© O ~N OO0 D~ W NP

e
(AN )

[EnN
N

(S
AW

B R
o ol

B
o ~

N B
o ©

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.12.516291; this version posted November 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Title: Single-cell gene expression and chromatin accessibility profiling of human pancreatic
islets at basal and stimulatory conditions nominates mechanisms of type 1 diabetes genetic risk

Authors: Ricardo D'Oliveira Albanus'™, Xuming Tang?, Henry J. Taylor®*, Nandini Manickam?,
Michael Erdos”, Narisu Narisu®, Yuling Han?, Peter Orchard®, Arushi Varshney'*, Chengyang
Liu®, Ali Naji®, HPAP Consortium’, Francis S. Collins***, Shuibing Chen®*, Stephen C. J.
Parker!®8x*

! Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor,
MI, USA

2 Department of Surgery, Weil Cornell Medicine, New York, NY, USA

3 Center for Precision Health Research, National Human Genome Research Institute, National
Institutes of Health, Bethesda, MD, USA

° Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA

® Department of Surgery, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA

" The Human Pancreas Analysis Program (RRID:SCR_016202)
8 Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA

" Current affiliation: Department of Psychiatry, Washington University School of Medicine, Saint
Louis, MO, USA

* Equally contributing authors

** Corresponding authors

Abstract

Type 1 diabetes (T1D) is a complex autoimmune disease characterized by the loss of
pancreatic islet beta cells. The mechanisms of T1D genetic risk remain poorly understood.

Here, we present a multi-omic integrative study of single-cell/nucleus molecular profiles of gene
expression and chromatin accessibility in the same biological samples from healthy and beta-
cell autoantibody” (AAB+) human pancreatic islets to characterize mechanisms of islet-mediated
T1D genetic risk. We additionally performed single-cell/nucleus multi-omic profiling of healthy
islets under two stimulatory conditions used as in vitro models of T1D (cytokine cocktail and
CVB4 infection) to evaluate how environmental exposures recapitulate multi-omic signatures of
T1D. In total, we analyzed 121,272 cells/nuclei across 34 libraries, identifying 10 distinct cell
types. We identified cell-type-specific and disease-associated cis-regulatory elements and
nominated likely target genes. We provide evidence that T1D genetic risk is mediated through
multiple pancreatic cell populations, including islet endocrine cells (beta, alpha, gamma, and
delta), exocrine acinar and ductal cells, and immune cells. Finally, we identified three
independent T1D risk variants acting through pancreatic islet endocrine cells at the TOX,
RASGRP1, and DLK1/MEG3 loci. Together, this work improves our understanding of how non-
coding genetic variants encode T1D risk through a complex interplay of different cell types in the
pancreas.


https://doi.org/10.1101/2022.11.12.516291
http://creativecommons.org/licenses/by-nc-nd/4.0/

39

40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79

80

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.12.516291; this version posted November 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Introduction

Type 1 diabetes (T1D) is a complex autoimmune disease that accounts for 5-10% of all
diagnosed diabetes cases (1). The primary manifestation of this disease is the targeting of
endocrine beta cells by the immune system, likely mediated by T-cells, which leads to beta-cell
loss and insulin deficiency (2). Advances in genotyping and imputation enabled increased power
and accuracy for genome-wide association studies (GWAS) of T1D genetic risk (3, 4). However,
despite these substantial developments, the molecular mechanisms of T1D genetic risk are still
poorly understood.

It is widely accepted that immune cells are the primary mediators of T1D genetic risk (2), which
is supported by the strong genetic association of the major histocompatibility complex (MHC) in
T1D GWAS (3, 5). However, increasing evidence suggests that other cell types, including
pancreatic islets, also contribute to T1D etiology and genetic risk (3, 4, 6). For example, one
proposed mechanism for T1D risk variants acting through beta cells is to modulate their
propensity for immune-mediated apoptosis (7). Two recent studies using functional genomics at
the single-cell level helped clarify some of the biology driving T1D genetic risk and contributing
to T1D progression (4, 8). Both studies identified a role for non-immune cell types in the
pancreas, particularly acinar and ductal cells, in mediating T1D genetic signals (4) or
contributing to T1D onset and progression (8). In addition, one of these studies reported that
cis-regulatory elements active in beta cells are significantly enriched to overlap T1D GWAS
variants (4), indicating that beta cells mediate T1D genetic risk. Therefore, one crucial question
that remains unanswered is how genetic variants acting through other pancreatic cell types,
particularly beta cells, contribute to T1D onset and progression. Answering this question will be
critical to help guide the development of novel T1D therapies.

Due to the scarcity of pancreatic tissue samples obtained from T1D donors and the limitation
that disease progression leads to beta-cell destruction, several in vitro models of T1D using
healthy pancreatic tissue have been developed to understand the early mechanisms of T1D in
the pancreas. These models include treating primary islet cultures with a cytokine cocktail (TNF-
a, IFN-y and IL-1B) or infecting islets with Coxsackievirus B4 (CVB4) virus (9, 10), which
simulate the stressed environment beta cells are exposed to during T1D. However, the cell-
specific molecular pathways underlying these experimental perturbations and to what extent
these pathways mimic T1D have not been extensively characterized.

Here, we performed single-cell resolution multi-omic integration of high-throughput molecular
profiles of paired gene expression and chromatin accessibility from the same biological samples
obtained from healthy and T1D human pancreatic islets. We characterized mechanisms of T1D
genetic risk, focusing on identifying variants acting through islet endocrine cells. In addition, we
characterized two experimental models of T1D in islets to determine how they recapitulate the
molecular aspects of T1D. Finally, we identify three independent T1D risk variants which likely
mediate T1D genetic risk through islet endocrine cells. Our work identifies how all pancreatic
cell populations partially mediate T1D genetic risk. Together, this work improves our
understanding of how non-coding genetic variants encode T1D risk through a complex interplay
of immune and pancreatic cell types.

