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2 

Abstract 20 

Genome search and/or classification is a key step in microbiome studies and has recently 21 

become more challenging due to the increasing number of available (reference) genomes 22 

and the fact that traditional methods do not scale well with larger databases. By combining 23 

a kmer hashing-based genomic distance metric (ProbMinHash) with a graph based 24 

nearest neighbor search algorithm (called Hierarchical Navigable Small World Graphs, or 25 

HNSW), we developed a new program, GSearch, that is at least ten times faster than 26 

alternative tools due to O(log(N)) time complexity while maintaining high accuracy. 27 

GSearch can identify/classify 8,000 query genomes against all available microbial and 28 

viral species with sequenced genome representatives (n=~65,000) within several minutes 29 

on a personal laptop, using only ~6GB of memory. Further, GSearch can scale well with 30 

millions of database genomes based on a database splitting strategy. Therefore, GSearch 31 

solves a major bottleneck of microbiome studies that require genome search and/or 32 

classification. 33 

 34 

Keywords: genome search, microbial genomes, MAGs, MinHash, nearest neighbor 35 
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Identifying or classifying microbial species based on either universal marker genes 42 

(e.g., 16S or 18S rRNA genes) or entire genomes represents a re-occurring task in 43 

environmental and clinical microbiome studies. However, this task is challenging because 44 

i) whether or not microbes (bacteria, fungi) and viruses form discrete population clusters 45 

(or species), remains an open question 1, 2, and ii) the microbial species in nature are still 46 

severely under-sampled by the available genomes. For instance, there are more than 47 

1012 prokaryotic and fungal species in nature according to a recent estimation based on 48 

16S rRNA gene  or ITS (Internal Transcribed Spacer) analysis 3 and even more viral 49 

species (e.g. the number of viral cells outnumbers that of prokaryotic cells by a about a 50 

factor of ten in most natural habitats) 4. Yet, only ~17,000 bacterial species have been 51 

described and even fewer (around 15,000) are represented by complete or draft genome 52 

5. Due to the recent improvements in DNA sequencing and single-cell technologies, 53 

metagenomic surveys can now recover hundreds, if not thousands, of these yet-to-be-54 

described species from environmental or clinical samples 6, 7, filling in the gap in the 55 

described diversity mentioned above. This has created a new challenge, however; that 56 

is, identifying these new genomes against the exponentially increasing number of 57 

available (described) genomes has become computationally intractable. Nonetheless, the 58 

recent high-throughput sequencing of isolate genomes as well as metagenomic studies 59 

of natural populations have shown that species may exist and be commonly 60 

circumscribed based on a 95% genome-aggregate average nucleotide identity (ANI) 61 

threshold, at least for prokaryotes and viruses 8, 9. This threshold represents convenient 62 

means in searching and identifying new genomes against the already descried species 63 

and determining whether or not they represent novel species 10. 64 
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 65 

The number of curated draft or complete prokaryotic genomes has reached 66 

317,542 in the newest release of the GTDB database, and 2,332,702 in the latest IMG/VR 67 

database for viruses, representing 65,703 prokaryotic and 935,122 viral distinct species 68 

at the 95% ANI level 11, 12. Searching of query genomes against these large databases to 69 

find closely-related database/reference genomes for taxonomy classification based on 70 

the traditional brute-force methods, meaning, performing all vs. all searches, has become 71 

impractical, even for fast searching algorithms and/or small-to-medium computer clusters. 72 

For this task, faster search strategies are necessary. In addition to the searching strategy, 73 

the actual algorithm used to determine overall genetic relatedness between the query and 74 

the databased genomes is critical. While the traditional blast-based ANI among closely 75 

related genomes at the species level, and the genome-aggregate average amino acid 76 

identity (AAI) for genomes related at the genus level or above, have been proven to be 77 

highly accurate for genetic relatedness estimation across microbial and viral genomes 13-78 

