data and Code Availability

Raw MERFISH data are available for  download on AWS s3 at
s3://czb-tabula-muris-senis/spatial-transcriptomics/MERFISH-data/. The gene panel codebook,
RIN scores, FISH probe target region sequences, and processed data including decoded
MERFISH transcript information, cell boundaries, bulk RNA statistics, and single cell RNA
counts with cell type annotations are available for download from figshare at

https://figshare.com/projects/MERFISH_mouse_comparison_study/134213. A Github repository
containing the code needed to reproduce the figures is available at

https://github.com/czbiohub/MERFISH-mouse-comparison.
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Figure Legends

Figure 1 - Sample MERFISH data acquisition workflow. (A) Low-resolution image of DAPI
channel for a mouse kidney tissue sample. Red box indicates zoomed-in region displayed in
B-E. (B, C) DAPI (B) and (C) cell boundary antibody stain channels for the zoomed-in region.
(D) MERFISH signal for a single barcode bit channel in the same zoomed-in region. (E)
Positions of decoded mRNA transcripts (colorful dots) and segmented cell boundaries (black) in
the same zoomed-in region after running data through image analysis pipeline, with each color
representing a unique gene species. Panels B-D show raw images with brightness and contrast
levels selected for ease of visualization.

Figure 2 - Comparison of MERFISH data with bulk RNA-seq from Tabula Muris Senis. (A,
B) Bulk RNA counts per gene in mouse (A) liver and (B) kidney between MERFISH sample
replicates. (C, D) Comparison of bulk RNA counts per gene in mouse (C) liver and (D) kidney
between MERFISH and RNA-seq. (E, F) Comparison of bulk MERFISH RNA counts per gene
with pseudobulk RNA counts from Visium in mouse (E) liver and (F) kidney. In C-F, counts per
gene were averaged across replicates for each technology.
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Figure 3 - Quality control of single cell MERFISH data. (A) Sample cropped image of mouse
liver tissue with segmented cell boundaries (white, magenta), decoded RNA transcripts (gray),
DAPI nuclear stain (blue), and cell boundary antibody stain (green). White boundaries indicate
cells that have passed the filtering stage, whereas magenta boundaries indicate cells that have
been thrown out. (B, C, D) Histograms of (B) cell areas, (C) RNA transcript count per cell, and
(D) average DAPI per cell for the image in (A). Magenta indicates minimum or maximum cutoff
values for filtering criteria. (E) Sample cropped image of mouse kidney tissue. (F, G, H)
Histograms of (F) cell areas, (G) RNA transcript count per cell, and (H) average DAPI per cell
for the image in (E). White arrows in A and E indicate examples of poor cell segmentation.

Figure 4 - Comparison of single-cell MERFISH data with Tabula Muris Senis. (A, B)
Histograms of total RNA transcript count per cell in mouse (A) liver and (B) kidney for the gene
panel, for MERFISH (blue) and scRNA-seq (orange). (C, D) Histograms of dropout rates per cell
in mouse (C) liver and (D) kidney for the gene panel. (E, F) Comparison between MERFISH and
scRNA-seq of per-gene fraction of total cells out of the whole population of each dataset that
have nonzero counts for mouse (E) liver and (F) kidney. Here, each dot represents a single
gene. (G, H) Mean transcript count of pancreas marker genes in mouse (G) liver and (H) kidney,
for MERFISH (blue) and scRNA-seq (orange). A liver marker gene (Hmgcs2) and kidney marker
gene (Kcnj1) are shown for comparison. Standard error of the mean across cells was negligible
and too small to visualize.

Figure 5 - Statistical analysis of single-cell MERFISH and Tabula Muris Senis RNA count
distributions. (A, B) Comparison of mean RNA counts in MERFISH vs. scRNA-seq in mouse
(A) liver and (B) kidney across cells with nonzero counts. Each dot represents a gene and only
genes possessing at least 50 cells with nonzero counts are shown for each tissue. The dotted
black line shows the x=y line, indicating one-to-one concordance between MERFISH and
scRNA-seq. (C, D) Mean-variance relationship for RNA counts in MERFISH (blue) and
scRNA-seq (orange) for mouse (A) liver and (B) kidney, across cells with nonzero counts. Each
dot represents a gene and only genes possessing at least 50 cells with nonzero counts are
shown for each tissue. The dotted line indicates the x=y line, which represents the Poisson
scenario where the mean equals the variance. (C, inset) Distribution of MERFISH RNA counts
across cells with nonzero counts for Hmgcs2, a liver hepatocyte marker gene. Red line indicates
the best fit to a negative binomial distribution. (D, inset) Distribution of MERFISH RNA counts
across cells with nonzero counts for Kcnj1, a kidney Loop of Henle cell marker gene. Red line
indicates the best fit to a negative binomial distribution. Error bars in A and B represent standard
error of the mean.

