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Metabolomics holds the promise to measure and quantify small molecules 8 
comprehensively in biological systems, and LC-MS (liquid chromatography coupled 9 
mass spectrometry) has become the leading technology in the field. Significant 10 
challenges still exist in the computational processing of data from LC-MS metabolomic 11 
experiments into metabolite features, including provenance and reproducibility of the 12 
current software tools. We present here asari, a new open-source software tool for LC-13 
MS metabolomics data processing. Asari is designed with a set of new algorithmic 14 
framework and data structures, and all steps are explicitly trackable. It offers substantial 15 
improvement of computational performance over current tools, and is highly scalable. 16 
 17 
In LC-MS metabolomics, a sample is scanned by mass spectrometer consecutively during the 18 
chromatography, generating a time series of spectra, each containing a list of ions with mass to 19 
charge ratio (m/z) and intensity values. The goal of data processing is to report a quantitative 20 
value per metabolite feature per sample, which is a proxy of biological concentration. Multiple 21 
software tools have been developed for LC-MS metabolomics data processing over the years, 22 
and the most widely used are XCMS and MZmine (Smith et al, 2006, Katajamaa et al, 2006, 23 
Pluskal et al, 2010, Du et al, 2020, Yu et al, 2013, Melamud et al, 2010, Rurik et al, 2020). 24 
XCMS is also wrapped into numerous workflows and is the main choice in cloud environments 25 
(Tautenhahn et al, 2012, Delabriere et al, 2021, Pang et al, 2021). Most these software tools 26 
follow a similar framework: building ion chromatogram, detection of elution peaks, alignment of 27 
retention time in liquid chromatography, and correspondence of peaks across samples. The 28 
design was optimized when instrument resolution was limited and sample numbers were small, 29 
not taking advantage of the ultrahigh resolution of modern instruments and the statistical 30 
patterns in larger data. The correspondence step is error prone because a feature may only be 31 
present as a high-quality peak in a subset of samples, and the computational problem is 32 
complicated by missing data, low-quality data, m/z alignment and retention time alignment.  33 
 34 
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Asari uses a concept of "composite map” to look for peak patterns in cumulative data (Figure 35 
1A). A specific form of a metabolite is observed in LC-MS as an elution peak. When the same 36 
metabolites exist in multiple biological samples, such peaks are seen recurrently in nearly 37 
identical m/z and similar elution profiles. When these corresponding signals from each sample 38 
are superimposed and summed up, the observed peaks become representative of all samples 39 
(Figure 1B). The "composite map" is a complete list of these composite chromatograms. With 40 
this approach, peak detection is no longer required on individual samples. It can be done on the 41 
composite map, then the peak area is looked up in each individual sample and reported as 42 
feature intensity values (Figure 1A). This leads to a significant performance gain, by not 43 
repeating the computational cost of peak detection on all individual samples. Because the 44 
composite map has higher signals than any individual sample, the quality of peak detection is 45 
often improved. Even a peak is only present in a single sample, it will be detected and reported 46 
in asari, which is important to applications such as personalized medicine and exposomics. 47 
 48 
The implementation of composite map is facilitated by a set of transparent data structures. Mass 49 
tracks are extracted ion chromatograms spanning the full range of LC, therefore each mass 50 
track has a unique m/z within a sample (Figure S1). A MassGrid records the alignment of mass 51 
tracks across samples. A feature is defined at experiment level, and elution peaks are defined at 52 
sample level. A metabolite may have multiple degenerate features due to isotopes, adducts, 53 
