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Abstract

Estimating and accounting for hidden variables is widely practiced as an important step in
molecular quantitative trait locus (molecular QTL, henceforth “QTL”) analysis for improving
the power of QTL identification. However, few benchmark studies have been performed to
evaluate the efficacy of the various methods developed for this purpose. Here we benchmark
popular hidden variable inference methods including surrogate variable analysis (SVA),
probabilistic estimation of expression residuals (PEER), and hidden covariates with prior
(HCP) against principal component analysis (PCA)—a well-established dimension reduction
and factor discovery method—via 362 synthetic and 110 real data sets. We show that PCA
not only underlies the statistical methodology behind the popular methods but is also orders
of magnitude faster, better-performing, and much easier to interpret and use. To help
researchers use PCA in their QTL analysis, we provide an R package PCAForQTL along with
a detailed guide, both of which are freely available at
https://github.com/heatherjzhou/PCAForQTL.

1 Introduction

Genome-wide association studies (GWASs) have identified thousands of genetic variants
associated with human traits or diseases [1–4]. However, the majority of GWAS variants are
located in non-coding regions of the genome, making it challenging to interpret the GWAS
associations [5, 6]. In response to this, molecular quantitative trait locus (molecular QTL,
henceforth “QTL”) analysis has emerged as an important field in human genetics, interrogating
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the relationship between genetic variants and intermediate, molecular traits and potentially
explaining the GWAS associations [7, 8].

Based on the type of molecular phenotype studied, QTL analyses can be categorized into gene
expression QTL (eQTL) analyses [9, 10], alternative splicing QTL (sQTL) analyses [10], three
prime untranslated region alternative polyadenylation QTL (3′aQTL) analyses [11], and so on
[7, 8]. Among these categories, eQTL analyses, which investigate the association between genetic
variants and gene expression levels, are the most common. To date, most (single-tissue) QTL
studies are carried out using regression-based methods such as Matrix eQTL [12] and FastQTL
[13].

In QTL analysis, a major challenge is that measurements of gene expression levels and other
molecular phenotypes can be affected by a number of technical or biological variables other than
the genetic variants (e.g., batch, sex, and age). If these variables are known, then they can be
directly included in the QTL pipeline as covariates. However, many of these variables may be
unknown or unmeasured. Therefore, it has become standard practice to first infer the hidden
variables and then include the inferred variables as covariates or otherwise account for them
(Table 1; see Section 4.3 for a numerical example) [9–11, 14–23]. This type of approach has been
shown to both improve the power of QTL identification in simulation settings [24] and
empirically increase the number of discoveries in QTL studies [9, 10, 16, 21–23].

Surrogate variable analysis (SVA) [25, 26] is one of the first popular hidden variable inference
methods for large-scale genomic analysis. Although initially proposed as a hidden variable
inference method for both QTL mapping and differential expression (DE) analysis, currently SVA
is primarily used in DE and similar analyses as opposed to QTL mapping [27–30]. We believe
this is partly because the SVA package [31] is difficult to apply in QTL settings in that it requires
the user to input at least one variable of interest and using too many variables of interest causes
the package to fail (Figure 1; Section S4); while there are usually at most a few variables of
interest in a DE study, there are often millions of single nucleotide polymorphisms (SNPs;
variables of interest) in a QTL study. Historically, there have been two versions of the SVA
method: two-step SVA [25] and iteratively reweighted SVA (IRW-SVA) [26]; the latter
supersedes the former. Therefore, we focus on IRW-SVA in this work.

Probabilistic estimation of expression residuals (PEER) [24, 32] is currently the most popular
hidden variable inference method for QTL mapping by far. It is used in the Genotype-Tissue
Expression (GTEx) project [9, 10] and many other high-impact studies [11, 14–21]. The PEER
method has two main perceived advantages: (1) it can take known covariates into account when
estimating the hidden covariates, and (2) its performance does not deteriorate as the number of
inferred covariates increases (i.e., it does not “overfit”). One drawback of PEER, though, is that
there is no consensus in the literature on how it should be used. For example, when there are known
covariates available, PEER can be run with or without the known covariates—Stegle et al. [32] do
not give an explicit recommendation as to which approach should be used, and both approaches
are used in practice (e.g., [9, 10] vs. [11, 16]). Further, PEER outputs both inferred covariates and
residuals of the inputted molecular phenotypes (Figure 1), so the user needs to decide which set
of outputs to use (Section S4; we refer to the approach using the inferred covariates as the “factor
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approach” and the approach using the residuals as the “residual approach”). Such “flexibility” of
PEER could be considered a benefit, but we believe it not only leads to confusion for practitioners
but also reduces the transparency and reproducibility of published QTL research.

Hidden covariates with prior (HCP) [33] is another popular hidden variable inference method for
QTL mapping. Though less popular than PEER, it is also used in some high-impact studies
[22, 23]. To determine which method is the best and whether PEER indeed has the perceived
advantages, we thoroughly evaluate SVA, PEER, and HCP for the first time in the literature.
Given that principal component analysis (PCA) [34–38] underlies the methodology behind each
of these methods (Section 2.4) and has indeed been used for the same purpose [39, 40], we also
include PCA in our evaluation. Through simulation studies (Section 2.1) and real data analysis
(Sections 2.2, 2.3 and 2.5), we show that PCA is orders of magnitude faster, better-performing,
and much easier to interpret and use (Figure 1).

2 Results

2.1 Comprehensive simulation studies show that PCA is faster and better-performing

We compare the runtime and performance of 15 methods (Table 1), including Ideal (assuming the
hidden covariates are known), Unadjusted (not estimating or accounting for the hidden
covariates), and 13 variants of PCA, SVA, PEER, and HCP, based on two simulation studies. In
the first simulation study (Simulation Design 1; Section S2), we follow the data simulation in
Stegle et al. [24]—the original PEER publication—while addressing its data analysis and overall
design limitations (Section S1). In the second simulation study (Simulation Design 2;
Section S3), we further address the data simulation limitations of Stegle et al. [24] (Section S1)
by simulating the data in a more realistic and comprehensive way, roughly following Wang et al.
[41]—the SuSiE publication—but introducing the existence of known and hidden covariates. A
summary of the main differences between the two simulation designs is provided in Table S1.
The key difference is that in Simulation Design 1, the gene expression levels are primarily driven
by trans-regulatory effects rather than cis-regulatory effects or covariate effects (Table S2),
inconsistent with the common belief that trans-regulatory effects are generally weaker than
cis-regulatory effects. In contrast, in Simulation Design 2, we focus on cis-QTL detection and
carefully control the genotype effects and covariate effects in 176 experiments with two replicates
per experiment (Section S3).

The details of the 15 methods are described in Section S4, and the evaluation metrics are described
in Section 4.1. For convenience, we refer to the simulated molecular phenotypes as gene expression
levels throughout our simulation studies; however, they can be interpreted as any type of molecular
phenotype after data preprocessing and transformation, e.g., alternative splicing phenotypes and
alternative polyadenylation phenotypes (Table S3).

The results from our simulation studies are summarized in Figures 2, 3, S1, S3, and S4. We find
that PCA and HCP are orders of magnitude faster than SVA, which in turn is orders of magnitude
faster than PEER, and that PCA outperforms SVA, PEER, and HCP in terms of the area under the
precision-recall curve (AUPRC) of the QTL result (Figures 2 and 3). On a dataset-by-dataset
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basis, PCA outperforms the other methods in terms of AUPRC in 11% to 88% of the simulated
data sets and underperforms them in close to 0% of the simulated data sets in Simulation Design 2
(Figure S3(d)). In addition, PCA has the highest average concordance score(s), a metric for the
concordance between the true hidden covariates and the inferred covariates (Section 4.1;
Figures S1 and S4), which explains why PCA performs the best in terms of AUPRC.

To contrast the results in Stegle et al. [24], we also compare the powers of the different methods in
Simulation Design 1 (Figure S1). We find that PCA is more powerful than SVA, PEER, and HCP.
Notably, SVA and PEER have very low power in identifying trans-QTL relations—an especially
unfavorable result for SVA and PEER, considering that the gene expression levels are primarily
driven by trans-regulatory effects in Simulation Design 1 (Table S2).

Incidentally, Figures 2 and S3 also provide us with the following insights into the different ways of
using PEER (Section S4). First, running PEER with the known covariates has no advantage over
running PEER without the known covariates in terms of AUPRC, given the choice of K (the number
of inferred covariates) and the choice between the factor approach and the residual approach. In
fact, running PEER with the known covariates significantly increases the runtime of PEER in real
data (Section 2.3). Second, contrary to claims in Stegle et al. [24, 32], the performance of PEER
does deteriorate as the number of PEER factors increases. The only exception is when the residual
approach is used in Simulation Design 1 (Figure 2). But given that Simulation Design 2 is more
realistic than Simulation Design 1 and that the factor approach is more popular than the residual
approach [9–11, 17–20], the take-home message should be that in general, the performance of
PEER is worse when we use a large K rather than the true K. Third, whether the factor approach
or the residual approach performs better depends on the choice of K. When we use the true K, the
factor approach performs better, but when we use a large K, the residual approach performs better.
All in all, PCA outperforms all different ways of using PEER in both of our simulation studies
(Figure 2).

2.2 PEER factors sometimes fail to capture important variance components of the
molecular phenotype data

For our real data analysis, we examine the most recent GTEx eQTL and sQTL data [10]
(Sections 2.3 and 2.5) and the 3′aQTL data prepared by Li et al. [11] from GTEx RNA-seq reads
[9] (Section 2.2). While the exact data analysis pipelines are different (Table S3), these studies all
choose PEER as their hidden variable inference method.

Unlike PCs, which are always uncorrelated (Section S5.1), PEER factors are not guaranteed to be
uncorrelated. Here we show through the above-mentioned 3′aQTL data that PEER factors can be
highly correlated with each other (to the extent that many or all of them are practically identical)
and thus fail to capture important variance components of the molecular phenotype data.