Figure 6 - Single-cell and spatial analysis of MERFISH liver sample. (A) UMAP plots of
MERFISH data colored by manually annotated clusters or by normalized, log-transformed, and
scaled expression of example marker genes. (B) Spatial plot of MERFISH dataset alone,
colored by manually annotated cell types in A. Inset highlights spatial co-localization of
periportal endothelial cells and hepatocytes (gray and brown, respectively) and pericentral
endothelial cells and hepatocytes (olive and pink, respectively). (C) DAPI stain of liver sample.
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White box indicates the same inset region as in panel C. (D) Spatial plot of MERFISH dataset
using scANVI predicted cell type labels. Legend is the same as in panel B. (E) Cell type
composition for scRNA-seq and MERFISH datasets. Each point in A, B, and D represents a
single cell. (F) Confusion matrix of MERFISH cell type annotations between manual method and
scANVI predictions. The rows for other endothelial cells and hepatocytes (“o-EC” and “o-hep”)
are blank because none of the manual annotations were in these groups. Additionally, the row
for bile duct epithelial cells is noisy because none of the scRNA-seq reference cells possessed
this annotation. Cell type abbreviations are as follows: 'IC": 'immune cell', 'o-EC": 'other
endothelial cell', 'KC": 'Kupffer cell', 'HSC'": 'hepatic stellate cell', 'o-hep": 'other hepatocyte',
'PP-hep": 'periportal hepatocyte', 'PC-hep': 'pericentral hepatocyte', 'PP-EC': 'periportal
endothelial cell', 'PC-EC": 'pericentral endothelial cell', ‘BD-EC’: ‘bile duct epithelial cell’.

Figure 7 - Single-cell and spatial analysis of MERFISH kidney sample. (A) UMAP plots of
MERFISH data colored by manually annotated clusters or by normalized, log-transformed, and
scaled expression of example marker genes. (B) Spatial plot of MERFISH dataset alone,
colored by manually annotated cell types in A. Inset shows an example of a podocyte cluster in
the kidney cortex region (olive, black arrow). (C) DAPI stain of kidney sample. White box
indicates the same inset region as in panel C. (D) Spatial plot of MERFISH dataset using
scANVI predicted cell type labels. Black arrow indicates falsely predicted podocytes distributed
in a ring-like structure around the medulla. Legend is the same as in panel B. (E) Cell type
composition for scRNA-seq and MERFISH datasets. Each point in A, B, and D represents a
single cell. (F) Confusion matrix of MERFISH cell type annotations between manual method and
scANVI predictions. Cell type abbreviations are as follows: 'EC-PT": 'epithelial cell of proximal
tubule', 'IC": 'immune cell', 'per" 'pericyte', 'KLH-EC": 'kidney loop of Henle epithelial cell',
'KCD-EC": 'kidney collecting duct epithelial cell', 'KDCT-EC": 'kidney distal convoluted tubule
epithelial cell', 'EC": 'endothelial cell', 'pod": 'podocyte’.
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Figure 2
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S| Figure 1: Overview of experimental setup. (A) Barcoding scheme across N rounds of
multicolor imaging. Each detected fluorescent spot is registered as a “1” in its
corresponding bit position. Then, RNA species are identified by matching the barcodes
to a preselected gene codebook. (B) Experimental workflow. First, the gene panel and
codebook are designed. Then, probes are hybridized onto the sample, which has been
mounted and fixed onto a coverslip that is in turn placed in a flow cell connected to an
automated fluidic system. The sample is imaged in 5 color channels at multiple fields of
view and z-positions using an inverted epi-fluorescence microscope. Images are
analyzed to identify RNA molecules and their spatial coordinates as well as cell
boundaries. These data result in single-cell count matrices that can then be analyzed
with standard bioinformatics tools to achieve goals such as cell type identification.

