10

15

20

25

30

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.04.510897; this version posted October 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Geometric constraints on human brain function

James C. Pang'*7, Kevin M. Aquino?’, Marianne Oldehinkel?, Peter A. Robinson?, Ben D.
Fulcher?, Michael Breakspear®, Alex Fornito!

Affiliations:

IThe Turner Institute for Brain and Mental Health, School of Psychological Sciences, and
Monash Biomedical Imaging, Monash University, Australia

2School of Physics, University of Sydney, Australia

*Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre,
Netherlands

4School of Psychological Sciences, University of Newcastle, Australia

*Corresponding author. Email: james.pangl(@monash.edu

"These authors contributed equally to this work

Abstract:

The brain’s anatomy constrains its function, but precisely how remains unclear. Here, we show
that human cortical and subcortical activity, measured with magnetic resonance imaging under
spontaneous and diverse task-evoked conditions, can be parsimoniously understood as resulting
from excitations of fundamental, resonant modes of the brain’s geometry (i.e., its shape) rather
than of its complex inter-regional connectivity, as classically assumed. We then use these modes
to show that task-evoked activations across >10,000 brain maps are not confined to focal areas, as
widely believed, but instead excite brain-wide modes with wavelengths spanning >60 mm. Finally,
we confirm theoretical predictions that the close link between geometry and function is explained
by a dominant role for wave-like dynamics, showing that such dynamics can reproduce numerous
canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge
prevailing views of brain function and identify a previously under-appreciated role of brain
geometry that is predicted by a unifying and physically principled approach.

One-Sentence Summary:

The physical geometry of the brain fundamentally constrains the functional organization of the
human brain.
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Main Text:

The dynamics of many natural systems are fundamentally constrained by their underlying
structure. For instance, the shape of a drum influences its acoustic properties, the morphology of
ariverbed shapes underwater currents, and the geometry of a protein constrains the molecules with
which it interacts (/, 2). The nervous system is no exception, with the rich and complex
spatiotemporal dynamics of anatomically distributed neuronal populations being supported by
their intricate web of axonal interconnectivity (3, 4). Several studies have revealed correlations
between various properties of brain connectivity and activity (35), but precisely how spatiotemporal
patterns of neural dynamics are constrained by a relatively stable neuroanatomical scaffold
remains unclear.

In diverse areas of physics and engineering, structural constraints on system dynamics can be
understood via the system’s eigenmodes, which are fundamental spatial patterns corresponding to
the natural, resonant modes of the system (6, 7). In the linear regime, such as brain activity under
normal (i.e., non-seizure-like) conditions (8), eigenmodes (hereafter also referred to as modes)
offer a particularly powerful and rigorous formalism for linking brain anatomy with the physical
processes that shape its activity. Through this lens, spatiotemporally patterned neuronal dynamics
are viewed as emerging from excitations of the brain’s structural eigenmodes, much like the
harmonics of a plucked violin string arise from vibrations of its resonant modes.

Just as the resonant frequencies of a violin string are determined by its length, density, and tension,
the eigenmodes of the brain are determined by its structural—physical, geometric, and anatomical—
—properties. Do any of these specific structural properties make a dominant contribution to
dynamics? Here, we test between two influential and competing theories that make different
predictions about which key elements of brain structure shape dynamics and function.

One classical perspective, which represents the dominant paradigm in neuroscience and has its
roots in Ramon y Cajal’s neuron doctrine (9), Brodmann’s cytoarchitectonics (/0), and over a
century of work localizing functions to specific brain regions (//, /2), is that spatiotemporal
patterns of neural dynamics arise from interactions between discrete, functionally specialized cell
populations connected by a topologically complex array of short- and long-range axonal
connections (73, /4). In humans, these connections can be estimated at macroscopic scales with
diffusion MRI (dMRI) to yield a graph-based structural connectivity matrix or connectome (15).
This approach has been used extensively to understand brain organization and dynamics (73, 15,
16), and recent work has proposed that eigenmodes derived from such discrete connectome
models, referred to here as connectome eigenmodes, can be used to reconstruct the spatial patterns
of canonical functional networks of the human cortex mapped with functional MRI (fMRI) (17—
19).

A limitation of this discrete connectomic-based view is that it relies on an abstract representation
of brain anatomy that does not directly account for its physical properties and spatial embedding
(i.e., geometry and topology). These characteristics are explicitly incorporated into a broad class
of neural field theories (NFTs) (20-25) that describe mean-field neural dynamics on spatial scales
>0.5 mm (Supplementary Material-S1). In particular, a common, physiologically-constrained
form of NFT has unified a diverse range of empirical phenomena (25, 26) by treating cortical
activity as a superposition of traveling waves propagating through a physically continuous sheet
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80 of neural tissue. In this theory, neural interactions between different cortical locations are
approximated by a homogeneous spatial kernel that declines roughly exponentially with distance
(27). This approximation is supported by experimental evidence showing that the organization of
the nervous systems across species is universally governed by an exponential distance rule (EDR)
(4, 25, 28, 29).