neutral loss and fragments, which are grouped by an "empirical compound”. An empirical 54 
compound is a computational unit for a tentative metabolite, since the experimental 55 
measurement may not separate compounds of identical mass (isomers). Asari explicitly links 56 
mass track, peak, feature and empirical compound, so that each processing step can be traced 57 
and verified. These data structures are exported as JSON or text tables. An interactive 58 
dashboard can be launched after data are processed, to allow users to visually inspect data and 59 
feature quality easily (Figures S2, S3). 60 
 61 
The ability to verify feature quality is a priority in asari. Besides peak shape and signal-to-noise 62 
ratio (SNR), we have implemented a set of selectivity metrics: mSelectivity is how distinct are 63 
m/z measurements (Figure 1C), and cSelectivity is how distinct are chromatograhic elution 64 
peaks (Figure 1D). A derivative of mSelectivity is dSelectivity, applied to how distinct are 65 
database records. In feature tables generated by asari, the values of SNR, cSelectivity and 66 
peak shape are usually sufficient to judge the quality of LC-MS features. 67 
 68 
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We demonstrate the results of asari on four datasets generated in our lab (HZV029, MT02, 69 
SZ22, BM21) and three public datasets (SLAW as described in Delabriere et al, 2021 as 70 
LargeQE, ST001667 and ST001237). They are compared to XCMS, the current leading 71 
software. The HZV029 dataset contains 268 data files, from two QC samples that were 72 
analyzed repeatedly over 17 batches. The number of features detected in a LC-MS 73 
metabolomics experiment is dependent on how parameters allow low-quality peaks to be 74 
counted (Myer et al, 2017). Therefore, the comparison first focuses on features of high intensity, 75 
and the majority of XCMS features are found in asari (912 out of 1091, Figure 2A left). When 76 
the data are further filtered by 40% presence across files, all but 19 features from XCMS are 77 
found in the result by asari (Figure 2A right). Investigation of these 19 features revealed that 10 78 
were present in asari features that did not pass the average height of 1E6, and the remaining 9 79 
features were not deemed of good quality (see Methods). The intensity values of the common 80 
features are in good agreement (Figure 2B). Besides these data from Orbitrap platforms, 81 
similar agreement is seen in Q-TOF data (Figure S4). 82 
 83 
The MT02 dataset contains the widely used human plasma reference sample NIST SRM 1950. 84 
The overall features in this sample detected by both asari and XCMS have consistent values 85 
(Figure 2C). To establish the true positive features, we referred to the previously reported 86 
metabolites in this sample (Simon-Manso et al, 2013), and curated a list of features that were 87 
manually verified in raw data (Table S1). Both asari and XCMS successfully detected all these 88 
39 “ground truth” features (Figure 2D). In the SZ22 dataset, ground truth was established by 89 
credentialing in E. coli (similar to Mahieu et al, 2014). A subset of E. coli metabolites were 90 
labeled by 13C isotope during the cell culture, and they were selected by elevated 13C/12C ratio 91 
and manual inspection of raw data (Table S2). Asari successfully detected 71 out of 74 of these 92 
credentialed features (Figure 2E). Two of the missed features were of low intensity and one of 93 
incomplete elution peak. These data indicate that the feature detection by asari is at least on par 94 
with XCMS performance. 95 
 96 
Reproducibility of feature quantification (also called semi- or relative quantification, to distinguish 97 
from targeted methods) is largely driven by experimental variations, while the processing 98 
software plays a partial role. Because the HZV029 dataset contains many repeated 99 
measurements of the same material, we calculated their pairwise Pearson correlations between 100 
samples (Figure 2F) and coefficient of variation of features (Figure 2G) as metrics of 101 
reproducibility. When features are binned by the asari quality metrics of SNR, peak shape and 102 