15, they are too slow to use when dealing with more than a few dozen of genomes. Faster 79 

implementations based on k-mer counting have been recently described to alleviate this 80 

bottleneck such as FastANI and MASH 16, 17, but these methods still do not scale with an 81 

increasing number of database (or query) genomes, especially based on an all vs. all 82 

search strategy. Further, defining genetic distance (or relatedness) based on kmer 83 

profiles can be problematic for incomplete genomes, which are commonly recovered from 84 

metagenomic surveys, and/or genomes with extensive repeats such as those found in 85 

several microbial eukaryotic genomes. Kmer-weighted approaches are advantageous in 86 

the latter cases because repeated genomic fragments can be considered when hashing 87 
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but they have not been widely adopted yet 18, 19. Recently, a phylogeny-based approach 88 

using a handful of universal genes (n ≈ 100) was developed to accelerate genome 89 

classification 20. However, phylogenetic replacement based on a concatenated universal 90 

gene tree can be memory demanding and slow, especially for a large number of or a few 91 

deep-branching (novel) query genomes, and this approach cannot be applied to viral 92 

genomes, which lack universal genes. Further, universal genes due to their essentiality, 93 

are typically under stronger purifying selection and thus, evolve slower than the genome 94 

average. This property makes universal genes appropriate for comparisons among 95 

distantly related genomes, e.g., to classify genomes belonging to a new class or a new 96 

phylum, but not the species and genus levels 20, 21.  97 

One of the most generally used approaches for finding closely related information 98 

to a query, while circumventing an all vs. all search, is the K-Nearest Neighbor Search 99 

(K-NNS). The K-NNS approach has been used for 16S rRNA gene-based classification 100 

followed by a vote strategy 22, 23 and, more recently, for whole genome and metagenome 101 

comparisons based on shared kmers 16. Approximate nearest neighbor search (ANN) 102 

algorithms, such as locality-sensitive hashing (LSH) 24, 25 , k-dimension tree 26, random 103 

projection trees 27, k-graph 28 and proximity graph 29, 30 have been recently used to 104 

accelerate search processes. Proximity graph, as implemented for example in the 105 

hierarchical navigable small world graph (HNSW) 31, has been shown to be one of the 106 

fastest ANN search algorithms 32. HNSW incrementally builds a multi-layer structure 107 

consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the 108 

stored elements. Then, through smart neighbor selection heuristics, inserting and 109 

searching the query elements in the proximity graphs can be very fast while preserving 110 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/


6 

high accuracy, even for highly clustered data 29, 31. Therefore, finding the closest genomes 111 

in a database can be substantially accelerated by using HNSW.  112 

Here, we describe GSearch (for Genome Search), a tool that combines one of the 113 

most efficient nearest neighbor search approaches (HNSW) with a universal approach to 114 

measure genetic relatedness among any microbial genome, including viral genomes, 115 

ProbMinHash 33, implemented in the Rust language for higher speed. ProbMinHash is 116 

based on shared kmers, weighted by their abundance and normalized by total kmer 117 

count, which can account for genome incompleteness of prokaryotic genomes and 118 

repeats commonly found in eukaryotic and sometimes in prokaryotic genomes. 119 

Essentially, ProbMinHash computes the normalized weighted Jaccard distance between 120 

each pair of genomes and subsequently, the weighted Jaccard distance normalized by 121 

total kmer count is used as input to build HNSW to create the graph of the database 122 

genomes. Accordingly, the search of the query genome(s) against the graph to find the 123 

nearest neighbors for classification purposes becomes an ultra-fast step using GSearch 124 

and can be universally applied to all microbial genomes. The novelty of GSearch also 125 

includes a hierarchical pipeline that involves both nucleotide-level (when query genomes 126 

have close relatives at the species level) and amino-acid-level searching (when query 127 

genomes represent novel species), which provides robust classification for query 128 

genomes regardless of their degree of novelty relative to the database genomes, as well 129 

as a database-splitting strategy that allows GSearch to scale up well to millions of 130 

database genome sequences.  131 

 132 

Results 133 
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Probminhash as a robust metric of genome relatedness for prokaryotic genomes 134 

Correlations between ProbMASH distance (we called it ProbMASH after transformation 135 

from ProbMinHash distance, see Methods & Materials) and ANI (determined by FastANI) 136 

or MASH distance showed that ProbMinHash is robust and slightly better than MASH for 137 

determining distances among bacterial genomes related at ~78% ANI, or higher, i.e., 138 

genomes assigned to the same or closely-related species (Spearman rho=0.9643 and 139 

