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Abstract: 

The brain’s anatomy constrains its function, but precisely how remains unclear. Here, we show 15 
that human cortical and subcortical activity, measured with magnetic resonance imaging under 
spontaneous and diverse task-evoked conditions, can be parsimoniously understood as resulting 
from excitations of fundamental, resonant modes of the brain’s geometry (i.e., its shape) rather 
than of its complex inter-regional connectivity, as classically assumed. We then use these modes 
to show that task-evoked activations across >10,000 brain maps are not confined to focal areas, as 20 
widely believed, but instead excite brain-wide modes with wavelengths spanning >60 mm. Finally, 
we confirm theoretical predictions that the close link between geometry and function is explained 
by a dominant role for wave-like dynamics, showing that such dynamics can reproduce numerous 
canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge 
prevailing views of brain function and identify a previously under-appreciated role of brain 25 
geometry that is predicted by a unifying and physically principled approach. 
 

One-Sentence Summary: 
The physical geometry of the brain fundamentally constrains the functional organization of the 
human brain. 30 
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Main Text:  
The dynamics of many natural systems are fundamentally constrained by their underlying 35 
structure. For instance, the shape of a drum influences its acoustic properties, the morphology of 
a riverbed shapes underwater currents, and the geometry of a protein constrains the molecules with 
which it interacts (1, 2). The nervous system is no exception, with the rich and complex 
spatiotemporal dynamics of anatomically distributed neuronal populations being supported by 
their intricate web of axonal interconnectivity (3, 4). Several studies have revealed correlations 40 
between various properties of brain connectivity and activity (5), but precisely how spatiotemporal 
patterns of neural dynamics are constrained by a relatively stable neuroanatomical scaffold 
remains unclear. 
 
In diverse areas of physics and engineering, structural constraints on system dynamics can be 45 
understood via the system’s eigenmodes, which are fundamental spatial patterns corresponding to 
the natural, resonant modes of the system (6, 7). In the linear regime, such as brain activity under 
normal (i.e., non-seizure-like) conditions (8), eigenmodes (hereafter also referred to as modes) 
offer a particularly powerful and rigorous formalism for linking brain anatomy with the physical 
processes that shape its activity. Through this lens, spatiotemporally patterned neuronal dynamics 50 
are viewed as emerging from excitations of the brain’s structural eigenmodes, much like the 
harmonics of a plucked violin string arise from vibrations of its resonant modes. 
 
Just as the resonant frequencies of a violin string are determined by its length, density, and tension, 
the eigenmodes of the brain are determined by its structural––physical, geometric, and anatomical–55 
–properties. Do any of these specific structural properties make a dominant contribution to 
dynamics? Here, we test between two influential and competing theories that make different 
predictions about which key elements of brain structure shape dynamics and function.  
 
One classical perspective, which represents the dominant paradigm in neuroscience and has its 60 
roots in Ramon y Cajal’s neuron doctrine (9), Brodmann’s cytoarchitectonics (10), and over a 
century of work localizing functions to specific brain regions (11, 12), is that spatiotemporal 
patterns of neural dynamics arise from interactions between discrete, functionally specialized cell 
populations connected by a topologically complex array of short- and long-range axonal 
connections (13, 14). In humans, these connections can be estimated at macroscopic scales with 65 
diffusion MRI (dMRI) to yield a graph-based structural connectivity matrix or connectome (15). 
This approach has been used extensively to understand brain organization and dynamics (13, 15, 
16), and recent work has proposed that eigenmodes derived from such discrete connectome 
models, referred to here as connectome eigenmodes, can be used to reconstruct the spatial patterns 
of canonical functional networks of the human cortex mapped with functional MRI (fMRI) (17–70 
19). 
 
