N

10

11

12

13

14

15

16

17

18

19

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

GSearch: Ultra-Fast and Scalable Microbial Genome Search
by Combining Kmer Hashing with Hierarchical Navigable

Small World Graphs

Jianshu Zhao!?’, Jean Pierre Both®’, Luis M. Rodriguez-R*>%, Konstantinos T.

Konstantinidis24*

1Center for Bioinformatics and Computational Biology, Georgia Institute of Technology,

Atlanta, Georgia, USA
2School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
3 Université Paris-Saclay, CEA, List, Palaiseau, France

4School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,

Georgia, USA

SDepartment of Microbiology, University of Innsbruck, Innsbruck, Austria
®Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
'Those authors contribute equally

"Corresponding author, Konstantinos T. Konstantinidis

(kostas.konstantinidis@gatech.edu)

mailto:kostas.konstantinidis@gatech.edu
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Abstract

Genome search and/or classification is a key step in microbiome studies and has recently
become more challenging due to the increasing number of available (reference) genomes
and the fact that traditional methods do not scale well with larger databases. By combining
a kmer hashing-based genomic distance metric (ProbMinHash) with a graph based
nearest neighbor search algorithm (called Hierarchical Navigable Small World Graphs, or
HNSW), we developed a new program, GSearch, that is at least ten times faster than
alternative tools due to O(log(N)) time complexity while maintaining high accuracy.
GSearch can identify/classify 8,000 query genomes against all available microbial and
viral species with sequenced genome representatives (n=~65,000) within several minutes
on a personal laptop, using only ~6GB of memory. Further, GSearch can scale well with
millions of database genomes based on a database splitting strategy. Therefore, GSearch
solves a major bottleneck of microbiome studies that require genome search and/or

classification.

Keywords: genome search, microbial genomes, MAGs, MinHash, nearest neighbor

search, classification, hierarchical small world graphs, HNSW

Introduction

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Identifying or classifying microbial species based on either universal marker genes
(e.g., 16S or 18S rRNA genes) or entire genomes represents a re-occurring task in
environmental and clinical microbiome studies. However, this task is challenging because
i) whether or not microbes (bacteria, fungi) and viruses form discrete population clusters
(or species), remains an open question % 2, and ii) the microbial species in nature are still
severely under-sampled by the available genomes. For instance, there are more than
1012 prokaryotic and fungal species in nature according to a recent estimation based on
16S rRNA gene or ITS (Internal Transcribed Spacer) analysis 3 and even more viral
species (e.g. the number of viral cells outnumbers that of prokaryotic cells by a about a
factor of ten in most natural habitats) 4. Yet, only ~17,000 bacterial species have been
described and even fewer (around 15,000) are represented by complete or draft genome
5. Due to the recent improvements in DNA sequencing and single-cell technologies,
metagenomic surveys can now recover hundreds, if not thousands, of these yet-to-be-
described species from environmental or clinical samples & 7, filling in the gap in the
described diversity mentioned above. This has created a new challenge, however; that
is, identifying these new genomes against the exponentially increasing number of
available (described) genomes has become computationally intractable. Nonetheless, the
recent high-throughput sequencing of isolate genomes as well as metagenomic studies
of natural populations have shown that species may exist and be commonly
circumscribed based on a 95% genome-aggregate average nucleotide identity (ANI)
threshold, at least for prokaryotes and viruses & °. This threshold represents convenient
means in searching and identifying new genomes against the already descried species

and determining whether or not they represent novel species 1°.

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

The number of curated draft or complete prokaryotic genomes has reached
317,542 in the newest release of the GTDB database, and 2,332,702 in the latest IMG/VR
database for viruses, representing 65,703 prokaryotic and 935,122 viral distinct species
at the 95% ANI level 112, Searching of query genomes against these large databases to
find closely-related database/reference genomes for taxonomy classification based on
the traditional brute-force methods, meaning, performing all vs. all searches, has become
impractical, even for fast searching algorithms and/or small-to-medium computer clusters.
For this task, faster search strategies are necessary. In addition to the searching strategy,
the actual algorithm used to determine overall genetic relatedness between the query and
the databased genomes is critical. While the traditional blast-based ANI among closely
related genomes at the species level, and the genome-aggregate average amino acid
identity (AAI) for genomes related at the genus level or above, have been proven to be
highly accurate for genetic relatedness estimation across microbial and viral genomes **-
15 they are too slow to use when dealing with more than a few dozen of genomes. Faster
implementations based on k-mer counting have been recently described to alleviate this
bottleneck such as FastANI and MASH 1617 but these methods still do not scale with an
increasing number of database (or query) genomes, especially based on an all vs. all
search strategy. Further, defining genetic distance (or relatedness) based on kmer
profiles can be problematic for incomplete genomes, which are commonly recovered from
metagenomic surveys, and/or genomes with extensive repeats such as those found in
several microbial eukaryotic genomes. Kmer-weighted approaches are advantageous in

the latter cases because repeated genomic fragments can be considered when hashing

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

88 but they have not been widely adopted yet 18 °, Recently, a phylogeny-based approach

89 using a handful of universal genes (n = 100) was developed to accelerate genome

90 classification ?°. However, phylogenetic replacement based on a concatenated universal
91 gene tree can be memory demanding and slow, especially for a large number of or a few
92 deep-branching (novel) query genomes, and this approach cannot be applied to viral
93 genomes, which lack universal genes. Further, universal genes due to their essentiality,
94 are typically under stronger purifying selection and thus, evolve slower than the genome
95 average. This property makes universal genes appropriate for comparisons among
96 distantly related genomes, e.g., to classify genomes belonging to a new class or a new
97 phylum, but not the species and genus levels 2% 21,
98 One of the most generally used approaches for finding closely related information
99 to a query, while circumventing an all vs. all search, is the K-Nearest Neighbor Search
100 (K-NNS). The K-NNS approach has been used for 16S rRNA gene-based classification
101 followed by a vote strategy 2% 22 and, more recently, for whole genome and metagenome
102 comparisons based on shared kmers 6. Approximate nearest neighbor search (ANN)
103 algorithms, such as locality-sensitive hashing (LSH) 24 2° | k-dimension tree 2%, random
104 projection trees 2/, k-graph 22 and proximity graph 2° 30 have been recently used to
105 accelerate search processes. Proximity graph, as implemented for example in the
106 hierarchical navigable small world graph (HNSW) 31, has been shown to be one of the
107 fastest ANN search algorithms 32. HNSW incrementally builds a multi-layer structure
108 consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the
109 stored elements. Then, through smart neighbor selection heuristics, inserting and

110 searching the query elements in the proximity graphs can be very fast while preserving

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

111 high accuracy, even for highly clustered data 2% 3, Therefore, finding the closest genomes
112 in a database can be substantially accelerated by using HNSW.

113 Here, we describe GSearch (for Genome Search), a tool that combines one of the
114 most efficient nearest neighbor search approaches (HNSW) with a universal approach to
115 measure genetic relatedness among any microbial genome, including viral genomes,
116 ProbMinHash 3, implemented in the Rust language for higher speed. ProbMinHash is
117 based on shared kmers, weighted by their abundance and normalized by total kmer
118 count, which can account for genome incompleteness of prokaryotic genomes and
119 repeats commonly found in eukaryotic and sometimes in prokaryotic genomes.
120 Essentially, ProbMinHash computes the normalized weighted Jaccard distance between
121 each pair of genomes and subsequently, the weighted Jaccard distance normalized by
122 total kmer count is used as input to build HNSW to create the graph of the database
123 genomes. Accordingly, the search of the query genome(s) against the graph to find the
124 nearest neighbors for classification purposes becomes an ultra-fast step using GSearch
125 and can be universally applied to all microbial genomes. The novelty of GSearch also
126 includes a hierarchical pipeline that involves both nucleotide-level (when query genomes
127 have close relatives at the species level) and amino-acid-level searching (when query
128 genomes represent novel species), which provides robust classification for query
129 genomes regardless of their degree of novelty relative to the database genomes, as well
130 as a database-splitting strategy that allows GSearch to scale up well to millions of
131 database genome sequences.