85
NFT predicts that the intrinsic geometry of the brain physically shapes and imposes boundary
conditions on any emerging spontaneous and evoked dynamics (30—32). A remarkable corollary
of this view is that, if we prioritize spatial and physical constraints on brain anatomy, we only need
to consider the shape of the brain, and not its full array of topologically complex axonal

90 interconnectivity, to understand dynamics. More formally, the theory predicts that eigenmodes
derived from brain geometry—hereafter referred to as geometric eigenmodes—represent a more
fundamental structural constraint on dynamics than the connectome (30—32). This view stands in
stark contrast to the classical view that complex patterns of inter-regional anatomical connectivity
shape brain activity (33).

95
Here, we test these competing views of the brain with the aim of identifying fundamental structural
constraints on human brain dynamics. In line with theoretical predictions from NFT, we show that
diverse experimental fMRI data from spontaneous and task-evoked recordings in the human
neocortex can be more parsimoniously explained by eigenmodes derived from cortical geometry

100 (geometric eigenmodes) rather than those obtained from connectivity (connectome eigenmodes).
We further confirm that stimulus-evoked activity is dominated by excitations of geometric
eigenmodes with long spatial wavelengths, challenging classical views that evoked activity is
localized to focal, spatially isolated clusters. To directly link these structural constraints to the
physical processes driving brain dynamics, we use a generative model to show how wave dynamics
105 unfolding on the geometry of the cortex can explain diverse features of functional brain

organization. Finally, we show that the close relationship between geometry and function revealed
by eigenmodes extends to non-neocortical structures, indicating that this link is a universal
property of brain organization.

110 RESULTS
Eigenmodes of cortical geometry parsimoniously explain neocortical activity

We first examine the degree to which geometric eigenmodes can explain diverse aspects of human
neocortical activity. To derive the eigenmodes, we first approximate cortical geometry using a
triangular mesh representation, comprising 32,492 vertices in each hemisphere, taken from a

115 population-averaged template of the neocortical surface (34) (Fig. 1A). We then construct the
Laplace-Beltrami operator (LBO) from this surface mesh, which captures spatial variations of the
cortical manifold by accounting for local vertex-to-vertex relations and curvature (35)
(Supplementary Material-S2), and solve the eigenvalue problem,

120 A = =2, (1
where 4 is the LBO and = {11(r), Y, (r), ...} is the family of geometric eigenmodes with

corresponding family of eigenvalues, A = {1;, 4,, ... }. The eigenvalues are ordered sequentially
according to the spatial frequency or wavelength of the spatial patterns of each mode (Fig. 1A and
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125 Fig. S1); ie.,, 0 <Ay <4, < -+, where A4; corresponds to the mode with the longest spatial
wavelength (Supplementary Material-S2).

Eigenmodes are orthogonal, forming a complete basis set to decompose spatiotemporal dynamics
unfolding on the cortex into different spatial frequencies. We thus use the geometric eigenmodes

130 to decompose empirical data, y(r, t), measured at spatial location r and time t, as a weighted sum
of modes (Fig. 1B),

N
Y0 = ) aO%;0), @
j=1
135 where a; is the amplitude of mode j obtained via integration of the dot product of y(r,t) and

Y;(r) over the cortical surface or via a statistical general linear model (Supplementary Material-
S3) and N is the number of modes retained (here we use N = 200 modes).

Using this decomposition, we evaluate the accuracy of geometric eigenmodes in capturing both

140 task-evoked and spontaneous brain activity (Fig. 1C) measured in 255 healthy individuals from
the Human Connectome Project (36) (HCP; Supplementary Material-S4). For task-evoked
activity, we map 47 task-based contrasts drawn from 7 different tasks, mapping distinct evoked
activation patterns. We then reconstruct each individual’s activation map using an increasing
number of modes up to a maximum of 200 (Fig. 1D). For spontaneous, task-free (so-called

145 “resting-state”) activity, we reconstruct the spatial map of activity at each time frame and then
generate a region-to-region functional coupling (FC) matrix, describing correlations of activity
between 180 discrete brain regions per hemisphere defined by a widely used parcellation based on
multimodal neuroimaging data (37). To allow direct comparison between task-evoked and
spontaneous recordings, we apply the same regional parcellation to the task-evoked data, reducing

150 32,492 data points at vertex resolution (millimeter scale) to 180 data points at parcel resolution
(centimeter scale) (Supplementary Material-S5). Finally, we quantify reconstruction accuracy by
calculating the correlation between the empirical and reconstructed task-evoked activation maps
and spontaneous FC matrices (Figs. 1D-E).