A limitation of this discrete connectomic-based view is that it relies on an abstract representation 
of brain anatomy that does not directly account for its physical properties and spatial embedding 
(i.e., geometry and topology). These characteristics are explicitly incorporated into a broad class 75 
of neural field theories (NFTs) (20–25) that describe mean-field neural dynamics on spatial scales 
>0.5 mm (Supplementary Material-S1). In particular, a common, physiologically-constrained 
form of NFT has unified a diverse range of empirical phenomena (25, 26) by treating cortical 
activity as a superposition of traveling waves propagating through a physically continuous sheet 
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of neural tissue. In this theory, neural interactions between different cortical locations are 80 
approximated by a homogeneous spatial kernel that declines roughly exponentially with distance 
(27). This approximation is supported by experimental evidence showing that the organization of 
the nervous systems across species is universally governed by an exponential distance rule (EDR) 
(4, 25, 28, 29).  
 85 
NFT predicts that the intrinsic geometry of the brain physically shapes and imposes boundary 
conditions on any emerging spontaneous and evoked dynamics (30–32). A remarkable corollary 
of this view is that, if we prioritize spatial and physical constraints on brain anatomy, we only need 
to consider the shape of the brain, and not its full array of topologically complex axonal 
interconnectivity, to understand dynamics. More formally, the theory predicts that eigenmodes 90 
derived from brain geometry––hereafter referred to as geometric eigenmodes––represent a more 
fundamental structural constraint on dynamics than the connectome (30–32). This view stands in 
stark contrast to the classical view that complex patterns of inter-regional anatomical connectivity 
shape brain activity (33). 
 95 
Here, we test these competing views of the brain with the aim of identifying fundamental structural 
constraints on human brain dynamics. In line with theoretical predictions from NFT, we show that 
diverse experimental fMRI data from spontaneous and task-evoked recordings in the human 
neocortex can be more parsimoniously explained by eigenmodes derived from cortical geometry 
(geometric eigenmodes) rather than those obtained from connectivity (connectome eigenmodes). 100 
We further confirm that stimulus-evoked activity is dominated by excitations of geometric 
eigenmodes with long spatial wavelengths, challenging classical views that evoked activity is 
localized to focal, spatially isolated clusters. To directly link these structural constraints to the 
physical processes driving brain dynamics, we use a generative model to show how wave dynamics 
unfolding on the geometry of the cortex can explain diverse features of functional brain 105 
organization. Finally, we show that the close relationship between geometry and function revealed 
by eigenmodes extends to non-neocortical structures, indicating that this link is a universal 
property of brain organization. 
 

RESULTS 110 
Eigenmodes of cortical geometry parsimoniously explain neocortical activity 

We first examine the degree to which geometric eigenmodes can explain diverse aspects of human 
neocortical activity. To derive the eigenmodes, we first approximate cortical geometry using a 
triangular mesh representation, comprising 32,492 vertices in each hemisphere, taken from a 
population-averaged template of the neocortical surface (34) (Fig. 1A). We then construct the 115 
Laplace-Beltrami operator (LBO) from this surface mesh, which captures spatial variations of the 
cortical manifold by accounting for local vertex-to-vertex relations and curvature (35) 
(Supplementary Material-S2), and solve the eigenvalue problem, 
 

𝛥𝜓 = −𝜆𝜓, (1) 120 
 
where 𝛥 is the LBO and 𝜓 = {𝜓!(𝒓), 𝜓"(𝒓), …} is the family of geometric eigenmodes with 
corresponding family of eigenvalues, 𝜆 = {𝜆!, 𝜆", … }. The eigenvalues are ordered sequentially 
according to the spatial frequency or wavelength of the spatial patterns of each mode (Fig. 1A and 
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Fig. S1); i.e., 0 ≤ 𝜆! ≤ 𝜆" ≤ ⋯, where 𝜆! corresponds to the mode with the longest spatial 125 
wavelength (Supplementary Material-S2). 
 
Eigenmodes are orthogonal, forming a complete basis set to decompose spatiotemporal dynamics 
unfolding on the cortex into different spatial frequencies. We thus use the geometric eigenmodes 
to decompose empirical data, 𝑦(𝒓, 𝑡), measured at spatial location 𝒓 and time 𝑡, as a weighted sum 130 
of modes (Fig. 1B), 
 

𝑦(𝒓, 𝑡) =3𝑎#(𝑡)𝜓#(𝒓)
$

#%!

, (2) 

 
where 𝑎# is the amplitude of mode 𝑗 obtained via integration of the dot product of 𝑦(𝒓, 𝑡) and 135 
𝜓#(𝒓) over the cortical surface or via a statistical general linear model (Supplementary Material-
S3) and 𝑁 is the number of modes retained (here we use 𝑁 = 200 modes).  
 
Using this decomposition, we evaluate the accuracy of geometric eigenmodes in capturing both 
task-evoked and spontaneous brain activity (Fig. 1C) measured in 255 healthy individuals from 140 
the Human Connectome Project (36) (HCP; Supplementary Material-S4). For task-evoked 
activity, we map 47 task-based contrasts drawn from 7 different tasks, mapping distinct evoked 
activation patterns. We then reconstruct each individual’s activation map using an increasing 
number of modes up to a maximum of 200 (Fig. 1D). For spontaneous, task-free (so-called 
“resting-state”) activity, we reconstruct the spatial map of activity at each time frame and then 145 
generate a region-to-region functional coupling (FC) matrix, describing correlations of activity 
between 180 discrete brain regions per hemisphere defined by a widely used parcellation based on 
multimodal neuroimaging data (37). To allow direct comparison between task-evoked and 
spontaneous recordings, we apply the same regional parcellation to the task-evoked data, reducing 
32,492 data points at vertex resolution (millimeter scale) to 180 data points at parcel resolution 150 
(centimeter scale) (Supplementary Material-S5). Finally, we quantify reconstruction accuracy by 
calculating the correlation between the empirical and reconstructed task-evoked activation maps 
and spontaneous FC matrices (Figs. 1D–E). 
 
