

1 **Title:** Single-cell gene expression and chromatin accessibility profiling of human pancreatic
2 islets at basal and stimulatory conditions nominates mechanisms of type 1 diabetes genetic risk

3 **Authors:** Ricardo D'Oliveira Albanus^{1†*}, Xuming Tang^{2*}, Henry J. Taylor^{3*}, Nandini Manickam¹,
4 Michael Erdos⁴, Narisu Narisu³, Yuling Han², Peter Orchard¹, Arushi Varshney^{1,5}, Chengyang
5 Liu⁶, Ali Naji⁶, HPAP Consortium⁷, Francis S. Collins^{3**}, Shuibing Chen^{2**}, Stephen C. J.
6 Parker^{1,5,8**}

7 ¹ Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor,
8 MI, USA

9 ² Department of Surgery, Weil Cornell Medicine, New York, NY, USA

10 ³ Center for Precision Health Research, National Human Genome Research Institute, National
11 Institutes of Health, Bethesda, MD, USA

12 ⁵ Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA

13 ⁶ Department of Surgery, Perelman School of Medicine, University of Pennsylvania,
14 Philadelphia, PA, USA

15 ⁷ The Human Pancreas Analysis Program (RRID:SCR_016202)

16 ⁸ Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA

17 [†] Current affiliation: Department of Psychiatry, Washington University School of Medicine, Saint
18 Louis, MO, USA

19 * Equally contributing authors

20 ** Corresponding authors

21 **Abstract**

22 Type 1 diabetes (T1D) is a complex autoimmune disease characterized by the loss of
23 pancreatic islet beta cells. The mechanisms of T1D genetic risk remain poorly understood.
24 Here, we present a multi-omic integrative study of single-cell/nucleus molecular profiles of gene
25 expression and chromatin accessibility in the same biological samples from healthy and beta-
26 cell autoantibody⁺ (AAB+) human pancreatic islets to characterize mechanisms of islet-mediated
27 T1D genetic risk. We additionally performed single-cell/nucleus multi-omic profiling of healthy
28 islets under two stimulatory conditions used as *in vitro* models of T1D (cytokine cocktail and
29 CVB4 infection) to evaluate how environmental exposures recapitulate multi-omic signatures of
30 T1D. In total, we analyzed 121,272 cells/nuclei across 34 libraries, identifying 10 distinct cell
31 types. We identified cell-type-specific and disease-associated *cis*-regulatory elements and
32 nominated likely target genes. We provide evidence that T1D genetic risk is mediated through
33 multiple pancreatic cell populations, including islet endocrine cells (beta, alpha, gamma, and
34 delta), exocrine acinar and ductal cells, and immune cells. Finally, we identified three
35 independent T1D risk variants acting through pancreatic islet endocrine cells at the *TOX*,
36 *RASGRP1*, and *DLK1/MEG3* loci. Together, this work improves our understanding of how non-
37 coding genetic variants encode T1D risk through a complex interplay of different cell types in the
38 pancreas.

39 **Introduction**

40 Type 1 diabetes (T1D) is a complex autoimmune disease that accounts for 5-10% of all
41 diagnosed diabetes cases (1). The primary manifestation of this disease is the targeting of
42 endocrine beta cells by the immune system, likely mediated by T-cells, which leads to beta-cell
43 loss and insulin deficiency (2). Advances in genotyping and imputation enabled increased power
44 and accuracy for genome-wide association studies (GWAS) of T1D genetic risk (3, 4). However,
45 despite these substantial developments, the molecular mechanisms of T1D genetic risk are still
46 poorly understood.

47 It is widely accepted that immune cells are the primary mediators of T1D genetic risk (2), which
48 is supported by the strong genetic association of the major histocompatibility complex (MHC) in
49 T1D GWAS (3, 5). However, increasing evidence suggests that other cell types, including
50 pancreatic islets, also contribute to T1D etiology and genetic risk (3, 4, 6). For example, one
51 proposed mechanism for T1D risk variants acting through beta cells is to modulate their
52 propensity for immune-mediated apoptosis (7). Two recent studies using functional genomics at
53 the single-cell level helped clarify some of the biology driving T1D genetic risk and contributing
54 to T1D progression (4, 8). Both studies identified a role for non-immune cell types in the
55 pancreas, particularly acinar and ductal cells, in mediating T1D genetic signals (4) or
56 contributing to T1D onset and progression (8). In addition, one of these studies reported that
57 *cis*-regulatory elements active in beta cells are significantly enriched to overlap T1D GWAS
58 variants (4), indicating that beta cells mediate T1D genetic risk. Therefore, one crucial question
59 that remains unanswered is how genetic variants acting through other pancreatic cell types,
60 particularly beta cells, contribute to T1D onset and progression. Answering this question will be
61 critical to help guide the development of novel T1D therapies.

62 Due to the scarcity of pancreatic tissue samples obtained from T1D donors and the limitation
63 that disease progression leads to beta-cell destruction, several *in vitro* models of T1D using
64 healthy pancreatic tissue have been developed to understand the early mechanisms of T1D in
65 the pancreas. These models include treating primary islet cultures with a cytokine cocktail (TNF-
66 α , IFN- γ and IL-1 β) or infecting islets with Coxsackievirus B4 (CVB4) virus (9, 10), which
67 simulate the stressed environment beta cells are exposed to during T1D. However, the cell-
68 specific molecular pathways underlying these experimental perturbations and to what extent
69 these pathways mimic T1D have not been extensively characterized.

70 Here, we performed single-cell resolution multi-omic integration of high-throughput molecular
71 profiles of paired gene expression and chromatin accessibility from the same biological samples
72 obtained from healthy and T1D human pancreatic islets. We characterized mechanisms of T1D
73 genetic risk, focusing on identifying variants acting through islet endocrine cells. In addition, we
74 characterized two experimental models of T1D in islets to determine how they recapitulate the
75 molecular aspects of T1D. Finally, we identify three independent T1D risk variants which likely
76 mediate T1D genetic risk through islet endocrine cells. Our work identifies how all pancreatic
77 cell populations partially mediate T1D genetic risk. Together, this work improves our
78 understanding of how non-coding genetic variants encode T1D risk through a complex interplay
79 of immune and pancreatic cell types.

80 **Results**

81 **Identifying islet cell types by co-clustering gene expression and chromatin accessibility
82 profiles**

83 We performed gene expression (single-cell RNA-seq; scRNA-seq) and chromatin accessibility
84 (single-nucleus ATAC-seq; snATAC-seq) on human pancreatic islets from healthy (n=8) and
85 auto-antibody positive donors (AAB+; n=3). Given that procuring pancreatic tissue from affected
86 donors is difficult, we aimed to investigate whether two established experimental models of T1D
87 in human islets recapitulate AAB+ molecular profiles at the cell-specific epigenomic and
88 transcriptomic levels. To this end, we additionally performed scRNA-seq and snATAC-seq on
89 islets from a subset of healthy donors (n=3) under cytokine stimulation (TNF- α , IFN- γ and IL-1 β)
90 and CVB4 infection (**Figure 1A, Supplementary Table 1**). After stringent quality control (QC;
91 Methods), we profiled 121,272 cells (49,897 snATAC-seq nuclei and 71,375 scRNA-seq cells;
92 **Supplementary Figures 1 and 2, Supplementary Table 2**). We performed joint clustering of
93 the molecular profiles across samples and modalities (n=34 libraries) using Seurat (11). We
94 identified ten major distinct cell types based on the gene expression of known marker genes
95 and the chromatin accessibility of their gene bodies (**Figure 1B-D, Supplementary Figure 2**).
96 The identified cell types represent the endocrine (beta, alpha, delta, and gamma cells), exocrine
97 (acinar and ductal), stellate (activated and quiescent), endothelial, and immune lineages. Cell
98 type representation ranged from 1.4% (immune) to 35% (ductal) of all cells. We profiled 41,569
99 islet endocrine cells and nuclei, corresponding to 34.3% of all profiled cells and nuclei. Alpha
100 cells were the most abundant endocrine cells (n=21,151), followed by beta (n=15,577), delta
101 (n=2,703), and gamma cells (n=2,138). All cell types were well-represented across samples and
102 modalities, and we did not identify any sample- or modality-specific clusters after QC (**Figure**
103 **1C, Supplementary Figure 2**). Importantly, we observed during the initial QC steps that the
104 ambient RNA contamination (RNA “soup”) was a source of technical variation across libraries
105 and could lead to misinterpretation of results if not correctly accounted for (Methods,
106 **Supplementary Figure 3**). This is in line with a recent study indicating that ambient RNAs can
107 confound single-cell analyses (12).

108 **Transcriptional changes in experimental models of T1D recapitulate disrupted pathways
109 in T1D**

110 Aiming to identify pathways and regulatory programs associated with T1D, we first performed
111 differential expression analyses across disease states and experimental perturbations. We
112 accounted for biological and technical covariates that could influence results to quantify
113 differential expression across conditions accurately. After adjusting for technical variation, we
114 detected thousands of differentially expressed genes (DEGs) at 5% false discovery rate (FDR)
115 across all cell types and conditions combined (ranging from 24 to 1,663 per cell type and
116 condition, median = 476; **Figure 2A**). We observed the largest transcriptional changes
117 associated with disease state (AAB+ vs. controls) relative to the perturbations (cytokines and
118 CVB4) in the islet endocrine cells (beta, alpha, delta, and gamma), while the endothelial cells
119 had stronger transcriptional changes under cytokine stimulation. On the other hand, the immune
120 cells had the most comparable levels of transcriptional changes across disease state and
121 experimental perturbations, consistent with immune cell types being highly responsive to
122 environmental conditions. We observed lower transcriptional changes associated with CVB4

123 infection compared to cytokine stimulation in all cell types, which motivated us to investigate if
124 CVB4 infection efficiency differed across samples. Indeed, we observed differences in the
125 number of detectable CVB4 mRNAs in each CVB4-treated sample (**Supplementary Figure 4**).
126 This variability may explain why the CVB4 infection DEG effect sizes were generally smaller.
127 Together, these results are consistent with T1D inducing global changes in the pancreatic
128 transcriptional landscape. However, these transcriptional changes are more pronounced in islet
129 endocrine and immune cells compared to other pancreatic cells.

130 Aiming to better understand if the experimental perturbations recapitulated functional aspects of
131 T1D in pancreatic cells, we performed pathway enrichment analyses using the DEGs from
132 disease state and perturbations. The DEGs in AAB+ were generally not the same as the
133 perturbations for most cell types (DEG \log_2FC Spearman's ρ ranging across conditions from -
134 0.12 to 0.88, median = 0.19; **Supplementary Figure 5**). However, we found overall high
135 concordance between the pathway enrichments for nominally significant enrichments in AAB+
136 compared to cytokine stimulation and CVB4 infection in beta cells and other endocrine cells
137 (**Figure 2B-D, Supplementary Figure 6-7**). These findings suggest cytokine stimulation and
138 CVB4 infection affect similar pathways in beta cells compared to T1D, albeit regulating different
139 genes within those pathways. Overall, the islet endocrine cells had the highest agreement
140 between disease state and experimental perturbations at the level of pathway enrichments
141 (**Figure 2D**). These results indicate that these experimental models recapitulate aspects of T1D
142 in islet cells. However, these experimental models perturb different pathways than those
143 associated with disease state at other pancreatic cell types. Therefore, these experimental
144 models may not be the most suitable for studying T1D in cell types other than islets.

145 **Transcription factors regulating the epigenomic landscape of pancreatic cells**

146 To characterize the epigenomic landscape of the different pancreatic cell types, we used the
147 BMO tool (13) to predict bound transcription factor (TF) sites using a non-redundant collection of
148 540 motifs and calculated their chromatin information patterns. The observed chromatin
149 information patterns reflect the impact of specific TFs in organizing local chromatin architecture
150 and establishing cell identity (13) (**Figure 3A-B**). We identified common and cell-type-specific
151 TFs driving the epigenomic landscape for each cell type (**Figure 3C**). The TFs CTCF, AP-1, and
152 NFE2 consistently scored highest in chromatin information across cell types (**Supplementary**
153 **Table 3**), likely reflecting their constitutive roles in chromatin organization (14, 15). On the other
154 hand, a subset of TF families had a higher impact on chromatin organization in a cell-specific
155 manner. These TF families include RFX in endocrine cells, HNF in exocrine cells, and SPI1
156 (PU.1) in immune cells (**Figure 3C**). All these TF families have been extensively characterized
157 as cell fate determinants and play functional roles in their respective lineages (16–18) and,
158 therefore, underscore the specificity of our epigenomic analyses. Importantly, we observed
159 changes in the underlying chromatin organization associated with a subset of TFs when
160 comparing conditions (**Figure 3D**). The IRF motif family was associated with increased
161 chromatin organization in beta cells under cytokine treatment, consistent with previous studies
162 showing that cytokines stimulation induces IRF-1 activation in beta cells and subsequent
163 apoptosis (19, 20). Similarly, cytokine treatment induced changes in chromatin organization at
164 the SPI1, MAF, and ETS family TF motifs in immune cells, which are well-known mediators of
165 cytokine response in these cells (21, 22). Notably, the chromatin organization changes in AAB+

166 cells were less pronounced than the environmental perturbations. In agreement with the scRNA-
167 seq results, these chromatin accessibility results indicate that the experimental models of T1D
168 differ from disease in that they associate with more acute changes in cellular state.

169 **Enrichment of T1D GWAS variants nominates cell types likely mediating T1D genetic risk**

170 In order to investigate the mechanisms involved in T1D genetic risk, we used fGWAS (23) to
171 calculate the enrichment of the accessible chromatin of the different cell types captured by our
172 snATAC-seq experiments using the summary statistics of a recent T1D GWAS (4). As
173 expected, we observed the highest T1D GWAS enrichment in the immune cluster (log
174 enrichment = 2.78; **Figure 4A**). The other significantly enriched cell types were acinar,
175 quiescent stellate, beta, ductal, and alpha (log enrichments ranging from 1.53 to 2.12). These
176 results indicate that multiple pancreatic cell types, including islet endocrine cells, contribute to
177 T1D genetic risk. These enrichments, however, likely represent the baseline (unperturbed) state
178 of these cells and, therefore, provide an incomplete picture of T1D genetics. To contextualize
179 these results, we tested the enrichment of accessible chromatin using the summary statistics of
180 type 2 diabetes and fasting glucose from the DIAMANTE (24) and MAGIC (25) GWAS studies.
181 We observed the strongest enrichments for these two traits in accessible chromatin regions
182 from beta cells and other islet endocrine cell types (**Figure 4A**), which is consistent with
183 previous studies (26, 24, 27, 25).