155 We observe that reconstruction accuracy increases with an increasing number of modes across all
task contrasts and in the resting-state, with r > 0.40 already achieved using just N = 10 modes
(Fig. 1D). Large-scale modes are also recruited distinctly across different tasks, suggesting that
particular stimuli excite specific modes (Fig. 1E). Improvements in reconstruction accuracy slow
down after 10 modes, reaching r > 0.80 at approximately N = 100 modes with only incremental
160 increases in reconstruction accuracy beyond this point. Since the first 100 modes have wavelengths
above ~40 mm, and the inclusion of shorter-wavelength modes serves mainly to refine
reconstruction of localized patterns (arrows in Fig. 1E), our findings suggest that the data are
predominantly comprised of spatial patterns with long spatial wavelengths (see next section for a
more detailed analysis). These results are consistent across all 47 HCP task contrasts (Fig. S2) and
165 parcellations of varying resolutions (Fig. S3), but data parcellated at higher resolutions require
more modes to achieve high reconstruction accuracy due to the low-pass spatial filtering effect of
coarser parcellations. Our results are also not affected by our use of a population-averaged cortical
surface template (rather than individual-specific surfaces) to derive the geometric eigenmodes
(Fig. S4). These findings indicate that cortical geometric eigenmodes form a compact

4
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170 representation that captures diverse aspects of task-evoked and spontaneous cortical activity.
Moreover, they show that such activity are dominated by long-wavelength, large-scale
eigenmodes.

A mode 1 mode 2 mode 3 mode 4 mode N
surface mesh ¥ ¥, Vs U, Uy

low frequency / > high frequency /
long wavelength short wavelength
B C task-evoked spontaneous
task 1 @ i »_:& c
47 T 1
, task 2 02 s 2B
@& +a3x@+... N
g task 3 B
D o E recon recon recon recon
A Z data (N=10) (N=100) (N=200) y
; S . 7 Wy \
social 2z W z 2
@ n dm @i o
308 % .
9] . - y Y
g motor @20 (& o @ 1
3 e e
O »
—Y.YY 1
c S 2 y 2 Z
o — social p- < . s
S
o] = motor wm )% ~ o ¢
E 0.4 gambling @/"ﬂ & m Z) w
(%2} — WM "‘ ~»
S language language @,‘1‘{) @ -1
§ 0.2 = emotion /;‘; - /AJ
relational L ZDEON ” /1) 7 f‘lB 1
— rest emotion (81 2/0% &% ((L/ &z
0 | ‘ - @ & 0 O
50 100 150 200 relational 4{// @ @ > e
number of modes 2 A \‘A “LA ~ N

175

Fig. 1. Eigenmodes of cortical geometry as a compact representation of macroscale neocortical activity.
(A) Geometric eigenmodes are derived from a mesh representation of the cortical by solving the eigenvalue
problem Ay = —Ay (Eq. (1)). The modes Y, ¥, P35, ..., Py are ordered from low to high spatial frequencies
180 (long to short spatial wavelengths). Negative—zero—positive values are colored as blue—white-red. (B) Mode
decomposition of brain activity data. The example shows how a spatial map, y(r), can be decomposed as a sum
of modes weighted by a;. (C) We reconstruct task-evoked data using spatial maps of activation for a diverse
range of stimulus contrasts (left). We also reconstruct spontaneous activity by decomposing the spatial map at
each time frame and generating a region-to-region functional coupling (FC) matrix (right). (D) Reconstruction
185 accuracy of 7 key HCP task-contrast maps (Supplementary Material-S4.2 and Table S2) and resting-state FC as
a function of the number of modes. The insets show cortical-surface reconstructions demonstrating the spatial
scales relevant to the first 10, 100, and 200 modes corresponding to spatial wavelengths of ~120 mm, ~40 mm,
and ~30 mm, respectively. (E) Group-averaged empirical task-activation maps and reconstructions obtained
using 10, 100, and 200 modes of the 7 key HCP task contrasts. wm = working memory. The black arrows show
190 localized activation patterns that are more accurately reconstructed when using short-wavelength modes. (F)
Group-averaged empirical resting-state FC matrices and reconstructions using 10, 100, and 200 modes.


https://doi.org/10.1101/2022.10.04.510897
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.04.510897; this version posted October 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We next test the hypothesis that geometric eigenmodes provide a more parsimonious and
fundamental description of dynamics than eigenmodes derived from a graph-based connectome