0.9640 of ProbMinHash and MASH values against corresponding ANI values for the 140 

same genome comparisons, respectively, P<0.001, Figure S1a and S1b; note that for 141 

finding best matches using the ANI approach as the reference, Spearman rank correlation 142 

is more relevant than Pearson correlation). For moderately related genomes, for which 143 

nucleotide-level ANI is known to lose accuracy, ProbMinHash was still robust compared 144 

to MASH for bacterial genomes (using the best matches found by average amino acid 145 

distance or AAI as the reference), especially among genomes showing between ~52% 146 

and 95% AAI (Spearman rho=0.90, P<0.01, Supplementary Figure S2a and S2b). Below 147 

~50% AAI, both ProbMinHash and MASH distance lose accuracy compared to AAI. 148 

However, AAI of just universal genes provides a robust measurement of genetic 149 

relatedness at this level of distantly related genomes 21, and we show here that 150 

ProbMinHash distance for the same set of universal genes is also robust (Spearman 151 

rho=0.9390, P<0.001, Supplementary Figure S3). Thus, for query genomes of organisms 152 

with only distant relatives in the database (i.e., deep-branching), for which their closest 153 

represented genome in the database is related at the order level or higher, restricting the 154 

search to the universal genes can provide robust classifications. 155 

 156 
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Graph building and search against reference prokaryotic genomes is faster than 157 

alternative methods 158 

To build the database graph for the entire GTDB v207 database (65,703 unique, non-159 

redundant, at the species level, prokaryotic genomes) at the nucleotide level, the tohnsw 160 

module of GSearch took 2.3 h on a 24-thread computing node and scaled moderately 161 

well with increasing number of threads (Figure 2a). Maximum memory (RAM) required 162 

for the building step was 28.3 GB. The total size of written database files on disk was ~3.0 163 

GB. There are 3 layers for the resulting graph, 65180, 519, and 4 genomes for layer 0,1 164 

and 2 respectively. The searching of query genomes against this database graph, 165 

requesting best 50 neighbors for 1000 query genomes, which represented different 166 

previously known as well as novel species of eight bacterial phyla (see Methods for details 167 

on query genome selection), took 2.3 min (database loading 6 seconds) on a 24-thread 168 

machine and also scaled well with increasing number of threads (Figure 3a). The memory 169 

requirement for the request (search) step was only 3.0 GB for storing the entire database 170 

file in memory. To evaluate the accuracy of these results, we compared the best 171 

neighbors found by GSearch with brute-force FastANI and GTDB-Tk. All best neighbors 172 

found by brute-force FastANI and GTDB-Tk for query genomes with close relatives in the 173 

database (e.g., ANI > 78%) were found by GSearch (Supplemental File 1). Top 5 174 

neighbors were 99.4% overlapping and top 10 were 96.3% overlapping between GSearch 175 

and the other two methods for the testing query genomes. We also compared the speed 176 

with MASH for the same kmer and sketch size and the MASH dist step took 7.51 min to 177 

compare 1000 genomes with database using 24 threads. The speed difference compared 178 

to MASH was even greater for ~8,000 query genomes. Specifically, it took 12.5 min for 179 
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GSearch to find the top 50 best hits (Supplementary Figure S4a) while MASH took 80.8 180 

minutes on the same 24-thread machine. However, for a given number of database 181 

genomes, the speedup of GSearch is saturated to log(N) as the number of query genome 182 

increases, where N is the number of database genomes. Therefore, GSearch will be 183 

orders of magnitude faster than MASH for larger species database with millions of 184 

genomes (see also viral section below). GSearch search time for a given number of query 185 

genomes is related to the number of database genomes in a O(log(N)) manner while 186 

brute-force methods are O(N), and our empirical analysis is consistent with the theoretical 187 

log(N) prediction (Supplementary Figure S4b and Supplementary Note 3). 188 

 189 

To build the amino-acid-level graph for moderately related query genomes, all GTDB 190 

v207 genomes were used for gene calling by FragGeneScanRs and subsequently, the 191 

predicted amino acid sequences for each genome were used for the tohnsw module. The 192 

graph building step took 1.4 h (Figure 2b) with a maximum memory required for the 193 

building step to be 37.7 GB. The total size of written database files on disk by GSearch 194 

was 5.9 GB. There were 65158, 543 and 2 genomes for layer 0,1 and 2 respectively. 195 

Requesting 50 neighbors for 1000 genomes at the amino-acid level took 1.52 minutes 196 

with a memory requirement of ~6.0 GB (database loading 9 seconds; Figure 3b). The top 197 

