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Abstract 21 

Type 1 diabetes (T1D) is a complex autoimmune disease characterized by the loss of 22 
pancreatic islet beta cells. The mechanisms of T1D genetic risk remain poorly understood. 23 
Here, we present a multi-omic integrative study of single-cell/nucleus molecular profiles of gene 24 
expression and chromatin accessibility in the same biological samples from healthy and beta-25 
cell autoantibody+ (AAB+) human pancreatic islets to characterize mechanisms of islet-mediated 26 
T1D genetic risk. We additionally performed single-cell/nucleus multi-omic profiling of healthy 27 
islets under two stimulatory conditions used as in vitro models of T1D (cytokine cocktail and 28 
CVB4 infection) to evaluate how environmental exposures recapitulate multi-omic signatures of 29 
T1D. In total, we analyzed 121,272 cells/nuclei across 34 libraries, identifying 10 distinct cell 30 
types. We identified cell-type-specific and disease-associated cis-regulatory elements and 31 
nominated likely target genes. We provide evidence that T1D genetic risk is mediated through 32 
multiple pancreatic cell populations, including islet endocrine cells (beta, alpha, gamma, and 33 
delta), exocrine acinar and ductal cells, and immune cells. Finally, we identified three 34 
independent T1D risk variants acting through pancreatic islet endocrine cells at the TOX, 35 
RASGRP1, and DLK1/MEG3 loci. Together, this work improves our understanding of how non-36 
coding genetic variants encode T1D risk through a complex interplay of different cell types in the 37 
pancreas. 38 
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Introduction 39 

Type 1 diabetes (T1D) is a complex autoimmune disease that accounts for 5-10% of all 40 
diagnosed diabetes cases (1). The primary manifestation of this disease is the targeting of 41 
endocrine beta cells by the immune system, likely mediated by T-cells, which leads to beta-cell 42 
loss and insulin deficiency (2). Advances in genotyping and imputation enabled increased power 43 
and accuracy for genome-wide association studies (GWAS) of T1D genetic risk (3, 4). However, 44 
despite these substantial developments, the molecular mechanisms of T1D genetic risk are still 45 
poorly understood.  46 

It is widely accepted that immune cells are the primary mediators of T1D genetic risk (2), which 47 
is supported by the strong genetic association of the major histocompatibility complex (MHC) in 48 
T1D GWAS (3, 5). However, increasing evidence suggests that other cell types, including 49 
pancreatic islets, also contribute to T1D etiology and genetic risk (3, 4, 6). For example, one 50 
proposed mechanism for T1D risk variants acting through beta cells is to modulate their 51 
propensity for immune-mediated apoptosis (7). Two recent studies using functional genomics at 52 
the single-cell level helped clarify some of the biology driving T1D genetic risk and contributing 53 
to T1D progression (4, 8). Both studies identified a role for non-immune cell types in the 54 
pancreas, particularly acinar and ductal cells, in mediating T1D genetic signals (4) or 55 
contributing to T1D onset and progression (8). In addition, one of these studies reported that 56 
cis-regulatory elements active in beta cells are significantly enriched to overlap T1D GWAS 57 
variants (4), indicating that beta cells mediate T1D genetic risk. Therefore, one crucial question 58 
that remains unanswered is how genetic variants acting through other pancreatic cell types, 59 
particularly beta cells, contribute to T1D onset and progression. Answering this question will be 60 
critical to help guide the development of novel T1D therapies. 61 

Due to the scarcity of pancreatic tissue samples obtained from T1D donors and the limitation 62 
that disease progression leads to beta-cell destruction, several in vitro models of T1D using 63 
healthy pancreatic tissue have been developed to understand the early mechanisms of T1D in 64 
the pancreas. These models include treating primary islet cultures with a cytokine cocktail (TNF-65 
α, IFN-γ and IL-1β) or infecting islets with Coxsackievirus B4 (CVB4) virus (9, 10), which 66 
simulate the stressed environment beta cells are exposed to during T1D. However, the cell-67 
specific molecular pathways underlying these experimental perturbations and to what extent 68 
these pathways mimic T1D have not been extensively characterized.  69 

Here, we performed single-cell resolution multi-omic integration of high-throughput molecular 70 
profiles of paired gene expression and chromatin accessibility from the same biological samples 71 
obtained from healthy and T1D human pancreatic islets. We characterized mechanisms of T1D 72 
genetic risk, focusing on identifying variants acting through islet endocrine cells. In addition, we 73 
characterized two experimental models of T1D in islets to determine how they recapitulate the 74 
molecular aspects of T1D. Finally, we identify three independent T1D risk variants which likely 75 
mediate T1D genetic risk through islet endocrine cells. Our work identifies how all pancreatic 76 
cell populations partially mediate T1D genetic risk. Together, this work improves our 77 
understanding of how non-coding genetic variants encode T1D risk through a complex interplay 78 
of immune and pancreatic cell types. 79 

Results 80 
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Identifying islet cell types by co-clustering gene expression and chromatin accessibility 81 
profiles 82 

We performed gene expression (single-cell RNA-seq; scRNA-seq) and chromatin accessibility 83 
(single-nucleus ATAC-seq; snATAC-seq) on human pancreatic islets from healthy (n=8) and 84 
auto-antibody positive donors (AAB+; n=3). Given that procuring pancreatic tissue from affected 85 
donors is difficult, we aimed to investigate whether two established experimental models of T1D 86 
in human islets recapitulate AAB+ molecular profiles at the cell-specific epigenomic and 87 
transcriptomic levels. To this end, we additionally performed scRNA-seq and snATAC-seq on 88 
islets from a subset of healthy donors (n=3) under cytokine stimulation (TNF-α, IFN-γ and IL-1β) 89 
and CVB4 infection (Figure 1A, Supplementary Table 1). After stringent quality control (QC; 90 
Methods), we profiled 121,272 cells (49,897 snATAC-seq nuclei and 71,375 scRNA-seq cells; 91 
Supplementary Figures 1 and 2, Supplementary Table 2). We performed joint clustering of 92 
the molecular profiles across samples and modalities (n=34 libraries) using Seurat (11). We 93 
identified ten major distinct cell types based on the gene expression of known marker genes 94 
and the chromatin accessibility of their gene bodies (Figure 1B-D, Supplementary Figure 2). 95 
The identified cell types represent the endocrine (beta, alpha, delta, and gamma cells), exocrine 96 
(acinar and ductal), stellate (activated and quiescent), endothelial, and immune lineages. Cell 97 
type representation ranged from 1.4% (immune) to 35% (ductal) of all cells. We profiled 41,569 98 
islet endocrine cells and nuclei, corresponding to 34.3% of all profiled cells and nuclei. Alpha 99 
cells were the most abundant endocrine cells (n=21,151), followed by beta (n=15,577), delta 100 
(n=2,703), and gamma cells (n=2,138). All cell types were well-represented across samples and 101 
modalities, and we did not identify any sample- or modality-specific clusters after QC (Figure 102 
1C, Supplementary Figure 2). Importantly, we observed during the initial QC steps that the 103 
ambient RNA contamination (RNA “soup”) was a source of technical variation across libraries 104 
and could lead to misinterpretation of results if not correctly accounted for (Methods, 105 
Supplementary Figure 3). This is in line with a recent study indicating that ambient RNAs can 106 
confound single-cell analyses (12). 107 