195 approximation. To this end, we compare the reconstruction accuracy of geometric eigenmodes
against three alternative connectome-derived eigenmode basis sets (see Fig. 2A for a schematic).
The first basis set is derived empirically from a connectome mapped with dMRI tractography at
vertex resolution (38) (Supplementary Material-S6). The second basis set is derived from a
connectome constructed synthetically according to a homogeneous stochastic wiring process

200 governed by an exponential distance-dependent connection probability to mimic simple, EDR-like
connectivity (Supplementary Material-S7). We threshold the empirical connectome to obtain a
connection density of 0.10%, as done previously (38). The third basis set is derived from the
empirical connectome thresholded at 1.55% to match the density of the EDR connectome
(Supplementary Material-S7). The connectome, EDR, and density-matched connectome

205 eigenmodes described above are derived from the graph Laplacian (a discrete counterpart of the
LBO) of their respective connectivity matrices (Fig. 2B and Fig. S1; Supplementary Material-S6
and S7).

To summarize, geometric eigenmodes account for the intrinsic curvature of the cortical surface
210 and local vertex-to-vertex relations in the surface mesh but do not incorporate long-range
connections; connectome eigenmodes do not consider curvature but capture local spatial relations
between points and short- and long-range connections measured with dMRI; and EDR eigenmodes
account for the effect of a homogeneous, stochastic, distance-dependent connection rule without
fully capturing the cortical geometry (Fig. 2A). Comparing these different basis sets thus allows

215 us to disentangle the contributions to brain dynamics of cortical geometry from structural
connectivity.
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Fig. 2. Geometric eigenmodes benchmarked against connectome-based eigenmodes. (A) Schematic of the
220 anatomical properties used to derive the eigenmodes for cortical geometry, the connectome, and the exponential
distance rule (EDR) connectome. Geometric eigenmodes rely on local surface mesh information such as links
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(blue) between neighboring surface mesh vertices (dots) and curvature. Connectome eigenmodes rely on local
links between mesh vertices (blue) and short- and long-range connections (magenta) reconstructed empirically
from dMRI. EDR eigenmodes rely on connections (red) generated from a stochastic wiring process where the
225 probability of connection between vertices exponentially decays as a function of their distance (Supplementary
Material-S6 and S7). (B) Example connectome and EDR eigenmodes. Negative—zero—positive values are colored
as blue-white—red. Despite some similarities, the spatial patterns of the modes are distinct from those derived
using cortical geometry (compare with Fig. 1A). (C) Reconstruction accuracy of resting-state FC matrices
achieved by geometric, EDR, and two variants of connectome eigenmodes: one using a connectome as defined
230 using prior methods (38) and the other with the same connection density as the EDR connectome to allow fair
comparison (for other densities, see Fig. S7). (D) Difference in reconstruction accuracy of all 47 HCP task-
contrast maps achieved by geometric eigenmodes and the other basis sets, as indicated by the text above each
panel. Each row represents a different task contrast, which have been grouped here by broad types
(Supplementary Material-S4.2 and Table S2). wm = working memory. Red indicates superior performance for
235 geometric eigenmodes.

Direct comparison of the reconstruction accuracy of these different basis sets reveals that
geometric eigenmodes consistently show the highest reconstruction accuracy across both
spontaneous (Fig. 2C) and task-evoked (Fig. 2D) data. EDR eigenmodes perform nearly as well

240 as the geometric eigenmodes, whereas connectome eigenmodes are the least accurate. This finding
holds regardless of the parcellation (Figs. S5 and S6), the specific connection density used to
generate the connectome eigenmodes (Fig. S7), and whether we generate the connectome using a
discrete regional parcellation rather than at vertex resolution (Fig. S8; Supplementary Material-
S6). We additionally find that geometric eigenmodes show stronger out-of-sample generalization

245 than principal components of the functional data itself (calculated via principal component analysis
(PCA); Supplementary Material-S8 and Figs. S9 and S10), supporting their robustness and
generality as a basis set for brain function. Together, these findings support the prediction of NFT
that brain activity is best represented in terms of eigenmodes derived directly from the shape of
the cortex, and emphasize a fundamental role of geometry in constraining dynamics.

250
Cortical activity is dominated by excitations of long-wavelength geometric modes

Reconstructions of both spontaneous and task-evoked data with geometric eigenmodes show that
the spatial organization of brain activity is dominated by patterns with spatial wavelengths of ~40
mm or longer (Figs. 1D-E). This result counters the assumptions of classical neuroimaging

255 analyses, in which stimulus-evoked activations are mapped by thresholding statistical maps to
identify focal, isolated clusters of heightened activity. This classical approach rests on the
assumption that the focal clusters represent discrete brain regions putatively engaged by the
stimulus and that subthreshold activity in other regions plays no role. The surprisingly long-
wavelength content of task-activation data (Figs. 1D—E) suggests that classical procedures focus

260 only on the tips of the iceberg and obscure the underlying spatially extended and structured patterns
of activity evoked by the task (see Fig. S11 for an explanation as to why). These observations
accord with the theoretical predictions of NFT and prior analyses of task-evoked
electroencephalography (EEG) signals (39—41).