184 We investigated the context-specific roles of the studied cell types in T1D predisposition. To this
185 end, we used fGWAS to calculate the enrichment of T1D GWAS summary statistics in
186 differentially accessible regions (DARs) across disease states and experimental perturbations.
187 Because of data sparseness and inflation of *p*-values associated with differential analyses in
188 single-cell data (28), we developed a stringent effect-size-based approach for detecting DARs in
189 our snATAC-seq data (**Supplementary Figure 8**, Methods). As expected, DARs for AAB+ and
190 cytokine treatment in immune cells were more highly enriched for T1D GWAS than non-DARs
191 (**Figure 4B**). In addition, the enrichment point estimates increased as we used more stringent
192 DAR thresholds. This result is consistent with a substantial component of T1D genetic risk
193 encoded by responsive elements in immune cells, such as the MHC locus (4). We also
194 observed a similar trend in DARs for CVB4 infection in immune cells, but it did not reach
195 significance, likely due to the difference in CVB4 infection efficiency across replicates
196 (**Supplementary Figure 4**). Interestingly, we found AAB+ DARs in beta cells more enriched for
197 T1D GWAS than non-DARs. Similar to the previous results in immune cells, the enrichment
198 point estimates for the beta-cell DARs increased with more stringent DAR thresholds (**Figure**
199 **4B**). This result indicates that the environmentally responsive regulatory elements in beta cells
200 also mediate T1D genetic risk and, therefore, indicate a role for islet endocrine cells in
201 mediating T1D progression.

202 **Regulatory elements in beta and other islet endocrine cells mediate T1D genetic risk**

203 Next, we aimed to understand regions and regulatory elements that are responsible for driving
204 the observed T1D GWAS enrichments in pancreatic cells. To this end, we developed a novel
205 approach to quantify the relative contributions of each cell type to T1D genetic risk and prioritize
206 candidate cell types mediating genetic risk at a given locus. This approach is based on the cell-

207 type-specific chromatin accessibility levels at each variant in a T1D genetic credible set,
208 weighted by the posterior probability of association (PPA) of the variant (Methods). As a proof of
209 concept, the three independent GWAS signals at the *INS* locus were prioritized to act through
210 beta cells (**Figure 4C**). A broader analysis of all 136 T1D GWAS signals showed that genetic
211 risk is partitioned across all the cell types analyzed in this study (**Figure 4D**). Immune cells
212 contribute to most of the T1D genetic risk, as expected. However, we observed multiple signals
213 prioritized to act through pancreatic endocrine (beta, alpha, delta, gamma), exocrine (acinar,
214 ductal), stellate, and endothelial cells. Importantly, we identified several signals with beta- or
215 islet-specific accessibility, indicating that these genetic signals are mediated by islet endocrine
216 cells in the pancreas. These islet endocrine loci include the three independent signals at the *INS*
217 locus, the primary and secondary signals at *DLK1/MEG3*, and the signals at *TOX*, *RASGRP1*,
218 and *GL/S3* (**Figure 4D**).

219 We next attempted to prioritize T1D risk loci likely acting through beta or other islet endocrine
220 cells for functional validation. In addition to the PPA-weighted chromatin accessibility for each
221 locus, we accounted for the number of variants in the 99% credible set (CS) and the PPA
222 distribution across variants to nominate candidate loci where functional validation experiments
223 were feasible. We prioritized loci with either a few variants in the 99% CS or loci where the PPA
224 distribution was highly skewed towards a small number of variants. In addition, we used
225 CICERO (29) to calculate co-accessibility between variant-harboring regulatory elements and
226 gene promoters to help identify candidate target genes. To further reduce the search space for
227 candidate variants, we performed functional fine-mapping (FFM) with fGWAS using a joint
228 model accounting for the chromatin accessibility peaks from cell types enriched for T1D
229 GWAS (Methods). Using these criteria, we nominated the main signals at *TOX* (99% CS size =
230 28) and *RASGRP1* (99% CS size = 66) and the secondary signal *DLK1/MEG3* (10 variants with
231 PPA > 0.01; 99% CS size = 2,053) as the most compelling candidate loci likely acting through
232 beta or islet endocrine cells (**Figures 5A-C**).

233 At the *TOX* locus, our FFM analyses prioritized rs367116 and rs1947178, with the latter being
234 the lead variant at the locus. The intronic beta-cell regulatory element containing rs1947178 was
235 co-accessible with the *TOX* promoter region (CICERO co-accessibility = 0.065), making *TOX*
236 the candidate gene for this locus (**Figure 5A**). At the *RASGRP1* locus, FFM prioritized
237 rs55728265, which is in strong linkage disequilibrium ($r^2 = 0.93$) with the lead variant,
238 rs35134214. The regulatory element harboring rs55728265 overlaps the *RASGRP1* promoter
239 region and was not co-accessible with any other promoter, making *RASGRP1* the candidate
240 gene at this locus (**Figure 5B**). The lead variant at this locus (rs35134214) did not overlap
241 ATAC-seq peaks in pancreatic cell types, therefore highlighting the validity of using FFM
242 approaches to prioritize genetic signals. At the *DLK1/MEG3* locus, our FFM analyses prioritized
243 the lead variant for the primary signal (rs56994090), despite this variant not overlapping any
244 features used in the FFM model (**Figure 5C**). We also prioritized the primary variant at the
245 secondary signal at *DLK1/MEG3* (rs3783355; PPA = 0.56) because it had a 7-fold higher PPA
246 compared to the second highest variant in the 99% CS (rs10145648; PPA = 0.08) and
247 overlapped a highly accessible chromatin region in beta, alpha, and ductal cells. Interestingly,
248 we observed increased co-accessibility between the regulatory element harboring rs3783355
249 and the *DLK1* and *MEG3* promoter regions in AAB+ and cytokine-stimulated beta cells

250 compared to healthy beta cells (*MEG3*–rs3783355 CICERO score = 0.013 for cytokine; *DLK1*–
251 rs3783355 CICERO scores 0.002 and 0.144 for healthy and cytokine, respectively). These
252 results suggest that the regulatory element harboring rs3783355 acts in a context-dependent
253 manner to mediate T1D risk in pancreatic islet endocrine cells.

254 **T1D risk variants are predicted to disrupt islet endocrine cells regulatory elements**

255 We next attempted to characterize the functional mechanisms through which the variants of
256 interest at the *TOX*, *RASGRP1*, and *DLK1/MEG3* loci act to mediate T1D risk. We aimed to
257 characterize the impact of the risk and non-risk alleles associated with these variants. Because
258 we had genotype information for 10 of the donors, we calculated the cell type-specific ATAC-
259 seq allelic bias at each heterozygous SNP with enough coverage (**Supplementary Figure 9A–**
260 **B**). In parallel, we trained a predictive model of sequence features associated with chromatin
261 accessibility in beta cells using LS-GKM and DeltaSVM (30, 31) to predict beta-cell allelic
262 effects associated with any base-pair change in the genome (Methods; **Supplementary Figure**
263 **9C–D**). We used the observed allelic bias to validate our predictive model. The predicted allelic
264 effects from the model were highly concordant (87.1% effect size direction agreement) with the
265 observed allelic effects (ATAC-seq allelic bias) at heterozygous SNPs, indicating that the model
266 correctly captured allelic regulatory changes associated with increased chromatin accessibility
267 in beta cells (**Figure 5D**). The predictions from the model trained in beta cells had a higher
268 agreement with the observed allelic effects calculated using the entire dataset (92.6% effect
269 size direction agreement), which we attribute to increased power when combining data across
270 all cell types. Alternatively, this also can be interpreted as the model trained in beta cells also
271 capturing sequence features associated with chromatin accessibility more broadly.

272 To further gain information from our predictive model, we applied GkmExplain (32) to the
273 variants of interest and predicted the regulatory effects associated with each allele within the
274 entire sequence context around the variants (**Figure 5E**). At the *TOX* locus, the risk allele at the
275 lead variant, rs1947178 (risk = A; non-risk = G), was predicted to increase chromatin
276 accessibility. The predicted impact for the risk allele at rs1947178 was also higher than that of
277 the FFM-nominated SNP, rs367116 (risk = C; non-risk = T). At the *RASGRP1* locus, the lead
278 variant, rs35134214 (risk = CTG; non-risk = C), was predicted to increase accessibility.
279 Conversely, the *RASGRP1* FFM-nominated SNP, rs55728265 (risk = T; non-risk = C), was
280 predicted to decrease accessibility. While we did not observe any ATAC-seq peaks at
281 rs35134214, we cannot discard that this variant mediates T1D genetic risk through other cell
282 types not assayed in this study. Finally, at the *DLK1/MEG3* locus, we predicted stronger effects
283 in chromatin accessibility associated with the risk allele at the secondary signal lead variant,
284 rs3783355 (risk = G; non-risk = A) compared to the lead variant at the primary signal
285 (rs56994090; risk = T, non-risk = C). Consistent with the predicted effects in dysregulating
286 chromatin accessibility, we identified multiple predicted bound TF motifs overlapping these risk
287 variants, including PAX4 and HNF4 (*RASGRP1*), ITGB2, and ZBTB6 (*DLK1/MEG3*), and CPHX
288 (*TOX*) (**Supplementary Table 4**). Together, these results implicate rs1947178 (*TOX*),
289 rs55728265 (*RASGRP1*), and rs3783355 (*DLK1/MEG3*) as likely causal variants mediating T1D
290 genetic risk through islet cell types.

291 **Discussion**

292 After decades of research, T1D genetic risk is widely accepted to be driven by variants
293 disrupting the endogenous pathways that inhibit self-reactivity, which in turn increase
294 autoimmune responses (1, 2). We have integrated epigenomic and transcriptomic profiles of
295 human pancreas samples from healthy and AAB+ donors to better understand how T1D risk
296 variants act across the different cell types in the pancreas and lead to changes in gene
297 regulation. Rather than being mediated by one or a few cell types, we find that T1D genetic risk
298 variants overlap active regulatory elements in every pancreatic cell type analyzed in this study.
299 Our findings are consistent with the increasing evidence linking non-immune cells to mediating
300 T1D risk (3, 4, 6). In particular, our work identifies three genes expressed in beta cells and other
301 islet cell types as putative causal genes for three independent T1D risk variants: *DLK1/MEG3*,
302 *TOX*, and *RASGRP*. Our prioritization of the *DLK1/MEG3* and *TOX* loci as mediated through
303 islet endocrine cells is supported by a previous scATAC-seq study, which observed a higher
304 overlap of high-PPA variants in these loci with beta-cell regulatory elements (4). Our work
305 expands on these findings by predicting rs1947178 and rs3783355 as causal variants at these
306 loci and further prioritizing rs55728265 at the *RASGRP1* locus as an additional variant
307 mediating T1D genetic risk through islet endocrine cells.

308 While the role of immune cells mediating T1D genetic risk is generally understood, it is still
309 unclear how other pancreatic cell types contribute to T1D risk. One hypothesis is that risk
310 variants at these other cell types lead to disease predisposition by promoting the recruitment of
311 self-reactive T-cells or creating a harsher cellular microenvironment that further predisposes
312 beta-cell death. Support for this hypothesis is provided by a previous snRNA-seq study from
313 healthy, AAB+, and T1D human pancreas, which suggested that T1D ductal cells may help
314 promote CD4⁺ T cell tolerance through the expression of MHC molecules and other surface
315 receptors (8). Our work indicates that the immune cells indeed have the highest individual
316 contribution to T1D genetic risk. However, this contribution is relatively small compared to all the
317 other cell types combined. In addition to multiple variants acting through islet endocrine cells,
318 we identified a role for acinar, stellate, endothelial, and to a lesser degree, ductal cells as likely
319 mediators of T1D genetic risk. This unexpected finding agrees with and expands on other
320 studies of T1D at the single-cell level identifying the contributions of other pancreatic cell types
321 to T1D genetic risk and onset (4, 8). Therefore, an important question for future studies is
322 understanding how T1D risk variants act through non-immune cell types, particularly beta cells.

323 Among the active areas of T1D research is developing experimental models to understand
324 disease biology using healthy islets. In this study, we characterized the molecular profiles of
325 healthy islets challenged with cytokine stimulation or CVB4 infection. These experimental
326 models inherently disturb healthy islets in a time window several orders of magnitude smaller
327 than the disease duration (hours vs. years). However, we found similarities in the transcriptomic
328 and epigenomic profiles associated with these experimental perturbations. Furthermore, we
329 observe that these experimental models most strongly perturb different genes compared to
330 T1D. However, these perturbed genes participate in several of the same pathways observed in
331 islets from affected donors, which supports the use of these experimental models to understand
332 T1D biology. Our results suggest that while general agreement exists between the downstream
333 pathways, some experimental models may be more appropriate for studying specific aspects of
334 T1D biology (e.g., cytokines triggered differentiation pathways and CVB4 infection triggered

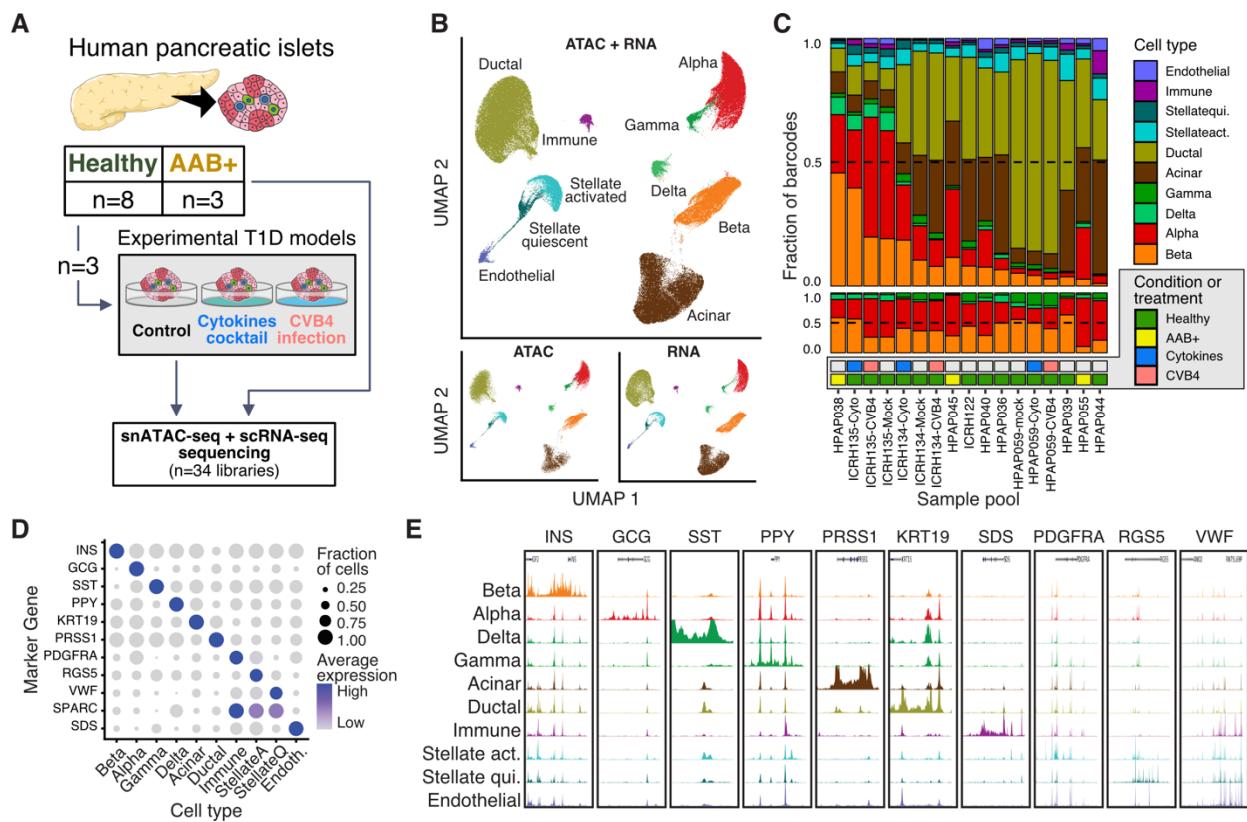
335 more stress responses). Therefore, more in-depth studies are required to explore the full gamut
336 of protocols associated with these T1D experimental models, such as different cytokine
337 combinations, to determine the most appropriate experimental approach to model specific
338 aspects of T1D biology.

