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1 Abstract

The recent explosion of single cell transcriptomics has led to the challenge of
developing data analysis pipelines that are both fully reproducible and mod-

ular while allowing interoperability across multiple systems and institutions.

We present scAN10, a processing pipeline of 10X single cell RNAseq data,
that inherits the ability to be executed on most computational infrastruc-
tures, thanks to Nextflow DSL2. The modular nature of Nextflow pipelines

allows to easily integrate and assess different blocks for a given analysis step.

We illustrate the benefit of using scAN10 by showing its ability to assess
the impact of the mapping step on the resulting output using a clinical 10X

scRNAseq analysis of a human pituitary gonadotroph tumour.
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» 2 Introduction

s The recent explosion of single cell transcriptomics, mostly through scR-
s NAseq, has led to the challenge of developing data analysis pipelines that are
32 both fully reproducible and modular while allowing interoperability across

;3 multiple systems and institutions.

s The initial step in scRNAseq data analysis consist in generating a count
35 matrix from fastq sequence files. This step is often overlooked (see e.g. [1]),
s although it can represent a very critical step (see e.g. [2]). Therefore one
s needs freely available analysis pipeline that could allow to verify the impact
s of some early analysis step easily, such as the nature of the GTF file used [3]
3 or downstream steps such as the normalization method on the generation of

s the count matrix.

2 The most widely used existing solutions like the Seurat suite [4] have been
2 designed to be as much user-friendly as possible and therefore does not offer

i3 easy solution for incorporating alternative low-level analysis steps.

s This is why in the present paper we approached this challenge by designing
55 scAN10, a processing pipeline of 10X single cell RNAseq data, that inherits
s the ability to be executed on most computational infrastructures, thanks to
s Nextflow DSL2. The modular nature of Nextflow pipelines allows to easily
s integrate and assess different bricks blocks for a given analysis step. scAN10

w0 is available as an open source Gitlab repository. It takes raw paired-end
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fastq files and genomic files (FASTA and GTF annotation files) as input,

and outputs a clustered dimensionally-reduced version of the dataset.

We illustrate the benefit of using scAN10 by showing its ability to assess the
impact of the mapping step on the resulting UMAP projection as well as on
some specific gene identification using a clinical 10X scRNA-seq analysis of

one human pituitary gonadotroph tumour.

3 Results

3.1 Pipeline description

Figure 1 describes the overall processing of the sequencing files with the

ordering of all steps described in section 5.

3.2 Raw dataset

To showcase the applicability of scAN10 we processed a clinical dataset from
a human pituitary gonadotroph tumour acquired from one male patient and
sequenced by 10Xgenomics. The dataset was processed using scAN10 with

the following parameters :
e max feature RNA = 7000
e max_percent_mito= 25

The clustering (resolution =0.7) and UMAP embedding were done based on
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¢ the ten first principal components of the PCA, as determined by the rule of

6o thumb heuristic and the broken stick method [5].

o 3.3 Version annotation effect

n We first assess the impact of the Ensembl version of the GTF file on the final
72 output. GTF files and their corresponding FASTA files were downloaded via
73 £tp protocol using the —-version parameter (see section 5). We set Cellranger
7 as the default mapper and then assessed the impact of 4 different annotation
75 releases (93, 98, 103 and 106) on the number of detected genes (figure 2A)

76 and on the count per genes as assessed with the CHGA gene. (Figure 2B).

77 The overall impact of the GTF version seems relatively modest, especially in
7s regard to the number of counts. The 106 version allowed to identify a larger

7o number of genes and was kept for the next step.

o 3.4 Comparing filtered with unfiltered annotations

s We then assessed the impact of filtrating the GTF file with the mkgtf Cell-
s2 ranger function. This filtration step is intended to remove unwanted genes
g3 classified by biotype. We used the default values of that function that re-

s Moves biotypes such as gene_biotype:pseudogene from the GTF annotation

85 ﬁle.

s L'his step removes some ambiguity between reads location by allowing reads

&7 that would be flagged as multi mapped reads to be included in the quantifi-
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gs catlon.

g0 We observed that this filtration step indeed had a major impact on both the

o number of genes detected (Figure 3A) but also on gene counts (Figure 3B).

a2 3.5 Cellranger versus Kallisto-bustools

o2 We then compared the impact of two popular alignment tools for single-cell
i3 RNA sequencing (Kallisto-bustools and Cellranger) using the 10x Genomics

w pre-built Cellranger reference packages version 2020-A for human.

s As seen in Figure 4A, 81 % of the genes were identified by both algorithms

s whereas Kallisto-bustools identified more genes than Cellranger.

o7 'The impact of the mapper on counts for specific genes seemed to be negligible
e (Figure 4B). Therefore this tends to favor Kallisto-bustools for downstream

o analyses.

w0 We finally assessed the impact of the mapper choice on the final clustering
1 step. As seen in Figure 5, the impact was modest but apparent (e.g. cluster

102 number 1 in the CR dataset was split in two in the KB dataset).