Results
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81 Identifying islet cell types by co-clustering gene expression and chromatin accessibility
82  profiles

83  We performed gene expression (single-cell RNA-seq; scRNA-seq) and chromatin accessibility
84  (single-nucleus ATAC-seq; SnATAC-seq) on human pancreatic islets from healthy (n=8) and
85 auto-antibody positive donors (AAB+; n=3). Given that procuring pancreatic tissue from affected
86  donors is difficult, we aimed to investigate whether two established experimental models of T1D
87 in human islets recapitulate AAB+ molecular profiles at the cell-specific epigenomic and
88 transcriptomic levels. To this end, we additionally performed scRNA-seq and snATAC-seq on
89 islets from a subset of healthy donors (n=3) under cytokine stimulation (TNF-a, IFN-y and IL-10)
90 and CVB4 infection (Figure 1A, Supplementary Table 1). After stringent quality control (QC;
91 Methods), we profiled 121,272 cells (49,897 snATAC-seq nuclei and 71,375 scRNA-seq cells;
92  Supplementary Figures 1 and 2, Supplementary Table 2). We performed joint clustering of
93 the molecular profiles across samples and modalities (n=34 libraries) using Seurat (11). We
94  identified ten major distinct cell types based on the gene expression of known marker genes
95 and the chromatin accessibility of their gene bodies (Figure 1B-D, Supplementary Figure 2).
96  The identified cell types represent the endocrine (beta, alpha, delta, and gamma cells), exocrine
97 (acinar and ductal), stellate (activated and quiescent), endothelial, and immune lineages. Cell
98 type representation ranged from 1.4% (immune) to 35% (ductal) of all cells. We profiled 41,569
99 islet endocrine cells and nuclei, corresponding to 34.3% of all profiled cells and nuclei. Alpha
100 cells were the most abundant endocrine cells (n=21,151), followed by beta (n=15,577), delta
101  (n=2,703), and gamma cells (n=2,138). All cell types were well-represented across samples and
102  modalities, and we did not identify any sample- or modality-specific clusters after QC (Figure
103 1C, Supplementary Figure 2). Importantly, we observed during the initial QC steps that the
104  ambient RNA contamination (RNA “soup”) was a source of technical variation across libraries
105 and could lead to misinterpretation of results if not correctly accounted for (Methods,
106  Supplementary Figure 3). This is in line with a recent study indicating that ambient RNAs can
107  confound single-cell analyses (12).

108 Transcriptional changes in experimental models of T1D recapitulate disrupted pathways
109 inT1D

110  Aiming to identify pathways and regulatory programs associated with T1D, we first performed
111  differential expression analyses across disease states and experimental perturbations. We
112  accounted for biological and technical covariates that could influence results to quantify

113  differential expression across conditions accurately. After adjusting for technical variation, we
114  detected thousands of differentially expressed genes (DEGSs) at 5% false discovery rate (FDR)
115 across all cell types and conditions combined (ranging from 24 to 1,663 per cell type and

116  condition, median = 476; Figure 2A). We observed the largest transcriptional changes

117  associated with disease state (AAB+ vs. controls) relative to the perturbations (cytokines and
118 CVB4) in the islet endocrine cells (beta, alpha, delta, and gamma), while the endothelial cells
119 had stronger transcriptional changes under cytokine stimulation. On the other hand, the immune
120 cells had the most comparable levels of transcriptional changes across disease state and

121  experimental perturbations, consistent with immune cell types being highly responsive to

122  environmental conditions. We observed lower transcriptional changes associated with CVB4
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123 infection compared to cytokine stimulation in all cell types, which motivated us to investigate if
124  CVB4 infection efficiency differed across samples. Indeed, we observed differences in the

125 number of detectable CVB4 mRNAs in each CVB4-treated sample (Supplementary Figure 4).
126  This variability may explain why the CVB4 infection DEG effect sizes were generally smaller.
127  Together, these results are consistent with T1D inducing global changes in the pancreatic

128 transcriptional landscape. However, these transcriptional changes are more pronounced in islet
129  endocrine and immune cells compared to other pancreatic cells.

130  Aiming to better understand if the experimental perturbations recapitulated functional aspects of
131  T1D in pancreatic cells, we performed pathway enrichment analyses using the DEGs from

132  disease state and perturbations. The DEGs in AAB+ were generally not the same as the

133  perturbations for most cell types (DEG log,FC Spearman’s p ranging across conditions from -
134 0.12to0 0.88, median = 0.19; Supplementary Figure 5). However, we found overall high

135 concordance between the pathway enrichments for nominally significant enrichments in AAB+
136  compared to cytokine stimulation and CVB4 infection in beta cells and other endocrine cells
137  (Figure 2B-D, Supplementary Figure 6-7). These findings suggest cytokine stimulation and
138 CVB4 infection affect similar pathways in beta cells compared to T1D, albeit regulating different
139 genes within those pathways. Overall, the islet endocrine cells had the highest agreement

140 between disease state and experimental perturbations at the level of pathway enrichments

141  (Figure 2D). These results indicate that these experimental models recapitulate aspects of T1D
142  inislet cells. However, these experimental models perturb different pathways than those

143  associated with disease state at other pancreatic cell types. Therefore, these experimental

144  models may not be the most suitable for studying T1D in cell types other than islets.

145 Transcription factors regulating the epigenomic landscape of pancreatic cells

146  To characterize the epigenomic landscape of the different pancreatic cell types, we used the
147  BMO tool (13) to predict bound transcription factor (TF) sites using a non-redundant collection of
148 540 motifs and calculated their chromatin information patterns. The observed chromatin

149 information patterns reflect the impact of specific TFs in organizing local chromatin architecture
150 and establishing cell identity (13) (Figure 3A-B). We identified common and cell-type-specific
151  TFs driving the epigenomic landscape for each cell type (Figure 3C). The TFs CTCF, AP-1, and
152  NFE2 consistently scored highest in chromatin information across cell types (Supplementary
153 Table 3), likely reflecting their constitutive roles in chromatin organization (14, 15). On the other
154  hand, a subset of TF families had a higher impact on chromatin organization in a cell-specific
155 manner. These TF families include RFX in endocrine cells, HNF in exocrine cells, and SPI1

156 (PU.1) in immune cells (Figure 3C). All these TF families have been extensively characterized
157  as cell fate determinants and play functional roles in their respective lineages (16—18) and,

158 therefore, underscore the specificity of our epigenomic analyses. Importantly, we observed

159 changes in the underlying chromatin organization associated with a subset of TFs when

160 comparing conditions (Figure 3D). The IRF motif family was associated with increased

161  chromatin organization in beta cells under cytokine treatment, consistent with previous studies
162  showing that cytokines stimulation induces IRF-1 activation in beta cells and subsequent

163  apoptosis (19, 20). Similarly, cytokine treatment induced changes in chromatin organization at
164  the SPI1, MAF, and ETS family TF motifs in immune cells, which are well-known mediators of
165  cytokine response in these cells (21, 22). Notably, the chromatin organization changes in AAB+
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166  cells were less pronounced than the environmental perturbations. In agreement with the scRNA-
167  seqresults, these chromatin accessibility results indicate that the experimental models of T1D
168  differ from disease in that they associate with more acute changes in cellular state.

