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ABSTRACT

Autistic spectrum disorder (ASD) is a neurodevelopmental condition characterized by restricted
interests and repetitive behaviors as well as social-communication deficits. These traits are
associated with atypicality of functional brain networks. Modular organization in the brain plays a
crucial role in network stability and adaptability for neurodevelopment. Previous neuroimaging
research demonstrates discrepancies in studies of functional brain modular organization in ASD.
These discrepancies result from the examination of mixed age groups. Furthermore, recent findings
suggest while much attention has been given to deriving atlases and measuring the connections
between nodes, the within nodes information may be crucial in determining altered modular

organization in ASD compared with TD. However, altered modular organization originating from
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systematic nodal changes are yet to be explored in younger children with ASD. Here, we used
graph-theoretical measures to fill this knowledge gap. To this end, we utilized multicenter resting-state
BOLD fMRI data collected from 5—10-year-old children - 34 ASD and 40 typically developing obtained
from the Autism Brain Image Data Exchange (ABIDE) | and Il. We demonstrated alterations in the
topological roles and modular cohesiveness are the two key properties of the brain regions anchored
in default mode, sensorimotor, and salience networks primarily relates to social and sensory deficits
in ASD children. These results demonstrate atypical global network organization in ASD children
arise from nodal role changes and contribute to the growing body of literature suggesting that
there is interesting information within nodes providing critical marker of functional brain networks in

Autistic children.

Keywords: autism spectrum disorder, resting-state functional connectivity, modular organization,
graph-theory, ABIDE, nodal cartography, normalized mutual information

INTRODUCTION

Graph-theoretical approaches applied to magnetic resonance imaging (MRI) data have revealed that
the human brain exhibits a hierarchical modular organization, with relatively larger functional
communities further divisible into smaller communities. (

). Within these modular partitions, each brain region (node) has its
distinct functional role in information processing within and across different modules, determined by
a specific profile of within- and between module connectivity. This modular profile of nodes helps
classify them into different node types, whose relative properties may affect information flow within a
complex network system ( ). Identification of functional brain modular structures can be
used to delineate functional components associated with specific biological functions (

). Modular structures play a crucial role in network stability and adaptability to facilitate optimal
network functioning ( ). The modular organization of the

brain may play a crucial role in evolution and neurodevelopment ( ).
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Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by restricted
interests and repetitive behaviors as well as difficulty with social-communication skills. Recent static
functional connectivity (SFC) analysis of resting-state functional magnetic resonance imaging
(rsfMRI) data has shown atypical functional connectivity and functional brain network configurations
associated with social cognitive abilities in individuals with ASD ( Previous
resting-state and task fMRI studies have also reported links between various cognitive functions and
modular organization of functional brain networks. Associations have been observed between
cognitive abilities (e.g., intelligence, working memory performance, social and emotional processing)
and (a) modular network organization (

), (b) proportions of specific node types (i.e., connector hubs, provincial hubs) and (c)
alteration in topological roles of brain regions (

). Recently, Glerean and colleagues ( ) reported group
differences (age 19-47 years) in the composition of the default mode network (DMN) and a ventral-
temporal-limbic (VTL) sub-network (amygdala, striatum, thalamus, parahippocampal gyrus (PhG),
fusiform gyrus (FuG), and inferior frontal gyrus). These findings were significantly correlated with
autism symptom severity scores. These studies strongly suggest that individual differences in the
modular organization and the topological roles of the nodes of functional brain networks are related

to behavioral traits in ASD.

Previous studies explored various large-scale and region-specific modular properties, which included
subjects with a wide range of ages, stratifying individuals into different age cohorts (e.g., mixed
children and adolescents (4-17 years)), resulting in mixed findings throughout the autism
neuroimaging literature . Between the age
range of 5-10, hubs shift from being localized in motor areas and primary sensory areas to a more
distributed pattern across frontal, temporal, visual, and subcortical regions (Supekar, Musen, and
Menon 2009). This shift of hubs reflects the development of higher cognitive order during this period
(Oldham et al., 2019). However, atypicality in the large-scale and regional modular properties in

younger children with ASD remains unexplored. Here, we address fundamental questions about the
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influence of alteration in topological roles of brain regions on global modular properties of the brain
in younger children with ASD (5-10 years). An outstanding question is (a) whether, in children with
ASD, the alteration of global modular structure arises from the atypical modular cohesiveness of
specific brain regions (nodes). (b) The alteration in the topological roles of specific brain regions is

responsible for atypical modular configuration and functional connectivity in ASD.

In this study, we applied a graph-theoretical approach to resting-state fMRI data from a sample of
high-functioning children with ASD and typically developing (TD) children available through the
Autism Brain Imaging Exchange (ABIDE) ( ).
We included children between 5-10 years of age who were male, right-handed, had full-scale I1Q >
75 from multiple datasets, including NYU, Stanford, and San Diego, to test the hypothesis that there
would be significant between-group differences in the modular configuration of sensory-motor and
neurocognitive networks between ASD and TD children, and that alterations in nodal roles would be

linked to autism symptom severity.

METHODS

1. Participants

We used resting-state fMRI data collected from children with ASD (5-10 years; males; right-handed;
IQ > 75) from all ABIDE | & Il sites (NYU, Stanford, San Diego) (

) (http://fcon _1000.projects.nitrc.org/indi/abide/) that had participants in the age

range 5-10. To create a well-matched TD comparison dataset, we tested for significant group
differences in age, full-scale 1Q, and framewise displacement using t-tests. An ANOVA was used to

test site and group interactions with age, FIQ, and framewise displacement (FD) (Table.1).

To further eliminate confounds, we excluded subjects based on the following criteria: (1) high levels
of head motion (maximum motion >2mm or 2°rotation, or more than 50% of frames with high FD;

time points whose FD was larger than 0.5 mm, along with the preceding time-point and following two
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time-points, were defined as high head motion time points); (2) incomplete cortical coverage in the
scan; (3) age above 3 SD+/- mean across the samples; (4) FIQ above 2SD+/- mean across the

samples; (5) sites with less than 10 subjects.

