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Abstract

Short tandem repeats (STRs), genomic regions each consisting of a sequence of 1-6 base pairs
repeated in succession, represent one of the largest sources of human genetic variation.
However, many STR effects are not captured well by standard genome-wide association studies
(GWAS) or downstream analyses that are mostly based on single nucleotide polymorphisms
(SNPs). To study the involvement of STRs in complex traits, we imputed genotypes for 445,735
autosomal STRs into SNP data from 408,153 White British UK Biobank participants and tested
for association with 44 blood and serum biomarker phenotypes. We used two fine-mapping
methods, SuSIiE and FINEMAP, to identify 118 high-confidence STR-trait associations predicted
as causal variants under all fine-mapping settings tested. Using these results, we estimate that
STRs drive 5.2-9.7% of GWAS signals for these traits. Our high confidence STR-trait associations
implicate STRs in some of the strongest hits for multiple phenotypes, including a trinucleotide
STR in APOB associated with LDL cholesterol and a CGG repeat in the promoter of CBL
associated with multiple platelet traits. Replication analyses in additional population groups and
orthogonal expression data further support the role of a subset of the candidate STRs we identify.
Together, our study suggests that polymorphic tandem repeats make widespread contributions
to complex traits, provides a set of stringently selected candidate causal STRs, and demonstrates

the need to routinely consider a more complete view of human genetic variation in GWAS.
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Introduction

Genome-wide association studies (GWAS) have become an indispensable tool for identifying
which genes and non-coding regions in the genome influence complex human traits. While GWAS
routinely identify tens to hundreds of genomic regions associated with individual traits, biological
interpretation of GWAS results remains challenging'. Further, variants identified by GWAS still

only explain modest amounts of trait variability for most phenotypes?.

A major challenge is that typical GWAS pipelines only consider a subset of common genetic
variants. The majority of GWAS have been based on common single nucleotide polymorphisms
(SNPs) and short insertions or deletions (indels) either genotyped using microarrays or imputed
from population reference databases based on whole genome sequencing (WGS) data. However,
detailed follow-up of individual GWAS signals has often revealed complex variants that were
absent from the original analysis, such as repeats®® or structural variants®?®, to be the causal
drivers of those signals. Indeed, a recent study showed that polymorphic protein-coding variable
number tandem repeats (VNTRSs) are likely causal drivers of some of the strongest GWAS signals

identified to date for multiple traits®.

Short tandem repeats (STRs) are a type of complex variant that consist of repeat units between
1-6bp duplicated many times in succession. Hundreds of thousands of STRs occur in the human
genome®, each spanning from tens to thousands of base pairs. STRs undergo frequent mutations
resulting in gain or loss of repeat units'®, with per-locus mutation rates several orders of magnitude
higher than average rates for SNPs'" or indels'?. Large repeat expansions at STRs are known to
result in Mendelian diseases such as Huntington’s disease, muscular dystrophies, hereditary
ataxias and intellectual disorders'®"®. Further, recent evidence suggests that more modest but
highly prevalent variation at multiallelic non-coding STRs can also be functionally relevant. We

4,14 and

and others have found associations between STR length and both gene expression
splicing’'®. The impact of STRs on gene expression is hypothesized to be mediated by a variety
of mechanisms including modulation of nucleosome positioning"’, altered methylation', affecting
transcription factor recruitment* and impacting the formation of non-canonical DNA and RNA
secondary structures'®'®. Together, these suggest that STRs potentially play an important role in

shaping complex traits in humans.

Despite this potential, STRs are not well-captured by current GWAS. Because STRs are not

directly genotyped by microarrays and are challenging to analyze from WGS, STRs have been
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largely excluded from widely used reference haplotype panels?®®?" and downstream GWAS
analyses. While some STRs are in high linkage disequilibrium (LD) with nearby SNPs, many
highly multiallelic STRs can only be imperfectly tagged by individual common SNPs, which are
typically bi-allelic. Thus, underlying effects driven by variation in repeat length, especially at highly

polymorphic STRs, have likely not been fully captured.

Recent technological advances can now enable incorporation of STRs into GWAS. We and others
have created a variety of bioinformatic tools to genotype STRs directly from WGS by statistically
accounting for the noise inherent in STR sequencing®?’. We recently leveraged these tools to
develop a reference haplotype panel consisting of both SNP and STR genotypes that allows for
imputation of STRs from SNP genotype data?® in samples for which WGS is unavailable. We
found that all but the most highly polymorphic STRs are amenable to imputation in European
cohorts, with an average per-locus imputation concordance of 97% with genotypes obtained from
WGS.

Here, we leverage our SNP-STR reference haplotype panel to impute genome-wide STRs into
SNP array data from 408,153 White British individuals obtained from the UK Biobank (UKB) for
which deep phenotype information is available®. Whereas a recent publication studied the effects
of protein-coding VNTRs (118 total VNTRs with repeat units of 7+ base pairs; total length of up
to several kilobases) on complex traits®, our study focuses on a distinctset of repeats (namely
445,735 STRs with repeat units of 1bp to 6bp) which are mostly non-coding. We test for
association between imputed STR lengths and 19 blood cell count and 25 biomarker traits. These
traits provide multiple advantages: they are broadly and reliably measured, continuous, highly
polygenic and have variants with relatively large effect sizes, thus enabling well-powered

association testing.

We performed fine-mapping on these associations and estimate that STRs account for 5-10% of
signals identified by GWAS for the traits we studied. We observed that fine-mapping results are
more sensitive to data-filtering thresholds and meta-parameter choices than commonly
acknowledged and thus require careful interpretation. After restricting to the signals which were
consistently fine-mapped across settings, we identified 95 unique STRs strongly predicted to be
causal for at least one trait. We highlight multiple STRs in this set which we predict contribute to
some of the strongest hits for LDL cholesterol, platelet count, and other traits. Overall, our study
demonstrates the widespread role of polymorphic tandem repeats and the need to consider a

broad range of variant types in GWAS and downstream analyses such as fine-mapping.
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Results

Performing genome-wide STR association studies in 44 traits

We imputed genotypes for 445,735 autosomal STRs into phased SNP array data from 408,153
White British individuals from the UKB using Beagle®® in combination with our published
SNP+STR reference haplotype panel® (Methods; Fig. 1a; Supplementary Fig. 1; URLSs).
Compared to common SNPs which are typically bi-allelic, many of the STRs imputed from our
panel are highly multiallelic (Fig. 1b). We tested STRs for association with 44 quantitative blood
cell count and biomarker traits (Supplementary Table 1) for which phenotype information was
available for between 304,658-335,585 genetically unrelated subsets of individuals. To facilitate
this and other STR association studies, we developed associaTR (URLs), an open-source custom

software pipeline capable of testing for association between STR length and phenotype.

For each STR-trait pair, we used associaTR to test for a linear association between STR dosage
(the sum of the imputed allele length dosages of both chromosomes) and the measured trait value
(Fig. 1c-d). For comparison, we used plink®' to perform similar association tests using 70,698,786
SNP and short indel variants that were imputed into the same individuals. For all associations
(STR and SNP and indel), we included as covariates SNP genotype principal components, sex,
and age (Methods). Additional covariates were included on a per-trait basis (Supplementary
Table 1). We compared the output of our SNP analysis pipeline to previous results reported by

Pan-UKB?*? and found that our pipeline produced similar results (Supplementary Fig. 2).

We then compared signals identified by SNPs and indels to those identified by STRs. For each
trait we defined peaks as 500kb intervals centered on the lead genome-wide significant variant (a
SNP, indel or STR with p<5e-8) in that interval (Methods). We identified an average of 389 peaks
per trait, with blood cell count traits generally more polygenic than biomarkers (Fig. 1e). Of these
peaks, 65.8% contained both a significant STR and a significant SNP or indel, 32.5% contained
only significant SNPs or indels, and 1.7% contained only significant STRs. The majority of strong
peaks were identified by both STRs and SNPs and/or indels. No new strong peaks were identified
only by STRs (Fig. 1f), which is expected given that SNP and indel genotypes were used to
impute the STRs. Overall, p-values of the lead SNP or indel and lead STR were similar for most
peaks. Thus, we focused on fine-mapping to determine which variants might be causally driving

the identified signals.
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Figure 1: Genome-wide association tests identify STRs, SNPs and indels associated with blood and biomarker
traits in the UKB. (a) Schematic overview of this study. STRs are imputed into phased hard-called SNPs. GWAS
is performed on SNPs and STRs in parallel. Regions with significant signals are identified and then fine-mapped by
two independent methods each under multiple scenarios, resulting in candidate causal STRs. (b) Distribution of the
number of common alleles at each imputed STR. Common alleles are defined as alleles with estimated frequency
>1% (Methods). For clarity we omitted from this figure the 237 imputed STRs with only a single imputed allele with
frequency >1%. (c-d) Representative association results. Manhattan plots are shown for phenotypes (c) total bilirubin
(an example moderately polygenic trait) and (d) platelet count (an example highly polygenic trait). Large diamonds
represent the lead variants (pruned to include at most one lead variant per 10Mb for visualization). -log10 p-values are
truncated at 100. Blue=SNPs and indels; orange=STRs. (e) Summary of signals identified for each trait. Bars show
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the number of peaks per phenotype. Blue denotes peaks only containing genome-wide significant SNPs and indels,
purple denotes peaks containing both significant SNPs and indels and STRs. The number of peaks only containing
significant STRs is too small to be visible in this display. (f) Comparison between lead SNP and indel and STR p-
values at each peak. If there are no STRs in a peak, the y coordinate is set to zero (same for SNPs and indels). p-
values are capped at 1e-300, the maximum precision of our pipeline. The shade represents the number of peaks falling
at each position on the graph.

Fine-mapping suggests 5-10% of significant signals are driven by STRs

We applied statistical fine-mapping to identify candidate causal variants that may be driving the
GWAS signals detected above. We used two fine-mapping methods: SuSiE*® and FINEMAP3*,
These methods differ in their modeling assumptions and thus provide partially orthogonal
predictions. For each trait we divided its genome-wide significant variants (SNPs, indels and
STRs) and nearby variants into regions of at least 500kb (Methods). This resulted in 14,494 fine-
mapping trait-regions (Supplementary Table 2), with some trait-regions containing multiple
nearby peaks. To compare outputs between fine-mappers in downstream analyses, we defined
the causal probability (CP) of each variant to be a number between 0 and 1 that indicates the
variant’s chance of causality. For FINEMAP we defined a variant's CP to be the FINEMAP
posterior inclusion probability (PIP) calculated for that variant. For SuSIiE we defined a variant’s
CP to be the maximal SuSiE alpha value for that variant across pure credible sets in the region
(Supplementary Figs. 3-4). We explain the rationale behind this choice in Supplementary Note
1.

We used two approaches to study the contribution of STRs vs. SNPs and indels to fine-mapped
signals. First, we focused on the genome-wide significant variants (STR, SNP, or indel) with CP
> 0.8. (These accounted for a minority of the 21,030 total signals detected by SuSiE). SuSIiE
identified 4,490 such variants and FINEMAP identified 6,240. Of these, 7.4% (range 1.3-13.0%
across traits; SuSIE) and 9.7% (range 1.2-14.9%; FINEMAP) are STRs (Supplementary Table
3). Among the subset of variants identified by both methods (4,028), 5.6% (range 0.9-12.8%) are
STRs. Second, we considered the sum of CPs from all genome-wide significant variants, thereby
taking into account the many signals which were not resolved to a single variant. STRs make up
5.2% (range 1.1-6.8%) of the total SUSIE CP sum and 8.3% (range 3.1%-10.2%) of the total
FINEMAP CP sum. A potential limitation of this second metric is that variants with small CPs (CP
< 0.1) represent a large fraction (29.3% for SuSIiE, 27.7% for FINEMAP) of these totals
(Supplementary Fig. 5). Additionally, our results below suggest that a sizable subset of variant
CPs are unstable or discordant between fine-mappers, particularly for STRs (Supplementary

Notes 2-3), impacting the totals in both metrics. Nevertheless, these results above suggest that


https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502370; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

between 5.2-9.7% of genome-wide significant signals can be explained by an STR, regardless of

the fine-mapping method or metric used.

We next evaluated the robustness of our fine-mapping results. While SuSiE and FINEMAP tended
to output similar results, they assigned highly discordant CPs to a subset of variants
(Supplementary Note 2; Supplementary Figs. 6-8). Therefore, we performed additional
analyses to identify a high-confidence set of causal STR candidates. We first conservatively
restricted to the 177 candidate STRs with association p-values < 1e-10 and with CP = 0.8 in both
FINEMAP and SuSiE. We then reran SuSiE and FINEMAP under a range of alternative settings,
such as using best-guess STR genotypes instead of dosages and varying the prior distribution of
effect sizes. These and other alternative settings are described in the Methods. The different
settings we evaluated tended to produce concordant results, but again, for a subset of STRs, we
observed highly inconsistent CPs (Supplementary Figs. 9-12). These discrepancies, which are
discussed in detail in Supplementary Note 3, suggest that fine-mapping results can in some
cases be highly sensitive to input filtering, model settings and imputation quality. Thus, we further
restricted to those STR-trait associations which maintained CP = 0.8 across a range of alternative
fine-mapping conditions (Methods; Fig. 2; Supplementary Table 4). We refer to these below as
confidently fine-mapped STR associations. Lastly, we added an STR in the APOB gene to this
set as we noticed this variant only failed to meet the above criteria because it was simultaneously
represented in both our STR reference panel and in the SNP and indel set generated by the UKB
team (Supplementary Note 4). This left us with 118 confidently fine-mapped STR-phenotype

associations corresponding to 95 distinct STRs.