169 Enrichment of T1D GWAS variants nominates cell types likely mediating T1D genetic risk

170 In order to investigate the mechanisms involved in T1D genetic risk, we used fGWAS (23) to
171  calculate the enrichment of the accessible chromatin of the different cell types captured by our
172  snATAC-seq experiments using the summary statistics of a recent T1D GWAS (4). As

173  expected, we observed the highest TLD GWAS enrichment in the immune cluster (log

174  enrichment = 2.78; Figure 4A). The other significantly enriched cell types were acinar,

175 quiescent stellate, beta, ductal, and alpha (log enrichments ranging from 1.53 to 2.12). These
176 results indicate that multiple pancreatic cell types, including islet endocrine cells, contribute to
177  T1D genetic risk. These enrichments, however, likely represent the baseline (unperturbed) state
178  of these cells and, therefore, provide an incomplete picture of T1D genetics. To contextualize
179 these results, we tested the enrichment of accessible chromatin using the summary statistics of
180 type 2 diabetes and fasting glucose from the DIAMANTE (24) and MAGIC (25) GWAS studies.
181  We observed the strongest enrichments for these two traits in accessible chromatin regions
182  from beta cells and other islet endocrine cell types (Figure 4A), which is consistent with

183  previous studies (26, 24, 27, 25).

184  We investigated the context-specific roles of the studied cell types in T1D predisposition. To this
185 end, we used fGWAS to calculate the enrichment of TLD GWAS summary statistics in

186  differentially accessible regions (DARS) across disease states and experimental perturbations.
187 Because of data sparseness and inflation of p-values associated with differential analyses in
188  single-cell data (28), we developed a stringent effect-size-based approach for detecting DARS in
189  our snATAC-seq data (Supplementary Figure 8, Methods). As expected, DARs for AAB+ and
190 cytokine treatment in immune cells were more highly enriched for TLD GWAS than non-DARs
191  (Figure 4B). In addition, the enrichment point estimates increased as we used more stringent
192 DAR thresholds. This result is consistent with a substantial component of T1D genetic risk

193 encoded by responsive elements in immune cells, such as the MHC locus (4). We also

194  observed a similar trend in DARs for CVB4 infection in immune cells, but it did not reach

195 significance, likely due to the difference in CVB4 infection efficiency across replicates

196 (Supplementary Figure 4). Interestingly, we found AAB+ DARs in beta cells more enriched for
197  T1D GWAS than non-DARs. Similar to the previous results in immune cells, the enrichment

198 point estimates for the beta-cell DARs increased with more stringent DAR thresholds (Figure
199  4B). This result indicates that the environmentally responsive regulatory elements in beta cells
200 also mediate T1D genetic risk and, therefore, indicate a role for islet endocrine cells in

201  mediating T1D progression.

202 Regulatory elements in beta and other islet endocrine cells mediate T1D genetic risk

203  Next, we aimed to understand regions and regulatory elements that are responsible for driving
204  the observed T1D GWAS enrichments in pancreatic cells. To this end, we developed a novel
205 approach to quantify the relative contributions of each cell type to T1D genetic risk and prioritize
206  candidate cell types mediating genetic risk at a given locus. This approach is based on the cell-
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207  type-specific chromatin accessibility levels at each variant in a T1D genetic credible set,

208 weighted by the posterior probability of association (PPA) of the variant (Methods). As a proof of
209 concept, the three independent GWAS signals at the INS locus were prioritized to act through
210 beta cells (Figure 4C). A broader analysis of all 136 T1D GWAS signals showed that genetic
211  risk is partitioned across all the cell types analyzed in this study (Figure 4D). Immune cells

212  contribute to most of the T1D genetic risk, as expected. However, we observed multiple signals
213  prioritized to act through pancreatic endocrine (beta, alpha, delta, gamma), exocrine (acinar,
214  ductal), stellate, and endothelial cells. Importantly, we identified several signals with beta- or
215 islet-specific accessibility, indicating that these genetic signals are mediated by islet endocrine
216 cells in the pancreas. These islet endocrine loci include the three independent signals at the INS
217  locus, the primary and secondary signals at DLK1/MEG3, and the signals at TOX, RASGRP1,
218 and GLIS3 (Figure 4D).

219  We next attempted to prioritize T1D risk loci likely acting through beta or other islet endocrine
220  cells for functional validation. In addition to the PPA-weighted chromatin accessibility for each
221 locus, we accounted for the number of variants in the 99% credible set (CS) and the PPA

222  distribution across variants to nominate candidate loci where functional validation experiments
223  were feasible. We prioritized loci with either a few variants in the 99% CS or loci where the PPA
224  distribution was highly skewed towards a small number of variants. In addition, we used

225 CICERO (29) to calculate co-accessibility between variant-harboring regulatory elements and
226  gene promoters to help identify candidate target genes. To further reduce the search space for
227  candidate variants, we performed functional fine-mapping (FFM) with fGWAS using a joint

228  model accounting for the chromatin accessibility peaks from cell types enrichmed for T1D

229  GWAS (Methods). Using these criteria, we nominated the main signals at TOX (99% CS size =
230 28) and RASGRP1 (99% CS size = 66) and the secondary signal DLK1/MEG3 (10 variants with
231 PPA >0.01; 99% CS size = 2,053) as the most compelling candidate loci likely acting through
232  beta or islet endocrine cells (Figures 5A-C).

233  Atthe TOX locus, our FFM analyses prioritized rs367116 and rs1947178, with the latter being
234  the lead variant at the locus. The intronic beta-cell regulatory element containing rs1947178 was
235  co-accessible with the TOX promoter region (CICERO co-accessibility = 0.065), making TOX
236 the candidate gene for this locus (Figure 5A). At the RASGRP1 locus, FFM prioritized

237  rs55728265, which is in strong linkage disequilibrium (r* = 0.93) with the lead variant,

238 rs35134214. The regulatory element harboring rs55728265 overlaps the RASGRP1 promoter
239 region and was not co-accessible with any other promoter, making RASGRP1 the candidate
240 gene at this locus (Figure 5B). The lead variant at this locus (rs35134214) did not overlap

241  ATAC-seq peaks in pancreatic cell types, therefore highlighting the validity of using FFM

242  approaches to prioritize genetic signals. At the DLK1/MEGS3 locus, our FFM analyses prioritized
243  the lead variant for the primary signal (rs56994090), despite this variant not overlapping any
244  features used in the FFM model (Figure 5C). We also prioritized the primary variant at the

245  secondary signal at DLK1/MEG3 (rs3783355; PPA = 0.56) because it had a 7-fold higher PPA
246  compared to the second highest variant in the 99% CS (rs10145648; PPA = 0.08) and

247  overlapped a highly accessible chromatin region in beta, alpha, and ductal cells. Interestingly,
248  we observed increased co-accessibility between the regulatory element harboring rs3783355
249  and the DLK1 and MEG3 promoter regions in AAB+ and cytokine-stimulated beta cells
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250 compared to healthy beta cells (MEG3-rs3783355 CICERO score = 0.013 for cytokine; DLK1-
251  rs3783355 CICERO scores 0.002 and 0.144 for healthy and cytokine, respectively). These
252  results suggest that the regulatory element harboring rs3783355 acts in a context-dependent
253  manner to mediate T1D risk in pancreatic islet endocrine cells.

