
SCAN10: A REPRODUCIBLE AND STANDARDIZED1

PIPELINE FOR PROCESSING 10X SINGLE CELL RNASEQ2

DATA3

Maxime Lepetit1, Mirela Diana Ilie2,3, Marie Chanal2, Gerald Raverot2,4,4

Philippe Bertolino2, Franck Picard1 and Olivier Gandrillon1,5,∗.5

1 - ENS de Lyon, CNRS UMR 5239, Laboratory of Biology and Modelling6

of the Cell, Lyon, France.7
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1 Abstract18

The recent explosion of single cell transcriptomics has led to the challenge of19

developing data analysis pipelines that are both fully reproducible and mod-20

ular while allowing interoperability across multiple systems and institutions.21

We present scAN10, a processing pipeline of 10X single cell RNAseq data,22

that inherits the ability to be executed on most computational infrastruc-23

tures, thanks to Nextflow DSL2. The modular nature of Nextflow pipelines24

allows to easily integrate and assess different blocks for a given analysis step.25

We illustrate the benefit of using scAN10 by showing its ability to assess26

the impact of the mapping step on the resulting output using a clinical 10X27

scRNAseq analysis of a human pituitary gonadotroph tumour.28
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2 Introduction29

The recent explosion of single cell transcriptomics, mostly through scR-30

NAseq, has led to the challenge of developing data analysis pipelines that are31

both fully reproducible and modular while allowing interoperability across32

multiple systems and institutions.33

The initial step in scRNAseq data analysis consist in generating a count34

matrix from fastq sequence files. This step is often overlooked (see e.g. [1]),35

although it can represent a very critical step (see e.g. [2]). Therefore one36

needs freely available analysis pipeline that could allow to verify the impact37

of some early analysis step easily, such as the nature of the GTF file used [3]38

or downstream steps such as the normalization method on the generation of39

the count matrix.40

The most widely used existing solutions like the Seurat suite [4] have been41

designed to be as much user-friendly as possible and therefore does not offer42

easy solution for incorporating alternative low-level analysis steps.43

This is why in the present paper we approached this challenge by designing44

scAN10, a processing pipeline of 10X single cell RNAseq data, that inherits45

the ability to be executed on most computational infrastructures, thanks to46

Nextflow DSL2. The modular nature of Nextflow pipelines allows to easily47

integrate and assess different bricks blocks for a given analysis step. scAN1048

is available as an open source Gitlab repository. It takes raw paired-end49
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fastq files and genomic files (FASTA and GTF annotation files) as input,50

and outputs a clustered dimensionally-reduced version of the dataset.51

We illustrate the benefit of using scAN10 by showing its ability to assess the52

impact of the mapping step on the resulting UMAP projection as well as on53

some specific gene identification using a clinical 10X scRNA-seq analysis of54

one human pituitary gonadotroph tumour.55

3 Results56

3.1 Pipeline description57

Figure 1 describes the overall processing of the sequencing files with the58

ordering of all steps described in section 5.59

3.2 Raw dataset60

To showcase the applicability of scAN10 we processed a clinical dataset from61

a human pituitary gonadotroph tumour acquired from one male patient and62

sequenced by 10Xgenomics. The dataset was processed using scAN10 with63

the following parameters :64

• max feature RNA = 700065

• max percent mito= 2566

The clustering (resolution =0.7) and UMAP embedding were done based on67
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the ten first principal components of the PCA, as determined by the rule of68

thumb heuristic and the broken stick method [5].69

3.3 Version annotation effect70

We first assess the impact of the Ensembl version of the GTF file on the final71

output. GTF files and their corresponding FASTA files were downloaded via72

ftp protocol using the --version parameter (see section 5). We set Cellranger73

as the default mapper and then assessed the impact of 4 different annotation74

releases (93, 98, 103 and 106) on the number of detected genes (figure 2A)75

and on the count per genes as assessed with the CHGA gene. (Figure 2B).76

The overall impact of the GTF version seems relatively modest, especially in77

regard to the number of counts. The 106 version allowed to identify a larger78

number of genes and was kept for the next step.79

3.4 Comparing filtered with unfiltered annotations80

We then assessed the impact of filtrating the GTF file with the mkgtf Cell-81

ranger function. This filtration step is intended to remove unwanted genes82

classified by biotype. We used the default values of that function that re-83

moves biotypes such as gene biotype:pseudogene from the GTF annotation84

file.85

This step removes some ambiguity between reads location by allowing reads86

that would be flagged as multi mapped reads to be included in the quantifi-87
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cation.88