Transcriptional changes in experimental models of T1D recapitulate disrupted pathways 108 
in T1D 109 

Aiming to identify pathways and regulatory programs associated with T1D, we first performed 110 
differential expression analyses across disease states and experimental perturbations. We 111 
accounted for biological and technical covariates that could influence results to quantify 112 
differential expression across conditions accurately. After adjusting for technical variation, we 113 
detected thousands of differentially expressed genes (DEGs) at 5% false discovery rate (FDR) 114 
across all cell types and conditions combined (ranging from 24 to 1,663 per cell type and 115 
condition, median = 476; Figure 2A). We observed the largest transcriptional changes 116 
associated with disease state (AAB+ vs. controls) relative to the perturbations (cytokines and 117 
CVB4) in the islet endocrine cells (beta, alpha, delta, and gamma), while the endothelial cells 118 
had stronger transcriptional changes under cytokine stimulation. On the other hand, the immune 119 
cells had the most comparable levels of transcriptional changes across disease state and 120 
experimental perturbations, consistent with immune cell types being highly responsive to 121 
environmental conditions. We observed lower transcriptional changes associated with CVB4 122 
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infection compared to cytokine stimulation in all cell types, which motivated us to investigate if 123 
CVB4 infection efficiency differed across samples. Indeed, we observed differences in the 124 
number of detectable CVB4 mRNAs in each CVB4-treated sample (Supplementary Figure 4). 125 
This variability may explain why the CVB4 infection DEG effect sizes were generally smaller. 126 
Together, these results are consistent with T1D inducing global changes in the pancreatic 127 
transcriptional landscape. However, these transcriptional changes are more pronounced in islet 128 
endocrine and immune cells compared to other pancreatic cells. 129 

Aiming to better understand if the experimental perturbations recapitulated functional aspects of 130 
T1D in pancreatic cells, we performed pathway enrichment analyses using the DEGs from 131 
disease state and perturbations. The DEGs in AAB+ were generally not the same as the 132 
perturbations for most cell types (DEG log2FC Spearman’s ρ ranging across conditions from -133 
0.12 to 0.88, median = 0.19; Supplementary Figure 5). However, we found overall high 134 
concordance between the pathway enrichments for nominally significant enrichments in AAB+ 135 
compared to cytokine stimulation and CVB4 infection in beta cells and other endocrine cells 136 
(Figure 2B-D, Supplementary Figure 6-7). These findings suggest cytokine stimulation and 137 
CVB4 infection affect similar pathways in beta cells compared to T1D, albeit regulating different 138 
genes within those pathways. Overall, the islet endocrine cells had the highest agreement 139 
between disease state and experimental perturbations at the level of pathway enrichments 140 
(Figure 2D). These results indicate that these experimental models recapitulate aspects of T1D 141 
in islet cells. However, these experimental models perturb different pathways than those 142 
associated with disease state at other pancreatic cell types. Therefore, these experimental 143 
models may not be the most suitable for studying T1D in cell types other than islets.  144 

Transcription factors regulating the epigenomic landscape of pancreatic cells 145 

To characterize the epigenomic landscape of the different pancreatic cell types, we used the 146 
BMO tool (13) to predict bound transcription factor (TF) sites using a non-redundant collection of 147 
540 motifs and calculated their chromatin information patterns. The observed chromatin 148 
information patterns reflect the impact of specific TFs in organizing local chromatin architecture 149 
and establishing cell identity (13)  (Figure 3A-B). We identified common and cell-type-specific 150 
TFs driving the epigenomic landscape for each cell type (Figure 3C). The TFs CTCF, AP-1, and 151 
NFE2 consistently scored highest in chromatin information across cell types (Supplementary 152 
Table 3), likely reflecting their constitutive roles in chromatin organization (14, 15). On the other 153 
hand, a subset of TF families had a higher impact on chromatin organization in a cell-specific 154 
manner. These TF families include RFX in endocrine cells, HNF in exocrine cells, and SPI1 155 
(PU.1) in immune cells (Figure 3C). All these TF families have been extensively characterized 156 
as cell fate determinants and play functional roles in their respective lineages (16–18) and, 157 
therefore, underscore the specificity of our epigenomic analyses. Importantly, we observed 158 
changes in the underlying chromatin organization associated with a subset of TFs when 159 
comparing conditions (Figure 3D). The IRF motif family was associated with increased 160 
chromatin organization in beta cells under cytokine treatment, consistent with previous studies 161 
showing that cytokines stimulation induces IRF-1 activation in beta cells and subsequent 162 
apoptosis (19, 20). Similarly, cytokine treatment induced changes in chromatin organization at 163 
the SPI1, MAF, and ETS family TF motifs in immune cells, which are well-known mediators of 164 
cytokine response in these cells (21, 22). Notably, the chromatin organization changes in AAB+ 165 
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cells were less pronounced than the environmental perturbations. In agreement with the scRNA-166 
seq results, these chromatin accessibility results indicate that the experimental models of T1D 167 
differ from disease in that they associate with more acute changes in cellular state. 168 

Enrichment of T1D GWAS variants nominates cell types likely mediating T1D genetic risk 169 

In order to investigate the mechanisms involved in T1D genetic risk, we used fGWAS (23) to 170 
calculate the enrichment of the accessible chromatin of the different cell types captured by our 171 
snATAC-seq experiments using the summary statistics of a recent T1D GWAS (4). As 172 
expected, we observed the highest T1D GWAS enrichment in the immune cluster (log 173 
enrichment = 2.78; Figure 4A). The other significantly enriched cell types were acinar, 174 
quiescent stellate, beta, ductal, and alpha (log enrichments ranging from 1.53 to 2.12). These 175 
results indicate that multiple pancreatic cell types, including islet endocrine cells, contribute to 176 
T1D genetic risk. These enrichments, however, likely represent the baseline (unperturbed) state 177 
of these cells and, therefore, provide an incomplete picture of T1D genetics. To contextualize 178 
these results, we tested the enrichment of accessible chromatin using the summary statistics of 179 
type 2 diabetes and fasting glucose from the DIAMANTE (24) and MAGIC (25) GWAS studies. 180 
We observed the strongest enrichments for these two traits in accessible chromatin regions 181 
from beta cells and other islet endocrine cell types (Figure 4A), which is consistent with 182 
previous studies (26, 24, 27, 25). 183 