254  T1Drisk variants are predicted to disrupt islet endocrine cells regulatory elements

255  We next attempted to characterize the functional mechanisms through which the variants of
256 interest at the TOX, RASGRP1, and DLK1/MEGS3 loci act to mediate T1D risk. We aimed to
257  characterize the impact of the risk and non-risk alleles associated with these variants. Because
258  we had genotype information for 10 of the donors, we calculated the cell type-specific ATAC-
259  seq allelic bias at each heterozygous SNP with enough coverage (Supplementary Figure 9A-
260  B). In parallel, we trained a predictive model of sequence features associated with chromatin
261  accessibility in beta cells using LS-GKM and DeltaSVM (30, 31) to predict beta-cell allelic

262  effects associated with any base-pair change in the genome (Methods; Supplementary Figure
263  9C-D). We used the observed allelic bias to validate our predictive model. The predicted allelic
264  effects from the model were highly concordant (87.1% effect size direction agreement) with the
265 observed allelic effects (ATAC-seq allelic bias) at heterozygous SNPs, indicating that the model
266  correctly captured allelic regulatory changes associated with increased chromatin accessibility
267 in beta cells (Figure 5D). The predictions from the model trained in beta cells had a higher

268  agreement with the observed allelic effects calculated using the entire dataset (92.6% effect
269  size direction agreement), which we attribute to increased power when combining data across
270  all cell types. Alternatively, this also can be interpreted as the model trained in beta cells also
271  capturing sequence features associated with chromatin accessibility more broadly.

272  To further gain information from our predictive model, we applied GKkmExplain (32) to the

273  variants of interest and predicted the regulatory effects associated with each allele within the
274  entire sequence context around the variants (Figure 5E). At the TOX locus, the risk allele at the
275 lead variant, rs1947178 (risk = A; non-risk = G), was predicted to increase chromatin

276  accessibility. The predicted impact for the risk allele at rs1947178 was also higher than that of
277  the FFM-nominated SNP, rs367116 (risk = C; non-risk = T). At the RASGRPL1 locus, the lead
278  variant, rs35134214 (risk = CTG; non-risk = C), was predicted to increase accessibility.

279  Conversely, the RASGRP1 FFM-nominated SNP, rs55728265 (risk = T; non-risk = C), was

280  predicted to decrease accessibility. While we did not observe any ATAC-seq peaks at

281 rs35134214, we cannot discard that this variant mediates T1D genetic risk through other cell
282  types not assayed in this study. Finally, at the DLK1/MEG3 locus, we predicted stronger effects
283  in chromatin accessibility associated with the risk allele at the secondary signal lead variant,
284  rs3783355 (risk = G; non-risk = A) compared to the lead variant at the primary signal

285  (rs56994090; risk = T, non-risk = C). Consistent with the predicted effects in dysregulating

286  chromatin accessibility, we identified multiple predicted bound TF motifs overlapping these risk
287  variants, including PAX4 and HNF4 (RASGRP1), ITGB2, and ZBTB6 (DLK1/MEG3), and CPHX
288  (TOX) (Supplementary Table 4). Together, these results implicate rs1947178 (TOX),

289  rs55728265 (RASGRP1), and rs3783355 (DLK1/MEG3) as likely causal variants mediating T1D
290  genetic risk through islet cell types.

291 Discussion
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292  After decades of research, T1D genetic risk is widely accepted to be driven by variants

293  disrupting the endogenous pathways that inhibit self-reactivity, which in turn increase

294  autoimmune responses (1, 2). We have integrated epigenomic and transcriptomic profiles of
295 human pancreas samples from healthy and AAB+ donors to better understand how T1D risk
296  variants act across the different cell types in the pancreas and lead to changes in gene

297  regulation. Rather than being mediated by one or a few cell types, we find that T1D genetic risk
298 variants overlap active regulatory elements in every pancreatic cell type analyzed in this study.
299  Our findings are consistent with the increasing evidence linking non-immune cells to mediating
300 TiDrrisk (3, 4, 6). In particular, our work identifies three genes expressed in beta cells and other
301 islet cell types as putative causal genes for three independent T1D risk variants: DLK1/MEG3,
302 TOX, and RASGRP. Our prioritization of the DLK1/MEG3 and TOX loci as mediated through
303 islet endocrine cells is supported by a previous scATAC-seq study, which observed a higher
304  overlap of high-PPA variants in these loci with beta-cell regulatory elements (4). Our work

305 expands on these findings by predicting rs1947178 and rs3783355 as causal variants at these
306 loci and further prioritizing rs55728265 at the RASGRPL1 locus as an additional variant

307 mediating T1D genetic risk through islet endocrine cells.

308  While the role of immune cells mediating T1D genetic risk is generally understood, it is still

309 unclear how other pancreatic cell types contribute to T1D risk. One hypothesis is that risk

310 variants at these other cell types lead to disease predisposition by promoting the recruitment of
311  self-reactive T-cells or creating a harsher cellular microenvironment that further predisposes
312  beta-cell death. Support for this hypothesis is provided by a previous snRNA-seq study from
313  healthy, AAB+, and T1D human pancreas, which suggested that T1D ductal cells may help
314  promote CD4" T cell tolerance through the expression of MHC molecules and other surface
315 receptors (8). Our work indicates that the immune cells indeed have the highest individual

316  contribution to T1D genetic risk. However, this contribution is relatively small compared to all the
317  other cell types combined. In addition to multiple variants acting through islet endocrine cells,
318 we identified a role for acinar, stellate, endothelial, and to a lesser degree, ductal cells as likely
319 mediators of T1D genetic risk. This unexpected finding agrees with and expands on other

320 studies of T1D at the single-cell level identifying the contributions of other pancreatic cell types
321 to T1D genetic risk and onset (4, 8). Therefore, an important question for future studies is

322  understanding how T1D risk variants act through non-immune cell types, particularly beta cells.

323  Among the active areas of T1D research is developing experimental models to understand

324  disease biology using healthy islets. In this study, we characterized the molecular profiles of
325 healthy islets challenged with cytokine stimulation or CVB4 infection. These experimental

326  models inherently disturb healthy islets in a time window several orders of magnitude smaller
327 than the disease duration (hours vs. years). However, we found similarities in the transcriptomic
328 and epigenomic profiles associated with these experimental perturbations. Furthermore, we
329 observe that these experimental models most strongly perturb different genes compared to

330 T1D. However, these perturbed genes participate in several of the same pathways observed in
331 islets from affected donors, which supports the use of these experimental models to understand
332  T1D biology. Our results suggest that while general agreement exists between the downstream
333  pathways, some experimental models may be more appropriate for studying specific aspects of
334 T1D biology (e.g., cytokines triggered differentiation pathways and CVB4 infection triggered
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335 more stress responses). Therefore, more in-depth studies are required to explore the full gamut
336  of protocols associated with these T1D experimental models, such as different cytokine

337 combinations, to determine the most appropriate experimental approach to model specific

338 aspects of T1D biology.

