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Abstract  

Short tandem repeats (STRs), genomic regions each consisting of a sequence of 1-6 base pairs 

repeated in succession, represent one of the largest sources of human genetic variation. 

However, many STR effects are not captured well by standard genome-wide association studies 

(GWAS) or downstream analyses that are mostly based on single nucleotide polymorphisms 

(SNPs). To study the involvement of STRs in complex traits, we imputed genotypes for 445,735 

autosomal STRs into SNP data from 408,153 White British UK Biobank participants and tested 

for association with 44 blood and serum biomarker phenotypes. We used two fine-mapping 

methods, SuSiE and FINEMAP, to identify 118 high-confidence STR-trait associations predicted 

as causal variants under all fine-mapping settings tested. Using these results, we estimate that 

STRs drive 5.2-9.7% of GWAS signals for these traits. Our high confidence STR-trait associations 

implicate STRs in some of the strongest hits for multiple phenotypes, including a trinucleotide 

STR in APOB associated with LDL cholesterol and a CGG repeat in the promoter of CBL 

associated with multiple platelet traits. Replication analyses in additional population groups and 

orthogonal expression data further support the role of a subset of the candidate STRs we identify. 

Together, our study suggests that polymorphic tandem repeats make widespread contributions 

to complex traits, provides a set of stringently selected candidate causal STRs, and demonstrates 

the need to routinely consider a more complete view of human genetic variation in GWAS.  
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Introduction 

Genome-wide association studies (GWAS) have become an indispensable tool for identifying 

which genes and non-coding regions in the genome influence complex human traits. While GWAS 

routinely identify tens to hundreds of genomic regions associated with individual traits, biological 

interpretation of GWAS results remains challenging1. Further, variants identified by GWAS still 

only explain modest amounts of trait variability for most phenotypes2.  

A major challenge is that typical GWAS pipelines only consider a subset of common genetic 

variants. The majority of GWAS have been based on common single nucleotide polymorphisms 

(SNPs) and short insertions or deletions (indels) either genotyped using microarrays or imputed 

from population reference databases based on whole genome sequencing (WGS) data. However, 

detailed follow-up of individual GWAS signals has often revealed complex variants that were 

absent from the original analysis, such as repeats3–5 or structural variants6–8, to be the causal 

drivers of those signals. Indeed, a recent study showed that polymorphic protein-coding variable 

number tandem repeats (VNTRs) are likely causal drivers of some of the strongest GWAS signals 

identified to date for multiple traits3. 

Short tandem repeats (STRs) are a type of complex variant that consist of repeat units between 

1-6bp duplicated many times in succession. Hundreds of thousands of STRs occur in the human 

genome9, each spanning from tens to thousands of base pairs. STRs undergo frequent mutations 

resulting in gain or loss of repeat units10, with per-locus mutation rates several orders of magnitude 

higher than average rates for SNPs11 or indels12. Large repeat expansions at STRs are known to 

result in Mendelian diseases such as Huntington’s disease, muscular dystrophies, hereditary 

ataxias and intellectual disorders10,13. Further, recent evidence suggests that more modest but 

highly prevalent variation at multiallelic non-coding STRs can also be functionally relevant. We 

and others have found associations between STR length and both gene expression4,14 and 

splicing15,16. The impact of STRs on gene expression is hypothesized to be mediated by a variety 

of mechanisms including modulation of nucleosome positioning17, altered methylation14, affecting 

transcription factor recruitment4 and impacting the formation of non-canonical DNA and RNA 

secondary structures18,19. Together, these suggest that STRs potentially play an important role in 

shaping complex traits in humans. 

Despite this potential, STRs are not well-captured by current GWAS. Because STRs are not 

directly genotyped by microarrays and are challenging to analyze from WGS, STRs have been 
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largely excluded from widely used reference haplotype panels20,21 and downstream GWAS 

analyses. While some STRs are in high linkage disequilibrium (LD) with nearby SNPs, many 

highly multiallelic STRs can only be imperfectly tagged by individual common SNPs, which are 

typically bi-allelic. Thus, underlying effects driven by variation in repeat length, especially at highly 

polymorphic STRs, have likely not been fully captured. 

Recent technological advances can now enable incorporation of STRs into GWAS. We and others 

have created a variety of bioinformatic tools to genotype STRs directly from WGS by statistically 

accounting for the noise inherent in STR sequencing22–27. We recently leveraged these tools to 

develop a reference haplotype panel consisting of both SNP and STR genotypes that allows for 

imputation of STRs from SNP genotype data28 in samples for which WGS is unavailable. We 

found that all but the most highly polymorphic STRs are amenable to imputation in European 

cohorts, with an average per-locus imputation concordance of 97% with genotypes obtained from 

WGS.  

Here, we leverage our SNP-STR reference haplotype panel to impute genome-wide STRs into 

SNP array data from 408,153 White British individuals obtained from the UK Biobank (UKB) for 

which deep phenotype information is available29. Whereas a recent publication studied the effects 

of protein-coding VNTRs (118 total VNTRs with repeat units of 7+ base pairs; total length of up 

to several kilobases) on complex traits3, our study focuses on a distinctset of repeats (namely 

445,735 STRs with repeat units of 1bp to 6bp) which are mostly non-coding. We test for 

association between imputed STR lengths and 19 blood cell count and 25 biomarker traits. These 

traits provide multiple advantages: they are broadly and reliably measured, continuous, highly 

polygenic and have variants with relatively large effect sizes, thus enabling well-powered 

association testing. 

We performed fine-mapping on these associations and estimate that STRs account for 5-10% of 

signals identified by GWAS for the traits we studied. We observed that fine-mapping results are 

more sensitive to data-filtering thresholds and meta-parameter choices than commonly 

acknowledged and thus require careful interpretation. After restricting to the signals which were 

consistently fine-mapped across settings, we identified 95 unique STRs strongly predicted to be 

causal for at least one trait. We highlight multiple STRs in this set which we predict contribute to 

some of the strongest hits for LDL cholesterol, platelet count, and other traits. Overall, our study 

demonstrates the widespread role of polymorphic tandem repeats and the need to consider a 

broad range of variant types in GWAS and downstream analyses such as fine-mapping.  
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Results 

Performing genome-wide STR association studies in 44 traits 

We imputed genotypes for 445,735 autosomal STRs into phased SNP array data from 408,153 

White British individuals from the UKB using Beagle30 in combination with our published 

SNP+STR reference haplotype panel28 (Methods; Fig. 1a; Supplementary Fig. 1; URLs). 

Compared to common SNPs which are typically bi-allelic, many of the STRs imputed from our 

panel are highly multiallelic (Fig. 1b). We tested STRs for association with 44 quantitative blood 

cell count and biomarker traits (Supplementary Table 1) for which phenotype information was 

available for between 304,658-335,585 genetically unrelated subsets of individuals. To facilitate 

this and other STR association studies, we developed associaTR (URLs), an open-source custom 

software pipeline capable of testing for association between STR length and phenotype. 

For each STR-trait pair, we used associaTR to test for a linear association between STR dosage 

(the sum of the imputed allele length dosages of both chromosomes) and the measured trait value 

(Fig. 1c-d). For comparison, we used plink31 to perform similar association tests using 70,698,786 

SNP and short indel variants that were imputed into the same individuals. For all associations 

(STR and SNP and indel), we included as covariates SNP genotype principal components, sex, 

and age (Methods). Additional covariates were included on a per-trait basis (Supplementary 
Table 1). We compared the output of our SNP analysis pipeline to previous results reported by 

Pan-UKB32 and found that our pipeline produced similar results (Supplementary Fig. 2). 

We then compared signals identified by SNPs and indels to those identified by STRs. For each 

trait we defined peaks as 500kb intervals centered on the lead genome-wide significant variant (a 

SNP, indel or STR with p≤5e-8) in that interval (Methods). We identified an average of 389 peaks 

per trait, with blood cell count traits generally more polygenic than biomarkers (Fig. 1e). Of these 

peaks, 65.8% contained both a significant STR and a significant SNP or indel, 32.5% contained 

only significant SNPs or indels, and 1.7% contained only significant STRs. The majority of strong 

peaks were identified by both STRs and SNPs and/or indels. No new strong peaks were identified 

only by STRs (Fig. 1f), which is expected given that SNP and indel genotypes were used to 

impute the STRs. Overall, p-values of the lead SNP or indel and lead STR were similar for most 

peaks. Thus, we focused on fine-mapping to determine which variants might be causally driving 

the identified signals. 
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Figure 1: Genome-wide association tests identify STRs, SNPs and indels associated with blood and biomarker 
traits in the UKB. (a) Schematic overview of this study. STRs are imputed into phased hard-called SNPs. GWAS 
is performed on SNPs and STRs in parallel. Regions with significant signals are identified and then fine-mapped by 
two independent methods each under multiple scenarios, resulting in candidate causal STRs. (b) Distribution of the 
number of common alleles at each imputed STR. Common alleles are defined as alleles with estimated frequency 
³1% (Methods). For clarity we omitted from this figure the 237 imputed STRs with only a single imputed allele with 
frequency ³1%. (c-d) Representative association results. Manhattan plots are shown for phenotypes (c) total bilirubin 
(an example moderately polygenic trait) and (d) platelet count (an example highly polygenic trait). Large diamonds 
represent the lead variants (pruned to include at most one lead variant per 10Mb for visualization). -log10 p-values are 
truncated at 100. Blue=SNPs and indels; orange=STRs. (e) Summary of signals identified for each trait. Bars show 
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the number of peaks per phenotype. Blue denotes peaks only containing genome-wide significant SNPs and indels, 
purple denotes peaks containing both significant SNPs and indels and STRs. The number of peaks only containing 
significant STRs is too small to be visible in this display. (f) Comparison between lead SNP and indel and STR p-
values at each peak. If there are no STRs in a peak, the y coordinate is set to zero (same for SNPs and indels). p-
values are capped at 1e-300, the maximum precision of our pipeline. The shade represents the number of peaks falling 
at each position on the graph. 

Fine-mapping suggests 5-10% of significant signals are driven by STRs 

We applied statistical fine-mapping to identify candidate causal variants that may be driving the 

GWAS signals detected above. We used two fine-mapping methods: SuSiE33 and FINEMAP34. 

These methods differ in their modeling assumptions and thus provide partially orthogonal 

predictions. For each trait we divided its genome-wide significant variants (SNPs, indels and 

STRs) and nearby variants into regions of at least 500kb (Methods). This resulted in 14,494 fine-

mapping trait-regions (Supplementary Table 2), with some trait-regions containing multiple 

nearby peaks. To compare outputs between fine-mappers in downstream analyses, we defined 

the causal probability (CP) of each variant to be a number between 0 and 1 that indicates the 

variant’s chance of causality. For FINEMAP we defined a variant’s CP to be the FINEMAP 

posterior inclusion probability (PIP) calculated for that variant. For SuSiE we defined a variant’s 

CP to be the maximal SuSiE alpha value for that variant across pure credible sets in the region 

(Supplementary Figs. 3-4). We explain the rationale behind this choice in Supplementary Note 
1. 

We used two approaches to study the contribution of STRs vs. SNPs and indels to fine-mapped 

signals. First, we focused on the genome-wide significant variants (STR, SNP, or indel) with CP 

≥ 0.8. (These accounted for a minority of the 21,030 total signals detected by SuSiE). SuSiE 

identified 4,490 such variants and FINEMAP identified 6,240. Of these, 7.4% (range 1.3-13.0% 

across traits; SuSiE) and 9.7% (range 1.2-14.9%; FINEMAP) are STRs (Supplementary Table 
3). Among the subset of variants identified by both methods (4,028), 5.6% (range 0.9-12.8%) are 

STRs. Second, we considered the sum of CPs from all genome-wide significant variants, thereby 

taking into account the many signals which were not resolved to a single variant. STRs make up 

5.2% (range 1.1-6.8%) of the total SuSiE CP sum and 8.3% (range 3.1%-10.2%) of the total 

FINEMAP CP sum. A potential limitation of this second metric is that variants with small CPs (CP 

≤ 0.1) represent a large fraction (29.3% for SuSiE, 27.7% for FINEMAP) of these totals 

(Supplementary Fig. 5). Additionally, our results below suggest that a sizable subset of variant 

CPs are unstable or discordant between fine-mappers, particularly for STRs (Supplementary 
Notes 2-3), impacting the totals in both metrics. Nevertheless, these results above suggest that 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/


between 5.2-9.7% of genome-wide significant signals can be explained by an STR, regardless of 

the fine-mapping method or metric used. 

We next evaluated the robustness of our fine-mapping results. While SuSiE and FINEMAP tended 

to output similar results, they assigned highly discordant CPs to a subset of variants 

(Supplementary Note 2; Supplementary Figs. 6-8). Therefore, we performed additional 

analyses to identify a high-confidence set of causal STR candidates. We first conservatively 

restricted to the 177 candidate STRs with association p-values ≤ 1e-10 and with CP ≥ 0.8 in both 

FINEMAP and SuSiE. We then reran SuSiE and FINEMAP under a range of alternative settings, 

such as using best-guess STR genotypes instead of dosages and varying the prior distribution of 

effect sizes. These and other alternative settings are described in the Methods. The different 

settings we evaluated tended to produce concordant results, but again, for a subset of STRs, we 

observed highly inconsistent CPs (Supplementary Figs. 9-12). These discrepancies, which are 

discussed in detail in Supplementary Note 3, suggest that fine-mapping results can in some 

cases be highly sensitive to input filtering, model settings and imputation quality. Thus, we further 

restricted to those STR-trait associations which maintained CP ≥ 0.8 across a range of alternative 

fine-mapping conditions (Methods; Fig. 2; Supplementary Table 4). We refer to these below as 

confidently fine-mapped STR associations. Lastly, we added an STR in the APOB gene to this 

set as we noticed this variant only failed to meet the above criteria because it was simultaneously 

represented in both our STR reference panel and in the SNP and indel set generated by the UKB 

team (Supplementary Note 4). This left us with 118 confidently fine-mapped STR-phenotype 

associations corresponding to 95 distinct STRs. 