Given a post-imputation alternative polyadenylation phenotype matrix (each entry is between zero
and one, representing a proportion), Li et al. [11] run PEER without further data transformation
using the number of PEER factors chosen by GTEx [9] (Table S3). To assess the impact of data
transformation on the PEER factors, we also run PEER after transforming the data in three ways:
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(1) center and scale (to unit variance) each feature, (2) apply inverse normal transform (INT) [42]
to each feature (“INT within feature”), and (3) apply INT to each sample (“INT within sample”).
Among these methods, GTEx [9, 10] uses “INT within feature” for its eQTL data and “INT within
sample” for its sQTL data (Table S3). To quantify how many “distinct” or “nonrepetitive” PEER
factors there are, given a set of PEER factors, we group them into clusters such that in each cluster,
the correlation between any two PEER factors is above a pre-defined threshold (0.99, 0.9, or 0.8) in
absolute value (this is done via hierarchical clustering [43] with complete linkage and the distance
defined as one minus the absolute value of the correlation). Therefore, the number of PEER factor
clusters can be interpreted as the number of distinct or nonrepetitive PEER factors.

Our results show that in many cases, the number of distinct PEER factors is considerably smaller
than the number of PEER factors requested (Figure 4), and when this issue is severe (e.g., “No
transformation” and “INT within sample”), the PEER factors fail to capture important variance
components of the molecular phenotype data (Figure S5). Since the number of discoveries
increases substantially with the number of PEER factors in GTEx’s eQTL analyses [9, 10], where
the PEER factors are essentially identical to PCs (Section 2.3), it is possible that replacing the
nearly-all-identical PEER factors with appropriate numbers of PCs in Li et al. [11]’s 3′aQTL
analysis can lead to more discoveries. This is a potential direction for a future study.

2.3 PEER factors are almost identical to PCs but take three orders of magnitude longer to
compute in GTEx eQTL and sQTL data

We report the surprising finding that in both GTEx eQTL and sQTL data [10], the PEER factors
obtained by GTEx and used in its QTL analyses are almost identical to PCs. Specifically, given
a fully processed molecular phenotype matrix, there is almost always a near-perfect one-to-one
correspondence between the PEER factors and the top PCs (Figure 5). This means that after the
variational Bayesian inference in PEER initializes with PCs [24], it does not update the PCs much
beyond scaling them (see Section 2.4 for an explanation). Therefore, it is no surprise that replacing
the PEER factors with PCs in GTEx’s FastQTL pipeline [10, 13] does not change the QTL results
much (Figures S6 and S7) because in linear regressions (the basis of both Matrix eQTL [12] and
FastQTL [13]), scaling and/or shifting the predictors does not change the p-values of t-tests for
non-intercept terms (neither does scaling and/or shifting the response, for that matter).

However, PEER is at least three orders of magnitude slower than PCA (Figure S6). For a given
expression matrix, running PEER without the known covariates (GTEx’s approach) takes up to
about 32 hours, while running PCA (with centering and scaling; our approach) takes no more than
a minute.

To draw a connection between the simulation results and real data results, we analyze them jointly
in Figure S8 and make the following two key observations. First, we find that in the simulation
studies, PCA almost always outperforms PEER in terms of AUPRC (confirming our results in
Section 2.1), and the percentage of QTL discoveries shared between PEER and PCA is a good
predictor of the relative performance of PEER versus PCA—the higher the percentage of QTL
discoveries shared, the smaller the performance gap between PEER and PCA. Second, the
percentages of QTL discoveries shared between the two methods in GTEx eQTL data [10] fall

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2022. ; https://doi.org/10.1101/2022.03.09.483661doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483661
http://creativecommons.org/licenses/by-nc-nd/4.0/


comfortably within the range of percentage of QTL discoveries shared in Simulation Design 2.
These two observations together suggest that PCA likely outperforms PEER in GTEx eQTL data
[10] even though the results largely overlap.

2.4 PCA, SVA, PEER, and HCP are closely related statistical methods

We report that PCA, SVA, PEER, and HCP are closely related statistical methods despite their
apparent dissimilarities. In particular, the methodology behind SVA, PEER, and HCP can all be
traced back to PCA (Figure 6). We have previously reviewed these methods in detail in Zhou [44].
Here we aim to provide a brief summary and highlight their connections.

PCA [34–38] is traditionally derived by optimizing some objective functions (either maximum
variance or minimum reconstruction error; Section S5.1), but more recently, it is shown that PCA
can be derived as a limiting case of probabilistic principal component analysis (PPCA) [45], which
in turn is a special case of factor analysis [35, 46]—a dimension reduction method commonly used
in psychology and the social sciences that is based on a frequentist probabilistic model.

PEER [24, 32] is based on a Bayesian probabilistic model and can be considered a Bayesian version
of factor analysis (with the not-very-useful ability to explicitly model the known covariates; see
Section 2.1 for why we do not find this ability useful). Inference is performed using variational
Bayes and initialized with the PCA solution [24]. Given that PCA underlies the PEER model
(Figure 6) and PEER initializes with PCs, it is not surprising that PEER factors are almost identical
to PCs in GTEx eQTL and sQTL data [10] (Section 2.3).

SVA [25, 26] is purely algorithmic and is not defined based on a probabilistic model or objective
function. The steps of the SVA algorithm are complicated [44], but in a nutshell, SVA iterates
between two steps: (1) reweight the features of the molecular phenotype matrix, and (2) perform
PCA on the resulting matrix (with centering but without scaling) [26].

Lastly, HCP [33] is defined by minimizing a loss function that is very similar to the
minimum-reconstruction-error loss function of PCA (Section S5.2). The optimization is done
through coordinate descent with one deterministic initialization (see source code of the HCP R
package [33]). In short, SVA, PEER, and HCP can all be considered extensions or more complex
versions of PCA, though we show that the complexity is a burden rather than a benefit (Figure 1).

2.5 PCA provides insight into the choice of K

Choosing K, the number of inferred covariates in the context of hidden variable inference or the
number of dimensions or clusters in more general contexts, is always a difficult task. Nonetheless,
based on the proportion of variance explained (PVE) by each PC (Section S5.1), PCA offers
convenient ways of choosing K such as the elbow method and the Buja and Eyuboglu (BE)
algorithm [47] (more details below). Since SVA is heavily based on PCA (Section 2.4), it is able
to adapt and make use of the BE algorithm. In contrast, PEER and HCP do not offer easy ways of
choosing K; for lack of a better method, users of PEER and HCP often choose K by maximizing
the number of discoveries [9, 10, 16, 21–23]. Not only is this approach of choosing K extremely
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computationally expensive and theoretically questionable, here we also show from the perspective
of PCA that it may yield inappropriate choices of K.

Recall from Section 2.3 that PEER factors are almost identical to PCs in GTEx eQTL data [10] (the
number of PEER factors is chosen by maximizing the number of discovered cis-eGenes for each
pre-defined sample size bin; Table S3). Therefore, for each tissue type, we compare the number of
PEER factors selected by GTEx to (1) the number of PCs chosen via an automatic elbow detection
method (Algorithm S2) and (2) the number of PCs chosen via the BE algorithm (Algorithm S3; the
default parameters are used). The BE algorithm is a permutation-based approach for choosing K in
PCA. Intuitively, it retains PCs that explain more variance in the data than by random chance and
discards those that do not. Hence, based on the statistical interpretation of the BE algorithm and
the scree plots (examples shown in Figure 7), we believe that the number of PCs chosen via BE
should be considered an upper bound of the reasonable number of PCs to choose in GTEx eQTL
data [10].

Our results show that the number of PEER factors selected by GTEx is almost always greater
than the number of PCs chosen via BE, which in turn is almost always greater than the number
of PCs chosen via elbow (Figure 7). In particular, the number of PEER factors selected by GTEx
far exceeds the number of PCs chosen via BE for many tissue types with sample size above 350,
suggesting that the number of PEER factors selected by GTEx may be too large. This hypothesis
is further supported by the fact that we can reduce the number of inferred covariates to between
20% and 40% of the number of PEER factors selected by GTEx without significantly reducing the
number of discovered cis-eGenes (Figure 7).

3 Discussion

Hidden variable inference is widely practiced as an important step in QTL mapping for improving
the power of QTL identification. Popular hidden variable inference methods include SVA, PEER,
and HCP. In this work, we show that PCA not only underlies the statistical methodology behind the
popular methods (Section 2.4) but is also orders of magnitude faster, better-performing, and much
easier to interpret and use (Figure 1; relatedly, Malik and Michoel [48] have pointed out issues with
the optimization algorithm used in PANAMA [49]—a variant of PEER, and the computational
efficiency of PCA has been reported in other settings, including genomic selection [50]). Our
conclusions are consistent with those from Cuomo et al. [51], who conclude that PCA is superior
to alternative hidden variable inference methods for improving the power of single-cell eQTL
studies.

On the simulation front, we compare the runtime and performance of PCA, SVA, PEER, and HCP
via two simulation studies (Section 2.1). In the first simulation study, we follow the data
simulation in Stegle et al. [24], the original PEER publication, while addressing its data analysis
and overall design limitations. In the second simulation study, we further address the data
simulation limitations of Stegle et al. [24] by simulating the data in a more realistic and
comprehensive way. Both simulation studies unanimously show that PCA is faster and
better-performing. Further, they show that running PEER with the known covariates has no
advantage over running PEER without the known covariates—in fact, running PEER with the
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known covariates makes PEER significantly slower (Figure S6)—and that contrary to claims in
Stegle et al. [24, 32], the performance of PEER does deteriorate as the number of PEER factors
increases (Section 2.1). One caveat of our simulation studies, though, is that the genotype and
covariates all have linear effects on the gene expression levels (consistent with Stegle et al. [24]
and Wang et al. [41]). But since PCA, SVA, PEER, and HCP are all linear methods or assume
linearity (Section 2.4), and so does linear regression, we do not believe our conclusions would
change qualitatively if we simulated the data in a nonlinear fashion.