339  Among the limitations of this study is that we jointly analyze pre-diabetic (AAB+ without

340 symptomatic presentation) and diabetic donors due to the low sample size. While our results
341  suggest that this is a valid approach to detecting disease-relevant biology, this design would
342  miss molecular signatures associated with different stages of the disease. In particular, one can
343  hypothesize that the beta cells that survive in T1D donors are transcriptionally different from the
344  beta cells from the pre-diabetic donors and develop molecular characteristics to make them
345  more resistant to immune targeting. Therefore, separately studying beta cells from T1D donors
346 is an important future direction that can provide essential clues for new therapeutic strategies.
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357  Figure 1: Study overview. A) Experimental design for multi-omic library generation. B) Uniform
358  Manifold Approximation and Projection (UMAP) representation of the fully integrated dataset.
359  Bottom panel is the same data faceted by modality. C) Overview of the representation of all cell
360 types (top), islet endocrine cell types (middle), and conditions (bottom) across the combined
361 scRNA-seq and snATAC-seq libraries for each sample pool. D) sScRNA average expression

362  values for marker genes across the cell types identified via joint modality clustering. E)

363 Normalized aggregate ATAC-seq signal tracks across marker genes for each cell type.
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366  Figure 2: Transcriptomic changes associated with T1D and experimental models. A)

367 Differentially expressed gene (DEG) effect size comparison across cell types and conditions. B)
368 Beta cells DEG pathway enrichment effect size direction agreements between experimental
369 models of T1D and AAB+ cells. C) Significantly enriched pathways across AAB+ and

370 experimental models (summary of significant terms using rrvigo). D) Average pathway effect
371  size direction agreement per cell type between AAB+ and experimental models for nominally
372  significant terms in at least one condition.
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375  Figure 3: TF regulatory landscape of pancreatic cell types. A) Chromatin information

376  enrichment calculation overview (adapted from (13)). B) V-plots showing aggregate ATAC-seq
377  fragment midpoints distribution around predicted bound sites for three TFs (top facets) and their
378 associated chromatin information enrichment (bottom facets) in beta cells and immune cells. C)
379  Chromatin information Z-scores for a subset of TFs across all cell types indicate differential

380 regulatory activity. D) Similar to C, but directly comparing across conditions for beta cells (top)
381 and immune cells (bottom).
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Figure 4: The regulatory landscape associated with T1D genetics in pancreatic cells. A)
fGWAS enrichments for GWAS summary statistics of three traits in accessible chromatin
regions from each cell type in our data. B) fGWAS enrichments for T1D summary statistics in
immune and beta cells across progressively stringent thresholds to identify differentially
accessible regions (DARs) and their non-significant counterparts. C) Example of our PPA-
weighted chromatin accessibility score strategy to identify cell types likely mediating three
independent T1D GWAS signals at the INS locus. D) PPA-weighted chromatin accessibility
scores across all T1D loci and cell types and candidate loci likely mediated by islet and immune
cell types.
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Figure 5: Genetic variants mediating T1D risk in islet endocrine cells. T1D signals at the

TOX (A), DLK1/MEG3 (B), and RASGRPL1 (C) loci. Left panels represent the broad locus

overview, and the insets highlight the regions and variants of interest and their associated
genetic and functional fine-mapping PPA values. For simplicity, only beta-cell co-accessibility
tracks are shown. D) Agreement between predicted and observed ATAC-seq allelic imbalance
(allele-specific accessibility; ASA) in beta cells and all cells using a predictive model trained in
beta cells. E) Predicted regulatory impact of T1D risk variants of interest in beta cell chromatin
accessibility using GkmExplain.
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404 Methods

405 Tissue processing and sample preparation

406 Human pancreatic islets were isolated in the Human Islet Core at the University of Pennsylvania
407  following the requirements of the Clinical Islet Transplantation consortium procedure. The
408 pancreatic islets were grown in CIT culture medium and maintained in a humidified incubator

409  with 5% CO2 at 37°C. Single-cell RNA-seq and single-nucleus ATAC-seq were performed using
410 10X Chromium platform at genomics resources core facility at Weill Cornell Medicine.

411  Single-nucleus ATAC-seq processing

412  Single-nucleus ATAC-seq data was processed using the Parker Lab snATAC-seq pipeline

413  (https://github.com/porchard/snATACseq-NextFlow). Briefly, after performing adapter trimming
414  with cta (v. 0.12; https://github.com/ParkerLab/cta), reads were aligned to the hgl9 reference
415  genome using bwa mem (v. 0.7.15-r1140; (33)) using -1 200,200,5000 to avoid large fragments
416  being artificially assigned low MAPQ scores. Barcode sequences were corrected for sequence
417  mismatches by calculating the Hamming distance between all barcodes and fixing all barcodes
418  with a Hamming distance smaller or equal to 2 to a barcode sequence in the 10X Genomics
419  barcode list. After mapping, we identified barcodes using Picard MarkDuplicates (v. 2.8.1;

420  https://broadinstitute.github.io/picard). We used ataqv (https://github.com/ParkerLab/ataqv (34))
421  to obtain barcode-level QC metrics, such as the number of high-quality autosomal alignments
422  (HQAA) and transcription start site (TSS) enrichment. For downstream analyses, we retained
423 only barcodes with HQAA = 5,000, TSS enrichment between 3 and 20, and no more than 15%
424  of all reads originating from a single autosome. The latter metric helps to remove barcodes
425  associated with low-integrity nuclei. Doublets were flagged and removed using ArchR (v. 0.9.5)
426  (35). Because the ambient signal (soup) from the snATAC-seq library is mainly from chrM,

427  which was filtered for our analyses, we did not perform ambient DNA correction. For integration
428  with the scRNA-seq data (described below), we generated count matrices for each library

429  encoding the number of ATAC-seq fragments overlapping promoter (5 Kb upstream of most
430  upstream transcription start site) and gene body regions of autosomal, protein-coding genes
431  using bedtools (v2.26.0).