132

133 Results

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

134 Probminhash as a robust metric of genome relatedness for prokaryotic genomes

135 Correlations between ProbMASH distance (we called it ProbMASH after transformation
136 from ProbMinHash distance, see Methods & Materials) and ANI (determined by FastANI)
137 or MASH distance showed that ProbMinHash is robust and slightly better than MASH for
138 determining distances among bacterial genomes related at ~78% ANI, or higher, i.e.,
139 genomes assigned to the same or closely-related species (Spearman rho=0.9643 and
140 0.9640 of ProbMinHash and MASH values against corresponding ANI values for the
141 same genome comparisons, respectively, P<0.001, Figure Sla and S1b; note that for
142 finding best matches using the ANI approach as the reference, Spearman rank correlation
143 is more relevant than Pearson correlation). For moderately related genomes, for which
144 nucleotide-level ANI is known to lose accuracy, ProbMinHash was still robust compared
145 to MASH for bacterial genomes (using the best matches found by average amino acid
146 distance or AAI as the reference), especially among genomes showing between ~52%
147 and 95% AAI (Spearman rh0=0.90, P<0.01, Supplementary Figure S2a and S2b). Below
148 ~50% AAl, both ProbMinHash and MASH distance lose accuracy compared to AAl.
149 However, AAI of just universal genes provides a robust measurement of genetic
150 relatedness at this level of distantly related genomes 2!, and we show here that
151 ProbMinHash distance for the same set of universal genes is also robust (Spearman
152 rh0=0.9390, P<0.001, Supplementary Figure S3). Thus, for query genomes of organisms
153 with only distant relatives in the database (i.e., deep-branching), for which their closest
154 represented genome in the database is related at the order level or higher, restricting the
155 search to the universal genes can provide robust classifications.

156

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

157 Graph building and search against reference prokaryotic genomes is faster than
158 alternative methods

159 To build the database graph for the entire GTDB v207 database (65,703 unique, non-
160 redundant, at the species level, prokaryotic genomes) at the nucleotide level, the tohnsw
161 module of GSearch took 2.3 h on a 24-thread computing node and scaled moderately
162 well with increasing number of threads (Figure 2a). Maximum memory (RAM) required
163 for the building step was 28.3 GB. The total size of written database files on disk was ~3.0
164 GB. There are 3 layers for the resulting graph, 65180, 519, and 4 genomes for layer 0,1
165 and 2 respectively. The searching of query genomes against this database graph,
166 requesting best 50 neighbors for 1000 query genomes, which represented different
167 previously known as well as novel species of eight bacterial phyla (see Methods for details
168 on query genome selection), took 2.3 min (database loading 6 seconds) on a 24-thread
169 machine and also scaled well with increasing number of threads (Figure 3a). The memory
170 requirement for the request (search) step was only 3.0 GB for storing the entire database
171 file in memory. To evaluate the accuracy of these results, we compared the best
172 neighbors found by GSearch with brute-force FastANI and GTDB-Tk. All best neighbors
173 found by brute-force FastANI and GTDB-Tk for query genomes with close relatives in the
174 database (e.g., ANl > 78%) were found by GSearch (Supplemental File 1). Top 5
175 neighbors were 99.4% overlapping and top 10 were 96.3% overlapping between GSearch
176 and the other two methods for the testing query genomes. We also compared the speed
177 with MASH for the same kmer and sketch size and the MASH dist step took 7.51 min to
178 compare 1000 genomes with database using 24 threads. The speed difference compared

179 to MASH was even greater for ~8,000 query genomes. Specifically, it took 12.5 min for

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

180 GSearch to find the top 50 best hits (Supplementary Figure S4a) while MASH took 80.8
181 minutes on the same 24-thread machine. However, for a given number of database
182 genomes, the speedup of GSearch is saturated to log(N) as the number of query genome
183 increases, where N is the number of database genomes. Therefore, GSearch will be
184 orders of magnitude faster than MASH for larger species database with millions of
185 genomes (see also viral section below). GSearch search time for a given number of query
186 genomes is related to the number of database genomes in a O(log(N)) manner while
187 brute-force methods are O(N), and our empirical analysis is consistent with the theoretical
188 log(N) prediction (Supplementary Figure S4b and Supplementary Note 3).

189

190 To build the amino-acid-level graph for moderately related query genomes, all GTDB
191 v207 genomes were used for gene calling by FragGeneScanRs and subsequently, the
192 predicted amino acid sequences for each genome were used for the tohnsw module. The
193 graph building step took 1.4 h (Figure 2b) with a maximum memory required for the
194 building step to be 37.7 GB. The total size of written database files on disk by GSearch
195 was 5.9 GB. There were 65158, 543 and 2 genomes for layer 0,1 and 2 respectively.
196 Requesting 50 neighbors for 1000 genomes at the amino-acid level took 1.52 minutes
197 with a memory requirement of ~6.0 GB (database loading 9 seconds; Figure 3b). The top
198 5 neighbors had a 98.9% recall compared to the brute-force MASH or blast-based AAI
199 approaches, with 97.1% overlap for the 10 top neighbors. In comparison, MASH dist took
200 5.96 min using 24 threads; for 8000 query genomes, MASH dist took 47.2 min while
201 GSearch took 5.6 min.

202

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

203 Finally, for most distantly related query genomes, the graph building for the universal
204 gene set follows the same logic as the amino acid level graph mentioned above except
205 for using a smaller kmer size (k=5) due to the smaller kmer space of ~120 universal genes
206 vs. the whole-genome level (e.g., a few thousand genes). It took 7.76 min to build the
207 database (Figure 2c) and 32 seconds to request 50 neighbors for 1000 queries on a 24
208 threads node (Figure 3c) with a recall similarly high to the amino-acid level search (with
209 top 5 and top 10 recall ranging between 98.2% and 96.1%, respectively).

210

211 We also evaluated the effect of genome completeness on search and classification
212 accuracy given that bacterial genomes recovered from environmental metagenomes are
213 frequently incomplete. GSearch was robust to genome incompleteness down to 50%
214 completeness level, e.g., with 80% of top 10 best matches are found, while accuracy
215 decreased considerably below this level (Supplementary table S6).

216

217 Graph database building and searching for viral and fungal genomes

218 Graph building and requesting for viral genomes is not effective at the nucleotide level
219 because many viral genera are too diverse and do not have close relatives in the public
220 genomic database; that is, the database is too sparse. Accordingly, kmer-based methods
221 (e.g., MASH and ProbMinHash) will often lead to imperfect graph structure for viral
222 genomes. Therefore, we build only an amino acid level graph for viral genomes, using all
223 genes in the genome due to the lack of universal genes for viral genomes. Database
224 building took 13.895 h on a 24-thread node and graph file on disk is 15.8 GB

225 (Supplementary Figure S6 (a)). Requesting 1000 neighbors scaled well with increasing

10

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

226 number of threads and took about 3.63 min (database load takes additional 1.1 min) using
227 24 threads (Supplementary Figure S6 (b)). The top 10 neighbors for 1000 query phage
228 genomes were still highly overlapping (98.32% recall; Supplemental Table S1) with the
229 brute-force MASH-based approach. For such large database, GSearch is about 20X
230 faster than the brute-force MASH (Supplementary Tables S1). We also compared
231 GSearch with a new database building method called PhageCloud, which relies on
232 manually curated genome labels (e.g., environmental source) for graph database building
233 in Neo4j database software and Dashing software for distance/relatedness computation.
234 Since PhageCloud provides only a website and allows only one genome query at a time,
235 we searched only one viral genome at a time with GSearch and MASH against the same
236 database (Gut Phage Database 34). It took 37 seconds to find the two best matches with
237 PhageCloud while GSearch took 15 seconds (database loading 14 seconds, search 1
238 second) for the same search. MASH on the other hand took 4 minutes to find the same 2
239 best matches. It should be noted, however, that, because the database is already
240 available (loaded) on PhageCloud’s website, 37 seconds is only for search and website
241 responses (average value for 5 runs on 5 different days) whereas GSearch took only 1.5
242 second for the same step.