On the real data front, we examine the most recent GTEx eQTL and sQTL data [10] and the
3′aQTL data prepared by Li et al. [11] from GTEx RNA-seq reads [9]. While the exact data
analysis pipelines are different (Table S3), these studies all choose PEER as their hidden variable
inference method (due to lack of data availability, we do not examine more real data sets). Our
analysis shows that PEER, the most popular hidden variable inference method for QTL mapping
currently, produces identical results as PCA at best (Section 2.3), is at least three orders of
magnitude slower than PCA (Figure S6), and can be full of pitfalls. Specifically, we show that in
certain cases, PEER factors can be highly correlated with each other and thus fail to capture
important variance components of the molecular phenotype data, leading to potential loss of
power in QTL identification (Section 2.2). Further, we show from the perspective of PCA that
choosing the number of PEER factors by maximizing the number of discoveries (a common
approach used by practitioners) may yield inappropriate choices of K, leading to model overfit
and potential loss of power and precision (Section 2.5).

Between the two PCA approaches, PCA direct (running PCA on the fully processed molecular
phenotype matrix directly and filtering out the known covariates that are captured well by the
top PCs afterwards) and PCA resid (running PCA after regressing out the effects of the known
covariates from the molecular phenotype matrix) (Table 1; Section S4), we recommend PCA direct
because the two approaches perform similarly in our simulation studies and PCA direct is simpler.
In addition, PCA direct can better hedge against the possibility that the known covariates are not
actually important confounders because in PCA direct, the known covariates do not affect the
calculation of the PCs. We also advise the users to make sure to center and scale their data when
running PCA unless they are experts and have a good reason not to.

In addition to the benefits discussed so far, using PCA rather than SVA, PEER, or HCP has
another conceptual benefit. While SVA, PEER, and HCP are hidden variable inference (i.e., factor
discovery) methods, PCA can be interpreted and used as both a dimension reduction and a factor
discovery method. Therefore, PCs of the molecular phenotype data need not be considered
inferred covariates; instead, they can be considered a dimension-reduced version of the molecular
phenotype data—by including them as covariates, we are controlling for the effect of the overall
gene expression profile on the expression level of any individual gene (taking expression
phenotypes as an example). With this perspective, including phenotype PCs as covariates is
analogous to including genotype PCs as covariates (which is commonly done to correct for
population stratification [9, 10]). This perspective solves the conundrum that inferred covariates
such as PEER factors are often difficult to interpret using known technical and biological
variables [52].
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To help researchers use PCA in their QTL analysis, we provide an R package PCAForQTL, which
implements highly interpretable methods for choosing the number of PCs (Algorithms S2 and S3),
a graphing function, and more, along with a detailed tutorial. Both resources are freely available at
https://github.com/heatherjzhou/PCAForQTL [53]. We believe that using PCA rather than
SVA, PEER, or HCP will substantially improve and simplify hidden variable inference in QTL
mapping as well as increase the transparency and reproducibility of QTL research.

4 Methods

4.1 Evaluation metrics

Given a simulated data set, we evaluate each of the 15 methods in Table 1 mainly in three ways
(when applicable): runtime, AUPRC, and adjusted R2 measures (including adjusted R2, reverse
adjusted R2, and concordance score).

First, we record the runtime of the hidden variable inference step (Section S4; not applicable for
Ideal and Unadjusted).

Second, we calculate the area under the precision-recall curve (AUPRC) of the QTL result. We use
AUPRC rather than the area under the receiver operating characteristic curve (AUROC) because
AUPRC is more appropriate for data sets with imbalanced classes (there are far more negatives
than positives in our simulated data sets and in QTL settings in general). Since AUPRC measures
the trade-off between the true positive rate (i.e., power) and the false discovery rate (i.e., one minus
precision), it is a more comprehensive metric than power. However, to contrast the results in Stegle
et al. [24], we also compare the powers of the different methods in Simulation Design 1.

Third, for each simulated data set, each method except Ideal and Unadjusted gets an adjusted R2

score (short as “adjusted R2”), a reverse adjusted R2 score (short as “reverse adjusted R2”), and
a concordance score. The adjusted R2 score summarizes how well the true hidden covariates can
be captured by the inferred covariates; the reverse adjusted R2 score summarizes how well the
inferred covariates can be captured by the true hidden covariates (a low score indicates that the
inferred covariates are invalid or “meaningless”); lastly, the concordance score is the average of
the previous two scores and thus measures the concordance between the true hidden covariates and
the inferred covariates. Specifically, given m true hidden covariates and n inferred covariates, first,
we calculate m adjusted R2’s (regressing each true hidden covariate against the inferred covariates)
and n reverse adjusted R2’s (regressing each inferred covariate against the true hidden covariates);
then, we average the m adjusted R2’s to obtain the adjusted R2 score and average the n reverse
adjusted R2’s to obtain the reverse adjusted R2 score; finally, we define the concordance score as
the average of the adjusted R2 score and the reverse adjusted R2 score.

4.2 Selection of representative methods for detailed comparison

Here we describe how we select a few representative methods from the 15 methods for detailed
comparison in Simulation Design 2 (Table 1). From Figures 2(d) and S3, we see that the two
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PCA methods perform almost identically, so for simplicity, we select PCA direct screeK. The
two SVA methods perform almost identically as well, so we select SVA BE. For PEER, whether
the known covariates are inputted when PEER is run has little effect on the AUPRC. Further,
we observe that when we use the true K, the factor approach outperforms the residual approach,
but when we use a large K, the residual approach outperforms the factor approach. Therefore,
we select PEER withCov trueK factors and PEER withCov largeK residuals as the representative
PEER methods. In addition, Ideal, Unadjusted, and HCP trueK are selected.

4.3 A numerical example

Here we provide a simple numerical example of QTL analysis with hidden variable inference by
summarizing the setup of GTEx’s cis-eQTL analysis for Colon - Transverse [10].

Let Y denote the n× p fully processed gene expression matrix with n = 368 samples and p =
25,379 genes. Let X1 denotes the n×K1 known covariate matrix with K1 = 8 known covariates,
which include the top five genotype PCs, WGS sequencing platform (HiSeq 2000 or HiSeq X),
WGS library construction protocol (PCR-based or PCR-free), and donor sex. Let Xinferred denote
the n×K inferred covariate matrix with K = 60 PEER factors, which are obtained by running
PEER on Y (Table S3). For gene j, j = 1, · · · , p , the relevant genotype data is stored in S j , the
n×q j genotype matrix, where each column of S j corresponds to a local common SNP for gene j,
and q j is typically under 15,000.

Given these input data, the nominal pass (the first step) of FastQTL [13], or equivalently, Matrix
eQTL [12], performs a linear regression for each gene and each of its local common SNPs.
Specifically, for j = 1, · · · , p , l = 1 · · · ,q j , the linear regression represented by the following R
lm() formula is run:

Y [ , j] ∼ S j[ , l] + X1 + Xinferred

(where Y [ , j] denotes the jth column of Y , and S j[ , l] denotes the lth column of S j), and the p-value
for the null hypothesis that the coefficient corresponding to S j[ , l] is zero (given the covariates) is
retained. The top five genotype PCs in X1 are included in the analysis to correct for population
stratification [9, 10] and are typically considered known covariates (see Section 3).
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Figures
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a b
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covariates

Residuals
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of interest

Known 
covariates
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Priors / tuning
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K

PCA

SVA
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Figure 1: Overall comparison of PCA, SVA, PEER, and HCP and summary of their inputs and
outputs. In this work, we use K to denote the number of inferred covariates, which are called PCs,
SVs, PEER factors, and HCPs in PCA, SVA, PEER, and HCP, respectively. a PCA is faster, better-
performing, and much easier to interpret and use. For speed and performance comparison, see
Section 2.1 (and to a lesser extent, Sections 2.2 and 2.3). For interpretability and ease of choosing
K, see Sections 2.4 and 2.5, respectively. In terms of software usability, SVA is difficult to apply in
QTL settings (Section S4), PEER is difficult to install, and HCP is poorly documented. In addition,
PEER suffers from the disadvantage that there is no consensus in the literature on how it should
be used (Section S4). b Inputs (green boxes) and outputs (brown boxes) of the four methods. The
fully processed molecular phenotype matrix (after the effects of the known covariates are regressed
out in the case of PCA resid; Table 1) is a required input for all four methods and is thus omitted in
the diagram. Dashed arrows indicate optional inputs. PEER outputs both inferred covariates and
residuals of the inputted molecular phenotype matrix [32].
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Inference method Method Response, covariates Method abbr. (if selected)
(A) (B) (C) (D)

1 Ideal Y , X1 + X2 Ideal

2 Unadjusted Y , X1 Unadjusted

3 PCA direct PCA direct screeK Y , X1 (filtered) + top PCs PCA

4 PCA resid PCA resid screeK Y , X1 + top PCs

5 SVA trueK SVA trueK Y , X1 + SVs

6 SVA BE SVA BE Y , X1 + SVs SVA

7
PEER noCov trueK

PEER noCov trueK factors Y , X1 (filtered) + PEER factors

8 PEER noCov trueK residuals Yresid, NULL

9
PEER noCov largeK

PEER noCov largeK factors Y , X1 (filtered) + PEER factors

10 PEER noCov largeK residuals Yresid, NULL

11
PEER withCov trueK

PEER withCov trueK factors Y , X1 + PEER factors PEER, true K, factors

12 PEER withCov trueK residuals Yresid, NULL

13
PEER withCov largeK

PEER withCov largeK factors Y , X1 + PEER factors

14 PEER withCov largeK residuals Yresid, NULL PEER, large K, residuals

15 HCP trueK HCP trueK Y , X1 + HCPs HCP

Table 1: Summary of the 15 methods we compare based on simulation studies, including Ideal,
Unadjusted, and 13 variants of PCA, SVA, PEER, and HCP (Section S4). Out of the 15 methods,
we select a few representative methods (Section 4.2) for detailed comparison in Simulation
Design 2, the abbreviations of which are shown in (D). Y denotes the gene expression matrix,
Yresid denotes the residual matrix outputted by PEER, X1 denotes the known covariate matrix, and
X2 denotes the hidden covariate matrix. In Line 3, PCA is run on Y directly; in Line 4, PCA is
run after the effects of X1 are regressed out from Y (Section S4). The addition signs in (C) denote
column concatenation. “filtered” means that we filter out the known covariates that are captured
well by the inferred covariates (unadjusted R2 ≥ 0.9); this filtering is only needed when the hidden
variable inference method in (A) does not explicitly take the known covariates into account.
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Figure 2: Runtime and AUPRC comparison of all 15 methods (Table 1) in Simulation Design 1
and Simulation Design 2. a, c PCA and HCP each takes within a few seconds, SVA takes up
to a few minutes, and PEER takes up to about 1,000 minutes, equivalent to about 17 hours. In
particular, PEER takes longer to run when K is larger (dark orange vs. light orange boxes).
b, d PCA outperforms SVA, PEER, and HCP in terms of AUPRC. The height of each bar
represents the average across simulated data sets. For ease of visualization, in d, the y-axis displays(
AUPRC−AUPRCUnadjusted