We observed that this filtration step indeed had a major impact on both the89

number of genes detected (Figure 3A) but also on gene counts (Figure 3B).90

3.5 Cellranger versus Kallisto-bustools91

We then compared the impact of two popular alignment tools for single-cell92

RNA sequencing (Kallisto-bustools and Cellranger) using the 10x Genomics93

pre-built Cellranger reference packages version 2020-A for human.94

As seen in Figure 4A, 81 % of the genes were identified by both algorithms95

whereas Kallisto-bustools identified more genes than Cellranger.96

The impact of the mapper on counts for specific genes seemed to be negligible97

(Figure 4B). Therefore this tends to favor Kallisto-bustools for downstream98

analyses.99

We finally assessed the impact of the mapper choice on the final clustering100

step. As seen in Figure 5, the impact was modest but apparent (e.g. cluster101

number 1 in the CR dataset was split in two in the KB dataset).102

4 Discussion103

We described scAN10, a Nextflow based processing pipeline of 10X single cell104

RNAseq data.105

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.07.515546doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.07.515546
http://creativecommons.org/licenses/by-nc/4.0/


By applying scAN10 to a clinical dataset we showed that the impact of the106

annotation version was relatively modest although using the latest Ensembl107

release (106) of the GTF and FASTA allows to identify a larger number of genes.108

As expected, filtrating the GTF files by removing unwanted genes based on109

10X reference packages generation had a major impact both on the number110

of genes but also on gene counts.111

However, recent study observed differences in the mitochondrial content of112

the resulting cells when comparing a filtered annotation to the full annota-113

tion. Therefore removing processed pseudogene might lead to an enrichment114

of the mitochondrial content [6].115

Futhermore when using Kallisto-bustools instead of Cellranger the impact116

of the count numbers for specific genes seemed to be small but meaningful.117

Kallisto-bustools produced higher total number of genes detected which 5169118

unique genes as compared to Cellranger.119

The final combination that was found to be the most effective for our dataset120

therefore was using Kallisto-bustools together with the filtered version of121

the 106 GTF. There is no reason to believe that such parameters might be122

universally applicable, and we therefore recommend the use of scAN10 so123

assess such an impact on any other dataset before proceeding with higher124

level analysis.125

With Nextflow each step is encapsulated in independent blocks called pro-126
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cesses. Each process communicates via channels. The orchestration of the127

workflow with DSL2 syntax allows to easily modify the pipeline, by adding128

new processes modules. In the future we expect to include some normaliza-129

tion procedures to the pipeline:130

• The basic global-scaling normalization method from Seurat that di-131

vides the feature expression for each cell by the total expression and132

multiplies this by a scale factor and log-transforms the result.[7]133

• Sctransform which uses regularized negative binomial regression and134

computes Pearson residuals that correspond to the normalized expres-135

sion levels for each transcript.[8]136

• Scran which uses pooling-based size factor estimation.[9]137

The use of scAN10 should be made straightforward to assess a combination of138

low-level steps together with the normalization step on the resulting output.139

One major limitation using Nextflow is a lack of interactivity during pipeline140

running. Indeed, when Nextflow pipelines run, although it can output files,141

there is no interactive dialogue that could allow the user to modify parameters142

during the run. All the pipelines parameter need to be defined and set in the143

launching command.144

We finally believe that scAN10 will be a useful tool for the growing community145

of 10X scRNAseq aficionados.146
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5 Material and methods147

5.1 Study ethic approval148

This work is part of the SPACE-PIT study (MR004 n21-5439). It was ap-149

proved by the Hospices Civils de Lyon ethical committee and registered at150

the “Centre National Information et Liberté” ( CNIL.fr ) under the reference151

20 098. Informed consent was obtained from the patient.152

5.2 Single cells preparation and sequencing153

A tumor fragment from a gonadotroph surgically-resected adenoma was col-154

lected in Dulbecco’s Modified Eagle Medium (DMEM, cat 41965062; Life155

Technologies). Single-cell suspension of the resected fragment was obtained156

through mechanical enzymatic dissociation (Collagenase P, cat 11213865001)157

then passed through a 100 µm mesh-strainer (#732-2759, VWR interna-158

tional).159

Red blood cells were eliminated using a 10-minute incubation with a com-160

mercial red blood cell lysis buffer (eBioscience, cat #00-4300-54). The whole161

process was achieved within the 2 hours following the surgical resection,162

cell viability was evaluated to reach at least 70 percent prior encapsula-163

tion. Generation of the library was done using a Chromium controller from164

10xGenomics. The entire procedure was achieved as recommended by the165

manufacturer’s for the v3 reagent kit (10xGenomics). Single cell suspension166
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was loaded onto a Chromium Single Cell A Chip, aiming for 5,000 cells. The167