339 Among the limitations of this study is that we jointly analyze pre-diabetic (AAB+ without
340 symptomatic presentation) and diabetic donors due to the low sample size. While our results
341 suggest that this is a valid approach to detecting disease-relevant biology, this design would
342 miss molecular signatures associated with different stages of the disease. In particular, one can
343 hypothesize that the beta cells that survive in T1D donors are transcriptionally different from the
344 beta cells from the pre-diabetic donors and develop molecular characteristics to make them
345 more resistant to immune targeting. Therefore, separately studying beta cells from T1D donors
346 is an important future direction that can provide essential clues for new therapeutic strategies.

347 **Acknowledgments**

348 We are especially grateful to the donors and their families for making this work possible. This
349 work was funded by the NIH (5U01DK127777 to S.C. and S.C.J.P.; 1-ZIA-HG000024 to F.S.C.).
350 Human Pancreas Analysis Program for Type 1 Diabetes (2U01DK112217-02A1). We thank the
351 genomics resources core facility at Weill Cornell Medicine and NHGRI Genomic Core for
352 genotyping SNP array of the samples. Islet tissue samples were obtained through
353 Human Pancreas Analysis Program (HPAP). Pancreas and islets illustrations were modified
354 from Servier Medical Art and obtained through Bioicons (<https://bioicons.com>).

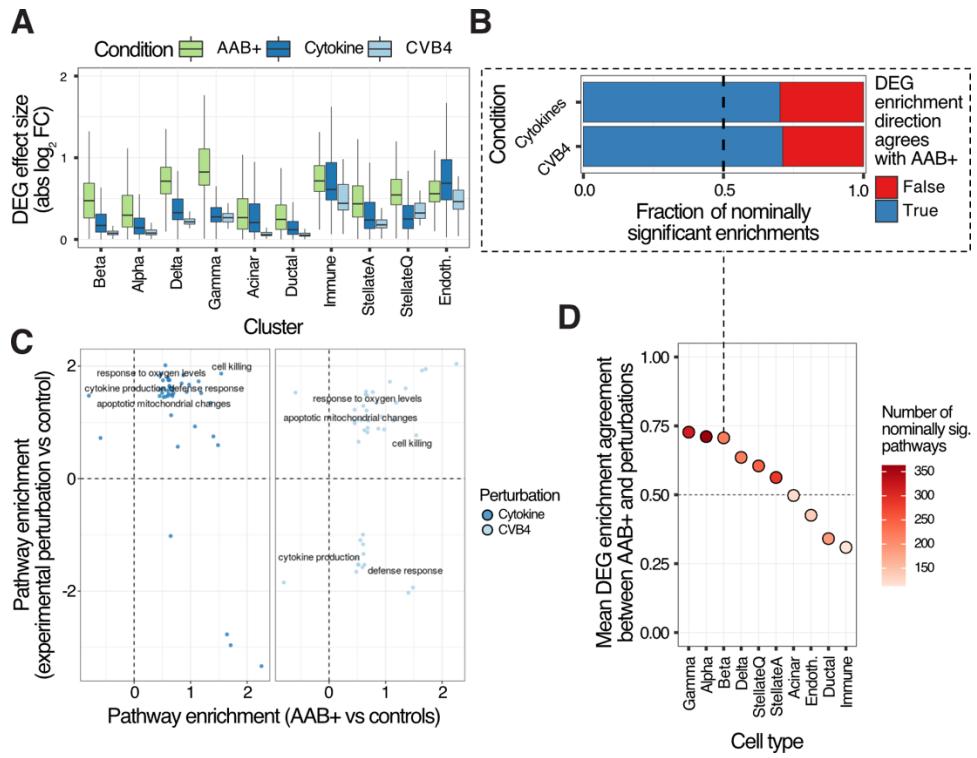
355



356

357 **Figure 1: Study overview. A)** Experimental design for multi-omic library generation. **B)** Uniform
 358 Manifold Approximation and Projection (UMAP) representation of the fully integrated dataset.
 359 Bottom panel is the same data faceted by modality. **C)** Overview of the representation of all cell
 360 types (top), islet endocrine cell types (middle), and conditions (bottom) across the combined
 361 scRNA-seq and snATAC-seq libraries for each sample pool. **D)** scRNA average expression
 362 values for marker genes across the cell types identified via joint modality clustering. **E)**
 363 Normalized aggregate ATAC-seq signal tracks across marker genes for each cell type.

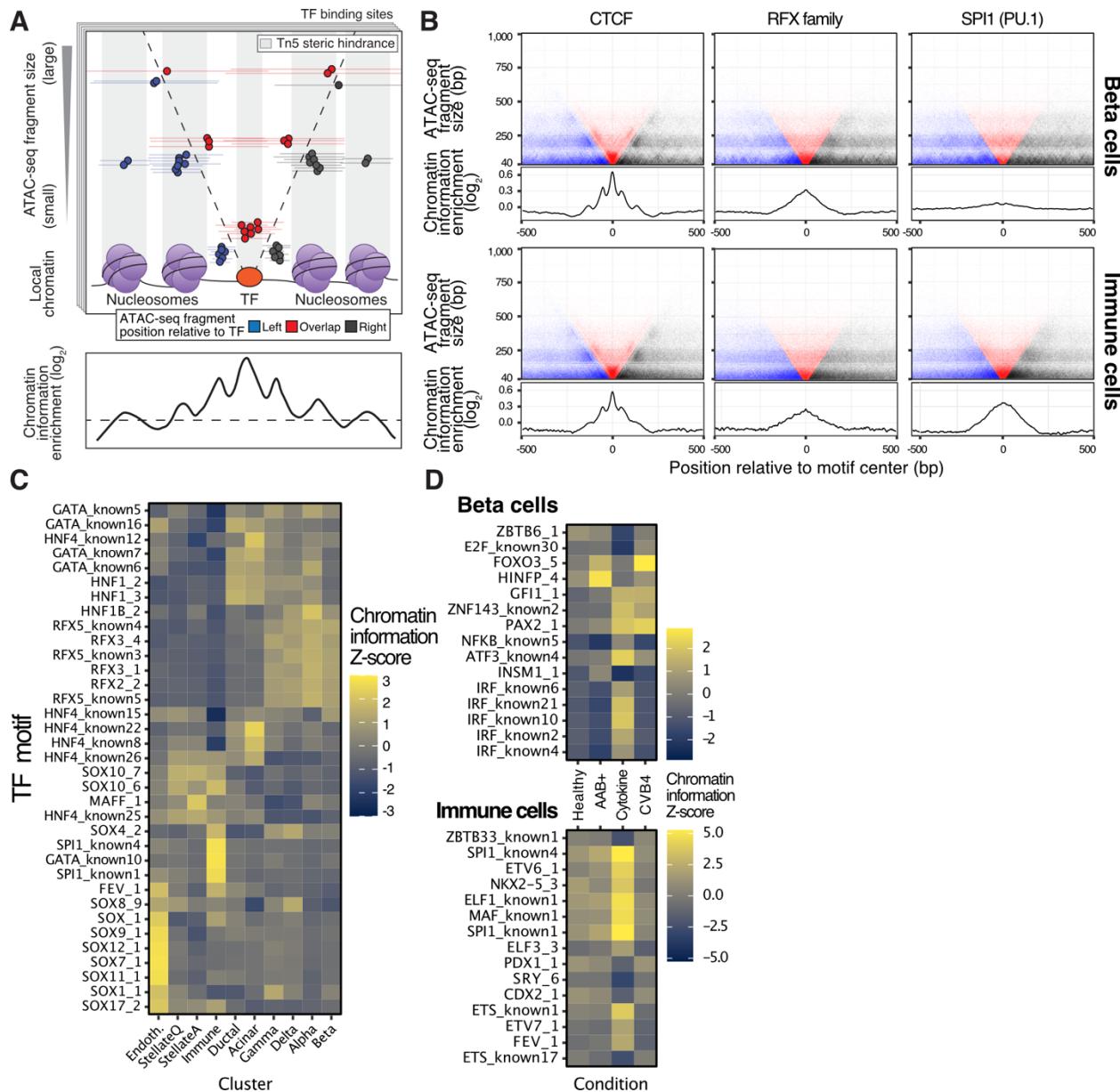
364



365

366 **Figure 2: Transcriptomic changes associated with T1D and experimental models. A)**
367 Differentially expressed gene (DEG) effect size comparison across cell types and conditions. **B)**
368 Beta cells DEG pathway enrichment effect size direction agreements between experimental
369 models of T1D and AAB+ cells. **C)** Significantly enriched pathways across AAB+ and
370 experimental models (summary of significant terms using rrvigo). **D)** Average pathway effect
371 size direction agreement per cell type between AAB+ and experimental models for nominally
372 significant terms in at least one condition.

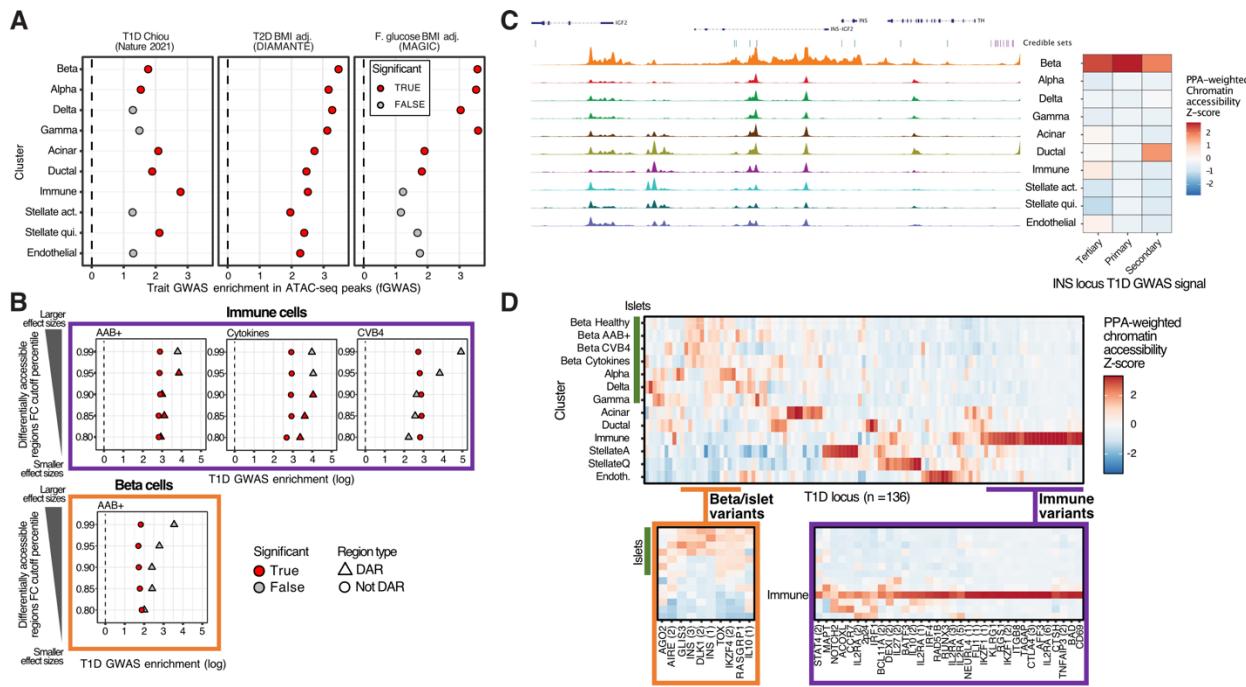
373



374

375 **Figure 3: TF regulatory landscape of pancreatic cell types.** **A**) Chromatin information
 376 enrichment calculation overview (adapted from (13)). **B**) V-plots showing aggregate ATAC-seq
 377 fragment midpoints distribution around predicted bound sites for three TFs (top facets) and their
 378 associated chromatin information enrichment (bottom facets) in beta cells and immune cells. **C**)
 379 Chromatin information Z-scores for a subset of TFs across all cell types indicate differential
 380 regulatory activity. **D**) Similar to C, but directly comparing across conditions for beta cells (top)
 381 and immune cells (bottom).