Next, we evaluated our fine-mapping results by measuring their replication rates in populations 

besides White British individuals, with the expectation that causal associations will replicate at 

higher frequencies in other populations than non-causal associations due to having common 

biological functionality. The UKB includes genetically unrelated, self-identified groups of 7,562 

Black, 7,397 South Asian, 1,525 Chinese, 11,978 Irish and 15,838 Other White participants 

(Methods). For each of those five groups we performed association testing for each STR against 

each trait (Supplementary Table 5). As expected, signals replicate at a higher rate in groups 

most closely related to our discovery cohort (i.e. Irish and Other White). Encouragingly, fine-

mapped associations replicate at higher rates than non-fine-mapped associations in the Black, 

South Asian, and Chinese populations, even after stratifying by the discovery p-value (Fig. 3, 

Supplementary Fig. 13). To quantitatively measure this trend, for each population we fit a logistic 

regression model using whether signals replicated in that population as the outcome, the fine-
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mapping status of those associations as the independent variable, and their -log10(p-value) in the 

discovery cohort as a covariate (Supplementary Table 6). This analysis further supports the 

conclusion that fine-mapped associations replicate at higher rates. Additionally, the model 

consistently predicts that confidently fine-mapped STR associations replicate at higher rates than 

STRs fine-mapped by either fine-mapper alone, although only a subset of those predictions 

reached nominal significance, likely due to the small number of fine-mapped STR associations.  

Next, we sought to characterize the set of confidently fine-mapped STRs. This set contains 62 

poly-A repeats, 13 poly-AC, 5 poly-CCG, and 15 repeats with other units. Nine of these STRs 

overlap coding or untranslated regions (UTRs) (Table 1; Supplementary Table 7). Compared to 

all genome-wide significant STRs, confidently fine-mapped STRs were more likely to be exonic 

trinucleotide STRs (two-sided two-sample test of difference between proportions p=5e-05). No 

other annotation categories that we tested showed significant enrichment or depletion after 

multiple hypothesis correction (Methods; Supplementary Fig. 14). Lastly, we observed that 17 

of these confidently fine-mapped STRs are significant quantitative trait loci (QTLs) for the 

expression of nearby genes in the Genotype-Tissue Expression (GTEx) dataset35 

(Supplementary Tables 8-9; Methods). We note that both of these analyses were 

underpowered, due to the low number of confidently fine-mapped STRs and the low sample sizes 

for the most relevant tissue types (e.g. kidney, liver).  
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STR coordinate 
(hg19 chr:pos) Reference allele 

Called 
repeat 

unit 
Trait Association 

P-value 
Association 

Z-score 
Gene 

(annotation) 

1:204527033 (TAA)9 AAT platelet crit 5.76e-17 -8.37 MDM4 (3’UTR) 

2:21266752 
(CAG)6(CGCAGGCAG) 

[CGC(CAG)2]2CGC 

CTG 

(Poly-

Leucine) 

 

apolipoprotein 

B 
1.37e-279 -35.76 

APOB 

(Coding) 

2:106510441 (AC)6GTG(CA)10C(TA)7T AC 
mean platelet 

volume 
6.93e-29 -11.15 NCK2 (3’UTR) 

2:111878544 (CGC)(CGCTGC)2(CGC)13C CCG 

eosinophil 

count 
4.96e-58 +16.06 

BCL2L11 

(5’UTR) eosinophil 

percent 
5.88e-75 +18.32 

2:204311891 T4CT4CT3CT18 T IGF-1 3.97e-11 -6.61 ABI2 (3’UTR*) 

11:119077000 (CGG)11C CGG 

mean sphered 

cell volume 
6.88e-16 -8.07 

CBL (5’UTR*) 
platelet count 3.77e-83 +19.32 

platelet crit 6.07e-103 +21.55 

16:67229794 (CAG)13(CAA)(CAG)(TAA)(CAG)3 

AGC 

(Poly-

Serine) 

 

mean sphered 

cell volume 
3.07e-23 +9.93 

E2F4 (Coding) 

red blood cell 

count 
1.08e-13 -7.43 

mean 

corpuscular 

haemoglobin 

2.83e-23 +9.94 

mean 

corpuscular 

volume 

9.27e-26 +10.49 

17:30469471 (CCG)16CC CCG 

red blood cell 

distribution 

width 

6.57e-13 +7.19 
RHOT1 

(5’UTR) 

17:33871548 T17 A 

mean platelet 

volume 
4.30e-62 -16.63 

SLFN14 (3’ 

UTR) 
platelet 

distribution 

width 

1.18e-249 -33.78 

 
Table 1: Confidently fine-mapped STRs are identified in coding regions and untranslated regions (UTRs). 
Imputed alternate alleles and rsIDs are provided in Supplementary Table 7. Repeat units here are calculated as 
described in the Methods, except that they are required to be on the strand in the direction of transcription of the 
overlapping gene. Asterisks next to UTRs in the last column denote STRs which overlap UTRs of only noncanonical 
transcript(s) from Ensembl release 106. 
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Figure 2: STRs are confidently fine-mapped to causally impact many traits. (a) Overview of confidently fine-
mapped STRs. Only STRs with at least one confidently fine-mapped association are shown. Each triangle represents 
an STR-trait association with association p-value ≤ 1e-10. Black=confidently fine-mapped, red-brown=CP ≥ 0.8 in either 
initial FINEMAP or SuSiE run, light-tan=all other associations with p≤1e-10. Triangle direction (up or down) indicates 
the sign of the association between STR length and the trait. Triangle size scales with association p-value. Similar traits 
are grouped on the x-axis by white and light-grey bands. STRs are grouped on the y-axis according to the traits they 
were confidently fine-mapped to. STRs are labeled by the genes they reside in (protein coding genes preferred) or by 
chromosomal location and the nearest gene for intergenic STRs. CCDC26 and TFDP2 each contain two confidently 
fine-mapped STRs and appear twice. Light blue rows indicate (from left to right): whether each STR is associated with 
expression of a nearby gene (adjusted p<0.05; Supplementary Table 8), replicates with the same direction of effect 
in other populations (adjusted p<0.05; Methods), repeat unit, and the number of common alleles for each STR (as 
defined in Fig. 1; see scale beneath). 

  

Figure 3: Concordance of White British STR effect directions in Black, South Asian and Chinese populations. 
The y-axis gives the fraction of STR associations measured in the discovery cohort that have the same direction of 
effect when measured in the replication population regardless of p-value. Brackets beneath the x-axis denote the 
binning of discovery -log10(p-values). Brown=genome-wide significant associations (discovery p≤5e-8), 
orange=FINEMAP fine-mapped STR associations (discovery p≤5e-8 and FINEMAP CP ≥ 0.8), teal=SuSiE fine-mapped 
STR associations (discovery p≤5e-8 and SuSiE CP ≥ 0.8) and purple=confidently fine-mapped STR associations. 
Annotations above each bar indicate the number of STR-trait associations considered. We required confidently fine-
mapped STR associations to have p-value ≤ 1e-10, thus they do not appear in the left-most bin. The trends in these 
figures are somewhat sensitive to the choice of p-value bin boundaries so we additionally analyze this data using logistic 
models (Supplementary Table 6). 

Fine-mapped STRs capture known associations 

We identified multiple confidently fine-mapped STRs that were previously demonstrated to have 

functional roles, providing supporting evidence for the validity of our pipeline. For instance, our 

fine-mapping predicts a protein-coding CTG repeat (Supplementary Table 7) to be the causal 

variant for one of the strongest signals for LDL-cholesterol (LDL-C; two-sided association t-test 

p-value = 2e-235) and apolipoprotein B (p=1e-279), which forms the backbone of LDL-C 

lipoproteins36. This repeat is bi-allelic in the UKB cohort with an alternate allele corresponding to 

deletion of three residues (Leu-Ala-Leu) in the signal peptide coded in the first exon of the 

apolipoprotein B (APOB) gene37. This deletion occurs in an imperfect region of the CTG repeat, 

with sequence CTGGCGCTG. In agreement with previous studies38,39, we found that the short 

allele is associated with high levels of both analytes. This STR also obtains association p-values 

≤ 0.05 with apolipoprotein B and LDL-C in each of the five other populations we considered. 
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As another example, our confidently fine-mapped STR set implicates a multiallelic AC repeat 

(Supplementary Table 7) 6bp downstream of exon 4 of SLC2A2 (also known as GLUT2, a gene 

that is most highly expressed in liver) as causally impacting bilirubin levels (p=8e-18). The 

potential link between GLUT2 and bilirubin is described in Supplementary Note 4. Previous 

studies in HeLa and 293T cells showed that inclusion of exon 4 of SLC2A2 is repressed by the 

binding of mRNA processing factor hnRNP L to this AC repeat40,41, implicating this STR in SLC2A2 

splicing. Notably, these studies did not investigate the impact of varying repeat copy number. We 

examined this STR in GTEx liver samples and did not find a significant linear association between 

repeat count and the splicing of exon 4, though we did find evidence for association with the 

splicing of exon 6 (Supplementary Fig. 15). 

A trinucleotide repeat in CBL regulates platelet traits 

Most of the confidently fine-mapped STR associations identified by our pipeline have, to our 

knowledge, not been previously reported. For example, this set includes positive associations 

between the length of a highly polymorphic CGG repeat in the promoter of the gene CBL (which 

encodes an E3 ubiquitin ligase) and both platelet count (p=4e-83) and platelet crit (p=6e-103; 

Supplementary Table 7; Fig. 4a-b; Supplementary Fig. 16). Compared to other types of STRs, 

CG-rich repeats in promoter and 5’ UTR regions have been strongly implicated in 

transcriptomic42,43 and epigenomic regulation44. This repeat is also confidently fine-mapped to an 

association with mean sphered cell volume (p=7e-16; Supplementary Fig. 17), but this is 

comparatively much weaker and we do not discuss it here. For both platelet crit and platelet count, 

the two fine-mappers identify two signals in this region, one of which they both localize to this 

STR. After conditioning on the lead variant from the other signal (rs2155380) the STR becomes 

the lead variant in the region by a wide margin (Fig. 4c-d). Conditioning on both the lead variant 

and the STR accounts for all the signal in the region (Fig. 4e). This supports the fine-mappers’ 

prediction that there is a second signal in this region which is driven by the STR. The association 

between this STR’s length and platelet crit replicated with p ≤ 0.05 in all of the non-Black 

populations tested, and the association with platelet count replicated in three of those four 

populations. While these associations did not replicate in the Black population, this STR has 

shorter alleles in that population (Fig. 4a) and it appears that the relationship between allele length 

and platelet count may only be present at intermediate allele lengths (Fig. 4b). Population-specific 

distributions of allele lengths based on genotypes obtained directly from whole genome 

sequencing in the 1000 Genomes Project21 (Methods) are highly similar to those obtained from 
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imputed data in the UKB, suggesting imputed genotypes at this locus are accurate across 

populations (Supplementary Fig. 18). 

This STR contains a common imperfection (rs7108857, which changes the second CGG copy to 

TGG). That variant is in weak LD with the length of the STR (r2 ranging between 0.023 (White 

British) and 0.175 (Chinese)) (Fig. 4a) and in strong LD with the lead variant of the other signal 

in this region (rs2155380). While rs7108857 is more strongly associated with the platelet traits 

than the STR’s length (platelet count p=9e-86, platelet crit p=4e-98), given the fine-mappers’ 

results that the STR length association is an independent signal, it is unsurprising that the STR-

length association remains after stratifying on the presence of this imperfection (Fig. 4f). This 

suggests that imperfections and repeat lengths are different characteristics of repeats that may 

have distinct associations. 

While the alleles present in our reference panel at this STR all have between 5 and 31 CCG 

repeat copies, much rarer large expansions of this repeat (>100 repeats) have been previously 

implicated in Jacobsen Syndrome45,46, a disorder characterized in part by the deletion of CBL 

which has been observed together with platelet abnormalities47. Similarly, loss of function 

mutations of CBL have been associated with increased platelet count48. These observations 

directly implicate CBL as a negative regulator of platelet production. We found that increased 

CCG length was negatively associated with CBL expression in three tissues in the GTEx cohort35 

(each with p-value ≤ 0.05 after multiple hypothesis correction; Supplementary Table 8; Fig. 4g). 