S1 RNA integrity analysis

To investigate the relationship between MERFISH signal quality and RNA integrity in the tissue,
we measured the RNA integrity number (RIN) (Schroeder et al. 2006) in each of our tissue
samples (Methods and Materials). As a metric for MERFISH signal quality, we calculated the
transcript density, defined as the total number of detected RNA transcripts divided by the
number of fields of view imaged using the microscope. S| Fig 2 shows the results of this
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analysis. There was a clear correlation between RIN score and transcript density up until a RIN
score of about 5, after which the transcript density plateaued. Thus, we opted to exclude
datasets before the plateau and did not consider the kidney and pancreas MERFISH datasets
with RIN score below 4 in this paper.

1 o liver . o
| kidney ®
1 e pancreas . o

=

o
I
@

ST |

transcript density
=
o

102

[ A |

2 4 6 8
RIN score

S| Figure 2 - Investigation of RNA tissue quality on MERFISH measurements.
Average transcript density is shown as a function of tissue RIN score for each
tissue sample.
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S2 Investigation of molecular crowding in MERFISH measurements

To assess the impact of molecular crowding of RNA transcripts obscuring fluorescent signal, we
reasoned that such an effect would be most apparent in the most abundant genes in the gene
panel. SI Fig 3A and Sl Fig 3B show distributions of the median count of each gene in the
MERFISH panel, calculated from cells in scRNA-seq that registered nonzero counts for that
gene. Although most genes possess median counts fewer than 5, there are some genes with
median counts over 10. The top two most abundant genes in the MERFISH panel from
scRNA-seq were C71qc and C7qga in mouse liver, and Gpx3 and Tmem27 in mouse kidney.

We then hypothesized that molecular crowding should only occur in the regime of high transcript
count. Thus, for cells with high overall numbers of transcripts, MERFISH measurements may
become unreliable due to the high density of fluorescent spots making reliable single-molecule
detection difficult. In contrast, for cells with low overall numbers of transcripts, MERFISH
measurements should be more reliable.

To investigate this hypothesis, we examined the distribution of detected counts per cell for these
two most abundant genes in mouse liver and kidney, between MERFISH and scRNA-seq. Sl Fig
3C and SI Fig 3D show the results, where we split the analysis by overall transcript count. The
top row shows these distributions for cells with total transcript count over 100, whereas the
bottom row shows these distributions for cells with total transcript count under 100. In both liver
and kidney, we notice that the MERFISH and scRNA-seq distributions differ substantially for
higher count values in cells with over 100 total transcripts. In contrast, the distributions are more
similar in cells with under 100 total transcripts, particularly for the kidney.

Thus, we concluded that our MERFISH measurements were entering the molecular crowding
regime, causing the quantitative agreement in statistics between MERFISH and scRNA-seq to
diverge for cells with high overall RNA count number.
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S| Figure 3 - Investigation of molecular crowding in MERFISH measurements. (A,
B) Distribution of median counts per gene across cells with nonzero counts in
mouse liver (A) and kidney (C). Text annotations highlight the top two most
abundant genes in each tissue. (C, D) Distribution of counts per cell for top two
most abundant genes in mouse liver (C) and (D) kidney, in cells that registered
over 100 total counts (top), or in cells that registered under 100 total counts

(bottom).
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S3 Quantifying co-localization of periportal and pericentral endothelial cells
and hepatocytes in mouse liver

To quantify the co-localization of periportal and pericentral endothelial cells and hepatocytes
(Fig 6B inset), we computed the co-occurrence probability likelihood of finding each cell type. To
do so, we calculated the cluster co-occurrence ratio R provided in the squidpy package with the
squidpy.gr.co_occurrence function (Palla et al. 2022). Briefly, the ratio describes the probability
of locating a cell type i in a radius of size d, conditioned on the existence of a cell type j:

R(d) = —Ake)

P(i,d)
The ratio is computed at varying length scales d. Thus, higher values of R correspond to higher
likelihoods of co-localization, and lower values to lower likelihoods of co-localization. In the case
of spatial independence of two cell types, the ratio then takes a value of one.