)
/AUPRCUnadjusted. In this work, error bars indicate standard errors

unless otherwise specified (whiskers in box plots are not considered error bars).
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Figure 3: Detailed runtime and AUPRC comparison of the selected representative methods
(Table 1) in Simulation Design 2. Each point represents the average across simulated data sets. The
x-axes are: number of effect SNPs per gene (numOfEffectSNPs), number of simulated covariates
(numOfCovariates; including known and hidden covariates), proportion of variance explained by
genotype (PVEGenotype), and proportion of variance explained by covariates (PVECovariates)
(Section S3). a PCA and HCP are orders of magnitude faster than SVA, which in turn is
orders of magnitude faster than PEER. b PCA outperforms SVA, PEER, and HCP in terms
of AUPRC across different simulation settings. For ease of visualization, the y-axis displays
(AUPRC−AUPRCIdeal)/AUPRCIdeal. Consistent with our expectation, the performance gap
between Unadjusted and Ideal is the largest (and thus accounting for hidden covariates is the
most important) when numOfCovariates is small, when PVEGenotype is small, and when
PVECovariates is large.
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Figure 4: In the 3′aQTL data prepared by Li et al. [11] from GTEx RNA-seq reads [9],
PEER factors can be highly correlated with each other to the extent that many or all of them
are practically identical. a Correlation heatmaps of PEER factors for Brain Hippocampus. For
ease of visualization, the PEER factors are reordered based on results from hierarchical clustering
(Section 2.2). b The x-axis shows 12 randomly selected tissue types with increasing sample sizes.
The y-axis shows the number of PEER factors requested (orange line) or the number of PEER
factor clusters. In each cluster, the correlation between any two PEER factors is above 0.99, 0.9,
or 0.8 in absolute value. Therefore, the number of PEER factor clusters can be interpreted as
the number of distinct or nonrepetitive PEER factors. We find that in many cases, the number
of distinct PEER factors is considerably smaller than the number of PEER factors requested, and
when this issue is severe (e.g., “No transformation” and “INT within sample”), the PEER factors
fail to capture important variance components of the molecular phenotype data (Figure S5).
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Figure 5: PEER factors are almost identical to PCs in GTEx eQTL and sQTL data [10]. a The
y-axis shows all 49 tissue types with GTEx QTL analyses ordered by sample size (from small to
large). Given a fully processed molecular phenotype matrix, we summarize the correlation matrix
(in absolute value) between the PEER factors and the top PCs into two numbers: the average of
the diagonal entries and the average of the off-diagonal entries. With the exception of Kidney -
Cortex sQTL data, the diagonal entries have averages close to one, and the off-diagonal entries
have averages close to zero (both have minimal standard errors). b A typical correlation heatmap
showing near-perfect one-to-one correspondence between the PEER factors and the top PCs. c
In Kidney - Cortex sQTL data, the PEER factors and the top PCs do not have a perfect one-
to-one correspondence. The reason is because the PEER factors are highly correlated with each
other (d), while PCs are always uncorrelated (Section S5.1). The numbers in the parentheses
represent sample sizes. To produce this figure, we reorder the PEER factors based on the PCs
(Algorithm S1), although in almost all cases, this reordering does not change the original ordering
of the PEER factors because PEER initializes with PCs [24].
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Figure 6: PCA, SVA, PEER, and HCP are closely related statistical methods despite their apparent
dissimilarities. In particular, the methodology behind SVA, PEER, and HCP can all be traced
back to PCA. PCA [34–38] is traditionally derived by optimizing some objective functions (either
maximum variance or minimum reconstruction error; Section S5.1), but more recently, it is shown
that PCA can be derived as a limiting case of probabilistic principal component analysis (PPCA)
[45], which in turn is a special case of factor analysis [35, 46]. PEER [24, 32] is based on a
Bayesian probabilistic model and can be considered a Bayesian version of factor analysis. SVA
[25, 26] is purely algorithmic and is not defined based on a probabilistic model or objective
function. The steps of the SVA algorithm are complicated [44], but in a nutshell, SVA iterates
between two steps: (1) reweight the features of the molecular phenotype matrix, and (2) perform
PCA on the resulting matrix (with centering but without scaling) [26]. Lastly, HCP [33] is
defined by minimizing a loss function that is very similar to the minimum-reconstruction-error
loss function of PCA (Section S5.2).
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Figure 7: PCA provides insight into the choice of K. Recall from Section 2.3 that PEER factors
are almost identical to PCs in GTEx eQTL data [10]. Therefore, for each tissue type, we compare
the number of PEER factors selected by GTEx to (1) the number of PCs chosen via an automatic
elbow detection method (Algorithm S2) and (2) the number of PCs chosen via the BE algorithm
(Algorithm S3; the default parameters are used). a Example scree plots. b This scatter plot
contains 49 dots of each color, corresponding to the 49 tissue types with GTEx eQTL analyses.
The number of PEER factors selected by GTEx far exceeds the number of PCs chosen via BE
for many tissue types with sample size above 350 (dashed line), suggesting that the number of
PEER factors selected by GTEx may be too large. c For the eight tissue types with the largest
absolute differences between the number of PEER factors chosen by GTEx and the number of PCs
chosen via BE (all eight tissue types have sample size above 350), we replace the PEER factors
with smaller numbers of PCs in GTEx’s FastQTL pipeline [10, 13] and find that we can reduce
the number of inferred covariates to between 20% (12/60 = 20%, Colon - Transverse) and 40%
(22/60≈ 36.67%, Esophagus - Mucosa) of the number of PEER factors selected by GTEx without
significantly reducing the number of discovered cis-eGenes.

Availability of data and materials

The R package PCAForQTL and a tutorial on using PCA for hidden variable inference in QTL
mapping are available at https://github.com/heatherjzhou/PCAForQTL [53]. The code used
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to generate the results in this work is available at https://doi.org/10.5281/zenodo.6788888
[54]. In addition, this work makes use of the following data and software:

• GTEx V8 public data [10], including fully processed gene expression matrices, fully
processed alternative splicing phenotype matrices, known covariates, PEER factors, and
QTL results, are downloaded from https://gtexportal.org/home/datasets.

• GTEx V8 protected data [10], specifically, the whole genome sequencing (WGS) phased
genotype data, are downloaded from the AnVIL repository with an approved dbGaP
application (see https://gtexportal.org/home/protectedDataAccess).

• 3′aQTL data prepared by Li et al. [11] from GTEx RNA-seq reads [9] are available from the
authors by request.

• SVA R package Version 3.40.0 (https://bioconductor.org/packages/sva/, accessed
on October 15th, 2021).

• PEER R package Version 1.3
(https://bioconda.github.io/recipes/r-peer/README.html, accessed before
October 15th, 2021).

• HCP R package Version 1.6 (https://rdrr.io/github/mvaniterson/Rhcpp/, accessed
on October 15th, 2021).

• FastQTL (https://github.com/francois-a/fastqtl).
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James B. Meigs, Jerome I. Rotter, Jonathan Marchini, Oluf Pedersen, Torben Hansen, Claudia
Langenberg, Nicholas J. Wareham, Kari Stefansson, Anna L. Gloyn, Andrew P. Morris,
Michael Boehnke, and Mark I. McCarthy. Fine-mapping type 2 diabetes loci to single-variant
resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics,
50(11):1505–1513, 2018.

[21] Stephanie Feupe Fotsing, Jonathan Margoliash, Catherine Wang, Shubham Saini, Richard
Yanicky, Sharona Shleizer-Burko, Alon Goren, and Melissa Gymrek. The impact of short
tandem repeat variation on gene expression. Nature Genetics, 51(11):1652–1659, 2019.

[22] Rebecca L. Walker, Gokul Ramaswami, Christopher Hartl, Nicholas Mancuso, Michael J.
Gandal, Luis de la Torre-Ubieta, Bogdan Pasaniuc, Jason L. Stein, and Daniel H. Geschwind.
Genetic control of expression and splicing in developing human brain informs disease
mechanisms. Cell, 179(3):750–771, 2019.

[23] Alexis Battle, Sara Mostafavi, Xiaowei Zhu, James B. Potash, Myrna M. Weissman, Courtney
McCormick, Christian D. Haudenschild, Kenneth B. Beckman, Jianxin Shi, Rui Mei,
Alexander E. Urban, Stephen B. Montgomery, Douglas F. Levinson, and Daphne Koller.
Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922
individuals. Genome Research, 24(1):14–24, 2014.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2022. ; https://doi.org/10.1101/2022.03.09.483661doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483661
http://creativecommons.org/licenses/by-nc-nd/4.0/


[24] Oliver Stegle, Leopold Parts, Richard Durbin, and John Winn. A Bayesian framework to
account for complex non-genetic factors in gene expression levels greatly increases power in
eQTL studies. PLoS Computational Biology, 6(5):e1000770, 2010.

[25] Jeffrey T. Leek and John D. Storey. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genetics, 3(9):e161, 2007.

[26] Jefferey T. Leek and John D. Storey. A general framework for multiple testing dependence.
Proceedings of the National Academy of Sciences, 105(48):18718–18723, 2008.

[27] James C. Cronk, Anthony J. Filiano, Antoine Louveau, Ioana Marin, Rachel Marsh, Emily
Ji, Dylan H. Goldman, Igor Smirnov, Nicholas Geraci, Scott Acton, Christopher C. Overall,
and Jonathan Kipnis. Peripherally derived macrophages can engraft the brain independent
of irradiation and maintain an identity distinct from microglia. Journal of Experimental
Medicine, 215(6):1627–1647, 2018.