265 Here, we leverage the mode decomposition described in Fig. 1B to characterize the complete
spatial pattern—the entire iceberg—of task-evoked activation (Supplementary Material-S9). To
this end, we analyze the mean modal power spectrum obtained using a geometric mode
decomposition of group-averaged unthresholded activation maps from the 47 task contrasts in
HCP (36, 42). As an independent replication, we also analyze 10,000 unthresholded activation
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maps from 1,178 independent experiments available in the NeuroVault repository (43)
(Supplementary Material-S9), thus providing a comprehensive picture of the diversity of stimulus-
evoked activation patterns mapped in the human brain.

Despite the diversity of stimuli, paradigms, and data-processing approaches used to acquire these
activation maps, we observe that a large fraction of power in the maps is concentrated in the first
50 modes, corresponding to spatial wavelengths greater than ~60 mm (Fig. 3A; similar results are
found in each key HCP task-contrast map; Fig. S12). Using surrogate data, we confirm that these
findings cannot be explained by the spatial smoothing induced by typical fMRI processing
pipelines, which can filter out short-wavelength spatial patterns of activity (Fig. S13;
Supplementary Material-S9). We further observe that incremental, sequential removal of long-
wavelength modes has a much greater impact on reconstruction accuracy than removal of short-
wavelength modes (Fig. 3B; Supplementary Material-S10). For instance, removing the top 25%
long-wavelength modes (i.e., modes 1 to 50) yields a ~40 to 60% drop in reconstruction accuracy,
whereas removing the top 25% short-wavelength modes (i.e., modes 151 to 200) only yields a ~2
to 4% drop in accuracy (Fig. 3B insets). These results indicate that, on temporal and spatial scales
accessible with fMRI, evoked cortical activity comprises large-scale, nearly brain-wide spatial
patterns, challenging classical views that such activity should be described in terms of discrete,
isolated, and anatomically localized activation clusters.
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Fig. 3. Task-evoked activity excites long-wavelength modes. (A) Normalized mean power spectra of 47 HCP
task-contrast maps (left) and 10,000 contrast maps from the NeuroVault database (right). The insets show
cortical-surface reconstructions demonstrating the spatial scales relevant to the first 50, 100, and 200 modes

295 corresponding to spatial wavelengths of ~60 mm, ~40 mm, and ~30 mm, respectively. Contrast-specific spectra
for the 7 key HCP task contrasts are presented in Fig. S12. (B) Reconstruction accuracy of 7 key HCP task-
contrast maps as a function of the percent of modes (out of 200 modes) removed in the reconstruction process.
wm = working memory. The solid and dashed lines correspond to the removal of the top long-wavelength and
short-wavelength modes, respectively. The insets show group-averaged empirical activation maps (‘data’) and

300 their reconstructions after removing 25% of modes. Negative—zero—positive values are colored as blue—white—
red.

Traveling waves and geometry explain diverse neocortical dynamics

Geometric eigenmodes of the cortex are obtained by solving the eigenvalue problem of the LBO,
305 which is also known as the Helmholtz equation (Eq. (1) and Supplementary Material-S2). In
physically continuous systems, the solutions of the Helmholtz equation correspond to the spatial
projections of the solutions of a more general wave equation, such that the resulting eigenmodes
inherently represent the vibrational patterns (standing waves) of the system’s dynamics (44). This
equivalence implies that the superior efficacy of geometric eigenmodes in reconstructing diverse
310 patterns of brain activity results from a fundamental role of wave dynamics in shaping these
patterns, as predicted by NFT. This prediction has been confirmed through models of EEG
recordings (26, 45), but waves across the whole brain have only recently been observed in fMRI
signals (46, 47) and thus far lack a theoretical explanation. Here, we use NFT and geometric
eigenmodes to show that wave dynamics can provide a unifying account of diverse empirical and
315 physiological phenomena observed at scales accessible with fMRI.

We model the neural activity ¢ of a neocortical location 7 at time t using an isotropic damped
NFT wave equation without regeneration (235),

1 92 20

i T _ 2p2 _
Y2 ot? +ysat+1 Vo) =Q(t), 3)

320
where y, is the damping rate, 7y is the spatial length scale of local axonal projections, and Q is an
external input (Supplementary Material-S11.1). To simulate resting-state neural activity, Q is a
white noise input to mimic unstructured stochastic fluctuations (26, 48). We compare the

325 performance of this simple wave model to a biophysically-based neural mass model (balanced
excitation-inhibition, or BEI, model) that has been used extensively to understand resting-state
fMRI signals (49, 50) (Fig. 4A). The neural mass model is closely aligned with the classical,
connectome-centric view of brain function, representing dynamics as the result of interactions
between neuronal populations in discrete anatomical regions, coupled according to an empirically

330 measured connectome (Supplementary Material-S11.2).