Next, we evaluated our fine-mapping results by measuring their replication rates in populations
besides White British individuals, with the expectation that causal associations will replicate at
higher frequencies in other populations than non-causal associations due to having common
biological functionality. The UKB includes genetically unrelated, self-identified groups of 7,562
Black, 7,397 South Asian, 1,525 Chinese, 11,978 Irish and 15,838 Other White participants
(Methods). For each of those five groups we performed association testing for each STR against
each trait (Supplementary Table 5). As expected, signals replicate at a higher rate in groups
most closely related to our discovery cohort (i.e. Irish and Other White). Encouragingly, fine-
mapped associations replicate at higher rates than non-fine-mapped associations in the Black,
South Asian, and Chinese populations, even after stratifying by the discovery p-value (Fig. 3,
Supplementary Fig. 13). To quantitatively measure this trend, for each population we fit a logistic

regression model using whether signals replicated in that population as the outcome, the fine-
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mapping status of those associations as the independent variable, and their -logio(p-value) in the
discovery cohort as a covariate (Supplementary Table 6). This analysis further supports the
conclusion that fine-mapped associations replicate at higher rates. Additionally, the model
consistently predicts that confidently fine-mapped STR associations replicate at higher rates than
STRs fine-mapped by either fine-mapper alone, although only a subset of those predictions

reached nominal significance, likely due to the small number of fine-mapped STR associations.

Next, we sought to characterize the set of confidently fine-mapped STRs. This set contains 62
poly-A repeats, 13 poly-AC, 5 poly-CCG, and 15 repeats with other units. Nine of these STRs
overlap coding or untranslated regions (UTRs) (Table 1; Supplementary Table 7). Compared to
all genome-wide significant STRs, confidently fine-mapped STRs were more likely to be exonic
trinucleotide STRs (two-sided two-sample test of difference between proportions p=5e-05). No
other annotation categories that we tested showed significant enrichment or depletion after
multiple hypothesis correction (Methods; Supplementary Fig. 14). Lastly, we observed that 17
of these confidently fine-mapped STRs are significant quantitative trait loci (QTLs) for the
expression of nearby genes in the Genotype-Tissue Expression (GTEx) dataset®
(Supplementary Tables 8-9; Methods). We note that both of these analyses were
underpowered, due to the low number of confidently fine-mapped STRs and the low sample sizes

for the most relevant tissue types (e.g. kidney, liver).
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STR coordinate Called . Association Association Gene
X Reference allele repeat Trait .
(hg19 chr:pos) unit P-value Z-score (annotation)
1:204527033 (TAA)o AAT platelet crit 5.76e-17 -8.37 MDM4 (3UTR)
CTG
(CAG)s(CGCAGGCAQG) (Poly- apolipoprotein APOB
2:21266752 1.37e-279 -35.76
[CGC(CAG)2].CGC Leucine) B (Coding)
mean platelet
2:106510441 (AC)sGTG(CA)10C(TA)7T AC 6.93e-29 -11.15 NCK2 (3'UTR)
volume
eosinophil
4.96e-58 +16.06
count BCL2L11
2:111878544 (CGC)(CGCTGC)2(CGC)15C CCG
eosinophil (5'UTR)
5.88e-75 +18.32
percent
2:204311891 T4CTsCT3CT1s T IGF-1 3.97e-11 -6.61 ABI2 (3UTR*)
mean sphered
6.88e-16 -8.07
cell volume
11:119077000 (CGG)1C CGG CBL (5UTR¥)
platelet count 3.77e-83 +19.32
platelet crit 6.07e-103 +21.55
mean sphered
3.07e-23 +9.93
cell volume
red blood cell
1.08e-13 -7.43
AGC count
(Poly- mean .
16:67229794 (CAG)13(CAA)(CAG)(TAA)(CAG)s . E2F4 (Coding)
Serine) corpuscular 2.83e-23 +9.94
haemoglobin
mean
corpuscular 9.27e-26 +10.49
volume
red blood cell
RHOT1
17:30469471 (CCG)1sCC CCG distribution 6.57e-13 +7.19
(5UTR)
width
mean platelet
4.30e-62 -16.63
volume
SLFN14 (3’
17:33871548 Ti7 A platelet
UTR)
distribution 1.18e-249 -33.78
width

Table 1: Confidently fine-mapped STRs are identified in coding regions and untranslated regions (UTRs).
Imputed alternate alleles and rsIDs are provided in Supplementary Table 7. Repeat units here are calculated as
described in the Methods, except that they are required to be on the strand in the direction of transcription of the
overlapping gene. Asterisks next to UTRs in the last column denote STRs which overlap UTRs of only noncanonical
transcript(s) from Ensembl release 106.
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Figure 2: STRs are confidently fine-mapped to causally impact many traits. (a) Overview of confidently fine-
mapped STRs. Only STRs with at least one confidently fine-mapped association are shown. Each triangle represents
an STR-trait association with association p-value < 1e-10. Black=confidently fine-mapped, red-brown=CP = 0.8 in either
initial FINEMAP or SuSiE run, light-tan=all other associations with p<1e-10. Triangle direction (up or down) indicates
the sign of the association between STR length and the trait. Triangle size scales with association p-value. Similar traits
are grouped on the x-axis by white and light-grey bands. STRs are grouped on the y-axis according to the traits they
were confidently fine-mapped to. STRs are labeled by the genes they reside in (protein coding genes preferred) or by
chromosomal location and the nearest gene for intergenic STRs. CCDC26 and TFDP2 each contain two confidently
fine-mapped STRs and appear twice. Light blue rows indicate (from left to right): whether each STR is associated with
expression of a nearby gene (adjusted p<0.05; Supplementary Table 8), replicates with the same direction of effect
in other populations (adjusted p<0.05; Methods), repeat unit, and the number of common alleles for each STR (as
defined in Fig. 1; see scale beneath).
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Figure 3: Concordance of White British STR effect directions in Black, South Asian and Chinese populations.
The y-axis gives the fraction of STR associations measured in the discovery cohort that have the same direction of
effect when measured in the replication population regardless of p-value. Brackets beneath the x-axis denote the
binning of discovery -logio(p-values). Brown=genome-wide significant associations (discovery p<5e-8),
orange=FINEMAP fine-mapped STR associations (discovery p<5e-8 and FINEMAP CP = 0.8), teal=SuSiE fine-mapped
STR associations (discovery p<5e-8 and SuSiE CP = 0.8) and purple=confidently fine-mapped STR associations.
Annotations above each bar indicate the number of STR-trait associations considered. We required confidently fine-
mapped STR associations to have p-value < 1e-10, thus they do not appear in the left-most bin. The trends in these
figures are somewhat sensitive to the choice of p-value bin boundaries so we additionally analyze this data using logistic
models (Supplementary Table 6).

Fine-mapped STRs capture known associations

We identified multiple confidently fine-mapped STRs that were previously demonstrated to have
functional roles, providing supporting evidence for the validity of our pipeline. For instance, our
fine-mapping predicts a protein-coding CTG repeat (Supplementary Table 7) to be the causal
variant for one of the strongest signals for LDL-cholesterol (LDL-C; two-sided association t-test
p-value = 2e-235) and apolipoprotein B (p=1e-279), which forms the backbone of LDL-C
lipoproteins®. This repeat is bi-allelic in the UKB cohort with an alternate allele corresponding to
deletion of three residues (Leu-Ala-Leu) in the signal peptide coded in the first exon of the
apolipoprotein B (APOB) gene®’. This deletion occurs in an imperfect region of the CTG repeat,
with sequence CTGGCGCTG. In agreement with previous studies®?, we found that the short
allele is associated with high levels of both analytes. This STR also obtains association p-values

< 0.05 with apolipoprotein B and LDL-C in each of the five other populations we considered.


https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502370; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

As another example, our confidently fine-mapped STR set implicates a multiallelic AC repeat
(Supplementary Table 7) 6bp downstream of exon 4 of SLC2A2 (also known as GLUT2, a gene
that is most highly expressed in liver) as causally impacting bilirubin levels (p=8e-18). The
potential link between GLUT2 and bilirubin is described in Supplementary Note 4. Previous
studies in HeLa and 293T cells showed that inclusion of exon 4 of SLC2A2 is repressed by the
binding of MRNA processing factor hnRNP L to this AC repeat*®*!, implicating this STR in SLC2A2
splicing. Notably, these studies did not investigate the impact of varying repeat copy number. We
examined this STR in GTEXx liver samples and did not find a significant linear association between
repeat count and the splicing of exon 4, though we did find evidence for association with the

splicing of exon 6 (Supplementary Fig. 15).
A trinucleotide repeat in CBL regulates platelet traits

Most of the confidently fine-mapped STR associations identified by our pipeline have, to our
knowledge, not been previously reported. For example, this set includes positive associations
between the length of a highly polymorphic CGG repeat in the promoter of the gene CBL (which
encodes an E3 ubiquitin ligase) and both platelet count (p=4e-83) and platelet crit (p=6e-103;
Supplementary Table 7; Fig. 4a-b; Supplementary Fig. 16). Compared to other types of STRs,
CG-rich repeats in promoter and & UTR regions have been strongly implicated in

transcriptomic*?4®

and epigenomic regulation**. This repeat is also confidently fine-mapped to an
association with mean sphered cell volume (p=7e-16; Supplementary Fig. 17), but this is
comparatively much weaker and we do not discuss it here. For both platelet crit and platelet count,
the two fine-mappers identify two signals in this region, one of which they both localize to this
STR. After conditioning on the lead variant from the other signal (rs2155380) the STR becomes
the lead variant in the region by a wide margin (Fig. 4c-d). Conditioning on both the lead variant
and the STR accounts for all the signal in the region (Fig. 4e). This supports the fine-mappers’
prediction that there is a second signal in this region which is driven by the STR. The association
between this STR’s length and platelet crit replicated with p < 0.05 in all of the non-Black
populations tested, and the association with platelet count replicated in three of those four
populations. While these associations did not replicate in the Black population, this STR has
shorter alleles in that population (Fig. 4a) and it appears that the relationship between allele length
and platelet count may only be present at intermediate allele lengths (Fig. 4b). Population-specific
distributions of allele lengths based on genotypes obtained directly from whole genome

sequencing in the 1000 Genomes Project?' (Methods) are highly similar to those obtained from


https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502370; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

imputed data in the UKB, suggesting imputed genotypes at this locus are accurate across

populations (Supplementary Fig. 18).

This STR contains a common imperfection (rs7108857, which changes the second CGG copy to
TGG). That variant is in weak LD with the length of the STR (r? ranging between 0.023 (White
British) and 0.175 (Chinese)) (Fig. 4a) and in strong LD with the lead variant of the other signal
in this region (rs2155380). While rs7108857 is more strongly associated with the platelet traits
than the STR’s length (platelet count p=9e-86, platelet crit p=4e-98), given the fine-mappers’
results that the STR length association is an independent signal, it is unsurprising that the STR-
length association remains after stratifying on the presence of this imperfection (Fig. 4f). This
suggests that imperfections and repeat lengths are different characteristics of repeats that may

have distinct associations.

While the alleles present in our reference panel at this STR all have between 5 and 31 CCG
repeat copies, much rarer large expansions of this repeat (>100 repeats) have been previously

45,46

implicated in Jacobsen Syndrome™*°, a disorder characterized in part by the deletion of CBL

which has been observed together with platelet abnormalities*’. Similarly, loss of function

t*®. These observations

mutations of CBL have been associated with increased platelet coun
directly implicate CBL as a negative regulator of platelet production. We found that increased
CCG length was negatively associated with CBL expression in three tissues in the GTEx cohort®®
(each with p-value < 0.05 after multiple hypothesis correction; Supplementary Table 8; Fig. 4g).
Intriguingly, this association replicated (p=0.007) in Europeans and was only modestly significant
in African (p=0.048) individuals in the Geuvadis cohort*® (Fig. 4h), where we observed that African
individuals have much higher overall CBL levels. This could explain why this STR’s associations
with platelet traits did not replicate in the Black population. Intriguingly, the association signals for
both the platelet traits and expression show similar non-linear patterns, with linear effects for
medium-sized repeats but with plateauing effects for the shortest and longest alleles. Overall, our
results support the hypothesis that longer CCG repeat alleles contribute to increased platelet
count in non-Black populations by decreasing CBL expression (Fig. 4i), matching the direction of

the gene-trait correlation observed previously*®.
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Figure 4: A highly polymorphic CGG repeat in the promoter of CBL influences platelet traits. (a) Distribution of
STR alleles across populations. The x-axis gives STR length (number of repeat units) and y-axis gives the population
frequency. The hatched portion of each bar corresponds to the alleles of that length that include a “TGG” imperfection
at the second repeat (rs7108857). Colors denote different UKB populations. Extreme allele lengths 6, 8, 26, 27, 29, 30,
31, 32 each have frequency less than 1% in all populations and have been omitted. (b) STR length vs. mean platelet
count. The mean ftrait value for each STR dosage (sum of allele lengths) was calculated across White British
participants, with each participant’s contribution weighted by that participant’s probability of having that dosage. 95%
confidence intervals were calculated similarly. Only dosages with a population frequency of 0.1% or greater are
displayed. Rounded population-wide counts are displayed for each dosage. (c-e) Association of variants at the CBL
locus with platelet crit. Association plots in the White British population are shown before conditioning (c), after
conditioning on rs2155380 (d), and after conditioning on both rs2155380 and STR length (e). Light blue=SNPs and
indels; orange=STRs. Red line=significance threshold, black circles=the (CGG), STR and rs2155380. (f) STR length
vs. mean platelet count conditioned on the TGG Imperfection rs7108857. Blue=individuals homozygous for no
imperfection (n=190,280); green=individual homozygous for the imperfection (n=26,824). Results are shown for platelet
crit, similar results were obtained for platelet count (not shown). Individuals are categorized as being homozygous
based on their most probable imputed genotype. 82% of individuals categorized as homozygous for the imperfect allele
and 99% of those categorized as homozygous for the reference allele have an imputation probability of = 95% for their
genotypes. For each category, only length dosages with a frequency of 0.1% or greater in that category are displayed.
(g-h) STR length vs. CBL expression. Associations are shown for Cultured Fibroblasts from GTEx (n=393) (g) and
LCLs from Geuavdis (n=447) (h). Orange=African, blue=European. Solid lines give median expression values for each
STR dosage with at least 5% frequency in each population group. (i) Proposed pathway for effect of STR length on
platelet traits. The arrow denotes a positive association, the capped lines denote negative associations. Interactions
are captioned by their information sources.
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Additional examples of confidently fine-mapped STR-trait associations