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cSelectivity, the top features show better reproducibility (Figure 2F). XCMS performed not as 103 
well in these metrics of reproducibility, likely due to more missing values (not shown). Of note, 104 
the more important contributions to reproducibility by asari reside in its trackable steps, few 105 
parameters, transparently linked data structures and the visual dashboard where users can 106 
easily verify results. In asari, the only parameter requiring user attention is the mass precision 107 
(default at 5 part per million). This eliminates many reproducibility problems in complicated 108 
parameter setting in other tools. 109 
 110 
To further investigate the performance in quantification, we designed an experiment where 111 
human plasma and vegetable juice were mixed by varying ratios (BM21 dataset, Figure 3A). 112 
Therefore, a subset of features are expected to have their peak areas correlated with the mixing 113 
ratio. Overall, 8,222 features were detected by both XCMS and asari in the BM21 dataset, 114 
whereas asari has better quantification as indicated by more features with correlation coefficient 115 
> 0.9 (Figure 3B). 116 
 117 
To test the computational efficiency, multiple datasets were processed by both asari and XCMS, 118 
and asari provides significant improvement of CPU time over XCMS by 1~2 orders of magnitude 119 
(Figure 3C). When tested on the SLAW dataset using varying sample numbers, the CPU time 120 
and memory use is mostly a linear function of sample numbers (Figure 3D, E). The results 121 
indicate that the performance gap between XCMS and asari widens for larger studies. XCMS 122 
can also become more complicated if it goes beyond simple workflows or large studies are 123 
processed (Delabriere et al, 2021). The full SLAW dataset of > 2,000 samples was processed 124 
by XCMS in the previous study on a cluster node of 15 CPU cores in 7~12 hours. Now it takes 125 
asari ~1 hour on a regular laptop computer.  126 
 127 
In summary, the development of asari has significantly contributed to the reproducible data in 128 
metabolomics, by a full set of linked and transparent data structures in all processing steps. This 129 
allows developers to trace, debug and optimize the process into the future. The end users can 130 
navigate and verify features by interactive visualization of extracted ion chromatograms in asari 131 
dashboard. Asari has delivered a new generation of computational performance, which is 132 
necessary for the future growth of metabolomics. Asari has been mostly tested on Orbitrap 133 
platforms. Community involvement will be important to cover the diverse platforms and methods 134 
in metabolomics. Asari is free and open-source, and its modular design enables easy reuse of 135 
the code for many tasks in computational metabolomics.   136 
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Figures 137 
 138 
Figure 1. Algorithmic designs and quality metrics in asari.  139 
A) Asari takes centroid mzML files as input, and build chromatograms for each as mass tracks. 140 
To prioritize modern mass resolution, m/z alignment is performed first to form a MassGrid, aided 141 
by isotopic landmarks. The retention time (RT) alignment is based on LOWESS regression, 142 
using a subset of high-quality elution peaks. Elution peak detection is performed on the 143 
composite mass tracks, and feature table is generated by looking up the corresponding peak 144 
areas in each individual sample. Annotation groups degenerate features into empirical 145 
compounds, and reference databases are used to match the m/z values in empirical 146 
compounds. 147 
B) The "composite map" is a representation of data from all samples, by adding up the signals 148 
in corresponding mass tracks after RT alignment. 149 
C) Illustration of mSelectivity (y-axis) as a function of neighboring m/z values. Each dot 150 
represents a m/z feature, and its mSelectivity value depends on the horizontal distance to 151 
neighbor features. The error in matching m/z values is modeled as a gaussian distribution 152 
dependent on mass precision, and mSelectivity is low when a feature has neighbors with close 153 
m/z values.  154 