We first compare the efficacy of the two models in capturing distinct and commonly studied
properties of spontaneous, task-free FC; namely, static pairwise FC (edge FC), node-level average
FC (node FC), and time-resolved dynamic properties of FC (FCD) (Supplementary Material-
335 S11.4). Across all benchmark measures, the wave model displays comparable or superior
performance in reconstructing the empirical data relative to the neural mass model (Fig. 4B). This
strong performance of the wave model is remarkable given its relative simplicity: the wave model
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only requires the geometry of the cortex (i.e., the surface mesh) as input and includes 1 fixed
parameter and 1 free parameter (i.e., ) for fitting to data (Supplementary Material-S11.1 and 11.5

340 and Fig. S14), whereas the neural mass model requires a dMRI-derived inter-regional anatomical
connectivity and comprises 15 fixed parameters and 4 free parameters (Supplementary Material-
S11.2 and S11.5). These considerations indicate that wave dynamics traveling through the cortical
sheet provide a more accurate and parsimonious mechanistic account of macroscale, spontaneous
cortical dynamics captured by fMRI.
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Fig. 4. Traveling wave dynamics shape patterns of spontaneous and stimulus-evoked activity. (A)
Simulation workflow using wave and neural mass models. For the wave model, the activity ¢(r, t) at location
r and time t is governed by a wave equation with damping rate y;, spatial length scale 75, and input Q (7, t). For
350 the neural mass model, the activity S;(t) of region i is described by the function f, which depends on the activity
of other regions S, local population parameters 6;, and dMRI-derived structural connectivity between regions C
and scaled by the global coupling parameter G. The model dynamics are used to calculate a simulated FC matrix
(Supplementary Material-S11.4). Mfyeq and Mg correspond to the number of fixed and free parameters of
each model, respectively. (B) Comparison of data and model simulations based on various metrics, which from
355 left to right are: FC matrix (for visual purposes), static pairwise FC (edge FC), static node-level average FC
(node FC), and time-resolved FC dynamics (FCD). For edge FC and node FC, the red lines represent linear fits
with Pearson correlation coefficient ». For FCD, the probability density function (pdf) of the similarity of global
synchrony in data and model dynamics are compared using the Kolmogorov-Smirnov (KS) statistic. Note that
the free parameters for each model are tuned to optimize data-model fitting using data that is independent of the
360 data used to evaluate model performance (Supplementary Material-S11.5). (C) Wave propagation of activity
after a 1 ms stimulation of the primary visual cortex (V1) from ¢ =1 to 2 ms. The arrows show the direction of
propagation (Supplementary Video 1). (D) Activity profile of different regions in the visual cortical hierarchy.
The insets show the spatial locations of the regions on the cortical surface colored following the activation
profiles. (E) Relationship of the ranked activity profile time to peak and ranked T1w:T2w value of the regions
365 in panel D. The red line represents a linear fit of the ranked variables with Spearman correlation coefficient »
and spin-test p-value pspin from 10,000 permutations (Supplementary Material-S11.6).
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We next consider stimulus-evoked cortical activity in the wave model. We analyze cortical
responses to sensory stimulation of primary visual cortex (V1), as it elicits a well-defined hierarchy
370 of regional cortical responses (57, 52) (Supplementary Material-S11.6). A 1 ms pulse input to V1
yields a propagating wave of activity that rapidly splits along the dorsal and ventral visual
processing streams (Fig. 4C; see arrows and also Supplementary Video 1), consistent with the
current mainstream understanding of hierarchical visual processing (53). Remarkably, this result
indicates that geometric constraints on travelling waves of evoked activity are a sufficient
375 condition for the segregation of the dorsal and ventral processing streams, which have traditionally
been thought to result from complex patterns of layer-specific connectivity (51, 53, 54).
Furthermore, the temporal profile of evoked responses across the visual system follows a well-
defined temporal hierarchy, with higher-order association areas showing peak responses that are
delayed and prolonged compared to visual lower areas (Fig. 4D). These findings thus indicate that
380 this hierarchical ordering, which has previously been identified in experimental and modelling
studies (52, 55, 56), emerges naturally from waves of excitation propagating through the cortical
medium. Critically, this hierarchical temporal ordering of areal responses strongly correlates with
an independent, anatomical measure of the cortical processing hierarchy based on non-invasive
estimates of myeloarchitecture (T1w:T2w) (57, 58) (Supplementary Material-S11.6). This
385 correlation is particularly strong within the visual-processing hierarchy (r = —0.72, pgpin < 0.01;

Fig. 4E) but is also present when considering all cortical areas (r = —0.44, psp;i, = 0.037; Fig.