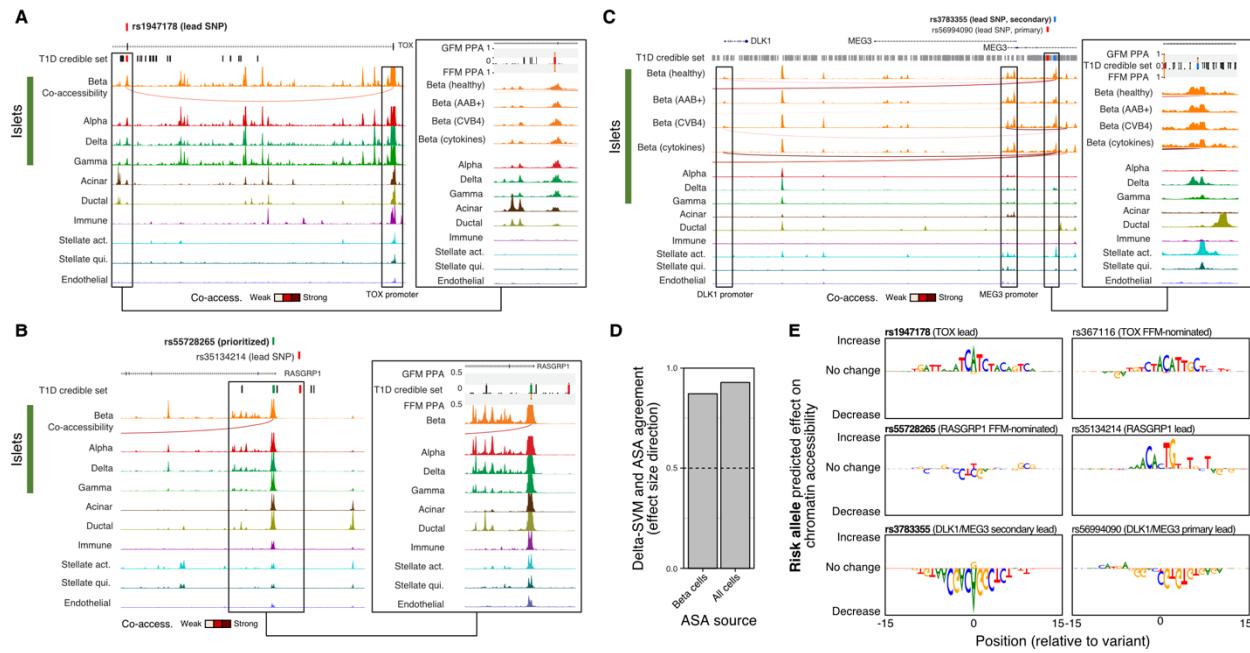
382



383

384 **Figure 4: The regulatory landscape associated with T1D genetics in pancreatic cells. A)**
385 fGWAS enrichments for GWAS summary statistics of three traits in accessible chromatin
386 regions from each cell type in our data. **B)** fGWAS enrichments for T1D summary statistics in
387 immune and beta cells across progressively stringent thresholds to identify differentially
388 accessible regions (DARs) and their non-significant counterparts. **C)** Example of our PPA-
389 weighted chromatin accessibility score strategy to identify cell types likely mediating three
390 independent T1D GWAS signals at the INS locus. **D)** PPA-weighted chromatin accessibility
391 scores across all T1D loci and cell types and candidate loci likely mediated by islet and immune
392 cell types.

393



394

395 **Figure 5: Genetic variants mediating T1D risk in islet endocrine cells.** T1D signals at the
 396 TOX (A), DLK1/MEG3 (B), and RASGRP1 (C) loci. Left panels represent the broad locus
 397 overview, and the insets highlight the regions and variants of interest and their associated
 398 genetic and functional fine-mapping PPA values. For simplicity, only beta-cell co-accessibility
 399 tracks are shown. D) Agreement between predicted and observed ATAC-seq allelic imbalance
 400 (allele-specific accessibility; ASA) in beta cells and all cells using a predictive model trained in
 401 beta cells. E) Predicted regulatory impact of T1D risk variants of interest in beta cell chromatin
 402 accessibility using GkmExplain.

403

404 **Methods**

405 **Tissue processing and sample preparation**

406 Human pancreatic islets were isolated in the Human Islet Core at the University of Pennsylvania
407 following the requirements of the Clinical Islet Transplantation consortium procedure. The
408 pancreatic islets were grown in CIT culture medium and maintained in a humidified incubator
409 with 5% CO₂ at 37°C. Single-cell RNA-seq and single-nucleus ATAC-seq were performed using
410 10X Chromium platform at genomics resources core facility at Weill Cornell Medicine.

411 **Single-nucleus ATAC-seq processing**

412 Single-nucleus ATAC-seq data was processed using the Parker Lab snATAC-seq pipeline
413 (<https://github.com/porchard/snATACseq-NextFlow>). Briefly, after performing adapter trimming
414 with cta (v. 0.12; <https://github.com/ParkerLab/cta>), reads were aligned to the hg19 reference
415 genome using bwa mem (v. 0.7.15-r1140; (33) using -l 200,200,5000 to avoid large fragments
416 being artificially assigned low MAPQ scores. Barcode sequences were corrected for sequence
417 mismatches by calculating the Hamming distance between all barcodes and fixing all barcodes
418 with a Hamming distance smaller or equal to 2 to a barcode sequence in the 10X Genomics
419 barcode list. After mapping, we identified barcodes using Picard MarkDuplicates (v. 2.8.1;
420 <https://broadinstitute.github.io/picard>). We used ataqv (<https://github.com/ParkerLab/ataqv> (34))
421 to obtain barcode-level QC metrics, such as the number of high-quality autosomal alignments
422 (HQAA) and transcription start site (TSS) enrichment. For downstream analyses, we retained
423 only barcodes with HQAA ≥ 5,000, TSS enrichment between 3 and 20, and no more than 15%
424 of all reads originating from a single autosome. The latter metric helps to remove barcodes
425 associated with low-integrity nuclei. Doublets were flagged and removed using ArchR (v. 0.9.5)
426 (35). Because the ambient signal (soup) from the snATAC-seq library is mainly from chrM,
427 which was filtered for our analyses, we did not perform ambient DNA correction. For integration
428 with the scRNA-seq data (described below), we generated count matrices for each library
429 encoding the number of ATAC-seq fragments overlapping promoter (5 Kb upstream of most
430 upstream transcription start site) and gene body regions of autosomal, protein-coding genes
431 using bedtools (v2.26.0).

432 **Single-cell RNA-seq**

433 Single-cell RNA-seq data were processed with the Parker Lab snRNA-seq pipeline
434 (<https://github.com/porchard/snRNaseq-NextFlow>). Reads were aligned to the hg19 reference
435 genome and GENCODE v19 (36) using STARsolo (STAR v. 2.5.4 (37)). Barcode sequences
436 were corrected for mismatches using the same approach as in the snATAC-seq data. We then
437 calculated QC metrics for each barcode (number of UMIs, % mitochondrial reads, etc.). We
438 selected for downstream analyses barcodes that had at least 1,000 UMIs and were called non-
439 empty (1% FDR) by EmptyDrops (38). For each library, we calculated the % mitochondrial
440 reads rank distribution and identified the inflection (knee) using the uik function of the inflection
441 package in R (39). We only kept barcodes with % mitochondrial reads smaller than the inflection
442 value, ranging from 6.6% to 20.2%. Doublets were flagged and removed using DoubletFinder
443 (v2.0.2) (40) with default parameters. After removing doublets and barcodes that failed QC, we

444 used DecontX (Celda v1.2.4) (41) to control for ambient RNA (soup RNAs). We performed a
445 first-pass clustering of the barcodes that passed QC using Seurat (**Supplementary Figure 1**) to
446 identify broad cell identities. We then used the first-pass clustering information with DecontX
447 with stringent parameters (delta 1 = 10 and delta 2 = 20) to obtain the ambient-subtracted count
448 matrices for each library. We used the ambient-subtracted count matrices of autosomal, protein-
449 coding genes for downstream analyses.

450 **Sample genotyping**

451 Samples were genotyped using the Illumina Infinium 2.5M exome chip (InfiniumOmni2-5Exome-
452 8v1.3_A2). The genotyping call rates for the 16 samples ranged from 99.0% to 99.7%. The SNP
453 probe sequences were remapped to GRCh37 and all problematic SNPs were discarded. This
454 process resulted in a total of 2,522,105 SNPs with genotypes. Next, SNPs that have genotype
455 missingness in >=2 out of our samples and duplicate SNPs with the same genomic coordinates
456 with another one were removed. Further, we merged our genotypes with that of the 1000G
457 phase 3v5 samples (42). Subsequently, the SNPs with HWE p-value < 1e-4, and palindromic
458 SNPs (A/T, or G/C SNPs) with MAF>0.4 in the merged data set were removed. Phasing was
459 performed on the joint data set of 1,609,033 SNPs using Eagle (v2.4) (43). Genotypes were
460 imputed using 1000 genomes phase 3 panel in the Michigan Imputation Server using Minimac4
461 (v1.5.7) (44) and the 1000G phase 3v5 (GRCh37) reference panel. No sex discrepancy was
462 found by assessing the SNP genotypes using verifybamID (45) with the reported gender.
463 Sample ICRH135 did not have sufficient DNA for genotyping and was dropped from the genetic
464 analyses.

465 **CVB4-hg19 alignments**

466 In order to quantify CVB4 infection efficiency, we aligned scRNA-seq and snATAC-seq reads to
467 a hybrid hg19-CVB4 genome, where the CVB4 genome (GenBank AF311939.1) is appended to
468 hg19 as a separate chromosome. Similarly, we built a hybrid GTF file with the human genes
469 and the CVB4 genome as an additional gene. We generated STAR and bwa indices for the
470 hybrid hg19-cvb4 genome and mapped reads using the same pipeline described below. To
471 quantify the CVB4 infection efficiency, we counted the fraction of reads mapping to the CVB4
472 portion of the hybrid genome. To independently confirm that our pipeline worked as expected,
473 we used SANDY (<https://github.com/galantelab/sandy>) to generate hybrid paired-end reads
474 from both genomes using the command *sandy genome* with flag `--id=%i.%U_read=%c:%t-`
475 `%n_mate=%c:%T-%N_length=%r` and verified that the snATAC-seq and scRNA-seq
476 pipelines aligned these simulated reads to the correct coordinates on both assemblies.

477 **Cross-modality integration of snATAC-seq and scRNA-seq profiles**

478 In order to integrate all 34 libraries, we used Seurat (v.4.0.3)(11). After exhaustively testing
479 different pipelines, we obtained the best results for this dataset using Seurat's standard
480 workflow. After running the principal component analysis (PCA) step, we extracted the first 30
481 PC embeddings for each barcode and calculated the Spearman correlation with technical
482 variables (sequencing depth, % mitochondrial reads, etc.) to identify PCs driven by technical
483 aspects. We used PCs 1,3-30 for the FindNeighbors and RunUMAP steps because PC 2 was

484 correlated with sequencing depth. We used options resolution=1, algorithm=2, n.start=1000,
485 and n.iter=1000 for FindClusters and parameters n.neighbors=50 and n.epoch=500 for
486 RunUMAP. This approach yielded 30 clusters in the integrated data. We next identified and
487 removed clusters that could not be unambiguously assigned to any cell type (*i.e.*, loaded on
488 more than one cell-type-specific marker) or had aberrant QC metrics. After filtering these low-
489 quality barcodes, we iteratively merged the remaining clusters based on similar gene
490 express/accessibility patterns to obtain the final cluster assignments used in this study. A subset
491 of the snATAC barcodes assigned to the UMAP region corresponding to the acinar cells could
492 not be unambiguously classified as acinar cells and was removed. This resulted in a higher
493 fraction of scRNA-seq barcodes in the acinar cluster compared to the other clusters. Despite the
494 relatively smaller fraction of acinar snATAC-seq barcodes, the number of barcodes was still
495 higher than most clusters and, therefore, did not substantially affect our chromatin accessibility
496 analyses for the acinar cells.

497 **Peak calling**

498 We generated BAM files for each cluster by combining data from all barcodes in that cluster
499 (pseudo-bulk analyses). We also generated BAM files for each cluster/library combination. We
500 used MACS2 (v. 2.1.1.20160309) to call summits on each cluster bam file, and we extended
501 each summit by 150 bp in both directions. The set of extended summits called on the cluster-
502 level bam file (all libraries combined) was labeled as the primary summit list. We assessed the
503 reproducibility of each extended summit in the primary list using bedtools intersect (v2.26.0) to
504 count the number of intersections in the per-library extended summits. We retained for
505 downstream analyses the extended summits from the primary list that 1) overlapped extended
506 summits from at least two different libraries and 2) did not overlap any regions with known
507 mappability issues.

508 **Differential gene expression analyses**

509 For each cell type, we tested for association of gene expression with AAB+ status (*i.e.*, T1D or
510 pre-T1D) using MAST v1.14.0 (46). We filtered lowly expressed genes (DecontX-corrected
511 counts ≥ 1 in ≤ 5 cells across all samples and cell types) using the pp.filter_genes function with
512 min_cells=5 from scanpy v1.5.1 (47), retaining 16,844 genes. To account for variable
513 sequencing depth across cells, we normalized the DecontX-corrected counts for the remaining
514 genes by the total number of counts per cell, scaled to counts per 10,000 (CP10K;
515 pp.normalise_per_cell function in scanpy), and log-transformed the CP10K expression matrix
516 ($\ln[CP10K+1]$; scanpy's pp.log1p function). Using the $\ln[CP10K+1]$ normalized counts as input,
517 we modeled the gene expression for each cell type using MAST's zlm function with default
518 parameters. We included disease status, donor ID, sex, age, body mass index (BMI), and
519 proportion of donor cells identified as alpha cells (which is a proxy of islet content and accounts
520 for any differences in background RNA persisting after DecontX correction; **Supplementary**
521 **Figure 3**), and cell complexity (the number of genes detected per cell (46, 48)) as fixed effect
522 covariates. Age, BMI, and alpha cell proportion were standardized to unit variance (mean-
523 centered and scaled). For each model, we performed the likelihood ratio test (LRT; implemented
524 in MAST's summary function with logFC=TRUE and doLRT=T1D status) to test for association
525 between gene expression and disease status. Finally, we controlled for the number of tests

526 performed across all cell types using the Benjamini-Hochberg procedure (49) and LRT-derived
527 p-values.

528 **Gene set enrichment**

529 We tested for gene sets enriched in the differential expression results for each cell type using
530 the fgseaMultilevel function from fGSEA v1.16.0 (50) with $\text{eps}=1\times10^{-10}$, $\text{scoreType}=\text{'std'}$, and the
531 rest as default parameters. We used z-scores derived from the \log_2 FCs as implemented in
532 MAST to pre-rank the genes. We tested gene sets found in the following databases, which were
533 downloaded via the molecular signatures database (MSigDB) v7.2 (51, 52) Kyoto Encyclopedia
534 of Genes and Genomes (KEGG) pathways (53), BioCarta pathways (54), and Gene Ontology
535 (GO) biological processes (August 2020 release) (55). We controlled for the number of tests
536 performed per cell type using a Bonferroni correction. To simplify GO terms in visualizations, we
537 used rrigo (<https://ssayols.github.io/rrigo>).