We investigated the context-specific roles of the studied cell types in T1D predisposition. To this 184 
end, we used fGWAS to calculate the enrichment of T1D GWAS summary statistics in 185 
differentially accessible regions (DARs) across disease states and experimental perturbations. 186 
Because of data sparseness and inflation of p-values associated with differential analyses in 187 
single-cell data (28), we developed a stringent effect-size-based approach for detecting DARs in 188 
our snATAC-seq data (Supplementary Figure 8, Methods). As expected, DARs for AAB+ and 189 
cytokine treatment in immune cells were more highly enriched for T1D GWAS than non-DARs 190 
(Figure 4B). In addition, the enrichment point estimates increased as we used more stringent 191 
DAR thresholds. This result is consistent with a substantial component of T1D genetic risk 192 
encoded by responsive elements in immune cells, such as the MHC locus (4). We also 193 
observed a similar trend in DARs for CVB4 infection in immune cells, but it did not reach 194 
significance, likely due to the difference in CVB4 infection efficiency across replicates 195 
(Supplementary Figure 4). Interestingly, we found AAB+ DARs in beta cells more enriched for 196 
T1D GWAS than non-DARs. Similar to the previous results in immune cells, the enrichment 197 
point estimates for the beta-cell DARs increased with more stringent DAR thresholds (Figure 198 
4B). This result indicates that the environmentally responsive regulatory elements in beta cells 199 
also mediate T1D genetic risk and, therefore, indicate a role for islet endocrine cells in 200 
mediating T1D progression. 201 

Regulatory elements in beta and other islet endocrine cells mediate T1D genetic risk 202 

Next, we aimed to understand regions and regulatory elements that are responsible for driving 203 
the observed T1D GWAS enrichments in pancreatic cells. To this end, we developed a novel 204 
approach to quantify the relative contributions of each cell type to T1D genetic risk and prioritize 205 
candidate cell types mediating genetic risk at a given locus. This approach is based on the cell-206 
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type-specific chromatin accessibility levels at each variant in a T1D genetic credible set, 207 
weighted by the posterior probability of association (PPA) of the variant (Methods). As a proof of 208 
concept, the three independent GWAS signals at the INS locus were prioritized to act through 209 
beta cells (Figure 4C). A broader analysis of all 136 T1D GWAS signals showed that genetic 210 
risk is partitioned across all the cell types analyzed in this study (Figure 4D). Immune cells 211 
contribute to most of the T1D genetic risk, as expected. However, we observed multiple signals 212 
prioritized to act through pancreatic endocrine (beta, alpha, delta, gamma), exocrine (acinar, 213 
ductal), stellate, and endothelial cells. Importantly, we identified several signals with beta- or 214 
islet-specific accessibility, indicating that these genetic signals are mediated by islet endocrine 215 
cells in the pancreas. These islet endocrine loci include the three independent signals at the INS 216 
locus, the primary and secondary signals at DLK1/MEG3, and the signals at TOX, RASGRP1, 217 
and GLIS3 (Figure 4D). 218 

We next attempted to prioritize T1D risk loci likely acting through beta or other islet endocrine 219 
cells for functional validation. In addition to the PPA-weighted chromatin accessibility for each 220 
locus, we accounted for the number of variants in the 99% credible set (CS) and the PPA 221 
distribution across variants to nominate candidate loci where functional validation experiments 222 
were feasible. We prioritized loci with either a few variants in the 99% CS or loci where the PPA 223 
distribution was highly skewed towards a small number of variants. In addition, we used 224 
CICERO (29) to calculate co-accessibility between variant-harboring regulatory elements and 225 
gene promoters to help identify candidate target genes. To further reduce the search space for 226 
candidate variants, we performed functional fine-mapping (FFM) with fGWAS using a joint 227 
model accounting for the chromatin accessibility peaks from cell types enrichmed for T1D 228 
GWAS (Methods). Using these criteria, we nominated the main signals at TOX (99% CS size = 229 
28) and RASGRP1 (99% CS size = 66) and the secondary signal DLK1/MEG3 (10 variants with 230 
PPA > 0.01; 99% CS size = 2,053) as the most compelling candidate loci likely acting through 231 
beta or islet endocrine cells (Figures 5A-C). 232 

At the TOX locus, our FFM analyses prioritized rs367116 and rs1947178, with the latter being 233 
the lead variant at the locus. The intronic beta-cell regulatory element containing rs1947178 was 234 
co-accessible with the TOX promoter region (CICERO co-accessibility = 0.065), making TOX 235 
the candidate gene for this locus (Figure 5A). At the RASGRP1 locus, FFM prioritized 236 
rs55728265, which is in strong linkage disequilibrium (r2 = 0.93) with the lead variant, 237 
rs35134214. The regulatory element harboring rs55728265 overlaps the RASGRP1 promoter 238 
region and was not co-accessible with any other promoter, making RASGRP1 the candidate 239 
gene at this locus (Figure 5B). The lead variant at this locus (rs35134214) did not overlap 240 
ATAC-seq peaks in pancreatic cell types, therefore highlighting the validity of using FFM 241 
approaches to prioritize genetic signals. At the DLK1/MEG3 locus, our FFM analyses prioritized 242 
the lead variant for the primary signal (rs56994090), despite this variant not overlapping any 243 
features used in the FFM model (Figure 5C). We also prioritized the primary variant at the 244 
secondary signal at DLK1/MEG3 (rs3783355; PPA = 0.56) because it had a 7-fold higher PPA 245 
compared to the second highest variant in the 99% CS (rs10145648; PPA = 0.08) and 246 
overlapped a highly accessible chromatin region in beta, alpha, and ductal cells. Interestingly, 247 
we observed increased co-accessibility between the regulatory element harboring rs3783355 248 
and the DLK1 and MEG3 promoter regions in AAB+ and cytokine-stimulated beta cells 249 
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compared to healthy beta cells (MEG3–rs3783355 CICERO score = 0.013 for cytokine; DLK1–250 
rs3783355 CICERO scores 0.002 and 0.144 for healthy and cytokine, respectively). These 251 
results suggest that the regulatory element harboring rs3783355 acts in a context-dependent 252 
manner to mediate T1D risk in pancreatic islet endocrine cells. 253 

T1D risk variants are predicted to disrupt islet endocrine cells regulatory elements 254 