Intriguingly, this association replicated (p=0.007) in Europeans and was only modestly significant 

in African (p=0.048) individuals in the Geuvadis cohort49 (Fig. 4h), where we observed that African 

individuals have much higher overall CBL levels. This could explain why this STR’s associations 

with platelet traits did not replicate in the Black population. Intriguingly, the association signals for 

both the platelet traits and expression show similar non-linear patterns, with linear effects for 

medium-sized repeats but with plateauing effects for the shortest and longest alleles. Overall, our 

results support the hypothesis that longer CCG repeat alleles contribute to increased platelet 

count in non-Black populations by decreasing CBL expression (Fig. 4i), matching the direction of 

the gene-trait correlation observed previously48. 
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Figure 4: A highly polymorphic CGG repeat in the promoter of CBL influences platelet traits. (a) Distribution of 
STR alleles across populations. The x-axis gives STR length (number of repeat units) and y-axis gives the population 
frequency. The hatched portion of each bar corresponds to the alleles of that length that include a “TGG” imperfection 
at the second repeat (rs7108857). Colors denote different UKB populations. Extreme allele lengths 6, 8, 26, 27, 29, 30, 
31, 32 each have frequency less than 1% in all populations and have been omitted. (b) STR length vs. mean platelet 
count. The mean trait value for each STR dosage (sum of allele lengths) was calculated across White British 
participants, with each participant’s contribution weighted by that participant’s probability of having that dosage. 95% 
confidence intervals were calculated similarly. Only dosages with a population frequency of 0.1% or greater are 
displayed. Rounded population-wide counts are displayed for each dosage. (c-e) Association of variants at the CBL 
locus with platelet crit. Association plots in the White British population are shown before conditioning (c), after 
conditioning on rs2155380 (d), and after conditioning on both rs2155380 and STR length (e). Light blue=SNPs and 
indels; orange=STRs. Red line=significance threshold, black circles=the (CGG)n STR and rs2155380. (f) STR length 
vs. mean platelet count conditioned on the TGG Imperfection rs7108857. Blue=individuals homozygous for no 
imperfection (n=190,280); green=individual homozygous for the imperfection (n=26,824). Results are shown for platelet 
crit, similar results were obtained for platelet count (not shown). Individuals are categorized as being homozygous 
based on their most probable imputed genotype. 82% of individuals categorized as homozygous for the imperfect allele 
and 99% of those categorized as homozygous for the reference allele have an imputation probability of ≥ 95% for their 
genotypes. For each category, only length dosages with a frequency of 0.1% or greater in that category are displayed. 
(g-h) STR length vs. CBL expression. Associations are shown for Cultured Fibroblasts from GTEx (n=393) (g) and 
LCLs from Geuavdis (n=447) (h). Orange=African, blue=European. Solid lines give median expression values for each 
STR dosage with at least 5% frequency in each population group. (i) Proposed pathway for effect of STR length on 
platelet traits. The arrow denotes a positive association, the capped lines denote negative associations. Interactions 
are captioned by their information sources. 
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Additional examples of confidently fine-mapped STR-trait associations 

We observe another 5’ UTR CCG repeat in BCL2L11 (also known as BIM) that is confidently fine-

mapped to eosinophil percentage (p=6e-75) and eosinophil count (p=5e-58) (Supplementary 
Table 7). This repeat is the most strongly associated variant in the region for both traits, and 

conditioning on it accounts for the entire signal in this region (Supplementary Fig. 19a). Proteins 

in the BCL-2 family are known to act as anti- or pro-apoptotic regulators. BIM in particular is 

required in the tightly regulated lifespan of myeloid lineage cells, which include eosinophils. Loss 

of repression of BCL2L11 was specifically shown to be associated with marked decline in 

eosinophil counts50, and increased BIM expression in mice has been shown to increase eosinophil 

counts51,52. Similar to the CGG repeat in CBL, this STR is highly polymorphic and only shows a 

linear association with the trait across a subset of the range of possible allele lengths 

(Supplementary Fig. 19b). 

While exonic repeats are potentially easier to interpret, a majority of our confidently fine-mapped 

STRs fall in intronic regions. We resolve one of the strongest signals for mean platelet volume 

(p<1e-300) to a multiallelic poly-A STR in an intron of the gene TAOK1 (Supplemental Table 7; 
Supplementary Fig. 20a). This association replicated in all examined populations except the 

Black population. Furthermore, conditioning on the length of this STR demonstrates that it 

explains the majority of the signal in this region (Supplementary Fig. 20b). The same STR is 

also strongly associated with platelet count (p=2e-181), which reached a CP of 1 in 7 out of the 8 

fine-mapping tests we ran and replicated in all examined populations except for the Black and 

Chinese populations. 

TAOK1 is a protein kinase that plays a role in regulating microtubule dynamics53 which is known 

to be critical to platelet generation54. The STR is in an intron of the canonical TAOK1 transcript 

but lies immediately downstream of a non-protein coding transcript (ENST00000577583; a 

retained intron) and is approximately 2.4kb upstream of a differentially spliced exon. The STR 

also bears the hallmarks of a regulatory element: it is located in a DNase hypersensitivity cluster 

and overlaps a transcription factor binding site for ESR1 (Methods). This location is suggestive 

for the way that variation in the length of this STR could affect TAOK1 gene regulation, potentially 

via impacting splicing or modulating enhancer activity. However, we could not test the impact of 

this STR on TAOK1 regulation in GTEx as the STR was filtered due to low call rate (11%). 
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In another confidently fine-mapped example we identify a previously unreported association 

between a GTTT repeat in an intron of estrogen receptor beta (ESR2) (Supplementary Table 7; 
Supplementary Note 4; Supplementary Fig. 21) and haemoglobin concentration (p=1.15e-24), 

red blood cell count (p=3.21e-24) and haematocrit (p=1.00e-26), where additional repeat copies 

correspond to lower measurements of all three traits. Despite the relatively weak discovery p-

value and differing allele distributions between the White British and Black populations 

(Supplementary Fig. 21c), all three associations replicate in the Black population with p-values 

≤ 0.05. The associations do not consistently replicate in the other four examined populations, 

suggesting that the effect of this STR on red blood cell traits is potentially larger in the Black 

population. Consistent with these associations, ESR2 has been implicated in the regulation of red 

blood cell production55,56. We found a significant negative association between STR length and 

ESR2 expression in two tissues in GTEx (each with p-value ≤ 0.05 after multiple hypothesis 

correction; Supplementary Table 8). While evidence suggests a link between ESR2 and red 

blood cell production, the expected direction of effect is unclear given the highly tissue-specific 

isoform usage and functions of this gene (Supplementary Note). Nevertheless, our results 

support a role of this STR in red blood cell production through regulation of ESR2. 

We observed many additional associations of interest amongst the confidently fine-mapped 

STRs. For example, a highly polymorphic CCG repeat in the 5’ UTR of RHOT1 is associated with 

red blood cell distribution width (Supplementary Table 7). This repeat overlaps a CTCF binding 

site, is located within a nucleosome depleted region of a H3K27ac peak in LCLs, and shows a 

strong association with the expression of RHOT1 in these cells (p=2e-44 in Europeans, p=0.035 

in Africans; Supplementary Fig. 22). We also find multiple AC repeats in our set that are 

significantly associated with expression of nearby genes. This includes a polymorphic AC repeat 

located in the 3’ UTR of NCK2 which is associated with platelet distribution width and mean 

platelet volume (Supplementary Table 7). This repeat overlaps a PABPC1 binding site and has 

a significant negative association with NCK2 expression in multiple GTEx tissues 

(Supplementary Fig. 23; Supplementary Table 8). Finally, many STRs in our fine-mapped set 

consist of poly-A repeats. While traditionally these have been among the most challenging regions 

of the genome to genotype57, many such STRs, including poly-A repeats in MYO9B, DENND4A, 

and NRG4, show strong statistical evidence of causality and replicate across multiple population 

groups (Fig. 2). Taken together, these loci exemplify the large number of potentially causal 

variants that our list of confidently fine-mapped STRs provides to future studies. 
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Discussion 

In this study, we imputed 445,735 STRs into the genomes of 408,153 participants in the UK 

Biobank and associated their lengths with 44 blood cell and biomarker traits. Using fine-mapping, 

we estimate that STRs account for 5-10% of causal variants for these traits. We stringently filtered 

the fine-mapping output to produce 118 confidently fine-mapped STR-trait associations with 

strong evidence for causality across 95 distinct STRs. These associations include some of the 

strongest signals for apolipoprotein B, mean platelet volume and mean corpuscular haemoglobin. 

These confidently fine-mapped STRs replicated in the Black, South Asian and Chinese UKB 

populations at higher rates than non-fine-mapped STRs (p<0.02 in each). A subset of these STRs 

were associated with expression of nearby genes, providing evidence for their impact on 

regulatory processes and explanations for their effects on the studied traits. 

Broadly, our study highlights the importance of considering a more complete set of genetic 

variants in complex trait analysis. Many variant types are often highly multiallelic and only 

imperfectly tagged by individual common SNPs, including the STRs studied here but also 

VNTRs3, copy number variants6, HLA types58, and some structural variants59. While these variants 

are often excluded from analysis pipelines due to the technical challenges they pose, they likely 

represent an important source of causal variants and heritability60,61 that has yet to be captured. 

Further, we expect incorporation of this additional source of causal variants, which we observe 

often exhibit population-specific allele distributions, will improve downstream applications such as 

polygenic risk scores, particularly in constructing scores that are more applicable across diverse 

populations. 

While our results uncover many novel candidate causal STR variants, we do not believe these 

findings to be exhaustive. Our fine-mapping procedure was exceptionally conservative and 

excluded hundreds of STR-trait associations strongly predicted to be causal in some but not all 

settings tested. Additionally, we focused only on a subset of autosomal STRs ascertained to be 

polymorphic and amenable to imputation in European individuals28. This excluded most long 

repeats such as those implicated in pathogenic expansion disorders and likely excluded STR 

alleles that are common only in non-European populations. Emerging whole genome sequencing 

datasets from the UKB and biobanks spanning diverse populations62,63 are beginning to enable 

direct genotyping, rather than imputation, of STRs. This data is likely to dramatically improve the 

ability to capture additional STRs, particularly in underserved populations. 
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Methodological advances are also needed to support the study of STRs. Here we developed 

associaTR, an open-source reproducible pipeline that enables future studies to conduct STR 

association tests. However, we envision that integrating support for STR-length based tests and 

other complex variant associations into widely used GWAS toolkits is required to enable routine 

analysis of the full spectrum of human genetic variation. Further improvements to our association 

testing models are also likely to reveal new insights. Adoption by linear-mixed model methods 

would increase the power to detect length-based associations. Additionally, in this study we only 

modeled linear associations between STR lengths and trait values. However, visualization of 

many of the associations we identify, including those at CBL and BCL2L11, suggests that linear 

models account for only a subset of those associations and that many STR effects may be best 

detected through non-linear models. We also only tested for associations with repeat length. 

However, inspection of individual loci reveals that complex repeat structures are common (Table 
1). Systematic evaluation of the potential for epistasis between repeat imperfections and STR 

lengths, as well as between the lengths of neighboring repeats, would potentially enable better 

understanding of the phenotypic impact of STRs. 

Importantly, our results highlight current challenges in performing statistical fine-mapping. We 

found that fine-mapping results were in some cases highly sensitive to choices of tool settings 

and filtering thresholds, where in some settings a variant may be identified as highly likely to be 

causal but identified as having no causal impact in others. This suggests results of statistical fine-

mapping should be interpreted with caution and evaluated for sensitivity to model choices, and 

that further work is needed to make the process of fine-mapping more robust. 

Although fine-mapping inconsistencies were identified for SNPs and indels as well as STRs, they 

were most prevalent for STRs. While this may in part be due to issues with imputing STR 

genotypes, more research is needed to further evaluate the performance of current fine-mapping 

tools on regions containing STRs. Additionally, there is a need for fine-mapping tools that can 

model effects of multiallelic variants. Existing fine-mapping frameworks in theory can accurately 

model linear repeat-length associations, but we hypothesize that more detailed modeling of LD 

between SNPs and individual STR alleles may enable more accurate model fitting procedures. 

Similarly, during model fitting, existing tools often compare models which trade one causal variant 

for another variant in close LD, but greater accuracy may be obtained by comparing models which 

trade off a single, potentially causal, multiallelic variant for multiple simultaneously-causal biallelic 

variants. 
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Overall, our study provides a statistical framework for incorporating hundreds of thousands of 

tandem repeat variants into GWAS studies, identifies dozens of novel candidate variants for future 

mechanistic studies, and demonstrates that STRs likely make a widespread contribution to 

complex traits. 

Methods 

Selection of UK Biobank participants 

We downloaded the fam file and sample file for version 2 of the phased SNP array data (referred 

to in the UKB documentation as the ‘haplotype’ dataset) using the ukbgene utility (ver Jan 28 

2019 14:09:15 - using Glibc2.28(stable)) described in UKB Data Showcase Resource ID 664 

(URLs). The IDs from the sample file already excluded 968 individuals previously identified as 

having excessive principal component-adjusted SNP array heterozygosity or excessive SNP 

array missingness after call-level filtering29 indicating potential DNA contamination. We further 

removed withdrawn participants, indicated by non-positive IDs in the sample file as well as by IDs 

in email communications from the UKB access management team. After the additional filtering, 

data for 487,279 individuals remained. 

We downloaded the sample quality control (QC) file (described in the sample QC section of UKB 

Data Showcase Resource ID 531 (URLs)) from the European Genome-Phenome Archive 

(accession EGAF00001844707) using pyEGA364. We subsetted the non-withdrawn individuals 

above to the 408,870 (83.91%) participants identified as White-British by column 

in.white.British.ancestry.subset of the sample QC file. This field was computed by the 

UKB team to only include individuals whose self-reported ethnic background was White British 

and whose genetic principal components were not outliers compared to the other individuals in 

that group29. In concordance with previous analyses of this cohort29 we additionally removed data 

for:  

● 2 individuals with an excessive number of inferred relatives, removed due to plausible 

SNP array contamination (participants listed in sample QC file column 

excluded.from.kinship.inference that had not already been removed by the UKB 

team prior to phasing) 
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● 308 individuals whose self-reported sex did not match the genetically inferred sex, 

removed due to concern for sample mislabeling (participants where sample QC file 

columns Submitted.Gender and Inferred.Gender did not match) 

● 407 additional individuals with putative sex chromosome aneuploidies removed as their 

genetic signals might differ significantly from the rest of the population (listed in sample 

QC file column putative.sex.chromosome.aneuploidy) 

Following these additional filters the data for 408,153 individuals remained (99.82% of the White 

British individuals considered above). 

SNP and indel dataset preprocessing 

We obtained both phased hard-called and imputed SNP and short indel genotypes made 

available by the UKB. 

Phased hard-called genotypes: We downloaded the bgen files containing the hard-called SNP 

haplotypes (release version 2) and the corresponding sample and fam files using the ukbgene 

utility (UKB Data Showcase Resource 664 (URLs)). These variants had been genotyped using 

microarrays and phased using SHAPEIT365 with the 1000 genomes phase 3 reference panel21. 

Variants genotyped on the microarray were excluded from phasing and downstream analyses if 

they failed QC on more than one microarray genotyping batch, had overall call-missingness rate 

greater than 5% or had minor allele frequency less than 0.01%. Of the resulting 658,720 variants, 

99.5% were single nucleotide variants, 0.2% were short indels (average length 1.9bps, maximal 

length 26bps), and 0.2% were short deletions (average length 1.9bps, maximal length 29bps).  