243

244 Graph building for fungal genomes is slower compared to prokaryotic genomes, despite
245 the smaller number of available fungal genomes (n=9700) because the average fungal
246 genome size is much larger and kmer and sketch size are accordingly much larger (k=21,
247 s=48000). It took 2.3 h on a 24-thread node to build the nucleotide level graph for these

248 fungal genomes. Searching step was also slower due to the larger kmer space.

11

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

249 Accordingly, it took 3.13 min to identify 50 neighbors for 50 query fungal genomes while
250 MASH tool 4.4 min. Nonetheless, top 5 recall was still very high (~99.4%) against MASH
251 and MUMMER-based ANI for the same datasets. For the amino acid level graph, the time
252 for graph building was only 0.61 h, shorter than the corresponding prokaryotic graph due
253 to the lower coding density of fungal genomes relative to the prokaryotic genomes.
254 Identifying 50 neighbors for 50 query fungal genomes at the amino-acid level took 1.24
255 min (MASH took 2.59 min) with similarly high top 5 and top 10 recall (99.7% and 98.5%,
256 respectively) against brute-force MASH (-a) and blastp-based AAI. Note that the
257 difference in run time will be much larger between MASH and GSearch as the number of
258 fungal database genomes increases in the future, as also exemplified above for the
259 bacterial genomes

260

261 Combining the three graphs/levels together and comparison with GTDB-Tk for prokaryotic
262 genome classification

263 A three-step pipeline was developed to allow the identification and classification of a
264 query genome, depending on its level of novelty compared to the database genomes
265 (Figure 4). Specifically, when the query genome does not find a match in the database
266 better than ANI > 78%, corresponding to ProbMinHash distance 0.9850, the nucleotide-
267 level graph is abandoned, and the amino-acid level is used instead. If no match against
268 the latter graph is found above 52% AAI, corresponding to 0.9375 ProbMinHash distance,
269 the amino-acid level is abandoned, and the universal gene graph is used instead (UAAI
270 based on universal gene below 80% indicates new order or higher taxonomic rank; Figure

271 4). The overall running time to classify 1000 prokaryotic genomes of varied levels of

12

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

272 taxonomic novelty on different computing platforms is showed in Table 1. On a 24-thread
273 Linux node with Intel Xeon Gold 6226 CPU, it took a total of 5.85 minutes while it took
274 19.49 minutes on an intel Core i7 laptop (2017 release) CPU personal laptop (6.02
275 minutes on the most recent ARM64 CPU laptop). Classifying 1000 genomes using GTDB-
276 Tktook 5.91 h on the same Linux node with 24 threads (Figure 3 (d), memory requirement
277 was ~328G) while MASH took 53.7 min for 1000 genomes using 24 threads for the 3
278 steps.

279

280 In terms of accuracy, all query genomes that had a best match higher than 78% ANI
281 against the GTDB database genomes (i.e., a match at the same or closely related
282 species, 699 out of the total 1000) were identically classified by GSearch, GTDB-Tk and
283 FastANI (Supplementary File 1, only 100/699 are shown for simplicity). For the remaining
284 301 genomes that did not have same or closely related species-level matches, for 266 of
285 them (or 87.1%), GSearch also provided the same classification with GTDB-Tk but
286 several inconsistencies were observed for 39/301 genomes (Supplementary Figure S5).
287 Specifically, we noticed that for GTDB-Tk, which relies on RED values and tree topology,
288 several genomes (n=14) were still classified at the genus level even though the AAl value
289 against the best database genome in these case was below 60% (typically, genomes
290 assigned to the same genus show >65% AAIl ?!), and some genomes (n=16) were still
291 classified at the family level but not at the genus level even though their best AAI value
292 was above 65%. Similarly, several genomes (n=9) were classified at the order level but
293 not family level even though their best AAI value was above 52%. Therefore, high

294 consistency was overall observed between GSearch and GTDB-Tk assignments, and the

13

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

295 few differences noted were probably associated with contaminated (low quality) MAGs or
296 taxonomic inconsistencies, which was challenging to assess further, and/or the
297 peculiarities of each method. Since ProbMinHash distance correlated well with blastp-
298 based AAI in the range of AAI values between 52% and 95%, the classification results

299 were always consistent with AAl-based classification using previously proposed

300 thresholds. For example, best matches at AAlI 65% = AAI were classified in the same

301 genus by GSearch and blast-based AAl and best matches of 52% < AAI < 65% were
302 typically classified in the same family 35 .

303

304 Database split for large genomic species database

305 For large databases (for example, >1 million bacterial genomes), the graph building and
306 requesting step could require a large amount of memory (due to the larger kmer space)
307 thatis typically not available in a single computer node. We therefore provide a database
308 split solution for such large databases. The average database building time on each node
309 (for each piece of the database after the splitting step) scales linearly with increasing
310 nodes/processors (Supplementary Figure S7(a)) and requires much less memory (1/n
311 total memory compared to when building in one node where n is the number database
312 pieces after splitting; for GTDB v207 nucleotide graph building and n=5, it will be only
313 28.3 G/5=5.66 G). The searching time scales sub-linearly with increasing number of
314 nodes (Supplementary Figure S7(b)), but offers the advantage of a reduced memory
315 footprint with respect to the single-node search. The top 10 best neighbor by splitting the
316 database were exactly the same as the non-splitting strategy (Supplementary file 2). Note

317 that without multi-node support (e.g., run database build sequentially), database build

14

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

318 time is nearly the same with non-split strategy, but memory requirement is only 1/n (GTDB
319 v207,28.3G/5=5.66G at nucleotide level and 37.7G/5=7.54G at amino acid level), despite
320 the fact that total request time will be larger (time*n in Supplementary Figure S7(b)).
321 However, since the request step is very fast with only 1/n memory requirement (e.g.,
322 loaded graph database files for GTDB v207 will be about only 3G/5=0.6G), even for a
323 decent number of pieces, overall runtime is still short with the database split approach.
324 The database split strategy is especially useful when memory requirement is not satisfied
325 on host machine for larger genomic species database (e.g., millions of genomes).

326

327 Discussion

328 A popular way to assess genetic relatedness among genomes is ANI, which
329 corresponds well to both 16S/18S rRNA gene identity and DNA-DNA hybridization values,
330 the golden standards of fungal and prokaryotic taxonomies 3. However, the number of
331 available microbial genomes has recently grown at an unprecedented speed. For
332 example, there are 30% more (new) species in GTDB v202 (2020) vs. v207 (2022), and
333 the number of bacterial species represented by genomes alone is expected to surpass 1
334 million soon. Therefore, the traditional way that blast-based ANI or faster kmer-based
335 implementations (e.g., FastANI or MASH) are applied as an all vs. all search strategy
336 (brute-force) does not scale because the running time grows linearly with increasing
337 number of query genomes and/or genomes in the database. Phylogenetic approaches
338 based on quick (approximate) maximum likelihood algorithms and a handful of universal
339 genes as implemented -for example- in GTDB-Tk could be faster than brute-force

340 approaches but are often not precise and require a large amount of memory for the

15

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

341 querying step 2% 3¢ while the database building step could take several weeks of run time
342 because the underlying multiple sequence alignment of the database genomes is
343 computationally intensive. Further, approaches that reply on k-medoid clustering to avoid
344 allvs. all comparisons could be sometimes trapped into local minima because of arbitrary
345 partitioning of database genomes into clusters, a known limitation of these methods ..
346 Our GSearch software effectively circumvents these limitations by combining a new kmer
347 hashing-based algorithm for fast computation of genetic relatedness among genomes
348 (ProbMinHash) with a graph based nearest neighbor search algorithm (HNSW).
349 Accordingly, GSearch is at least an order of magnitude faster than alternative approaches
350 for the same purposes. Note that GSearch could also be applied to whole metagenome
351 search and identification of the most similar metagenomes in a series because
352 ProbMinHash can estimate metagenomic distance in a similar way to genomes.