We next attempted to characterize the functional mechanisms through which the variants of 255 
interest at the TOX, RASGRP1, and DLK1/MEG3 loci act to mediate T1D risk. We aimed to 256 
characterize the impact of the risk and non-risk alleles associated with these variants. Because 257 
we had genotype information for 10 of the donors, we calculated the cell type-specific ATAC-258 
seq allelic bias at each heterozygous SNP with enough coverage (Supplementary Figure 9A-259 
B). In parallel, we trained a predictive model of sequence features associated with chromatin 260 
accessibility in beta cells using LS-GKM and DeltaSVM (30, 31) to predict beta-cell allelic 261 
effects associated with any base-pair change in the genome (Methods; Supplementary Figure 262 
9C-D). We used the observed allelic bias to validate our predictive model. The predicted allelic 263 
effects from the model were highly concordant (87.1% effect size direction agreement) with the 264 
observed allelic effects (ATAC-seq allelic bias) at heterozygous SNPs, indicating that the model 265 
correctly captured allelic regulatory changes associated with increased chromatin accessibility 266 
in beta cells (Figure 5D). The predictions from the model trained in beta cells had a higher 267 
agreement with the observed allelic effects calculated using the entire dataset (92.6% effect 268 
size direction agreement), which we attribute to increased power when combining data across 269 
all cell types. Alternatively, this also can be interpreted as the model trained in beta cells also 270 
capturing sequence features associated with chromatin accessibility more broadly.  271 

To further gain information from our predictive model, we applied GkmExplain (32) to the 272 
variants of interest and predicted the regulatory effects associated with each allele within the 273 
entire sequence context around the variants (Figure 5E). At the TOX locus, the risk allele at the 274 
lead variant, rs1947178 (risk = A; non-risk = G), was predicted to increase chromatin 275 
accessibility. The predicted impact for the risk allele at rs1947178 was also higher than that of 276 
the FFM-nominated SNP, rs367116 (risk = C; non-risk = T). At the RASGRP1 locus, the lead 277 
variant, rs35134214 (risk = CTG; non-risk = C), was predicted to increase accessibility. 278 
Conversely, the RASGRP1 FFM-nominated SNP, rs55728265 (risk = T; non-risk = C), was 279 
predicted to decrease accessibility. While we did not observe any ATAC-seq peaks at 280 
rs35134214, we cannot discard that this variant mediates T1D genetic risk through other cell 281 
types not assayed in this study. Finally, at the DLK1/MEG3 locus, we predicted stronger effects 282 
in chromatin accessibility associated with the risk allele at the secondary signal lead variant, 283 
rs3783355 (risk = G; non-risk = A) compared to the lead variant at the primary signal 284 
(rs56994090; risk = T, non-risk = C). Consistent with the predicted effects in dysregulating 285 
chromatin accessibility, we identified multiple predicted bound TF motifs overlapping these risk 286 
variants, including PAX4 and HNF4 (RASGRP1), ITGB2, and ZBTB6 (DLK1/MEG3), and CPHX 287 
(TOX) (Supplementary Table 4). Together, these results implicate rs1947178 (TOX), 288 
rs55728265 (RASGRP1), and rs3783355 (DLK1/MEG3) as likely causal variants mediating T1D 289 
genetic risk through islet cell types. 290 

Discussion 291 
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After decades of research, T1D genetic risk is widely accepted to be driven by variants 292 
disrupting the endogenous pathways that inhibit self-reactivity, which in turn increase 293 
autoimmune responses (1, 2). We have integrated epigenomic and transcriptomic profiles of 294 
human pancreas samples from healthy and AAB+ donors to better understand how T1D risk 295 
variants act across the different cell types in the pancreas and lead to changes in gene 296 
regulation. Rather than being mediated by one or a few cell types, we find that T1D genetic risk 297 
variants overlap active regulatory elements in every pancreatic cell type analyzed in this study. 298 
Our findings are consistent with the increasing evidence linking non-immune cells to mediating 299 
T1D risk (3, 4, 6). In particular, our work identifies three genes expressed in beta cells and other 300 
islet cell types as putative causal genes for three independent T1D risk variants: DLK1/MEG3, 301 
TOX, and RASGRP. Our prioritization of the DLK1/MEG3 and TOX loci as mediated through 302 
islet endocrine cells is supported by a previous scATAC-seq study, which observed a higher 303 
overlap of high-PPA variants in these loci with beta-cell regulatory elements (4). Our work 304 
expands on these findings by predicting rs1947178 and rs3783355 as causal variants at these 305 
loci and further prioritizing rs55728265 at the RASGRP1 locus as an additional variant 306 
mediating T1D genetic risk through islet endocrine cells. 307 

While the role of immune cells mediating T1D genetic risk is generally understood, it is still 308 
unclear how other pancreatic cell types contribute to T1D risk. One hypothesis is that risk 309 
variants at these other cell types lead to disease predisposition by promoting the recruitment of 310 
self-reactive T-cells or creating a harsher cellular microenvironment that further predisposes 311 
beta-cell death. Support for this hypothesis is provided by a previous snRNA-seq study from 312 
healthy, AAB+, and T1D human pancreas, which suggested that T1D ductal cells may help 313 
promote CD4+ T cell tolerance through the expression of MHC molecules and other surface 314 
receptors (8). Our work indicates that the immune cells indeed have the highest individual 315 
contribution to T1D genetic risk. However, this contribution is relatively small compared to all the 316 
other cell types combined. In addition to multiple variants acting through islet endocrine cells, 317 
we identified a role for acinar, stellate, endothelial, and to a lesser degree, ductal cells as likely 318 
mediators of T1D genetic risk. This unexpected finding agrees with and expands on other 319 
studies of T1D at the single-cell level identifying the contributions of other pancreatic cell types 320 
to T1D genetic risk and onset (4, 8). Therefore, an important question for future studies is 321 
understanding how T1D risk variants act through non-immune cell types, particularly beta cells.  322 

Among the active areas of T1D research is developing experimental models to understand 323 
disease biology using healthy islets. In this study, we characterized the molecular profiles of 324 
healthy islets challenged with cytokine stimulation or CVB4 infection. These experimental 325 
models inherently disturb healthy islets in a time window several orders of magnitude smaller 326 
than the disease duration (hours vs. years). However, we found similarities in the transcriptomic 327 
and epigenomic profiles associated with these experimental perturbations. Furthermore, we 328 
observe that these experimental models most strongly perturb different genes compared to 329 
T1D. However, these perturbed genes participate in several of the same pathways observed in 330 
islets from affected donors, which supports the use of these experimental models to understand 331 
T1D biology. Our results suggest that while general agreement exists between the downstream 332 
pathways, some experimental models may be more appropriate for studying specific aspects of 333 
T1D biology (e.g., cytokines triggered differentiation pathways and CVB4 infection triggered 334 
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more stress responses). Therefore, more in-depth studies are required to explore the full gamut 335 
of protocols associated with these T1D experimental models, such as different cytokine 336 
combinations, to determine the most appropriate experimental approach to model specific 337 
aspects of T1D biology. 338 

Among the limitations of this study is that we jointly analyze pre-diabetic (AAB+ without 339 
symptomatic presentation) and diabetic donors due to the low sample size. While our results 340 
suggest that this is a valid approach to detecting disease-relevant biology, this design would 341 
miss molecular signatures associated with different stages of the disease. In particular, one can 342 
hypothesize that the beta cells that survive in T1D donors are transcriptionally different from the 343 
beta cells from the pre-diabetic donors and develop molecular characteristics to make them 344 
more resistant to immune targeting. Therefore, separately studying beta cells from T1D donors 345 
is an important future direction that can provide essential clues for new therapeutic strategies. 346 
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 355 