We observe another 5 UTR CCG repeat in BCL2L 11 (also known as BIM) that is confidently fine-
mapped to eosinophil percentage (p=6e-75) and eosinophil count (p=5e-58) (Supplementary
Table 7). This repeat is the most strongly associated variant in the region for both traits, and
conditioning on it accounts for the entire signal in this region (Supplementary Fig. 19a). Proteins
in the BCL-2 family are known to act as anti- or pro-apoptotic regulators. BIM in particular is
required in the tightly regulated lifespan of myeloid lineage cells, which include eosinophils. Loss
of repression of BCL2L11 was specifically shown to be associated with marked decline in
eosinophil counts®®, and increased BIM expression in mice has been shown to increase eosinophil
counts®"*2. Similar to the CGG repeat in CBL, this STR is highly polymorphic and only shows a
linear association with the trait across a subset of the range of possible allele lengths

(Supplementary Fig. 19b).

While exonic repeats are potentially easier to interpret, a majority of our confidently fine-mapped
STRs fall in intronic regions. We resolve one of the strongest signals for mean platelet volume
(p<1e-300) to a multiallelic poly-A STR in an intron of the gene TAOK1 (Supplemental Table 7;
Supplementary Fig. 20a). This association replicated in all examined populations except the
Black population. Furthermore, conditioning on the length of this STR demonstrates that it
explains the majority of the signal in this region (Supplementary Fig. 20b). The same STR is
also strongly associated with platelet count (p=2e-181), which reached a CP of 1 in 7 out of the 8
fine-mapping tests we ran and replicated in all examined populations except for the Black and

Chinese populations.

TAOKT is a protein kinase that plays a role in regulating microtubule dynamics® which is known
to be critical to platelet generation®. The STR is in an intron of the canonical TAOKT transcript
but lies immediately downstream of a non-protein coding transcript (ENST00000577583; a
retained intron) and is approximately 2.4kb upstream of a differentially spliced exon. The STR
also bears the hallmarks of a regulatory element: it is located in a DNase hypersensitivity cluster
and overlaps a transcription factor binding site for ESR1 (Methods). This location is suggestive
for the way that variation in the length of this STR could affect TAOK7 gene regulation, potentially
via impacting splicing or modulating enhancer activity. However, we could not test the impact of
this STR on TAOK1 regulation in GTEx as the STR was filtered due to low call rate (11%).
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In another confidently fine-mapped example we identify a previously unreported association
between a GTTT repeat in an intron of estrogen receptor beta (ESR2) (Supplementary Table 7;
Supplementary Note 4; Supplementary Fig. 21) and haemoglobin concentration (p=1.15e-24),
red blood cell count (p=3.21e-24) and haematocrit (p=1.00e-26), where additional repeat copies
correspond to lower measurements of all three traits. Despite the relatively weak discovery p-
value and differing allele distributions between the White British and Black populations
(Supplementary Fig. 21c¢), all three associations replicate in the Black population with p-values
< 0.05. The associations do not consistently replicate in the other four examined populations,
suggesting that the effect of this STR on red blood cell traits is potentially larger in the Black
population. Consistent with these associations, ESR2 has been implicated in the regulation of red
blood cell production®*%. We found a significant negative association between STR length and
ESR2 expression in two tissues in GTEx (each with p-value < 0.05 after multiple hypothesis
correction; Supplementary Table 8). While evidence suggests a link between ESR2 and red
blood cell production, the expected direction of effect is unclear given the highly tissue-specific
isoform usage and functions of this gene (Supplementary Note). Nevertheless, our results

support a role of this STR in red blood cell production through regulation of ESR2.

We observed many additional associations of interest amongst the confidently fine-mapped
STRs. For example, a highly polymorphic CCG repeat in the 5 UTR of RHOT1 is associated with
red blood cell distribution width (Supplementary Table 7). This repeat overlaps a CTCF binding
site, is located within a nucleosome depleted region of a H3K27ac peak in LCLs, and shows a
strong association with the expression of RHOT1 in these cells (p=2e-44 in Europeans, p=0.035
in Africans; Supplementary Fig. 22). We also find multiple AC repeats in our set that are
significantly associated with expression of nearby genes. This includes a polymorphic AC repeat
located in the 3’ UTR of NCK2 which is associated with platelet distribution width and mean
platelet volume (Supplementary Table 7). This repeat overlaps a PABPC1 binding site and has
a significant negative association with NCK2 expression in multiple GTEx tissues
(Supplementary Fig. 23; Supplementary Table 8). Finally, many STRs in our fine-mapped set
consist of poly-A repeats. While traditionally these have been among the most challenging regions
of the genome to genotype®’, many such STRs, including poly-A repeats in MYO9B, DENND4A,
and NRG4, show strong statistical evidence of causality and replicate across multiple population
groups (Fig. 2). Taken together, these loci exemplify the large number of potentially causal

variants that our list of confidently fine-mapped STRs provides to future studies.
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Discussion

In this study, we imputed 445,735 STRs into the genomes of 408,153 participants in the UK
Biobank and associated their lengths with 44 blood cell and biomarker traits. Using fine-mapping,
we estimate that STRs account for 5-10% of causal variants for these traits. We stringently filtered
the fine-mapping output to produce 118 confidently fine-mapped STR-trait associations with
strong evidence for causality across 95 distinct STRs. These associations include some of the
strongest signals for apolipoprotein B, mean platelet volume and mean corpuscular haemoglobin.
These confidently fine-mapped STRs replicated in the Black, South Asian and Chinese UKB
populations at higher rates than non-fine-mapped STRs (p<0.02 in each). A subset of these STRs
were associated with expression of nearby genes, providing evidence for their impact on

regulatory processes and explanations for their effects on the studied traits.

Broadly, our study highlights the importance of considering a more complete set of genetic
variants in complex trait analysis. Many variant types are often highly multiallelic and only
imperfectly tagged by individual common SNPs, including the STRs studied here but also
VNTRs?, copy number variants®, HLA types®®, and some structural variants®®. While these variants
are often excluded from analysis pipelines due to the technical challenges they pose, they likely
represent an important source of causal variants and heritability®®®" that has yet to be captured.
Further, we expect incorporation of this additional source of causal variants, which we observe
often exhibit population-specific allele distributions, will improve downstream applications such as
polygenic risk scores, particularly in constructing scores that are more applicable across diverse

populations.

While our results uncover many novel candidate causal STR variants, we do not believe these
findings to be exhaustive. Our fine-mapping procedure was exceptionally conservative and
excluded hundreds of STR-trait associations strongly predicted to be causal in some but not all
settings tested. Additionally, we focused only on a subset of autosomal STRs ascertained to be
polymorphic and amenable to imputation in European individuals?®. This excluded most long
repeats such as those implicated in pathogenic expansion disorders and likely excluded STR
alleles that are common only in non-European populations. Emerging whole genome sequencing

datasets from the UKB and biobanks spanning diverse populations®%%?

are beginning to enable
direct genotyping, rather than imputation, of STRs. This data is likely to dramatically improve the

ability to capture additional STRs, particularly in underserved populations.
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Methodological advances are also needed to support the study of STRs. Here we developed
associaTR, an open-source reproducible pipeline that enables future studies to conduct STR
association tests. However, we envision that integrating support for STR-length based tests and
other complex variant associations into widely used GWAS toolkits is required to enable routine
analysis of the full spectrum of human genetic variation. Further improvements to our association
testing models are also likely to reveal new insights. Adoption by linear-mixed model methods
would increase the power to detect length-based associations. Additionally, in this study we only
modeled linear associations between STR lengths and trait values. However, visualization of
many of the associations we identify, including those at CBL and BCL2L 11, suggests that linear
models account for only a subset of those associations and that many STR effects may be best
detected through non-linear models. We also only tested for associations with repeat length.
However, inspection of individual loci reveals that complex repeat structures are common (Table
1). Systematic evaluation of the potential for epistasis between repeat imperfections and STR
lengths, as well as between the lengths of neighboring repeats, would potentially enable better

understanding of the phenotypic impact of STRs.

Importantly, our results highlight current challenges in performing statistical fine-mapping. We
found that fine-mapping results were in some cases highly sensitive to choices of tool settings
and filtering thresholds, where in some settings a variant may be identified as highly likely to be
causal but identified as having no causal impact in others. This suggests results of statistical fine-
mapping should be interpreted with caution and evaluated for sensitivity to model choices, and

that further work is needed to make the process of fine-mapping more robust.

Although fine-mapping inconsistencies were identified for SNPs and indels as well as STRs, they
were most prevalent for STRs. While this may in part be due to issues with imputing STR
genotypes, more research is needed to further evaluate the performance of current fine-mapping
tools on regions containing STRs. Additionally, there is a need for fine-mapping tools that can
model effects of multiallelic variants. Existing fine-mapping frameworks in theory can accurately
model linear repeat-length associations, but we hypothesize that more detailed modeling of LD
between SNPs and individual STR alleles may enable more accurate model fitting procedures.
Similarly, during model fitting, existing tools often compare models which trade one causal variant
for another variant in close LD, but greater accuracy may be obtained by comparing models which
trade off a single, potentially causal, multiallelic variant for multiple simultaneously-causal biallelic

variants.
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Overall, our study provides a statistical framework for incorporating hundreds of thousands of
tandem repeat variants into GWAS studies, identifies dozens of novel candidate variants for future
mechanistic studies, and demonstrates that STRs likely make a widespread contribution to

complex traits.
Methods

Selection of UK Biobank participants

We downloaded the fam file and sample file for version 2 of the phased SNP array data (referred
to in the UKB documentation as the ‘haplotype’ dataset) using the ukbgene utility (ver Jan 28
2019 14:09:15 - using Glibc2.28(stable)) described in UKB Data Showcase Resource ID 664
(URLSs). The IDs from the sample file already excluded 968 individuals previously identified as
having excessive principal component-adjusted SNP array heterozygosity or excessive SNP
array missingness after call-level filtering®® indicating potential DNA contamination. We further
removed withdrawn participants, indicated by non-positive IDs in the sample file as well as by IDs
in email communications from the UKB access management team. After the additional filtering,

data for 487,279 individuals remained.

We downloaded the sample quality control (QC) file (described in the sample QC section of UKB
Data Showcase Resource ID 531 (URLs)) from the European Genome-Phenome Archive
(accession EGAF00001844707) using pyEGA3%. We subsetted the non-withdrawn individuals
above to the 408,870 (83.91%) participants identified as White-British by column
in.white.British.ancestry.subset of the sample QC file. This field was computed by the
UKB team to only include individuals whose self-reported ethnic background was White British
and whose genetic principal components were not outliers compared to the other individuals in
that group?. In concordance with previous analyses of this cohort?® we additionally removed data

for:

e 2 individuals with an excessive number of inferred relatives, removed due to plausible
SNP array contamination (participants listed in sample QC file column
excluded. from.kinship.inference that had not already been removed by the UKB

team prior to phasing)
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e 308 individuals whose self-reported sex did not match the genetically inferred sex,
removed due to concern for sample mislabeling (participants where sample QC file

columns Submitted.Gender and Inferred.Gender did not match)

e 407 additional individuals with putative sex chromosome aneuploidies removed as their
genetic signals might differ significantly from the rest of the population (listed in sample

QC file column putative.sex.chromosome.aneuploidy)

Following these additional filters the data for 408,153 individuals remained (99.82% of the White

British individuals considered above).
SNP and indel dataset preprocessing

We obtained both phased hard-called and imputed SNP and short indel genotypes made
available by the UKB.

Phased hard-called genotypes: We downloaded the bgen files containing the hard-called SNP
haplotypes (release version 2) and the corresponding sample and fam files using the ukbgene
utility (UKB Data Showcase Resource 664 (URLs)). These variants had been genotyped using
microarrays and phased using SHAPEIT3% with the 1000 genomes phase 3 reference panel®’.
Variants genotyped on the microarray were excluded from phasing and downstream analyses if
they failed QC on more than one microarray genotyping batch, had overall call-missingness rate
greater than 5% or had minor allele frequency less than 0.01%. Of the resulting 658,720 variants,
99.5% were single nucleotide variants, 0.2% were short indels (average length 1.9bps, maximal

length 26bps), and 0.2% were short deletions (average length 1.9bps, maximal length 29bps).