S| Figure 4 shows this co-occurrence probability ratio R for varying length scales d for pairs of
periportal and pericentral endothelial cells and hepatocytes. We notice that for small length
scales (< 500 microns), pericentral endothelial cells and hepatocytes tend to co-localize with
each other with R > 1 (S| Fig 4A and 4B). This also holds true for periportal endothelial cells
and hepatocytes (SI Fig 4C and 4D). In contrast, periportal and pericentral cells do not
co-localize, with R < 1. At larger length scales (> 500 microns), the co-occurrence probabilities
trend to R = 1, indicating no strong co-localization effects.
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S| Figure 4 - Co-occurrence probability analysis of periportal and pericentral
hepatocytes and endothelial cells. (A-D) Co-occurrence probability ratio of (A)

pericentral

endothelial

cells,

(B) pericentral

hepatocytes, (C) periportal

endothelial cells, and (D) periportal hepatocytes with other periportal or
pericentral endothelial cells or hepatocytes. Cell type abbreviations are as
follows: 'PP-hep': 'periportal hepatocyte', 'PC-hep': 'pericentral hepatocyte',
'PP-EC'": 'periportal endothelial cell', 'PC-EC'": 'pericentral endothelial cell'.
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S4 Integration of MERFISH data using scVI and scANVI

S| Figure 5A shows the results of the scVI integration of the MERFISH liver data with
Tabula Muris Senis. Surprisingly, the two technologies were not particularly well mixed,
suggesting that the underlying statistics of the two modalities are systematically different enough
that constructing a good joint embedding may be difficult (SI Fig 5A). SI Figure 5B shows the
same UMAP plot with colors according to predicted cell type labels from scANVI.

S| Figure 5C shows the same scVI integration for mouse kidney. Just like the liver data,
the kidney data failed to exhibit good mixing of the two modalities. S| Figure 5D shows the same
combined integrated kidney UMAP with colors given by cell types predicted using scANVI.
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S| Figure 5 - Integration of MERFISH mouse liver and kidney data with Tabula
Muris Senis scRNA-seq using scVI and scANVI. (A) UMAP plot of MERFISH liver
data (gray) with Tabula Muris Senis (teal) using scVI. (B) UMAP plot of liver
integration in (A) with cell type annotations predicted using scANVI. (C) UMAP
plot of MERFISH kidney data (gray) with Tabula Muris Senis (teal) using scVI. (D)
UMAP plot of kidney integration in (C) with cell type annotations predicted using
scANVI. Cell type abbreviations in (B) are as follows: 'IC": 'immune cell', 'o-EC"
'other endothelial cell', 'KC": 'Kupffer cell', 'HSC': 'hepatic stellate cell', 'o-hep":
'other hepatocyte', 'PP-hep': 'periportal hepatocyte', 'PC-hep': 'pericentral
hepatocyte', 'PP-EC'": 'periportal endothelial cell', 'PC-EC'": 'pericentral endothelial
cell'. Cell type abbreviations in (D) are as follows: 'EC-PT": 'epithelial cell of
proximal tubule’, 'IC": 'immune cell', 'per": 'pericyte', 'KLH-EC": 'kidney loop of
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Henle epithelial cell', 'KCD-EC'": 'kidney collecting duct epithelial cell', 'KDCT-EC":
'kidney distal convoluted tubule epithelial cell', 'EC": 'endothelial cell', 'pod"
'podocyte’.

S5 Integration of MERFISH data using Harmony and Symphony

To compare with our scVI and scANVI integration, we used Harmony (Korsunsky et al. 2019)
and Symphony (Kang et al. 2021) to integrate our MERFISH data with the Tabula Muris Senis
scRNA-seq reference and generate predicted cell type annotations for the MERFISH data. S
Figure 6A and 6B show the resulting spatial plots of mouse liver and kidney, colored by the
Symphony predicted cell type annotation. Qualitatively, the results are similar to the scANVI
results (Fig 6D and 7D), reproducing the structure of the liver (Fig 6D) as well as the artifactual
population of podocytes in the kidney medulla (Fig 7D). Sl Figure 6C and 6D show the
confusion matrices of cell type annotations between the manual method and Symphony, for the
mouse liver and kidney. Like with scANVI (Fig 6F and 7F), Symphony generally is consistent
with manual annotation, as can be seen by the higher values along the main diagonal. However,
Symphony produces slightly more off-diagonal values than scANVI and also misclassifies
podocytes and pericytes (S| Fig 6D) just like scANVI. Thus, we conclude that Symphony
integration produces generally similar results to scANVI.
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S| Figure 6 - Integration of MERFISH mouse liver and kidney data with Tabula
Muris Senis scRNA-seq using Harmony and Symphony. (A) Spatial plot of
MERFISH mouse liver dataset, colored by cell type annotations predicted by
Symphony. (B) Spatial plot of MERFISH mouse kidney dataset, colored by cell
type annotations predicted by Symphony. (C) Confusion matrix of MERFISH cell
type annotations between manual method and Symphony predictions for mouse
liver. The rows for other endothelial cells and hepatocytes (“o-EC” and “o-hep”)
are blank because none of the manual annotations were in these groups.
Additionally, the row for bile duct epithelial cells (“BD-EC”) is noisy because none
of the scRNA-seq reference cells possessed this annotation. (D) Confusion
matrix of MERFISH cell type annotations between manual method and
Symphony predictions for mouse kidney.
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S6 Investigation of systematic differences between MERFISH and
scRNA-seq data