2. Data selection and preprocessing

All resting-state fMRI data were preprocessed using the Data Processing Assistant for Resting-State

fMRI (DPARSF) toolbox (http://rfmri.ora/DPARSF) ( ). The initial ten

volumes were dropped to ensure steady-state longitudinal magnetization. The functional images
were realigned using a six-parameter (rigid body) linear transformation. Structural images (T1-
weighted MPRAGE) were segmented into grey matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) and co-registered to the mean functional images using a 6 degree of freedom linear
transformation. Subsequently, structural images were transformed into standard Montreal
Neurological Institute (MNI) space at the resolution of 3 mm? isotropic voxels using the Diffeomorphic
Anatomical Registration Through Exponentiated Lie algebra (DARTEL) tool ). The
following nuisance signals were removed: head motion effects (Friston 24-parameters) (

), signals from WM and CSF, and linear and quadratic trends. WM and CSF signals were
regressed using an anatomical component-based noise correction procedure (aCompCor)

). We did not use global signal regression (GSR) since it has been shown
to influence anti-correlations in resting-state brain networks and distort group differences in intrinsic
functional connectivity

). Finally, a temporal bandpass filter (0.01-0.1Hz) was applied to the BOLD time series h (
). All normalized images were smoothed with a Gaussian kernel to 6 mm full-width
at half-maximum (FWHM). Given that head motion-based artifacts influence BOLD signals
), we performed covariate regressions of Friston 24-motion parameters using the
DPARSF toolbox. To further minimize the impact of head motion artifacts, the scrubbing method was
applied, wherein, frames/scans with framewise displacement (FD) >0.5 mm were discarded (flagged

frame as well as one before and two after)
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3. Construction of resting-state functional connectivity matrix

Several studies suggest that graph properties like modularity are strongly influenced by different
graph densities ( ). We thresholded our correlation
matrix over a range of thresholds, retaining the strongest 15, 20, 25, 30, 35, 40, and 45% edges.
This resulted in seven thresholded graphs for each subject (refer to Supplementary methods). To
parcellate the brain into various regions of interest (ROIs), we used the Schaefer-Yeo 2018 atlas with
200 parcellations ( ) (refer to Supp. methods to parcellations 400 & 600). We
used the DPARSF toolbox to extract the BOLD time series of each brain region and to construct a
subject-specific N x N connectivity matrix, which contains the functional connectivity between each
pair of nodes/brain regions. Functional connectivity between brain regions was estimated by
calculating Pearson’s correlation coefficient values of the BOLD signal between the BOLD time

series. These values were then normalized to z values using Fisher’s z transformation.

4. Graph-theoretical analysis

4.1 Modular organization measures

To choose the adequate community detection algorithm for our study and to assess the reliability of
our findings across different methods, we used three community detection algorithms - Louvain
( ), Newman- Girvan ( ), and
Consensus agreement ( ). These algorithms were applied separately

on seven thresholded graphs and the resulting graph metrics were averaged for each patrticipant.

We explored three whole-brain measures of the functional network modular organization for
each subject: global modularity Q, number of modules, and module size. The Louvain method and
consensus agreement method showed similar results; however, the Louvain method provided
consistent results across all the participants for all three modularity measures. Thus, the Louvain
method was used for further analyses and performed 100 optimization runs on each subject.

Statistical analysis on subject-specific values (obtained by averaging across results of all the
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threshold-defined graphs) for these whole-brain modularity measures was conducted using

permutation testing (10,000 iterations, p < 0.05, FDR corrected).

4.2 Modular composition analyses

4.2.1) Group-level modularity composition analyses

The modularity measures can only reflect differences in network modularity; these measures cannot
reveal differences in modular composition between groups. Normalized mutual information (NMI)
metrics ) were used to compute group-level similarity in the whole-
brain community structure between the ASD and TD groups. The NMI function in the Brain
Connectivity toolbox was used ( ). This tool computes an NMI-based
similarity value, ranging from zero to one, wherein a similarity value closer to one represents identical

community affiliation/assignment (refer to Supplementary detailed methods).

4.2.2) Subject-level modularity composition analyses

The above investigation does not allow statistical qualification of modular structure variability within
and between groups. When partitions are compared across two subjects, even if two modules might
appear quite similar, they may not have the same labels. In other words, a community detection
algorithm might assign different labels to different modules across subjects. This problem can be
solved either by manual intervention or by overlapping modules with the same label while preserving
the differences in modular partitions between groups. Using the NMI approach, we can study the
difference in community structure within and between groups at the individual subject-level and node-

level (refer to Supplementary methods).

4.3) Within- and Between- Module connectivity metrics

An altered community structure can be indicative of changes in the integration and segregation of

functional networks, which can be explored by uncovering the intra- and inter-module connectivity
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patterns of individual nodes. The two measures proposed by ( ) -participation
coefficient (pc) and within-module degree (z) were used to characterize the connectivity of nodes
within and between modules. These two-graph metrics were calculated for binarized and
proportionally thresholded graphs using seven different cut-offs (15%, 20%, 25%, 30%, 35%, 40%
or 45% strongest edges). For each participant, graph metrics were averaged across these six
thresholds to generate individual mean maps. For visualization purposes, individual mean pc- and z
- values of each node were averaged across participants. A two-sample t-test was used to compare

these graph metrics between the ASD and TD groups, followed by FDR correction.