Imputed genotypes: We similarly downloaded imputed SNP data using the ukbgene utility 

(release version 3). Variants had been imputed with IMPUTE429 using the Haplotype Reference 

Consortium panel20, with additional variants from the UK10K66 and 1000 Genomes phase 321 

reference panels. The resulting imputed variants contain 93,095,623 variants, consisting of 96.0% 

single nucleotide variants, 1.3% short insertions (average length 2.5bps, maximum length 

661bps), 2.6% short deletions (average length 3.1bps, maximum length 129bps). This set does 

not include the 11 classic human leukocyte antigen alleles imputed separately.  

We used bgen-reader67 4.0.8 to access the downloaded bgen files in python. We used plink231 

v2.00a3LM (build AVX2 Intel 28 Oct 2020) to convert bgen files from both hard-called and imputed 
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SNPs to the plink2 format for downstream analyses. For hard-called genotypes, we used plink to 

set the first allele to match the hg19 reference genome. Imputed genotypes already matched the 

reference. Unless otherwise noted, our pipeline worked with imputed genotypes as non-reference 

allele dosages, i.e. Pr(heterozygous) + 2 ∗ Pr(homozygous	alternate) for each individual. 

STR imputation 

We previously published a reference panel containing phased haplotypes of SNP variants 

alongside 445,735 autosomal STR variants in 2,504 individuals from the 1000 Genomes 

Project21,28 (URLs). This panel focuses on STRs ascertained to be highly polymorphic and well-

imputed in European individuals. Notably, this excludes many STRs known to be implicated in 

repeat expansion diseases, STRs that are primarily polymorphic only in non-European 

populations, or STRs that are too mutable to be in strong linkage disequilibrium (LD) with nearby 

SNPs.  

To select shared variants for imputation, we note that 641,582 (97.4%) of variants hard-called 

and phased in the UKB participants were present in our SNP-STR reference panel. As a quality 

control step, we filtered variants that had highly discordant minor allele frequencies between the 

1000 Genomes European subpopulations (URLs) and White British individuals from the UKB. We 

first took a maximal unrelated set of the White British individuals (see Phenotype Methods below) 

and then visually inspected the alternate allele frequency of the overlapping variants 

(Supplementary Fig. 1) and chose to remove the 110 variants with an alternate allele frequency 

difference of more than 12%. 

We used Beagle30 v5.1 (build 25Nov19.28d) with the tool’s provided human genetic maps (URLs) 

and non-default flag ap=true to impute STRs into the remaining 641,472 SNPs and indels from 

the SNP-STR panel into the hard-called SNP haplotypes. Though we performed the above 

comparison between reference panel Europeans and UKB White British individuals, we 

performed this STR imputation into all UKB participants using all the individuals in the reference 

panel. We chose Beagle because it can handle multiallelic loci. Due to computational constraints, 

we ran Beagle per chromosome on batches of 1000 participants at a time with roughly 18GB of 

memory. We merged the resulting VCFs across batches and extracted only the STR variants. 

Lastly, we added back the INFO fields present in the SNP-STR reference panel that Beagle 

removed during imputation.  
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Unless otherwise noted, our pipeline worked with these genotypes as length dosages for each 

individual, defined as the sum of length of each of the two alleles, weighted by imputation 

probability. Formally,  𝑑𝑜𝑠𝑎𝑔𝑒 = ∑ 𝑙𝑒𝑛(𝑎) ∗ [𝑃𝑟(ℎ𝑎𝑝! == 𝑎) + 𝑃𝑟(ℎ𝑎𝑝" == 𝑎)]#	∈& , where 𝐴 is the 

set of all possible STR alleles at the locus, 𝑙𝑒𝑛(𝑎) is the length of allele 𝑎, and 𝑃𝑟(ℎ𝑎𝑝' == 𝑎) is 

the probability that the allele on the 𝑖th haplotype is 𝑎, output by Beagle in the AP1 and AP2 

FORMAT fields of the VCF file. 

Estimated allele frequencies (Fig. 1b) were computed as follows: for each allele length 𝐿 for each 

STR, we summed the imputed probability of the STR on that chromosome to have length 𝐿 over 

both chromosomes of all unrelated participants. That sum is divided by the total number of 

chromosomes considered to obtain the estimated frequency of each allele. 

Standardized k-mers and inferred repeat units 

Each STR in the SNP-STR reference panel was previously annotated with a repeat period - the 

length of its repeat unit - but not the repeat unit itself. We inferred the repeat unit for each STR in 

the panel as follows: we considered the STR’s reference allele and given period. We then took 

each k-mer in the reference allele where k is the repeat period, standardized those k-mers, and 

took their counts. We define the standardization of a k-mer to be the sequence produced by 

looking at all cyclic rotations of that k-mer and choosing the first one lexicographically. For 

example, the standardization of the k-mer CTG would be AGC. If the most common standardized 

k-mer was less than twice as frequent as another standardized k-mer, we did not call a repeat 

unit for that STR (11,962 STRs; 2.68%). This produced the strand-dependent repeat unit for that 

STR. To infer a strand-independent repeat unit for the STR we looked at all rotations of the strand-

dependent repeat unit in both the forward and reverse directions, and chose whichever came first 

lexicographically. For example the repeat unit for the STR TGTGTGTG would be AC, while the 

strand-dependent repeat unit would be GT.  

Phenotypes and covariates 

IDs listed in this section refer to the UKB Data Showcase (URLs).  

We analyzed a total of 44 blood traits measured in the UKB. 19 phenotypes were chosen from 

Category Blood Count (ID 100081) and 25 from Category Blood Biochemistry (ID 17518). We 

refer to them as blood cell count and biomarker phenotypes respectively. The blood cell counts 

were measured in fresh whole blood while all the biomarkers were measured in serum except for 
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glycated haemoglobin which was measured in packed red blood cells (details in Resource ID 

5636). The phenotypes we analyzed are listed in Supplementary Table 1, along with the 

categorical covariates specific to each phenotype that were included during association testing. 

We analyzed all the blood cell count phenotypes available except for the nucleated red blood cell, 

basophil, monocyte, and reticulocyte phenotypes. Nucleated red blood cell percentage was 

omitted from our study as any value between the bounds of 0% and 2% was recorded as exactly 

either 0% or 2% making the data inappropriate for study as a continuous trait. Nucleated red blood 

cell count was omitted similarly. Basophil and monocyte phenotypes were omitted as those cells 

deteriorate significantly during the up-to-24-hours between blood draw and measurement. This 

timing likely differed consistently for different clinics, and different clinics drew from distinct within-

White British ancestry groups, which could lead to confounding with true genetic effects. See 

Resource ID 1453 for more information. Reticulocytes were excluded from our initial pipeline. This 

left us with 19 blood cell count phenotypes. For each blood cell count phenotype we included the 

machine ID (1 of 4 possible IDs) as a categorical covariate during the association tests to account 

for batch effects.  

Biomarker measurements were subject to censoring of values below and above the measuring 

machine’s reportable range (Resource IDs 1227, 2405). Supplementary Table 1 includes the 

range limits and the number of data points censored in each direction. Five biomarkers (direct 

bilirubin, lipoprotein(a), oestradiol, rheumatoid factor, testosterone) were omitted from our study 

for having >40,000 censored measurements across the population (approximately 10% of all 

data), since those would require analysis with models that take censoring into account. The 

remaining biomarkers had less than 2,000 censored measurements. We excluded censored 

measurements for those biomarkers from downstream analyses as they consisted of a small 

number of data points. For each serum biomarker except LDL cholesterol and total bilirubin we 

included aliquot number (1-3) as a categorical covariate during association testing as an 

additional step to mediate the dilution issue (described in Resource ID 5636). LDL cholesterol 

and total bilirubin were run on a version of our analysis pipeline prior to accounting for the aliquot 

covariate. Glycated haemoglobin was not subject to the dilution issue, being measured in packed 

red blood cells and not serum, so no aliquot covariate was published in the UKB showcase or 

included in our analysis.  

For each phenotype we took the subset of the 408,153 individuals above that had a measurement 

for that phenotype during the initial assessment visit or the first repeat assessment visit, 
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preferentially choosing the measurement at the initial assessment when measurements were 

taken at both visits. We include a binary categorical covariate in association testing to distinguish 

between phenotypes measured at the initial assessment and those measured at the repeat 

assessment. Each participant’s age at their measurement’s assessment was retrieved from Data 

Field ID 21003. 

The initial and repeat assessment visits were the only times the biomarkers were measured. The 

blood cell count phenotypes were additionally measured for those participants who attended the 

first imaging visit. We did not use those measurements and for each phenotype excluded the 

<200 participants whose only measurement for that phenotype was taken during the first imaging 

visit as we could not properly account for the batch effect of a group that small (Supplementary 
Table 1). 

No covariate values were missing. Before each association test we checked that each category 

of each categorical covariate was obtained by at least 0.1% of the tested participants. We 

excluded the participants with covariate values not matching this criterion, as those quantities 

would be too small to properly account for batch effects. In practice, this meant that for each 

biomarker we excluded the <100 participants that were measured using aliquot 4, and that for 8 

biomarkers we additionally excluded the ≤125 participants that were measured using aliquot 3 

(Supplementary Table 1). 

For each phenotype we then selected a maximally-sized genetically unrelated subset of the 

remaining individuals using PRIMUS68 v1.9.0. Precomputed measures of genetic relatedness 

between participants (described in UKB paper supplement section 3.7.129) were downloaded 

using ukbgene (Resource ID 664). We ran PRIMUS with non-default options --no_PR -t 

0.04419417382 where the t cutoff is equal to 0.5(, chosen so that two individuals are 

considered to be related if they are relatives of third degree or closer. This left between 304,658 

and 335,585 unrelated participants per phenotype (Supplementary Table 1). 

Sex and ancestry principal components (PCs) were included as covariates for all phenotypes. 

Participant sex was extracted from the hard-called SNP fam file (see above). The top 40 ancestry 

PCs were extracted from the corresponding columns of the sample QC file (see the Participants 

Methods section above). 

We then rank inverse normalized phenotype values for association testing. The remaining 

unrelated individuals for each phenotype were ranked by phenotype value from least to greatest 
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(ties broken arbitrarily) and the phenotype value for association testing for each individual was 

taken to be 𝑛𝑜𝑟𝑚𝑎𝑙	𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 P)#*+,-	.#/0	12.4
/	)#*+,-)

Q. We use rank inverse normalization as it is standard 

practice, though it does not have a strong theoretical foundation69 and only moderate empirical 

support70–73. 

For each phenotype and its remaining unrelated individuals we standardized all covariates to 

have mean zero and variance one for numeric stability. 

Association testing 

We performed STR and SNP association testing separately. In both cases, we used simple linear 

models instead of linear mixed model (LMM) methods74, as existing tools implementing LMM-

based associations do not handle STR length-based tests, and our downstream analyses require 

STR and SNP associations to be computed using the same model to enable accurate 

comparisons. For STR association testing, the VCFs produced by Beagle were accessed in 

python by cyvcf275 0.30.14 and a modified version of our TRTools library76 v3.0.2. In line with 

plink’s recommendation for SNP GWAS (URLs), 6 loci with non-major allele dosage < 20 were 

filtered. For each STR, we fit the linear model 𝑦 = 𝑔 ∗ β5 + 𝐶 ∗ β6 + ϵ	where 𝑦 is the vector of 

rank-inverse-normalized phenotype values per individual, 𝑔 is the vector of STR length dosage 

genotypes per individual, β5 is the effect size of this STR, 𝐶 is the matrix of standardized 

covariates, β6 is the vector of covariate effect sizes, and ϵ is the vector of errors between the 

model predictions and the outcomes. Models were fit using the 

regression.linear_model.OLS function of the Python statsmodels library v0.13.2 (URLs). 

Per GWAS best-practices, we used imputation dosage genotypes instead of best-guess 

genotypes77. 

We used plink231 v2.00a3LM (build AVX2 Intel 28 Oct 2020) for association testing of imputed 

SNPs and indels. For each analysis, plink first converts the input datasets to its pgen file format. 

To avoid performing this operation for every invocation of plink, we first used plink to convert the 

SNP and indel bgen files to pgen files a single time. We invoked plink once per chromosome per 

phenotype. We used the plink flag --mac 20 to filter loci with minor allele dosage less than 20 

(URLs). Plink calculates minor allele counts across all individuals before subsetting to individuals 

with a supplied phenotype, so this uniformly filtered 22,396,837 (24.1%) of the input loci from 

each phenotype’s association test leaving 70,698,786 SNPs and indels. Plink fit the same linear 
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model described above in the STR associations, except that 𝑔 is the vector of dosages of the 

non-reference SNP or indel allele. 

For conditional regressions, we fit the model 𝑦 = 𝑔 ∗ β5 + 𝑓 ∗ β7 	+ 	𝐶 ∗ β6 + ϵ where all the terms 

are as described above, except 𝑓 is the vector of per-individual genotypes of the variant being 

conditioned on, and β7 is its effect size. 

Comparison with Pan-UKB pipeline 

We compared the results of our pipeline to results available on the Pan-UKB32 website (see URLs) 

using bilirubin as an example trait. We matched variants between datasets on chromosome, 

position, reference and alternate alleles. We found our pipeline produced largely similar p-values 

to those reported for European participants in Pan-UKB (Supplementary Fig. 2). 

Defining significant peaks 

Given a peak width 𝑤 (bps) and a p-value threshold 𝑡, we selected variants to center peaks on 

in the following manner: 

1. Order all variants (of all types) from most to least significant. For variants which exceed 

our pipeline’s precision (p<1e-300), order them by their chromosome and base pair from 

first to last. (These variants will appear at the beginning of the list of all variants). 

2. For each variant: If the variant has p-value > 𝑡, break. If there is a variant in either 

direction less than 𝑤/2 bps away which has a lower p-value, continue. Otherwise, add 

this variant to the list of peak centers. 