[28] Jeffrey W. Tyner, Cristina E. Tognon, Daniel Bottomly, Beth Wilmot, Stephen E. Kurtz,
Samantha L. Savage, Nicola Long, Anna Reister Schultz, Elie Traer, Melissa Abel, Anupriya
Agarwal, Aurora Blucher, Uma Borate, Jade Bryant, Russell Burke, Amy Carlos, Richie
Carpenter, Joseph Carroll, Bill H. Chang, Cody Coblentz, Amanda d’Almeida, Rachel Cook,
Alexey Danilov, Kim-Hien T. Dao, Michie Degnin, Deirdre Devine, James Dibb, David K.
Edwards, Christopher A. Eide, Isabel English, Jason Glover, Rachel Henson, Hibery Ho,
Abdusebur Jemal, Kara Johnson, Ryan Johnson, Brian Junio, Andy Kaempf, Jessica Leonard,
Chenwei Lin, Selina Qiuying Liu, Pierrette Lo, Marc M. Loriaux, Samuel Luty, Tara Macey,
Jason MacManiman, Jacqueline Martinez, Motomi Mori, Dylan Nelson, Ceilidh Nichols,
Jill Peters, Justin Ramsdill, Angela Rofelty, Robert Schuff, Robert Searles, Erik Segerdell,
Rebecca L. Smith, Stephen E. Spurgeon, Tyler Sweeney, Aashis Thapa, Corinne Visser, Jake
Wagner, Kevin Watanabe-Smith, Kristen Werth, Joelle Wolf, Libbey White, Amy Yates,
Haijiao Zhang, Christopher R. Cogle, Robert H. Collins, Denise C. Connolly, Michael W.
Deininger, Leylah Drusbosky, Christopher S. Hourigan, Craig T. Jordan, Patricia Kropf,
Tara L. Lin, Micaela E. Martinez, Bruno C. Medeiros, Rachel R. Pallapati, Daniel A.
Pollyea, Ronan T. Swords, Justin M. Watts, Scott J. Weir, David L. Wiest, Ryan M. Winters,
Shannon K. McWeeney, and Brian J. Druker. Functional genomic landscape of acute myeloid
leukaemia. Nature, 562(7728):526–531, 2018.

[29] Lindsay F. Rizzardi, Peter F. Hickey, Varenka Rodriguez DiBlasi, Rakel Tryggvadóttir,
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Supplementary materials for

PCA outperforms popular hidden variable inference methods for
molecular QTL mapping

Heather J. Zhou, Lei Li, Yumei Li, Wei Li, Jingyi Jessica Li

S1 Limitations of the original PEER simulation study

The simulation study in the original PEER publication [24] is limited. We categorize its limitations
into three categories: (1) data analysis limitations, (2) overall design limitations, and (3) data
simulation limitations.

The data analysis limitations include:

(a) The study only compares PEER against the other methods in terms of power, not in terms of
false positive rate or false discovery rate (see Section 4.1 for our evaluation metrics).

(b) The study does not use PCA or SVA properly (we do; Section S4).
(c) The study does not evaluate the different ways of using PEER (we do; Section S4).
(d) The study uses ad hoc priors for PEER that are different from the default priors (we use the

default priors; Section S4).

The overall design limitations include:

(a) The study only simulates one replicate of one experiment. That is, the entire simulation
study is based on one simulated data set (we simulate 10 replicates in our first simulation
study; Section S2).

The data simulation limitations include (see Table S1 for our solutions):

(a) The data dimensions are minimal, with q = 100 SNPs in the entire genome.
(b) The SNP genotypes are simulated independently and identically with a target minor allele

frequency (MAF) of 0.4, so there is no linkage disequilibrium (LD) and a higher average
MAF than in real data (the average MAF in GTEx data [10], after SNPs with MAF under
0.01 are filtered out, is about 0.15; Section S3.1).

(c) The gene expression levels are primarily driven by trans-regulatory effects rather than cis-
regulatory effects or covariate effects (Table S2), inconsistent with the common belief that
trans-regulatory effects are generally weaker than cis-regulatory effects.

In addition, the simulation study in the original PEER publication [24] is imperfect in that the
description of the data simulation and analysis is vague and inconsistent, and there is no
reproducible code. In contrast, we describe our data simulation and analysis in detail (Sections S2
to S4) and provide the code we use to generate the results (see Availability of data and materials).
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S2 Simulation Design 1

S2.1 Data simulation

In Simulation Design 1, we perform 10 replicates of the same experiment, where in each replicate,
we follow the data simulation in Stegle et al. [24] as closely as possible.

In each replicate, we simulate a data set with n = 80 individuals, p = 400 genes, q = 100 SNPs in
the entire genome, K1 = 3 known covariates, and K2 = 7 hidden covariates. Let i, j, l, and k be the
indices of individuals, genes, SNPs, and covariates, respectively. That is, i = 1, · · · ,n; j = 1, · · · , p;
l = 1, · · · ,q; and k = 1, · · · ,(K1 +K2). The data simulation consists of three steps.

In the first step, we simulate YbeforeDSE, the gene expression matrix before downstream effect, based
on

YbeforeDSE
n×p

= S
n×q

(
I1

q×p
⊙ B1

q×p

)
+ X

n×(K1+K2)
B2

(K1+K2)×p
+ E

n×p
, (S1)

where ⊙ denotes element-wise multiplication. Specifically, in the genotype component, we have

• S: genotype matrix. Each entry is drawn independently from Binom(2,prob = 0.4). That is,
the target MAF is 0.4. In this work, all random sampling is independent unless otherwise
specified.

• I1: effect indicator matrix. Each entry is drawn from Ber (0.01).
• B1: effect size matrix. Each entry is drawn from N(0,var = 4).

In the covariate component, we have

• X : covariate matrix. Each entry is drawn from N(0,var = 0.6). The first K1 columns are
designated as the known covariates (X1 , n×K1), and the last K2 columns are designated as
the hidden covariates (X2 , n×K2).

• B2: effect size matrix. First, we draw σ2
k ∼ 0.8(Γ(shape = 2.5, rate = 0.6))2, the covariate-

specific effect size variance. Then, we draw (B2)k j ∼ N
(
0,var = σ2

k

)
.

Lastly, in the noise component, we have

• E: noise matrix. First, we draw τ j ∼ Γ(shape = 3, rate = 1), the gene-specific noise
precision. Then, we draw (E)i j ∼ N

(
0,var = 1/τ j

)
.

In the second step, we simulate YDSE, the gene expression matrix due to the downstream effect of
genes, based on

YDSE
n×p

= YbeforeDSE
n×p

(
I3

p×p
⊙ B3

p×p

)
, (S2)
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where we have

• I3: effect indicator matrix. To simulate I3, we start with a zero matrix. Then, we randomly
choose three rows corresponding to genes with at least one cis-QTL (Section S2.2). For
each of these three rows, we randomly assign 30 entries corresponding to genes other than
the current gene in consideration (avoiding self-loops) to be one.

• B3: effect size matrix. Each entry is drawn from N(8,var = 0.8) for “strong downstream
effects” [24].

As we see in Section S2.2, the downstream effect of genes induces trans-QTL relations.

In the third and last step, we define Y , the final, observed gene expression matrix, as

Y
n×p

= YbeforeDSE
n×p

+YDSE
n×p

. (S3)

S2.2 Definition of truth

In a simulated data set, the cis-QTL relations are encoded in the q× p binary matrix I1. The l j-th
entry being one means that SNP l and gene j form a cis-QTL pair (i.e., SNP l is a cis-QTL for
gene j).

The trans-QTL relations are encoded in J, also a q× p binary matrix. J is defined based on I1 and
I3. Specifically, SNP l and gene j form a trans-QTL pair if and only if SNP l is a cis-QTL for
gene j′ and gene j′ has downstream effect on gene j, j′ ̸= j.

The overall truth is encoded in 1
(
(I1 + J)≥ 1

)
, again a q× p binary matrix. We use this matrix as

the truth when calculating AUPRCs. The l j-th entry being one means that SNP l and gene j form
a cis-QTL or trans-QTL pair (or both).
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Simulation Design 1 Simulation Design 2

Data simulation Follows Stegle et al. [24] Loosely based on Wang et al. [41]

# of experiments 1 176

# of replicates per experiment 10 2

# of simulated data sets 10 352

Genotype data Simulated (no LD, high MAF) Real genotype data from GTEx [10]

Cis-QTL relations present ✓ ✓

Trans-QTL relations present ✓ ✗

Source(s) of expression variation Primarily trans-regulatory effects Carefully controlled genotype effects and covariate effects

# of individuals n = 80 n = 838

# of genes p = 400 p = 1,000

# of SNPs q = 100 SNPs in the entire genome q = 1,000 local common SNPs per gene

# of known covariates K1 = 3 K1 = 2, 3, 5, or 8 depending on the experiment

# of hidden covariates K2 = 7 K2 = 3, 7, 15, or 22 depending on the experiment

Table S1: Summary of the main differences between Simulation Design 1 and Simulation Design 2.
Highlighted in blue are the major data simulation limitations (Section S1) of Simulation Design 1,
all of which we address in Simulation Design 2.

Replicate Var(YbeforeDSE) Var(YDSE) Var(Y ) Var(YbeforeDSE)/Var(Y ) Var(YDSE)/Var(Y )

1 124.34 1757.07 1889.57 6.58% 92.99%

2 140.92 1505.17 1677.64 8.40% 89.72%

3 213.56 929.96 1169.18 18.27% 79.54%

4 71.85 761.01 855.39 8.40% 88.97%

5 123.07 2434.45 2574.51 4.78% 94.56%

6 74.94 1029.29 1092.65 6.86% 94.20%

7 148.61 2490.72 2628.93 5.65% 94.74%

8 79.36 796.55 868.05 9.14% 91.76%

9 54.62 1340.10 1390.72 3.93% 96.36%

10 65.64 831.89 895.90 7.33% 92.86%

Average 7.93% 91.57%

Table S2: In Simulation Design 1, which follows the data simulation in Stegle et al. [24] as closely
as possible, the gene expression levels are primarily driven by trans-regulatory effects rather than
cis-regulatory effects or covariate effects. Var(YbeforeDSE) is defined as the variance of the n×
p entries of YbeforeDSE, and the other variances in the table are defined similarly. We find that
Var(YDSE)/Var(Y ) is above 90% on average.
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Figure S1: Comparison of all 15 methods (Table 1) in terms of power and adjusted R2 measures
in Simulation Design 1 (the height of each bar represents the average across simulated data sets)
and an example scree plot. a, b PCA is more powerful than SVA, PEER, and HCP both when we
consider all QTL relations (a) and when we focus on trans-QTL relations (b). Binary decisions are
made based on p-values using the Benjamini-Hochberg (BH) procedure and a target false discovery
rate of 0.05. c, d, e PCA performs the best in terms of concordance score. PEER with a large K
(dark orange bars) performs well in terms of adjusted R2 but less well in terms of reverse adjusted
R2. f An example scree plot that unambiguously suggests the true number of hidden covariates,
seven in this case, as the reasonable number of PCs to choose (the y-axis represents the proportion
of variance explained).