We observe that reconstruction accuracy increases with an increasing number of modes across all 155 
task contrasts and in the resting-state, with 𝑟 ≥ 0.40 already achieved using just 𝑁 = 10 modes 
(Fig. 1D). Large-scale modes are also recruited distinctly across different tasks, suggesting that 
particular stimuli excite specific modes (Fig. 1E). Improvements in reconstruction accuracy slow 
down after 10 modes, reaching 𝑟 ≥ 0.80 at approximately 𝑁 = 100 modes with only incremental 
increases in reconstruction accuracy beyond this point. Since the first 100 modes have wavelengths 160 
above ~40 mm, and the inclusion of shorter-wavelength modes serves mainly to refine 
reconstruction of localized patterns (arrows in Fig. 1E), our findings suggest that the data are 
predominantly comprised of spatial patterns with long spatial wavelengths (see next section for a 
more detailed analysis). These results are consistent across all 47 HCP task contrasts (Fig. S2) and 
parcellations of varying resolutions (Fig. S3), but data parcellated at higher resolutions require 165 
more modes to achieve high reconstruction accuracy due to the low-pass spatial filtering effect of 
coarser parcellations. Our results are also not affected by our use of a population-averaged cortical 
surface template (rather than individual-specific surfaces) to derive the geometric eigenmodes 
(Fig. S4). These findings indicate that cortical geometric eigenmodes form a compact 
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representation that captures diverse aspects of task-evoked and spontaneous cortical activity. 170 
Moreover, they show that such activity are dominated by long-wavelength, large-scale 
eigenmodes. 
 
 

 175 
 
Fig. 1. Eigenmodes of cortical geometry as a compact representation of macroscale neocortical activity. 
(A) Geometric eigenmodes are derived from a mesh representation of the cortical by solving the eigenvalue 
problem Δ𝜓 = −𝜆𝜓 (Eq. (1)). The modes 𝜓!, 𝜓", 𝜓#, … , 𝜓$ are ordered from low to high spatial frequencies 
(long to short spatial wavelengths). Negative–zero–positive values are colored as blue–white–red. (B) Mode 180 
decomposition of brain activity data. The example shows how a spatial map, 𝑦(𝒓), can be decomposed as a sum 
of modes weighted by 𝑎%. (C) We reconstruct task-evoked data using spatial maps of activation for a diverse 
range of stimulus contrasts (left). We also reconstruct spontaneous activity by decomposing the spatial map at 
each time frame and generating a region-to-region functional coupling (FC) matrix (right). (D) Reconstruction 
accuracy of 7 key HCP task-contrast maps (Supplementary Material-S4.2 and Table S2) and resting-state FC as 185 
a function of the number of modes. The insets show cortical-surface reconstructions demonstrating the spatial 
scales relevant to the first 10, 100, and 200 modes corresponding to spatial wavelengths of ~120 mm, ~40 mm, 
and ~30 mm, respectively. (E) Group-averaged empirical task-activation maps and reconstructions obtained 
using 10, 100, and 200 modes of the 7 key HCP task contrasts. wm = working memory. The black arrows show 
localized activation patterns that are more accurately reconstructed when using short-wavelength modes. (F) 190 
Group-averaged empirical resting-state FC matrices and reconstructions using 10, 100, and 200 modes. 
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We next test the hypothesis that geometric eigenmodes provide a more parsimonious and 
fundamental description of dynamics than eigenmodes derived from a graph-based connectome 
approximation. To this end, we compare the reconstruction accuracy of geometric eigenmodes 195 
against three alternative connectome-derived eigenmode basis sets (see Fig. 2A for a schematic). 
The first basis set is derived empirically from a connectome mapped with dMRI tractography at 
vertex resolution (38) (Supplementary Material-S6). The second basis set is derived from a 
connectome constructed synthetically according to a homogeneous stochastic wiring process 
governed by an exponential distance-dependent connection probability to mimic simple, EDR-like 200 
connectivity (Supplementary Material-S7). We threshold the empirical connectome to obtain a 
connection density of 0.10%, as done previously (38). The third basis set is derived from the 
empirical connectome thresholded at 1.55% to match the density of the EDR connectome 
(Supplementary Material-S7). The connectome, EDR, and density-matched connectome 
eigenmodes described above are derived from the graph Laplacian (a discrete counterpart of the 205 
LBO) of their respective connectivity matrices (Fig. 2B and Fig. S1; Supplementary Material-S6 
and S7). 
 