We define peaks to be the 𝑤 (base pair) width regions centered on each selected variant. The 

statistics given in the Results are calculated using 𝑤 = 250𝑘𝑏 and 𝑡 = 5𝑒 − 8. The identification 

of peaks in Fig. 1c-d was made with 𝑤 = 20𝑚𝑏 and 𝑡 = 5𝑒 − 8 for visualization purposes.  

Identifying indels which are STR alleles 

Some STR variant alleles are represented both as alleles in our SNP-STR reference panel and 

as indel variants in the UKB imputed variants panel. We excluded the indel representations of 

those alleles from fine-mapping, as they represent identical variants and could confound the fine-

mapping process. For each STR we constructed the following interval: 
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! (𝑠𝑡𝑎𝑟𝑡	– 	3, 𝑒𝑛𝑑	 + 3), 𝑝𝑒𝑟𝑖𝑜𝑑	 = 	1
(𝑠𝑡𝑎𝑟𝑡	– 	2 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑒𝑛𝑑	 + 	2 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑), 𝑝𝑒𝑟𝑖𝑜𝑑	 > 	1 

 

where 𝑝𝑒𝑟𝑖𝑜𝑑	is the length of the repeat unit. and	𝑠𝑡𝑎𝑟𝑡	and	𝑒𝑛𝑑	give the coordinates of the STR 

in base pairs. We call an indel an STR-indel if it only represents either a deletion of base pairs 

from the reference or an insertion of base pairs into the reference (not both), overlaps only a 

single STR based on the interval above, and represents an insertion or deletion of full copies of 

that STR’s repeat unit. We conservatively did not mark any STR-indels for STRs whose repeat 

units were not called (see above) or for which the insertion or deletion was not a whole number 

of copies of any rotation of the repeat unit. 

Fine-mapping  

For each phenotype, we selected contiguous regions to fine-map in the following manner: 

1. Choose a variant (SNP or indel or STR) with p-value < 5e-8 not in the major 

histocompatibility complex (MHC) region (chr6:25e6-33.5e6). 

2. While there is a variant (SNP or indel or STR) with p-value < 5e-8 not in the MHC region 

and within 250kb of a previously chosen variant, include that variant in the region and 

repeat. 

3. This fine-mapping region is (min variant bp – 125kb, max variant bp + 125kb). 

4. If the resulting region has no STR variants with p ≤ 5e-4, exclude it from downstream 

analyses. 

5. Start again from step 1 to create another region, starting with any variant with p-value < 

5e-8 not already in a fine-mapping region. 

This is similar to the peak selection algorithm above but is designed to produce slightly wider 

regions so that we could fine-map nearby peaks jointly. We excluded the MHC because it is known 

to be difficult to effectively fine-map. Steps 1-3 produced 14,494 trait-regions, of which 13,283 

passed step 4 and were analyzed downstream. Due to computational challenges during fine-

mapping (see below), we also excluded three regions (urate 4:8165642-11717761, total bilirubin 

12:19976272-22524428 and alkaline phosphatase 1:19430673-24309348) from downstream 

analyses (see below), leaving 13,280 trait-regions. 
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We used two fine-mapping methods to analyze each region: 

SuSiE33: For each fine-mapping trait-region, for each STR and SNP and indel variant in that region 

that was not filtered before association testing, was not an STR-indel variants (see above) and 

had p-value ≤ 5e-4 (chosen to reduce computational burden), we loaded the dosages for that 

variant from the set of participants used in association testing for that phenotype. For those 

regions we also loaded the rank-inverse-normalized phenotype values and covariates 

corresponding to that phenotype. We separately regressed the covariates out of the phenotype 

values and out of each variant’s dosages and streamed the residual values to HDF5 arrays using 

h5py v3.6.0 (URLs). We used rhdf5 v2.38.0 (URLs) to load the h5 files into R. We used an R 

script to run SuSiE v0.11.42 on that data with non-default values min_abs_corr=0 and 

scaled_prior_variance=0.005. min_abs_corr=0 forced SuSiE to output all credible sets 

it found so that we could determine the appropriate minimum absolute correlation filter threshold 

in downstream analyses. We set scaled_prior_variance to 0.005 which is a more realistic 

guess of the per-variant percentage of signal explained than the default of 20%, although we 

determined that this parameter had no effect on the results (Supplementary Note 3). The SuSiE 

results for some regions did not converge within the default number of iterations (100) or produced 

the default maximum number of credible sets (10) and all those credible sets seemed plausible 

(minimum pair-wise absolute correlation > 0.2 or size < 50). We reran those regions with the 

additional parameters L=30 (maximum number of credible sets) and max_iter=500. No regions 

failed to converge in under 500 iterations. We re-analyzed several loci that produced 30 plausible 

credible sets again with L=50. No regions produced 50 plausible credible sets. SuSiE failed to 

finish for two regions (urate 4:8165642-11717761, total bilirubin 12:19976272-22524428) in under 

48 hours; we excluded those regions from downstream analyses. A prior version of our pipeline 

had applied a custom filter to some SuSiE fine-mapping runs that caused SNPs with total minor 

allele dosage less than 20 across the entire population to be excluded. For consistency, any 

regions run with that filter which produced STRs included in our confidently fine-mapped set were 

rerun without that filter. Results from the rerun are reported in Supplementary Table 4. 

SuSiE calculates credible sets for independent signals and calculates an alpha value for each 

variant for each signal – the probability that that variant is the causal variant in that signal. We 

used each variant’s highest alpha value from among credible sets with purity ≥ 0.8 as its casual 

probability (CP) in our downstream analyses (or zero if it was in no such credible sets). See 

Supplementary Note 1. 
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FINEMAP34: We selected the STR and SNP and indel variants in each fine-mapping region that 

were not filtered before association testing and had p-value < 0.05 (chosen to reduce 

computational burden). We excluded STR-indels (see above). We constructed a FINEMAP input 

file for each region containing the effect size of each variant and the effect size’s standard error. 

All MAF values were set to nan and the ref and alt columns were set to nan for STRs as this 

information is not required. We then took the unrelated participants for the phenotype, loaded 

their dosage genotypes for those variants and saved them to an HDF5 array with h5py v3.6.0 

(URLs). To construct the LD input file required by FINEMAP, we computed the Pearson 

correlation between dosages of each pair of variants. We then ran FINEMAP v1.4 with non-default 

options --sss --n-configs-top 100 --n-causal-snps 20. In regions which FINEMAP 

gave non-zero probability to their being 20 causal variants, we reran FINEMAP with the option –

n-causal-snps 40 and used the results from the rerun. FINEMAP did not suggest 40 causal 

variants in any region. FINEMAP caused a core dump when running on the region alkaline 

phosphatase 1:19430673-24309348 so we excluded that region from downstream analyses. (For 

convenience, for the regions containing no STRs, we directly ran FINEMAP with --n-causal-

snps 40, unless those regions contained less than 40 variants in which case we ran FINEMAP 

with --n-causal-snps <#variants>). 

We used the PIP FINEMAP output for each variant in each region as its CP in downstream 

analyses. 

Alternative Fine-mapping Conditions 

We reran SuSiE and FINEMAP using alternative settings on trait-regions that contained one or 

more STRs with p-value ≤ 1e-10 and CP ≥ 0.8 in both the original SuSiE and FINEMAP runs. 

Each new run differed from the original run in exactly one condition. We restricted our set of high-

confidence fine-mapped STRs (Supplementary Table 4) to those that had p-value ≤ 1e-10 and 

CP ≥ 0.8 in the original runs and maintained CP ≥ 0.8 in a selected set of those alternate 

conditions.  

For SuSiE, we evaluated using best-guess genotypes vs. genotype dosages as input. For 

FINEMAP, we tested varying the p-value threshold, choice of non-major allele frequency 

threshold, effect size prior, number of causal variants per region, and stopping threshold.  
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See Supplementary Note 3 for a more detailed discussion of these various settings and their 

impact on fine-mapping results. 

Replication in other populations 

We separated the participants not in the White British group into population groups using the self-

reported ethnicities summarized by UKB showcase data field 21000 (URLs). This field uses UKB 

showcase data coding 1001. We defined the following five populations based on those codings 

(counts give the maximal number of unrelated QC’ed participants, ignoring per-phenotype 

missingness): 

● Black (African and Caribbean, n=7,562, codings 4, 4001, 4002, 4003) 

● South Asian (Indian, Pakistani and Bangladeshi, n=7,397, codings 3001, 3002, 3003) 

● Chinese (n=1,525, coding 5) 

● Irish (n=11,978, coding 1002) 

● Other White (White non-Irish non-British, n=15,838, coding 1003) 

Self-reported ethnicities were collected from participants at three visits (initial assessment, repeat 

assessment, first imaging). The above groups also exclude participants who self-reported 

ethnicity at more than one visit and where their answers corresponded to more than one 

population (after ignoring ‘prefer not to answer’ code=-3 responses). We did include any 

participants who were neither in the White British population nor any of the above populations. 

Unlike for the determination of White British participants, genetic principal components were not 

used as filters for these categories. 

For the association tests in these populations we applied the same procedures for sample quality 

control, unrelatedness filtering, phenotype transformations, and preparing genotypes and 

covariates as in the White British group. The only changes in procedure were that (a) we removed 

categorical covariate values where there were fewer than 50 participants with that value, (in which 

case we also removed those participants from analysis, as that would be too few to properly 

control for batch effects), whereas for White British individuals we used a cutoff of 0.1% instead, 

(b) we also applied this cutoff to the visit of measurement categorical covariate, resulting in some 

association tests that excluded individuals whose first measurement of the phenotype occurred 
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outside the initial assessment visit and (c) we included the aliquot covariate for LDL cholesterol 

and total bilirubin, which had been excluded in our initial run in White British (see above). See 

Supplementary Table 5 for details. 

STRs were marked as replicating in another population (Fig. 2a) if any of the traits confidently 

fine-mapped to that STR share the same direction of effect as the White British association and 

reached association p-value ≤ 0.05 after multiple hypothesis correction (i.e. if there are three 

confidently fine-mapped traits, then an STR is marked as replicating in the Black population if any 

of them has association p-value ≤ 0.05/3 = 0.0167 in the Black population). 

Logistic regression analysis of replication direction 

We used logistic regression to quantitatively assess the impact of fine-mapping on replication 

rates while controlling for discovery p-value. For this analysis, to have sufficient sample sizes, we 

defined that an STR-trait association replicates in another population if it had the same direction 

of effect in that population as in the White British population, regardless of the replication p-value.  

For each of the five replication populations, we compared four categories: all gwsig (genome-

wide significant associations in the discovery population, i.e. p-value ≤ 5e-8), FINEMAP 

(discovery p-value ≤ 5e-8 and FINEMAP CP ≥ 0.8), SuSiE (discovery p-value ≤ 5e-8 and SuSiE 

CP ≥ 0.8) and confidently fine-mapped STR (STR associations in our confidently fine-mapped 

set).  

For each comparison, we used the function statsmodels.formula.api.logit from 

statsmodels v0.13.2 (URLs) to fit the logistic regression model: 

replication_status ~ STR_in_target_category + log10(p-val) + log10(p-

val)²  

where replication_status is a binary variable indicating whether or not the given STR-trait 

association replicated in the other population, p-val is the discovery p-value, and 

STR_in_target_catgegory is a binary variable indicating if the STR is in the target category.  

For each replication population, we considered various models: 

• All gwsig STRs with either FINEMAP, SuSiE, or confidently fine-mapped STRs as the 

target category. 
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• All FINEMAP STRs with confidently fine-mapped STRs as the target category. 

• All SuSiE STRs with confidently fine-mapped STRs as the target category. 

For each model, we performed a one-sided t-test for the hypothesis that the coefficient for the 

covariate STR_in_target_category was greater than zero, i.e. testing that being in the target 

category increased the predicted chance of replicating in the chosen population (Supplementary 
Table 6).  

Gene and transcription factor binding annotations 

For all analyses not using GTEx data, gene annotations were based on GENCODE 3878 (URLs). 

Transcription factor binding sites identified by ENCODE79 overlapping several loci (TAOK1, 

RHOT1 and NCK2) were identified through visual inspection of the “Txn Factor ChIP” track in the 

UCSC Genome Browser80 and using the “Load from ENCODE” feature of the Integrative 

Genomics Viewer81. 

Enrichment testing 

We tested the following categories for enrichment in STRs identified by our association testing 

pipeline: 

• Genomic feature: We grouped records by feature type and restricted to features with 

support level 1 or 2 except for genes which don’t have a support level. We used bedtools82 

to compute which features intersect each STR and the distance between each STR and 

the nearest feature of each feature type. 

• Repeat unit: unit length and standardized repeat unit were defined as described above. 

Repeat units occurring in <1000 STRs were grouped by repeat length. Repeats whose 

unit could not be determined were considered as a separate category.  

• Overlap with expression STRs (eSTR): we tested for overlap with either all eSTRs or fine-

mapped eSTRs as defined in our previous study to identify STR-gene expression 

associations in the Genotype Tissue Expression (GTEx) cohort42. 

Enrichment p-values were computed using a Chi-squared test (without Yate’s continuity 

correction) if all cells had counts ≥ 5. A two-sided Fisher’s exact test was used otherwise. Chi-

squared and Fisher’s exact tests were implemented using the chi2_contingency and 

fisher_exact functions from the Python scipy.stats package v1.7.3 (URLs). 
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Expression association analysis in GTEx 

We had previously analyzed associations42 between STRs and gene expression in GTEx V7. 

Here we reanalyzed those associations using GTEx V8. We obtained 30x Illumina whole genome 

sequencing (WGS) data from 652 unrelated participants in the Genotype-Tissue Expression 

project (GTEx)35 through dbGaP accession number phs000424.v8.p2. WGS data was accessed 

using fusera (URLs) through Amazon Web Services. We genotyped STRs using HipSTR24 v0.5 

with HipSTR’s hg38 reference STR set (URLs). All individuals were genotyped jointly using 

default parameters. GTEx’s whole genome sequencing procedure is not PCR-free, which likely 

contributed to low call rates at long poly-A and GC-rich STRs. The resulting VCFs were filtered 

using DumpSTR from TRTools76, using the parameters --filter-hrun --hipstr-min-

call-Q 0.9 --hipstr-min-call-DP 10 --hipstr-max-call-DP 1000 --hipstr-

max-call-flank-indel 0.15 --hipstr-max-call-stutter 0.15 --min-locus-

callrate 0.8 --min-locus-hwep 0.00001 . We also removed STRs overlapping 

segmental duplication regions (UCSC Genome Browser83 h38.genomicSuperDups table). 