Imputed genotypes: We similarly downloaded imputed SNP data using the ukbgene utility
(release version 3). Variants had been imputed with IMPUTE4? using the Haplotype Reference
Consortium panel®, with additional variants from the UK10K® and 1000 Genomes phase 3’
reference panels. The resulting imputed variants contain 93,095,623 variants, consisting of 96.0%
single nucleotide variants, 1.3% short insertions (average length 2.5bps, maximum length
661bps), 2.6% short deletions (average length 3.1bps, maximum length 129bps). This set does

not include the 11 classic human leukocyte antigen alleles imputed separately.

We used bgen-reader®” 4.0.8 to access the downloaded bgen files in python. We used plink2®'
v2.00a3LM (build AVX2 Intel 28 Oct 2020) to convert bgen files from both hard-called and imputed


https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502370; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

SNPs to the plink2 format for downstream analyses. For hard-called genotypes, we used plink to
set the first allele to match the hg19 reference genome. Imputed genotypes already matched the
reference. Unless otherwise noted, our pipeline worked with imputed genotypes as non-reference

allele dosages, i.e. Pr(heterozygous) + 2 * Pr(homozygous alternate) for each individual.
STR imputation

We previously published a reference panel containing phased haplotypes of SNP variants
alongside 445,735 autosomal STR variants in 2,504 individuals from the 1000 Genomes
Project?"?® (URLs). This panel focuses on STRs ascertained to be highly polymorphic and well-
imputed in European individuals. Notably, this excludes many STRs known to be implicated in
repeat expansion diseases, STRs that are primarily polymorphic only in non-European
populations, or STRs that are too mutable to be in strong linkage disequilibrium (LD) with nearby
SNPs.

To select shared variants for imputation, we note that 641,582 (97.4%) of variants hard-called
and phased in the UKB participants were present in our SNP-STR reference panel. As a quality
control step, we filtered variants that had highly discordant minor allele frequencies between the
1000 Genomes European subpopulations (URLs) and White British individuals from the UKB. We
first took a maximal unrelated set of the White British individuals (see Phenotype Methods below)
and then visually inspected the alternate allele frequency of the overlapping variants
(Supplementary Fig. 1) and chose to remove the 110 variants with an alternate allele frequency

difference of more than 12%.

We used Beagle®® v5.1 (build 25Nov19.28d) with the tool’s provided human genetic maps (URLS)
and non-default flag ap=t rue to impute STRs into the remaining 641,472 SNPs and indels from
the SNP-STR panel into the hard-called SNP haplotypes. Though we performed the above
comparison between reference panel Europeans and UKB White British individuals, we
performed this STR imputation into all UKB participants using all the individuals in the reference
panel. We chose Beagle because it can handle multiallelic loci. Due to computational constraints,
we ran Beagle per chromosome on batches of 1000 participants at a time with roughly 18GB of
memory. We merged the resulting VCFs across batches and extracted only the STR variants.
Lastly, we added back the INFO fields present in the SNP-STR reference panel that Beagle

removed during imputation.
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Unless otherwise noted, our pipeline worked with these genotypes as length dosages for each
individual, defined as the sum of length of each of the two alleles, weighted by imputation
probability. Formally, dosage = )., c4len(a) * [Pr(hap, == a) + Pr(hap, == a)], where A is the
set of all possible STR alleles at the locus, len(a) is the length of allele a, and Pr(hap; == a) is
the probability that the allele on the ith haplotype is a, output by Beagle in the AP1 and AP2
FORMAT fields of the VCF file.

Estimated allele frequencies (Fig. 1b) were computed as follows: for each allele length L for each
STR, we summed the imputed probability of the STR on that chromosome to have length L over
both chromosomes of all unrelated participants. That sum is divided by the total number of

chromosomes considered to obtain the estimated frequency of each allele.
Standardized k-mers and inferred repeat units

Each STR in the SNP-STR reference panel was previously annotated with a repeat period - the
length of its repeat unit - but not the repeat unit itself. We inferred the repeat unit for each STR in
the panel as follows: we considered the STR’s reference allele and given period. We then took
each k-mer in the reference allele where k is the repeat period, standardized those k-mers, and
took their counts. We define the standardization of a k-mer to be the sequence produced by
looking at all cyclic rotations of that k-mer and choosing the first one lexicographically. For
example, the standardization of the k-mer CTG would be AGC. If the most common standardized
k-mer was less than twice as frequent as another standardized k-mer, we did not call a repeat
unit for that STR (11,962 STRs; 2.68%). This produced the strand-dependent repeat unit for that
STR. To infer a strand-independent repeat unit for the STR we looked at all rotations of the strand-
dependent repeat unit in both the forward and reverse directions, and chose whichever came first
lexicographically. For example the repeat unit for the STR TGTGTGTG would be AC, while the

strand-dependent repeat unit would be GT.
Phenotypes and covariates
IDs listed in this section refer to the UKB Data Showcase (URLs).

We analyzed a total of 44 blood traits measured in the UKB. 19 phenotypes were chosen from
Category Blood Count (ID 100081) and 25 from Category Blood Biochemistry (ID 17518). We
refer to them as blood cell count and biomarker phenotypes respectively. The blood cell counts

were measured in fresh whole blood while all the biomarkers were measured in serum except for
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glycated haemoglobin which was measured in packed red blood cells (details in Resource ID
5636). The phenotypes we analyzed are listed in Supplementary Table 1, along with the

categorical covariates specific to each phenotype that were included during association testing.

We analyzed all the blood cell count phenotypes available except for the nucleated red blood cell,
basophil, monocyte, and reticulocyte phenotypes. Nucleated red blood cell percentage was
omitted from our study as any value between the bounds of 0% and 2% was recorded as exactly
either 0% or 2% making the data inappropriate for study as a continuous trait. Nucleated red blood
cell count was omitted similarly. Basophil and monocyte phenotypes were omitted as those cells
deteriorate significantly during the up-to-24-hours between blood draw and measurement. This
timing likely differed consistently for different clinics, and different clinics drew from distinct within-
White British ancestry groups, which could lead to confounding with true genetic effects. See
Resource ID 1453 for more information. Reticulocytes were excluded from our initial pipeline. This
left us with 19 blood cell count phenotypes. For each blood cell count phenotype we included the
machine ID (1 of 4 possible IDs) as a categorical covariate during the association tests to account

for batch effects.

Biomarker measurements were subject to censoring of values below and above the measuring
machine’s reportable range (Resource IDs 1227, 2405). Supplementary Table 1 includes the
range limits and the number of data points censored in each direction. Five biomarkers (direct
bilirubin, lipoprotein(a), oestradiol, rheumatoid factor, testosterone) were omitted from our study
for having >40,000 censored measurements across the population (approximately 10% of all
data), since those would require analysis with models that take censoring into account. The
remaining biomarkers had less than 2,000 censored measurements. We excluded censored
measurements for those biomarkers from downstream analyses as they consisted of a small
number of data points. For each serum biomarker except LDL cholesterol and total bilirubin we
included aliquot number (1-3) as a categorical covariate during association testing as an
additional step to mediate the dilution issue (described in Resource ID 5636). LDL cholesterol
and total bilirubin were run on a version of our analysis pipeline prior to accounting for the aliquot
covariate. Glycated haemoglobin was not subject to the dilution issue, being measured in packed
red blood cells and not serum, so no aliquot covariate was published in the UKB showcase or

included in our analysis.

For each phenotype we took the subset of the 408,153 individuals above that had a measurement

for that phenotype during the initial assessment visit or the first repeat assessment visit,
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preferentially choosing the measurement at the initial assessment when measurements were
taken at both visits. We include a binary categorical covariate in association testing to distinguish
between phenotypes measured at the initial assessment and those measured at the repeat
assessment. Each participant’s age at their measurement’s assessment was retrieved from Data
Field ID 21003.

The initial and repeat assessment visits were the only times the biomarkers were measured. The
blood cell count phenotypes were additionally measured for those participants who attended the
first imaging visit. We did not use those measurements and for each phenotype excluded the
<200 participants whose only measurement for that phenotype was taken during the first imaging
visit as we could not properly account for the batch effect of a group that small (Supplementary
Table 1).

No covariate values were missing. Before each association test we checked that each category
of each categorical covariate was obtained by at least 0.1% of the tested participants. We
excluded the participants with covariate values not matching this criterion, as those quantities
would be too small to properly account for batch effects. In practice, this meant that for each
biomarker we excluded the <100 participants that were measured using aliquot 4, and that for 8
biomarkers we additionally excluded the <125 participants that were measured using aliquot 3

(Supplementary Table 1).

For each phenotype we then selected a maximally-sized genetically unrelated subset of the
remaining individuals using PRIMUS®® v1.9.0. Precomputed measures of genetic relatedness
between participants (described in UKB paper supplement section 3.7.1%°) were downloaded
using ukbgene (Resource ID 664). We ran PRIMUS with non-default options --no PR -t
0.04419417382 where the t cutoff is equal to 0.5%, chosen so that two individuals are
considered to be related if they are relatives of third degree or closer. This left between 304,658

and 335,585 unrelated participants per phenotype (Supplementary Table 1).

Sex and ancestry principal components (PCs) were included as covariates for all phenotypes.
Participant sex was extracted from the hard-called SNP fam file (see above). The top 40 ancestry
PCs were extracted from the corresponding columns of the sample QC file (see the Participants

Methods section above).

We then rank inverse normalized phenotype values for association testing. The remaining

unrelated individuals for each phenotype were ranked by phenotype value from least to greatest
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(ties broken arbitrarily) and the phenotype value for association testing for each individual was

sample rank +0.5

taken to be normal quantile ( ) We use rank inverse normalization as it is standard

n samples
practice, though it does not have a strong theoretical foundation® and only moderate empirical

support’®7"3.

For each phenotype and its remaining unrelated individuals we standardized all covariates to

have mean zero and variance one for numeric stability.
Association testing

We performed STR and SNP association testing separately. In both cases, we used simple linear
models instead of linear mixed model (LMM) methods’™, as existing tools implementing LMM-
based associations do not handle STR length-based tests, and our downstream analyses require
STR and SNP associations to be computed using the same model to enable accurate
comparisons. For STR association testing, the VCFs produced by Beagle were accessed in
python by cyvcf2’® 0.30.14 and a modified version of our TRTools library’ v3.0.2. In line with
plink’s recommendation for SNP GWAS (URLs), 6 loci with non-major allele dosage < 20 were
filtered. For each STR, we fit the linear model y = g 8, + C = B¢ + e where y is the vector of
rank-inverse-normalized phenotype values per individual, g is the vector of STR length dosage
genotypes per individual, B, is the effect size of this STR, C is the matrix of standardized
covariates, B, is the vector of covariate effect sizes, and € is the vector of errors between the
model predictions and the outcomes. Models were fit using the
regression.linear model.OLS function of the Python statsmodels library v0.13.2 (URLs).
Per GWAS best-practices, we used imputation dosage genotypes instead of best-guess

genotypes’’.

We used plink2*' v2.00a3LM (build AVX2 Intel 28 Oct 2020) for association testing of imputed
SNPs and indels. For each analysis, plink first converts the input datasets to its pgen file format.
To avoid performing this operation for every invocation of plink, we first used plink to convert the
SNP and indel bgen files to pgen files a single time. We invoked plink once per chromosome per
phenotype. We used the plink flag --mac 20 to filter loci with minor allele dosage less than 20
(URLs). Plink calculates minor allele counts across all individuals before subsetting to individuals
with a supplied phenotype, so this uniformly filtered 22,396,837 (24.1%) of the input loci from

each phenotype’s association test leaving 70,698,786 SNPs and indels. Plink fit the same linear
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model described above in the STR associations, except that g is the vector of dosages of the

non-reference SNP or indel allele.

For conditional regressions, we fit the model y = g x B, + f * By + C * B¢ + € where all the terms
are as described above, except f is the vector of per-individual genotypes of the variant being

conditioned on, and By is its effect size.
Comparison with Pan-UKB pipeline

We compared the results of our pipeline to results available on the Pan-UKB*? website (see URLS)
using bilirubin as an example trait. We matched variants between datasets on chromosome,
position, reference and alternate alleles. We found our pipeline produced largely similar p-values

to those reported for European participants in Pan-UKB (Supplementary Fig. 2).
Defining significant peaks

Given a peak width w (bps) and a p-value threshold t, we selected variants to center peaks on

in the following manner:

1. Order all variants (of all types) from most to least significant. For variants which exceed
our pipeline’s precision (p<1e-300), order them by their chromosome and base pair from

first to last. (These variants will appear at the beginning of the list of all variants).

2. For each variant: If the variant has p-value > t, break. If there is a variant in either
direction less than w/2 bps away which has a lower p-value, continue. Otherwise, add

this variant to the list of peak centers.

We define peaks to be the w (base pair) width regions centered on each selected variant. The
statistics given in the Results are calculated using w = 250kb and t = 5e — 8. The identification

of peaks in Fig. 1¢c-d was made with w = 20mb and t = 5e — 8 for visualization purposes.
Identifying indels which are STR alleles

Some STR variant alleles are represented both as alleles in our SNP-STR reference panel and
as indel variants in the UKB imputed variants panel. We excluded the indel representations of
those alleles from fine-mapping, as they represent identical variants and could confound the fine-

mapping process. For each STR we constructed the following interval:
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{ (start - 3,end + 3), period = 1
(start - 2 * period,end + 2 * period), period > 1

where period is the length of the repeat unit. and start and end give the coordinates of the STR
in base pairs. We call an indel an STR-indel if it only represents either a deletion of base pairs
from the reference or an insertion of base pairs into the reference (not both), overlaps only a
single STR based on the interval above, and represents an insertion or deletion of full copies of
that STR’s repeat unit. We conservatively did not mark any STR-indels for STRs whose repeat
units were not called (see above) or for which the insertion or deletion was not a whole number

of copies of any rotation of the repeat unit.
Fine-mapping
For each phenotype, we selected contiguous regions to fine-map in the following manner:

1. Choose a variant (SNP or indel or STR) with p-value < 5e-8 not in the major
histocompatibility complex (MHC) region (chr6:25e6-33.5€6).