S15). Together, our modelling results show how simple wave dynamics unfolding on the geometry
of the cortex provide a unifying generative mechanism for capturing apparently complex
properties of spatiotemporal brain activity.

390
Geometry also constrains dynamics outside the neocortex
Our analyses have thus far focused on the strong coupling of geometry and dynamics in the
neocortex. We next investigate this coupling in non-neocortical areas, focusing on the thalamus,
striatum, and hippocampus because these structures have geometries that can be easily captured
395 using MRI data and their functional organization has been extensively studied (59).

We first generalize our eigenmode analysis to 3D volumes using recently developed methods (60)
(Supplementary Material-S12), yielding geometric eigenmodes that extend spatially through the
3D volume of each structure. Next, to fully capture the macroscale functional organization of these

400 non-neocortical structures, we apply a widely used manifold-learning procedure to voxel-wise FC
data to obtain the key functional gradients in each structure (67) (Supplementary Material-S13).
These functional gradients describe the principal axes of spatial organization dictated by
similarities in FC, thus representing the dominant modes of variation in functional organization,
ordered according to the percentage of variance in FC similarity that they explain.

405
The spatial profiles of the first three functional gradients of the thalamus, striatum, and
hippocampus (accounting for 24%, 50%, and 47% of the variance in FC similarity, respectively)
show a near-perfect match to the first three geometric eigenmodes (Figs. SA—C; spatial correlations
r = 0.93). This tight correspondence generalizes out to the first 20 gradients and first 20 modes

410 of each structure (respectively accounting for 49%, 70%, and 68% of the total variance in FC
similarity), with all absolute spatial correlations |r| = 0.5, except for the 20th gradient and 20th
mode in the striatum and hippocampus (Figs. SD-F). This strong relationship is striking given that
the functional gradients are generated via a complex processing pipeline applied to fMRI-derived
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FC measures, while the eigenmodes are derived simply from each structure’s geometry,
415 independent of the functional data. These findings suggest that the functional organization of non-
neocortical structures derives directly from their geometric eigenmodes.
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Fig. 5. Geometric eigenmodes capture the functional organization of non-neocortical structures. (A—C)
420 First three geometric eigenmodes and FC-based functional gradients in the thalamus, striatum, and hippocampus,
respectively. The modes and gradients are shown in 3D coordinate space, with negative—zero—positive values
colored as blue—white—red. The labels show dorsal (D), posterior (P), and rightward (R) directions. The scatter
plots show the relationship between the modes and gradients, with the red lines representing linear fits with
Pearson correlation coefficient . (D—F) Absolute correlation (|7]) of the first 20 geometric eigenmodes and
425 functional gradients in the thalamus, striatum, and hippocampus, respectively. The top panels show the highest
|7| obtained by each functional gradient (gray bars), taking into account order flips in geometric eigenmodes
(Supplementary Material-S13), and the percentage of variance explained by each functional gradient (blue lines).

DISCUSSION

430 The dynamics of many physical systems are constrained by their geometry and can be understood
as excitations of a relatively small number of excited structural modes (6, 7). Here we show that
structural eigenmodes derived solely from the geometry of the brain’s structure provide a more
compact, accurate, and parsimonious representation of its macroscale activity than alternative
connectome-based models. This mode-based view of the brain further reveals that spontaneous

435 and evoked brain activity captured by fMRI is dominated by large-scale eigenmodes with
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relatively long wavelengths, whose dynamics are derived from a unifying wave equation. These
findings challenge the classical neuroscientific paradigm, in which topologically complex patterns
of inter-regional connectivity between discrete, specialized neuronal populations are viewed as a
critical anatomical foundation for dynamics. Our findings further indicate that a physically

440 grounded approach that treats the brain as a continuous, spatially embedded system offers a
unifying framework for understanding structural constraints on diverse aspects of neuronal
function.