Altogether, 728,090 STRs remained for downstream analysis. 

For each tissue, we obtained gene-level and transcript-level transcripts-per-million (TPM) values, 

exon-exon junction read counts, and exon read counts for each participant from GTEx Analysis 

V8 publicly available from the GTEx project website (URLs). Gene annotations are based on 

GENCODE v2678. We focused on 41 tissues with expression data for at least 100 samples 

(Supplementary Table 9). We restricted our analysis to protein-coding genes, transcripts and 

exons that did not overlap segmental duplication regions. 

To control for population structure, we obtained publicly available genotype data on 2,504 

unrelated individuals from the 1000 Genomes project21 genotyped with Omni 2.5 SNP genotyping 

arrays. We performed the following principal components analysis jointly on that data and the 

SNP genotypes based on WGS of the 652 individuals above. We removed all indels, multiallelic 

SNPs, and SNPs with minor allele frequency less than 5%. We then used plink v.1.90b3.44 to 

subset these remaining SNPs to a set of SNPs in approximate linkage equilibrium with the 

command --indep 50 5 2. We excluded any remaining SNPs with missingness rate 5% or 

greater. We lastly ran principal component analysis using smartpca7084 v.13050 with default 

parameters. 
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We removed genes with TPM less than 1 in more than 90 percent of individuals. PEER factors85 

were calculated using PEER v1.0 from the TPM values which remained after filtering. For each 

gene, we tested for association with each STR within 100kb. For each test we performed a linear 

regression between the STR’s dosage (sum of allele lengths) and gene expression (TPM). We 

included the loadings of the top five genotype principal components as computed above and the 

top N/10 PEER factors as covariates. The number of PEER factors was chosen to maximize the 

number of significant associations across a range of tissues. We did not include sex or age as 

covariates. 

For each STR we computed Bonferroni-adjusted p-values to control for the number of gene × 

tissue tests performed. Associations that remained with adjusted p ≤ 0.05 are shown in 

Supplementary Table 8. 

We additionally used the GTEx cohort to test for an association between length of the bilirubin-

associated dinucleotide repeat identified in SLC2A2 with splicing efficiency in liver. We obtained 

exon-exon junction read counts and exon read counts from the GTEx website (URLs). We 

calculated the percent spliced in (PSI) value for each exon in the manner suggested by Schafer 

et al.86. We performed a linear regression to test between the STR’s dosage and PSI of each 

exon within 10kb, using the top 5 ancestry principal components as covariates. 

Expression analysis of the CBL and RHOT1 STRs in Geuvadis 

We applied HipSTR24 v0.6.2 to genotype STRs from HipSTR’s hg38 reference STR set (URLs) 

in 2,504 individuals from the 1000 Genomes Project87 for which high-coverage WGS data was 

available. Gene-level reads per kilobase per million reads (RPKM) values based on RNA-seq in 

lymphoblastoid cell lines for 462 1000 Genomes participants were downloaded from the Geuvadis 

website (URLs). Of these, 449 individuals were genotyped by HipSTR. 

Similar to the GTEx analysis, we performed a linear regression between STR dosage (sum of 

allele lengths) and RPKM, adjusting for the top 5 genotype principal components (computed as 

above for the GTEx analysis, but only on populations included in Geuvadis and separately for 

Europeans and Africans) and N/10 (45) PEER factors as covariates. PEER analysis was applied 

using PEER v1.0 to the matrix of RPKM values after removing genes overlapping segmental 

duplications and those with RPKM less than 1 in more than 90% of LCL samples. We performed 

a separate regression analysis for African individuals (YRI) and European individuals (CEU, TSI, 

FIN, and GBR). After restricting to individuals with non-missing expression data and STR 
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genotypes and who were not filtered as PCA outliers by smartpca84,88 included in EIGENSOFT 

v6.1.4, 447 LCL samples remained for analysis in each case (num. EUR=358, and AFR=89 for 

CBL, EUR=359 and AFR=88 for RHOT1).  
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URLs 

• 1000 genomes individuals: https://www.internationalgenome.org/data-portal/sample 

using the “Download the list” tab 

• associaTR: https://github.com/LiterallyUniqueLogin/ukbiobank_strs/ 

• Beagle Human genetic maps: 

https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/ 

• fusera: https://github.com/ncbi/fusera  

• GENCODE 38 (hg19): 

http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/GRCh37_mapp

ing/gencode.v38lift37.annotation.gff3.gz 

• Geuvadis: https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-

1/files/analysis_results/?ref=E-GEUV-1 

• GTEx v8: 
o https://www.gtexportal.org/home/datasets 

o https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_
2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz  

o https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_

2017-06-05_v8_STARv2.5.3a_junctions.gct.gz 

o https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_
2017-06-05_v8_RNASeQCv1.1.9_exon_reads.parquet 

• h5py https://github.com/h5py/h5py 

• HDF5: https://www.hdfgroup.org/HDF5/  
• HipSTR STR reference https://github.com/HipSTR-Tool/HipSTR-

references/raw/master/human/hg38.hipstr_reference.bed.gz 

• Pan-UKB: 

o Overview: https://pan.ukbb.broadinstitute.org/downloads  

o manifest: 

https://docs.google.com/spreadsheets/d/1AeeADtT0U1AukliiNyiVzVRdLYPkTbru

QSk38DeutU8 

o bilirubin SNP summary statistics: https://pan-ukb-us-east-

1.s3.amazonaws.com/sumstats_flat_files/biomarkers-30840-both_sexes-

irnt.tsv.bgz and https://pan-ukb-us-east-

1.s3.amazonaws.com/sumstats_flat_files_tabix/biomarkers-30840-both_sexes-

irnt.tsv.bgz.tbi 
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• Plink association testing best practices: https://www.cog-

genomics.org/plink/2.0/assoc#glm  

• rhdf5: https://www.bioconductor.org/packages/release/bioc/html/rhdf5.html  

• Scipy.stats: https://docs.scipy.org/doc/scipy/reference/stats.html 

• SNP-STR reference panel: https://gymreklab.com/2018/03/05/snpstr_imputation.html  

• Statsmodels: https://www.statsmodels.org/stable/index.html  

• UKB Data Showcase Search Page: https://biobank.ctsu.ox.ac.uk/crystal/search.cgi  
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Supplementary Notes 

Supplementary Note 1: Summary of fine-mapping models 

We applied two different fine-mapping methods, SuSiE1 v0.11.42 and FINEMAP2 v1.4. FINEMAP 

assumes a priori that each variant has an equal chance of being causal and that each variant’s 

chance of causality is independent from the causal status of the other variants. It then attempts 

to stochastically walk over all reasonably-probable choices of collections of causal variants and 

assigns each causal configuration a posterior probability based on the observed associations and 

that prior. It then calculates posterior inclusion probabilities (PIPs) by summing over the walked 

configurations. For downstream analyses we required a single measurement of causality for each 

variable from both fine-mappers, which we called those variables’ causal probabilities (CPs). For 

FINEMAP, we took each variable’s PIP to be its FINEMAP CP.  

While FINEMAP models each region as a collection of causal variants, SuSiE models each region 

as a collection of causal signals (called effects in the SuSiE manuscript), enabling SuSiE to study 

variants’ contributions to each signal separately. To fit this model, SuSiE alternates between 

updating its model of each signal, attempting with each update to improve how the collection of 

all signals fits the observed data. As SuSiE only allows for the possibility of one variant being 

considered causal in any signal, if two variants are both estimated to be causal, they are forced 

during model fitting into different signals from one another. SuSiE calculates a value, alpha, for 

each variant in each signal – the probability that variant causes that signal – and then calculates 

a single PIP for each variant which gives the probability that the variant is causal in at least one 

signal. For reasons we explain below, unlike for FINEMAP, we chose an alpha value (or zero) as 

the SuSiE CP for each variant, rather than a PIP. 

SuSiE reports a purity value for each signal, and we used that value to discard signals which were 

not well fine-mapped. SuSiE constructs 90%-credible sets for each signal so that the estimated 

probability of the credible set containing a variant causal for that signal is at least 90% (other 

values, such as 95%-credible sets, could be constructed similarly). SuSiE defines the purity of 

the credible set for each signal to be the minimum absolute correlation between any pair of 

variants in the set. The SuSiE manuscript suggests discarding signals with purity less than 0.5, 

but also states that the threshold is arbitrary. Looking at the distribution of credible set purities 

across all of our trait-regions (Supplementary Fig. 3) we decided to discard credible sets with 

purity less than 0.8, reasoning that the upper mode of the distribution is well above that threshold 
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and that a signal containing two variants with correlation less than 0.8 has not been acceptably 

resolved. 

SuSiE’s PIPs are calculated across all credible sets regardless of purity, while we wished to 

conservatively only consider variants which had passed this added layer of scrutiny. Additionally, 

we saw that the PIP metric is sensitive to values of L (the number of signals fit per locus) – for 

one extreme example, in a locus with 57 variants, SuSiE run with L=50 assigned each variant a 

PIP ≥ 0.5, which is likely unrealistic. So instead of using SuSiE’s PIPs, we took each variant’s 

highest alpha score from among credible sets with purity at least 0.8 as its SuSiE CP (or zero if it 

was in no such credible sets). This choice was uniformly conservative; CPs defined this way must 

be less than SuSiE’s PIPs. We also found it to be less sensitive to L – we examine this more 

thoroughly in Supplementary Note 3 below, but in the above example we note that there was 

only one credible set containing less than 50 variants and it was not pure, so each variant in that 

region has a SuSiE CP of 0. We compared our SuSiE CP metric to SuSiE’s PIP metric in 

Supplementary Fig. 4 and saw that these two measures only strongly differed for variants whose 

contribution to any single pure signal was small. As our downstream analyses focused on variants 

with large alpha values in pure credible sets, this means that our use of alpha values instead of 

PIPs was not strongly impactful in analyzing those variants. The impact is that we conservatively 

restricted which variants we examined. Lastly, we note that for high purity thresholds such as the 

one we use, our metric should be very similar to calling SuSiE’s susie_get_pip function with 

the flag prune_by_cs=TRUE, a method not examined in the SuSiE manuscript and one we did 

not encounter until after performing this work.  

Supplementary Note 2: Comparing results across fine-mapping methods 

To assess the reliability of our fine-mapping results, we measured how often the two fine-mapping 

methods agreed with one another, and how sensitive they were to model settings. First, we used 

SuSiE’s credible sets as a proxy for the truly independent signals in our data. We observed that 

while SuSiE and FINEMAP were in agreement for most of the signals, their results were strongly 

discordant for a sizable number of signals (Supplementary Fig. 6). In particular, for 10.4% of 

90%-credible sets returned by SuSiE (which by definition are assigned at least a 90% chance of 

containing a causal variant), the sum of FINEMAP’s assigned CPs for all variants in each of those 

sets was less than 0.1, indicating that FINEMAP concluded those sets had a < 10% chance of 

containing a causal variant. 
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Second, we looked at the variant level and saw that for most variants, the CPs from FINEMAP 

and SuSiE were similar (Supplementary Fig. 7), with FINEMAP assigning slightly higher CPs 

overall (possibly due to our use of SuSiE alpha values per variant instead of the overall PIPs). 

However, we again saw that SuSiE and FINEMAP markedly disagree at a subset of loci. For 

instance, among all SNPs and indels which at least one fine-mapping method assigned a CP ≥ 

0.95 and the other method was decisive about their causality (assigning either CP ≥ 0.95 or CP 

≤ 0.05), 20% of those were assigned a CP ≥ 0.95 by one method and a CP ≤ 0.05 by the other. 

For STRs, the fine-mapping methods disagreed at more than half of the loci (58%) that were 

assigned CP ≥ 0.95 by one method and decisively scored by the other, suggesting the CPs for 

STRs are even less reliable. This highlights the need for additional quality control before stating 

that variants assigned a high posterior probability by a single fine-mapper are likely to be causal. 

Without any prior on which fine-mapper to believe when the two disagreed, we focused only on 

the 177 trait-STR associations for which association p-values were well below the genome-wide 

significance threshold (p-value≤1e-10) and both fine-mappers assigned high CPs (CPs≥0.8) 

(Supplementary Fig. 8a; the 177 associations can be extracted from Supplementary Table 3). 

Supplementary Note 3: Assessing robustness of fine-mapping results 

We further assessed how robust our fine-mapping results were to differences in the fine-mapping 

conditions, data filtering thresholds and algorithm metaparameters used. For SuSiE, we modified 

the inputs (1) scaled_prior_variance, (2) tol, (3) residual_variance, and (4) L, and 

also (5) changed the input genotypes from dosage genotypes to best-guess genotypes and (6) 

changed the prior to favor SNPs and indels over STRs as causal variants. For FINEMAP, we 

modified the inputs (1) --prior-std and (2) --prob-conv-sss-tol and also (3) filtered 

input variants with total non-major allele dosage less than 100, (4) filtered variants with p-value ≤ 

5e-4, (5) set the prior on the number of causal variants per region to 4, and (6) changed the prior 

to favor SNPs and indels over STRs as causal variants. 

We were encouraged that a few of the SuSiE settings had minimal impact on the results. 

Specifically, we tested the following changes on a subset of mean platelet volume fine-mapping 

regions: 

• scaled_prior_variance – This is the initial value for the estimation of the prior 

variance of the causal effect sizes relative to the variance of the phenotype. We changed this 

from the default of 0.2 to 5e-4 which resulted in no change to observed CPs. 
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• tol – This determines what amount of change in the objective function between 

optimization rounds is small enough to cause SuSiE to terminate. We reduced this from the default 

of 1e-3 to 1e-4 and saw only miniscule changes in the results (Supplementary Fig. 9a). 