To summarize, geometric eigenmodes account for the intrinsic curvature of the cortical surface 
and local vertex-to-vertex relations in the surface mesh but do not incorporate long-range 210 
connections; connectome eigenmodes do not consider curvature but capture local spatial relations 
between points and short- and long-range connections measured with dMRI; and EDR eigenmodes 
account for the effect of a homogeneous, stochastic, distance-dependent connection rule without 
fully capturing the cortical geometry (Fig. 2A). Comparing these different basis sets thus allows 
us to disentangle the contributions to brain dynamics of cortical geometry from structural 215 
connectivity. 
 

 

Fig. 2. Geometric eigenmodes benchmarked against connectome-based eigenmodes. (A) Schematic of the 
anatomical properties used to derive the eigenmodes for cortical geometry, the connectome, and the exponential 220 
distance rule (EDR) connectome. Geometric eigenmodes rely on local surface mesh information such as links 
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(blue) between neighboring surface mesh vertices (dots) and curvature. Connectome eigenmodes rely on local 
links between mesh vertices (blue) and short- and long-range connections (magenta) reconstructed empirically 
from dMRI. EDR eigenmodes rely on connections (red) generated from a stochastic wiring process where the 
probability of connection between vertices exponentially decays as a function of their distance (Supplementary 225 
Material-S6 and S7). (B) Example connectome and EDR eigenmodes. Negative–zero–positive values are colored 
as blue–white–red. Despite some similarities, the spatial patterns of the modes are distinct from those derived 
using cortical geometry (compare with Fig. 1A). (C) Reconstruction accuracy of resting-state FC matrices 
achieved by geometric, EDR, and two variants of connectome eigenmodes: one using a connectome as defined 
using prior methods (38) and the other with the same connection density as the EDR connectome to allow fair 230 
comparison (for other densities, see Fig. S7). (D) Difference in reconstruction accuracy of all 47 HCP task-
contrast maps achieved by geometric eigenmodes and the other basis sets, as indicated by the text above each 
panel. Each row represents a different task contrast, which have been grouped here by broad types 
(Supplementary Material-S4.2 and Table S2). wm = working memory. Red indicates superior performance for 
geometric eigenmodes. 235 
 

Direct comparison of the reconstruction accuracy of these different basis sets reveals that 
geometric eigenmodes consistently show the highest reconstruction accuracy across both 
spontaneous (Fig. 2C) and task-evoked (Fig. 2D) data. EDR eigenmodes perform nearly as well 
as the geometric eigenmodes, whereas connectome eigenmodes are the least accurate. This finding 240 
holds regardless of the parcellation (Figs. S5 and S6), the specific connection density used to 
generate the connectome eigenmodes (Fig. S7), and whether we generate the connectome using a 
discrete regional parcellation rather than at vertex resolution (Fig. S8; Supplementary Material-
S6). We additionally find that geometric eigenmodes show stronger out-of-sample generalization 
than principal components of the functional data itself (calculated via principal component analysis 245 
(PCA); Supplementary Material-S8 and Figs. S9 and S10), supporting their robustness and 
generality as a basis set for brain function. Together, these findings support the prediction of NFT 
that brain activity is best represented in terms of eigenmodes derived directly from the shape of 
the cortex, and emphasize a fundamental role of geometry in constraining dynamics. 
 250 

Cortical activity is dominated by excitations of long-wavelength geometric modes 
Reconstructions of both spontaneous and task-evoked data with geometric eigenmodes show that 
the spatial organization of brain activity is dominated by patterns with spatial wavelengths of ~40 
mm or longer (Figs. 1D–E). This result counters the assumptions of classical neuroimaging 
analyses, in which stimulus-evoked activations are mapped by thresholding statistical maps to 255 
identify focal, isolated clusters of heightened activity. This classical approach rests on the 
assumption that the focal clusters represent discrete brain regions putatively engaged by the 
stimulus and that subthreshold activity in other regions plays no role. The surprisingly long-
wavelength content of task-activation data (Figs. 1D–E) suggests that classical procedures focus 
only on the tips of the iceberg and obscure the underlying spatially extended and structured patterns 260 
of activity evoked by the task (see Fig. S11 for an explanation as to why). These observations 
accord with the theoretical predictions of NFT and prior analyses of task-evoked 
electroencephalography (EEG) signals (39–41). 
 
Here, we leverage the mode decomposition described in Fig. 1B to characterize the complete 265 
spatial pattern––the entire iceberg––of task-evoked activation (Supplementary Material-S9). To 
this end, we analyze the mean modal power spectrum obtained using a geometric mode 
decomposition of group-averaged unthresholded activation maps from the 47 task contrasts in 
HCP (36, 42). As an independent replication, we also analyze 10,000 unthresholded activation 
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maps from 1,178 independent experiments available in the NeuroVault repository (43) 270 
(Supplementary Material-S9), thus providing a comprehensive picture of the diversity of stimulus-
evoked activation patterns mapped in the human brain. 
 