353 To the best of our knowledge, no current tool can efficiently search very large
354 genome databases. GSearch is able to handle a million microbial genomes on a small-
355 to-average computer cluster since the dumped database file size is proportional to the
356 total number of genomes in database for fixed sketch size and graph parameters.
357 Specifically, with one million genomes, the dumped file size (amino acid) will be
358 5.9G*20=118 GB (now we have only ~60K, for which database file size is 5.9G), a modest
359 computational requirement for current computer clusters or even personal laptop
360 computer. Further, due to the nature of graph based NNS algorithms, there is no need to
361 build the entire database at once, but the database can be split it into smaller pieces and
362 thus, a separate graph database be built for each piece as exemplified above and

363 depending on the computational resources available. For a modern laptop with 16 GB

16

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

364 memory, a database on one million species can be split into 10 pieces, so the dumped
365 file for each piece will be only 11.8 GB, which can be loaded into memory, and then collect
366 the results from each piece within an approximate total running time of 30 minutes
367 (assuming each part will be 3 minutes for 1000 query genomes against 0.1 million
368 database genomes). With this logic, a computing node with 24 threads and 256 GB of
369 memory available can easily deal with 20 million bacterial database genomes. This
370 represents a substantial improvement compared to existing tools for the same purposes.
371 It is also important to note that we could seamlessly replace ProbMinHash with
372 another relatedness algorithm should such an algorithm become available and has
373 advantages in terms of speed and/or precision. Related to this, ANI as currently
374 implemented -for instance- in FastANI is not appropriate for this function because it is not
375 metric (that is, for the FastANI distances calculated among three genomes A, B, and C,
376 (A,B) + (B, C) is not necessary larger than (A,C), especially for genomes related at the
377 phylum level). To solve this “metric” problem, a norm adjusted proximity graph (NAPG)
378 was proposed based on inner product and it shows improvements in terms of both speed
379 and recall *’. This could be another direction for further improving the speed and recall of
380 GSearch and/or the use of other metrics in place of ProbMinHash distances. In the
381 meanwhile, ProbMinHash was used in GSearch because it is metric 3 3, which ensures
382 neighbor diversity when building the graph, but it is equally applicable to any microbial
383 genome, including viral and fungal genomes, in addition to its advantages for kmer
384 weighting and normalization mentioned above.

385 Another distinguishing aspect of GSearch (tohnsw module) is the speed and

386 flexibility in building reference databases. Users could build reference databases (graphs)

17

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

387 for any number and type (e.g., prokaryotic vs. viral) of genomes, up to several millions of
388 genomes. The high efficiency in building graphs allows users to also test and optimize
389 the key parameters of the graph, the M and ef_construct parameters. For any given
390 database size, M and ef_construct determine the quality of the graph and graph build
391 speed. Small M and ef_construct may lead to frequent traps in local minima and thus, low
392 recall while large M and ef _construct may lead to slow speed without proportional
393 improvement in recall (Supplemental Table S2). Therefore, there is a tradeoff between
394 accuracy and speed that should be evaluated first. However, for most users this task
395 would not be necessary because they will work with pre-built databases such as those
396 provided here. Further, the search step against these pre-build databases with query
397 genomes of known taxonomy for evaluating recall and tradeoffs can be performed, within
398 minutes, on any modern laptop with 5-6 GB of memory (Table 1).

399 Kmer-based methods for genetic relatedness estimation such as ProbMinHash
400 have lower accuracy between moderately-to-distantly related genomes compare to
401 alignment-based tools (see supplement Note 4 for further discussion). Our empirical
402 evaluation showed that this relatedness level, for nucleotide searches, is around 78% ANI
403 and 52% AAI for the amino-acid searches (e.g., ProbMinHash distances do not correlate
404 well with blast-based ANI and AAIl at these levels). To circumvent this limitation, we
405 designed a 3-step framework as part of GSearch to classify bacterial genomes that show
406 different levels of novelty compared to the database genomes, with high accuracy. This
407 framework included a search at the universal gene level for deep-branching genomes
408 that are novel at the phylum level (AAl < 52%), for which searching at the entire proteome

409 levelis less accurate. Recently, methods that employ kmers that allow mismatches, that

18

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

410 is, spaced kmers 2%, have shown promise in accurately estimating genomic relatedness
411 even among distantly related genomes with gains in speed. To apply spaced kmers to
412 entire genomes, the recently developed “tensor sketch” approaches could be explored in

413 the future to simplify the pipeline for bacterial and viral genomes 49, In the meanwhile, the

414 ProbminHash approach, essentially a Jaccard distance estimation via MinHash-based analysis
415 of kmers, is highly efficiently, and, importantly, can effectively deal with incomplete

416 genomes or genomes of (drastically) different length, an known limitation of MASH-based
417 methods 4. Comparing genomes of different length is not uncommon, e.g., bacterial
418 genome size can differ by more than two-fold, as can be the case between MAGs of
419 different level of completeness or when searching a short sequence (e.g.,, a
420 bacteriophage genome) against a large genome collection (e.g., the whole viral genome
421 database). Our own analysis showed that ProbMinHash is robust down to 50%
422 completeness level (Supplemental Table S6), which is also the most commonly used
423 standard for selecting MAGs of sufficient/high quality 2. ProbMinHash is also robust with
424 completed genomes with repeats or gene duplications due to the kmer weighting step.

425 In general, the genome relatedness estimated, or best database matching
426 genomes identified, by GSearch were highly consistent with blast-based AAI results or
427 phylogenetic placement of the genome using GTDB-Tk, particularly for query genomes
428 with close relatives in the database related at the species or genus level (Supplementary
429 File 1, Supplementary Figure S5). For more distantly related query genomes relative to
430 database genomes, classification results of GSearch showed some differences with
431 GTDB-Tk. These differences were not always possible to assess further for the most

432 correct genome placement but could be due, at least partly, to the incompleteness and/or

19

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

433 contamination of query or/and database genomes, which renders the resulting
434 concatenated alignment of universal genes used by GTDB-Tk unreliable 43 as only a few
435 amino-acid positions per gene are used in the final alignment. In contrast, the AAl and
436 ProbMinHash approaches should be more robust to changes of a small number of genes
437 because the entire proteome is considered 1.

438 Graph-based NNS methods achieve good performance compared to tree based
439 and locality-sensitive hashing (LSH) methods. Building a HNSW graph relies on proximity
440 of the database elements; so, if the distances among database elements, in our case
441 genomes, cannot be effectively estimated via hashing algorithms, the navigation in graph
442 will be less efficient (e.g., gets trapped in local minima) because the edges to choose
443 from will not be accurate estimations of the relatedness of the corresponding genomes.
444 This is especially problematic for highly sparse/distantly related and diverse datasets, like
445 the viral genome database, in which two phage genomes could often share very little
446 genomic information (kmers). This is confirmed by our own results when using nucleotide-
447 level search to build the viral graph. Hence, the amino acid level will be much more robust
448 for viral genomes and is the recommended level to use. Finally, the HNSW graph, and
449 graph-based K-NNS in general, can be further improved by adding shortcut edges and
450 maintaining a dynamic list of candidates, compared to a fixed list of candidates by default
451 4, Graph reordering, a cache optimization that works by placing neighboring nodes in
452 consecutive (or near-consecutive) memory locations, can also be applied to improve the
453 speed of HNSW “°. Another new direction for graph based NNS will be using Graphics

454 Processing Unit (GPU) instead of CPU because GPUs are more efficient in handling

20

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

455 matrix computations and machine learning tasks 6. We will explore these options in future
456 versions of GSearch.

457

458 To summarize, GSearch, based on Probminhash and HNSW, solves a major
459 current challenge in classification of microbial genomes, especially given the exponential
460 increase in the number of newly sequenced genomes due to its efficiency and scalability.
461 GSearch will serve the entire microbial sciences for years to come since it can be applied
462 to fungal, bacterial and viral genomes, while offering a common framework to identify,
463 classify and study all microbial genomes, and will accelerate the process to find new
464 Dbiological knowledge.

465

466 Data availability

467 All the mentioned pre-built database for bacteria, fungi and phage genomes can be found

468 at: http://enve-omics.ce.gatech.edu/data/gsearch

469

470 Author Contribution

471 J.Z,L.M and K.K designed the work, J.Z and J.P-B wrote the code (Genome part and
472 algorithm part respectively), J.P-B implemented the Rust libraries of Kmerutils,
473 Probminhash and Hnswlib-rs. J.Z and K.K wrote the paper. J.Z did the analysis and
474 benchmark.