D) Chromatographic peak selectivity (cSelectivity) is defined by the fraction of the data points in 155 
all peaks above 1/2 this peak height and all data points above 1/2 this peak height. cSelectivity 156 
is 1 when the chromatogram has no noise above the half height of any peak. 157 
 158 
Figure 2. Evaluation of asari feature detection and reproducibility. 159 
A) Overlap between asari and XCMS on HZV029 dataset. Similar parameters were applied to 160 
both software tools: min intensity 1000, 5 ppm mass accuracy. In XCMS, centwave window is 161 
set at (1, 30), min peak height at 1E6. Because asari has no minimal peak height requirement 162 
on individual samples, the features are filtered by average peak height above 1E6, which is 163 
more stringent and results in fewer features. The common (matched within 5 ppm and 10 164 
seconds) and unique numbers of features are shown on the left. When further filtered by the 165 
presence in at least 40% of samples, the common and unique numbers of features are shown 166 
on the right. The common numbers differ between two tools because of decisions in peak 167 
splitting or merging.  168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2022. ; https://doi.org/10.1101/2022.06.10.495665doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495665
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

B-C) Scatter plot of the log2 peak areas of common features between the two tools. B) 169 
corresponds to the right panel in A) on a random sample in HZV029. C) corresponds to a NIST 170 
SRM 1950 reference sample. R value shown is correlation coefficient in Pearson correlation.  171 
D-E) Detected features on ground truth datasets in NIST SRM 1950 reference sample (D) and 172 
credentialed E. coli samples (E).  173 
F) Of HZV029 asari features, 4,746 have SNR > 1E3, among which 1,187 are denoted as 174 
medium quality for peak shape < 0.95. A set of 1,005 features with SNR > 1E4, peak shape > 175 
0.95 and cSelectivity > 0.99 are denoted as top quality. The heatmaps show the reproducibility 176 
of randomly selected 32 Qstd samples, colored by their Pearson correlation coefficients. 177 
G) Reproducibility across 17 batches is shown by the distribution of coefficients of variation of 178 
the top features and medium features in all 184 Qstd samples. The feature data are not 179 
normalized or batch corrected. 180 
 181 
Figure 3. Evaluation of quantification and computational performance. 182 
A) Design of the BM21 dataset, by varying mix ratios between human plasma and vegetable 183 
juice. A well quantified metabolite is expected to show good correlation between the mixing 184 
ratios and the reported peak areas, as exemplified by the feature on top (m/z 189.1232, 159 185 
seconds). Asari calculates peak area differently from XCMS, resulting in higher values in 186 
Orbitrap data.  187 
B) Overall quantification results in the BM21 dataset, shown as feature numbers binned by 188 
Pearson correlation coefficients between peak areas and sample mixing ratios. 189 
C) Computational performance in user CPU time (equivalent to single core) by asari and XCMS 190 
on different datasets (sample numbers show in parentheses on X-axis). Y-axis is in log10 scale. 191 
The annotation step is included in asari not in XCMS. 192 
D-E) CPU time and wall clock time (D) and memory (E) used by asari and XCMS on the SLAW 193 
dataset using varying number of samples.  194 
 195 
 196 
 197 
  198 
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Supplements 199 
 200 
Figure S1 Illustration of mass tracks in a single sample. The region has 7 mass tracks 201 
marked by green boxes spanning horizontally, each of a unique m/z value. A peak is detected 202 
from the track indicated by the yellow arrow. 203 
 204 
Figure S2. Screen shot of asari Dashboard: feature browser.  205 
 206 
Figure S3. Screen shot of asari Dashboard, view of a mass track.  207 
 208 
Figure S4. Consistency of feature peak areas shown on an Agilent Q-TOF dataset 209 
(ST001667). 210 
 211 
Table S1. Manually verified true features in NIST SRM 1950. 212 
Potentially redundant isomers are colored. Since the goal here is not metabolite identification, 213 