4.4) Node-type cartographic categorization

( ) classified nodes into seven hubs and non-hubs based on their within-
and between module connectivity profiles. Hubs were classified as Provincial (strong within module
connectivity, weak between module connectivity), Connector (strong between-network, weak within-
network connectivity), and Kinless (equal within- and between- module connectivity). In contrast,
non-hubs were classified as ultra-peripheral (strongest within module connectivity), Peripheral
(contains most connections within the same module), Nonhub connectors (many links with nodes in
other modules), Nonhub kinless (most links with nodes in other modules). We classified nodes as
hubs and non-hubs based on within-module degree values, z 2 1 as hubs, and z < 1 as non-hubs.
Non-hubs were further classified into subtypes based on participation coefficient values, ultra-
peripheral (pc < 0.05), peripheral (0.05< pc < 0.62), non-hub connector (0.62 < pc < 0.80), and non-
hub kinless nodes (pc > 0.80), whereas hubs were divided into three subtypes - provincial (pc < 0.30),
connector (0.30 < pc < 0.75), or kinless hubs (pc > 0.75). Proportions of node types were also
calculated for binarized and proportionally thresholded graphs using six different cut-offs. For each
participant, the proportion of each node type was calculated by averaging across the six thresholds.
For visualization purposes, individual node-type proportions were averaged across all the subjects
to generate group averaged proportions of node types. A two-sample Mann-Whitney U test was used
to compare these graph metrics between the ASD and TD groups, followed by FDR correction.
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4.5) Node-role identification

To identify a specific global role of each brain region, the participation coefficient (pc) and within-
module degree (z) of each node were categorized as a subtype of hub/non-hub for each subject, and
then a node was regarded as a specific hub/non-non-hub based on its average frequency of
occurrence in a group (i.e., the frequency of occurrence should be more than 50% of the subjects in
the group). To avoid the arbitrariness of the network threshold, these measures were calculated for

binarized and seven proportionally thresholded graphs.

To evaluate the reproducibility of functional cartography, we used the bootstrapping method.
Within each group, these local measures were recalculated after bootstrapping, and then node roles
were identified using resampled data. This procedure was repeated over 10,000 iterations followed
by summing the occurrence frequency of a specific role of each node. We regard a node as a specific
hub/non-hub based on a score that should be higher than the average frequency of occurrence.

RESULTS

1. Global modular organization & ASD symptoms

We first examined three global modularity measures of brain networks using the Louvain algorithm
(refer to Supplementary table 1 for Newman and Consensus agreement community detection
results). The ASD group showed significantly reduced global modularity Q compared with the TD
group (p = 0.001). We also observed a significant increase in the average number of modules (p =
0.02) and a significant decrease in the average modular size in the ASD group (p = 0.01) (Table 2,
Figure 1). None of the whole-brain global measures of the modular organization were significantly

associated with Autism Diagnostic Observation schedule (ADOS) behavioral scores (Table 3).

2. Reduced similarity in modular composition in the ASD group

2.1. Group-level analyses


https://doi.org/10.1101/2022.07.30.502167
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.30.502167; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A qualitative examination of group average modular structures (Figure 2) revealed that the overall
network structure and functional connectivity were well preserved in both ASD and TD groups. The
quantitative examination of the similarity between mean ASD and TD network structures (Table 4)
using normalized mutual information (NMI) also showed a high level of similarity of network structures
(averaged across proportional thresholds, mean NMI = 0.66, standard deviation = 0.13). (Refer to
Supplementary Table 2 & Figure 2 for group differences in modular composition across two atlas

parcellations).

2.2. Subject-level analyses

Individual subject network partitions revealed that the mean NMI of all within-group subject pairs was
significantly higher than the mean of all between-group subject pairs for all the thresholds except for
one (Table 5). Additionally, across all the thresholds, the average within-group NMI for the ASD
group was less than the average-within TD group NMI, reflecting the heterogeneity of network
partitions in the ASD group. (Refer to Supplementary Table 3, 4 for group differences in modular

composition across two atlas parcellations).

2.3. Node-level analyses

To further investigate the brain regions responsible for the significant group difference in the modular
structure, we used follow-up permutation tests of community assignments (

). First, the significant nodes were selected using FDR corrected p<0.05 as a significance
criterion, and the percent of significant nodes within each network was counted. Figure 3A shows
that there was an inconsistency in community assignments in the ASD group with a high percentage
of ROIs in the sensorimotor (SM) networks across all the threshold densities. Additionally, this
community membership variability across groups was also contributed to by a smaller percentage of
nodes in DMN, visual, salience, and executive control networks. To further illustrate the nodes
contributing to the differences in the community structure and NMI between ASD and TD, the ROIs
with significantly inconsistent/flexible community membership (FDR corrected, p<0.05) across all the

threshold densities are represented on the brain (Figure 3B). The difference in the diagnostic

41V
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network structure are driven by 38% of the nodes. Most notable community membership
discrepancies were contributed by lateral occipital cortex (LoCc), precentral gyrus (PrG), postcentral
gyrus (PoG), superior temporal gyrus (STG), dorso-medial prefrontal cortex (dmPFC), precuneus

(Pcun), inferior parietal lobule (IPL), and lateral prefrontal cortex (IPFC).

2.4. Association with ASD symptoms

The community assignment consistency values (Pearson’s phi coefficient) of the majority of
inconsistent nodes (dmPFC, PCun, LocC, medial ventral occipital cortex (MvocC), IPFC, cingulate
gyrus (CG)) were negatively associated with ADOS-social, total and severity scores whereas these
community assignment consistency values of nodes such as (dmPFC, PoG, IPFC, LocC, MvocC)
were also negatively associated with restricted and repetitive behavior (RRB) scores. These results
suggest that with increasing symptom severity the tendency of nodes to switch modules within the

ASD group also increases (i.e., reduced stability of nodes within their respective modules).