Despite the diversity of stimuli, paradigms, and data-processing approaches used to acquire these 
activation maps, we observe that a large fraction of power in the maps is concentrated in the first 275 
50 modes, corresponding to spatial wavelengths greater than ~60 mm (Fig. 3A; similar results are 
found in each key HCP task-contrast map; Fig. S12). Using surrogate data, we confirm that these 
findings cannot be explained by the spatial smoothing induced by typical fMRI processing 
pipelines, which can filter out short-wavelength spatial patterns of activity (Fig. S13; 
Supplementary Material-S9). We further observe that incremental, sequential removal of long-280 
wavelength modes has a much greater impact on reconstruction accuracy than removal of short-
wavelength modes (Fig. 3B; Supplementary Material-S10). For instance, removing the top 25% 
long-wavelength modes (i.e., modes 1 to 50) yields a ~40 to 60% drop in reconstruction accuracy, 
whereas removing the top 25% short-wavelength modes (i.e., modes 151 to 200) only yields a ~2 
to 4% drop in accuracy (Fig. 3B insets). These results indicate that, on temporal and spatial scales 285 
accessible with fMRI, evoked cortical activity comprises large-scale, nearly brain-wide spatial 
patterns, challenging classical views that such activity should be described in terms of discrete, 
isolated, and anatomically localized activation clusters. 
 
 290 
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Fig. 3. Task-evoked activity excites long-wavelength modes. (A) Normalized mean power spectra of 47 HCP 
task-contrast maps (left) and 10,000 contrast maps from the NeuroVault database (right). The insets show 
cortical-surface reconstructions demonstrating the spatial scales relevant to the first 50, 100, and 200 modes 
corresponding to spatial wavelengths of ~60 mm, ~40 mm, and ~30 mm, respectively. Contrast-specific spectra 295 
for the 7 key HCP task contrasts are presented in Fig. S12. (B) Reconstruction accuracy of 7 key HCP task-
contrast maps as a function of the percent of modes (out of 200 modes) removed in the reconstruction process. 
wm = working memory. The solid and dashed lines correspond to the removal of the top long-wavelength and 
short-wavelength modes, respectively. The insets show group-averaged empirical activation maps (‘data’) and 
their reconstructions after removing 25% of modes. Negative–zero–positive values are colored as blue–white–300 
red. 
 

Traveling waves and geometry explain diverse neocortical dynamics 
Geometric eigenmodes of the cortex are obtained by solving the eigenvalue problem of the LBO, 
which is also known as the Helmholtz equation (Eq. (1) and Supplementary Material-S2). In 305 
physically continuous systems, the solutions of the Helmholtz equation correspond to the spatial 
projections of the solutions of a more general wave equation, such that the resulting eigenmodes 
inherently represent the vibrational patterns (standing waves) of the system’s dynamics (44). This 
equivalence implies that the superior efficacy of geometric eigenmodes in reconstructing diverse 
patterns of brain activity results from a fundamental role of wave dynamics in shaping these 310 
patterns, as predicted by NFT. This prediction has been confirmed through models of EEG 
recordings (26, 45), but waves across the whole brain have only recently been observed in fMRI 
signals (46, 47) and thus far lack a theoretical explanation. Here, we use NFT and geometric 
eigenmodes to show that wave dynamics can provide a unifying account of diverse empirical and 
physiological phenomena observed at scales accessible with fMRI. 315 
 
We model the neural activity 𝜙 of a neocortical location 𝒓 at time 𝑡 using an isotropic damped 
NFT wave equation without regeneration (25), 
 

>
1
𝛾&"

𝜕"

𝜕𝑡" 	+ 	
2
𝛾&
𝜕
𝜕𝑡 + 1 − 𝑟&

"∇"D𝜙(𝒓, 𝑡) = 𝑄(𝒓, 𝑡)	, (3) 320 

  
where 𝛾& is the damping rate, 𝑟& is the spatial length scale of local axonal projections, and 𝑄 is an 
external input (Supplementary Material-S11.1). To simulate resting-state neural activity, 𝑄 is a 
white noise input to mimic unstructured stochastic fluctuations (26, 48). We compare the 
performance of this simple wave model to a biophysically-based neural mass model (balanced 325 
excitation-inhibition, or BEI, model) that has been used extensively to understand resting-state 
fMRI signals (49, 50) (Fig. 4A). The neural mass model is closely aligned with the classical, 
connectome-centric view of brain function, representing dynamics as the result of interactions 
between neuronal populations in discrete anatomical regions, coupled according to an empirically 
measured connectome (Supplementary Material-S11.2).  330 
 