475

476 Acknowledgment

21

http://enve-omics.ce.gatech.edu/data/gsearch
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

477

478

479

480

481

482

483

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

This work was supported, in part, by the US National Science Foundation (Award No
1759831 and 2129823 to KTK). We want to thank PACE (Partnership for Advanced
Computing Environment) at Georgia Tech for providing computing resources. We want
to thank Kenji Gerhardt for helpful discussions on benchmarking against traditional
ANI/AAIl based tools and Chirag Jain for discussions on the graph based nearest neighbor

search.

References

1. Bobay, L.-M. & Ochman, H. Biological species in the viral world. Proceedings of the
National Academy of Sciences 115, 6040-6045 (2018).

2. Bobay, L.-M. & Ochman, H. Biological Species Are Universal across Life’s Domains.
Genome Biology and Evolution 9, 491-501 (2017).

3. Locey, K.J. & Lennon, J.T. Scaling laws predict global microbial diversity. Proceedings
of the National Academy of Sciences 113, 5970-5975 (2016).

4. Chevallereau, A., Pons, B.J., van Houte, S. & Westra, E.R. Interactions between bacterial
and phage communities in natural environments. Nature Reviews Microbiology 20, 49-62
(2022).

5. Federhen, S. Type material in the NCBI Taxonomy Database. Nucleic Acids Research 43,

D1086-D1098 (2014).

6. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut
microbiome. Nature Biotechnology 39, 105-114 (2021).

7. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nature Biotechnology 39,
499-509 (2021).

8. Caro-Quintero, A. & Konstantinidis, K.T. Bacterial species may exist, metagenomics
reveal. Environmental microbiology 14, 347-355 (2012).

9. Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome

sequence space. Nature 513, 242-245 (2014).

10. Rodriguez-R, L.M., Jain, C., Conrad, R.E., Aluru, S. & Konstantinidis, K.T. Reply to:
“Re-evaluating the evidence for a universal genetic boundary among microbial species”.
Nature Communications 12, 4060 (2021).

11. Parks, D.H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a
phylogenetically consistent, rank normalized and complete genome-based taxonomy.
Nucleic Acids Research (2021).

12. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for
interrogating genomes of uncultivated viruses. Nucleic acids research 49, D764-D775
(2021).

22

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

514 13 Konstantinidis, K.T. & Tiedje, J.M. Genomic insights that advance the species definition

515 for prokaryotes. Proceedings of the National Academy of Sciences 102, 2567-2572

516 (2005).

517 14. Konstantinidis, K.T. & Tiedje, J.M. Towards a Genome-Based Taxonomy for

518 Prokaryotes. Journal of Bacteriology 187, 6258-6264 (2005).

519 15. Goris, J. et al. DNA-DNA hybridization values and their relationship to whole-genome
520 sequence similarities. International Journal of Systematic and Evolutionary Microbiology
521 57, 81-91 (2007).

522 16. Ondov, B.D. et al. Mash: fast genome and metagenome distance estimation using

523 MinHash. Genome Biology 17, 132 (2016).

524 17. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T. & Aluru, S. High
525 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
526 Nature Communications 9, 5114 (2018).

527 18. Brown, C.T. & Irber, L. sourmash: a library for MinHash sketching of DNA. Journal of
528 Open Source Software 1, 27 (2016).
529 19. Bovee, R. & Greenfield, N. Finch: a tool adding dynamic abundance filtering to genomic

530 MinHashing. Journal of Open Source Software 3, 505 (2018).

531 20. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk: a toolkit to
532 classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925-1927
533 (2019).

534 21. Rodriguez-R, L.M. et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic
535 and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic
536 Acids Research 46, W282-W288 (2018).

537 22. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Naive Bayesian Classifier for Rapid
538 Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and

539 Environmental Microbiology 73, 5261-5267 (2007).

540 23. Schloss, P.D. et al. Introducing mothur: Open-Source, Platform-Independent,

541 Community-Supported Software for Describing and Comparing Microbial Communities.
542 Applied and Environmental Microbiology 75, 7537-7541 (2009).

543 24. Indyk, P. & Motwani, R. in Proceedings of the thirtieth annual ACM symposium on
544 Theory of computing 604-613 (1998).

545 25, Gionis, A., Indyk, P. & Motwani, R. in VIdb, Vol. 99 518-529 (1999).
546 26. Bentley, J.L. Multidimensional binary search trees used for associative searching.

547 Communications of the ACM 18, 509-517 (1975).

548 27. Dasgupta, S. & Sinha, K. in Proceedings of the 26th Annual Conference on Learning
549 Theory, Vol. 30. (eds. S.-S. Shai & S. Ingo) 317--337 (PMLR, Proceedings of Machine
550 Learning Research; 2013).

551 28. Dong, W., Moses, C. & Li, K. in Proceedings of the 20th international conference on
552 World wide web 577-586 (2011).
553 29. Malkov, Y., Ponomarenko, A., Logvinov, A. & Krylov, V. Approximate nearest neighbor

554 algorithm based on navigable small world graphs. Information Systems 45, 61-68 (2014).
555 30. Fu, C., Xiang, C., Wang, C. & Cai, D. Fast approximate nearest neighbor search with the
556 navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017).

557 31. Malkov, Y.A. & Yashunin, D.A. Efficient and Robust Approximate Nearest Neighbor
558 Search Using Hierarchical Navigable Small World Graphs. IEEE Transactions on

559 Pattern Analysis and Machine Intelligence 42, 824-836 (2020).

23

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

560 32. Aumiller, M., Bernhardsson, E. & Faithfull, A. ANN-Benchmarks: A benchmarking tool

561 for approximate nearest neighbor algorithms. Information Systems 87, 101374 (2020).
562 33. Ertl, O. ProbMinHash — A Class of Locality-Sensitive Hash Algorithms for the

563 (Probability) Jaccard Similarity. IEEE Transactions on Knowledge and Data

564 Engineering, 1-1 (2020).

565 34. Camarillo-Guerrero, L.F., Almeida, A., Rangel-Pineros, G., Finn, R.D. & Lawley, T.D.
566 Massive expansion of human gut bacteriophage diversity. Cell 184, 1098-1109.e1099
567 (2021).

568 35. Konstantinidis, K.T., Rossello-Mora, R. & Amann, R. Uncultivated microbes in need of
569 their own taxonomy. The ISME Journal 11, 2399-2406 (2017).

570 36. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk v2: memory
571 friendly classification with the Genome Taxonomy Database. bioRxiv,

572 2022.2007.2011.499641 (2022).

573 37. Tan, S. etal. in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
574 Discovery & Data Mining 1552-1560 (Association for Computing Machinery,
575 Virtual Event, Singapore; 2021).

576 38. Moulton, R. & Jiang, Y. in 2018 IEEE International Conference on Data Mining (ICDM)
577 347-356 (2018).
578 39. Bfinda, K., Sykulski, M. & Kucherov, G. Spaced seeds improve k-mer-based

579 metagenomic classification. Bioinformatics 31, 3584-3592 (2015).

580 40. Joudaki, A., Ratsch, G. & Kahles, A. Fast Alignment-Free Similarity Estimation By
581 Tensor Sketching. bioRxiv (2021).

582 41. Koslicki, D. & Zabeti, H. Improving MinHash via the containment index with

583 applications to metagenomic analysis. Applied Mathematics and Computation 354, 206-
584 215 (2019).

585 42 Bowers, R.M. et al. Minimum information about a single amplified genome (MISAG)
586 and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature

587 Biotechnology 35, 725-731 (2017).

588 43. Tan, G. etal. Current Methods for Automated Filtering of Multiple Sequence Alignments
589 Frequently Worsen Single-Gene Phylogenetic Inference. Systematic Biology 64, 778-791
590 (2015).

591 44, Prokhorenkova, L. & Shekhovtsov, A. in Proceedings of the 37th International

592 Conference on Machine Learning, VVol. 119. (eds. D. Hal, Il & S. Aarti) 7803--7813
593 (PMLR, Proceedings of Machine Learning Research; 2020).

594 45. Coleman, B., Segarra, S., Shrivastava, A. & Smola, A. Graph Reordering for Cache-
595 Efficient Near Neighbor Search. arXiv preprint arXiv:2104.03221 (2021).