 356 

Figure 1: Study overview. A) Experimental design for multi-omic library generation. B) Uniform 357 
Manifold Approximation and Projection (UMAP) representation of the fully integrated dataset. 358 
Bottom panel is the same data faceted by modality. C) Overview of the representation of all cell 359 
types (top), islet endocrine cell types (middle), and conditions (bottom) across the combined 360 
scRNA-seq and snATAC-seq libraries for each sample pool. D) scRNA average expression 361 
values for marker genes across the cell types identified via joint modality clustering. E) 362 
Normalized aggregate ATAC-seq signal tracks across marker genes for each cell type. 363 

  364 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.12.516291doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.12.516291
http://creativecommons.org/licenses/by-nc-nd/4.0/


 365 

Figure 2: Transcriptomic changes associated with T1D and experimental models. A) 366 
Differentially expressed gene (DEG) effect size comparison across cell types and conditions. B) 367 
Beta cells DEG pathway enrichment effect size direction agreements between experimental 368 
models of T1D and AAB+ cells. C) Significantly enriched pathways across AAB+ and 369 
experimental models (summary of significant terms using rrvigo). D) Average pathway effect 370 
size direction agreement per cell type between AAB+ and experimental models for nominally 371 
significant terms in at least one condition. 372 
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 374 

Figure 3: TF regulatory landscape of pancreatic cell types. A) Chromatin information 375 
enrichment calculation overview (adapted from (13)). B) V-plots showing aggregate ATAC-seq 376 
fragment midpoints distribution around predicted bound sites for three TFs (top facets) and their 377 
associated chromatin information enrichment (bottom facets) in beta cells and immune cells. C) 378 
Chromatin information Z-scores for a subset of TFs across all cell types indicate differential 379 
regulatory activity. D) Similar to C, but directly comparing across conditions for beta cells (top) 380 
and immune cells (bottom). 381 
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 383 

Figure 4: The regulatory landscape associated with T1D genetics in pancreatic cells. A) 384 
fGWAS enrichments for GWAS summary statistics of three traits in accessible chromatin 385 
regions from each cell type in our data. B) fGWAS enrichments for T1D summary statistics in 386 
immune and beta cells across progressively stringent thresholds to identify differentially 387 
accessible regions (DARs) and their non-significant counterparts. C) Example of our PPA-388 
weighted chromatin accessibility score strategy to identify cell types likely mediating three 389 
independent T1D GWAS signals at the INS locus. D) PPA-weighted chromatin accessibility 390 
scores across all T1D loci and cell types and candidate loci likely mediated by islet and immune 391 
cell types. 392 
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 394 

Figure 5: Genetic variants mediating T1D risk in islet endocrine cells. T1D signals at the 395 
TOX (A), DLK1/MEG3 (B), and RASGRP1 (C) loci. Left panels represent the broad locus 396 
overview, and the insets highlight the regions and variants of interest and their associated 397 
genetic and functional fine-mapping PPA values. For simplicity, only beta-cell co-accessibility 398 
tracks are shown. D) Agreement between predicted and observed ATAC-seq allelic imbalance 399 
(allele-specific accessibility; ASA) in beta cells and all cells using a predictive model trained in 400 
beta cells. E) Predicted regulatory impact of T1D risk variants of interest in beta cell chromatin 401 
accessibility using GkmExplain. 402 
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Methods 404 

Tissue processing and sample preparation 405 

Human pancreatic islets were isolated in the Human Islet Core at the University of Pennsylvania 406 
following the requirements of the Clinical Islet Transplantation consortium procedure. The 407 
pancreatic islets were grown in CIT culture medium and maintained in a humidified incubator 408 

with 5% CO2 at 37℃. Single-cell RNA-seq and single-nucleus ATAC-seq were performed using 409 

10X Chromium platform at genomics resources core facility at Weill Cornell Medicine. 410 

Single-nucleus ATAC-seq processing 411 

Single-nucleus ATAC-seq data was processed using the Parker Lab snATAC-seq pipeline 412 
(https://github.com/porchard/snATACseq-NextFlow). Briefly, after performing adapter trimming 413 
with cta (v. 0.12; https://github.com/ParkerLab/cta), reads were aligned to the hg19 reference 414 
genome using bwa mem (v. 0.7.15-r1140; (33)) using -I 200,200,5000 to avoid large fragments 415 
being artificially assigned low MAPQ scores. Barcode sequences were corrected for sequence 416 
mismatches by calculating the Hamming distance between all barcodes and fixing all barcodes 417 
with a Hamming distance smaller or equal to 2 to a barcode sequence in the 10X Genomics 418 
barcode list. After mapping, we identified barcodes using Picard MarkDuplicates (v. 2.8.1; 419 
https://broadinstitute.github.io/picard). We used ataqv (https://github.com/ParkerLab/ataqv (34)) 420 
to obtain barcode-level QC metrics, such as the number of high-quality autosomal alignments 421 
(HQAA) and transcription start site (TSS) enrichment. For downstream analyses, we retained 422 
only barcodes with HQAA ≥ 5,000, TSS enrichment between 3 and 20, and no more than 15% 423 
of all reads originating from a single autosome. The latter metric helps to remove barcodes 424 
associated with low-integrity nuclei. Doublets were flagged and removed using ArchR (v. 0.9.5) 425 
(35). Because the ambient signal (soup) from the snATAC-seq library is mainly from chrM, 426 
which was filtered for our analyses, we did not perform ambient DNA correction. For integration 427 
with the scRNA-seq data (described below), we generated count matrices for each library 428 
encoding the number of ATAC-seq fragments overlapping promoter (5 Kb upstream of most 429 
upstream transcription start site) and gene body regions of autosomal, protein-coding genes 430 
using bedtools (v2.26.0). 431 

Single-cell RNA-seq 432 

Single-cell RNA-seq data were processed with the Parker Lab snRNA-seq pipeline 433 
(https://github.com/porchard/snRNAseq-NextFlow). Reads were aligned to the hg19 reference 434 
genome and GENCODE v19 (36) using STARsolo (STAR v. 2.5.4 (37)). Barcode sequences 435 
were corrected for mismatches using the same approach as in the snATAC-seq data. We then 436 
calculated QC metrics for each barcode (number of UMIs, % mitochondrial reads, etc.). We 437 
selected for downstream analyses barcodes that had at least 1,000 UMIs and were called non-438 
empty (1% FDR) by EmptyDrops (38). For each library, we calculated the % mitochondrial 439 
reads rank distribution and identified the inflection (knee) using the uik function of the inflection 440 
package in R (39). We only kept barcodes with % mitochondrial reads smaller than the inflection 441 
value, ranging from 6.6% to 20.2%. Doublets were flagged and removed using DoubletFinder 442 
(v2.0.2) (40) with default parameters. After removing doublets and barcodes that failed QC, we 443 
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used DecontX (Celda v1.2.4) (41) to control for ambient RNA (soup RNAs). We performed a 444 
first-pass clustering of the barcodes that passed QC using Seurat (Supplementary Figure 1) to 445 
identify broad cell identities. We then used the first-pass clustering information with DecontX 446 
with stringent parameters (delta 1 = 10 and delta 2 = 20) to obtain the ambient-subtracted count 447 
matrices for each library. We used the ambient-subtracted count matrices of autosomal, protein-448 
coding genes for downstream analyses. 449 