3. Altered modular connectivity

To investigate group differences in modular connectivity, we used two measures: participation
coefficient PC (inter-modular connectivity) and within-module degree Z (intramodular connectivity).
In ASD, a significantly (FDR corrected, p<0.01) increased participation coefficient was observed for
nodes in bilateral PCun, bilateral PrG, and PoG, rIPL, and rPCun (Table 6, Figure 4A, B). The nodes
with significant differences in within-module degree did not survive FDR correction, however, in ASD
significant (all p<0.05) increase in intramodular connectivity was contributed to by nodes of bilateral
LoCc, bilateral temporal lobe, and left (medial orbito-frontal gyrus) mOFG. A significant decrease in
within-module connectivity was observed in nodes of right IFG and SFG, bilateral paracentral lobules
(PCL), bilateral PoG, rIPL and frontal eye field (FEF), and left lingual cortex and right cuneus cortex
consisting of the MvocC node (Table 6, Figure 4C, D). The within-module connectivity values of

bilateral nodes of dmPFC were negatively (r = -0.3, p = 0.01) associated with the ADOS RRB score
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whereas the between-module connectivity of the same nodes was positively correlated (r = 0.3, p =
0.02) with ADOS severity scores. The average participation coefficient scores of DMN, salience, and
sensorimotor networks were also negatively correlated with global modularity (r = -0.58, p<0.0001)
thus further suggesting that the increased between-module connectivity in ASD results in less robust
modular organization contributed by nodes of these networks. Furthermore, in the ASD group, there
was a strong negative correlation between the participation coefficient with community assignment
consistency scores of the nodes with increased flexibility (which switched their modules across
different subjects) (Figure 4E, F). (Refer to Supplementary Figure 1 for group-differences in

modular connectivity across two atlas parcellations).

4. Functional cartography reveals significant differences in node types in the ASD group

The topological roles of ROIs in facilitating within and between module communication were
characterized using participation coefficient (PC) and within-module degree Z. Figure 5B shows that
only 15.18% of nodes were characterized as hubs (i.e., kinless, connector, or provincial hubs) and
the majority of the node types were peripheral and non-hub connectors. In ASD, proportions of
peripheral and provincial nodes were significantly reduced, whereas proportions of non-hub
connector nodes and connector hubs were significantly increased (Table 2). However, the proportion
of node types showed no significant association with ADOS scores (Table 3) (Refer to
Supplementary Figure 3 for group-differences in modular composition across two atlas

parcellations).

5. Nodal-role identification

We further examined brain regions which contributed to the altered proportions of the node types.
Qualitative examination, analyzed using the group average matrix, shows that the majority of
peripheral nodes in TD converted to non-hub connectors (PrG, PoG, IPFC, PCun, ventral PFC,
insula) and few peripheral nodes to connector hubs in ASD (bilateral dmPFC, IPFC, right PoG).
Whereas the provincial nodes in TD switched their roles to connector nodes in ASD (like the left IPL
from DMN (Figure 6A, B)). Subject-level analyses revealed that the ASD group had 19 non-hub

12
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connector nodes and 5 connector hubs as compared with the TD group with 4 non-hub connector
nodes and 2 connector nodes (Figure 6E, F, G, Table 7, 8). Common non-hub connectors (8 nodes)
were from the left LoCc, left FuG, bilateral PCL, and rOFC. Additionally, the ASD group had 13 non-
hub connectors from the bilateral temporal pole and FEF, left OFC and right medial temporal lobe,
and bilateral vPFC. Common connector hubs were from bilateral STG, bilateral Insula cortex, and
right dmPFC. Additionally, the ASD group had 5 connector hubs from bilateral STG, bilateral posterior

cingulate cortex (PCC), and left FuG, whereas the TD group had 2 extra connectors from the dmPFC.

The majority of non-hub connector nodes in the ASD group had increased between-module
connectivity (FDR uncorrected, all p<0.05), thus reflecting the influence of these nodes as non-hub
connectors on increased inter-module connectivity in ASD populations (Figure 6C). Similarly,
connector hubs (left FuG and rPCC) in ASD had increased inter-modular connectivity (FDR

uncorrected, all p<0.05).

DISCUSSION
Autism spectrum disorder is a ‘critical period’ neurodevelopmental disorder associated with atypical
development of brain networks. Globally atypical functional brain networks may arise from the
increased ratio of excitation/inhibition balance resulting in hyperexcitability and thus cortical instability
in ASD ( ). Furthermore, these functional brain network atypicality in
ASD may also be associated with synaptic cell-adhesion molecules and altered expressions of genes
encoding these molecules, which play important roles in synaptic formation and axonal guidance
Most of the
neuroimaging studies examining brain network organization in ASD have focused on older children,
adolescents, and adults, with less work on younger children (5-10 years). In our study, we
systematically investigated global and regional module properties related to atypical cognitive skills

and social communication deficits in younger children with ASD.
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We used graph-theoretical analysis applied to resting-state fMRI data from ABIDE. We report
evidence for alteration of local node properties on the atypical modular organization of functional
brain networks in children with ASD. Children with ASD show reduced global modularity as well as
within-group modular composition consistency compared with age-matched TD children. These
results were also significantly associated with alterations in modular connectivity in ASD. Further
investigations of the underlying nodal cause of the global modular organization revealed that the
alterations in roles of nodes from sensorimotor, salience and, default mode networks resulted in
alteration of modular connectivity, thereby affecting the modular composition and global modularity

in ASD.

Alteration in global modularity in ASD
As reported in the previous literature, we observed a reduction in global modularity that might reflect
hyper-synchronized brain networks (i.e., fewer connections within modules and more connections
between modules) in ASD
Additionally, we also observed an increase in the number of modules, along with

a significant decrease in the modular size in the ASD group, which is indicative of the partitioning of
brain networks into modules of smaller sizes in ASD participants compared with TD. These
alterations in global modular properties might be reflective of the apparent randomness of functional
brain networks in ASD individuals

and might result from alterations in graph-theoretical properties such as reduction in clustering

coefficient and characteristic path length as reported in several previous studies of adults with ASD

Reduced similarity in modular composition in ASD
Reconfiguration of brain networks might play an integral role in executing cognitive functions.
Previous studies report that alterations in modular reconfiguration might be associated with reduced
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cognitive functioning with age and clinical disorders such as schizophrenia
. Group-level modular structure composition analysis reflects that both groups
shared nearly equal amounts of information, suggesting that at the gross level, functional brain

organization is relatively well-preserved in ASD compared with TD.