2. While there is a variant (SNP or indel or STR) with p-value < 5e-8 not in the MHC region
and within 250kb of a previously chosen variant, include that variant in the region and

repeat.
3. This fine-mapping region is (min variant bp — 125kb, max variant bp + 125kb).

4. If the resulting region has no STR variants with p < 5e-4, exclude it from downstream

analyses.

5. Start again from step 1 to create another region, starting with any variant with p-value <

5e-8 not already in a fine-mapping region.

This is similar to the peak selection algorithm above but is designed to produce slightly wider
regions so that we could fine-map nearby peaks jointly. We excluded the MHC because it is known
to be difficult to effectively fine-map. Steps 1-3 produced 14,494 trait-regions, of which 13,283
passed step 4 and were analyzed downstream. Due to computational challenges during fine-
mapping (see below), we also excluded three regions (urate 4:8165642-11717761, total bilirubin
12:19976272-22524428 and alkaline phosphatase 1:19430673-24309348) from downstream

analyses (see below), leaving 13,280 trait-regions.
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We used two fine-mapping methods to analyze each region:

SuSIE**: For each fine-mapping trait-region, for each STR and SNP and indel variant in that region
that was not filtered before association testing, was not an STR-indel variants (see above) and
had p-value < 5e-4 (chosen to reduce computational burden), we loaded the dosages for that
variant from the set of participants used in association testing for that phenotype. For those
regions we also loaded the rank-inverse-normalized phenotype values and covariates
corresponding to that phenotype. We separately regressed the covariates out of the phenotype
values and out of each variant’s dosages and streamed the residual values to HDF5 arrays using
h5py v3.6.0 (URLs). We used rhdf5 v2.38.0 (URLSs) to load the h5 files into R. We used an R
script to run SuSiE v0.11.42 on that data with non-default values min abs corr=0 and
scaled prior variance=0.005.min abs corr=0 forced SuSiE to output all credible sets
it found so that we could determine the appropriate minimum absolute correlation filter threshold
in downstream analyses. We set scaled prior variance to 0.005 which is a more realistic
guess of the per-variant percentage of signal explained than the default of 20%, although we
determined that this parameter had no effect on the results (Supplementary Note 3). The SuSIiE
results for some regions did not converge within the default number of iterations (100) or produced
the default maximum number of credible sets (10) and all those credible sets seemed plausible
(minimum pair-wise absolute correlation > 0.2 or size < 50). We reran those regions with the
additional parameters L=30 (maximum number of credible sets) and max_iter=500. No regions
failed to converge in under 500 iterations. We re-analyzed several loci that produced 30 plausible
credible sets again with .=50. No regions produced 50 plausible credible sets. SuSIE failed to
finish for two regions (urate 4:8165642-11717761, total bilirubin 12:19976272-22524428) in under
48 hours; we excluded those regions from downstream analyses. A prior version of our pipeline
had applied a custom filter to some SuSiE fine-mapping runs that caused SNPs with total minor
allele dosage less than 20 across the entire population to be excluded. For consistency, any
regions run with that filter which produced STRs included in our confidently fine-mapped set were

rerun without that filter. Results from the rerun are reported in Supplementary Table 4.

SuSiE calculates credible sets for independent signals and calculates an alpha value for each
variant for each signal — the probability that that variant is the causal variant in that signal. We
used each variant’s highest alpha value from among credible sets with purity = 0.8 as its casual
probability (CP) in our downstream analyses (or zero if it was in no such credible sets). See

Supplementary Note 1.
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FINEMAP*: We selected the STR and SNP and indel variants in each fine-mapping region that
were not filtered before association testing and had p-value < 0.05 (chosen to reduce
computational burden). We excluded STR-indels (see above). We constructed a FINEMAP input
file for each region containing the effect size of each variant and the effect size’s standard error.
All MAF values were set to nan and the ref and alt columns were set to nan for STRs as this
information is not required. We then took the unrelated participants for the phenotype, loaded
their dosage genotypes for those variants and saved them to an HDF5 array with h5py v3.6.0
(URLs). To construct the LD input file required by FINEMAP, we computed the Pearson
correlation between dosages of each pair of variants. We then ran FINEMAP v1.4 with non-default
options --sss --n-configs-top 100 --n-causal-snps 20. In regions which FINEMAP
gave non-zero probability to their being 20 causal variants, we reran FINEMAP with the option -
n-causal-snps 40 and used the results from the rerun. FINEMAP did not suggest 40 causal
variants in any region. FINEMAP caused a core dump when running on the region alkaline
phosphatase 1:19430673-24309348 so we excluded that region from downstream analyses. (For
convenience, for the regions containing no STRs, we directly ran FINEMAP with --n-causal-
snps 40, unless those regions contained less than 40 variants in which case we ran FINEMAP

with -—-n-causal-snps <#variants>).

We used the PIP FINEMAP output for each variant in each region as its CP in downstream

analyses.
Alternative Fine-mapping Conditions

We reran SuSiE and FINEMAP using alternative settings on trait-regions that contained one or
more STRs with p-value < 1e-10 and CP 2 0.8 in both the original SuSIE and FINEMAP runs.
Each new run differed from the original run in exactly one condition. We restricted our set of high-
confidence fine-mapped STRs (Supplementary Table 4) to those that had p-value < 1e-10 and
CP = 0.8 in the original runs and maintained CP = 0.8 in a selected set of those alternate

conditions.

For SuSiE, we evaluated using best-guess genotypes vs. genotype dosages as input. For
FINEMAP, we tested varying the p-value threshold, choice of non-major allele frequency

threshold, effect size prior, number of causal variants per region, and stopping threshold.
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See Supplementary Note 3 for a more detailed discussion of these various settings and their

impact on fine-mapping results.
Replication in other populations

We separated the participants not in the White British group into population groups using the self-
reported ethnicities summarized by UKB showcase data field 21000 (URLs). This field uses UKB
showcase data coding 1001. We defined the following five populations based on those codings
(counts give the maximal number of unrelated QC’ed participants, ignoring per-phenotype

missingness):

Black (African and Caribbean, n=7,562, codings 4, 4001, 4002, 4003)

South Asian (Indian, Pakistani and Bangladeshi, n=7,397, codings 3001, 3002, 3003)

Chinese (n=1,525, coding 5)

Irish (n=11,978, coding 1002)

Other White (White non-Irish non-British, n=15,838, coding 1003)

Self-reported ethnicities were collected from participants at three visits (initial assessment, repeat
assessment, first imaging). The above groups also exclude participants who self-reported
ethnicity at more than one visit and where their answers corresponded to more than one
population (after ignoring ‘prefer not to answer code=-3 responses). We did include any
participants who were neither in the White British population nor any of the above populations.
Unlike for the determination of White British participants, genetic principal components were not

used as filters for these categories.

For the association tests in these populations we applied the same procedures for sample quality
control, unrelatedness filtering, phenotype transformations, and preparing genotypes and
covariates as in the White British group. The only changes in procedure were that (a) we removed
categorical covariate values where there were fewer than 50 participants with that value, (in which
case we also removed those participants from analysis, as that would be too few to properly
control for batch effects), whereas for White British individuals we used a cutoff of 0.1% instead,
(b) we also applied this cutoff to the visit of measurement categorical covariate, resulting in some

association tests that excluded individuals whose first measurement of the phenotype occurred
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outside the initial assessment visit and (c) we included the aliquot covariate for LDL cholesterol
and total bilirubin, which had been excluded in our initial run in White British (see above). See

Supplementary Table 5 for details.

STRs were marked as replicating in another population (Fig. 2a) if any of the traits confidently
fine-mapped to that STR share the same direction of effect as the White British association and
reached association p-value < 0.05 after multiple hypothesis correction (i.e. if there are three
confidently fine-mapped traits, then an STR is marked as replicating in the Black population if any

of them has association p-value < 0.05/3 = 0.0167 in the Black population).
Logistic regression analysis of replication direction

We used logistic regression to quantitatively assess the impact of fine-mapping on replication
rates while controlling for discovery p-value. For this analysis, to have sufficient sample sizes, we
defined that an STR-trait association replicates in another population if it had the same direction

of effect in that population as in the White British population, regardless of the replication p-value.

For each of the five replication populations, we compared four categories: all gwsig (genome-
wide significant associations in the discovery population, i.e. p-value < 5e-8), FINEMAP
(discovery p-value < 5e-8 and FINEMAP CP = 0.8), SuSiE (discovery p-value < 5e-8 and SuSiE
CP = 0.8) and confidently fine-mapped STR (STR associations in our confidently fine-mapped

set).

For each comparison, we used the function statsmodels.formula.api.logit from

statsmodels v0.13.2 (URLs) to fit the logistic regression model:

replication status ~ STR in target category + logig(p-val) + 1logio(p-

val) 2

where replication status is a binary variable indicating whether or not the given STR-trait
association replicated in the other population, p-val is the discovery p-value, and

STR_in target catgegory is a binary variable indicating if the STR is in the target category.
For each replication population, we considered various models:

e All gwsig STRs with either FINEMAP, SuSiE, or confidently fine-mapped STRs as the

target category.
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o All FINEMAP STRs with confidently fine-mapped STRs as the target category.
¢ All SuSiE STRs with confidently fine-mapped STRs as the target category.

For each model, we performed a one-sided t-test for the hypothesis that the coefficient for the
covariate STR_in target category was greater than zero, i.e. testing that being in the target
category increased the predicted chance of replicating in the chosen population (Supplementary
Table 6).

Gene and transcription factor binding annotations

For all analyses not using GTEx data, gene annotations were based on GENCODE 38’8 (URLs).
Transcription factor binding sites identified by ENCODE" overlapping several loci (TAOKT,
RHOT1 and NCK2) were identified through visual inspection of the “Txn Factor ChIP” track in the
UCSC Genome Browser®® and using the “Load from ENCODE” feature of the Integrative

Genomics Viewer®'.
Enrichment testing

We tested the following categories for enrichment in STRs identified by our association testing

pipeline:

e Genomic feature: We grouped records by feature type and restricted to features with

support level 1 or 2 except for genes which don’t have a support level. We used bedtools®?
to compute which features intersect each STR and the distance between each STR and
the nearest feature of each feature type.

e Repeat unit: unit length and standardized repeat unit were defined as described above.
Repeat units occurring in <1000 STRs were grouped by repeat length. Repeats whose
unit could not be determined were considered as a separate category.

¢ Overlap with expression STRs (eSTR): we tested for overlap with either all eSTRs or fine-

mapped eSTRs as defined in our previous study to identify STR-gene expression

associations in the Genotype Tissue Expression (GTEXx) cohort*.

Enrichment p-values were computed using a Chi-squared test (without Yate’s continuity
correction) if all cells had counts = 5. A two-sided Fisher’s exact test was used otherwise. Chi-
squared and Fisher's exact tests were implemented using the chi2 contingency and

fisher exact functions from the Python scipy.stats package v1.7.3 (URLs).
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Expression association analysis in GTEx

We had previously analyzed associations*? between STRs and gene expression in GTEx V7.
Here we reanalyzed those associations using GTEx V8. We obtained 30x Illumina whole genome
sequencing (WGS) data from 652 unrelated participants in the Genotype-Tissue Expression
project (GTEx)*® through dbGaP accession number phs000424.v8.p2. WGS data was accessed
using fusera (URLs) through Amazon Web Services. We genotyped STRs using HipSTR?* v0.5
with HipSTR’s hg38 reference STR set (URLs). All individuals were genotyped jointly using
default parameters. GTEx’s whole genome sequencing procedure is not PCR-free, which likely
contributed to low call rates at long poly-A and GC-rich STRs. The resulting VCFs were filtered
using DumpSTR from TRTools’®, using the parameters --filter-hrun --hipstr-min-
call-Q 0.9 --hipstr-min-call-DP 10 --hipstr-max-call-DP 1000 --hipstr-
max-call-flank-indel 0.15 --hipstr-max-call-stutter 0.15 --min-locus-
callrate 0.8 --min-locus-hwep 0.00001 . We also removed STRs overlapping
segmental duplication regions (UCSC Genome Browser® h38.genomicSuperDups table).

Altogether, 728,090 STRs remained for downstream analysis.

For each tissue, we obtained gene-level and transcript-level transcripts-per-million (TPM) values,
exon-exon junction read counts, and exon read counts for each participant from GTEx Analysis
V8 publicly available from the GTEx project website (URLs). Gene annotations are based on
GENCODE v268. We focused on 41 tissues with expression data for at least 100 samples
(Supplementary Table 9). We restricted our analysis to protein-coding genes, transcripts and

exons that did not overlap segmental duplication regions.