5 neighbors had a 98.9% recall compared to the brute-force MASH or blast-based AAI 198 

approaches, with 97.1% overlap for the 10 top neighbors. In comparison, MASH dist took 199 

5.96 min using 24 threads; for 8000 query genomes, MASH dist took 47.2 min while 200 

GSearch took 5.6 min. 201 

 202 
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Finally, for most distantly related query genomes, the graph building for the universal 203 

gene set follows the same logic as the amino acid level graph mentioned above except 204 

for using a smaller kmer size (k=5) due to the smaller kmer space of ~120 universal genes 205 

vs. the whole-genome level (e.g., a few thousand genes). It took 7.76 min to build the 206 

database (Figure 2c) and 32 seconds to request 50 neighbors for 1000 queries on a 24 207 

threads node (Figure 3c) with a recall similarly high to the amino-acid level search (with 208 

top 5 and top 10 recall ranging between 98.2% and 96.1%, respectively). 209 

 210 

We also evaluated the effect of genome completeness on search and classification 211 

accuracy given that bacterial genomes recovered from environmental metagenomes are 212 

frequently incomplete. GSearch was robust to genome incompleteness down to 50% 213 

completeness level, e.g., with 80% of top 10 best matches are found, while accuracy 214 

decreased considerably below this level (Supplementary table S6). 215 

 216 

Graph database building and searching for viral and fungal genomes 217 

Graph building and requesting for viral genomes is not effective at the nucleotide level 218 

because many viral genera are too diverse and do not have close relatives in the public 219 

genomic database; that is, the database is too sparse. Accordingly, kmer-based methods 220 

(e.g., MASH and ProbMinHash) will often lead to imperfect graph structure for viral 221 

genomes. Therefore, we build only an amino acid level graph for viral genomes, using all 222 

genes in the genome due to the lack of universal genes for viral genomes. Database 223 

building took 13.895 h on a 24-thread node and graph file on disk is 15.8 GB 224 

(Supplementary Figure S6 (a)). Requesting 1000 neighbors scaled well with increasing 225 
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number of threads and took about 3.63 min (database load takes additional 1.1 min) using 226 

24 threads (Supplementary Figure S6 (b)). The top 10 neighbors for 1000 query phage 227 

genomes were still highly overlapping (98.32% recall; Supplemental Table S1) with the 228 

brute-force MASH-based approach. For such large database, GSearch is about 20X 229 

faster than the brute-force MASH (Supplementary Tables S1). We also compared 230 

GSearch with a new database building method called PhageCloud, which relies on 231 

manually curated genome labels (e.g., environmental source) for graph database building 232 

in Neo4j database software and Dashing software for distance/relatedness computation. 233 

Since PhageCloud provides only a website and allows only one genome query at a time, 234 

we searched only one viral genome at a time with GSearch and MASH against the same 235 

database (Gut Phage Database 34). It took 37 seconds to find the two best matches with 236 

PhageCloud while GSearch took 15 seconds (database loading 14 seconds, search 1 237 

second) for the same search. MASH on the other hand took 4 minutes to find the same 2 238 

best matches. It should be noted, however, that, because the database is already 239 

available (loaded) on PhageCloud’s website, 37 seconds is only for search and website 240 

responses (average value for 5 runs on 5 different days) whereas GSearch took only 1.5 241 

second for the same step. 242 

 243 

Graph building for fungal genomes is slower compared to prokaryotic genomes, despite 244 

the smaller number of available fungal genomes (n=9700) because the average fungal 245 

genome size is much larger and kmer and sketch size are accordingly much larger (k=21, 246 

s=48000). It took 2.3 h on a 24-thread node to build the nucleotide level graph for these 247 

fungal genomes. Searching step was also slower due to the larger kmer space. 248 
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Accordingly, it took 3.13 min to identify 50 neighbors for 50 query fungal genomes while 249 

MASH tool 4.4 min. Nonetheless, top 5 recall was still very high (~99.4%) against MASH 250 

and MUMMER-based ANI for the same datasets. For the amino acid level graph, the time 251 

for graph building was only 0.61 h, shorter than the corresponding prokaryotic graph due 252 

to the lower coding density of fungal genomes relative to the prokaryotic genomes. 253 