538 **Transcription factor binding prediction and chromatin information analyses**

539 We used BMO and our previously described chromatin information analysis pipeline (13)
540 available at <https://github.com/ParkerLab/BMO/tree/pre-1.1> to predict bound TF motifs and
541 estimate the impact of TFs in their local chromatin architecture. Briefly, we used the hg19 motif
542 scans from a non-redundant position weight matrices collection corresponding to 540 TF motifs
543 (described in (13)). For each cell type pseudo-bulk snATAC-seq BAM file, we calculated the
544 distribution of ATAC-seq fragments overlapping each TF motif instance and the number of co-
545 occurring motifs from the same TF motif within 100 bp to use as input for BMO. BMO predicts
546 TFs using a simple premise that highly accessible motif clusters will be more likely bound by
547 TFs, as the vast majority of TFs cannot induce open chromatin based on DNA sequence alone
548 (13). BMO fits two negative binomial distributions for the ATAC-seq signal and the number of
549 co-occurring motifs per motif instance and calculates the probability of a given motif instance
550 being bound based on the combined p-value for these two distributions.

551 Chromatin information for each TF motif was estimated using the feature V-plot information
552 content enrichment (f-VICE) score described in our previous study (13). Briefly, we generated V-
553 plots (aggregate ATAC-seq fragment midpoint distributions around TF binding sites) for non-
554 overlapping (within 500 bp) BMO-predicted bound instances of a given TF motif (**Figure 3B**, top
555 plots). We then calculated the chromatin information (f-VICE score) for each motif by quantifying
556 the \log_2 information content enrichment at TF-adjacent (-25 to +25 bp from motif) and TF-proximal
557 (-70 to -50 and 50 to 70 bp from motif) regions compared to a randomly shuffled ATAC-seq
558 midpoint distribution (**Figure 3B**, bottom signal tracks). These regions are expected to have
559 high information content when the TF induces nucleosome phasing. We then normalized f-VICE
560 scores for each cell type by calculating the residuals of the linear model $\text{f-VICE} \sim \log_{10}(\text{total}$
561 $\text{fragments}) + \log_{10}(\text{total co-occurring motifs})$, which controls for the abundance and overall
562 accessibility of the predicted bound instances for each TF motif.

563 In order to compare chromatin information across conditions (**Figure 3D**), we calculated the f-
564 VICE scores separately for the pseudo-bulk snATAC-seq BAM files obtained from each cell type
565 and donor combination (*i.e.*, Donor 1 beta cells, Donor 2 beta cells, etc.). First, we calculated f-
566 VICEs separately per donor and cell type to avoid confounding by the different number of nuclei.

567 We then converted each donor and cell type normalized f-VICE distribution into Z-scores.
568 Finally, we calculated the median Z-score for each TF motif to obtain a single value for a TF
569 motif per condition and cell type. For visualizing this data in **Figures 3C-D** heatmaps, we
570 calculated row-wise (per motif) Z-scores.

571 **Differential accessibility analyses**

572 We used DESeq2 (1.3.2) to perform differential accessibility analyses. We used as input the
573 pseudo-bulk counts from each library for the reproducible extended summits called on each
574 cluster. For the AAB+ versus healthy comparisons, we controlled for age, sex, BMI, median
575 TSS enrichment, and $\log_{10}(\text{HQAA})$. We scaled and centered age and BMI. For the CVB4 and
576 cytokine versus control comparisons, we opted for a paired design that accounted for donor ID
577 and median TSS enrichment per library, but not age and BMI due to collinearity. Because of
578 statistical instability observed in single-cell approaches for differential analyses in this dataset,
579 we designed an alternative approach to calculate significance based on effect sizes. For each
580 comparison, we removed features with a mean number of reads < 3 and divided the remaining
581 features into 50 equally spaced bins of mean chromatin accessibility using the `chop_evenly`
582 function from the Santoku R package (<https://github.com/hughjonesd/santoku>). We removed
583 regions with \log_2 fold-change > 10, as these likely represented technical artifacts from low
584 ATAC-seq coverage. For each of the 50 chromatin accessibility bins, we identified the features
585 in the 80th, 85th, 90th, 95th, and 99th percentiles of absolute \log_2 fold-change, which were used for
586 the fGWAS enrichments described below. A summary of this approach is included in
587 **Supplementary Figure 8**.

588 **Co-accessibility analyses**

589 Co-accessibility between accessible regions were calculated for each cell type separately by
590 condition using CICERO (29) with default parameters. We generated count matrices for each
591 pseudo-bulk BAM file representing a cell type and condition (e.g. healthy beta cells) for the
592 accessible regions of that cell type (reproducible extended summits, described above). We used
593 as input for CICERO the count matrix and the corresponding UMAP coordinates of each
594 barcode. We annotated the resulting connections based on whether each connected peak
595 overlapped a T1D credible set SNP or a gene TSS from GENCODE V19.

596 **GWAS enrichments and functional fine-mapping using fGWAS**

597 We calculated GWAS enrichments in features of interest using fGWAS (commit 0b6533d) (23).
598 For the GWAS enrichments of the accessible regions per cluster, we ran fGWAS with the `-print`
599 flag using as input the summary statistics from each GWAS study and a reproducible list of
600 extended summits per cluster. For the DARs T1D GWAS enrichments, we used similar steps as
601 above. However, instead of splitting the genome into windows of 5,000 variants based on their
602 order of occurrence (fGWAS default), we generated a bed file of custom 5,000 variant windows
603 where the window corresponding to each T1D loci was centered on the lead variant of the
604 primary signal using the flag `-bed`. The remaining genomic windows were either left unchanged
605 or shortened in case they overlapped a T1D locus chunk. This step was necessary due to the
606 sparseness of the genomic territory covered by DARs. For the functional fine-mapping, we

607 assigned a 0 or 1 value for each T1D variant encoding whether they overlapped a reproducible
608 extended summit in each cell type. We ran fGWAS using the option `-fine` and including all
609 clusters with significant enrichment in the T1D GWAS.

610 **PPA-weighted chromatin accessibility Z-scores**

611 To identify which cell types likely mediate T1D genetic risk in each locus, we developed an
612 approach based on the chromatin accessibility for each cell type at the locus. First, we extended
613 each variant in the genetic fine-mapping credible sets (calculated by Chiou *et al.*) by 50 bp in
614 each direction. Next, we counted how many snATAC-seq reads overlapped the extended
615 variant region in the pseudo-bulk data from each cell type. We then normalized the snATAC-seq
616 signal by the sequencing depth and multiplied it by the genetic fine-mapping PPA. When two or
617 more variants overlapped in the extended region, we calculated the ATAC-seq signal for the
618 merged region and used the highest PPA. We retained for analysis only loci where at least one
619 credible set variant overlapped a reproducible (minimum of 2 samples) ATAC-seq broad peak.
620 We then summed each locus's PPA-weighted chromatin accessibility values to obtain a single
621 score per cell type. Finally, we applied a Z-score transformation for each locus across cell types.

622 **GWAS variants regulatory impact prediction**

623 We used LS-GKM (30) to train a predictive model of 11-mers for each cell type using as positive
624 regions the extended summits. We used the `genNullSeqs` function from the `gkmSVM` R
625 package (56) to obtain the negative set of GC- and repeat-content matched regions per cell
626 type. To predict the regulatory impact of the SNPs of interest, we used `GkmExplain` (32) using
627 as input the ± 25 bp flanking each allele and calculated the predicted importance scores for each
628 base. In order to validate the LS-GKM model, we separately calculated the ATAC-seq allelic
629 imbalance at heterozygous SNPs and compared it to the Delta-SVM scores for each allele.
630 Using the genotype data from each donor, we used WASP (v. 0.2.1, commit 5a52185; python
631 version 2.7)(57) to diminish reference bias using the same mapping and filtering parameters
632 described for the initial mapping and filtering. Duplicates were removed using WASP's
633 `rmdup_pe.py` script. To avoid double-counting alleles, overlapping read pairs were clipped using
634 `bamUtil clipOverlap` (v. 1.0.14; http://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap). We
635 counted the number of reads containing each allele for each heterozygous autosomal SNP,
636 using only bases with a base quality of at least 10. We further split each donor's BAM file per
637 cell type to calculate allelic imbalance per cell type separately and for the entire library. We used
638 a two-tailed binomial test that accounted for reference allele bias to evaluate the significance of
639 the allelic bias at each SNP. The observed allelic bias was then correlated with the Delta-SVM
640 score, which was obtained by scoring the 11-mers centered on the REF and ALT alleles for the
641 1,000 Genomes (Phase 3). We used all SNPs with an absolute Delta-SVM score ≥ 2 to
642 compare with the observed allelic imbalance.

643 **Genome visualizations**

644 We used pyGenomeTracks (version 3.7) (58) to generate genome visualizations of snATAC-seq
645 signals, co-accessible regions, and GWAS variants.

646 **GWAS data**

647 T1D summary statistics were downloaded from the EBI Catalog (accession number
648 GCST90012879)

649 **Data availability**

650 All data will be deposited in GEO upon publication.

651 **Code availability**

652 All code used for this manuscript is publicly available at
653 (http://github.com/ParkerLab/albanus_2020_nih_islets_sn_t1d). We use snakemake (59) to
654 facilitate reproducibility.

655 **References**

- 656 1. M. Mobasseri, M. Shirmohammadi, T. Amiri, N. Vahed, H. Hosseini Fard, M. Ghojazadeh,
657 Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-
658 analysis. *Health Promot. Perspect.* **10**, 98–115 (2020).
- 659 2. L. A. DiMeglio, C. Evans-Molina, R. A. Oram, Type 1 diabetes. *Lancet Lond. Engl.* **391**,
660 2449–2462 (2018).
- 661 3. A. Aylward, J. Chiou, M.-L. Okino, N. Kadakia, K. J. Gaulton, Shared genetic risk
662 contributes to type 1 and type 2 diabetes etiology. *Hum. Mol. Genet.* (2018),
663 doi:10.1093/hmg/ddy314.
- 664 4. J. Chiou, R. J. Geusz, M.-L. Okino, J. Y. Han, M. Miller, R. Melton, E. Beebe, P. Benaglio,
665 S. Huang, K. Korgaonkar, S. Heller, A. Kleger, S. Preissl, D. U. Gorkin, M. Sander, K. J.
666 Gaulton, Interpreting type 1 diabetes risk with genetics and single-cell epigenomics.
667 *Nature*. **594**, 398–402 (2021).
- 668 5. J. A. Noble, A. M. Valdes, Genetics of the HLA region in the prediction of type 1 diabetes.
669 *Curr. Diab. Rep.* **11**, 533–542 (2011).
- 670 6. L. Granlund, A. Hedin, M. Wahlihütter, P. Seiron, O. Korsgren, O. Skog, M. Lundberg,
671 Histological and transcriptional characterization of the pancreatic acinar tissue in type 1
672 diabetes. *BMJ Open Diabetes Res. Care.* **9**, e002076 (2021).
- 673 7. J. Størling, F. Pociot, Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell
674 Inflammation and Beta-Cell Apoptosis. *Genes*. **8**, E72 (2017).
- 675 8. M. Fasolino, G. W. Schwartz, A. R. Patil, A. Mongia, M. L. Golson, Y. J. Wang, A. Morgan,
676 C. Liu, J. Schug, J. Liu, M. Wu, D. Traum, A. Kondo, C. L. May, N. Goldman, W. Wang, M.
677 Feldman, J. H. Moore, A. S. Japp, M. R. Betts, HPAP Consortium, R. B. Faryabi, A. Naji,
678 K. H. Kaestner, G. Vahedi, Single-cell multi-omics analysis of human pancreatic islets
679 reveals novel cellular states in type 1 diabetes. *Nat. Metab.* **4**, 284–299 (2022).
- 680 9. D. V. Serreze, C. Wasserfall, E. W. Ottendorfer, M. Stalvey, M. A. Pierce, C. Gauntt, B.
681 O'Donnell, J. B. Flanagan, M. Campbell-Thompson, T. M. Ellis, M. A. Atkinson, Diabetes
682 acceleration or prevention by a coxsackievirus B4 infection: critical requirements for both
683 interleukin-4 and gamma interferon. *J. Virol.* **79**, 1045–1052 (2005).
- 684 10. F. Brozzi, T. R. Nardelli, M. Lopes, I. Millard, J. Barthson, M. Igoillo-Esteve, F. A. Grieco,
685 O. Villate, J. M. Oliveira, M. Casimir, M. Bugliani, F. Engin, G. S. Hotamisligil, P. Marchetti,
686 D. L. Eizirik, Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta
687 cells via different mechanisms. *Diabetologia*. **58**, 2307–2316 (2015).
- 688 11. Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck, S. Zheng, A. Butler, M. J. Lee, A. J.
689 Wilk, C. Darby, M. Zager, P. Hoffman, M. Stoeckius, E. Papalex, E. P. Mimitou, J. Jain, A.
690 Srivastava, T. Stuart, L. M. Fleming, B. Yeung, A. J. Rogers, J. M. McElrath, C. A. Blish, R.
691 Gottardo, P. Smibert, R. Satija, Integrated analysis of multimodal single-cell data. *Cell*.
692 **184**, 3573–3587.e29 (2021).

693 12. E. Caglayan, Y. Liu, G. Konopka, Neuronal ambient RNA contamination causes
694 misinterpreted and masked cell types in brain single-nuclei datasets. *Neuron*, S0896-
695 6273(22)00815-7 (2022).

696 13. R. D'Oliveira Albanus, Y. Kyono, J. Hensley, A. Varshney, P. Orchard, J. O. Kitzman, S. C.
697 J. Parker, Chromatin information content landscapes inform transcription factor and DNA
698 interactions. *Nat. Commun.* **12**, 1307 (2021).

699 14. Y. Fu, M. Sinha, C. L. Peterson, Z. Weng, The Insulator Binding Protein CTCF Positions
700 20 Nucleosomes around Its Binding Sites across the Human Genome. *PLoS Genet.* **4**,
701 e1000138 (2008).

702 15. C. E. Malnou, F. Brockly, C. Favard, G. Moquet-Torcy, M. Piechaczyk, I. Jariel-Encontre,
703 Heterodimerization with different jun proteins controls c-Fos intranuclear dynamics and
704 distribution. *J. Biol. Chem.* **285**, 6552–6562 (2010).