596 46. Groh, F., Ruppert, L., Wieschollek, P. & Lensch, H. GGNN: Graph-based GPU Nearest
597 Neighbor Search. IEEE Transactions on Big Data, 1-1 (2022).

598

599

600

601

602

603

604

605

24

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

606

607

608

609

610

611

612

613

614 Methods and Materials

615 Briefly, GSearch is composed of the following steps. Initially, the genetic relatedness
616 among a collection of database genomes is determined based on the ProbMinHash
617 algorithm, which computes the normalized weighted Jaccard distance using the
618 probminhash3a algorithm implemented in the ProbMinHash papert. The normalized
619 weighted Jaccard distances are then used as input for building HNSW graphs (note that
620 a distance computation is required only when that genome pair is required for graph
621 building, thus GSearch avoids all vs. all distance computations). Genomes are
622 subsequently recursively added as the nearest neighbors of each node in the built graph
623 file with the same distance computation procedure. The built graph database file is stored
624 on disk. Query genomes are then searched against graph database and subsequently,
625 best neighbors are returned for classification/identification. In this process, the best
626 neighbor (or neighbors) is also identified based on the smallest normalized weighted
627 Jaccard distance obtained.

628

629 ProbMinHash

630 Details of differences between ProbMinHash and traditional MinHash can be found in

631 Supplenmentary Methods & Materials. We reimplemented the Probminhash algorithm in

632 Rust to estimate genetic relatedness between any two genomes based on normalized

25

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

633 (weighted) Jaccard distances according to the original ProbMinHash paper *!
634 (Supplementary Note 1) . The Rust reimplementation of Probminhash can be found at:

635 https://github.com/jean-pierreBoth/probminhash. Two important parameters of

636 Probminhash are the sketch size and kmer size. Similar to MinHash sketches,
637 Probminhash sketches are also shared hashes from hashed kmer set by taking into
638 account the kmer weights and also total kmer count (See Figure 1 of MASH paper). Time
639 complexity analysis for ProbMinHash is shown in Supplementary Note 3.

640 To benchmark probminhash against MASH, both tools were run with the same
641 sketch size (s=12000) and kmer size (k=16) for bacterial genomes at the nucleotide level
642 and kmer size (k=7) at the amino acid level for both database building and searching. For
643 fungal genomes a larger sketch size (48000) was used due to much larger genome sizes.
644 Details of kmer choosing logic can be found in Supplementary Note 2. For graph search
645 results, we also performed the same transformation of MASH distance from normalized
646 weighted Jaccard distance to probMASH distance for convenient comparison to ANI

647 based methods.

1, 2xJ,
_Eanerl

probM ASH =

648

649 Hierarchical Navigable Small World Graphs (HNSW)

650 Generally, the framework of graph-based ANN search algorithm (here HNSW) can be
651 summarized as the following two steps: 1) build a proximity graph (HNSW) where each
652 node represents a database vector. Each database vector will connect with a few of its

653 neighbors while maintaining small world property in each layer of HNSW. 2) Given a query

26

https://github.com/jean-pierreBoth/probminhash
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

654 vector (or sequence, kmer profile in our case), perform a greedy search on the proximity
655 graph by comparing the query vector with database vectors under the searching
656 measures (e.g., cosine similarity or L2 similarity, in our case probminhash distance).
657 Then, the most similar candidates are returned as outputs. The key point for these two-
658 step methods is step 1, to construct a high-quality index graph, which provides a proper
659 balance between the searching efficiency and effectiveness. To guarantee the searching
660 efficiency, the degree (number of maximum allowed neighbors, denoted as M) of each
661 node is usually restricted to a small number (normally 20~200) while width of search for
662 neighbor during inserting (denoted as ef_construct) is usually a larger number (higher
663 than 1000) to increase the chance to find best M neighbors by increasing the diversity of
664 neighbors due to the large number of neighbors retained. Building graph and searching
665 query against the graph follow very similar greedy search procedures except that there is
666 an extra reverse updating of neighbors list for each vector when inserting database vector
667 (building), one by one, into the existing graph (Figure l1la). The first phase of the
668 insertion/building process starts from the top layer by greedily traversing the graph in
669 order to find maximum M closest neighbors to the inserted element P in the layer by doing
670 ef_construct times search (Figure 1a). After that, the algorithm continues the search from
671 the nextlayer using the closest neighbor found from the previous layer as entry point, and
672 the process repeats until to the bottom layer. Closest neighbors at each layer are found
673 by a greedy and heuristic search algorithm (Figure 1b and c). For building, after searches
674 are finished at the bottom layer for each inserted element, a reverse update step will be
675 performed to update the neighbor list of each node in the existing graph while for

676 searching this is not needed. The overall database building time complexity is

27

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

677 O(N*log(N)), where N is the number of nodes in the graph. For searching, since there is
678 no need to reverse update best neighbor list for each node in the graph, time complexity
679 is (only) O(log(N)) (See Supplementary Note 3). Theoretical guarantee of graph-based
680 algorithm can be found in Supplementary Note 5. We reimplemented the original hnswlib
681 library written in C++ using the Rust programming language for its memory safety and

682 thread use efficiency ' which can be found here (https:/github.com/jean-

683 pierreBoth/hnswlib-rs). Benchmarks for this package against standard datasets can be

684 found in the Supplementary Methods & Materials.

685

686 Details of program implementation in Rust

687 There are 2 modules in total: tohnsw and request. Tohnsw is to build graph by gradually
688 inserting genomes into graph while request is to query new genomes against the graph
689 database built in the tohnsw step. Tohnsw starts from reading database genomes and
690 generating kmer profile and sketches for distance calculation. By selecting a random
691 genome as the first genome to insert to the graph, tohnsw module gradually add genomes
692 to existing graph file following HNSW constructing rules mentioned above by computing
693 ProbMinHash distance between genomes. Whenever a genome is going to be inserted
694 into the existing graph, each genome in the graph is associated with a list that stores the
695 M closest neighbors/genomes to the genome and the distance to these neighbors. Then,
696 the distances of this genome with the nearest neighbors (M) of entry genome in this layer
697 will be computed/searched (ef_construct times) using probminhash3a algorithm and the
698 smallest distance of the neighbor genomes will be the new entry genome. This process

699 will be repeated until the nearest genomes (<= M) in the layer are found and

28

https://github.com/jean-pierreBoth/hnswlib-rs
https://github.com/jean-pierreBoth/hnswlib-rs
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

700 subsequently, the program will go to the layer below, using the genome that was
701 represented by the nearest genome in the above layer as new entry genome in the new
702 layer. The search layer algorithm is repeated until to the bottom layer is
703 reached/analyzed. In contrast to the default settings in the original hnswlib, we allow the
704 two parameters of neighbor selecting heuristics, extendCandidates to be true and
705 keepPrunedConnections to be false because our genomic data is extremely clustered
706 and there is no need to fix the number of connections per element considering the
707 maximum connection allowed. Request module will load the graph database and then
708 search query genomes against it to return the best neighbors of each query, following
709 exact the same procedure with building step without updating the database. Both tohnsw
710 and request module are operating in parallel for high performance (see Supplementary

711 Note 6). The GSearch software can be found here: https://github.com/jean-

712 pierreBoth/gsearch GSearch relies on Kmerutils (https://github.com/jean-

713 pierreBoth/kmerutils), which is a Rust package we developed to manipulate genomic

714 fasta files including kmer string compression, kmer counting, filtering using cuckoo filter
715 etal.

716 Installation guide, manual and pre-built binaries can also be found on the website. We
717 provide static binaries on the release page for major platforms such as Linux and MacOS,
718 with support for different CPU structures, e.g. Intel x86_64 or ARM64. GSearch program
719 can be run like this : 1) Build a graph database, which can be done running the following
720 command: tohnsw -d ./GTDB_r207 -k 16 -s 12000 -n 128 --ef 1600; 2) Request neighbors
721 of query genomes: request -b . -r ../query_folder -n 50 (--aa). Note that with the --add

722 option in tohnsw module, genomes in the directory will be added to existing graph

29

https://github.com/jean-pierreBoth/gsearch
https://github.com/jean-pierreBoth/gsearch
https://github.com/jean-pierreBoth/kmerutils
https://github.com/jean-pierreBoth/kmerutils
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

723 database, loaded from current directory, thus avoiding building graph database from the
724 very beginning when there are only a small number of new genomes species compared
725 tothe current database. However, for larger number of new genome species, rebuild from
726 start is suggested to be able to choose an optimal M and ef_construct to maintain high
727 accuracy.