Identifying 50 neighbors for 50 query fungal genomes at the amino-acid level took 1.24 254 

min (MASH took 2.59 min) with similarly high top 5 and top 10 recall (99.7% and 98.5%, 255 

respectively) against brute-force MASH (-a) and blastp-based AAI.  Note that the 256 

difference in run time will be much larger between MASH and GSearch as the number of 257 

fungal database genomes increases in the future, as also exemplified above for the 258 

bacterial genomes 259 

 260 

Combining the three graphs/levels together and comparison with GTDB-Tk for prokaryotic 261 

genome classification 262 

A three-step pipeline was developed to allow the identification and classification of a 263 

query genome, depending on its level of novelty compared to the database genomes 264 

(Figure 4). Specifically, when the query genome does not find a match in the database 265 

better than ANI > 78%, corresponding to ProbMinHash distance 0.9850, the nucleotide-266 

level graph is abandoned, and the amino-acid level is used instead. If no match against 267 

the latter graph is found above 52% AAI, corresponding to 0.9375 ProbMinHash distance, 268 

the amino-acid level is abandoned, and the universal gene graph is used instead (uAAI 269 

based on universal gene below 80% indicates new order or higher taxonomic rank; Figure 270 

4). The overall running time to classify 1000 prokaryotic genomes of varied levels of 271 
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taxonomic novelty on different computing platforms is showed in Table 1. On a 24-thread 272 

Linux node with Intel Xeon Gold 6226 CPU, it took a total of 5.85 minutes while it took 273 

19.49 minutes on an intel Core i7 laptop (2017 release) CPU personal laptop (6.02 274 

minutes on the most recent ARM64 CPU laptop). Classifying 1000 genomes using GTDB-275 

Tk took 5.91 h on the same Linux node with 24 threads (Figure 3 (d), memory requirement 276 

was ~328G) while MASH took 53.7 min for 1000 genomes using 24 threads for the 3 277 

steps. 278 

 279 

In terms of accuracy, all query genomes that had a best match higher than 78% ANI 280 

against the GTDB database genomes (i.e., a match at the same or closely related 281 

species, 699 out of the total 1000) were identically classified by GSearch, GTDB-Tk and 282 

FastANI (Supplementary File 1, only 100/699 are shown for simplicity). For the remaining 283 

301 genomes that did not have same or closely related species-level matches, for 266 of 284 

them (or 87.1%), GSearch also provided the same classification with GTDB-Tk but 285 

several inconsistencies were observed for 39/301 genomes (Supplementary Figure S5). 286 

Specifically, we noticed that for GTDB-Tk, which relies on RED values and tree topology, 287 

several genomes (n=14) were still classified at the genus level even though the AAI value 288 

against the best database genome in these case was below 60% (typically, genomes 289 

assigned to the same genus show >65% AAI 21), and some genomes (n=16) were still 290 

classified at the family level but not at the genus level even though their best AAI value 291 

was above 65%. Similarly, several genomes (n=9) were classified at the order level but 292 

not family level even though their best AAI value was above 52%. Therefore, high 293 

consistency was overall observed between GSearch and GTDB-Tk assignments, and the 294 
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few differences noted were probably associated with contaminated (low quality) MAGs or 295 

taxonomic inconsistencies, which was challenging to assess further, and/or the 296 

peculiarities of each method. Since ProbMinHash distance correlated well with blastp-297 

based AAI in the range of AAI values between 52% and 95%, the classification results 298 

were always consistent with AAI-based classification using previously proposed 299 

thresholds. For example, best matches at AAI 65% ≥ AAI were classified in the same 300 

genus by GSearch and blast-based AAI and best matches of 52% < AAI < 65% were 301 

typically classified in the same family 35 . 302 

 303 

Database split for large genomic species database 304 

For large databases (for example, >1 million bacterial genomes), the graph building and 305 

requesting step could require a large amount of memory (due to the larger kmer space) 306 

that is typically not available in a single computer node. We therefore provide a database 307 

split solution for such large databases. The average database building time on each node 308 

(for each piece of the database after the splitting step) scales linearly with increasing 309 

nodes/processors (Supplementary Figure S7(a)) and requires much less memory (1/n 310 

total memory compared to when building in one node where n is the number database 311 

pieces after splitting; for GTDB v207 nucleotide graph building and n=5, it will be only 312 