To control for population structure, we obtained publicly available genotype data on 2,504

unrelated individuals from the 1000 Genomes project?'

genotyped with Omni 2.5 SNP genotyping
arrays. We performed the following principal components analysis jointly on that data and the
SNP genotypes based on WGS of the 652 individuals above. We removed all indels, multiallelic
SNPs, and SNPs with minor allele frequency less than 5%. We then used plink v.1.90b3.44 to
subset these remaining SNPs to a set of SNPs in approximate linkage equilibrium with the
command --indep 50 5 2. We excluded any remaining SNPs with missingness rate 5% or
greater. We lastly ran principal component analysis using smartpca70® v.13050 with default

parameters.
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We removed genes with TPM less than 1 in more than 90 percent of individuals. PEER factors®®
were calculated using PEER v1.0 from the TPM values which remained after filtering. For each
gene, we tested for association with each STR within 100kb. For each test we performed a linear
regression between the STR’s dosage (sum of allele lengths) and gene expression (TPM). We
included the loadings of the top five genotype principal components as computed above and the
top N/10 PEER factors as covariates. The number of PEER factors was chosen to maximize the
number of significant associations across a range of tissues. We did not include sex or age as

covariates.

For each STR we computed Bonferroni-adjusted p-values to control for the number of gene x
tissue tests performed. Associations that remained with adjusted p < 0.05 are shown in

Supplementary Table 8.

We additionally used the GTEXx cohort to test for an association between length of the bilirubin-
associated dinucleotide repeat identified in SLC2A2 with splicing efficiency in liver. We obtained
exon-exon junction read counts and exon read counts from the GTEx website (URLs). We
calculated the percent spliced in (PSl) value for each exon in the manner suggested by Schafer

|86

et al.*®>. We performed a linear regression to test between the STR’s dosage and PSI of each

exon within 10kb, using the top 5 ancestry principal components as covariates.
Expression analysis of the CBL and RHOT1 STRs in Geuvadis

We applied HipSTR?** v0.6.2 to genotype STRs from HipSTR’s hg38 reference STR set (URLS)
in 2,504 individuals from the 1000 Genomes Project®” for which high-coverage WGS data was
available. Gene-level reads per kilobase per million reads (RPKM) values based on RNA-seq in
lymphoblastoid cell lines for 462 1000 Genomes participants were downloaded from the Geuvadis
website (URLs). Of these, 449 individuals were genotyped by HipSTR.

Similar to the GTEx analysis, we performed a linear regression between STR dosage (sum of
allele lengths) and RPKM, adjusting for the top 5 genotype principal components (computed as
above for the GTEx analysis, but only on populations included in Geuvadis and separately for
Europeans and Africans) and N/10 (45) PEER factors as covariates. PEER analysis was applied
using PEER v1.0 to the matrix of RPKM values after removing genes overlapping segmental
duplications and those with RPKM less than 1 in more than 90% of LCL samples. We performed
a separate regression analysis for African individuals (YRI) and European individuals (CEU, TSI,

FIN, and GBR). After restricting to individuals with non-missing expression data and STR
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genotypes and who were not filtered as PCA outliers by smartpca®*® included in EIGENSOFT
v6.1.4, 447 LCL samples remained for analysis in each case (hum. EUR=358, and AFR=89 for
CBL, EUR=359 and AFR=88 for RHOTT).
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URLs

¢ 1000 genomes individuals: https://www.internationalgenome.org/data-portal/sample

using the “Download the list” tab

e associaTR: https://github.com/LiterallyUnigueLogin/ukbiobank strs/

e Beagle Human genetic maps:

https://bochet.gcc.biostat.washington.edu/beagle/genetic maps/

e fusera: https://qithub.com/ncbi/fusera
e GENCODE 38 (hg19):
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 38/GRCh37 mapp

ing/gencode.v38lift37.annotation.gff3.g9z

e Geuvadis: https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-
1/files/analysis results/?ref=E-GEUV-1

e GTExvS:
o https://www.gtexportal.org/home/datasets

o https://storage.googleapis.com/gtex analysis v8/rna seq data/GTEx Analysis
2017-06-05 v8 RNASeQCv1.1.9 gene tpm.gct.gz
o https://storage.googleapis.com/gtex analysis v8/rna seq data/GTEx Analysis

2017-06-05 v8 STARv2.5.3a junctions.gct.gz

o https://storage.googleapis.com/gtex analysis v8/rna seq data/GTEx Analysis
2017-06-05 v8 RNASeQCv1.1.9 exon reads.parquet
e h5py https://github.com/h5py/h5py

¢ HDF5: https://www.hdfgroup.org/HDF5/
¢ HipSTR STR reference https://github.com/HipSTR-Tool/HipSTR-

references/raw/master/human/hg38.hipstr reference.bed.qgz
¢ Pan-UKB:

o Overview: https://pan.ukbb.broadinstitute.org/downloads

o manifest:
https://docs.google.com/spreadsheets/d/1AeeADtTOU1AukliiNyiVzZVRALYPkTbru
QSk38DeutU8

o bilirubin SNP summary statistics: https://pan-ukb-us-east-

1.s3.amazonaws.com/sumstats flat files/biomarkers-30840-both sexes-

irnt.tsv.bgz and https://pan-ukb-us-east-

1.s3.amazonaws.com/sumstats flat files tabix/biomarkers-30840-both sexes-

irnt.tsv.bgz.tbi
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e Plink association testing best practices: https://www.cog-

genomics.org/plink/2.0/assoc#glm

e rhdf5: https://www.bioconductor.org/packages/release/bioc/html/rhdf5.html

e Scipy.stats: https://docs.scipy.org/doc/scipy/reference/stats.html

e SNP-STR reference panel: https://gymreklab.com/2018/03/05/snpstr_imputation.html

e Statsmodels: https://www.statsmodels.org/stable/index.html

e UKB Data Showcase Search Page: https://biobank.ctsu.ox.ac.uk/crystal/search.cgi
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Supplementary Notes
Supplementary Note 1: Summary of fine-mapping models

We applied two different fine-mapping methods, SuSIiE" v0.11.42 and FINEMAP? v1.4. FINEMAP
assumes a priori that each variant has an equal chance of being causal and that each variant’s
chance of causality is independent from the causal status of the other variants. It then attempts
to stochastically walk over all reasonably-probable choices of collections of causal variants and
assigns each causal configuration a posterior probability based on the observed associations and
that prior. It then calculates posterior inclusion probabilities (PIPs) by summing over the walked
configurations. For downstream analyses we required a single measurement of causality for each
variable from both fine-mappers, which we called those variables’ causal probabilities (CPs). For
FINEMAP, we took each variable’s PIP to be its FINEMAP CP.

While FINEMAP models each region as a collection of causal variants, SuSIE models each region
as a collection of causal signals (called effects in the SuSiE manuscript), enabling SuSIE to study
variants’ contributions to each signal separately. To fit this model, SuSIiE alternates between
updating its model of each signal, attempting with each update to improve how the collection of
all signals fits the observed data. As SuSiE only allows for the possibility of one variant being
considered causal in any signal, if two variants are both estimated to be causal, they are forced
during model fitting into different signals from one another. SuSIiE calculates a value, alpha, for
each variant in each signal — the probability that variant causes that signal — and then calculates
a single PIP for each variant which gives the probability that the variant is causal in at least one
signal. For reasons we explain below, unlike for FINEMAP, we chose an alpha value (or zero) as
the SuSiE CP for each variant, rather than a PIP.

SuSiE reports a purity value for each signal, and we used that value to discard signals which were
not well fine-mapped. SuSIiE constructs 90%-credible sets for each signal so that the estimated
probability of the credible set containing a variant causal for that signal is at least 90% (other
values, such as 95%-credible sets, could be constructed similarly). SUSIE defines the purity of
the credible set for each signal to be the minimum absolute correlation between any pair of
variants in the set. The SuSiE manuscript suggests discarding signals with purity less than 0.5,
but also states that the threshold is arbitrary. Looking at the distribution of credible set purities
across all of our trait-regions (Supplementary Fig. 3) we decided to discard credible sets with

purity less than 0.8, reasoning that the upper mode of the distribution is well above that threshold
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and that a signal containing two variants with correlation less than 0.8 has not been acceptably

resolved.

SuSiE’s PIPs are calculated across all credible sets regardless of purity, while we wished to
conservatively only consider variants which had passed this added layer of scrutiny. Additionally,
we saw that the PIP metric is sensitive to values of L (the number of signals fit per locus) — for
one extreme example, in a locus with 57 variants, SuSiE run with L=50 assigned each variant a
PIP = 0.5, which is likely unrealistic. So instead of using SuSIiE’s PIPs, we took each variant’s
highest alpha score from among credible sets with purity at least 0.8 as its SuSIE CP (or zero if it
was in no such credible sets). This choice was uniformly conservative; CPs defined this way must
be less than SuSiE’s PIPs. We also found it to be less sensitive to L — we examine this more
thoroughly in Supplementary Note 3 below, but in the above example we note that there was
only one credible set containing less than 50 variants and it was not pure, so each variant in that
region has a SuSiE CP of 0. We compared our SuSiE CP metric to SuSiE’s PIP metric in
Supplementary Fig. 4 and saw that these two measures only strongly differed for variants whose
contribution to any single pure signal was small. As our downstream analyses focused on variants
with large alpha values in pure credible sets, this means that our use of alpha values instead of
PIPs was not strongly impactful in analyzing those variants. The impact is that we conservatively
restricted which variants we examined. Lastly, we note that for high purity thresholds such as the
one we use, our metric should be very similar to calling SuSIE’s susie get pip function with
the flag prune by cs=TRUE, a method not examined in the SuSiE manuscript and one we did

not encounter until after performing this work.
Supplementary Note 2: Comparing results across fine-mapping methods

To assess the reliability of our fine-mapping results, we measured how often the two fine-mapping
methods agreed with one another, and how sensitive they were to model settings. First, we used
SuSiE’s credible sets as a proxy for the truly independent signals in our data. We observed that
while SuSIiE and FINEMAP were in agreement for most of the signals, their results were strongly
discordant for a sizable number of signals (Supplementary Fig. 6). In particular, for 10.4% of
90%-credible sets returned by SuSiE (which by definition are assigned at least a 90% chance of
containing a causal variant), the sum of FINEMAP’s assigned CPs for all variants in each of those
sets was less than 0.1, indicating that FINEMAP concluded those sets had a < 10% chance of

containing a causal variant.
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Second, we looked at the variant level and saw that for most variants, the CPs from FINEMAP
and SuSiE were similar (Supplementary Fig. 7), with FINEMAP assigning slightly higher CPs
overall (possibly due to our use of SuSIE alpha values per variant instead of the overall PIPs).
However, we again saw that SuSiE and FINEMAP markedly disagree at a subset of loci. For
instance, among all SNPs and indels which at least one fine-mapping method assigned a CP =
0.95 and the other method was decisive about their causality (assigning either CP = 0.95 or CP
< 0.05), 20% of those were assigned a CP = 0.95 by one method and a CP < 0.05 by the other.
For STRs, the fine-mapping methods disagreed at more than half of the loci (58%) that were
assigned CP = 0.95 by one method and decisively scored by the other, suggesting the CPs for
STRs are even less reliable. This highlights the need for additional quality control before stating
that variants assigned a high posterior probability by a single fine-mapper are likely to be causal.
Without any prior on which fine-mapper to believe when the two disagreed, we focused only on
the 177 trait-STR associations for which association p-values were well below the genome-wide
significance threshold (p-values1e-10) and both fine-mappers assigned high CPs (CPs=0.8)

(Supplementary Fig. 8a; the 177 associations can be extracted from Supplementary Table 3).
Supplementary Note 3: Assessing robustness of fine-mapping results

We further assessed how robust our fine-mapping results were to differences in the fine-mapping
conditions, data filtering thresholds and algorithm metaparameters used. For SuSiE, we modified
the inputs (1) scaled prior variance, (2) tol, (3) residual variance, and (4) L, and
also (5) changed the input genotypes from dosage genotypes to best-guess genotypes and (6)
changed the prior to favor SNPs and indels over STRs as causal variants. For FINEMAP, we
modified the inputs (1) --prior-std and (2) --prob-conv-sss-tol and also (3) filtered
input variants with total non-major allele dosage less than 100, (4) filtered variants with p-value <
5e-4, (5) set the prior on the number of causal variants per region to 4, and (6) changed the prior

to favor SNPs and indels over STRs as causal variants.

We were encouraged that a few of the SuSIiE settings had minimal impact on the results.
Specifically, we tested the following changes on a subset of mean platelet volume fine-mapping

regions:

. scaled prior variance — This is the initial value for the estimation of the prior
variance of the causal effect sizes relative to the variance of the phenotype. We changed this

from the default of 0.2 to 5e-4 which resulted in no change to observed CPs.
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. tol — This determines what amount of change in the objective function between
optimization rounds is small enough to cause SuSiE to terminate. We reduced this from the default
of 1e-3 to 1e-4 and saw only miniscule changes in the results (Supplementary Fig. 9a).

. residual variance — This is the initial value for the estimation of the residual variance
of the phenotype after controlling for all effects at the locus. By default, the residual variance
is initialized to the full variance of the phenotype, which in our study was slightly less than 1 (rank-
inverse normalization set it to 1, and then regressing covariates out of the phenotype before
running SuSiE reduced it slightly). We ran SuSiE with alternate residual variance values of
0.95 and 0.8 and saw very small changes in the results (Supplementary Fig. 9b,c)

. L — This is the number of signals SuSiE fits in a region, or equivalently, the upper bound
on the number of causal variants SuSIiE attempts to find (Supplementary Fig. 9d). In our original
fine-mapping runs, we ran SuSiE with 1.=10, and only increased L if needed. In the comparison
below, we ran SuSiE with L.=50. The SuSiE manuscript' states that inflated L values should not
adversely impact model fitting because extraneous signals contribute small probabilities
dispersed over many variants, thus not strongly changing any single variant’s prediction, and also
the learned effect sizes of these extra signals are shrunk towards zero. We see in our comparison
that this only induces a large change in CP for a small fraction of variants. Of those, almost all of
them are variants with non-zero CP values under the L=10 case and zero CP in the L=50 case.
Thus, if they have any effect, this indicates that in most cases inflated values of L should lead to

more conservative fine-mapping results.