705 16. K. A. Patel, J. Kettunen, M. Laakso, A. Stančáková, T. W. Laver, K. Colclough, M. B.
706 Johnson, M. Abramowicz, L. Groop, P. J. Miettinen, M. H. Shepherd, S. E. Flanagan, S.
707 Ellard, N. Inagaki, A. T. Hattersley, T. Tuomi, M. Cnop, M. N. Weedon, Heterozygous
708 RFX6 protein truncating variants are associated with MODY with reduced penetrance. *Nat.
709 Commun.* **8** (2017), doi:10.1038/s41467-017-00895-9.

710 17. T. Nammo, K. Yamagata, R. Hamaoka, Q. Zhu, T. E. Akiyama, F. J. Gonzalez, J.
711 Miyagawa, Y. Matsuzawa, Expression profile of MODY3/HNF-1alpha protein in the
712 developing mouse pancreas. *Diabetologia*. **45**, 1142–1153 (2002).

713 18. M. Fernandez Garcia, C. D. Moore, K. N. Schulz, O. Alberto, G. Donague, M. M. Harrison,
714 H. Zhu, K. S. Zaret, Structural Features of Transcription Factors Associating with
715 Nucleosome Binding. *Mol. Cell* (2019), doi:10.1016/j.molcel.2019.06.009.

716 19. D. Pavlovic, M. C. Chen, C. A. Gysemans, C. Mathieu, D. L. Eizirik, The role of interferon
717 regulatory factor-1 in cytokine-induced mRNA expression and cell death in murine
718 pancreatic beta-cells. *Eur. Cytokine Netw.* **10**, 403–412 (1999).

719 20. C. Gysemans, H. Callewaert, F. Moore, M. Nelson-Holte, L. Overbergh, D. L. Eizirik, C.
720 Mathieu, Interferon regulatory factor-1 is a key transcription factor in murine beta cells
721 under immune attack. *Diabetologia*. **52**, 2374–2384 (2009).

722 21. B. Koh, M. M. Hufford, D. Pham, M. R. Olson, T. Wu, R. Jabeen, X. Sun, M. H. Kaplan,
723 The ETS Family Transcription Factors Etv5 and PU.1 Function in Parallel To Promote Th9
724 Cell Development. *J. Immunol.* **197**, 2465–2472 (2016).

725 22. C. Imbratta, H. Hussein, F. Andris, G. Verdeil, c-MAF, a Swiss Army Knife for Tolerance in
726 Lymphocytes. *Front. Immunol.* **11**, 206 (2020).

727 23. J. K. Pickrell, Joint Analysis of Functional Genomic Data and Genome-wide Association
728 Studies of 18 Human Traits. *Am. J. Hum. Genet.* **94**, 559–573 (2014).

729 24. A. Mahajan, D. Taliun, M. Thurner, N. R. Robertson, J. M. Torres, N. W. Rayner, A. J.
730 Payne, V. Steinhorsdottir, R. A. Scott, N. Grarup, J. P. Cook, E. M. Schmidt, M. Wuttke, C.
731 Sarnowski, R. Mägi, J. Nano, C. Gieger, S. Trompet, C. Lecoeur, M. H. Preuss, B. P.

732 Prins, X. Guo, L. F. Bielak, J. E. Below, D. W. Bowden, J. C. Chambers, Y. J. Kim, M. C. Y.
733 Ng, L. E. Petty, X. Sim, W. Zhang, A. J. Bennett, J. Bork-Jensen, C. M. Brummett, M.
734 Canouil, K.-U. Ec Kardt, K. Fischer, S. L. R. Kardia, F. Kronenberg, K. Läll, C.-T. Liu, A. E.
735 Locke, J. Luan, I. Ntalla, V. Nylander, S. Schönherr, C. Schurmann, L. Yengo, E. P.
736 Bottinger, I. Brandslund, C. Christensen, G. Dedoussis, J. C. Florez, I. Ford, O. H. Franco,
737 T. M. Frayling, V. Giedraitis, S. Hackinger, A. T. Hattersley, C. Herder, M. A. Ikram, M.
738 Ingelsson, M. E. Jørgensen, T. Jørgensen, J. Kriebel, J. Kuusisto, S. Ligthart, C. M.
739 Lindgren, A. Linneberg, V. Lyssenko, V. Mamakou, T. Meitinger, K. L. Mohlke, A. D.
740 Morris, G. Nadkarni, J. S. Pankow, A. Peters, N. Sattar, A. Stančáková, K. Strauch, K. D.
741 Taylor, B. Thorand, G. Thorleifsson, U. Thorsteinsdottir, J. Tuomilehto, D. R. Witte, J.
742 Dupuis, P. A. Peyser, E. Zeggini, R. J. F. Loos, P. Froguel, E. Ingelsson, L. Lind, L. Groop,
743 M. Laakso, F. S. Collins, J. W. Jukema, C. N. A. Palmer, H. Grallert, A. Metspalu, A.
744 Dehghan, A. Köttgen, G. R. Abecasis, J. B. Meigs, J. I. Rotter, J. Marchini, O. Pedersen, T.
745 Hansen, C. Langenberg, N. J. Wareham, K. Stefansson, A. L. Gloyn, A. P. Morris, M.
746 Boehnke, M. I. McCarthy, Fine-mapping type 2 diabetes loci to single-variant resolution
747 using high-density imputation and islet-specific epigenome maps. *Nat. Genet.* **50**, 1505–
748 1513 (2018).

749 25. J. Chen, C. N. Spracklen, G. Marenne, A. Varshney, L. J. Corbin, J. Luan, S. M. Willems,
750 Y. Wu, X. Zhang, M. Horikoshi, T. S. Boutin, R. Mägi, J. Waage, R. Li-Gao, K. H. K. Chan,
751 J. Yao, M. D. Anasanti, A. Y. Chu, A. Claringbould, J. Heikkinen, J. Hong, J.-J. Hottenga,
752 S. Huo, M. A. Kaakinen, T. Louie, W. März, H. Moreno-Macias, A. Ndungu, S. C. Nelson, I.
753 M. Nolte, K. E. North, C. K. Raulerson, D. Ray, R. Rohde, D. Rybin, C. Schurmann, X.
754 Sim, L. Southam, I. D. Stewart, C. A. Wang, Y. Wang, P. Wu, W. Zhang, T. S. Ahluwalia,
755 E. V. R. Appel, L. F. Bielak, J. A. Brody, N. P. Burtt, C. P. Cabrera, B. E. Cade, J. F. Chai,
756 X. Chai, L.-C. Chang, C.-H. Chen, B. H. Chen, K. N. Chitrala, Y.-F. Chiu, H. G. de Haan,
757 G. E. Delgado, A. Demirkan, Q. Duan, J. Engmann, S. A. Fatumo, J. Gayán, F. Giulianini,
758 J. H. Gong, S. Gustafsson, Y. Hai, F. P. Hartwig, J. He, Y. Heianza, T. Huang, A. Huerta-
759 Chagoya, M. Y. Hwang, R. A. Jensen, T. Kawaguchi, K. A. Kentistou, Y. J. Kim, M. E.
760 Kleber, I. K. Kooner, S. Lai, L. A. Lange, C. D. Langefeld, M. Lauzon, M. Li, S. Ligthart, J.
761 Liu, M. Loh, J. Long, V. Lyssenko, M. Mangino, C. Marzi, M. E. Montasser, A. Nag, M.
762 Nakatochi, D. Noce, R. Noordam, G. Pistis, M. Preuss, L. Raffield, L. J. Rasmussen-
763 Torvik, S. S. Rich, N. R. Robertson, R. Rueedi, K. Ryan, S. Sanna, R. Saxena, K. E.
764 Schraut, B. Sennblad, K. Setoh, A. V. Smith, T. Sparsø, R. J. Strawbridge, F. Takeuchi, J.
765 Tan, S. Trompet, E. van den Akker, P. J. van der Most, N. Verweij, M. Vogel, H. Wang, C.
766 Wang, N. Wang, H. R. Warren, W. Wen, T. Wilsgaard, A. Wong, A. R. Wood, T. Xie, M. H.
767 Zafarmand, J.-H. Zhao, W. Zhao, N. Amin, Z. Arzumanyan, A. Astrup, S. J. L. Bakker, D.
768 Baldassarre, M. Beekman, R. N. Bergman, A. Bertoni, M. Blüher, L. L. Bonnycastle, S. R.
769 Bornstein, D. W. Bowden, Q. Cai, A. Campbell, H. Campbell, Y. C. Chang, E. J. C. de
770 Geus, A. Dehghan, S. Du, G. Eiriksdottir, A. E. Farmaki, M. Fränberg, C. Fuchsberger, Y.
771 Gao, A. P. Gjesing, A. Goel, S. Han, C. A. Hartman, C. Herder, A. A. Hicks, C.-H. Hsieh,
772 W. A. Hsueh, S. Ichihara, M. Igase, M. A. Ikram, W. C. Johnson, M. E. Jørgensen, P. K.
773 Joshi, R. R. Kalyani, F. R. Kandeel, T. Katsuya, C. C. Khor, W. Kiess, I. Kolcic, T.
774 Kuulasmaa, J. Kuusisto, K. Läll, K. Lam, D. A. Lawlor, N. R. Lee, R. N. Lemaitre, H. Li,
775 Lifelines Cohort Study, S.-Y. Lin, J. Lindström, A. Linneberg, J. Liu, C. Lorenzo, T.
776 Matsubara, F. Matsuda, G. Mingrone, S. Mooijaart, S. Moon, T. Nabika, G. N. Nadkarni, J.
777 L. Nadler, M. Nelis, M. J. Neville, J. M. Norris, Y. Ohyagi, A. Peters, P. A. Peyser, O.
778 Polasek, Q. Qi, D. Raven, D. F. Reilly, A. Reiner, F. Rivideneira, K. Roll, I. Rudan, C.
779 Sabanayagam, K. Sandow, N. Sattar, A. Schürmann, J. Shi, H. M. Stringham, K. D. Taylor,
780 T. M. Teslovich, B. Thuesen, P. R. H. J. Timmers, E. Tremoli, M. Y. Tsai, A. Uitterlinden,
781 R. M. van Dam, D. van Heemst, A. van Hylckama Vlieg, J. V. van Vliet-Ostaptchouk, J.

782 Vangipurapu, H. Vestergaard, T. Wang, K. Willems van Dijk, T. Zemunik, G. R. Abecasis,
783 L. S. Adair, C. A. Aguilar-Salinas, M. E. Alarcón-Riquelme, P. An, L. Aviles-Santa, D. M.
784 Becker, L. J. Beilin, S. Bergmann, H. Bisgaard, C. Black, M. Boehnke, E. Boerwinkle, B. O.
785 Böhm, K. Bønnelykke, D. I. Boomsma, E. P. Bottinger, T. A. Buchanan, M. Canouil, M. J.
786 Caulfield, J. C. Chambers, D. I. Chasman, Y.-D. I. Chen, C.-Y. Cheng, F. S. Collins, A.
787 Correa, F. Cucca, H. J. de Silva, G. Dedoussis, S. Elmståhl, M. K. Evans, E. Ferrannini, L.
788 Ferrucci, J. C. Florez, P. W. Franks, T. M. Frayling, P. Froguel, B. Gigante, M. O.
789 Goodarzi, P. Gordon-Larsen, H. Grallert, N. Grarup, S. Grimsgaard, L. Groop, V.
790 Gudnason, X. Guo, A. Hamsten, T. Hansen, C. Hayward, S. R. Heckbert, B. L. Horta, W.
791 Huang, E. Ingelsson, P. S. James, M.-R. Jarvelin, J. B. Jonas, J. W. Jukema, P. Kaleebu,
792 R. Kaplan, S. L. R. Kardia, N. Kato, S. M. Keinanen-Kiukaanniemi, B.-J. Kim, M. Kivimaki,
793 H. A. Koistinen, J. S. Kooner, A. Körner, P. Kovacs, D. Kuh, M. Kumari, Z. Kutalik, M.
794 Laakso, T. A. Lakka, L. J. Launer, K. Leander, H. Li, X. Lin, L. Lind, C. Lindgren, S. Liu, R.
795 J. F. Loos, P. K. E. Magnusson, A. Mahajan, A. Metspalu, D. O. Mook-Kanamori, T. A.
796 Mori, P. B. Munroe, I. Njølstad, J. R. O'Connell, A. J. Oldehinkel, K. K. Ong, S.
797 Padmanabhan, C. N. A. Palmer, N. D. Palmer, O. Pedersen, C. E. Pennell, D. J. Porteous,
798 P. P. Pramstaller, M. A. Province, B. M. Psaty, L. Qi, L. J. Raffel, R. Rauramaa, S. Redline,
799 P. M. Ridker, F. R. Rosendaal, T. E. Saaristo, M. Sandhu, J. Saramies, N. Schneiderman,
800 P. Schwarz, L. J. Scott, E. Selvin, P. Sever, X.-O. Shu, P. E. Slagboom, K. S. Small, B. H.
801 Smith, H. Snieder, T. Sofer, T. I. A. Sørensen, T. D. Spector, A. Stanton, C. J. Steves, M.
802 Stumvoll, L. Sun, Y. Tabara, E. S. Tai, N. J. Timpson, A. Tönjes, J. Tuomilehto, T. Tusie,
803 M. Uusitupa, P. van der Harst, C. van Duijn, V. Vitart, P. Vollenweider, T. G. M. Vrijkotte, L.
804 E. Wagenknecht, M. Walker, Y. X. Wang, N. J. Wareham, R. M. Watanabe, H. Watkins, W.
805 B. Wei, A. R. Wickremasinghe, G. Willemsen, J. F. Wilson, T.-Y. Wong, J.-Y. Wu, A. H.
806 Xiang, L. R. Yanek, L. Yengo, M. Yokota, E. Zeggini, W. Zheng, A. B. Zondeman, J. I.
807 Rotter, A. L. Gloyn, M. I. McCarthy, J. Dupuis, J. B. Meigs, R. A. Scott, I. Prokopenko, A.
808 Leong, C.-T. Liu, S. C. J. Parker, K. L. Mohlke, C. Langenberg, E. Wheeler, A. P. Morris, I.
809 Barroso, Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC), The
810 trans-ancestral genomic architecture of glycemic traits. *Nat. Genet.* **53**, 840–860 (2021).

811 26. A. Varshney, L. J. Scott, R. P. Welch, M. R. Erdos, P. S. Chines, N. Narisu, R. D. Albanus,
812 P. Orchard, B. N. Wolford, R. Kursawe, S. Vadlamudi, M. E. Cannon, J. P. Didion, J.
813 Hensley, A. Kirilusha, L. L. Bonnycastle, D. L. Taylor, R. Watanabe, K. L. Mohlke, M.
814 Boehnke, F. S. Collins, S. C. J. Parker, M. L. Stitzel, Genetic regulatory signatures
815 underlying islet gene expression and type 2 diabetes. *Proc. Natl. Acad. Sci.* **114**, 2301–
816 2306 (2017).