We first compare the efficacy of the two models in capturing distinct and commonly studied 
properties of spontaneous, task-free FC; namely, static pairwise FC (edge FC), node-level average 
FC (node FC), and time-resolved dynamic properties of FC (FCD) (Supplementary Material-
S11.4). Across all benchmark measures, the wave model displays comparable or superior 335 
performance in reconstructing the empirical data relative to the neural mass model (Fig. 4B). This 
strong performance of the wave model is remarkable given its relative simplicity: the wave model 
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only requires the geometry of the cortex (i.e., the surface mesh) as input and includes 1 fixed 
parameter and 1 free parameter (i.e., 𝑟&) for fitting to data (Supplementary Material-S11.1 and 11.5 
and Fig. S14), whereas the neural mass model requires a dMRI-derived inter-regional anatomical 340 
connectivity and comprises 15 fixed parameters and 4 free parameters (Supplementary Material-
S11.2 and S11.5). These considerations indicate that wave dynamics traveling through the cortical 
sheet provide a more accurate and parsimonious mechanistic account of macroscale, spontaneous 
cortical dynamics captured by fMRI. 
 345 

 

Fig. 4. Traveling wave dynamics shape patterns of spontaneous and stimulus-evoked activity. (A) 
Simulation workflow using wave and neural mass models. For the wave model, the activity 𝜙(𝒓, 𝑡) at location 
𝒓 and time 𝑡 is governed by a wave equation with damping rate 𝛾&, spatial length scale 𝑟&, and input 𝑄(𝒓, 𝑡). For 
the neural mass model, the activity 𝑆'(𝑡) of region 𝑖 is described by the function 𝑓, which depends on the activity 350 
of other regions 𝑺, local population parameters 𝜃', and dMRI-derived structural connectivity between regions 𝐶 
and scaled by the global coupling parameter 𝐺. The model dynamics are used to calculate a simulated FC matrix 
(Supplementary Material-S11.4). 𝑀()*+, and 𝑀(-++ correspond to the number of fixed and free parameters of 
each model, respectively. (B) Comparison of data and model simulations based on various metrics, which from 
left to right are: FC matrix (for visual purposes), static pairwise FC (edge FC), static node-level average FC 355 
(node FC), and time-resolved FC dynamics (FCD). For edge FC and node FC, the red lines represent linear fits 
with Pearson correlation coefficient r. For FCD, the probability density function (pdf) of the similarity of global 
synchrony in data and model dynamics are compared using the Kolmogorov-Smirnov (KS) statistic. Note that 
the free parameters for each model are tuned to optimize data-model fitting using data that is independent of the 
data used to evaluate model performance (Supplementary Material-S11.5). (C) Wave propagation of activity 360 
after a 1 ms stimulation of the primary visual cortex (V1) from t = 1 to 2 ms. The arrows show the direction of 
propagation (Supplementary Video 1). (D) Activity profile of different regions in the visual cortical hierarchy. 
The insets show the spatial locations of the regions on the cortical surface colored following the activation 
profiles. (E) Relationship of the ranked activity profile time to peak and ranked T1w:T2w value of the regions 
in panel D. The red line represents a linear fit of the ranked variables with Spearman correlation coefficient r 365 
and spin-test p-value pspin from 10,000 permutations (Supplementary Material-S11.6). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.510897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 
 

We next consider stimulus-evoked cortical activity in the wave model. We analyze cortical 
responses to sensory stimulation of primary visual cortex (V1), as it elicits a well-defined hierarchy 
of regional cortical responses (51, 52) (Supplementary Material-S11.6). A 1 ms pulse input to V1 370 
yields a propagating wave of activity that rapidly splits along the dorsal and ventral visual 
processing streams (Fig. 4C; see arrows and also Supplementary Video 1), consistent with the 
current mainstream understanding of hierarchical visual processing (53). Remarkably, this result 
indicates that geometric constraints on travelling waves of evoked activity are a sufficient 
condition for the segregation of the dorsal and ventral processing streams, which have traditionally 375 
been thought to result from complex patterns of layer-specific connectivity (51, 53, 54). 
Furthermore, the temporal profile of evoked responses across the visual system follows a well-
defined temporal hierarchy, with higher-order association areas showing peak responses that are 
delayed and prolonged compared to visual lower areas (Fig. 4D). These findings thus indicate that 
this hierarchical ordering, which has previously been identified in experimental and modelling 380 
studies (52, 55, 56), emerges naturally from waves of excitation propagating through the cortical 
medium. Critically, this hierarchical temporal ordering of areal responses strongly correlates with 
an independent, anatomical measure of the cortical processing hierarchy based on non-invasive 
estimates of myeloarchitecture (T1w:T2w) (57, 58) (Supplementary Material-S11.6). This 
correlation is particularly strong within the visual-processing hierarchy (𝑟 = −0.72, 𝑝'()* < 0.01; 385 
Fig. 4E) but is also present when considering all cortical areas (𝑟 = −0.44, 𝑝'()* = 0.037; Fig. 
S15). Together, our modelling results show how simple wave dynamics unfolding on the geometry 
of the cortex provide a unifying generative mechanism for capturing apparently complex 
properties of spatiotemporal brain activity. 
 390 