S3 Simulation Design 2

S3.1 Data simulation

In Simulation Design 2, we use real genotype data from GTEx [10], focus on cis-QTL detection,
and carefully control the genotype effects and covariate effects in 176 experiments with two
replicates per experiment. This simulation design takes inspiration from and is loosely based on
Wang et al. [41].
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In each experiment-replicate combination, we simulate a data set with n = 838 individuals,
p = 1,000 genes, q = 1,000 local common SNPs per gene, K1 known covariates, and K2 hidden
covariates (the values of K1 and K2 depend on the experiment; see below). Again, let i, j, l, and k
be the indices of individuals, genes, SNPs, and covariates, respectively. That is, i = 1, · · · ,n;
j = 1, · · · , p; l = 1, · · · ,q; and k = 1, · · · ,(K1 +K2).

We begin by obtaining SArray, the n× q× p genotype array that remains constant throughout
Simulation Design 2. SArray[ , , j], an n×q matrix, is the genotype matrix for the q local common
SNPs for gene j. We obtain SArray with the following steps:

(a) Download the whole genome sequencing (WGS) phased genotype data for n = 838
individuals from GTEx V8 [10].

(b) Randomly select p = 1,000 genes from the more than 20,000 genes on chromosomes 1 to
22.

(c) For each gene, obtain the genotype data for the q = 1,000 SNPs with MAF≥ 0.01 that are
the closest to the gene’s transcription start site (TSS); we find that these SNPs are almost
always within 1 Mb of the TSS. The average MAF of SArray, calculated as SArray/2, the
average of all entries of SArray divided by 2, is 0.1474385≈ 0.15.

Each experiment is characterized by four attributes:

(a) Number of effect SNPs per gene (numOfEffectSNPs): 1 or random.
(b) Number of covariates (numOfCovariates): 5, 10, 20, or 30.

• Number of known covariates (K1): 2, 3, 5, 8, respectively.
• Number of hidden covariates (K2): 3, 7, 15, 22, respectively.

(c) Proportion of variance explained by genotype (PVEGenotype): 0.05, 0.1, 0.2, or 0.3.
(d) Proportion of variance explained by covariates (PVECovariates): minimum 0.3, maximum

1− 0.05− PVEGenotype, in increments of 0.1. For example, when PVEGenotype = 0.05,
PVECovariates takes seven possible values: 0.3, 0.4, 0.5, · · · , 0.9.

Therefore, we have a total of 2×4× (7+6+5+4) = 8×22 = 176 experiments covering typical
scenarios in QTL studies [41]. Following Wang et al. [41], we use the term “effect SNPs” to refer
to SNPs that have a nonzero cis effect on a given gene.

Given numOfEffectSNPs, numOfCovariates, PVEGenotype, and PVECovariates, we simulate
each data set based on

Y
n×p

= SArray
n×q×p

⊗
(

I
q×p
⊙ B1

q×p

)
+ X

n×(K1+K2)
B2

(K1+K2)×p
+ E

n×p
, (S4)

where Y is the gene expression matrix, and ⊗ is defined as

C
n×p

= A
n×q×p

⊗ B
q×p

⇔ C[ , j]
n×1

= A[ , , j]
n×q

×B[ , j]
q×1

, j = 1, · · · , p . (S5)
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Specifically, in the genotype component, we have

• SArray: genotype array. SArray[ , , j], an n×q matrix, is the genotype matrix for the q local
common SNPs for gene j (see above).

• I: effect indicator matrix.
– If numOfEffectSNPs = 1, then for each column, we randomly assign one entry to be

one while keeping the other entries zero.
– If numOfEffectSNPs = random, then each entry of I is drawn from Ber (1/q). This

means that for each gene, the number of effect SNPs is drawn from
Binom(q, prob = 1/q). This binomial distribution approximates the empirical
distribution of the number of independent cis-eQTLs per gene in GTEx data [10] well
(Figure S2).

• B1: effect size matrix. Each entry is drawn from N(0,1).

In the covariate component, we have

• X : covariate matrix. Each entry is drawn from N(0,1). As in Simulation Design 1, the first
K1 columns are designated as the known covariates (X1 , n×K1), and the last K2 columns are
designated as the hidden covariates (X2 , n×K2).

• B2: effect size matrix. Each entry is drawn from N(0,1) and scaled (see below).

Lastly, in the noise component, we have

• E: noise matrix. Each entry is drawn from N(0,1) and scaled (see below).

Alternatively, (S4) can be written as

(Y ) j
n×1

= S j
n×q

(IB1) j
q×1

+ X
n×(K1+K2)

(B2) j
(K1+K2)×1

+(E) j
n×1

, j = 1, · · · , p , (S6)

where (Y ) j , (IB1) j , (B2) j , and (E) j denote the jth column of Y , I⊙B1 , B2 , and E, respectively,
and S j denotes SArray[ , , j].

The scaling for B2 and E is to ensure that PVEGenotype and PVECovariates are as desired.
Specifically, for gene j, if Var

(
S j (IB1) j

)
̸= 0, then we scale (B2) j so that

Var
(
X (B2) j

)
Var

(
S j (IB1) j

) =
PVECovariates

PVEGenotype
(S7)

and separately scale (E) j so that

Var
(
(E) j

)
Var

(
S j (IB1) j

) =
1−PVEGenotype−PVECovariates

PVEGenotype
. (S8)
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If Var
(
S j (IB1) j

)
= 0 (which is the case when (IB1) j is a zero vector, i.e., when gene j has zero

effect SNPs), then we only scale (E) j so that

Var
(
(E) j

)
Var

(
X (B2) j

) =
1−PVECovariates

PVECovariates
. (S9)

S3.2 Definition of truth

In a simulated data set, I is a q× p binary matrix. The l j-th entry being one means that the lth local
common SNP for gene j is an effect SNP for gene j. However, due to LD, the expression level of
a gene may be strongly associated with SNPs other than its effect SNPs.

Therefore, we define Icor, also a q× p binary matrix, based on SArray and I and use it as the truth
when calculating AUPRCs. The l j-th entry of Icor is defined as one if and only if the lth local
common SNP for gene j is highly correlated with any of gene j’s effect SNPs (correlation ≥ 0.9
in absolute value).
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Figure S2: In Simulation Design 2, we find that Binom(1000, prob = 1/1000) approximates the
empirical distribution of the number of independent cis-eQTLs per gene in GTEx data [10] well.
a Given a tissue type, which corresponds to a sample size, we plot the proportion of genes with 0,
1, 2, 3, 4, or 5 or more independent cis-eQTLs (the proportions add up to one; data from GTEx
[10]). We find that the proportions stabilize once the sample size reaches about 517 (dashed line).
b For the eight tissue types with sample size ≥ 517, we take the average proportion of genes
with 0 independent cis-eQTLs, 1 independent cis-eQTL, etc. and plot them in the blue bars. The
green bars represent the probability mass function of Binom(1000, prob = 1/1000) (with the tail
probabilities combined together).
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Figure S3: This figure shows how we select a few representative methods from the 15 methods
for detailed comparison in Simulation Design 2 (a, b, c) and a dataset-by-dataset comparison
of the selected representative methods (d). The x-axis and y-axis both represent AUPRCs of
different methods. Each scatter plot contains 352 points, each of which corresponds to a simulated
data set in Simulation Design 2. The number on the upper-left corner of each scatter plot
represents the proportion of points that satisfy y > 1.02 x, and the number on the lower-right
corner represents the proportion of points that satisfy x > 1.02 y, where x and y denote the
coordinates of each point. a The two PCA methods perform almost identically, so for simplicity,
we select PCA direct screeK. The two SVA methods perform almost identically as well, so we
select SVA BE. b Whether the known covariates are inputted when PEER is run has little effect
on the AUPRC. c When we use the true K, the factor approach outperforms the residual approach,
but when we use a large K, the residual approach outperforms the factor approach. Therefore,
we select PEER withCov trueK factors and PEER withCov largeK residuals as the representative
PEER methods. d Among the selected representative methods, PCA outperforms SVA, PEER, and
HCP in terms of AUPRC in 11% to 88% of the simulated data sets and underperforms them in
close to 0% of the simulated data sets.
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Figure S4: Detailed adjusted R2, reverse adjusted R2, and concordance score comparison of the
selected representative methods (Table 1) in Simulation Design 2. Each point represents the
average across simulated data sets. PCA performs the best in all three regards. PEER with a
large K (dark orange line) performs well in terms of adjusted R2 but falls short in terms of reverse
adjusted R2.

S4 Compared methods

We compare the runtime and performance of 15 methods based on simulation studies, including
Ideal, Unadjusted, and 13 variants of PCA, SVA, PEER, and HCP (Table 1). The details of
Simulation Design 1 and Simulation Design 2 are described in Sections S2 and S3, respectively.
Recall that in each simulated data set, Y denotes the gene expression matrix (n× p , sample by
gene), X1 denotes the known covariate matrix (n×K1 , sample by covariate), and X2 denotes the
hidden covariate matrix (n×K2 , sample by covariate). The genotype information is stored in S in
Simulation Design 1 and SArray in Simulation Design 2. In this work, we use K to denote the
number of inferred covariates, which are called PCs, SVs, PEER factors, and HCPs in PCA, SVA,
PEER, and HCP, respectively.