The discrepancies produced by both scANVI and Symphony integration for cell types such as
podocytes led us to investigate if the integration methods were at fault or if the issue lay within
the data itself. To do so, we strove to quantify the similarity in RNA count profiles between
different cell types to see if systematic differences between MERFISH and scRNA-seq were a
possible source for the integration errors.

We reasoned that perhaps MERFISH RNA count profiles for a certain cell type were more
similar to a different cell type in the scRNA-seq reference than for the same cell type. For
example, in our kidney data, both integration methods consistently misclassified podocytes as
endothelial cells (Fig 7F and Sl Fig 7D). To quantify the source of this error, we used the cosine
similarity to compare the similarity of MERFISH podocytes with scRNA-seq podocytes and
endothelial cells. Specifically, for each MERFISH podocyte we calculated a mean cosine
similarity value, defined thusly. For a given cell type pair (e.g. MERFISH podocyte vs.
scRNA-seq podocyte), we calculated the cosine similarity between each individual pair of
MERFISH/scRNA-seq cells. We then averaged across scRNA-seq cells, generating a mean
cosine similarity value for each MERFISH cell and a distribution of mean cosine similarity values
across MERFISH cells.

S| Figure 7A shows the distribution of mean cosine similarity values between MERFISH kidney
podocytes and scRNA-seq kidney podocytes (blue) or scRNA-seq kidney endothelial cells
(orange), calculated by using the cosine similarity across all 307 genes in the panel.
Surprisingly, the distribution for kidney endothelial cells possesses larger values than for
podocytes, suggesting that MERFISH podocytes may actually have more similar gene
expression with scRNA-seq kidney endothelial cells. Even if we compute the mean cosine
similarity using just the podocyte marker genes in the panel (Wt1, Actn4, Synpo, Dag1, Foxc1,
Podxl, Mme), the MERFISH podocytes appear just as similar to scRNA-seq kidney endothelial
cells as to scRNA-seq podocytes (S| Fig 7C). We note that this may stem from technical errors
such as mis-segmentation of MERFISH podocytes or inaccurate annotation in the reference;
nevertheless, we conclude that this is the main reason for the inaccurate cell type annotation
prediction from integration.

As a control, we then compared mean cosine similarity values between MERFISH liver
periportal hepatocytes and scRNA-seq liver periportal hepatocytes or pericentral hepatocytes
(Sl Fig 7B). These were cells that were very accurately classified with the integration methods
(Fig 6F and Sl Fig 6C).
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S| Figure 7 - Investigation of systematic differences in RNA expression profiles
between MERFISH and scRNA-seq. (A) Distribution of mean cosine similarity
values using the full 307-gene panel between manually annotated MERFISH
kidney podocytes and cells in the scRNA-seq kidney reference labeled as
podocyte (blue) or endothelial cell (orange). (B) Distribution of mean cosine
similarity values using the full 307-gene panel between manually annotated
MERFISH liver periportal hepatocytes and cells in the scRNA-seq liver reference
labeled as periportal hepatocyte (blue) or pericentral hepatocyte (orange). (C)
Same as (A) but only using seven podocyte marker genes (Wt1, Actn4, Synpo,
Dag1, Foxc1, Podxl, Mme). (D) Same as (B) but only using four periportal
hepatocyte marker genes (Cyp2f2, Pck1, Hal, Cdh1). Mean cosine similarity
values in A-D were obtained by calculating the cosine similarity between each
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individual cell in a pair (e.g. MERFISH podocyte vs. scRNA-seq podocyte) and
then averaging across the scRNA-seq cells, yielding a mean cosine similarity
value for each MERFISH cell and a distribution of mean cosine similarity values

across MERFISH cells.
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