817 27. M. S. Udler, J. Kim, M. von Grotthuss, S. Bonàs-Guarch, J. B. Cole, J. Chiou, Christopher
818 D. Anderson on behalf of METASTROKE and the ISGC, M. Boehnke, M. Laakso, G.
819 Atzmon, B. Glaser, J. M. Mercader, K. Gaulton, J. Flannick, G. Getz, J. C. Florez, Type 2
820 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and
821 subtypes: A soft clustering analysis. *PLoS Med.* **15**, e1002654 (2018).

822 28. G. Gibson, Perspectives on rigor and reproducibility in single cell genomics. *PLoS Genet.*
823 **18**, e1010210 (2022).

824 29. H. A. Pliner, J. S. Packer, J. L. McFaline-Figueroa, D. A. Cusanovich, R. M. Daza, D.
825 Aghamirzaie, S. Srivatsan, X. Qiu, D. Jackson, A. Minkina, A. C. Adey, F. J. Steemers, J.
826 Shendure, C. Trapnell, Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell
827 Chromatin Accessibility Data. *Mol. Cell.* **71**, 858-871.e8 (2018).

828 30. D. Lee, LS-GKM: a new gkm-SVM for large-scale datasets. *Bioinformatics*. **32**, 2196–2198
829 (2016).

830 31. D. Lee, D. U. Gorkin, M. Baker, B. J. Strober, A. L. Asoni, A. S. McCallion, M. A. Beer, A
831 method to predict the impact of regulatory variants from DNA sequence. *Nat. Genet.* **47**,
832 955–961 (2015).

833 32. A. Shrikumar, E. Prakash, A. Kundaje, GkmExplain: fast and accurate interpretation of
834 nonlinear gapped k-mer SVMs. *Bioinformatics*. **35**, i173–i182 (2019).

835 33. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform.
836 *Bioinformatics*. **26**, 589–595 (2010).

837 34. P. Orchard, Y. Kyono, J. Hensley, J. O. Kitzman, S. C. J. Parker, Quantification, Dynamic
838 Visualization, and Validation of Bias in ATAC-Seq Data with ataqv. *Cell Syst.* **10**, 298–
839 306.e4 (2020).

840 35. J. M. Granja, M. R. Corces, S. E. Pierce, S. T. Bagdatli, H. Choudhry, H. Y. Chang, W. J.
841 Greenleaf, ArchR is a scalable software package for integrative single-cell chromatin
842 accessibility analysis. *Nat. Genet.* **53**, 403–411 (2021).

843 36. A. Zadissa, J. M. Gonzalez, S. Searle, J. van Baren, V. Boychenko, D. Barrell, R. Guigo, B.
844 Pei, N. Walters, F. Kokocinski, G. Despacio-Reyes, J. Rajan, T. J. Hubbard, B. L. Aken, M.
845 Kellis, S. Balasubramanian, R. Harte, A. Tanzer, M. Kay, I. Ezkurdia, C. Steward, G.
846 Mukherjee, J. M. Rodriguez, T. Hunt, A. Valencia, J. Chrast, D. Haussler, M. Brent, M.
847 Diekhans, T. Derrien, M. Tress, E. Tapanari, M. Lin, I. Barnes, A. Frankish, G. Saunders,
848 A. Bignell, M. Gerstein, C. Howald, J. Harrow, A. Reymond, GENCODE: The reference
849 human genome annotation for The ENCODE Project. *Genome Res.* **22**, 1760–1774
850 (2012).

851 37. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
852 Chaisson, T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. **29**,
853 15–21 (2013).

854 38. participants in the 1st Human Cell Atlas Jamboree, A. T. L. Lun, S. Riesenfeld, T.
855 Andrews, T. P. Dao, T. Gomes, J. C. Marioni, EmptyDrops: distinguishing cells from empty
856 droplets in droplet-based single-cell RNA sequencing data. *Genome Biol.* **20**, 63 (2019).

857 39. D. Christopoulos, Introducing Unit Invariant Knee (UIK) As an Objective Choice for Elbow
858 Point in Multivariate Data Analysis Techniques. *SSRN Electron. J.* (2016),
859 doi:10.2139/ssrn.3043076.

860 40. C. S. McGinnis, L. M. Murrow, Z. J. Gartner, DoubletFinder: Doublet Detection in Single-
861 Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst.* **8**, 329–337.e4
862 (2019).

863 41. S. Yang, S. E. Corbett, Y. Koga, Z. Wang, W. E. Johnson, M. Yajima, J. D. Campbell,
864 Decontamination of ambient RNA in single-cell RNA-seq with DecontX. *Genome Biol.* **21**,
865 57 (2020).

866 42. 1000 Genomes Project Consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison,
867 H. M. Kang, J. O. Korbel, J. L. Marchini, S. McCarthy, G. A. McVean, G. R. Abecasis, A
868 global reference for human genetic variation. *Nature*. **526**, 68–74 (2015).

869 43. P.-R. Loh, P. Danecek, P. F. Palamara, C. Fuchsberger, Y. A Reshef, H. K Finucane, S.
870 Schoenherr, L. Forer, S. McCarthy, G. R. Abecasis, R. Durbin, A. L Price, Reference-
871 based phasing using the Haplotype Reference Consortium panel. *Nat. Genet.* **48**, 1443–
872 1448 (2016).

873 44. S. Das, L. Forer, S. Schönherr, C. Sidore, A. E. Locke, A. Kwong, S. I. Vrieze, E. Y. Chew,
874 S. Levy, M. McGuire, D. Schlessinger, D. Stambolian, P.-R. Loh, W. G. Iacono, A. Swaroop,
875 L. J. Scott, F. Cucca, F. Kronenberg, M. Boehnke, G. R. Abecasis, C. Fuchsberger, Next-
876 generation genotype imputation service and methods. *Nat. Genet.* **48**, 1284–1287 (2016).

877 45. G. Jun, M. Flickinger, K. N. Hetrick, J. M. Romm, K. F. Doheny, G. R. Abecasis, M.
878 Boehnke, H. M. Kang, Detecting and estimating contamination of human DNA samples in
879 sequencing and array-based genotype data. *Am. J. Hum. Genet.* **91**, 839–848 (2012).

880 46. G. Finak, A. McDavid, M. Yajima, J. Deng, V. Gersuk, A. K. Shalek, C. K. Slichter, H. W.
881 Miller, M. J. McElrath, M. Prlic, P. S. Linsley, R. Gottardo, MAST: a flexible statistical
882 framework for assessing transcriptional changes and characterizing heterogeneity in
883 single-cell RNA sequencing data. *Genome Biol.* **16**, 278 (2015).

884 47. F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: large-scale single-cell gene expression data
885 analysis. *Genome Biol.* **19**, 15 (2018).

886 48. C. S. Smillie, M. Biton, J. Ordovas-Montanes, K. M. Sullivan, G. Burgin, D. B. Graham, R.
887 H. Herbst, N. Rogel, M. Slyper, J. Waldman, M. Sud, E. Andrews, G. Velonias, A. L.
888 Haber, K. Jagadeesh, S. Vickovic, J. Yao, C. Stevens, D. Dionne, L. T. Nguyen, A.-C.
889 Villani, M. Hofree, E. A. Creasey, H. Huang, O. Rozenblatt-Rosen, J. J. Garber, H. Khalili,
890 A. N. Desch, M. J. Daly, A. N. Ananthakrishnan, A. K. Shalek, R. J. Xavier, A. Regev, Intra-
891 and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. *Cell.* **178**, 714–
892 730.e22 (2019).

893 49. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful
894 Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B Methodol.* **57**, 289–300 (1995).

895 50. G. Korotkevich, V. Sukhov, N. Budin, B. Shpak, M. N. Artyomov, A. Sergushichev, “Fast
896 gene set enrichment analysis” (preprint, Bioinformatics, 2016), , doi:10.1101/060012.

897 51. A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo, J. P. Mesirov,
898 Molecular signatures database (MSigDB) 3.0. *Bioinforma. Oxf. Engl.* **27**, 1739–1740
899 (2011).

900 52. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A.
901 Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment
902 analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
903 *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545–15550 (2005).

904 53. M. Kanehisa, M. Furumichi, Y. Sato, M. Ishiguro-Watanabe, M. Tanabe, KEGG: integrating
905 viruses and cellular organisms. *Nucleic Acids Res.* **49**, D545–D551 (2021).

906 54. D. Nishimura, BioCarta. *Biotech Softw. Internet Rep.* **2**, 117–120 (2001).

907 55. S. Köhler, M. Gargano, N. Matentzoglu, L. C. Carmody, D. Lewis-Smith, N. A. Vasilevsky,
908 D. Danis, G. Balagura, G. Baynam, A. M. Brower, T. J. Callahan, C. G. Chute, J. L. Est, P.
909 D. Galer, S. Ganesan, M. Griese, M. Haimel, J. Pazmandi, M. Hanauer, N. L. Harris, M. J.
910 Hartnett, M. Hastreiter, F. Hauck, Y. He, T. Jeske, H. Kearney, G. Kindle, C. Klein, K.
911 Knoflach, R. Krause, D. Lagorce, J. A. McMurry, J. A. Miller, M. C. Munoz-Torres, R. L.
912 Peters, C. K. Rapp, A. M. Rath, S. A. Rind, A. Z. Rosenberg, M. M. Segal, M. G. Seidel, D.
913 Smedley, T. Talmy, Y. Thomas, S. A. Wiafe, J. Xian, Z. Yüksel, I. Helbig, C. J. Mungall, M.
914 A. Haendel, P. N. Robinson, The Human Phenotype Ontology in 2021. *Nucleic Acids Res.*
915 **49**, D1207–D1217 (2021).

916 56. M. Ghandi, M. Mohammad-Noori, N. Ghareghani, D. Lee, L. Garraway, M. A. Beer,
917 gkmSVM: an R package for gapped-kmer SVM. *Bioinforma. Oxf. Engl.* **32**, 2205–2207
918 (2016).

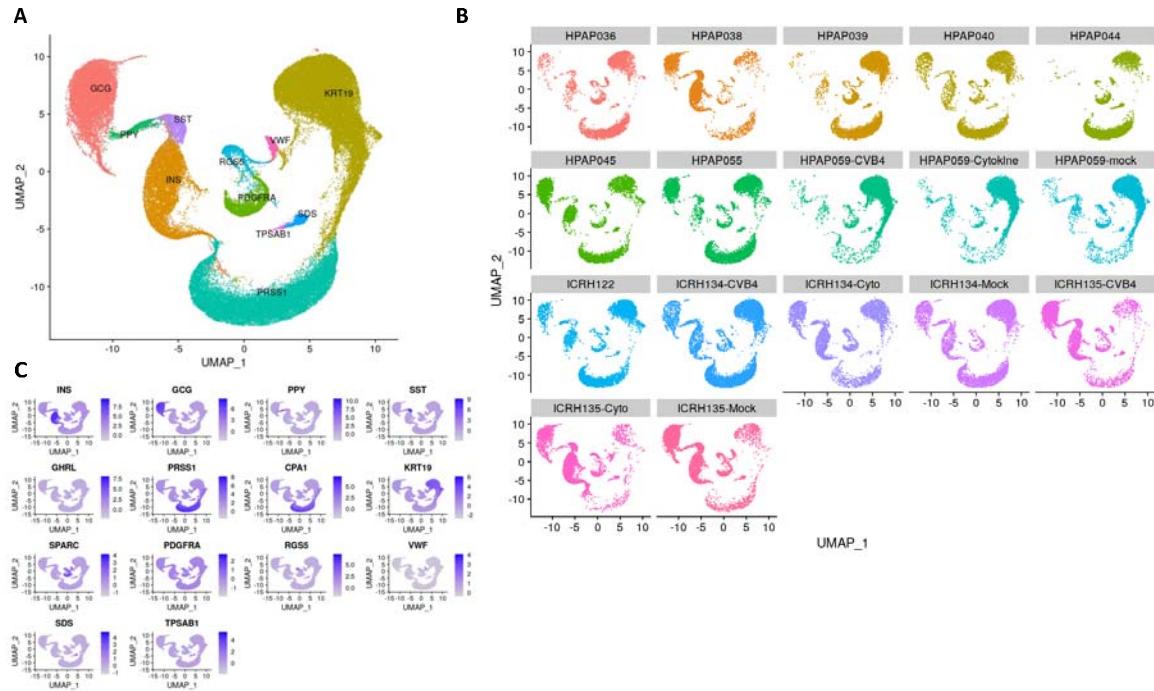
919 57. B. van de Geijn, G. McVicker, Y. Gilad, J. K. Pritchard, WASP: allele-specific software for
920 robust molecular quantitative trait locus discovery. *Nat. Methods.* **12**, 1061–1063 (2015).

921 58. L. Lopez-Delisle, L. Rabbani, J. Wolff, V. Bhardwaj, R. Backofen, B. Grüning, F. Ramírez,
922 T. Manke, pyGenomeTracks: reproducible plots for multivariate genomic datasets.
923 *Bioinforma. Oxf. Engl.* **37**, 422–423 (2021).

924 59. J. Köster, S. Rahmann, Snakemake--a scalable bioinformatics workflow engine.
925 *Bioinforma. Oxf. Engl.* **28**, 2520–2522 (2012).