• residual_variance – This is the initial value for the estimation of the residual variance 

of the phenotype after controlling for all effects at the locus. By default, the residual_variance 

is initialized to the full variance of the phenotype, which in our study was slightly less than 1 (rank-

inverse normalization set it to 1, and then regressing covariates out of the phenotype before 

running SuSiE reduced it slightly). We ran SuSiE with alternate residual_variance values of 

0.95 and 0.8 and saw very small changes in the results (Supplementary Fig. 9b,c) 

• L – This is the number of signals SuSiE fits in a region, or equivalently, the upper bound 

on the number of causal variants SuSiE attempts to find (Supplementary Fig. 9d). In our original 

fine-mapping runs, we ran SuSiE with L=10, and only increased L if needed. In the comparison 

below, we ran SuSiE with L=50. The SuSiE manuscript1 states that inflated L values should not 

adversely impact model fitting because extraneous signals contribute small probabilities 

dispersed over many variants, thus not strongly changing any single variant’s prediction, and also 

the learned effect sizes of these extra signals are shrunk towards zero. We see in our comparison 

that this only induces a large change in CP for a small fraction of variants. Of those, almost all of 

them are variants with non-zero CP values under the L=10 case and zero CP in the L=50 case. 

Thus, if they have any effect, this indicates that in most cases inflated values of L should lead to 

more conservative fine-mapping results. 

However, many of the fine-mapping conditions (individually documented below) did impact the 

end results. We ran fine-mapping under each of those conditions on the trait-regions of the 177 

STR-trait associations above. We present supplementary figures showing how the CPs of variants 

changed under those conditions (Supplementary Figs. 10, 11a-e). Because we would expect 

true signals to be robust to these choices, we restricted our set of confidently fine-mapped STRs 

to the 118 that had CP ≥ 0.8 under each of those conditions (Supplementary Table 4). While the 

set of trait-regions used for running these tests was chosen to identify candidate causal STRs, 

Supplementary Figs 10-11e identify similar trends for SNPs and indels in those regions. Thus, 

we hypothesize that these comparisons are relevant for fine-mapping of all variant types. 

SuSiE with best-guess genotypes vs dosage genotypes 

We ran SuSiE with the best-guess genotypes from our imputation pipeline instead of the dosage 

genotypes from that pipeline (Supplementary Fig. 10). Discrepancies in best-guess vs. dosages 
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reflect imputation uncertainty. As we did not have ground truth STR genotypes, we could not 

resolve these discrepancies and thus discarded loci where this choice strongly impacted the 

results.  

Note: We ran SuSiE on each best-guess trait region with the parameters L=50 and 

max_iter=500. While these are different values than those for the baseline runs, the results 

should still be comparable: 

• Both the dosage and best-guess SuSiE runs converged in fewer iterations than their 

respective max_iter values, and larger values of max_iter than the convergence number 

should not affect the results. 

• We discuss above why overestimating L should not importantly impact the results.  

Additionally, as noted in the Methods, baseline SuSiE runs for some trait-regions were run with 

the dosage < 20 SNP filter while others were not. To control for this, we ran the SuSiE best-guess 

comparison with the same set of variants as the original runs in each trait-region. 

For the FINEMAP comparisons below, as in our baseline runs, we ran each trait-region with --

n-causal-snps 20, and then reran it with --n-causal-snps 40 if that run’s results included 

a possibility of at least 20 causal variants. 

FINEMAP with alternative p-value thresholds 

By default, we chose to filter as few variants as possible from our fine-mapping runs while still 

controlling for computational costs, which meant filtering variants with p>5e-2 from our FINEMAP 

runs and variants with p>5e-4 from our SuSiE runs, as FINEMAP was less computationally 

intensive. To check if this difference impacted the fine-mappers’ results we ran FINEMAP having 

filtered all variants with p>5e-4 and compared it to our default FINEMAP runs (Supplementary 
Fig. 11a). Unexpectedly, this change strongly impacted the CPs of some variants. This CP 

difference occurred despite the large difference between the p-values of the impacted variants 

and the p-values of the omitted variants. 

FINEMAP with alternative choice of non-major allele frequency threshold 

To test whether FINEMAP results were strongly influenced by rare variants, we excluded all 

variants with total non-major allele dosage < 100 (population frequency less than approximately 

0.015%) on top of the filter excluding variants with p-value > 0.05 (Supplementary Fig. 11b). 
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(Note that variants with total non-major allele dosage < 20 were excluded from association testing 

and thus from all fine-mapping runs).  

FINEMAP with alternative choice of effect size prior 

FINEMAP’s default --prior-std value is 0.05 which gives causal variants a default effect size 

of 0.25% of phenotypic variance. We modified this to --prior-std 0.0224 to reflect published 

expected effect sizes for GWAS variants of about 0.05%3 (Supplementary Fig. 11c). 

FINEMAP with alternative prior on the number of causal variants per region 

We ran FINEMAP with the prior of four causal variants per trait-region instead of one 

(Supplementary Fig. 11d). We did this by adding a column prob to the FINEMAP input Z file 

which contained the value 4/n for each variant, where n was the number of variants in the trait-

region, and by running FINEMAP with the --prior-snps flag. 

FINEMAP with alternative --prob-conv-sss-tol stopping threshold 

We ran FINEMAP with the flag --prob-conv-sss-tol 0.0001 (reduced from the default of 

0.001) (Supplementary Fig. 11e). This reduced what amount of change in the objective function 

over the last 100 rounds of optimization would be considered small enough to cause FINEMAP 

to terminate. 

In summary, the dosages vs best-guess genotypes choice when running SuSiE, and the 

FINEMAP p-value threshold setting were strongly impactful. The FINEMAP threshold on non-

major allele frequency, effect size prior, and prior on number of causal variants per region were 

moderately impactful settings. And the FINEMAP stopping threshold setting was minorly 

impactful. Overall, about a third of results that passed both fine-mappers failed to replicate in one 

of the alternate fine-mapping conditions above, again highlighting the need for careful inspection 

of fine-mapping settings prior to result interpretation. Encouragingly, for many of these 

comparisons we see that the default SuSiE and FINEMAP runs were more likely to agree that 

variants were causal (both CPs ≥ 0.95) for those variants that the alternate fine-mapping condition 

also agreed were causal. This suggests that concordance between different fine-mapping 

algorithms may be able to provide security against the instability in the results of any single 

algorithm. While we focused on fine-mapping results for STRs, which generally showed lower 
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concordance across methods than SNPs, our results suggest similar robustness checks should 

be performed when fine-mapping SNPs and other variant types. 

There were several fine-mapping conditions we tested that strongly impacted the resulting CPs 

but that we did not use as filters when selecting our causal STR candidates since they represent 

unrealistic parameter choices. We report their values in Supplementary Table 3. Those 

conditions were: 

• We ran FINEMAP with the flag --prior-std 0.005, corresponding to an expected 

effect size 0.0025% (Supplementary Fig. 11f). We concluded that this was much lower than the 

effect sizes we were hoping to detect. 

• Both SuSiE and FINEMAP have the default assumption that each variant is as likely to be 

causal as any other variant (regardless of allele frequency). We instead conservatively ran SuSiE 

and FINEMAP with the prior assumption that SNPs and indels were 4x more likely to be causal 

than STRs. For this, we set the prior probability of causality for each SNP or indel to 

4/(4*n_SNPs_indels + n_STRs) and for each STR to 1/(4*n_SNPs_indels + n_STRs). For SuSiE 

we did this by setting the prior_weights input to an array containing those probabilities. For 

FINEMAP we did this by adding a column prob to the FINEMAP input Z file which contained 

those probabilities, and by running FINEMAP with the --prior-snps flag. As expected, this 

resulted in overall decreased STR CPs (Supplementary Fig. 12). While we did not filter our 

candidate STRs based on this setting, we were encouraged to see that a majority of the strongest 

hits replicated despite this conservative setting. 

 

Finally, we note there are other parameters which were not tested here but that could be tested 

for robustness. This includes whether FINEMAP results are sensitive to overestimating --n-

causal-snps and testing if fine-mapping results are sensitive to the size of the trait-regions 

being fine-mapped.  
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Supplementary Note 4: Additional details for specific fine-mapped STRs 

Coding trinucleotide repeat in APOB: This repeat did not initially appear in our list of confidently 

fine-mapped STRs due to our process for filtering indels. Our pipeline filtered “STR-indels” 

(Methods), which we defined as indels in the UKB dataset corresponding to differences in STR 

length. We did not filter an indel imputed by the UKB team that corresponded exactly to the short 

allele of the STR imputed from our reference panel, since the indel consists of an imperfect repeat 

sequence (GCCAGCAGC for a CAG repeat). The presence of this indel alongside the STR during 

fine-mapping caused SuSiE’s (but not FINEMAP’s) results to, in some cases, show low 

confidence as to which of the two variants were causal. Specifically, FINEMAP assigned a CP of 

1 to the STR for both traits apolipoprotein B and LDL cholesterol under each FINEMAP run used 

for filtering down to the confidently fine-mapped set. For the original run for the apolipoprotein B 

trait and for the best-guess run for both traits, SuSiE created a credible set containing both the 

indel and the STR and assigned each a CP of less than 0.8, causing the association not to pass 

our filters for confidently fine-mapped STRs. However, if we sum the SuSiE CPs of both variants 

in those runs we get a CP of over 0.97 in each case, making the apolipoprotein B association 

pass our confidently fine-mapped thresholds. Thus, we added this association to our confidently 

fine-mapped set. We note that the original SuSiE run for the LDL trait assigned low CPs to both 

the STR and the indel. While that was the only fine-mapping of the eight runs used for filtering 

that did not assign the pair of variants a combined CP ≥ 0.8 for LDL, it precludes us from adding 

the LDL association to the confidently fine-mapped set. For both the apolipoprotein B and LDL 

cholesterol associations, we updated the CPs in Supplementary Tables 3 and 4 to reflect the 

combined CPs for both variants. 

While we manually resolved this issue for the APOB STR, similar issues are likely to have caused 

other STRs in our set not to fine-map appropriately. We expect the choice of which indel 

representations to filter and which to treat as distinct variants will be critical for proper analysis of 

many STR loci in the future. 

Dinucleotide repeat in SLC2A2 (GLUT2): We identified a dinucleotide repeat immediately 

upstream of exon 4 of SLC2A2 as a confidently fine-mapped STR for bilirubin. While SLC2A2 has 

not previously been causally linked to bilirubin levels, SLC2A2 mediates glucose transport to 

hepatocytes, where glucose is stored in the form of glycogen. Glycogen degradation produces 

intermediates that are substrates in the process that regulates bilirubin conjugation and excretion4 

and thus could potentially impact bilirubin levels in the blood. This effect of SLC2A2 on bilirubin 
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levels may be partially corroborated by a large cohort study on babies with congenital 

hyperinsulinemic hypoglycemia, a condition that inhibits glycogen breakdown, which reported 

elevated bilirubin in that population5. 

Tetranucleotide repeat in ESR2: We identified a GTTT repeat in an intron of ESR2 whose length 

is negatively associated with haemoglobin concentration, red blood cell count, and haematocrit. 

ESR2 is known to regulate red blood cell production. Studies conducted in populations chronically 

exposed to high altitude hypoxia, a driver of erythrocytosis (excess red blood cell production), 

demonstrated inhibition of erythrocytosis through activation of estrogen beta signaling in ex vivo 

models6. These observations are corroborated by a study of rat models under hypoxia, where 

beta-estrogen treatment reduced circulating levels of erythropoietin, a kidney-derived factor that 

stimulates red blood cell production7. 

We additionally identified a negative association between length of this STR and ESR2 

expression. However, the expected direction of this association is unclear. Multiple ESR2 

isoforms exist, either as a result of alternative splicing of the last coding exons (exon 8 and exon 

9, respectively), deletion of one or more coding exons, or alternative usage of untranslated exons 

in the 5′ region8. One of the five isoforms found in humans has an undetectable affinity to estrogen. 

Rather, ESR2 antagonizes estrogen-alpha receptor signaling9. Thus, the tissue-specific effect of 

ESR2 expression on estrogen-receptor signaling depends on the dominant isoform in that tissue.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figures 

Supplementary Figure 1: Comparison of SNP alternate allele frequencies between our 
SNP-STR reference panel and UKB phased hard-called variants  

 

The x-axis indicates the alternate allele frequency of variants calculated from the European 

individuals in our SNP-STR reference panel10 (Main Text URLs). The y-axis indicates their 

alternate allele frequency in unrelated participants in the White British population in the UKB. We 

filtered variants with more than a 12% difference in alternate allele frequency (indicated by the 

red diagonal line). The color gradient represents the number of variants (log10 scale) whose p-

values fall in each region. White regions contain no variants.  
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Supplementary Figure 2: Comparison of association p-values between our pipeline and 
summary statistics published by Pan-UKB. 