Given a simulated data set, each of the 15 methods consists of two steps: hidden variable
inference step (not applicable for Ideal and Unadjusted) and QTL step. In the hidden variable
inference step, we run PCA, SVA, PEER, or HCP to obtain the inferred covariates (and the
expression residuals in the case of PEER; Figure 1). In the QTL step, given a gene-SNP pair, we
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run a linear regression with the gene expression vector (or the residual vector from PEER) as the
response and the genotype vector and covariates as predictors, where the choice of the response
and covariates depends on the method (Table 1); thus we obtain the p-value for the null
hypothesis that the coefficient corresponding to the genotype vector is zero given the covariates.
In Simulation Design 1, we investigate the association between each gene’s expression level and
each SNP in the entire genome for a simultaneous detection of cis-QTL and trans-QTL relations.
In Simulation Design 2, we investigate the association between each gene’s expression level and
each of the gene’s local common SNPs for a cis-QTL analysis.

For Ideal, we assume that X2 is known. Therefore, we use X1 and X2 as covariates in the QTL step.
For Unadjusted, we use X1 as the covariates.

We devise two ways to use PCA to account for the hidden covariates. For PCA direct screeK,
we run PCA on Y directly. For PCA resid screeK, we first residualize Y against X1 and then run
PCA on the residual matrix. In this work, PCA is run with centering and scaling unless otherwise
specified; given A, an n× p1 matrix, and B, an n× p2 matrix, both observation by feature, to
residualize A against B means to take each column of A, regress it against B, and replace the
original column of A with the residuals from the linear regression. For both methods, since the
scree plots always suggest the true “number of hidden covariates” (K1+K2 for PCA direct screeK,
K2 for PCA resid screeK) as the reasonable number of PCs to choose within plus or minus one
(usually exactly; Figure S1), we set the number of PCs to be the true “number of hidden covariates”.
For PCA direct screeK, we filter out the known covariates that are captured well by the top PCs
(unadjusted R2≥ 0.9) and use the remaining known covariates along with the top PCs as covariates
in the QTL step. For PCA resid screeK, no filtering is needed.

Here we describe the two hidden variable inference methods for SVA: SVA trueK and SVA BE.
Since the SVA package [31] requires the user to input at least one variable of interest (Figure 1)
and using too many variables of interest causes the package to fail, when running SVA, we input
the top PC of the genotype matrix (S in Simulation Design 1, collapsed version of SArray in
Simulation Design 2) as the variable of interest. We also input X1 as the known covariates because
the package documentation indicates that the known covariates should be provided if available.
The SVA package allows the user to specify K. Alternatively, it can automatically choose K using
a slightly modified version of the Buja and Eyuboglu (BE) algorithm [44, 47]. Therefore, in
SVA trueK, we set K = K2, and in SVA BE, we let the package choose K automatically. In both
cases, we use X1 and the surrogate variables (SVs) as covariates in the QTL step.

There are several different ways to use PEER [32] but no consensus in the literature on which one
is the best. In the hidden variable inference step, PEER can be run with or without the known
covariates when there are known covariates available (Stegle et al. [32] do not give an explicit
recommendation as to which approach should be used, and both approaches are used in practice
[9–11, 16]), and K has to be specified by the user (Stegle et al. [24, 32] claim that the performance
of PEER does not deteriorate as K increases). In the QTL step, one can include the PEER factors as
covariates (we call this the “factor approach”) or use the expression residuals outputted by PEER as
the response (and not use any known or inferred covariates; we call this the “residual approach”).
For completeness, we compare 23 = 8 ways of using PEER (the default priors are always used):
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PEER is run with or without the known covariates; PEER is run using the true “number of hidden
covariates” (K1 +K2 when PEER is run without the known covariates, K2 when PEER is run with
the known covariates) or using a large K (K=50); and either the factor approach or the residual
approach is used in the QTL step.

The HCP package requires the user to specify K and three tuning parameters: λ1, λ2, and λ3
(Section S5.2). The package documentation suggests choosing K and the tuning parameters via a
grid search. However, no specific recommendations are given regarding the choice of the score
function. In practice, users of HCP often choose K and the tuning parameters by maximizing the
number of discoveries [22, 23]. For our simulation studies, such an approach would be
computationally prohibitive. Therefore, for simplicity, we set K = K2 and λ1 = λ2 = λ3 = 1; the
latter is because we do not want to give more weight to the penalty terms than the main term in
the objective function (Section S5.2).

Reference

GTEx

data

version

QTL analysis Data transformation

Known

covariates

inputted

# of PEER factors

Factor or

residual

approach

(A) (B) (C) (D) (E) (F) (G)

GTEx Consortium [9] V6p eQTL (cis and trans) INT within feature No Maximizes cis-eGenes Factor

GTEx Consortium [10] V8
eQTL (cis and trans) INT within feature No Maximizes cis-eGenes Factor

sQTL (cis and trans) INT within sample No 15 Factor

Li et al. [11] V7 3′aQTL (cis) No transformation Yes Follows GTEx [9] Factor

Table S3: Summary of QTL analyses performed by GTEx [9, 10] and Li et al. [11]. “INT” in
(D) stands for “inverse normal transform” [42]. (E), (F), and (G) summarize how PEER is used
(Section S4). GTEx [9, 10] chooses the number of PEER factors for its eQTL analyses (including
cis and trans) by maximizing the number of discovered cis-eGenes for each pre-defined sample
size bin. The number of PEER factors selected is 15 for n < 150, 30 for n ∈ [150,250), and 35
for n ≥ 250 for GTEx V6p eQTL analyses [9] and 15 for n < 150, 30 for n ∈ [150,250), 45 for
n ∈ [250,350), and 60 for n≥ 350 for GTEx V8 eQTL analyses [10], where n denotes the sample
size. Li et al. [11] use the numbers of PEER factors chosen by GTEx [9].
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Figure S5: In the 3′aQTL data prepared by Li et al. [11] from GTEx RNA-seq reads [9], PEER
factors fail to capture important variance components of the molecular phenotype data when the
data transformation method is “No transformation” or “INT within sample” (a; the numbers of
PCs are chosen via BE (Algorithm 3)). On the other hand, PEER factors span roughly the same
linear subspace as the top PCs when the data transformation method is “Center and scale” or “INT
within feature”, but the top PCs can almost always capture the PEER factors better than the PEER
factors can capture the top PCs (b; the numbers of PCs are equal to the numbers of PEER factors).
Given m PEER factors and n PCs from the same post-transformation molecular phenotype matrix
(m≥ n in a, m = n in b), we calculate m adjusted R2’s by regressing each PEER factor against the
PCs and plot the average in blue. Similarly, we calculate n adjusted R2’s by regressing each PC
against the PEER factors and plot the average in orange.

Algorithm S1: Reordering of PEER factors based on PCs (Figure 5).

Inputs:
• K PEER factors.
• K PCs.

Output: K PEER factors (reordered).
1 for k← 1 to K do
2 Select the PEER factor that is the most highly correlated with the kth PC from the PEER

factors that have not been selected yet.
3 end
4 return the PEER factors in the order that they are selected.
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Figure S6: In GTEx eQTL data [10], PEER is at least three orders of magnitude slower than
PCA (a), and replacing the PEER factors with PCs in GTEx’s FastQTL pipeline [10, 13] does
not change the cis-eQTL results much (b, c, d). The x-axis shows 10 randomly selected tissue
types with increasing sample sizes. a For a given gene expression matrix, running PEER without
the known covariates (GTEx’s approach) takes up to about 1,900 minutes (equivalent to about 32
hours; Whole Blood), while running PCA (with centering and scaling; our approach) takes no more
than a minute. For comparison, we also run PEER with the known covariates using the numbers
of PEER factors selected by GTEx. This approach takes even longer (up to about 4,600 minutes,
equivalent to about 77 hours; Esophagus - Mucosa). b The p-values produced by GTEx’s approach
and our approach are highly correlated (correlations between the negative common logarithms are
shown). c, d The overlap of the identified eGenes and eQTL pairs between the two approaches is
generally around 90% (see Figure S7 for more detail).
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Figure S7: Following the analysis in Figure S6, we find that the eGenes uniquely identified by PCs
or PEER factors have marginal p-values compared to those identified by both methods.
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Figure S8: Joint analysis of results from Simulation Design 1, Simulation Design 2, and GTEx
eQTL data [10]. The x-axes of a, c, and e show the concordance between PEER factors and
top PCs (defined analogously as the concordance score; Section 4.1). The x-axes of b, d,
and f show the percentage of QTL discoveries shared between PEER and PCA (in b and d,
for each method, binary decisions are made based on p-values using the Benjamini-Hochberg
(BH) procedure and a target false discovery rate of 0.05). In a through d, the y-axes show
(AUPRCPEER−AUPRCPCA)/AUPRCPCA, the blue lines are the simple linear regression lines,
and the Pearson correlation coefficients are shown on the bottom right. a and b each contains 10
data points, corresponding to the 10 simulated data sets in Simulation Design 1. c and d each
contains 352 data points, corresponding to the 352 simulated data sets in Simulation Design 2.
The methods compared in a through d are PCA direct screeK and PEER noCov trueK factors. e
presents similar information as Figure 5; the total count is 49, which is the number of tissue types
with GTEx eQTL analyses. f is based on Figure S6(d); the total count is 10, which is the number
of tissue types randomly selected for analysis in Figure S6. We find that the percentage of QTL
discoveries shared is a good predictor of the relative performance of PEER versus PCA and is a
better predictor than concordance. This plot is also evidence that Simulation Design 2 is more
realistic than Simulation Design 1 because the ranges that concordance and percentage of QTL
discoveries shared fall in in e and f agree better with those in c and d than those in a and b.
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S5 Theory of PCA and HCP

S5.1 Principal component analysis (PCA)

Principal component analysis (PCA) [34, 35] is a well-established dimension reduction method
with many applications. Here we aim to provide a brief summary of its algorithm, derivation, and
interpretation.