728

729 Prokaryotic classification pipeline

730 The amino-acid level graph showed that closest neighbors were found, with high
731 recall, when the query shared at least 52% AAI to its best neighbor. For more divergent
732 genomes, showing lower than 52% AAI, whole-genome amino-acid level graph loses
733 accuracy and we had to switch to universal, single-copy protein-coding genes. For the
734 nucleotide-level graph, we used kmer=16 for bacteria and archaea to have high specificity
735 for closely related database genomes (e.g., sharing about 95% ANI). For building the
736 whole-genome amino-acid graph, we used k=7 to have the best specificity without
737 compromising sensitivity, which is also consistent with previous results on classification
738 of amino acid sequences based on kmers 2. For building graph based on universal gene
739 set, we use k=5 because of much smaller total amino acid size. For further details on the
740 range of kmer to use for bacteria genome and proteome, viral genome and proteome,
741 see Supplemental Notes 2.

742 The proteome of each genome was predicted by FragGeneScanRs v0.0.1 for
743 performance purpose as opposed to Prodigal despite small loss in precision
744 (Supplementary Table S5) 3. Hmmsearch in the hmmer (v3.3.2) software ¢ was used to

745 extract the universal gene set for bacteria and archaea genomes (universal gene graph).

30

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

746 Note that for viral genomes, this last step was not used because there are no universal
747 single copy genes for viral genomes. Evaluation of the speed and memory requirements
748 for all steps mentioned above were performed on a RHEL (Red Hat Enterprise Linux)
749 v7.9 with 2.70 GHz Intel(R) Xeon(R) Gold 6226 CPU. Unless noted otherwise, all 24
750 threads of the node are available by default.

751

752 Distributed implementation and database splitting

753 To accommodate the increasing number of genomes that become available at an
754 unprecedented speed in recent years and will soon reach 1 million or more, we provide
755 an option to randomly split the database into a given number of pieces and build graph
756 database separately for each piece. In the end, all best neighbors returned from each
757 piece will be pooled and sorted by distance to have a new best K neighbor collection
758 returned to the user for each query genome. We hereby prove that in terms of requesting
759 top K best neighbors, the database split strategy is equivalent to non-split database
760 strategy as long as the requested best neighbors for each database piece is larger than
761 or equals to requested best neighbors in the non-split strategy. The underlying reason is
762 thatthe best neighbors globally are also the best locally 4. The database split and request
763 will be done sequentially, on one node, without multi-node support. For now, we split
764 GTDB database in to 5 pieces for testing purposes. In theory, a large database can be
765 split into any pieces as long as each piece can be used to build HNSW. In practice, a
766 reasonable way to decide on the number of database pieces to use is so that memory

767 requirement for each piece is equal or smaller than the total memory of host machine.

31

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

768 The database split idea has been used in several graph-based larger scale (e.qg., billions)
769 nearest neighbor search tasks in industry 4 °.

770

771 Species database and testing genomes for benchmarking and recall

772 GTDB version 207 was used to build the database for bacteria and archaea genome

773 species °. The IMGVR database version 3, with species representatives at a =95% ANI,

774 was used for for viral database building ’. For fungal genomes, all genomes downloaded
775 from the MycoCosm project (on 24th Jan., 2022) were used 8. The amino acid sequences
776 of predicted gene on the genomes were obtained using FragGeneScanRs. The Universal
777 Single Copy Gene (USCG) gene set for GTDB genomes were extracted via hmmer
778 software.

779 To test the performance of our pipeline, we specifically chose genomes that are
780 not included in the GTDB database (the database was used for graph building). In
781 patrticular, the bacterial/archaeal genomes, mostly MAGs, reported by Ye and colleagues
782 ° and Tara Ocean MAGs (total 8,466 MAGS) *° were used. We randomly selected 1000
783 genomes/MAGs from Ye’s collection and use them as query genomes to test the
784 performance and accuracy of GSearch. To compare with other database search tools for
785 large database e.g., the viral database, we compare GSearch with PhageCloud 11, which
786 builds a graph database based on the labels of each viral genome (e.g., environment
787 source) and its search algorithm is Dashing2'.

788

789 Recall of AAI-, ANI- and MinHash-based nearest neighbor searching for

790 bacteria/archaea, fungi and viral genomes.

32

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

791 To benchmark how GSearch performs compared to ANI/AAI- and MinHash-based tools,
792 we ran FastANI, Diamond blastp-based AAI and Mash to find the best neighbors for the
793 same query genome dataset and evaluated whether or not the best neighbors found by
794 GSearch were the same. FastANI parameters for the bacterial dataset were the following:
795 fastANI --gl query_path.txt --rl gtdb_path.txt -k 16 -p 24 --minFrac 3000 -o ANI.txt. GTDB
796 database was split into 50 subsets and each subset was parallelly run on a multi-node
797 supercomputer to reduce memory requirement. MASH parameters were: mash sketch -a
798 (for AA only) -k 21 (7 for AA) -s 12000 -p 24 GTDB/*.fna > gtdb.msh; mash dist -p 24
799 gtdb.msh query.msh. For AAI calculation, the corresponding script of the enveomics
800 package ® was used: aai.rb -1 query.faa -2 db.faa -p diamond -t 24. Hmmer was used to
801 search for universal single copy gene against pre-built hmm profiles (120 for archaea and
802 122 for bacteria respectively); the profiles were obtained from the GTDB-Tk software. For
803 viral genomes, FastANI fragment size of 1000 was used instead of 3000 while aai.rb
804 fragment size was 500 instead of 1000 with minimal number of matches of 5. For viral
805 genomes, MASH kmer size of 11 and 7 was used for nucleotide and amino acid levels,
806 respectively. For fungal genomes, we use MUMMER v4.0.0 with default parameters for
807 ANl calculation 4. Gene prediction for fungal genomes was performed using GeneMark-
808 ESv2 (--fungus --ES) *°. Kmer size 21 and 11 was used for fungal genomes in MASH for
809 nucleotides and amino acid levels, respectively. Detailed description of kmer size for each
810 type of genome can be found in Supplemental Note 2.

811 We calculated recall for our tool compared to standard ANI/AAI and MASH in the
812 following way: since biological species database are generally sparse because we are far

813 away from sequencing all species in the environment and likely the existence of natural

33

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

814 gaps in diversity, a larger top K by HNSW (e.g., 100) compared to the value used in
815 standard benchmark dataset will offer little, if any advantage, especially when the query
816 genomes are relatively new, e.g. a new family compare to database genomes. Therefore,
817 we use top 5 and 10. Top 5 and top 10 recall are calculated based on top 5 and 10
818 neighbors found by GSearch and the alterantive tools, and if all top 5 or 10 found by the
819 latter tools were also in top 5 or 10 of our tool, then recall was 100%. Similarly, if only 4
820 or 9 are found by our tools, then recall was 80% and 90% respectively. However, if the
821 distance of query to some of the top 10 or top 5 neighbors found by GSearch at the
822 nucleotide level was larger than 0.9850 for bacterial genomes, these matches will be
823 filtered out and only those neighbors below 0.9850 will be used (e.g. 8 out of 10 are kept,
824 so only top 8 is compared) because we have shown that above this threshold, MinHash-
825 based methods will lose accuracy and this is not specific to HNSW. Similar rules were
826 applied for the amino acid level searches with the threshold value of 0.9720 used for

827 filtering out bacterial genomes.

34

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

References

1. Ertl, O. ProbMinHash — A Class of Locality-Sensitive Hash Algorithms for the
(Probability) Jaccard Similarity. IEEE Transactions on Knowledge and Data
Engineering, 1-1 (2020).

2. Déraspe, M., Boisvert, S., Laviolette, F., Roy, P.H. & Corbeil, J. Fast protein database as
a service with kKAAmer. bioRxiv, 2020.2004.2001.019984 (2020).