However, many of the fine-mapping conditions (individually documented below) did impact the
end results. We ran fine-mapping under each of those conditions on the trait-regions of the 177
STR-trait associations above. We present supplementary figures showing how the CPs of variants
changed under those conditions (Supplementary Figs. 10, 11a-e). Because we would expect
true signals to be robust to these choices, we restricted our set of confidently fine-mapped STRs
to the 118 that had CP = 0.8 under each of those conditions (Supplementary Table 4). While the
set of trait-regions used for running these tests was chosen to identify candidate causal STRs,
Supplementary Figs 10-11e identify similar trends for SNPs and indels in those regions. Thus,

we hypothesize that these comparisons are relevant for fine-mapping of all variant types.

SuSiE with best-quess genotypes vs dosage genotypes

We ran SuSiE with the best-guess genotypes from our imputation pipeline instead of the dosage

genotypes from that pipeline (Supplementary Fig. 10). Discrepancies in best-guess vs. dosages
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reflect imputation uncertainty. As we did not have ground truth STR genotypes, we could not
resolve these discrepancies and thus discarded loci where this choice strongly impacted the

results.

Note: We ran SuSiE on each best-guess trait region with the parameters 1=50 and
max_ iter=500. While these are different values than those for the baseline runs, the results

should still be comparable:

e Both the dosage and best-guess SuSiE runs converged in fewer iterations than their
respective max iter values, and larger values of max_iter than the convergence number
should not affect the results.

o We discuss above why overestimating L should not importantly impact the results.

Additionally, as noted in the Methods, baseline SuSiE runs for some trait-regions were run with
the dosage < 20 SNP filter while others were not. To control for this, we ran the SuSiE best-guess

comparison with the same set of variants as the original runs in each trait-region.

For the FINEMAP comparisons below, as in our baseline runs, we ran each trait-region with --
n-causal-snps 20, and then reran it with --n-causal-snps 40 if that run’s results included

a possibility of at least 20 causal variants.

FINEMAP with alternative p-value thresholds

By default, we chose to filter as few variants as possible from our fine-mapping runs while still
controlling for computational costs, which meant filtering variants with p>5e-2 from our FINEMAP
runs and variants with p>5e-4 from our SuSiE runs, as FINEMAP was less computationally
intensive. To check if this difference impacted the fine-mappers’ results we ran FINEMAP having
filtered all variants with p>5e-4 and compared it to our default FINEMAP runs (Supplementary
Fig. 11a). Unexpectedly, this change strongly impacted the CPs of some variants. This CP
difference occurred despite the large difference between the p-values of the impacted variants

and the p-values of the omitted variants.

FINEMAP with alternative choice of non-major allele frequency threshold

To test whether FINEMAP results were strongly influenced by rare variants, we excluded all
variants with total non-major allele dosage < 100 (population frequency less than approximately

0.015%) on top of the filter excluding variants with p-value > 0.05 (Supplementary Fig. 11b).
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(Note that variants with total non-major allele dosage < 20 were excluded from association testing

and thus from all fine-mapping runs).

FINEMAP with alternative choice of effect size prior

FINEMAP’s default --prior-std value is 0.05 which gives causal variants a default effect size
of 0.25% of phenotypic variance. We modified this to --prior-std 0.0224 to reflect published
expected effect sizes for GWAS variants of about 0.05%° (Supplementary Fig. 11c).

FINEMAP with alternative prior on the number of causal variants per region

We ran FINEMAP with the prior of four causal variants per trait-region instead of one
(Supplementary Fig. 11d). We did this by adding a column prob to the FINEMAP input Z file
which contained the value 4/n for each variant, where n was the number of variants in the trait-

region, and by running FINEMAP with the --prior-snps flag.

FINEMAP with alternative --prob—conv-sss—-tol stopping threshold

We ran FINEMAP with the flag --prob-conv-sss-tol 0.0001 (reduced from the default of
0.001) (Supplementary Fig. 11e). This reduced what amount of change in the objective function
over the last 100 rounds of optimization would be considered small enough to cause FINEMAP

to terminate.

In summary, the dosages vs best-guess genotypes choice when running SuSiE, and the
FINEMAP p-value threshold setting were strongly impactful. The FINEMAP threshold on non-
maijor allele frequency, effect size prior, and prior on number of causal variants per region were
moderately impactful settings. And the FINEMAP stopping threshold setting was minorly
impactful. Overall, about a third of results that passed both fine-mappers failed to replicate in one
of the alternate fine-mapping conditions above, again highlighting the need for careful inspection
of fine-mapping settings prior to result interpretation. Encouragingly, for many of these
comparisons we see that the default SuSIE and FINEMAP runs were more likely to agree that
variants were causal (both CPs = 0.95) for those variants that the alternate fine-mapping condition
also agreed were causal. This suggests that concordance between different fine-mapping
algorithms may be able to provide security against the instability in the results of any single

algorithm. While we focused on fine-mapping results for STRs, which generally showed lower
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concordance across methods than SNPs, our results suggest similar robustness checks should

be performed when fine-mapping SNPs and other variant types.

There were several fine-mapping conditions we tested that strongly impacted the resulting CPs
but that we did not use as filters when selecting our causal STR candidates since they represent
unrealistic parameter choices. We report their values in Supplementary Table 3. Those

conditions were:

. We ran FINEMAP with the flag --prior-std 0.005, corresponding to an expected
effect size 0.0025% (Supplementary Fig. 11f). We concluded that this was much lower than the
effect sizes we were hoping to detect.

. Both SuSiE and FINEMAP have the default assumption that each variant is as likely to be
causal as any other variant (regardless of allele frequency). We instead conservatively ran SuSiE
and FINEMAP with the prior assumption that SNPs and indels were 4x more likely to be causal
than STRs. For this, we set the prior probability of causality for each SNP or indel to
4/(4*n_SNPs_indels + n_STRs) and for each STR to 1/(4*n_SNPs_indels + n_STRs). For SuSIiE
we did this by setting the prior weights input to an array containing those probabilities. For
FINEMAP we did this by adding a column prob to the FINEMAP input Z file which contained
those probabilities, and by running FINEMAP with the --prior-snps flag. As expected, this
resulted in overall decreased STR CPs (Supplementary Fig. 12). While we did not filter our
candidate STRs based on this setting, we were encouraged to see that a majority of the strongest

hits replicated despite this conservative setting.

Finally, we note there are other parameters which were not tested here but that could be tested
for robustness. This includes whether FINEMAP results are sensitive to overestimating --n-
causal-snps and testing if fine-mapping results are sensitive to the size of the trait-regions

being fine-mapped.
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Supplementary Note 4: Additional details for specific fine-mapped STRs

Coding trinucleotide repeat in APOB: This repeat did not initially appear in our list of confidently

fine-mapped STRs due to our process for filtering indels. Our pipeline filtered “STR-indels”
(Methods), which we defined as indels in the UKB dataset corresponding to differences in STR
length. We did not filter an indel imputed by the UKB team that corresponded exactly to the short
allele of the STR imputed from our reference panel, since the indel consists of an imperfect repeat
sequence (GCCAGCAGC for a CAG repeat). The presence of this indel alongside the STR during
fine-mapping caused SuSiE’s (but not FINEMAP’s) results to, in some cases, show low
confidence as to which of the two variants were causal. Specifically, FINEMAP assigned a CP of
1 to the STR for both traits apolipoprotein B and LDL cholesterol under each FINEMAP run used
for filtering down to the confidently fine-mapped set. For the original run for the apolipoprotein B
trait and for the best-guess run for both traits, SUSIE created a credible set containing both the
indel and the STR and assigned each a CP of less than 0.8, causing the association not to pass
our filters for confidently fine-mapped STRs. However, if we sum the SuSiE CPs of both variants
in those runs we get a CP of over 0.97 in each case, making the apolipoprotein B association
pass our confidently fine-mapped thresholds. Thus, we added this association to our confidently
fine-mapped set. We note that the original SuSIE run for the LDL trait assigned low CPs to both
the STR and the indel. While that was the only fine-mapping of the eight runs used for filtering
that did not assign the pair of variants a combined CP = 0.8 for LDL, it precludes us from adding
the LDL association to the confidently fine-mapped set. For both the apolipoprotein B and LDL
cholesterol associations, we updated the CPs in Supplementary Tables 3 and 4 to reflect the

combined CPs for both variants.

While we manually resolved this issue for the APOB STR, similar issues are likely to have caused
other STRs in our set not to fine-map appropriately. We expect the choice of which indel
representations to filter and which to treat as distinct variants will be critical for proper analysis of

many STR loci in the future.

Dinucleotide repeat in SLC2A2 (GLUT2): We identified a dinucleotide repeat immediately
upstream of exon 4 of SLC2A2 as a confidently fine-mapped STR for bilirubin. While SLC2A2 has

not previously been causally linked to bilirubin levels, SLC2A2 mediates glucose transport to

hepatocytes, where glucose is stored in the form of glycogen. Glycogen degradation produces
intermediates that are substrates in the process that regulates bilirubin conjugation and excretion*

and thus could potentially impact bilirubin levels in the blood. This effect of SLC2A2 on bilirubin
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levels may be partially corroborated by a large cohort study on babies with congenital
hyperinsulinemic hypoglycemia, a condition that inhibits glycogen breakdown, which reported

elevated bilirubin in that population®.

Tetranucleotide repeat in ESR2: We identified a GTTT repeat in an intron of ESR2 whose length

is negatively associated with haemoglobin concentration, red blood cell count, and haematocrit.
ESR2is known to regulate red blood cell production. Studies conducted in populations chronically
exposed to high altitude hypoxia, a driver of erythrocytosis (excess red blood cell production),
demonstrated inhibition of erythrocytosis through activation of estrogen beta signaling in ex vivo
models®. These observations are corroborated by a study of rat models under hypoxia, where
beta-estrogen treatment reduced circulating levels of erythropoietin, a kidney-derived factor that

stimulates red blood cell production’.

We additionally identified a negative association between length of this STR and ESR2
expression. However, the expected direction of this association is unclear. Multiple ESR2
isoforms exist, either as a result of alternative splicing of the last coding exons (exon 8 and exon
9, respectively), deletion of one or more coding exons, or alternative usage of untranslated exons
in the 5' region®. One of the five isoforms found in humans has an undetectable affinity to estrogen.
Rather, ESR2 antagonizes estrogen-alpha receptor signaling®. Thus, the tissue-specific effect of

ESRZ2 expression on estrogen-receptor signaling depends on the dominant isoform in that tissue.
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Supplementary Figures

Supplementary Figure 1: Comparison of SNP alternate allele frequencies between our
SNP-STR reference panel and UKB phased hard-called variants

UKB allele frequencies

Number of loci
)

0.2 0.4 0.6 0.8 1
STR panel allele frequencies

The x-axis indicates the alternate allele frequency of variants calculated from the European
individuals in our SNP-STR reference panel’® (Main Text URLs). The y-axis indicates their
alternate allele frequency in unrelated participants in the White British population in the UKB. We
filtered variants with more than a 12% difference in alternate allele frequency (indicated by the
red diagonal line). The color gradient represents the number of variants (logio scale) whose p-

values fall in each region. White regions contain no variants.
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Supplementary Figure 2: Comparison of association p-values between our pipeline and

summary statistics published by Pan-UKB.
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Heatmap of -log1o p-values obtained from the Pan-UKB'" study of UKB data (x-axis) vs. from our
study (y-axis) for total bilirubin associations. The color gradient represents the number of variants
(log1o scale) whose p-values fall in each region. White regions contain no variants. P-values less
than 1e-50 are truncated. Our pipeline’s p-values are highly correlated with PanUKB'’s but are
overall more conservative, which may be attributable to differences in models used (linear mixed

model for Pan-UKB vs. linear model used here, see Methods).
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Supplementary Figure 3: Distribution of SuUSIiE 90%-credible set purities
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Distribution of SuSiE 90%-credible set purities across all trait-regions. (The rightmost bin is
inclusive, containing SuSIE credible sets with purity up to and including 1, i.e. those that consist

of a single variant.) Purity is defined as the minimum absolute correlation between any pair of

variants in the set. For subsequent analyses, we discarded credible sets with purity < 0.8.
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Supplementary Figure 4: PIP vs alpha values assigned by SuSiE
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Largest alpha value (x-axis) vs. PIP (y-axis) for all variants obtaining PIP = 0.05 across all trait
regions. Color (log1o scale) indicates the number of data points falling in each bin (hexagon).
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Supplementary Figure 5: Contribution of variants to signals genome-wide by variant CP
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Summed contribution of genome-wide significant variants across all regions binned by variant CP
as a fraction of the total CP of all genome-wide significant variants across all regions for SuSIiE
(a) and FINEMAP (b). (The rightmost bin for each graph is inclusive, containing variants with CPs
up to and including 1.) The total contribution of all variants across all regions with CP < 0.1 was
29.3% for SuSIE and 27.7% for FINEMAP.
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Supplementary Figure 6: Total CPs assigned to SuSiE credible sets by FINEMAP
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SuSiE 90%-credible sets across all trait-regions (with purity = 0.8) were each binned by the total
CP FINEMAP assigned to all variants in that set. Sets in the rightmost bin have FINEMAP total
CP between 1 and 1.01 (i.e. FINEMAP predicts them to contain on average between 1 and 1.01
causal variants). FINEMAP assigned 3 SuSiE credible sets to have total CP greater than 1.01
(none of which attained total CP greater than 1.17); those 3 are omitted from the figure. By
definition, SUSIE has estimated each 90%-credible set to have between a 90% and 100% chance

of containing a single causal variant.
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Supplementary Figure 7: Discordance between SuSiE and FINEMAP CPs
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Comparison of CPs across all trait-regions between SuSiE (x-axis) and FINEMAP (y-axis) for
genome-wide significant STRs (a) and SNPs and indels (b). The blue line denotes equal CP.
Yellow boxes in the three extreme corners are summarized by the number of variants residing in

those boxes.
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Supplementary Figure 8: Discordance between fine-mappers
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The number of STRs (a) and SNPs (b) with p-value < 1e-10 assigned a CP = 0.8 by only SuSiE
(red), only FINEMAP (purple), or both (brown).