Sample genotyping 450 

Samples were genotyped using the Illumina Infinium 2.5M exome chip (InfiniumOmni2-5Exome-451 
8v1.3_A2). The genotyping call rates for the 16 samples ranged from 99.0% to 99.7%. The SNP 452 
probe sequences were remapped to GRCh37 and all problematic SNPs were discarded. This 453 
process resulted in a total of 2,522,105 SNPs with genotypes. Next, SNPs that have genotype 454 
missingness in >=2 out of our samples and duplicate SNPs with the same genomic coordinates 455 
with another one were removed. Further, we merged our genotypes with that of the 1000G 456 
phase 3v5 samples (42). Subsequently, the SNPs with HWE p-value < 1e-4, and palindromic 457 
SNPs (A/T, or G/C SNPs) with MAF>0.4 in the merged data set were removed. Phasing was 458 
performed on the joint data set of 1,609,033 SNPs using Eagle (v2.4) (43). Genotypes were 459 
imputed using 1000 genomes phase 3 panel in the Michigan Imputation Server using Minimac4 460 
(v1.5.7) (44) and the 1000G phase 3v5 (GRCh37) reference panel. No sex discrepancy was 461 
found by assessing the SNP genotypes using verifybamID (45) with the reported gender. 462 
Sample ICRH135 did not have sufficient DNA for genotyping and was dropped from the genetic 463 
analyses. 464 

CVB4-hg19 alignments 465 

In order to quantify CVB4 infection efficiency, we aligned scRNA-seq and snATAC-seq reads to 466 
a hybrid hg19-CVB4 genome, where the CVB4 genome (GenBank AF311939.1) is appended to 467 
hg19 as a separate chromosome. Similarly, we built a hybrid GTF file with the human genes 468 
and the CVB4 genome as an additional gene. We generated STAR and bwa indices for the 469 
hybrid hg19-cvb4 genome and mapped reads using the same pipeline described below. To 470 
quantify the CVB4 infection efficiency, we counted the fraction of reads mapping to the CVB4 471 
portion of the hybrid genome. To independently confirm that our pipeline worked as expected, 472 
we used SANDY (https://github.com/galantelab/sandy) to generate hybrid paired-end reads 473 
from both genomes using the command sandy genome with flag --id=” %i.%U__read=%c:%t-474 
%n__mate=%c:%T-%N__length=%r” and verified that the snATAC-seq and scRNA-seq 475 
pipelines aligned these simulated reads to the correct coordinates on both assemblies. 476 

Cross-modality integration of snATAC-seq and scRNA-seq profiles 477 

In order to integrate all 34 libraries, we used Seurat (v.4.0.3)(11). After exhaustively testing 478 
different pipelines, we obtained the best results for this dataset using Seurat's standard 479 
workflow. After running the principal component analysis (PCA) step, we extracted the first 30 480 
PC embeddings for each barcode and calculated the Spearman correlation with technical 481 
variables (sequencing depth, % mitochondrial reads, etc.) to identify PCs driven by technical 482 
aspects. We used PCs 1,3-30 for the FindNeighbors and RunUMAP steps because PC 2 was 483 
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correlated with sequencing depth. We used options resolution=1, algorithm=2, n.start=1000, 484 
and n.iter=1000 for FindClusters and parameters n.neighbors=50 and n.epochs=500 for 485 
RunUMAP. This approach yielded 30 clusters in the integrated data. We next identified and 486 
removed clusters that could not be unambiguously assigned to any cell type (i.e., loaded on 487 
more than one cell-type-specific marker) or had aberrant QC metrics. After filtering these low-488 
quality barcodes, we iteratively merged the remaining clusters based on similar gene 489 
express/accessibility patterns to obtain the final cluster assignments used in this study. A subset 490 
of the snATAC barcodes assigned to the UMAP region corresponding to the acinar cells could 491 
not be unambiguously classified as acinar cells and was removed. This resulted in a higher 492 
fraction of scRNA-seq barcodes in the acinar cluster compared to the other clusters. Despite the 493 
relatively smaller fraction of acinar snATAC-seq barcodes, the number of barcodes was still 494 
higher than most clusters and, therefore, did not substantially affect our chromatin accessibility 495 
analyses for the acinar cells.  496 

Peak calling 497 

We generated BAM files for each cluster by combining data from all barcodes in that cluster 498 
(pseudo-bulk analyses). We also generated BAM files for each cluster/library combination. We 499 
used MACS2 (v. 2.1.1.20160309) to call summits on each cluster bam file, and we extended 500 
each summit by 150 bp in both directions. The set of extended summits called on the cluster-501 
level bam file (all libraries combined) was labeled as the primary summit list. We assessed the 502 
reproducibility of each extended summit in the primary list using bedtools intersect (v2.26.0) to 503 
count the number of intersections in the per-library extended summits. We retained for 504 
downstream analyses the extended summits from the primary list that 1) overlapped extended 505 
summits from at least two different libraries and 2) did not overlap any regions with known 506 
mappability issues.  507 

Differential gene expression analyses 508 

For each cell type, we tested for association of gene expression with AAB+ status (i.e., T1D or 509 
pre-T1D) using MAST v1.14.0 (46). We filtered lowly expressed genes (DecontX-corrected 510 
counts ≥ 1 in ≤ 5 cells across all samples and cell types) using the pp.filter_genes function with 511 
min_cells=5 from scanpy v1.5.1 (47), retaining 16,844 genes. To account for variable 512 
sequencing depth across cells, we normalized the DecontX-corrected counts for the remaining 513 
genes by the total number of counts per cell, scaled to counts per 10,000 (CP10K; 514 
pp.normalise_per_cell function in scanpy), and log-transformed the CP10K expression matrix 515 
(ln[CP10K+1]; scanpy’s pp.log1p function). Using the ln[CP10K+1] normalized counts as input, 516 
we modeled the gene expression for each cell type using MAST’s zlm function with default 517 
parameters. We included disease status, donor ID, sex, age, body mass index (BMI), and 518 
proportion of donor cells identified as alpha cells (which is a proxy of islet content and accounts 519 
for any differences in background RNA persisting after DecontX correction; Supplementary 520 
Figure 3), and cell complexity (the number of genes detected per cell (46, 48))  as fixed effect 521 
covariates. Age, BMI, and alpha cell proportion were standardized to unit variance (mean-522 
centered and scaled). For each model, we performed the likelihood ratio test (LRT; implemented 523 
in MAST’s summary function with logFC=TRUE and doLRT=T1D status) to test for association 524 
between gene expression and disease status. Finally, we controlled for the number of tests 525 
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performed across all cell types using the Benjamini-Hochberg procedure (49) and LRT-derived 526 
p-values. 527 