« 4 Discussion

s We described scAN10, a Nextflow based processing pipeline of 10X single cell
s RNAseq data.
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ws By applying scAN10 to a clinical dataset we showed that the impact of the
107 annotation version was relatively modest although using the latest Ensembl

s release (106) of the GTF and FASTA allows to identify a larger number of genes.

1w As expected, filtrating the GTF files by removing unwanted genes based on
o 10X reference packages generation had a major impact both on the number

m  of genes but also on gene counts.

n2  However, recent study observed differences in the mitochondrial content of
us the resulting cells when comparing a filtered annotation to the full annota-
us  tion. Therefore removing processed pseudogene might lead to an enrichment

us  of the mitochondrial content [6].

us  Futhermore when using Kallisto-bustools instead of Cellranger the impact
7 of the count numbers for specific genes seemed to be small but meaningful.
us Kallisto-bustools produced higher total number of genes detected which 5169

o unique genes as compared to Cellranger.

20 The final combination that was found to be the most effective for our dataset
1 therefore was using Kallisto-bustools together with the filtered version of
122 the 106 GTF. There is no reason to believe that such parameters might be
123 universally applicable, and we therefore recommend the use of scAN10 so
124 assess such an impact on any other dataset before proceeding with higher

125 level analysis.

s With Nextflow each step is encapsulated in independent blocks called pro-
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127 cesses. Each process communicates via channels. The orchestration of the
s workflow with DSL2 syntax allows to easily modify the pipeline, by adding
129 new processes modules. In the future we expect to include some normaliza-

1o tion procedures to the pipeline:

131 e The basic global-scaling normalization method from Seurat that di-
132 vides the feature expression for each cell by the total expression and
133 multiplies this by a scale factor and log-transforms the result.[7]

134 e Sctransform which uses regularized negative binomial regression and
135 computes Pearson residuals that correspond to the normalized expres-
136 sion levels for each transcript.[§]

137 e Scran which uses pooling-based size factor estimation.[9]

s The use of scAN10 should be made straightforward to assess a combination of

139 low-level steps together with the normalization step on the resulting output.

1o One major limitation using Nextflow is a lack of interactivity during pipeline
w running. Indeed, when Nextflow pipelines run, although it can output files,
12 there is no interactive dialogue that could allow the user to modify parameters
13 during the run. All the pipelines parameter need to be defined and set in the

s launching command.

us  We finally believe that scAN10 will be a useful tool for the growing community

us of 10X scRNAseq aficionados.
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« 5 Material and methods

w 5.1 Study ethic approval

o This work is part of the SPACE-PIT study (MR004 n21-5439). It was ap-
5o proved by the Hospices Civils de Lyon ethical committee and registered at
151 the “Centre National Information et Liberté” ( CNIL.fr ) under the reference

12 20_098. Informed consent was obtained from the patient.

55 5.2  Single cells preparation and sequencing

1ss A tumor fragment from a gonadotroph surgically-resected adenoma was col-
155 lected in Dulbecco’s Modified Eagle Medium (DMEM, cat 41965062; Life
155 Technologies). Single-cell suspension of the resected fragment was obtained
157 through mechanical enzymatic dissociation (Collagenase P, cat 11213865001)
158 then passed through a 100 pm mesh-strainer (#732-2759, VWR interna-

159 tional) .

1o Red blood cells were eliminated using a 10-minute incubation with a com-
11 mercial red blood cell lysis buffer (eBioscience, cat #00-4300-54). The whole
12 process was achieved within the 2 hours following the surgical resection,
163 cell viability was evaluated to reach at least 70 percent prior encapsula-
14 tion. Generation of the library was done using a Chromium controller from
165 10xGenomics. The entire procedure was achieved as recommended by the

166 manufacturer’s for the v3 reagent kit (10xGenomics). Single cell suspension
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17 was loaded onto a Chromium Single Cell A Chip, aiming for 5,000 cells. The
s cDNA was amplified after a reverse transcription step prior a SPRIselect
160 (Beckman Coulter), a cleaning, a quantification and an enzymatic fragmen-

o tation prior to the library sequencing on a NextSeq500 system (Illumina).