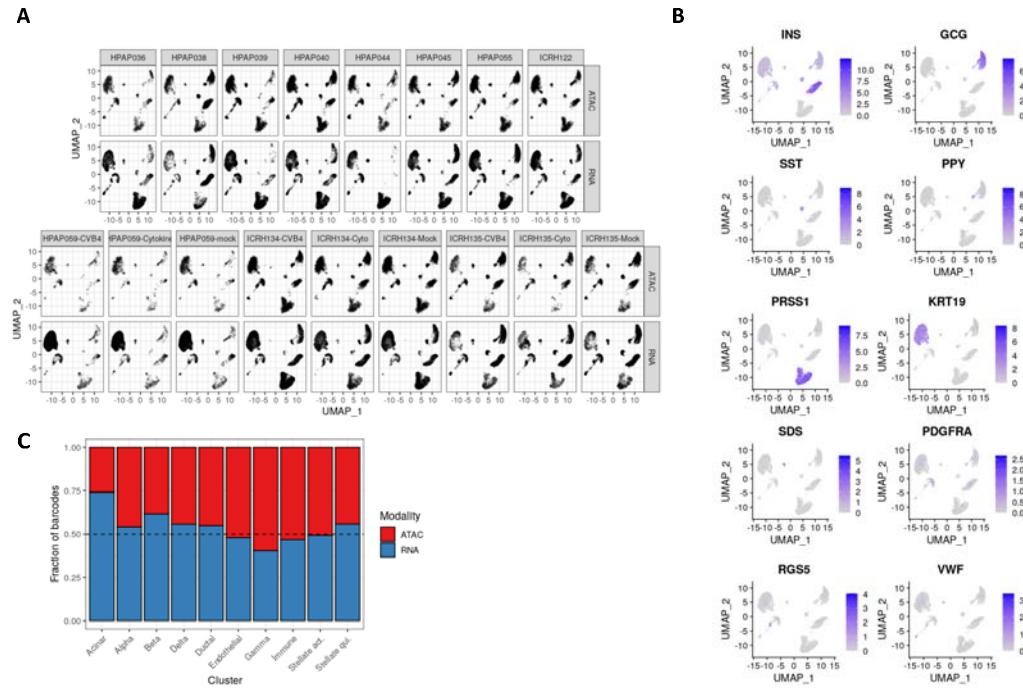
926

927

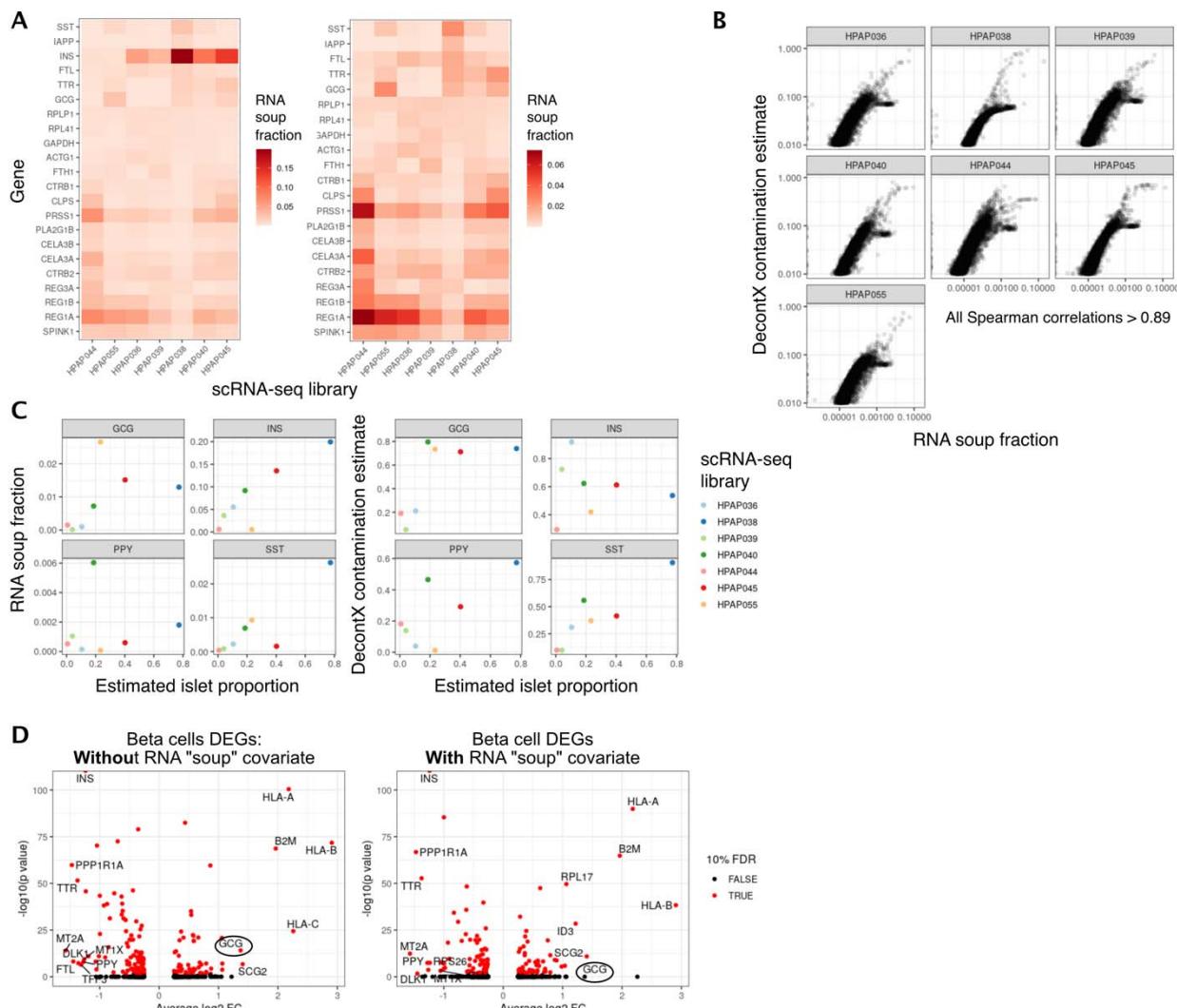


928
929
930
931
932

Supplementary Figure 1: A) UMAP representation of the first-pass scRNA-seq-only integration
and clustering used as input for DecontX (B). UMAP representation split by samples. C) Marker
gene expression in the first-pass scRNA-seq clustering.

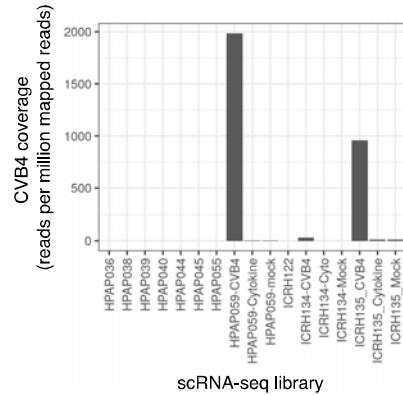


933
934 **Supplementary Figure 2:** A) UMAP representation of integrated scRNA-seq and snATAC-seq
935 data faceted by sample (columns) and modality (rows) . B) Marker gene expression across
936 clusters. C) Distribution of ATAC and RNA barcodes for each cell type.
937

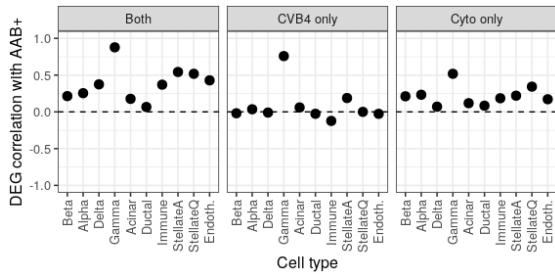


938
939
940
941
942
943
944
945
946
947
948
949
950
951

Supplementary Figure 3: A) Estimated ambient RNA (“RNA soup”) composition for a subset of scRNA-seq libraries, obtained by combining all barcodes with less than 10 UMIs (i.e. empty droplets). Right plot is the same as left, but without INS for visibility. **B)** Agreement of the RNA contamination estimated by DecontX to ambient RNA fraction estimated directly from empty droplets. Clusters of off-diagonal genes correspond to ribosomal proteins. **C)** Comparison of ambient RNA fraction for each gene in the facets to the estimated islet proportion (fraction of barcodes assigned to the islet clusters) per library. **D)** DEGs in beta cells between HPAP055 (AAB+) versus controls with and without a covariate accounting for ambient RNA. HPAP055 has a higher fraction of alpha cells compared to the other samples, which leads to higher levels of GCG in the ambient RNA. This, in turn, leads to erroneous assignment of GCG as a DEG (left plot, black circle). This technical artifact is mitigated once we include the estimated alpha cells proportion in the sample as a proxy of ambient RNA (right plot, black circle).



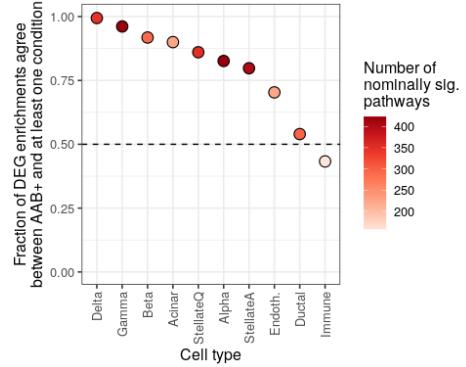
952
953
954
955



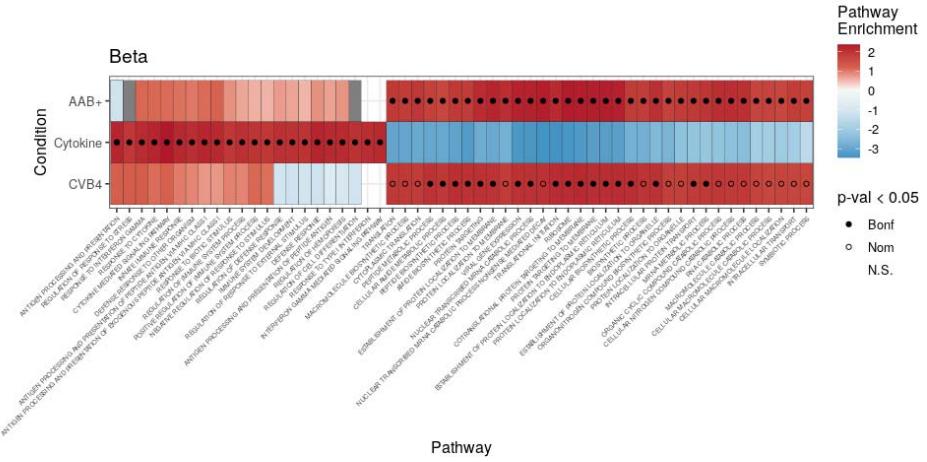
956

957 **Supplementary Figure 5:** DEG effect size correlation (Spearman) of nominally significant
958 genes between AAB+ and other conditions across cell types.

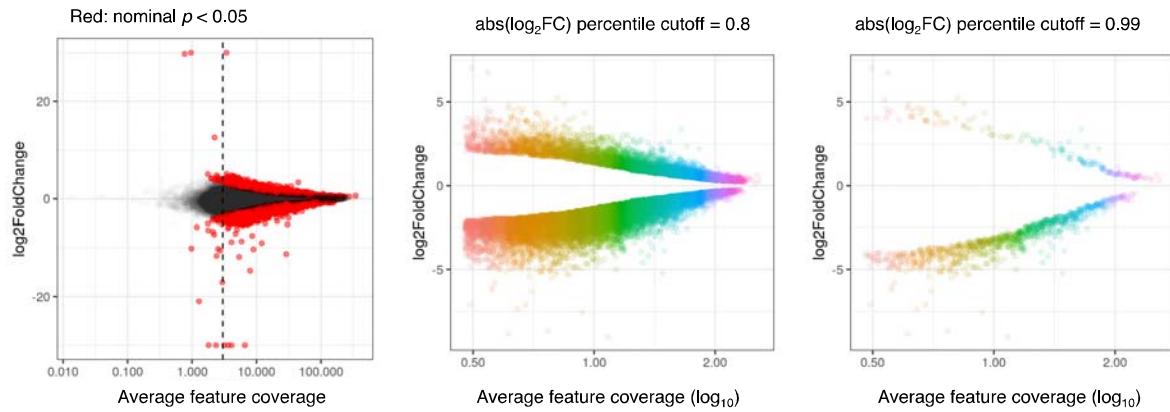
959



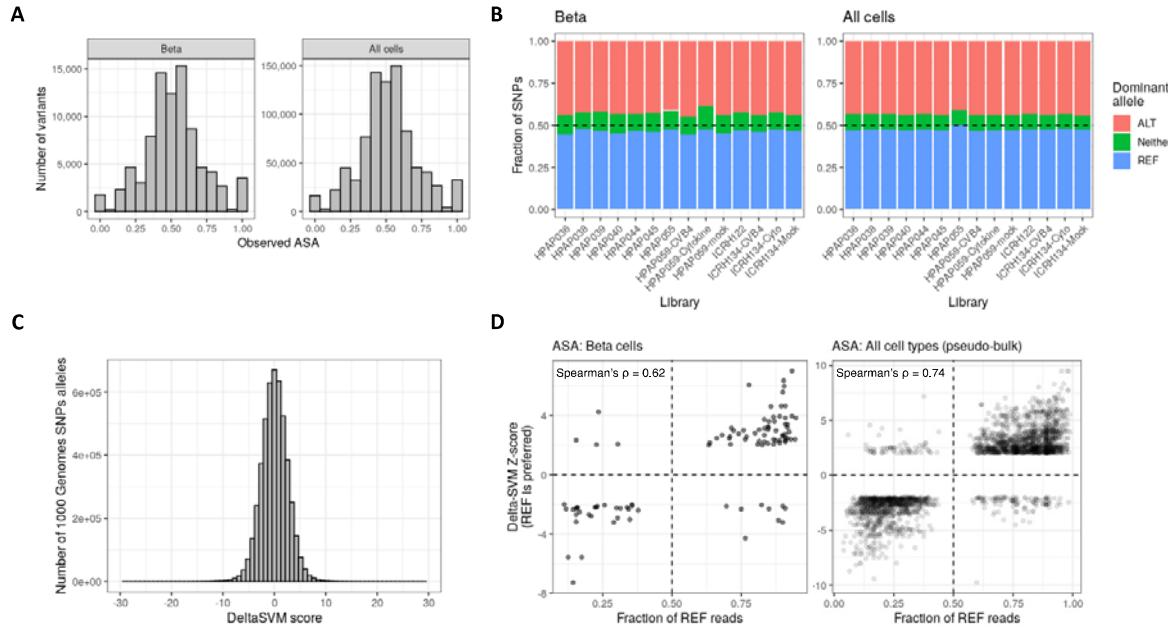
960
961 **Supplementary Figure 6:** Pathway enrichments agreements between DEGs in AAB+ versus
962 other conditions across all cell types.
963



964
965
966
967



968
969 **Supplementary Figure 8:** Example DAR significance calculation using effect sizes. Each color
970 in the rainbow plots in the middle and right panels correspond to one of the 50 ATAC-seq signal
971 bins.
972



973
974
975
976
977

Supplementary Figure 9: A and B) Allele-specific accessibility (ASA) distribution in beta cells
and all cells for all heterozygous SNPs to estimate reference bias in WASP. C) DeltaSVM score
distribution for all heterozygous SNPs. D) Effect size comparison between SNPs with significant
ASA and DeltaSVM scores.