cDNA was amplified after a reverse transcription step prior a SPRIselect168

(Beckman Coulter), a cleaning, a quantification and an enzymatic fragmen-169

tation prior to the library sequencing on a NextSeq500 system (Illumina).170

5.3 Implementation171

The scAN10 pipeline was powered and supported by the reactive workflow172

manager Nextflow [10]. In addition, the pipeline was coded with the DSL2173

syntax extension. Nextflow simplifies the writing of computational pipelines174

by making them portable, scalable,parallelizable and ensuring a high level of175

reproducibility. Nextflow provides native support for container technologies176

such as Docker or Singularity. Each process in the pipeline will be run in177

a container. A reproducible container environment is built for each process178

from Docker images stored on the DockerHub. The analyses can be run179

on the user’s preferred computing platform. Using the configuration file and180

corresponding profile, the pipeline can be run on a local computer via Docker181

or Singularity, as well as on a high-performance computing (HPC) cluster182

or in cloud-based environments. Nextflow includes a cache-based pipeline183

resume feature, no matter what the reason was for its stopping.184
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5.4 Input185

scAN10 takes three mandatory parameters as input: the paired-end FASTQ R1186

and R2 from 10X Chromium sequencing and two genomics files (one FASTA187

an one GTF).188

FASTQ files store the nucleotide sequence and the associated sequencing qual-189

ity scores. Those files must be provided through the --fastq pipeline pa-190

rameter and needs to be compressed in gzip format. Reads are sequenced191

in paired-ends thus 2 reads will be produced for each sequencing lane. In192

the case a sample has been sequenced on several lanes, all reads R1 can be193

concatenate together and all reads R2 together. The mapping step require194

the input of two additional files corresponding to the species of interest:195

• A FASTA genomic file which stores the raw genome sequence.196

• A Gene transfer format (GTF) file which stores genome annotation in-197

cluding gene positions.198

199

One should note that for human datasets, FASTA and GTF files can be down-200

loaded automatically by specifying a version number as an entry parameter201

(--version) available on the ENSEMBL database.202
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5.5 Preprocessing & Mapping203

First, FASTQ files are processed and trimmed by using Fastp v0.20.1 , an204

ultra-fast FASTQ preprocessor with useful quality control and data-filtering205

features [11]. Reads with phred quality ≥30 (-q 30) is qualified to the quan-206

tification step. Length filtering is disabled (-L) while adapter sequence auto-207

detection is enabled (--detect adapter for pe).208

To reduce overlapping annotation, we recommend and provide an optional209

parameter --filtergtf allow the GTF filtration with Cellranger’s mkgtf function210

based on the same biotype attribute used to generate the GTF file for the hu-211

man Cell Ranger reference package. (see : https://support.10xgenomics.212

com/single-cell-gene-expression/software/release-notes/build )213

The processed files are then mapped of a reference genome to quantify gene214

expression. In scAN10, the user can specify two different mappers (see below):215

Kallisto-bustools v0.26.0 [12] or Cellranger v5.0.1 [13].216

• Kallisto-bustools is used thought the Python wrapper : kb python.217

Starting with FASTA and GTF files an index of the reference can be built218

as a colored De Bruij graph with Kallisto via kb ref. with default pa-219

rameter. Once an index has been generated or downloaded, kb count220

uses Kallisto to pseudoalign reads and bustools to quantify the data.221

• Cellranger created and prepared reference package with Cellranger’s222

mkref function. The alignment was run via Cellranger’s count with223
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default parameters as described on 10xgenomics.com.224

5.6 Quality control225

Empty Droplets With Droplet-based data most of the barcodes in the226

matrix correspond to empty droplets (eg barcode with sum expression over227

gene of 0). While Cellranger takes care of the empty droplet filtering, empty228

droplets from Kallisto-bustools gene expression matrix need to be removed.229

The Kallisto-bustools outputs were imported into R with customed R func-230

tion. The UMI total counts were ranked using DropletUtils::barcodeRanks231

function from DropletUtils v1.14.2 . Empty droplets were removed by se-232

lecting the inflection point value on the resulting knee plot (lower cutoff =233

10). The Cellranger matrix is imported from the standard filtered barcode234

output. After importation, either gene expression matrices were converted as235

Seurat object (Seurat v4.0.4) with Seurat::CreateSeuratObject function,236

including features detected in at least 3 cells (min.cells =3).237

Low quality cells After removing empty droplets the pipeline computes 3238

QC metrics per sample: the number of unique features per cells, the number239

of UMIs by cells and the percent of mitochondrial counts by cells. These QC240

metrics are then used to discard three main types of low quality cells [14] :241

1. Cells in apoptosis may exhibit high % mitochondrial and low number242

of UMIs per cells243
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2. Cells that failed during library preparation exhibit low number of unique244