432  Single-cell RNA-seq

433  Single-cell RNA-seq data were processed with the Parker Lab snRNA-seq pipeline

434  (https://github.com/porchard/snRNAsed-NextFlow). Reads were aligned to the hg19 reference
435 genome and GENCODE v19 (36) using STARsolo (STAR v. 2.5.4 (37)). Barcode sequences
436  were corrected for mismatches using the same approach as in the shnATAC-seq data. We then
437 calculated QC metrics for each barcode (number of UMIs, % mitochondrial reads, etc.). We
438 selected for downstream analyses barcodes that had at least 1,000 UMIs and were called non-
439  empty (1% FDR) by EmptyDrops (38). For each library, we calculated the % mitochondrial

440  reads rank distribution and identified the inflection (knee) using the uik function of the inflection
441  package in R (39). We only kept barcodes with % mitochondrial reads smaller than the inflection
442  value, ranging from 6.6% to 20.2%. Doublets were flagged and removed using DoubletFinder
443  (v2.0.2) (40) with default parameters. After removing doublets and barcodes that failed QC, we
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444  used DecontX (Celda v1.2.4) (41) to control for ambient RNA (soup RNAS). We performed a
445  first-pass clustering of the barcodes that passed QC using Seurat (Supplementary Figure 1) to
446  identify broad cell identities. We then used the first-pass clustering information with DecontX
447  with stringent parameters (delta 1 = 10 and delta 2 = 20) to obtain the ambient-subtracted count
448  matrices for each library. We used the ambient-subtracted count matrices of autosomal, protein-
449  coding genes for downstream analyses.

450 Sample genotyping

451  Samples were genotyped using the lllumina Infinium 2.5M exome chip (InfiniumOmni2-5Exome-
452  8v1.3_A2). The genotyping call rates for the 16 samples ranged from 99.0% to 99.7%. The SNP
453  probe sequences were remapped to GRCh37 and all problematic SNPs were discarded. This
454  process resulted in a total of 2,522,105 SNPs with genotypes. Next, SNPs that have genotype
455  missingness in >=2 out of our samples and duplicate SNPs with the same genomic coordinates
456  with another one were removed. Further, we merged our genotypes with that of the 1000G

457  phase 3v5 samples (42). Subsequently, the SNPs with HWE p-value < 1le-4, and palindromic
458  SNPs (A/T, or G/C SNPs) with MAF>0.4 in the merged data set were removed. Phasing was
459  performed on the joint data set of 1,609,033 SNPs using Eagle (v2.4) (43). Genotypes were
460 imputed using 1000 genomes phase 3 panel in the Michigan Imputation Server using Minimac4
461  (v1.5.7) (44) and the 1000G phase 3v5 (GRCh37) reference panel. No sex discrepancy was
462  found by assessing the SNP genotypes using verifybamID (45) with the reported gender.

463  Sample ICRH135 did not have sufficient DNA for genotyping and was dropped from the genetic
464  analyses.

465 CVB4-hgl9 alignments

466  In order to quantify CVB4 infection efficiency, we aligned scRNA-seq and snATAC-seq reads to
467  a hybrid hgl19-CVB4 genome, where the CVB4 genome (GenBank AF311939.1) is appended to
468 hgl9 as a separate chromosome. Similarly, we built a hybrid GTF file with the human genes
469 and the CVB4 genome as an additional gene. We generated STAR and bwa indices for the
470  hybrid hg19-cvb4 genome and mapped reads using the same pipeline described below. To
471  quantify the CVB4 infection efficiency, we counted the fraction of reads mapping to the CVB4
472  portion of the hybrid genome. To independently confirm that our pipeline worked as expected,
473  we used SANDY (https://github.com/galantelab/sandy) to generate hybrid paired-end reads
474  from both genomes using the command sandy genome with flag --id=" %i.%U__read=%c:%t-
475  %n__mate=%c:%T-%N__length=%r" and verified that the ShnATAC-seq and scRNA-seq

476  pipelines aligned these simulated reads to the correct coordinates on both assemblies.

477  Cross-modality integration of snATAC-seq and scRNA-seq profiles

478 In order to integrate all 34 libraries, we used Seurat (v.4.0.3)(11). After exhaustively testing
479  different pipelines, we obtained the best results for this dataset using Seurat's standard

480  workflow. After running the principal component analysis (PCA) step, we extracted the first 30
481 PC embeddings for each barcode and calculated the Spearman correlation with technical
482  variables (sequencing depth, % mitochondrial reads, etc.) to identify PCs driven by technical
483  aspects. We used PCs 1,3-30 for the FindNeighbors and RunUMAP steps because PC 2 was
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484  correlated with sequencing depth. We used options resolution=1, algorithm=2, n.start=1000,
485 and n.iter=1000 for FindClusters and parameters n.neighbors=50 and n.epochs=500 for

486  RunUMAP. This approach yielded 30 clusters in the integrated data. We next identified and

487  removed clusters that could not be unambiguously assigned to any cell type (i.e., loaded on

488 more than one cell-type-specific marker) or had aberrant QC metrics. After filtering these low-
489  quality barcodes, we iteratively merged the remaining clusters based on similar gene

490 express/accessibility patterns to obtain the final cluster assignments used in this study. A subset
491  of the snATAC barcodes assigned to the UMAP region corresponding to the acinar cells could
492  not be unambiguously classified as acinar cells and was removed. This resulted in a higher

493  fraction of scRNA-seq barcodes in the acinar cluster compared to the other clusters. Despite the
494  relatively smaller fraction of acinar SnATAC-seq barcodes, the number of barcodes was still

495  higher than most clusters and, therefore, did not substantially affect our chromatin accessibility
496  analyses for the acinar cells.

497  Peak calling

498 We generated BAM files for each cluster by combining data from all barcodes in that cluster
499  (pseudo-bulk analyses). We also generated BAM files for each cluster/library combination. We
500 used MACS2 (v. 2.1.1.20160309) to call summits on each cluster bam file, and we extended
501 each summit by 150 bp in both directions. The set of extended summits called on the cluster-
502 level bam file (all libraries combined) was labeled as the primary summit list. We assessed the
503 reproducibility of each extended summit in the primary list using bedtools intersect (v2.26.0) to
504  count the number of intersections in the per-library extended summits. We retained for

505 downstream analyses the extended summits from the primary list that 1) overlapped extended
506 summits from at least two different libraries and 2) did not overlap any regions with known

507  mappability issues.

508 Differential gene expression analyses

509 For each cell type, we tested for association of gene expression with AAB+ status (i.e., T1D or
510 pre-T1D) using MAST v1.14.0 (46). We filtered lowly expressed genes (DecontX-corrected

511 counts =1 in <5 cells across all samples and cell types) using the pp.filter_genes function with
512  min_cells=5 from scanpy v1.5.1 (47), retaining 16,844 genes. To account for variable

513  sequencing depth across cells, we normalized the DecontX-corrected counts for the remaining
514  genes by the total number of counts per cell, scaled to counts per 10,000 (CP10K;

515 pp.normalise_per_cell function in scanpy), and log-transformed the CP10K expression matrix
516  (In[CP10OK+1]; scanpy’s pp.loglp function). Using the IN[CP10K+1] normalized counts as input,
517  we modeled the gene expression for each cell type using MAST'’s zlm function with default

518 parameters. We included disease status, donor ID, sex, age, body mass index (BMI), and

519  proportion of donor cells identified as alpha cells (which is a proxy of islet content and accounts
520 for any differences in background RNA persisting after DecontX correction; Supplementary
521  Figure 3), and cell complexity (the number of genes detected per cell (46, 48)) as fixed effect
522  covariates. Age, BMI, and alpha cell proportion were standardized to unit variance (mean-

523  centered and scaled). For each model, we performed the likelihood ratio test (LRT; implemented
524  in MAST’s summary function with logFC=TRUE and doLRT=T1D status) to test for association
525  between gene expression and disease status. Finally, we controlled for the number of tests
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526  performed across all cell types using the Benjamini-Hochberg procedure (49) and LRT-derived
527  p-values.