3. Van der Jeugt, F., Dawyndt, P. & Mesuere, B. FragGeneScanRs: faster gene prediction
for short reads. BMC Bioinformatics 23, 198 (2022).

4. Malkov, Y.A. & Yashunin, D.A. Efficient and Robust Approximate Nearest Neighbor
Search Using Hierarchical Navigable Small World Graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence 42, 824-836 (2020).

5. Fu, C., Xiang, C., Wang, C. & Cai, D. Fast approximate nearest neighbor search with the
navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017).

6. Parks, D.H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a
phylogenetically consistent, rank normalized and complete genome-based taxonomy.
Nucleic Acids Research (2021).

7. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for
interrogating genomes of uncultivated viruses. Nucleic acids research 49, D764-D775
(2021).

8. Grigoriev, L.V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic
acids research 42, D699-D704 (2014).

9. Ye, L., Mei, R., Liu, W.-T., Ren, H. & Zhang, X.-X. Machine learning-aided analyses of
thousands of draft genomes reveal specific features of activated sludge processes.
Microbiome 8, 1-13 (2020).

10. Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000
prokaryotic genomes originated from various marine environments. Scientific Data 9,
305 (2022).

11. Rangel-Pineros, G. et al. From Trees to Clouds: PhageClouds for Fast Comparison of~
640,000 Phage Genomic Sequences and Host-Centric Visualization Using Genomic
Network Graphs. PHAGE 2, 194-203 (2021).

12. Baker, D.N. & Langmead, B. Dashing 2: genomic sketching with multiplicities and
locality-sensitive hashing. bioRxiv (2022).

13. Rodriguez-R, L.M. & Konstantinidis, K.T. (PeerJ Preprints, 2016).

14. Marcais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLOS
Computational Biology 14, €1005944 (2018).

15. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O. & Borodovsky, M. Gene

prediction in novel fungal genomes using an ab initio algorithm with unsupervised
training. Genome research 18, 1979-1990 (2008).

35

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

874
875

876
877
878
879
880
881
882
883
884
885
886
887
888

889
890
891
892
893
894

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Figures
Figure 1. Schematic overview of GSearch building graph and searching graph

(a) @ NewpointP @ Entry point Nearest point = Path to find nearest (b)
point to new point

Search on a

Layer 2
corse layer

Move to the o} .i °
same node in Layer 1 e . Vi)
the finer graph o o l (o]

] 5
Repeat L LS IO ¥
ayer 0 o | 09 o ®
-
p2 ®

Reverse updating neighbor table for each point after
done with Layer 0 when building database

New Entry node

New Entry node

steps. (a) Graph was clasped into hierarchical layers following exponential decay
probability. In this graph, ef and M, represent the number of searches when finding
nearest neighbors and maximum allowed number of neighbors for each node,
respectively (See Materials and Methods for details). In each layer, starting from an
entry node (random or inherit from layer above it, depending on whether it is the top
layer or not), GSearch finds the closest connected neighbor of the entry node and
assigns it as the new entry point P (b), and then traverses in a greedy manner (i.e.,
update the entry point using the newly found closest connected neighbor (c)) until the
nearest neighbor in the layer is found, and then goes to next layer. This process is
repeated until the required number of nearest neighbors are all found for the given new
guerying/inserting point. For building graph, after the required number of nearest
neighbors are found, a reverse update step is performed to update neighbor list of all

nodes in the graph.

36

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

o
[}
[4)]

Time (hours) ~

895
896
897
898
899
900 i B om m
901 1 4 8 12 24
902 Number of Threads

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

921 Number of Threaglg 24

922

923

924 Figure 2. Scalability of database building process with the number of threads used.

3 o 3

Ereririrers

o o

2 24
S

925 Panels show total wall time (y=axes) for building GTDB genome (nucleotide level) (a), whole-
926 genome proteome (amino acid level) (b) and universal gene set proteome (c) databases. All
927 tests were run on a 24-thread Intel (R) Xeon (R) Gold 6226 processor, with 40GB memory
928 available.

929
930
931
932
933
934
935
936
937
938
939
940
941

37

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(@ 3o (b) 16,
| Y1 N _
25E § 5100 29 300 sq_1000 2} % ©q_100 =q_300 w=q_1000
B20! N 2, N
£ \ £101 N
§15 - % £ 8| %
g 2N\ 25/ N
E101 ON] E. L N\
B SN\
| EON NN 2 PN N N N
N mN =N N oS =7 N\ I\ e \ R\
1 4 8 12 24 1 4 8 12 24
Number of Threads Number of Threads
(@)
% @q_100 =q_300 =qg_1000 | §
?§ g‘ §
7N S | %\
‘ %\ 23! /\
2N O\
N AN 4N
: £ é% é% [—Z‘% N : %§
ol AN EZN EZN EON meas .\
1 4 8 12 24 f g/é\g
Number of Threads O b t2e)

Figure 3. Total request time (wall time) for searching query genomes against the pre-built
reference databases. Shown are all GTDB genomes (v207) at the whole-genome nucleotide
(a), whole-genome proteome (b) and universal gene set proteome (c) levels. 100, 300 and 1000
guery genomes (figure key) were used on a 24-thread Intel (R) Xeon (R) Gold 6226 processor.
On average, database loading time ranged from 5-10 seconds. (d) is time needed to classify the
same genomes using GTDB-Tk on the same 24-thread node.

Figure 4. Overview of the GSearch pipeline for classifying prokaryotic genomes. Orange
boxes denote steps that aim to prepare genome files, in different formats, for graph building

38

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Query genome
(nt)

| request

tohnsw
k=16

Gtdb (nt) Graph(nt)

Gene prediction Unclassified
genome (ANI <
78% in graph nt)

tohnsw_aa
k=7
hmmsearch

Gtdb (AA) Graph(AA)

Gene prediction

Query genome

Universal gene new (AA)

(AA)

l request_aa
Unclassified
md genome (AAl <
52% in graph AA)

hmmsearch

tohnsw_aa

Universal gene (AA)

1 request_aa

969 while green boxes denote building steps of the graph database (in nucleotide or amino acid
970 format). Blue boxes indicate input/query genomes to search against the database while grey
971 boxes indicate classification output for each input. Gene prediction was done using

972 FragGeneScanRs and hmmsearch as part of the hmmer software for homology search. Two
973 key steps of GSearch: tohnsw (aa) and request (aa) are used to build graph database and
974 request new genomes, respectively. Two thresholds are used in the pipeline to decide between
975 whole nucleotide vs. whole-genome amino acid search and whole-genome amino acid vs.
976 universal gene amino acid, 78% ANI and 52% AAI, corresponding to Probminhash distance
977 0.9850 and 0.9375, respectively (see main text for details).

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992 Tables

993

994 Table 1. Request/search performance on major CPU platforms for GTDB v207 database for

995 1000 queries.
996

39

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513218; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

CPU Number Clock Request Gene Request hmmsear Request
of speed time for nt Prediction- time for ch time time for
threads (GH2) (min) FGSrs proteome (min)¢ USCG
(min)® (min) (min)
Intel (R) Xeon 24 2.70 2.329 1.348 1.334 0.524 0.117
(R) Gold
62262
Intel (R) Core 8 2.80 8.654 6.764 2.041 1.534 0.510
i7-7770HQ®
AMD EPYC 32(24 2.60 1.937 1.120 1.021 0.345 0.102
7513a®
used)
Apple M1 Pro® 10 3.22 2.369 2.12 0.866 0.498 0.168

2RHEL v7.9, Linux v3.10.0-1160, all threads used.
"MacOS v12.3, Darwin 21.4.0, all threads used.

‘Parallel package was used to run multiprocess at the same time. FGSrs stands for FragGeneScanRs. Note that in practice only

those genomes failed in the Request for nt step (best found is less than 78% ANI) will be used in this step.

dOnly 100 genomes are used for testing hmmsearch because this step is for very new genomes at order level or above and we
often do not have that many new genomes in a real-world dataset. Parallel Packages was used to run multiple processes of

hmmsearch, one thread per process for hmmsearch.

40

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

	References
	References