gene counts and low number of UMIs per cells245

3. The pipeline uses the R package DoubletFinder v2.0.3 to detect and246

remove the potential doublets from the dataset. See [15] and [16].247

Thresolding Default thresholding parameters used by the scAN10 pipeline248

are:249

1. min feature RNA=500250

2. min ncount RNA=0251

3. max percent mito=”adaptive”252

4. max feature RNA=”adaptive”253

5. max ncount RNA=”adaptive”254

To define maximum values of threshold scAN10 allows to use an adaptive

filter defined by a certain number of median absolute deviations (MADs)

away from the median [17]:

median+ 3 ∗mad

Non-expressed genes Genes with sum count along cells equal to 0 (eg255

not-expressed genes) are removed.256
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5.7 Normalization257

To normalize the filtered gene expression matrix, the user can use Sanity,258

a Bayesian algorithm to infer gene-expression state [18]. We are fully aware259

that the normalization of single cell transcriptomic data is a research field on260

its own (see e.g. [2] and citations therein), and we expect this block in the261

pipeline to be susceptible to be modified in future versions of the pipeline.262

The modularity of the Nextflow syntax makes it ideal for such additions.263

5.8 Clustering and two-dimensional visualization264

A final step consists in variable features selection with Seurat::FindVariableFeatures265

using the vst method (selection.method = ”vst”) and selecting the 2000 first266

highly variable genes (nfeatures = 2000), followed by a first linear dimension-267

ality reduction using PCA (Seurat::RunPCA with default parameter). The268

M first axis of the PCA are then used for the nearest-neighbor graph con-269

struction with Seurat::FindNeighbors function (dims=1:M).270

Cluster determination was performed using the Louvain algorithm [19] run271

with Seurat::FindClusters function (algorithm = 1). The resolution pa-272

rameter set by default to 0.7 is use for increasing (values >1) or decreasing273

(values <1) the number of clusters obtained. The quality of the clustering274

was assessed using the Silhouette score [20]. Finally, non-linear dimensional275

representation (using either t-SNE [21] or UMAP [22]) is then performed276

using Seurat::RunTSNE or Seurat::RunUMAP with default parameters using277
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the same number of dimensions than the nearest-neighbor graph building.278

The resolution parameters used for clustering and the number of principal279

components kept for both clustering and dimension reduction embeddings280

can be respectively modified by the user at the start of the pipeline by the281

--resolution clustering and the --principal component parameters.282

Alternatively this last step can be skipped allowing the user to use their own283

clustering method. Similarly, to avoid the introduction of layers of complexity284

and simplify the pipeline usage, the automatic annotation of clusters was not285

introduced. Users can annotate their dataset manually.286

5.9 Output287

Exhaustive list of processes outputs is available on the Readme of the gitlab288

repository (section 6).289

6 Availability290

scAN10 is freely available at : https://gitbio.ens-lyon.fr/LBMC/sbdm/291

scan10292
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10 Figures caption398

Figure 1 : A metromap view of the scAN10 pipeline.399
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Figure 2 : A. Number of detected genes when using different versions of the400

GTF file. B. Violin plot representation of the impact of the GTF version on401

the UMI counts for the CHGA gene.402

Figure 3 : A. Number of detected genes when using either an unfiltered (106)403

of filtered (filter106) version of the GTF file. B. Violin plot representation of404

the filtration impact on the UMI counts for the CD68 gene.405

Figure 4 : A. Number of detected genes when using either Cellranger (CR)406

or Kallisto-bustools (KB) as an alignment tool. B. Violin plot representation407

on the UMI counts for two genes, CHGA and RBP4.408

Figure 5 : UMAP representation (A and B) and Silhouette scores (C and409

D) of the clusters obtained on data processed with CellRanger (A and C)410

or Kallisto-bustools (B and D). In E is shown an alluvial plot highlighting411

the conservation and differences in cluster composition depending upon the412

initial mapping method.413
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