528 Gene set enrichment

529  We tested for gene sets enriched in the differential expression results for each cell type using
530 the fgseaMultilevel function from fGSEA v1.16.0 (50) with eps=1x10"°, scoreType="std’, and the
531 rest as default parameters. We used z-scores derived from the log, FCs as implemented in

532 MAST to pre-rank the genes. We tested gene sets found in the following databases, which were
533 downloaded via the molecular signatures database (MSigDB) v7.2 (51, 52) Kyoto Encyclopedia
534  of Genes and Genomes (KEGG) pathways (53), BioCarta pathways (54), and Gene Ontology
535 (GO) biological processes (August 2020 release) (55). We controlled for the number of tests
536  performed per cell type using a Bonferroni correction. To simplify GO terms in visualizations, we
537 used rrvigo (https://ssayols.qgithub.io/rrvgo).

538 Transcription factor binding prediction and chromatin information analyses

539 We used BMO and our previously described chromatin information analysis pipeline (13)

540 available at https://github.com/ParkerLab/BMO/tree/pre-1.1 to predict bound TF motifs and
541  estimate the impact of TFs in their local chromatin architecture. Briefly, we used the hg19 motif
542  scans from a non-redundant position weight matrices collection corresponding to 540 TF motifs
543  (described in (13)). For each cell type pseudo-bulk snATAC-seq BAM file, we calculated the
544  distribution of ATAC-seq fragments overlapping each TF motif instance and the number of co-
545  occurring motifs from the same TF motif within 100 bp to use as input for BMO. BMO predicts
546  TFs using a simple premise that highly accessible motif clusters will be more likely bound by
547  TFs, as the vast majority of TFs cannot induce open chromatin based on DNA sequence alone
548 (13). BMO fits two negative binomial distributions for the ATAC-seq signal and the number of
549  co-occurring motifs per motif instance and calculates the probability of a given motif instance
550 being bound based on the combined p-value for these two distributions.

551  Chromatin information for each TF motif was estimated using the feature V-plot information

552  content enrichment (f-VICE) score described in our previous study (13). Briefly, we generated V-
553  plots (aggregate ATAC-seq fragment midpoint distributions around TF binding sites) for non-
554  overlapping (within 500 bp) BMO-predicted bound instances of a given TF motif (Figure 3B, top
555 plots). We then calculated the chromatin information (f-VICE score) for each motif by quantifying
556  the log, information content enrichment at TF-adjacent (-25 to +25 from motif) and TF-proximal
557 (-70to -50 and 50 to 70 bp from motif) regions compared to a randomly shuffled ATAC-seq

558  midpoint distribution (Figure 3B, bottom signal tracks). These regions are expected to have

559  high information content when the TF induces nucleosome phasing. We then normalized f-VICE
560  scores for each cell type by calculating the residuals of the linear model f-VICE ~ logiq(total

561 fragments) + logje(total co-occurring motifs), which controls for the abundance and overall

562  accessibility of the predicted bound instances for each TF motif.

563 In order to compare chromatin information across conditions (Figure 3D), we calculated the f-
564  VICE scores separately for the pseudo-bulk snATAC-seq BAM files obtained from each cell type
565 and donor combination (i.e., Donor 1 beta cells, Donor 2 beta cells, etc.). First, we calculated f-
566  VICEs separately per donor and cell type to avoid confounding by the different number of nuclei.
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567  We then converted each donor and cell type normalized f-VICE distribution into Z-scores.
568 Finally, we calculated the median Z-score for each TF motif to obtain a single value for a TF
569  motif per condition and cell type. For visualizing this data in Figures 3C-D heatmaps, we
570 calculated row-wise (per motif) Z-scores.

571 Differential accessibility analyses

572  We used DESeq2 (1.3.2) to perform differential accessibility analyses. We used as input the
573  pseudo-bulk counts from each library for the reproducible extended summits called on each
574  cluster. For the AAB+ versus healthy comparisons, we controlled for age, sex, BMI, median
575  TSS enrichment, and log:o(HQAA). We scaled and centered age and BMI. For the CVB4 and
576  cytokine versus control comparisons, we opted for a paired design that accounted for donor ID
577 and median TSS enrichment per library, but not age and BMI due to collinearity. Because of
578  statistical instability observed in single-cell approaches for differential analyses in this dataset,
579  we designed an alternative approach to calculate significance based on effect sizes. For each
580 comparison, we removed features with a mean number of reads < 3 and divided the remaining
581 features into 50 equally spaced bins of mean chromatin accessibility using the chop_evenly
582  function from the Santoku R package (https://github.com/hughjonesd/santoku). We removed
583  regions with log, fold-change > 10, as these likely represented technical artifacts from low

584  ATAC-seq coverage. For each of the 50 chromatin accessibility bins, we identified the features
585 inthe 80", 85", 90", 95™, and 99" percentiles of absolute log, fold-change, which were used for
586 the fGWAS enrichments described below. A summary of this approach is included in

587  Supplementary Figure 8.

588 Co-accessibility analyses

589  Co-accessibility between accessible regions were calculated for each cell type separately by
590 condition using CICERO (29) with default parameters. We generated count matrices for each
591  pseudo-bulk BAM file representing a cell type and condition (e.g. healthy beta cells) for the

592  accessible regions of that cell type (reproducible extended summits, described above). We used
593 as input for CICERO the count matrix and the corresponding UMAP coordinates of each

594  barcode. We annotated the resulting connections based on whether each connected peak

595 overlapped a T1D credible set SNP or a gene TSS from GENCODE V19.