 

Heatmap of -log10 p-values obtained from the Pan-UKB11 study of UKB data (x-axis) vs. from our 

study (y-axis) for total bilirubin associations. The color gradient represents the number of variants 

(log10 scale) whose p-values fall in each region. White regions contain no variants. P-values less 

than 1e-50 are truncated. Our pipeline’s p-values are highly correlated with PanUKB’s but are 

overall more conservative, which may be attributable to differences in models used (linear mixed 

model for Pan-UKB vs. linear model used here, see Methods).  
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Supplementary Figure 3: Distribution of SuSiE 90%-credible set purities 

 

Distribution of SuSiE 90%-credible set purities across all trait-regions. (The rightmost bin is 

inclusive, containing SuSiE credible sets with purity up to and including 1, i.e. those that consist 

of a single variant.) Purity is defined as the minimum absolute correlation between any pair of 

variants in the set. For subsequent analyses, we discarded credible sets with purity < 0.8.  
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Supplementary Figure 4: PIP vs alpha values assigned by SuSiE 

 

Largest alpha value (x-axis) vs. PIP (y-axis) for all variants obtaining PIP ≥ 0.05 across all trait 

regions. Color (log10 scale) indicates the number of data points falling in each bin (hexagon).  
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Supplementary Figure 5: Contribution of variants to signals genome-wide by variant CP 

 

Summed contribution of genome-wide significant variants across all regions binned by variant CP 

as a fraction of the total CP of all genome-wide significant variants across all regions for SuSiE 

(a) and FINEMAP (b). (The rightmost bin for each graph is inclusive, containing variants with CPs 

up to and including 1.) The total contribution of all variants across all regions with CP < 0.1 was 

29.3% for SuSiE and 27.7% for FINEMAP.  
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Supplementary Figure 6: Total CPs assigned to SuSiE credible sets by FINEMAP 

 

SuSiE 90%-credible sets across all trait-regions (with purity ≥ 0.8) were each binned by the total 

CP FINEMAP assigned to all variants in that set. Sets in the rightmost bin have FINEMAP total 

CP between 1 and 1.01 (i.e. FINEMAP predicts them to contain on average between 1 and 1.01 

causal variants). FINEMAP assigned 3 SuSiE credible sets to have total CP greater than 1.01 

(none of which attained total CP greater than 1.17); those 3 are omitted from the figure. By 

definition, SuSiE has estimated each 90%-credible set to have between a 90% and 100% chance 

of containing a single causal variant.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 7: Discordance between SuSiE and FINEMAP CPs 

 

Comparison of CPs across all trait-regions between SuSiE (x-axis) and FINEMAP (y-axis) for 

genome-wide significant STRs (a) and SNPs and indels (b). The blue line denotes equal CP. 

Yellow boxes in the three extreme corners are summarized by the number of variants residing in 

those boxes.  
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Supplementary Figure 8: Discordance between fine-mappers 

 

The number of STRs (a) and SNPs (b) with p-value ≤ 1e-10 assigned a CP ≥ 0.8 by only SuSiE 

(red), only FINEMAP (purple), or both (brown).  
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Supplementary Figure 9: SuSiE settings not used for filtering 

 

Concordance between SuSiE CPs for all genome-wide significant variants across most small-to-

medium sized mean platelet volume fine-mapping regions under default settings on the x-axis 

(tol=1e-3, residual_variance slightly less than 1, and L=50) vs. a single alternate setting 

on the y-axis (a) tol=1e-4, (b) residual_variance=0.95, (c) 

residual_variance=0.8 and (d) L=10. Blue lines denote equal CP. Yellow boxes in the three 

extreme corners are summarized by the number of variants residing in those boxes.  
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Supplementary Figure 10: Effect of best-guess genotypes on SuSiE results 

 

Discordance between SuSiE CPs for variants with p-value ≤ 1e-10 when run with dosage 

genotypes (x-axis) vs best-guess genotypes (y-axis) among STRs (a) and SNPs and indels (b). 
These data points are taken from running SuSiE on the trait-regions containing the 177 STR-trait 

associations with p-value≤1e-10 and with both SuSiE and FINEMAP CPs≥0.8. Black lines denote 

equal CP. Larger circle sizes denote larger variant -log10 association p-values. Circle color 

denotes the CP of that variant from our default FINEMAP run. Yellow boxes in the three extreme 

corners are summarized by the number of variants residing in those boxes and the average 

FINEMAP CP value of those variants.
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Supplementary Figure 11: Effect of alternate settings on FINEMAP results 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/


 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/


Discordance between FINEMAP CPs for variants with p-value ≤ 1e-10 when run under default 

settings on the x-axis (with a p-value > 5e-2 filter, --prior-std 0.05, prior of one causal 

variant per trait-region, --prob-conv-sss-tol 0.001) (x-axis) vs a single alternate setting on 

the y-axis (a) p-value > 5e-4 filter (b) additionally filtering those variants with total non-major-allele 

dosage < 100 (c) --prior-std 0.0224 (d) prior of four causal variants per trait region (e) --

prob-conv-sss-tol 0.0001 and (f) --prior-std=0.005. These data points are taken from 

running FINEMAP on the trait-regions containing the 177 STR-trait associations with p-value≤1e-

10 and with both SuSiE and FINEMAP CPs≥0.8. Discordance among STRs is plotted on the left, 

and among SNPs and indels is plotted on the right. Black lines denote equal CP. Larger circle 

sizes denote larger variant -log10 association p-values. Circle color denotes the CP of that variant 

from our default SuSiE run. Yellow boxes in the three extreme corners are summarized by the 

number of variants residing in those boxes and the average SuSiE CP value of those variants.  
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Supplementary Figure 12: Effect of conservative prior favoring SNPs and indels on 
estimated causality of STR variants 

 

Discordance between CPs for STRs with p-value ≤ 1e-10 when run under default settings (x-axis) 

vs with a 4x prior of causality for SNPs and indels as compared to STRs (y-axis) in (a) SuSiE and 
(b) FINEMAP. These data points are taken from running SuSiE and FINEMAP on the trait-regions 

containing the 177 STR-trait associations with p-value≤1e-10 and with both SuSiE and FINEMAP 

CPs≥0.8. Black lines denote equal CP. Larger circle sizes denote larger variant -log10 association 

p-values. Circle color denotes the CP of that variant from the other fine-mapper’s default run. 

Yellow boxes in the extreme corners are summarized by the number of variants residing in those 

boxes and the average SuSiE CP value of those variants.
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Supplementary Figure 13: Replication of White British STR associations in other 
populations 

 

 

The y-axis gives the fraction of STR associations measured in the discovery cohort that have the 

same direction of effect when measured in the replication population regardless of p-value 

(left=Irish, right=White Other, see Fig. 3 for the non-White populations). Brackets beneath the x-

axis denote the binning of discovery -log10 p-values. Brown=genome-wide significant associations 

(discovery p≤5e-8), orange=FINEMAP fine-mapped STR associations (discovery p≤5e-8 and 

FINEMAP CP ≥ 0.8), teal=SuSiE fine-mapped STR associations (discovery p≤5e-8 and SuSiE 

CP ≥ 0.8) and purple=confidently fine-mapped STR associations. Annotations above each bar 

indicate the number of STR-trait associations considered. We required confidently fine-mapped 

STR associations to have p-value ≤ 1e-10, thus they do not appear in the left-most bin. The trends 

in these figures are somewhat sensitive to the choice of p-value bin boundaries so we additionally 

analyze this data using logistic regression models (Supplementary Table 6). 
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Supplementary Figure 14: Prevalence of STR features 

 

Genomic annotation (a-b) and repeat unit (c-d) prevalences are shown for different categories of 

STRs. (Blue=all STRs in our imputation panel, yellow=genome-wide significant STRs for at least 

one trait, orange=confidently fine-mapped STRs). In (a), “upstream promoter” is defined as the 
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region 3kb upstream of a transcription start site. (c-d) contains all repeat units represented by at 

least one thousand STRs in our reference panel, except for trinucleotide STR repeat units, as 

enrichments for those could not be distinguished from the enrichment for exonic trinucleotide 

STRs as a whole. See the Methods for more details. P-values from two-sided tests of difference 

between proportions are only displayed when p≤0.05. Note that strong p-values for differences 

between the all STRs and genome-wide significant STRs categories could often be due to 

restricting to phenotypically-important genomic regions and not necessarily due to enrichment for 

causal variants.  
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Supplementary Figure 15: Splicing analysis of an STR in SLC2A2  

 

 

Scatter plots showing the association between the STR chr3:17100913 (GT repeat) and the 

splicing (percent spliced in, or PSI) of exon 4 (a; linear association p=0.77) and exon 6 (b; linear 

association p=8.7e-07) of SLC2A2 in Liver samples from GTEx12. Blue dots represent single 

samples. Dots are transparent such that darker dots indicate multiple samples overlayed on the 

same point. For each plot, the x-axis represents the sum of repeat copies of STR in each individual 

and the y-axis represents percent spliced in (PSI) for the indicated exon. The red line shows the 

median and the blue line shows the mean PSI for each x axis value. 
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Supplementary Figure 16: Associations of an STR in CBL with platelet crit and residual 
platelet volume 

 

STR length vs mean platelet crit (a) and mean residual platelet count (b). The trends are nearly 

identical to those in Fig. 4b for unadjusted platelet count. For (b) we calculated residuals by 

linearly regressing out the same covariates that were used in association p-value calculations 

(Methods), including sex, age, population principal components and categorical covariates for 

batch effects. We then calculated the weighted means for each dosage taking the residual values 

as fixed inputs. Note that in our association pipeline, p-values are calculated from regressions on 

rank inverse normalized phenotype values, while for this figure we do not use rank inverse 

normalization.  
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Supplementary Figure 17: Associations of an STR in CBL with mean sphered cell volume 

 

(a) Association between dosage of the CGG repeat at chr11:119077000 (hg19) and mean 

sphered cell volume. The mean trait value for each STR dosage (sum of allele lengths) was 

calculated across White British participants, with each participant’s contribution weighted by that 

participant’s likelihood of having that dosage. 95% confidence intervals were calculated similarly. 

Only dosages with a population frequency of 0.1% or greater are displayed. Rounded population-

wide counts are displayed for each dosage. (b) Association of variants at the CBL locus and mean 

sphered cell volume. Light blue=SNP and indels; orange=STRs. Red line=significance threshold, 

black circle=the (CGG)n STR. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502370
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 18: Distribution of alleles of an STR in CBL across 1000 Genomes 
populations 

 

The x-axis gives STR length (number of repeat units) and y-axis gives the population frequency. 

The solid portion of each bar corresponds to the alleles of that length that include a “TGG” 

imperfection at the second repeat (rs7108857). Colors denote 1000 Genomes populations that 

were included in the Geuvadis cohort13.  
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Supplementary Figure 19: Association of an STR in BCL2L11 

 

(a) Association of variants at the BCL2L11 locus and eosinophil percent, before (top) and after 

(bottom) conditioning on the CCG repeat at chr2:111878544 (hg19). Light blue=SNPs and indels; 
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orange=STRs. Red line=significance threshold, black circle=the (CCG)n STR. (b) Association 

between dosage of the CCG repeat and eosinophil percentage. The mean trait value for each 

STR dosage (sum of allele lengths) was calculated across White British participants, with each 

participant’s contribution weighted by that participant’s likelihood of having that dosage. 95% 

confidence intervals were calculated similarly. Only dosages with a population frequency of 0.1% 

or greater are displayed. Rounded population-wide counts are displayed for each dosage.  
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Supplementary Figure 20: Association of an STR in TAOK1 

 

(a) Association between dosage of the A repeat at chr17:27842016 (hg19) and mean platelet 

volume. The mean trait value for each STR dosage (sum of allele lengths) was calculated across 

White British participants, with each participant’s contribution weighted by that participant’s 

likelihood of having that dosage. 95% confidence intervals were calculated similarly. Only 

dosages with a population frequency of 0.1% or greater are displayed. Rounded population-wide 
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counts are displayed for each dosage. (b) Association of variants at the TAOK1 locus and mean 

platelet volume before (top) and after (bottom) conditioning on the STR. Light blue=SNPs and 

indels; orange=STRs. Red line=significance threshold, black circle=the (A)n STR. 
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Supplementary Figure 21: Association and allele distribution of an STR in ESR2 

 
(a) Association between dosage of the GTTT repeat at chr14:64714051 (hg19) and haematocrit. 
The mean trait value for each STR dosage (sum of allele lengths) was calculated across White 

British participants, with each participant’s contribution weighted by that participant’s likelihood of 

having that dosage. 95% confidence intervals were calculated similarly. Only dosages with a 

population frequency of 0.1% or greater are displayed. Rounded population-wide counts are 

displayed for each dosage. (b) Association of variants at the ESR2 locus and haematocrit. 

Conditioning on the repeat fully accounts for the signal seen in this region. Light blue=SNPs and 

indels; orange=STRs. Red line=significance threshold, black circle=the (GTTT)n STR. (c) 
Distribution of STR length alleles in different populations (blue=White British, orange=Black, 

yellow=South Asian; green=Chinese).  
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Supplementary Figure 22: Associations of an STR in RHOT1 

 

(a) Association between dosage of the CCG repeat at chr17: 30469471 (hg19) and red blood cell 

distribution width. The mean trait value for each STR dosage (sum of allele lengths) was 

calculated across White British participants, with each participant’s contribution weighted by that 

participant’s likelihood of having that dosage. 95% confidence intervals were calculated similarly. 

Only dosages with a population frequency of 0.1% or greater are displayed. Rounded population-

wide counts are displayed for each dosage. (b) Association between dosage of the repeat and 

RHOT1 gene expression in the Geuvadis cohort13 (LCLs; n=447). Solid lines give median 
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expression values for each STR dosage bin with at least 5% frequency in each group. Dosages 

were binned into groups spanning 3 repeat copies each since individually each genotype was 

relatively rare at this locus. (c) Positioning of the CCG repeat relative to the H3K27ac signal (note 

the localization within the nucleosome depleted region) and a CTCF binding site at the 5’ UTR of 

RHOT1. The visualization was generated using the Integrative Genomics Viewer14 loading the 

ENCODE15 data for GM12878 LCLs. The image does not display the gene NR_136413 that also 

overlaps the STR as it is not expressed in LCLs.
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Supplementary Figure 23: Association of an STR in NCK2 

 

(a) Association between dosage of the AC repeat at chr2:106510441 (hg19) and mean platelet 

volume. The mean trait value for each STR dosage (sum of allele lengths) was calculated across 

White British participants, with each participant’s contribution weighted by that participant’s 

likelihood of having that dosage. 95% confidence intervals were calculated similarly. Only 

dosages with a population frequency of 0.1% or greater are displayed. Rounded population-wide 
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counts are displayed for each dosage. (b) Association of variants at the NCK2 locus and mean 

platelet volume. Conditioning on the repeat fully accounts for the signal seen in this region. Light 

blue=SNPs and indels; orange=STRs. Red line=significance threshold, black circle=the (AC)n 

STR.  
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