Gene set enrichment 528 

We tested for gene sets enriched in the differential expression results for each cell type using 529 
the fgseaMultilevel function from fGSEA v1.16.0 (50) with eps=1x10-10, scoreType=’std’, and the 530 
rest as default parameters. We used z-scores derived from the log2 FCs as implemented in 531 
MAST to pre-rank the genes. We tested gene sets found in the following databases, which were 532 
downloaded via the molecular signatures database (MSigDB) v7.2 (51, 52) Kyoto Encyclopedia 533 
of Genes and Genomes (KEGG) pathways (53), BioCarta pathways (54), and Gene Ontology 534 
(GO) biological processes (August 2020 release) (55). We controlled for the number of tests 535 
performed per cell type using a Bonferroni correction. To simplify GO terms in visualizations, we 536 
used rrvigo (https://ssayols.github.io/rrvgo). 537 

Transcription factor binding prediction and chromatin information analyses 538 

We used BMO and our previously described chromatin information analysis pipeline (13) 539 
available at https://github.com/ParkerLab/BMO/tree/pre-1.1 to predict bound TF motifs and 540 
estimate the impact of TFs in their local chromatin architecture. Briefly, we used the hg19 motif 541 
scans from a non-redundant position weight matrices collection corresponding to 540 TF motifs 542 
(described in (13)). For each cell type pseudo-bulk snATAC-seq BAM file, we calculated the 543 
distribution of ATAC-seq fragments overlapping each TF motif instance and the number of co-544 
occurring motifs from the same TF motif within 100 bp to use as input for BMO. BMO predicts 545 
TFs using a simple premise that highly accessible motif clusters will be more likely bound by 546 
TFs, as the vast majority of TFs cannot induce open chromatin based on DNA sequence alone 547 
(13). BMO fits two negative binomial distributions for the ATAC-seq signal and the number of 548 
co-occurring motifs per motif instance and calculates the probability of a given motif instance 549 
being bound based on the combined p-value for these two distributions. 550 

Chromatin information for each TF motif was estimated using the feature V-plot information 551 
content enrichment (f-VICE) score described in our previous study (13). Briefly, we generated V-552 
plots (aggregate ATAC-seq fragment midpoint distributions around TF binding sites) for non-553 
overlapping (within 500 bp) BMO-predicted bound instances of a given TF motif (Figure 3B, top 554 
plots). We then calculated the chromatin information (f-VICE score) for each motif by quantifying 555 
the log2 information content enrichment at TF-adjacent (-25 to +25 from motif) and TF-proximal 556 
(-70 to -50 and 50 to 70 bp from motif) regions compared to a randomly shuffled ATAC-seq 557 
midpoint distribution (Figure 3B, bottom signal tracks). These regions are expected to have 558 
high information content when the TF induces nucleosome phasing. We then normalized f-VICE 559 
scores for each cell type by calculating the residuals of the linear model f-VICE ~ log10(total 560 
fragments) + log10(total co-occurring motifs), which controls for the abundance and overall 561 
accessibility of the predicted bound instances for each TF motif.  562 

In order to compare chromatin information across conditions (Figure 3D), we calculated the f-563 
VICE scores separately for the pseudo-bulk snATAC-seq BAM files obtained from each cell type 564 
and donor combination (i.e., Donor 1 beta cells, Donor 2 beta cells, etc.). First, we calculated f-565 
VICEs separately per donor and cell type to avoid confounding by the different number of nuclei. 566 
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We then converted each donor and cell type normalized f-VICE distribution into Z-scores. 567 
Finally, we calculated the median Z-score for each TF motif to obtain a single value for a TF 568 
motif per condition and cell type. For visualizing this data in Figures 3C-D heatmaps, we 569 
calculated row-wise (per motif) Z-scores. 570 

Differential accessibility analyses  571 

We used DESeq2 (1.3.2) to perform differential accessibility analyses. We used as input the 572 
pseudo-bulk counts from each library for the reproducible extended summits called on each 573 
cluster. For the AAB+ versus healthy comparisons, we controlled for age, sex, BMI, median 574 
TSS enrichment, and log10(HQAA). We scaled and centered age and BMI. For the CVB4 and 575 
cytokine versus control comparisons, we opted for a paired design that accounted for donor ID 576 
and median TSS enrichment per library, but not age and BMI due to collinearity. Because of 577 
statistical instability observed in single-cell approaches for differential analyses in this dataset, 578 
we designed an alternative approach to calculate significance based on effect sizes. For each 579 
comparison, we removed features with a mean number of reads < 3 and divided the remaining 580 
features into 50 equally spaced bins of mean chromatin accessibility using the chop_evenly 581 
function from the Santoku R package (https://github.com/hughjonesd/santoku). We removed 582 
regions with log2 fold-change > 10, as these likely represented technical artifacts from low 583 
ATAC-seq coverage. For each of the 50 chromatin accessibility bins, we identified the features 584 
in the 80th, 85th, 90th, 95th, and 99th percentiles of absolute log2 fold-change, which were used for 585 
the fGWAS enrichments described below. A summary of this approach is included in 586 
Supplementary Figure 8. 587 

Co-accessibility analyses 588 

Co-accessibility between accessible regions were calculated for each cell type separately by 589 
condition using CICERO (29) with default parameters. We generated count matrices for each 590 
pseudo-bulk BAM file representing a cell type and condition (e.g. healthy beta cells) for the 591 
accessible regions of that cell type (reproducible extended summits, described above). We used 592 
as input for CICERO the count matrix and the corresponding UMAP coordinates of each 593 
barcode. We annotated the resulting connections based on whether each connected peak 594 
overlapped a T1D credible set SNP or a gene TSS from GENCODE V19. 595 

GWAS enrichments and functional fine-mapping using fGWAS 596 

We calculated GWAS enrichments in features of interest using fGWAS (commit 0b6533d) (23). 597 
For the GWAS enrichments of the accessible regions per cluster, we ran fGWAS with the -print 598 
flag using as input the summary statistics from each GWAS study and a reproducible list of 599 
extended summits per cluster. For the DARs T1D GWAS enrichments, we used similar steps as 600 
above. However, instead of splitting the genome into windows of 5,000 variants based on their 601 
order of occurrence (fGWAS default), we generated a bed file of custom 5,000 variant windows 602 
where the window corresponding to each T1D loci was centered on the lead variant of the 603 
primary signal using the flag -bed. The remaining genomic windows were either left unchanged 604 
or shortened in case they overlapped a T1D locus chunk. This step was necessary due to the 605 
sparseness of the genomic territory covered by DARs. For the functional fine-mapping, we 606 
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assigned a 0 or 1 value for each T1D variant encoding whether they overlapped a reproducible 607 
extended summit in each cell type. We ran fGWAS using the option -fine and including all 608 
clusters with significant enrichment in the T1D GWAS. 609 