Geometry also constrains dynamics outside the neocortex 
Our analyses have thus far focused on the strong coupling of geometry and dynamics in the 
neocortex. We next investigate this coupling in non-neocortical areas, focusing on the thalamus, 
striatum, and hippocampus because these structures have geometries that can be easily captured 
using MRI data and their functional organization has been extensively studied (59). 395 
 
We first generalize our eigenmode analysis to 3D volumes using recently developed methods (60) 
(Supplementary Material-S12), yielding geometric eigenmodes that extend spatially through the 
3D volume of each structure. Next, to fully capture the macroscale functional organization of these 
non-neocortical structures, we apply a widely used manifold-learning procedure to voxel-wise FC 400 
data to obtain the key functional gradients in each structure (61) (Supplementary Material-S13). 
These functional gradients describe the principal axes of spatial organization dictated by 
similarities in FC, thus representing the dominant modes of variation in functional organization, 
ordered according to the percentage of variance in FC similarity that they explain. 
 405 
The spatial profiles of the first three functional gradients of the thalamus, striatum, and 
hippocampus (accounting for 24%, 50%, and 47% of the variance in FC similarity, respectively) 
show a near-perfect match to the first three geometric eigenmodes (Figs. 5A–C; spatial correlations 
𝑟 ≥ 0.93). This tight correspondence generalizes out to the first 20 gradients and first 20 modes 
of each structure (respectively accounting for 49%, 70%, and 68% of the total variance in FC 410 
similarity), with all absolute spatial correlations |𝑟| ≥ 0.5, except for the 20th gradient and 20th 
mode in the striatum and hippocampus (Figs. 5D–F). This strong relationship is striking given that 
the functional gradients are generated via a complex processing pipeline applied to fMRI-derived 
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FC measures, while the eigenmodes are derived simply from each structure’s geometry, 
independent of the functional data. These findings suggest that the functional organization of non-415 
neocortical structures derives directly from their geometric eigenmodes. 
 

 
Fig. 5. Geometric eigenmodes capture the functional organization of non-neocortical structures. (A–C) 
First three geometric eigenmodes and FC-based functional gradients in the thalamus, striatum, and hippocampus, 420 
respectively. The modes and gradients are shown in 3D coordinate space, with negative–zero–positive values 
colored as blue–white–red. The labels show dorsal (D), posterior (P), and rightward (R) directions. The scatter 
plots show the relationship between the modes and gradients, with the red lines representing linear fits with 
Pearson correlation coefficient r. (D–F) Absolute correlation (|r|) of the first 20 geometric eigenmodes and 
functional gradients in the thalamus, striatum, and hippocampus, respectively. The top panels show the highest 425 
|r| obtained by each functional gradient (gray bars), taking into account order flips in geometric eigenmodes 
(Supplementary Material-S13), and the percentage of variance explained by each functional gradient (blue lines). 

 

DISCUSSION 
The dynamics of many physical systems are constrained by their geometry and can be understood 430 
as excitations of a relatively small number of excited structural modes (6, 7). Here we show that 
structural eigenmodes derived solely from the geometry of the brain’s structure provide a more 
compact, accurate, and parsimonious representation of its macroscale activity than alternative 
connectome-based models. This mode-based view of the brain further reveals that spontaneous 
and evoked brain activity captured by fMRI is dominated by large-scale eigenmodes with 435 
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relatively long wavelengths, whose dynamics are derived from a unifying wave equation. These 
findings challenge the classical neuroscientific paradigm, in which topologically complex patterns 
of inter-regional connectivity between discrete, specialized neuronal populations are viewed as a 
critical anatomical foundation for dynamics. Our findings further indicate that a physically 
grounded approach that treats the brain as a continuous, spatially embedded system offers a 440 
unifying framework for understanding structural constraints on diverse aspects of neuronal 
function. 
 