n 5.3 Implementation

12 The scAN10 pipeline was powered and supported by the reactive workflow
173 manager Nextflow [10]. In addition, the pipeline was coded with the DSL2
s syntax extension. Nextflow simplifies the writing of computational pipelines
s by making them portable, scalable,parallelizable and ensuring a high level of
e reproducibility. Nextflow provides native support for container technologies
w7 such as Docker or Singularity. Each process in the pipeline will be run in
s a container. A reproducible container environment is built for each process
o from Docker images stored on the DockerHub. The analyses can be run
1o on the user’s preferred computing platform. Using the configuration file and
11 corresponding profile, the pipeline can be run on a local computer via Docker
12 or Singularity, as well as on a high-performance computing (HPC) cluster
183 or in cloud-based environments. Nextflow includes a cache-based pipeline

18s resume feature, no matter what the reason was for its stopping.

10
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s 9.4  Input

185 SCAN10 takes three mandatory parameters as input: the paired-end FASTQ R1
157 and R2 from 10X Chromium sequencing and two genomics files (one FASTA

188 an one GTF).

189 FASTQ files store the nucleotide sequence and the associated sequencing qual-
1o ity scores. Those files must be provided through the --fastq pipeline pa-
1 rameter and needs to be compressed in gzip format. Reads are sequenced
12 in paired-ends thus 2 reads will be produced for each sequencing lane. In
13 the case a sample has been sequenced on several lanes, all reads R1 can be
104 concatenate together and all reads R2 together. The mapping step require

105 the input of two additional files corresponding to the species of interest:

196 e A FASTA genomic file which stores the raw genome sequence.
197 e A Gene transfer format (GTF) file which stores genome annotation in-
198 cluding gene positions.

199

200 One should note that for human datasets, FASTA and GTF files can be down-
20 loaded automatically by specifying a version number as an entry parameter

200 (—-version) available on the ENSEMBL database.

11
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xs 5.5 Preprocessing & Mapping

204 First, FASTQ files are processed and trimmed by using Fastp v0.20.1 |, an
205 ultra-fast FASTQ preprocessor with useful quality control and data-filtering
206 features [11]. Reads with phred quality >30 (-q 30) is qualified to the quan-
207 tification step. Length filtering is disabled (-L) while adapter sequence auto-

208 detection is enabled (--detect_adapter_for_pe).

200 To reduce overlapping annotation, we recommend and provide an optional
20 parameter ——filtergtf allow the GTF filtration with Cellranger’s mkgtf function
o based on the same biotype attribute used to generate the GTF file for the hu-
22 man Cell Ranger reference package. (see : https://support.10xgenomics.

213 com/single-cell-gene-expression/software/release-notes/build )

2 The processed files are then mapped of a reference genome to quantify gene
215 expression. In scAN10, the user can specify two different mappers (see below):

26 Kallisto-bustools v0.26.0 [12] or Cellranger v5.0.1 [13].

217 e Kallisto-bustools is used thought the Python wrapper : kb_python.

218 Starting with FASTA and GTF files an index of the reference can be built
210 as a colored De Bruij graph with Kallisto via kb ref. with default pa-
220 rameter. Once an index has been generated or downloaded, kb count
221 uses Kallisto to pseudoalign reads and bustools to quantify the data.
22 e Cellranger created and prepared reference package with Cellranger’s
223 mkref function. The alignment was run via Cellranger’s count with

12
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224 default parameters as described on 10xgenomics.com.

» 5.6 Quality control

»s Empty Droplets With Droplet-based data most of the barcodes in the
27 matrix correspond to empty droplets (eg barcode with sum expression over
2 gene of 0). While Cellranger takes care of the empty droplet filtering, empty
29 droplets from Kallisto-bustools gene expression matrix need to be removed.
20 The Kallisto-bustools outputs were imported into R with customed R func-
2 tion. The UMI total counts were ranked using DropletUtils: :barcodeRanks
22 function from DropletUtils v1.14.2 . Empty droplets were removed by se-
21 lecting the inflection point value on the resulting knee plot (lower cutoff =
24 10). The Cellranger matrix is imported from the standard filtered barcode
235 output. After importation, either gene expression matrices were converted as
26 Seurat object (Seurat v4.0.4) with Seurat: :CreateSeuratObject function,

27 including features detected in at least 3 cells (min.cells =3).