However, subject-level analyses revealed that significant group differences in community
composition reflected an increased heterogeneity (i.e., reduced similarity) in modular composition
within ASD compared with the TD group. also showed this reduction in community
structure similarity in individuals with ASD. Our study also revealed that global levels of modular
reconfiguration and heterogeneity in modular structure in ASD might result from reduced
cohesiveness of nodes to their modules across subjects, especially nodes of networks such as visual,

sensorimotor, executive control, and DMN.

Modular cohesiveness of nodes directed by their modular connectivity
Alteration in modular connectivity is essential for the integration and segregation of networks, which
permits a reconfiguration of the global modular organizations to perform different types of cognitive
tasks such as working memory or tapping fingers (Stanley et al. 2014; H. E. Stevens et al. 2017;
). Modular connectivity alters the flexibility of the nodes to switch modules
to mediate the exchange of information across modules ( ). Our findings show that
the increase in between-modular connectivity of nodes belonging to three functional brain networks,
namely DMN, SMN, and salience, was negatively associated with their modular cohesiveness. This
provides an explanation that these nodes with increased between-module connectivity (BMC)
interact more with other modules and thus possibly switch their modules more frequently in the ASD
group compared with the TD group. These findings validate that the altered inter-modular connectivity
of DMN, SM, and salience networks not only impacts the overall modular composition but also
influences global modularity. Furthermore, this overall increase in BMC along with a reduction in
global modularity in the ASD group reflects that the system exhibits less robust modular organization
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and explains the possible atypical synchronicity of the functional brain networks reported in ASD

individuals.

Nodal roles altered in ASD
The brain regions/nodes with different functional roles influence the flow of information within and
between modules and thus the proportion of different types of nodes will
further influence the global flow of information, efficient integration /segregation of functional brain
networks, and thus also affect cognitive performance

. Thus, the proportions of nodes with different topological roles are also
considered global properties of modular network organization ( ). To
facilitate information flow across and within the modules, different types of nodes have differing
abilities to switch modules, thus different node types also have different modular membership
consistency (e.g., connector hubs have more flexibility to switch modules and play a crucial role in

exchanging information within and across modules).

Our results demonstrate that children with ASD had relatively higher proportions of non-hub
connectors (NHC) (responsible for between-module connectivity) and reduced proportions of
peripheral non-hubs (NHP) and provincial hubs (HP) (maintain more within-module connectivity)
compared with TD children. The follow-up analysis revealed that peripheral nodes in TD converted
to non-hub connectors in ASD, whereas provincial hubs converted to connector hubs in ASD. These
findings explain the observed increase in between-module connectivity in ASD due to increased
proportion of NHC nodes and decreased within-module connectivity due to decreased proportions of

HP and NHP.

As reported in previous literature, major common connector hubs were from sensorimotor, salience,
and default mode networks, whereas children with ASD had more connectors from sensorimotor and
salience networks ( These nodes being connectors also had
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higher flexibility to switch modules and result in increased between-modular connectivity.
Furthermore, another node type exhibiting increased modular connectivity in ASD was non-connector
nodes, from default mode network and dorsal attention and limbic networks. These results reflect
that major large-scale network-level alterations in children with ASD involve brain regions of the

DMN, SMN, and salience networks

LIMITATIONS

The study was based on multi-site data from ABIDE | and Il, thus, to eliminate multi-site covariations
we used statistical tests. However, co-variations caused by differing scanning protocols and scanners
were not considered. Furthermore, since ASD is more prevalent in males and to avoid co-variations
resulting from effects of gender, we focused on male individuals with ASD. Further investigation will
be required to study gender effects on modular properties of functional brain networks in ASD. This
study had a small sample size thus, the current findings await replication with a larger sample size

using data from sites other than ABIDE | and Il
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Fig.1: Group difference in global modularity measures across thresholds and community detection methods. There is significant reduction in global modularity
(A), and the average modular size (C) in the ASD group as compared to TD population. There is significant increase in average number of communities (B) in the
ASD participants. Graph metrics were calculated for proportionally threshold graph over a range of 15% to 45% with 5%increments. For each participant, these
global measures were calculated by averaging across all the thresholds and for each group, these measures were averaged across all the subjects. The Louvain and
Consensus agreement community-detection methods produced similar results as compared to Newman -Girvan methods ( B & C).
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Fig. 2: Group-level difference in the community structure revealed overall similarity between ASD and TD groups. A. The networks are on the vertical axis
and graph densities are on the horizontal axis. Regions are colored by the community assignments of the ROIs. B. The community structure of ASD group at the
20% graph density. C. The community structure of TD group at the 20% graph density. The group-level community structures were detected using group-averaged
functional connectivity matrices. The 20% graph density was used as representative community structure over a range of thresholds on the basis NMIL.
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Fig. 3: Subject and Node-level community structure differences between ASD and TD. A. Subject-level Phi test results revealed that nodes of sensorimotor
(SM), Default-mode (DMN) and Visual (Vis) networks, significantly altered their community assignments. Dark colors in the map represents higher fraction of
nodes with significant (FDR corrected, p< 0.05) alterations in community assignments at that graph density. B. Node-level Phi test results exhibited 38% of nodes
with significant (FDR corrected, p< 0.05) alteration in community assignments. ROIs from sensorimotor, default-mode, salience and visual networks revealed
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Fig. 4: Group difference in modular connectivity and association between inter-modular connectivity & modular assignment inconsistency. A. The network-
level between—-module connectivity was calculated by averaging the PC scores of all the nodes within each network. Sensorimotor network has significantly (FDR
corrected, p<0.05) higher between-module connectivity in ASD group as compared to TD group. B. The node-level results exhibited that the ROIs of Default-mode,
sensorimotor, salience and visual network have significantly (FDR corrected, p<0.05) increased inter-modular connectivity in ASD group. C. The network-level
within-module connectivity revealed that limbic network has significantly (FDR uncorrected, p<0.05) reduced intra-modular connectivity in ASD group. D. The node-
level intra-modular connectivity analysis showed mixed results. Graph metrics were calculated for binarized and proportionally thresholded graphs (15% to 5% with
5% increments). For each participant, these graph metrics were calculated by averaging across all the thresholds and for each group, these measures were averaged
across all the subjects. E. There is a significant negative correlation between average participation coefficient and average nodal cohesiveness to a module (consistency
of modular membership) for both the groups — ASD and TD. F. The nodes reflecting significant negative association between average PC scores and nodal cohesiveness
are from Default-mode, sensorimotor, salience and Dorsal attention network.
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Fig. 6: Group-differences in topological roles of nodes. A. The group-level node-roles identification analysis revealed that overall there are more connector hubs
and non-hub connector nodes in ASD group in temporal, and frontal areas B. At group-level, there are more peripheral nodes and provincial hubs in parietal, frontal
and temporal areas whereas the ratio of connector hubs and non-hub connectors is limited to occipital cortex, medial temporal and parietal areas. Figure C & D
represent the four communities with the distribution of different-node types across seven functional networks. The bigger squares are connector hubs and smaller
square are non-hub connector nodes. Figure E, and F represent significant connector hubs (bigger sphere) and non-hub connector nodes (smaller sphere) in ASD
and TD group respectively. G. There are few significant connector hubs and non-hub connector nodes which are common across both the groups.
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Table 1: Participants demographics