but to test if software detects the presence of a real feature, the isomers are not distinguished in 214 
experimental data.  215 
 216 
Table S2. Manually verified true features in credentialed E. coli samples. 217 
 218 
 219 
 220 
 221 
 222 
  223 
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Data availability: The datasets MT02 and SZ22 are available at https://github.com/shuzhao-288 
li/data. The BM21 and HZV029 datasets are in the submission process to Metabolomics 289 
Workbench (https://www.metabolomicsworkbench.org/), and will be made publicly available at 290 
the time of publication. 291 
The public datasets used in this work are under Study IDs ST001667 and ST001237 on 292 
Metabolomics Workbench. The large SLAW dataset was retrieved from MassIVE by study ID 293 
MSV000086486 (Delabriere et al, 2021). 294 
 295 
Code availability: The asari source code is available at GitHub, https://github.com/shuzhao-296 
li/asari, and as a Python package via https://pypi.org/project/asari-metabolomics/. 297 
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Methods 307 
 308 
Software design of asari. Asari is written in Python 3, and can be used as a standalone 309 
command line tool or imported as a package. Its library dependency includes numerical 310 
computing via numpy and scipy, data wrangling via pandas, and visualization via panel and 311 
hvplot. Pymzml is used to parse mzML format. Data structures, annotation, search and chemical 312 
calculation make use of our supporting packages metDatamodel, mass2chem and jms-313 
metabolite-services. Implementation of new and previous algorithms was coded from ground up, 314 
where numerous details contributed to the computing speed, e.g., discrete mathematics is 315 
preferred over continuous curves, and intermediary indexing and caches are employed. 316 
Processed mass tracks are cached on disk to reduce memory footprint. Mass tracks are 317 
explicitly linked with features and peaks, and the information is exported as JSON in asari 318 
output. The quality metric mSelectivity is used internally and not exported by default. The 319 
annotation and search functions are generic to accommodate reference databases, and the 320 
default is HMDB (Wishart 2020). 321 
 322 
Evaluation of feature detection and computational performance. The features from different 323 
software tools in the same data are considered matched when their m/z values are within 5 ppm 324 
and retention times are within 10 seconds. The results from XCMS did not use peak filling, 325 
which often creates artifacts. The merging of adjacent peaks in XCMS is dependent on input 326 
parameters, and often resulted more split peaks than the results in asari. The 9 XCMS features 327 
that were not accepted by asari (Figure 2A) are (m/z @ retention time in seconds): 328 
129.1022@25, 28.0197@17, 210.9937@16, 174.1854@23, 256.2999@23, 156.1133@14, 329 
129.1023@13, 120.0808@15, 100.1121@15. 330 
The “ground truth” features in the NIST SRM 1950 sample were manually verified and counted 331 
as 39 true positive m/z features. The reported isomers are not distinguished here since our 332 
retention time is not comparable to the previous publication. A positive match to either asari or 333 
XCMS results requires a feature to be within 5 ppm. For the credentialed E. coli samples, a 334 
feature is considered to be true positive when a) it is present in all six samples, b) presence of 335 
the isotopic peak by 1.003355 m/z difference at the same retention time, c) the 12C/13C ratio > 1 336 
in the unlabeled samples, and d) the 12C/13C ratio is > 2-fold higher in the labeled samples than 337 
unlabeled samples. The difference from the Mahieu et al (2014) paper was due to that we 338 
analyzed the labeled and unlabeled samples separately, while the previous work mixed them at 339 
specific ratios. 340 
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The evaluation of computational performance was performed on a desktop computer with Intel 341 
i7-8809G CPU and 32 GB of memory, running Mint Linux 20.2. The asari version was 1.9.2. 342 
The XCMS version was 3.18.0. The R script for XCMS is provided in asari repository 343 