23 Low quality cells After removing empty droplets the pipeline computes 3
29 (QC metrics per sample: the number of unique features per cells, the number
20 of UMIs by cells and the percent of mitochondrial counts by cells. These QC

21 metrics are then used to discard three main types of low quality cells [14] :

212 1. Cells in apoptosis may exhibit high % mitochondrial and low number

213 of UMIs per cells

13
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204 2. Cells that failed during library preparation exhibit low number of unique

25 gene counts and low number of UMIs per cells

246 3. The pipeline uses the R package DoubletFinder v2.0.3 to detect and

247 remove the potential doublets from the dataset. See [15] and [16].

s Thresolding Default thresholding parameters used by the scAN10 pipeline

9 are:
250 1. min_feature RNA=500

251 2. min_ncount_RNA=0

252 3. max_percent_mito="adaptive”
253 4. max_feature RNA="adaptive”

254 5. max_ncount_RNA="adaptive”

To define maximum values of threshold scAN10 allows to use an adaptive
filter defined by a certain number of median absolute deviations (MADs)

away from the median [17]:

median + 3 * mad

»s INon-expressed genes Genes with sum count along cells equal to 0 (eg

256 not-expressed genes) are removed.

14
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» 9.7 Normalization

s To normalize the filtered gene expression matrix, the user can use Sanity,
0 a Bayesian algorithm to infer gene-expression state [18]. We are fully aware
x0 that the normalization of single cell transcriptomic data is a research field on
1 its own (see e.g. [2] and citations therein), and we expect this block in the
%2 pipeline to be susceptible to be modified in future versions of the pipeline.

3 'The modularity of the Nextflow syntax makes it ideal for such additions.

x 9.8 Clustering and two-dimensional visualization

»s A final step consists in variable features selection with Seurat: :FindVariableFeatures
266 using the vst method (selection.method = ”vst”) and selecting the 2000 first
267 highly variable genes (nfeatures = 2000), followed by a first linear dimension-
2 ality reduction using PCA (Seurat::RunPCA with default parameter). The
%0 M first axis of the PCA are then used for the nearest-neighbor graph con-

20 struction with Seurat: :FindNeighbors function (dims=1:M).

on Cluster determination was performed using the Louvain algorithm [19] run
o with Seurat::FindClusters function (algorithm = 1). The resolution pa-
o3 rameter set by default to 0.7 is use for increasing (values >1) or decreasing
za (values <1) the number of clusters obtained. The quality of the clustering
zs  was assessed using the Silhouette score [20]. Finally, non-linear dimensional
zs representation (using either t-SNE [21] or UMAP [22]) is then performed

o7 using Seurat: :RunTSNE or Seurat: : RunUMAP with default parameters using

15
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s the same number of dimensions than the nearest-neighbor graph building.

a9 The resolution parameters used for clustering and the number of principal
20 components kept for both clustering and dimension reduction embeddings
251 can be respectively modified by the user at the start of the pipeline by the

22 —-resolution_clustering and the —--principal_component parameters.

23 Alternatively this last step can be skipped allowing the user to use their own
284 clustering method. Similarly, to avoid the introduction of layers of complexity
s and simplify the pipeline usage, the automatic annotation of clusters was not

286 introduced. Users can annotate their dataset manually.

w 5.9 Output

s Exhaustive list of processes outputs is available on the Readme of the gitlab

260 repository (section 6).

0 O Availability

21 scAN10 is freely available at : https://gitbio.ens-1lyon.fr/LBMC/sbdm/

202 scanlO
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10 Figures caption

Figure 1 : A metromap view of the scAN10 pipeline.
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wo  Figure 2 : A. Number of detected genes when using different versions of the
w1 GTF file. B. Violin plot representation of the impact of the GTF version on
w2 the UMI counts for the CHGA gene.

w3 Figure 3: A. Number of detected genes when using either an unfiltered (106)
a0 of filtered (filterl06) version of the GTF file. B. Violin plot representation of

ws the filtration impact on the UMI counts for the CD68 gene.

ws Figure 4 : A. Number of detected genes when using either Cellranger (CR)
s or Kallisto-bustools (KB) as an alignment tool. B. Violin plot representation

ws on the UMI counts for two genes, CHGA and RBP4.

w0 Figure 5 : UMAP representation (A and B) and Silhouette scores (C and
a0 D) of the clusters obtained on data processed with CellRanger (A and C)
a or Kallisto-bustools (B and D). In E is shown an alluvial plot highlighting
a2 the conservation and differences in cluster composition depending upon the

a3 initial mapping method.
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