ASD (n=57) TD (n=62) Group comparisons (P-value)

Age 9.36 (£1.74) 9.67(+1.54) 0.31a
Site x group interaction - 0.25b
Full-scale 1Q 11043 (£16.83)  114.46 (£ 13.42) 0.21a
Site x group interaction - 0.74b
Mean FD (mm) 0.14(£0.04) 0.12( £ 0.04) 0.11a
Site x group interaction 0.32b
ADOS score

Total score 12.15 (£4.21) -

Social 9.36 (£3.44) -

RRB score 2.78 (£1.70) -

Severity score 7.01(£1.77) -

ADOS, Autism Diagnostic Observation Schedule; RRB, Restricted and Repetitive Behaviors. FD, Frame wise
displacement. a two-sample t-test; b ANOVA

Table 2. Group differences in global modularity measures

ASD mean (+ std) TD mean(=+ std). Pvalue
Whole-brain global modularity measures
Global Modularity 0.28 (+0.04) 0.30(+0.03) 0.001
Average Number of modules 2.99 (£0.52) 2.81 (£0.39) 0.02
Average module size 72.89 (x13.42) 78.57 (x13.82) 0.01
Whole-brain proportion of node types
Connector hubs 11.54(£2.58) 10.77(£2.92) 0.12
Provincial hubs 3.46(£2.45) 4.43(+£2.63) 0.02
Kinless hubs 0.019(%0.05) 0.003(x0.01) 0.02
Nonhub connector nodes 19.09(x10.34) 14.97(x8.04) 0.008
Peripheral nodes 62.48(+10.14) 66.59(£7.73) 0.007
Nonhub Kinless nodes 0.002(+0.016) 0.001(£0.007) 0.65
Ultra-peripheral nodes 3.40(+2.62) 3.24(%2.31) 0.65

The group difference for global modularity measures was calculated using permutation test (10,000 iterations,
p<0.05) whereas whole-brain proportion of node types was calculated using Mann-Whitney U test.
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Table 3. ASD Symptoms and global modularity measures

ADOS(Socio) ADOS(RRB) ADOS(total) ADOS(severity)
Ipart. (ppartA) Ipart. (ppart.) Ipart. (ppart) TIpart. (ppartA)
Whole-brain modularity measures
Global modularity -0.26 (0.05) -0.08(0.55)  -0.25(0.06) -0.18(0.17)
Average Number of modules -0.09(0.49)  -0.006(0.96)  -0.08(0.55) -0.08(0.52)
Average module size 0.14(0.28)  -0.03(0.82)  0.11(0.42) 0.10(0.46)
Whole-brain proportion of node types
Connector hubs 0.02 (0.83) 0.09(0.51)  0.06(0.65) 0.06(0.65)
Provincial hubs 0.01 (0.91) -0.08(0.52)  -0.02(0.85) 0.01(0.94)
Kinless hubs -0.04 (0.73)  0.18(0.18)  0.03(0.77)  0.0007 (0.99)
Non-hub connector nodes -0.02 (0.83) 0.13(0.32) 0.03(0.80) 0.03(0.77)
Peripheral nodes 0.001 (0.99)  -0.12(0.38)  -0.05(0.71) -0.03(0.79)
Nonhub Kinless nodes 0.001 (0.98)  0.09(0.47)  0.04(0.75) 0.05(0.68)
Ultra-peripheral nodes 0.066 (0.63)  -0.08(0.55)  0.02(0.88) -0.08(0.54)

ADOS, Autism Diagnostic Observation Schedule; RRB, Restricted and Repetitive Behaviors; Socio, Social-
affective communication. The association between global modularity measures or whole-brain proportion of
node types and ADOS behavioral scores were calculated using partial correlation while controlling for age, sex,
site difference, and mean FD.

Table 4. NMI values between ASD and TD (Supplementary)

Proportional threshold TD X ASD

15% 0.78

20% 0.58

25% 0.62

30% 0.90

35% 0.50

40% 0.61

45% 0.63

Mean across proportional threshold 0.66
Standard deviation 0.13

Group-level community structure similarity between ASD and TD across
all the thresholds
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Table 5. NMI permutation testing between ASD and TD group

P-value: Mean of all Mean of all Mean

Proportional s s Mean within-
Thresholds Real data> within-group between-group within- ASD NMI
permuted data NMI pairings NMI pairings TD NMI

15% 0.04 0.27 0.26 0.28 0.26
20% 0.95 0.24 0.22 0.25 0.23
25% 0.0002 0.21 0.20 0.22 0.21
30% <0.0001 0.20 0.18 0.20 0.19
35% <0.0001 0.18 0.16 0.19 0.17
40% <0.0001 0.17 0.15 0.18 0.16
45% <0.0001 0.16 0.14 0.17 0.15

Subject-level within group community structure similarity across all the proportional thresholds Permutation
test with 10,000 iterations was performed with FDR correction.