PPA-weighted chromatin accessibility Z-scores 610 

To identify which cell types likely mediate T1D genetic risk in each locus, we developed an 611 
approach based on the chromatin accessibility for each cell type at the locus. First, we extended 612 
each variant in the genetic fine-mapping credible sets (calculated by Chiou et al.) by 50 bp in 613 
each direction. Next, we counted how many snATAC-seq reads overlapped the extended 614 
variant region in the pseudo-bulk data from each cell type. We then normalized the snATAC-seq 615 
signal by the sequencing depth and multiplied it by the genetic fine-mapping PPA. When two or 616 
more variants overlapped in the extended region, we calculated the ATAC-seq signal for the 617 
merged region and used the highest PPA. We retained for analysis only loci where at least one 618 
credible set variant overlapped a reproducible (minimum of 2 samples) ATAC-seq broad peak. 619 
We then summed each locus's PPA-weighted chromatin accessibility values to obtain a single 620 
score per cell type. Finally, we applied a Z-score transformation for each locus across cell types. 621 

GWAS variants regulatory impact prediction 622 

We used LS-GKM (30) to train a predictive model of 11-mers for each cell type using as positive 623 
regions the extended summits. We used the genNullSeqs function from the gkmSVM R 624 
package (56) to obtain the negative set of GC- and repeat-content matched regions per cell 625 
type. To predict the regulatory impact of the SNPs of interest, we used GkmExplain (32) using 626 
as input the ±25 bp flanking each allele and calculated the predicted importance scores for each 627 
base. In order to validate the LS-GKM model, we separately calculated the ATAC-seq allelic 628 
imbalance at heterozygous SNPs and compared it to the Delta-SVM scores for each allele. 629 
Using the genotype data from each donor, we used WASP (v. 0.2.1, commit 5a52185; python 630 
version 2.7)(57) to diminish reference bias using the same mapping and filtering parameters 631 
described for the initial mapping and filtering. Duplicates were removed using WASP’s 632 
rmdup_pe.py script. To avoid double-counting alleles, overlapping read pairs were clipped using 633 
bamUtil clipOverlap (v. 1.0.14; http://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap). We 634 
counted the number of reads containing each allele for each heterozygous autosomal SNP, 635 
using only bases with a base quality of at least 10. We further split each donor’s BAM file per 636 
cell type to calculate allelic imbalance per cell type separately and for the entire library. We used 637 
a two-tailed binomial test that accounted for reference allele bias to evaluate the significance of 638 
the allelic bias at each SNP. The observed allelic bias was then correlated with the Delta-SVM 639 
score, which was obtained by scoring the 11-mers centered on the REF and ALT alleles for the 640 
1,000 Genomes (Phase 3). We used all SNPs with an absolute Delta-SVM score ≥ 2 to 641 
compare with the observed allelic imbalance. 642 

Genome visualizations 643 

We used pyGenomeTracks (version 3.7) (58) to generate genome visualizations of snATAC-seq 644 
signals, co-accessible regions, and GWAS variants. 645 

GWAS data 646 
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T1D summary statistics were downloaded from the EBI Catalog (accession number 647 
GCST90012879) 648 

Data availability 649 

All data will be deposited in GEO upon publication. 650 

Code availability 651 

All code used for this manuscript is publicly available at 652 
(http://github.com/ParkerLab/albanus_2020_nih_islets_sn_t1d). We use snakemake (59) to 653 
facilitate reproducibility.  654 
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 928 
Supplementary Figure 1: A) UMAP representation of the first-pass scRNA-seq-only integration 929 
and clustering used as input for DecontX (B). UMAP representation split by samples. C) Marker 930 
gene expression in the first-pass scRNA-seq clustering. 931 
  932 

A

C

B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.12.516291doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.12.516291
http://creativecommons.org/licenses/by-nc-nd/4.0/


 933 
Supplementary Figure 2: A) UMAP representation of integrated scRNA-seq and snATAC-seq 934 
data faceted by sample (columns) and modality (rows) . B) Marker gene expression across 935 
clusters. C) Distribution of ATAC and RNA barcodes for each cell type. 936 
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 938 
Supplementary Figure 3: A) Estimated ambient RNA (“RNA soup”) composition for a subset of 939 
scRNA-seq libraries, obtained by combining all barcodes with less than 10 UMIs (i.e. empty 940 
droplets). Right plot is the same as left, but without INS for visibility. B) Agreement of the RNA 941 
contamination estimated by DecontX to ambient RNA fraction estimated directly from empty 942 
droplets. Clusters of off-diagonal genes correspond to ribosomal proteins. C) Comparison of 943 
ambient RNA fraction for each gene in the facets to the estimated islet proportion (fraction of 944 
barcodes assigned to the islet clusters) per library. D) DEGs in beta cells between HPAP055 945 
(AAB+) versus controls with and without a covariate accounting for ambient RNA. HAPAP055 946 
has a higher fraction of alpha cells compared to the other samples, which leads to higher levels 947 
of GCG in the ambient RNA. This, in turn, leads to erroneous assignment of GCG as a DEG 948 
(left plot, black circle). This technical artifact is mitigated once we include the estimated alpha 949 
cells proportion in the sample as a proxy of ambient RNA (right plot, black circle). 950 
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 952 
Supplementary Figure 4: Estimation of CVB4 infection efficiency per library using RNA-seq 953 
reads mapped to the CVB4 genome using a hybrid hg19-CVB4 genome. 954 
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 956 
Supplementary Figure 5: DEG effect size correlation (Spearman) of nominally significant 957 
genes between AAB+ and other conditions across cell types. 958 
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 960 
Supplementary Figure 6: Pathway enrichments agreements between DEGs in AAB+ versus 961 
other conditions across all cell types. 962 
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 964 
Supplementary Figure 7: All terms significantly enriched in beta cells differentially expressed 965 
genes across conditions, used as input for the rrvgo analyses in Figure 2C. 966 
  967 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.12.516291doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.12.516291
http://creativecommons.org/licenses/by-nc-nd/4.0/


 968 
Supplementary Figure 8: Example DAR significance calculation using effect sizes. Each color 969 
in the rainbow plots in the middle and right panels correspond to one of the 50 ATAC-seq signal 970 
bins. 971 
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 973 
Supplementary Figure 9: A and B) Allele-specific accessibility (ASA) distribution in beta cells 974 
and all cells for all heterozygous SNPs to estimate reference bias in WASP. C) DeltaSVM score 975 
distribution for all heterozygous SNPs. D) Effect size comparison between SNPs with significant 976 
ASA and DeltaSVM scores. 977 
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