596 GWAS enrichments and functional fine-mapping using fGWAS

597  We calculated GWAS enrichments in features of interest using fGWAS (commit 0b6533d) (23).
598 For the GWAS enrichments of the accessible regions per cluster, we ran fGWAS with the -print
599 flag using as input the summary statistics from each GWAS study and a reproducible list of

600 extended summits per cluster. For the DARs T1D GWAS enrichments, we used similar steps as
601 above. However, instead of splitting the genome into windows of 5,000 variants based on their
602  order of occurrence (fGWAS default), we generated a bed file of custom 5,000 variant windows
603  where the window corresponding to each T1D loci was centered on the lead variant of the

604  primary signal using the flag -bed. The remaining genomic windows were either left unchanged
605 or shortened in case they overlapped a T1D locus chunk. This step was necessary due to the
606  sparseness of the genomic territory covered by DARs. For the functional fine-mapping, we
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607 assigned a 0 or 1 value for each T1D variant encoding whether they overlapped a reproducible
608 extended summitin each cell type. We ran fGWAS using the option -fine and including all
609 clusters with significant enrichment in the T1D GWAS.

610 PPA-weighted chromatin accessibility Z-scores

611 To identify which cell types likely mediate T1D genetic risk in each locus, we developed an

612  approach based on the chromatin accessibility for each cell type at the locus. First, we extended
613 each variant in the genetic fine-mapping credible sets (calculated by Chiou et al.) by 50 bp in
614  each direction. Next, we counted how many snATAC-seq reads overlapped the extended

615 variant region in the pseudo-bulk data from each cell type. We then normalized the shATAC-seq
616  signal by the sequencing depth and multiplied it by the genetic fine-mapping PPA. When two or
617  more variants overlapped in the extended region, we calculated the ATAC-seq signal for the
618 merged region and used the highest PPA. We retained for analysis only loci where at least one
619 credible set variant overlapped a reproducible (minimum of 2 samples) ATAC-seq broad peak.
620 We then summed each locus's PPA-weighted chromatin accessibility values to obtain a single
621  score per cell type. Finally, we applied a Z-score transformation for each locus across cell types.

622 GWAS variants regulatory impact prediction

623 We used LS-GKM (30) to train a predictive model of 11-mers for each cell type using as positive
624  regions the extended summits. We used the genNullSegs function from the gkmSVM R

625 package (56) to obtain the negative set of GC- and repeat-content matched regions per cell

626  type. To predict the regulatory impact of the SNPs of interest, we used GkmExplain (32) using
627  as input the +25 bp flanking each allele and calculated the predicted importance scores for each
628 base. In order to validate the LS-GKM model, we separately calculated the ATAC-seq allelic
629 imbalance at heterozygous SNPs and compared it to the Delta-SVM scores for each allele.

630  Using the genotype data from each donor, we used WASP (v. 0.2.1, commit 5a52185; python
631  version 2.7)(57) to diminish reference bias using the same mapping and filtering parameters
632  described for the initial mapping and filtering. Duplicates were removed using WASP’s

633 rmdup_pe.py script. To avoid double-counting alleles, overlapping read pairs were clipped using
634  bamultil clipOverlap (v. 1.0.14; http://genome.sph.umich.edu/wiki/BamuUtil:_clipOverlap). We
635 counted the number of reads containing each allele for each heterozygous autosomal SNP,

636  using only bases with a base quality of at least 10. We further split each donor's BAM file per
637  cell type to calculate allelic imbalance per cell type separately and for the entire library. We used
638 atwo-tailed binomial test that accounted for reference allele bias to evaluate the significance of
639 the allelic bias at each SNP. The observed allelic bias was then correlated with the Delta-SVM
640  score, which was obtained by scoring the 11-mers centered on the REF and ALT alleles for the
641 1,000 Genomes (Phase 3). We used all SNPs with an absolute Delta-SVM score 2 2 to

642  compare with the observed allelic imbalance.

643 Genome visualizations

644  We used pyGenomeTracks (version 3.7) (58) to generate genome visualizations of SnATAC-seq
645 signals, co-accessible regions, and GWAS variants.

646 GWAS data
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647  T1D summary statistics were downloaded from the EBI Catalog (accession number
648 GCST90012879)

649 Data availability

650  All data will be deposited in GEO upon publication.

651 Code availability

652  All code used for this manuscript is publicly available at
653  (http://github.com/ParkerLab/albanus 2020 nih_islets_sn_t1d). We use snakemake (59) to
654 facilitate reproducibility.
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Supplementary Figure 1: A) UMAP representation of the first-pass scRNA-seg-only integration
and clustering used as input for DecontX (B). UMAP representation split by samples. C) Marker
gene expression in the first-pass scRNA-seq clustering.
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933
934  Supplementary Figure 2: A) UMAP representation of integrated scRNA-seq and snATAC-seq

935 data faceted by sample (columns) and modality (rows) . B) Marker gene expression across
936 clusters. C) Distribution of ATAC and RNA barcodes for each cell type.
937
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939 Supplementary Figure 3: A) Estimated ambient RNA (“RNA soup”) compaosition for a subset of
940 scRNA-seq libraries, obtained by combining all barcodes with less than 10 UMIs (i.e. empty
941  droplets). Right plot is the same as left, but without INS for visibility. B) Agreement of the RNA
942  contamination estimated by DecontX to ambient RNA fraction estimated directly from empty
943  droplets. Clusters of off-diagonal genes correspond to ribosomal proteins. C) Comparison of
944  ambient RNA fraction for each gene in the facets to the estimated islet proportion (fraction of
945  barcodes assigned to the islet clusters) per library. D) DEGs in beta cells between HPAP055
946  (AAB+) versus controls with and without a covariate accounting for ambient RNA. HAPAPO0O55
947  has a higher fraction of alpha cells compared to the other samples, which leads to higher levels
948  of GCG in the ambient RNA. This, in turn, leads to erroneous assignment of GCG as a DEG
949  (left plot, black circle). This technical artifact is mitigated once we include the estimated alpha
950 cells proportion in the sample as a proxy of ambient RNA (right plot, black circle).
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956
957 Supplementary Figure 5: DEG effect size correlation (Spearman) of nominally significant

958  genes between AAB+ and other conditions across cell types.
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960
961 Supplementary Figure 6: Pathway enrichments agreements between DEGs in AAB+ versus

962  other conditions across all cell types.
963
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964
965 Supplementary Figure 7: All terms significantly enriched in beta cells differentially expressed

966  genes across conditions, used as input for the rrvgo analyses in Figure 2C.
967
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968
969 Supplementary Figure 8: Example DAR significance calculation using effect sizes. Each color

970 inthe rainbow plots in the middle and right panels correspond to one of the 50 ATAC-seq signal
971 bins.
972
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973
974  Supplementary Figure 9: A and B) Allele-specific accessibility (ASA) distribution in beta cells

975 and all cells for all heterozygous SNPs to estimate reference bias in WASP. C) DeltaSVM score
976  distribution for all heterozygous SNPs. D) Effect size comparison between SNPs with significant
977  ASA and DeltaSVM scores.


https://doi.org/10.1101/2022.11.12.516291
http://creativecommons.org/licenses/by-nc-nd/4.0/