Table 6. Modular connectivity

Brain regions Network Hem X y z

Between-Module connectivity

ASD>TD

PrG* SM L -47 -9 46
PoG* DA L -41 -35 47
IITG* DMN L -60 -19 -22
vPCun® DMN L -5 -55 27
lingual MVocC* Vis R 16 -46 -1
PrG* SM R 59 0 10
PoG* SM R 56 -11 14
vIPL? DA R 59 -16 34
PrCv Sal R 51 4 40
MTG* DMN R 61 -13 221
PCun® DMN R 7 -49 31
TD>ASD

mSTG Lim R 47 -12 -35

Within-Module connectivity
.|

ASD>TD
PCL Sal L -11 -35 46
TD>ASD
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infLOcC Vis L -27 -95 -12
PhG Lim L -29 -6 -39
mSupLOcC Vis R 16 -85 39

Mann-Whitney U test over 10,000 iterations; p<<0.01; “FDR correction survived
Hem, Hemisphere; L, left; R, right; xyz, Montreal Neurological Institute template brain (MNI) coordinates Vis:
Visual, SM: Sensorimotor, DA: Dorsal-attention, Sal: Salience, Lim: Limbic, DMN: Default-mode.

Table 7. A list of connector hubs

Brain regions Network Hem X y z

ASD-specific hubs

Lingual MVocC Vis L -10 67 4
STS SM L -53 -24 9
STS SM R 51 -15 5
dCG Sal R 7 9 41

TD-specific hubs
mOFG (dmPFC) DMN L -12 63 -6
mSFG (dmPFC) DMN L -8 59 21
Common hubs

dINS Sal R 46 -4 -4

dmPFC DMN R 8 58 18

STG SM L -51 -4 -2

Bootstrap method with FDR correction (p<0.001)
Hem, Hemisphere; L, left; R, right; xyz, Montreal Neurological Institute template brain (MNI) coordinates Vis:
Visual, SM: Sensorimotor, DA: Dorsal-attention, Sal: Salience, Lim: Limbic, DMN: Default-mode.

Table 8. A list of non-hub connector nodes

Brain regions Network Hem X y z
h h
ASD-specific nodes

vIITG DA L -57 -60 -1

FEF DA L -31 -4 53
10rG Lim L -24 22 -20
caulFG(PFC) DMN L -52 22 8

LOcC Vis R 48 -71 -6
IVITG DA R 50 -53 -15
dIMTG DA R 52 -60 9

FEF DA R 34 -4 52
PrC Sal R 51 4 40
IMTG Lim R 30 9 -38
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CG CEN R 5 3 30
rosSTG DMN R 55 -6 -10
rosIFG (vPFC) DMN R 51 28 0
TD-specific nodes
infLOcC Vis -27 -95 -12
rosPhG Lim -29 -6 -39
Common-specific nodes
LOcC Vis L -45 -69 -8
LOcC Vis L -47 -70 10
IvFuG DA L -43 -48 -19
PCL Sal L -11 -35 46
IpPhG Vis R 39 -35 -23
PCL Sal R 11 -36 47
10rG Lim R 28 22 -19
vMFG(PFCI) CEN R 46 24 26

_Bootstrap method with FDR correction (p<0.001)
Hem, Hemisphere; L, left; R, right; xyz, Montreal Neurological Institute template brain (MNI) coordinates Vis:
Visual, SM: Sensorimotor, DA: Dorsal-attention, Sal: Salience, Lim: Limbic, DMN: Default-mode.

Glossary:

BOLD: Blood oxygen level dependent

FDR: False-positive discovery rate

FD: Frame wise displacement (head motion)

FIQ: Full Intelligence quotient (verbal + non-verbal)

ADOS: Autism Diagnostic Observation schedule

RRB: Repetitive and restriction behavior

R-fMRI: Resting state functional magnetic resonance imaging
SFC: Static Functional connectivity

ASD: Autism spectrum disorder

TD: Typically developing

ADHD: Attention deficit and Hyperactivity disorder

ABIDE: Autism Brain imaging data exchange

DPARSF: Data processing assistant for resting-state fMRI.
MPRAGE: Magnetization Prepared Rapid Acquisition Gradient Echo
DARTEL: A Fast Diffeomorphic Registration Algorithm
FWHM: Full width at half maximum

ROI: Region of Interest

NMI: Normalized Mutual Information
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Supplementary material

METHODS

1. Threshold selection

Several studies suggest that graph properties like modularity are strongly influenced by the different
graph densities (Ginestet, Nichols, Bullmore, & Simmons, 2011). Thresholding a graph based on
connection strength can yield differences in graph density, thus influencing graph properties and
creating a biased comparison of graph metrics between the groups (Bullmore & Bassett, 201 1a; Ginestet
et al., 2011; Schwarz & McGonigle, 2011; van Wijk, Stam, & Daffertshofer, 2010). Thus, to avoid
biases due to inter-subject differences in graph density, we equalized network density between subjects
by thresholding graphs to retain an equal proportion of the strongest positive connections (negative
connections were excluded), followed by binarizing (recommended to retain individual differences in
network topology graphs (Bullmore & Bassett, 2011b; van Wijk et al., 2010). We thresholded our
correlation matrix over a range of thresholds, retaining the strongest 15, 20, 25, 30, 35, 40, and 45%
edges. This resulted in seven thresholded graphs for each subject. The upper thresholded 45% was
chosen because at the 45% threshold, and the weakest edge corresponds to a statistically significant
(p<0.05) minimum correlation coefficient (0.2) across 170 functional images. At the lowest threshold,
networks become fragmented, thus breaking down network properties. Graph density with 15% of
strongest edges was chosen as the lower threshold (significant weakest connections r =0.15, p-value <
0.05) at which the graph was fully connected for each subject. We tested the group differences in