The superior performance of geometric eigenmodes in capturing macroscale neocortical activity 
indicates that geometry represents a fundamental anatomical constraint on dynamics. Additionally, 445 
the strong performance of the EDR eigenmodes derived from a synthetic network suggests that a 
homogeneous, distance-dependent connectivity with near-exponential form represents an 
important anatomical constraint on activity. EDR-like connectivity is mathematically embedded 
in the Helmholtz equation in Eq. (1) (25, 30), so the role of such connectivity is implicitly captured 
by the geometric eigenmodes. The comparatively poor performance of connectome eigenmodes 450 
indicates that topologically complex connections that exist beyond a simple EDR afford minimal 
further benefit in obtaining eigenmodes that can accurately explain spatiotemporal patterns of 
cortical activity, as measured with fMRI. Our findings thus counter traditional views that 
emphasize the role of intricate patterns of long-range anatomical connections in supporting 
coordinated dynamics (33, 62, 63). Given the scarcity, metabolic cost, and genetic control of such 455 
connections (64–66), it will be important to determine the specific functional and evolutionary 
advantage that they provide beyond the dominant role of wave-like dynamics; for example, in 
explaining time-lagged patterns of activity (47), which are not accounted for in our current 
framework.  
 460 
The close coupling between geometry and dynamics is apparent in neocortical and non-neocortical 
structures alike, suggesting that the functional organization of regions outside the neocortex is also 
dominated by local anatomical connectivity and wave dynamics, as suggested by recent 
experiments (46, 67). This observation indicates that geometric eigenmodes offer a simpler, more 
parsimonious, and mechanistically informative account of putative gradients of functional 465 
organization in non-neocortical structures than the complex manifold-learning procedures 
currently used in the literature (68). This is because such procedures are phenomenological, 
providing statistical descriptions of dominant sources of variances in the data, whereas the study 
of structural eigenmodes derives from a generative process. Notably, we do not observe the same 
one-to-one spatial correspondence between single geometric eigenmodes and previously described 470 
FC-derived functional gradients of the neocortex, the most dominant of which captures a 
hierarchical sensory-fugal axis of function (i.e., compare Fig. 1A with Fig. 1A in (69)). Functional 
gradients of the neocortex may thus reflect a superposition of geometric modes, just as musical 
chords emerge from combinations of individual notes. 
 475 
Geometric mode decomposition offers unique insights into the spatial properties of brain activation 
maps. Classical brain mapping analyses typically focus on responses in isolated clusters of spatial 
locations that exceed a statistical threshold (70). Our approach aligns with rigorously established 
results from physics and engineering, in which perturbations of spatially continuous systems elicit 
system-wide responses; for instance, the musical notes of a violin string result from oscillations 480 
across its entire length rather than the behaviour of an isolated string segment (71). Notably, the 
use of geometric eigenmodes indicates that, across >10,000 diverse maps from task-based fMRI 
studies, task engagement is associated predominantly with the excitation of modes with 
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wavelengths of ~60 mm and longer. This result coincides with similar observations of long-
wavelength excitations in empirical EEG and evoked response potential (ERP) data (39–41) and 485 
suggests that classical analyses relying on thresholding of point-wise statistical maps obscure the 
spatially extended and complex patterns of activity actually evoked by a task.  
 
Our modeling results offer insight into the physical processes underlying the close link observed 
between geometry and function. In particular, the relative simplicity and superior performance of 490 
the wave model in capturing diverse aspects of spontaneous fMRI dynamics indicates that it 
provides a more parsimonious account than a complex neural mass model that views the brain as 
a graph of discrete anatomical regions (nodes) coupled via the connectome (edges). Future work 
could explore whether introducing spatial heterogeneities (72) into the wave model further 
improves its accuracy.  495 
 
Application of the wave model to mimic visual stimulation reveals that waves propagating from 
the stimulation site segregate along the classical dorsal and ventral visual pathways, and that 
regional responses to the perturbation conform to a well-described hierarchy of timescales ranging 
from rapidly responding unimodal areas to slower-responding transmodal regions (52, 55, 56). 500 
These canonical properties of hierarchical visual processing have been extensively studied for 
decades and are classically thought to result from complex patterns of layer-specific inter-regional 
connectivity (51, 53, 54). Our analysis shows that it is not necessary to incorporate these 
anatomical details; rather, waves traveling through the cortical geometry are sufficient for the 
emergence of segregated, hierarchical dynamics.  505 
 
The superior performance of geometric eigenmodes offers an immediate practical benefit, since 
they can be estimated using only a mesh representation of the structure of interest, which can easily 
be derived using well-established, automated processing pipelines for T1-weighted anatomical 
images (73). In contrast, connectome eigenmodes require a graph-based model of macroscopic 510 
inter-regional connectivity generated via complex data processing pipelines (74); the definition of 
graph nodes, which is a topic of contention (75); and the application of a thresholding procedure 
to remove putatively spurious connections, which our own analysis shows can affect the findings 
(Fig. S7). The fact that such choices are not required to obtain the geometric eigenmodes means 
that they can be applied robustly and flexibly across different experimental contexts in both 515 
humans and other species, opening new avenues of research. For example, one can investigate how 
geometric eigenmodes vary through neurodevelopment or are disrupted in clinical disorders. 
Indeed, the close link we identify between geometry and function implies that inter-species 
differences in spatiotemporal dynamics may largely be driven by differences in brain shape. A 
better understanding of how variations in brain geometry, both within and between species, shape 520 
brain function will be essential for understanding physical and anatomical constraints on neuronal 
activity.  
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