Let X denote the n× p observed data matrix that is observation by feature, e.g., a molecular
phenotype matrix. We use X instead of Y here to be consistent with standard PCA notations. We
assume that the columns of X have been centered and scaled. That is, X satisfies

1
n

n

∑
i=1

xi j = 0 , j = 1, · · · , p (S10)

and

1
n−1

n

∑
i=1

x2
i j = 1 , j = 1, · · · , p , (S11)

where xi j denotes the i j-th entry of X .

The PCA algorithm consists of two steps. In the first step, we calculate the sample covariance
matrix Σ̂ and perform eigendecomposition on it:

Σ̂ =
1
n

X⊤X definition of sample covariance matrix (S12)

:= QΛQ⊤ , eigendecomposition (S13)

where

Q
p×p

=

 | |
q1 · · · qp
| |

 (S14)

is an orthogonal matrix whose columns are eigenvectors of Σ̂, and

Λ
p×p

=

λ1
. . .

λp

 , λ1 ≥ ·· · ≥ λp ≥ 0 , (S15)
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is a diagonal matrix whose diagonal entries are the corresponding eigenvalues of Σ̂. We know that
Σ̂ is orthogonally diagonalizable because it is a symmetric matrix (recall the spectral theorem for
real matrices [55]: a matrix is orthogonally diagonalizable if and only if it is symmetric). The
eigenvalues are all non-negative because Σ̂ is positive semidefinite.

In the second step, we calculate Z as

Z = XQ , (S16)

where the columns of Z are called the principal components (PCs) or scores, and Q is called the
loading matrix or rotation matrix. It is worth noting that some authors may refer to q1, · · · ,qp as
the PCs. This use of terminology is confusing and should be avoided [36].

The above two steps conclude the PCA algorithm. In practice, however, singular value
decomposition (SVD) of the data matrix is often used as a more computationally efficient way of
finding the loading matrix and the PCs [34].

The most common derivation of PCA is based on maximum variance [37]. First, we define
α∗1 , · · · ,α∗p ∈ Rp sequentially as

α
∗
1 = argmax

α1∈Rp
Var(Xα1) subject to ∥α1∥2 = 1 , (S17)

α
∗
2 = argmax

α2∈Rp
Var(Xα2) subject to ∥α2∥2 = 1 , α

⊤
2 α
∗
1 = 0 , (S18)

...

α
∗
p = argmax

αp∈Rp
Var(Xαp) subject to ∥αp∥2 = 1 , α

⊤
p α
∗
j = 0 ∀ j < p . (S19)

Then, we define the PCs of X as Xα∗1 , · · · ,Xα∗p. That is, the PCs are defined sequentially as the
linear combinations of the columns of X with maximum variances, subject to certain constraints.
It can then be shown that α∗1 , · · · ,α∗p are given by q1, · · · ,qp respectively, where q1, · · · ,qp are
eigenvectors of Σ̂ as defined in (S14).

A complementary property of PCA, which is closely related to the original discussion of Pearson
[38], is the minimum reconstruction error property. Given K < p, we define QK as the matrix that
contains the first K columns of Q. That is,

QK
p×K

:=

 | |
q1 · · · qK
| |

 . (S20)

The minimum reconstruction error property of PCA states that QK is a global minimizer of the loss
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function

J
(

Q̃K

)
:=

∣∣∣∣∣∣∣∣∣X−XQ̃KQ̃⊤K
∣∣∣∣∣∣∣∣∣2

F
(S21)

=
n

∑
i=1

∥∥∥x⊤i − x⊤i Q̃KQ̃⊤K
∥∥∥2

2
=

n

∑
i=1

∥∥∥xi− Q̃KQ̃⊤K xi

∥∥∥2

2
, (S22)

where Q̃K denotes an arbitrary p×K matrix whose columns are orthonormal, |||·|||F denotes the
Frobenius norm of a matrix, and x⊤i denotes the ith row of X . Since Q̃KQ̃⊤K xi represents the
(orthogonal) projection of xi onto the subspace spanned by the columns of Q̃K , (S22) measures
the total squared ℓ2 error when approximating each xi with its projection onto the subspace
spanned by the columns of Q̃K .

A central idea of PCA is the proportion of variance explained by each PC. To establish this concept,
we claim that

p

∑
j=1

Var
(
X j
)
=

p

∑
j=1

Var
(
Z j
)
, (S23)

Var
(
Z j
)
= λ j , j = 1, · · · , p , (S24)

and

Cov
(
Z j , Z j′

)
= 0 , j, j′ = 1, · · · , p , j ̸= j′ , (S25)

where X j denotes the jth column of X (the jth original variable) and Z j denotes the jth column of
Z (the jth PC). (S25) means that the PCs are uncorrelated with each other.

We prove (S24) and (S25) by calculating Σ̂Z , the sample covariance matrix of Z (we know that the
columns of Z are centered by (S10) and (S16)):

Σ̂Z =
1
n

Z⊤Z definition of sample covariance matrix (S26)

=
1
n
(XQ)⊤XQ plugging in (S16) (S27)

= Q⊤
(

1
n

X⊤X
)

Q (S28)

= Q⊤
(

QΛQ⊤
)

Q plugging in (S13) (S29)

= Λ . (S30)
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(S23) can be proven by the following:

p

∑
j=1

Var
(
X j
)
= Tr

(
Σ̂

)
definition of trace and Σ̂ (S31)

= Tr
(

QΛQ⊤
)

plugging in (S13) (S32)

= Tr
(

ΛQ⊤Q
)

cyclic property of trace (S33)

= Tr(Λ) (S34)

=
p

∑
j=1

Var
(
Z j
)
. by (S24) (S35)

Because of (S23) and (S24), we may define the proportion of variance in the original data explained
by the jth PC as

λ j

∑
p
j′=1 Var

(
X j′

) =
λ j

∑
p
j′=1 Var

(
Z j′

) =
λ j

∑
p
j′=1 λ j′

, (S36)

which provides a basis for deciding the number of PCs to keep (e.g., Algorithms S2 and S3).

S5.2 Hidden covariates with prior (HCP) and its connection to PCA

Hidden covariates with prior (HCP) [33] is a popular hidden variable inference method for QTL
mapping defined by minimizing a loss function. Neither Mostafavi et al. [33] nor the HCP package
documents the HCP method well. For example, the squares in the loss function (S37) are missing
in both Mostafavi et al. [33] and the package documentation, but one can deduce that the squares
are there by inspecting the coordinate descent steps in the source code of the R package. Here
we aim to provide a better, more accurate documentation of the HCP method and point out its
connection to PCA.

Given Y , the molecular phenotype matrix (n× p, sample by feature), X1, the known covariate
matrix (n × K1, sample by covariate), K, the number of inferred covariates (HCPs), and
λ1, λ2, λ3 > 0, the tuning parameters, HCP looks for

argmin
X2, W1, W2

{∣∣∣∣∣∣∣∣∣∣∣∣ Y
n×p
− X2

n×K
W2
K×p

∣∣∣∣∣∣∣∣∣∣∣∣2
F
+ λ1

∣∣∣∣∣∣∣∣∣∣∣∣X2
n×K
− X1

n×K1

W1
K1×K

∣∣∣∣∣∣∣∣∣∣∣∣2
F
+ λ2|||W1|||2F + λ3|||W2|||2F

}
, (S37)

where |||·|||F denotes the Frobenius norm of a matrix, X2 is the hidden covariate matrix, and W1
and W2 are weight matrices of the appropriate dimensions. The name of the method, “hidden
covariates with prior”, comes from the second term in (S37), where the method informs the hidden
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covariates with the known covariates. The optimization is done through coordinate descent with
one deterministic initialization (see source code of the HCP R package [33]). The columns of the
obtained X2 are reported as the HCPs.

From (S37), we see that the HCP method is closely related to PCA. The first term in (S37) is
very similar to (S21), the only difference being that the rows of W2 in (S37) are not required to be
orthonormal and X2 is not required to be equal to YW⊤2 .

Algorithm S2: The elbow method for choosing K in PCA (based on distance to diagonal line).

Input: X , n× p observed data matrix, observation by feature.
Output: K, the number of PCs selected.

1 Define d = min(n, p). This is the total number of PCs.
2 Run PCA on X with centering and scaling.
3 Obtain the proportion of variance explained by each PC, t1, · · · , td . // ∑

d
j=1 t j = 1.

4 Consider (1, t1), · · · ,(d, td) ∈ R2. // d points in R2.

5 Select K by choosing the point that is the farthest from the diagonal line, i.e., the line that
passes through the first point, (1, t1), and the last point, (d, td). Specifically, the distance from
(x0,y0) to the line that passes through (x1,y1) and (x2,y2) is given by
| (x2− x1)(y1− y0)− (x1− x0)(y2− y1) | /((x2− x1)

2 +(y2− y1)
2)1/2.

6 return K.
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Algorithm S3: The Buja and Eyuboglu (BE) algorithm for choosing K in PCA.

Inputs:
• X , n× p observed data matrix, observation by feature.
• B, number of permutations (default is 20).
• α , significance level (default is 0.05).

Output: K, the number of PCs selected.
1 Define d = min(n, p). This is the total number of PCs.
2 Run PCA on X with centering and scaling.
3 Obtain the proportion of variance explained (PVE) by each PC, t1, · · · , td . // ∑

d
j=1 t j = 1.

Observed test statistics.

4 for b← 1 to B do
5 Obtain X (b) by permuting each column of X . // Permute the observations in each

feature.

6 Run PCA on X (b) with centering and scaling.

7 Obtain the PVE of each PC, t(b)1 , · · · , t(b)d . // ∑
d
j=1 t(b)j = 1.

8 end
9 The p-value for the jth PC is calculated as

p j =
(

∑
B
b=11{t

(b)
j ≥ t j}+1

)
/(B+1) , j = 1, · · · ,d . // p j is calculated as, roughly

speaking, the proportion of permutations where the PVE of the jth PC is greater than

or equal to the PVE of the jth original PC (the added ones in the numerator and

denominator are mainly for avoiding p-values that are exactly zero). The greater

this proportion is, the larger the p-value is, and the less significant the PC is.

10 for j← 2 to d do
11 If p j ≤ p j−1, then set p j = p j−1. // Enforce monotone increase of the p-values.
12 end
13 Set K to be the maximum j such that p j ≤ α .
14 return K.
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