modularity and community structure at all connection densities

2. Modular composition analyses
2.1) Group-level modularity composition analyses
We constructed a group representative modularity partition by applying the Louvain method to an

unthresholded group averaged functional connectivity matrix after excluding all the negative weights.
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with each individual’s modular partition (Simpson, Moussa, & Laurienti, 2012), using the NMI
approach, we compared the similarity of our representative modularity partition with each individual’s
modularity partition (Meila, 2007). Furthermore, to assess whether the similarity between the modular
partition of representative group averaged matrices and individual matrices were because of chance or
group membership, we checked the similarity of our representative modularity partition with
randomized individual matrices. Random networks were created using the MATLAB-based Brain
Connectivity toolbox function: randmio_dir_connected.m, which preserves the degree of connectedness
of each node in the true network. However, since this measure is graph density sensitive, we repeated
this computation with all seven proportionally thresholded graphs (15% to 45% with an increment of
5%) to obtain an NMI value of similarity between community assignments for each density graph

(Lerman-Sinkoff & Barch, 2016).

2.2) Subject-level modularity composition analyses

Using the NMI approach, we can study the difference in community structure within and between
groups at the individual subject level and explore within-group heterogeneity of network structure. The
community structure variance can be more reliably explained by group membership than by chance
only if the average NMI between all the pairs of subjects within a group is higher than the average NMI
between pairs of subjects selected at random. The group label permutation method developed by
(Alexander-Bloch et al., 2012) was used to determine the statistical similarity of subjects within a group
and across the two groups. For all six proportionally thresholded graphs, the true within-group NMI
average and true between-group NMI average were calculated by taking the mean of NMI values
computed for each pair of participants. Over 10,000 iterations, group labels were randomly permuted,
and mean within-group NMI was calculated for permuted data at each density threshold. Further, at
each density thresholded, the p-value was calculated as the ratio of the total number of instances when
the actual mean within-group NMI is less than the permuted mean within-group NMI, relative to the

number of permutations (Lerman-Sinkoff & Barch, 2016).
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The above permutation test does not reveal how the community affiliation/assignment of a particular
ROI may differ across the ASD and TD groups. Using the second permutation test developed by
(Alexander-Bloch et al., 2012), we assessed node-specific statistical differences in community structure
between groups. Pearson’s phi coefficient (-1<p<1) (Pearson,1990) approach was used to quantify node
similarity between two subjects in terms of a node’s functional community. If there is a difference in a
node’s community between two groups, then the averaged between-group phi coefficient value should
be lower than the averaged within-group phi coefficient value. Permutation procedures can be used to
generate a p-value comparing the average of within-group Phi values in real data and
randomized/permuted data. Thus, for each density threshold, a set of p-values was generated indicating
whether a given ROI’s community was more similar for subjects within the same group than in
randomized groups. This test was performed at each density threshold, for each node over 10,000

iterations, followed by FDR correction.
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Supplementary table 2. NMI values between ASD and TD across atlas parcellations

Proportional threshold
Atlas Parcellations 200 400 600

15% 0.78 0.72 0.74

20% 0.58 0.77 0.67

25% 0.62 0.78 0.64

30% 0.90 0.68 0.60

35% 0.50 0.59 0.60

40% 0.61 0.62 0.55

45% 0.63 0.45 0.43

Mean across thresholds 0.66 0.66 0.60
SD 0.13 0.11 0.10

Group- level community structure similarity between ASD and TD across
all the thresholds

Supplementary table 3. NMI permutation testing between ASD and TD group
(Atlas parcellation 400)

Proportional RealP ;V;é?riu ted Mean of all W%ﬂ.lin- Mean of all bet.w.een— Mean within- Mean within-
Threshold data (p<0.0001) group NMI pairings  group NMI pairings TD NMI ASD NMI
15% 0.91 0.24 0.2238 0.25 0.22
20% 0.0047 0.21 0.1943 0.22 0.20
25% <0.0001 0.19 0.1725 0.19 0.18
30% <0.0001 0.17 0.1554 0.18 0.16
35% <0.0001 0.16 0.1454 0.17 0.15
40% <0.0001 0.15 0.1345 0.16 0.14
45% <0.0001 0.14 0.1258 0.15 0.13

Supplementary table 4. NMI permutation testing between ASD and TD group
(Atlas parcellation 600)

Proportional RealP ;V;é?riu ted Mean of all W%ﬂ.lin- Mean of all bet.w.een— Mean within- Mean within-
Threshold data (p<0.0001) group NMI pairings ~ group NMI pairings TD NMI ASD NMI
15% 0.91 0.21 0.20 0.23 0.20
20% 0.0014 0.18 0.17 0.20 0.17
25% <0.0001 0.16 0.15 0.18 0.15
30% <0.0001 0.15 0.14 0.16 0.14
35% <0.0001 0.14 0.13 0.15 0.13
40% <0.0001 0.13 0.12 0.15 0.12
45% <0.0001 0.13 0.11 0.14 0.11

Subject-level within group community structure similarity across all the proportional thresholds Permutation
test with 10,000 iterations was performed with FDR correction.
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Supplementary figure 2: Group-level difference in the community structure revealed overall similarity between ASD and TD groups.
The networks are on the vertical axis and graph densities are on the horizontal axis. Regions are coloured by the community assignments of
the ROIs. A. No significant group difference in the community structure (supplementary table no. 2) was observed between ASD and TD
groups across both the parcellations (A — atlas parcellation size 400; B — atlas parcellation size 600)
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Supplementary figure 3: Functional cartography exhibited altered proportion of different node types in ASD group. A & B Whole-brain
group-averaged proportions of node types in ASD group shown for two atlas parcellations— 400 & 600 respectively. This was calculated
separately on binarized and proportionally thresholded graphs (15%, 20%, 25%, 30%, 35%, 40%, and 45%). For each subject, individual node-
type proportion was calculated by averaging across the six thresholds
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