https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502370; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Supplementary Figure 9: SuSiE settings not used for filtering

# variants: None # variants: None
1 # variants: 95 # variants: 96

o

©
o
©

0.95

=3
>

o

>

o

IS
o
~

100

CP under 10x stricter convergence tolerance
CP under residual variance prior

* *
0.2 s vg 0.2 s .g
- = 3 =
o o
3 OFE10 3 SE10
@3 -
z E Z &
ElE § 3
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
cpP cP
C # variants: 1 d # variants: 2
1 # variants: 95 1 # variants: 92
@ 0.8
S
]
w
L
=
Q
8os =
S [
8 2
: §
3 S
3 Q
204 &}
L
5 1k 1k
k]
<
3
a 100
© 0.2 * " 100
- FIR] 538
S R = 2
0 O
3 OEE10 3 SEq0
@3 A
=z =z
5 £ 5
0 22 32
0 0.2 0.4 0.6 0.8 1

CP

Concordance between SuSIiE CPs for all genome-wide significant variants across most small-to-
medium sized mean platelet volume fine-mapping regions under default settings on the x-axis
(tol=1le-3, residual variance slightly less than 1, and L=50) vs. a single alternate setting
on the y-axis (a) tol=le-4, (b) residual variance=0.95, (c)
residual variance=0.8 and (d) L=10. Blue lines denote equal CP. Yellow boxes in the three

extreme corners are summarized by the number of variants residing in those boxes.
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Supplementary Figure 10: Effect of best-guess genotypes on SuSiE results
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Discordance between SuSIiE CPs for variants with p-value < 1e-10 when run with dosage
genotypes (x-axis) vs best-guess genotypes (y-axis) among STRs (a) and SNPs and indels (b).
These data points are taken from running SuSiE on the trait-regions containing the 177 STR-trait
associations with p-value<1e-10 and with both SuSiE and FINEMAP CPs=0.8. Black lines denote
equal CP. Larger circle sizes denote larger variant -logio association p-values. Circle color
denotes the CP of that variant from our default FINEMAP run. Yellow boxes in the three extreme
corners are summarized by the number of variants residing in those boxes and the average
FINEMAP CP value of those variants.
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Supplementary Figure 11: Effect of alternate settings on FINEMAP results
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Discordance between FINEMAP CPs for variants with p-value < 1e-10 when run under default
settings on the x-axis (with a p-value > 5e-2 filter, -—prior-std 0.05, prior of one causal
variant per trait-region, --prob-conv-sss-tol 0.001) (x-axis) vs a single alternate setting on
the y-axis (a) p-value > 5e-4 filter (b) additionally filtering those variants with total non-major-allele
dosage < 100 (c) --prior-std 0.0224 (d) prior of four causal variants per trait region (e) —-
prob-conv-sss-tol 0.0001 and (f) --prior-std=0.005. These data points are taken from
running FINEMAP on the trait-regions containing the 177 STR-trait associations with p-value<ie-
10 and with both SuSIiE and FINEMAP CPs=0.8. Discordance among STRs is plotted on the left,
and among SNPs and indels is plotted on the right. Black lines denote equal CP. Larger circle
sizes denote larger variant -log+o association p-values. Circle color denotes the CP of that variant
from our default SuSIE run. Yellow boxes in the three extreme corners are summarized by the

number of variants residing in those boxes and the average SuSiE CP value of those variants.
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Supplementary Figure 12: Effect of conservative prior favoring SNPs and indels on
estimated causality of STR variants
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Discordance between CPs for STRs with p-value < 1e-10 when run under default settings (x-axis)
vs with a 4x prior of causality for SNPs and indels as compared to STRs (y-axis) in (a) SuSIiE and
(b) FINEMAP. These data points are taken from running SuSiE and FINEMAP on the trait-regions
containing the 177 STR-trait associations with p-value<1e-10 and with both SuSiE and FINEMAP
CPs=0.8. Black lines denote equal CP. Larger circle sizes denote larger variant -logo association
p-values. Circle color denotes the CP of that variant from the other fine-mapper’s default run.
Yellow boxes in the extreme corners are summarized by the number of variants residing in those

boxes and the average SuSIiE CP value of those variants.
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Supplementary Figure 13: Replication of White British STR associations in other

populations
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The y-axis gives the fraction of STR associations measured in the discovery cohort that have the
same direction of effect when measured in the replication population regardless of p-value
(left=Irish, right=White Other, see Fig. 3 for the non-White populations). Brackets beneath the x-
axis denote the binning of discovery -log:o p-values. Brown=genome-wide significant associations
(discovery p<b5e-8), orange=FINEMAP fine-mapped STR associations (discovery p<5e-8 and
FINEMAP CP = 0.8), teal=SuSiE fine-mapped STR associations (discovery p<5e-8 and SuSiE
CP = 0.8) and purple=confidently fine-mapped STR associations. Annotations above each bar
indicate the number of STR-trait associations considered. We required confidently fine-mapped
STR associations to have p-value < 1e-10, thus they do not appear in the left-most bin. The trends
in these figures are somewhat sensitive to the choice of p-value bin boundaries so we additionally

analyze this data using logistic regression models (Supplementary Table 6).
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Supplementary Figure 14: Prevalence of STR features
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Genomic annotation (a-b) and repeat unit (c-d) prevalences are shown for different categories of
STRs. (Blue=all STRs in our imputation panel, yellow=genome-wide significant STRs for at least
one trait, orange=confidently fine-mapped STRs). In (a), “upstream promoter” is defined as the
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region 3kb upstream of a transcription start site. (c-d) contains all repeat units represented by at
least one thousand STRs in our reference panel, except for trinucleotide STR repeat units, as
enrichments for those could not be distinguished from the enrichment for exonic trinucleotide
STRs as a whole. See the Methods for more details. P-values from two-sided tests of difference
between proportions are only displayed when p<0.05. Note that strong p-values for differences
between the all STRs and genome-wide significant STRs categories could often be due to
restricting to phenotypically-important genomic regions and not necessarily due to enrichment for

causal variants.


https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502370; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Supplementary Figure 15: Splicing analysis of an STR in SLC2A2
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Scatter plots showing the association between the STR chr3:17100913 (GT repeat) and the
splicing (percent spliced in, or PSI) of exon 4 (a; linear association p=0.77) and exon 6 (b; linear
association p=8.7e-07) of SLC2A2 in Liver samples from GTEx'2. Blue dots represent single
samples. Dots are transparent such that darker dots indicate multiple samples overlayed on the
same point. For each plot, the x-axis represents the sum of repeat copies of STR in each individual
and the y-axis represents percent spliced in (PSI) for the indicated exon. The red line shows the

median and the blue line shows the mean PSI for each x axis value.
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Supplementary Figure 16: Associations of an STR in CBL with platelet crit and residual
platelet volume
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STR length vs mean platelet crit (a) and mean residual platelet count (b). The trends are nearly
identical to those in Fig. 4b for unadjusted platelet count. For (b) we calculated residuals by
linearly regressing out the same covariates that were used in association p-value calculations
(Methods), including sex, age, population principal components and categorical covariates for
batch effects. We then calculated the weighted means for each dosage taking the residual values
as fixed inputs. Note that in our association pipeline, p-values are calculated from regressions on
rank inverse normalized phenotype values, while for this figure we do not use rank inverse

normalization.
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Supplementary Figure 17: Associations of an STR in CBL with mean sphered cell volume
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(a) Association between dosage of the CGG repeat at chr11:119077000 (hg19) and mean
sphered cell volume. The mean trait value for each STR dosage (sum of allele lengths) was
calculated across White British participants, with each participant’s contribution weighted by that
participant’s likelihood of having that dosage. 95% confidence intervals were calculated similarly.
Only dosages with a population frequency of 0.1% or greater are displayed. Rounded population-
wide counts are displayed for each dosage. (b) Association of variants at the CBL locus and mean
sphered cell volume. Light blue=SNP and indels; orange=STRs. Red line=significance threshold,
black circle=the (CGG), STR.
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Supplementary Figure 18: Distribution of alleles of an STR in CBL across 1000 Genomes

populations
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The x-axis gives STR length (number of repeat units) and y-axis gives the population frequency.
The solid portion of each bar corresponds to the alleles of that length that include a “TGG”
imperfection at the second repeat (rs7108857). Colors denote 1000 Genomes populations that

were included in the Geuvadis cohort'.
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Supplementary Figure 19: Association of an STR in BCL2L11
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(a) Association of variants at the BCL2L11 locus and eosinophil percent, before (top) and after
(bottom) conditioning on the CCG repeat at chr2:111878544 (hg19). Light blue=SNPs and indels;
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orange=STRs. Red line=significance threshold, black circle=the (CCG), STR. (b) Association
between dosage of the CCG repeat and eosinophil percentage. The mean trait value for each
STR dosage (sum of allele lengths) was calculated across White British participants, with each
participant’s contribution weighted by that participant’s likelihood of having that dosage. 95%
confidence intervals were calculated similarly. Only dosages with a population frequency of 0.1%

or greater are displayed. Rounded population-wide counts are displayed for each dosage.
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Supplementary Figure 20: Association of an STR in TAOK1
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(a) Association between dosage of the A repeat at chr17:27842016 (hg19) and mean platelet
volume. The mean trait value for each STR dosage (sum of allele lengths) was calculated across
White British participants, with each participant’s contribution weighted by that participant’s
likelihood of having that dosage. 95% confidence intervals were calculated similarly. Only
dosages with a population frequency of 0.1% or greater are displayed. Rounded population-wide
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counts are displayed for each dosage. (b) Association of variants at the TAOK1 locus and mean
platelet volume before (top) and after (bottom) conditioning on the STR. Light blue=SNPs and
indels; orange=STRs. Red line=significance threshold, black circle=the (A), STR.
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Supplementary Figure 21: Association and allele distribution of an STR in ESR2
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(a) Association between dosage of the GTTT repeat at chr14:64714051 (hg19) and haematocrit.
The mean trait value for each STR dosage (sum of allele lengths) was calculated across White
British participants, with each participant’s contribution weighted by that participant’s likelihood of
having that dosage. 95% confidence intervals were calculated similarly. Only dosages with a
population frequency of 0.1% or greater are displayed. Rounded population-wide counts are
displayed for each dosage. (b) Association of variants at the ESR2 locus and haematocrit.
Conditioning on the repeat fully accounts for the signal seen in this region. Light blue=SNPs and
indels; orange=STRs. Red line=significance threshold, black circle=the (GTTT), STR. (c)
Distribution of STR length alleles in different populations (blue=White British, orange=Black,
yellow=South Asian; green=Chinese).
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Supplementary Figure 22: Associations of an STR in RHOT1
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(a) Association between dosage of the CCG repeat at chr17: 30469471 (hg19) and red blood cell
distribution width. The mean trait value for each STR dosage (sum of allele lengths) was
calculated across White British participants, with each participant’s contribution weighted by that
participant’s likelihood of having that dosage. 95% confidence intervals were calculated similarly.
Only dosages with a population frequency of 0.1% or greater are displayed. Rounded population-
wide counts are displayed for each dosage. (b) Association between dosage of the repeat and

RHOT1 gene expression in the Geuvadis cohort' (LCLs; n=447). Solid lines give median
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expression values for each STR dosage bin with at least 5% frequency in each group. Dosages
were binned into groups spanning 3 repeat copies each since individually each genotype was
relatively rare at this locus. (c¢) Positioning of the CCG repeat relative to the H3K27ac signal (note
the localization within the nucleosome depleted region) and a CTCF binding site at the 5’ UTR of
RHOT1. The visualization was generated using the Integrative Genomics Viewer' loading the
ENCODE' data for GM12878 LCLs. The image does not display the gene NR_136413 that also

overlaps the STR as it is not expressed in LCLs.
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Supplementary Figure 23: Association of an STR in NCK2
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(a) Association between dosage of the AC repeat at chr2:106510441 (hg19) and mean platelet
volume. The mean trait value for each STR dosage (sum of allele lengths) was calculated across
White British participants, with each participant’s contribution weighted by that participant’s
likelihood of having that dosage. 95% confidence intervals were calculated similarly. Only
dosages with a population frequency of 0.1% or greater are displayed. Rounded population-wide
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counts are displayed for each dosage. (b) Association of variants at the NCK2 locus and mean
platelet volume. Conditioning on the repeat fully accounts for the signal seen in this region. Light

blue=SNPs and indels; orange=STRs. Red line=significance threshold, black circle=the (AC),
STR.
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