(https://github.com/shuzhao-li/asari) under doc/ directory. The time and memory use was 344 
measured by `/usr/bin/time –p`, and “User time” was used as CPU time (equivalent to CPU time 345 
used on a single core).  346 
 347 
LC-MS metabolomics experiments. The human plasma samples used in this study were a 348 
pooled deidentified QC sample in a vaccination cohort, NIST SRM 1950 (https://www-349 
s.nist.gov/srmors/view_detail.cfm?srm=1950), and a commercial reference sample Qstd (Sterile 350 
Filtered Human Plasma (K2) EDTA, Equitech Bio, Inc. KERRVILLE, TEXAS). The BM21 351 
experiment included a serial mixture of human plasma (Qstd) and vegetable juice, at the ratio of 352 
1024:1, 256:1, 64:1, 16:1, 4:1, 1:1, 1:4, 1:16, 1:64, 1:256 and 1:1024. Along with the 11 serial 353 
mixture samples, 100% vegetable juice and 100% plasma were also included. All samples were 354 
analyzed in triplicates, while one replicate was used for data analysis in this study for simplicity. 355 
The dry extracts of unlabeled and 13C labeled E. coli (Cambridge Isotope Laboratories, Inc.; 356 
Catalog number: MSK-CRED-DD-KIT) were reconstituted in 100 μL of ACN/H2O (1:1, v/v) then 357 
sonicated (10 mins) and centrifuged (10 mins at 13,000 rpm and 4°C) before overnight 358 
incubation at 4°C. The supernatant for each 12C/13C E. coli extract was collected and then 359 
prepared for LC-MS analysis. These samples were run in triplicates. 360 
Metabolites extraction was carried out by protein precipitation technique using extraction 361 
solvent, acetonitrile:methanol (8:1, v/v) containing 0.1% formic acid and isotope labelled 362 
Trimethyl-13C3]-caffeine, [13C5]-L-glutamic acid, [15N2]-Uracil, [15N,13C5]-L-methionine, 363 
[13C6]-D-glucose and [15N]-L-tyrosine as spike-in controls. 30 μl of plasma samplewas taken 364 

and 60 μl of extraction solvent was added. Extraction blanks were also prepared to remove 365 
features of non-biological origins. All samples were vortexed and incubated with shaking at 366 
1000 rpm for 10 min at 4°C followed by centrifugation at 4°C for 15 min at 15,000 rpm. The 367 

supernatant was transferred into mass spec vials and 2 μl injected into UHPLC-MS. 368 
All samples were maintained at 4 °C in the autosampler, and analyzed using a Thermo 369 
Scientific Orbitrap ID-X Tribid Mass Spectrometer coupled to a Thermo Scientific Transcen LX-2 370 
Duo UHPLC system, with a HESI ionization source, using positive and negative ionizations. The 371 
MS settings are: spray voltage, 3500 V; sheath gas, 45 Arb; auxiliary gas, 20 Arb; sweep gas, 1 372 
Arb; ion transfer tube temperature, 325 °C; vaporizer temperature, 325 °C; mass range, 80-373 
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1000 Da; maximum injection time, 100 ms. The resolution was set at 120,000 in the HZV029 374 
experiment, 60,000 in the BM21 and SZ22 experiments. 375 
Data were acquired using hydrophilic interaction liquid chromatography (HILIC) positive and 376 
reversed phase (RP) negative polarities in full scan mode with mass resolution of 120,000 377 
simultaneously. An AccucoreTM-150-Amide HILIC column (2.6 μm, 2.1 mm x 50 mm) and a 378 

Hypersil GOLDTM RP column (3 μm, 2.1 mm x 50 mm) maintained at 45 ºC were used for 379 
chromatographic separation. 0.1% formic acid in water and 0.1% formic acid in acetonitrile were 380 
used as mobile phase A and B respectively for RP acquisition. 10 mM ammonium acetate in 381 
acetonitrile:water (95:5, v/v) with 0.1% acetic acid as mobile phase A and 10 mM ammonium 382 
acetate in  acetonitrile:water (50:50, v/v) with 0.1% acetic acid as mobile phase B were used for 383 
HILIC method. For HILIC acquisition, following gradient was applied at a flow rate of 0.55 384 
ml/min: 0-0.1 min: 0% B, 0.10-5.0 min: 98% B, 5.00-5.50 min: 0% B and 4.5 min for cleaning 385 
and equilibration of column. For RP column, following gradient was applied at a flow rate of 0.4 386 
ml/min: 0-0.1 min: 0% B, 0.10-1.9 min: 60% B, 1.9-5.0 min: 98% B, 5.00-5.10 min: 0% B and 4.9 387 
min cleaning and column equilibration. The chromatographic run time was 5 min followed by 5 388 
min washing step after each sample.  389 
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