The superior performance of geometric eigenmodes in capturing macroscale neocortical activity
445 indicates that geometry represents a fundamental anatomical constraint on dynamics. Additionally,
the strong performance of the EDR eigenmodes derived from a synthetic network suggests that a
homogeneous, distance-dependent connectivity with near-exponential form represents an
important anatomical constraint on activity. EDR-like connectivity is mathematically embedded
in the Helmholtz equation in Eq. (1) (25, 30), so the role of such connectivity is implicitly captured
450 by the geometric eigenmodes. The comparatively poor performance of connectome eigenmodes
indicates that topologically complex connections that exist beyond a simple EDR afford minimal
further benefit in obtaining eigenmodes that can accurately explain spatiotemporal patterns of
cortical activity, as measured with fMRI. Our findings thus counter traditional views that
emphasize the role of intricate patterns of long-range anatomical connections in supporting
455 coordinated dynamics (33, 62, 63). Given the scarcity, metabolic cost, and genetic control of such
connections (64—66), it will be important to determine the specific functional and evolutionary
advantage that they provide beyond the dominant role of wave-like dynamics; for example, in
explaining time-lagged patterns of activity (47), which are not accounted for in our current
framework.
460
The close coupling between geometry and dynamics is apparent in neocortical and non-neocortical
structures alike, suggesting that the functional organization of regions outside the neocortex is also
dominated by local anatomical connectivity and wave dynamics, as suggested by recent
experiments (46, 67). This observation indicates that geometric eigenmodes offer a simpler, more
465 parsimonious, and mechanistically informative account of putative gradients of functional
organization in non-neocortical structures than the complex manifold-learning procedures
currently used in the literature (68). This is because such procedures are phenomenological,
providing statistical descriptions of dominant sources of variances in the data, whereas the study
of structural eigenmodes derives from a generative process. Notably, we do not observe the same
470 one-to-one spatial correspondence between single geometric eigenmodes and previously described
FC-derived functional gradients of the neocortex, the most dominant of which captures a
hierarchical sensory-fugal axis of function (i.e., compare Fig. 1 A with Fig. 1A in (69)). Functional
gradients of the neocortex may thus reflect a superposition of geometric modes, just as musical
chords emerge from combinations of individual notes.
475
Geometric mode decomposition offers unique insights into the spatial properties of brain activation
maps. Classical brain mapping analyses typically focus on responses in isolated clusters of spatial
locations that exceed a statistical threshold (70). Our approach aligns with rigorously established
results from physics and engineering, in which perturbations of spatially continuous systems elicit
480 system-wide responses; for instance, the musical notes of a violin string result from oscillations
across its entire length rather than the behaviour of an isolated string segment (77). Notably, the
use of geometric eigenmodes indicates that, across >10,000 diverse maps from task-based fMRI
studies, task engagement is associated predominantly with the excitation of modes with
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wavelengths of ~60 mm and longer. This result coincides with similar observations of long-

485 wavelength excitations in empirical EEG and evoked response potential (ERP) data (39—47) and
suggests that classical analyses relying on thresholding of point-wise statistical maps obscure the
spatially extended and complex patterns of activity actually evoked by a task.

Our modeling results offer insight into the physical processes underlying the close link observed
490 between geometry and function. In particular, the relative simplicity and superior performance of

the wave model in capturing diverse aspects of spontaneous fMRI dynamics indicates that it

provides a more parsimonious account than a complex neural mass model that views the brain as

a graph of discrete anatomical regions (nodes) coupled via the connectome (edges). Future work

could explore whether introducing spatial heterogeneities (72) into the wave model further
495 improves its accuracy.

Application of the wave model to mimic visual stimulation reveals that waves propagating from
the stimulation site segregate along the classical dorsal and ventral visual pathways, and that
regional responses to the perturbation conform to a well-described hierarchy of timescales ranging
500 from rapidly responding unimodal areas to slower-responding transmodal regions (52, 55, 56).
These canonical properties of hierarchical visual processing have been extensively studied for
decades and are classically thought to result from complex patterns of layer-specific inter-regional
connectivity (57, 53, 54). Our analysis shows that it is not necessary to incorporate these
anatomical details; rather, waves traveling through the cortical geometry are sufficient for the
505 emergence of segregated, hierarchical dynamics.

The superior performance of geometric eigenmodes offers an immediate practical benefit, since
they can be estimated using only a mesh representation of the structure of interest, which can easily
be derived using well-established, automated processing pipelines for T1-weighted anatomical
510 images (73). In contrast, connectome eigenmodes require a graph-based model of macroscopic
inter-regional connectivity generated via complex data processing pipelines (74); the definition of
graph nodes, which is a topic of contention (75); and the application of a thresholding procedure
to remove putatively spurious connections, which our own analysis shows can affect the findings
(Fig. S7). The fact that such choices are not required to obtain the geometric eigenmodes means
515 that they can be applied robustly and flexibly across different experimental contexts in both
humans and other species, opening new avenues of research. For example, one can investigate how
geometric eigenmodes vary through neurodevelopment or are disrupted in clinical disorders.
Indeed, the close link we identify between geometry and function implies that inter-species
differences in spatiotemporal dynamics may largely be driven by differences in brain shape. A

520 better understanding of how variations in brain geometry, both within and between species, shape
brain function will be essential for understanding physical and anatomical constraints on neuronal
activity.
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