28.3 G/5=5.66 G). The searching time scales sub-linearly with increasing number of 313 

nodes (Supplementary Figure S7(b)), but offers the advantage of a reduced memory 314 

footprint with respect to the single-node search. The top 10 best neighbor by splitting the 315 

database were exactly the same as the non-splitting strategy (Supplementary file 2). Note 316 

that without multi-node support (e.g., run database build sequentially), database build 317 
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time is nearly the same with non-split strategy, but memory requirement is only 1/n (GTDB 318 

v207, 28.3G/5=5.66G at nucleotide level and 37.7G/5=7.54G at amino acid level), despite 319 

the fact that total request time will be larger (time*n in Supplementary Figure S7(b)). 320 

However, since the request step is very fast with only 1/n memory requirement (e.g., 321 

loaded graph database files for GTDB v207 will be about only 3G/5=0.6G), even for a 322 

decent number of pieces, overall runtime is still short with the database split approach. 323 

The database split strategy is especially useful when memory requirement is not satisfied 324 

on host machine for larger genomic species database (e.g., millions of genomes). 325 

 326 

Discussion 327 

A popular way to assess genetic relatedness among genomes is ANI, which 328 

corresponds well to both 16S/18S rRNA gene identity and DNA-DNA hybridization values, 329 

the golden standards of fungal and prokaryotic taxonomies 13. However, the number of 330 

available microbial genomes has recently grown at an unprecedented speed. For 331 

example, there are 30% more (new) species in GTDB v202 (2020) vs. v207 (2022), and 332 

the number of bacterial species represented by genomes alone is expected to surpass 1 333 

million soon. Therefore, the traditional way that blast-based ANI or faster kmer-based 334 

implementations (e.g., FastANI or MASH) are applied as an all vs. all search strategy 335 

(brute-force) does not scale because the running time grows linearly with increasing 336 

number of query genomes and/or genomes in the database. Phylogenetic approaches 337 

based on quick (approximate) maximum likelihood algorithms and a handful of universal 338 

genes as implemented -for example- in GTDB-Tk could be faster than brute-force 339 

approaches but are often not precise and require a large amount of memory for the 340 
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querying step 20, 36 while the database building step could take several weeks of run time 341 

because the underlying multiple sequence alignment of the database genomes is 342 

computationally intensive. Further, approaches that reply on k-medoid clustering to avoid 343 

all vs. all comparisons could be sometimes trapped into local minima because of arbitrary 344 

partitioning of database genomes into clusters, a known limitation of these methods 21. 345 

Our GSearch software effectively circumvents these limitations by combining a new kmer 346 

hashing-based algorithm for fast computation of genetic relatedness among genomes 347 

(ProbMinHash) with a graph based nearest neighbor search algorithm (HNSW). 348 

Accordingly, GSearch is at least an order of magnitude faster than alternative approaches 349 

for the same purposes. Note that GSearch could also be applied to whole metagenome 350 

search and identification of the most similar metagenomes in a series because 351 

ProbMinHash can estimate metagenomic distance in a similar way to genomes. 352 

To the best of our knowledge, no current tool can efficiently search very large 353 

genome databases. GSearch is able to handle a million microbial genomes on a small-354 

to-average computer cluster since the dumped database file size is proportional to the 355 

total number of genomes in database for fixed sketch size and graph parameters. 356 

Specifically, with one million genomes, the dumped file size (amino acid) will be 357 

5.9G*20=118 GB (now we have only ~60K, for which database file size is 5.9G), a modest 358 

computational requirement for current computer clusters or even personal laptop 359 

computer. Further, due to the nature of graph based NNS algorithms, there is no need to 360 

build the entire database at once, but the database can be split it into smaller pieces and 361 

thus, a separate graph database be built for each piece as exemplified above and 362 

depending on the computational resources available. For a modern laptop with 16 GB 363 
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memory, a database on one million species can be split into 10 pieces, so the dumped 364 

file for each piece will be only 11.8 GB, which can be loaded into memory, and then collect 365 

the results from each piece within an approximate total running time of 30 minutes 366 

(assuming each part will be 3 minutes for 1000 query genomes against 0.1 million 367 

database genomes). With this logic, a computing node with 24 threads and 256 GB of 368 

memory available can easily deal with 20 million bacterial database genomes. This 369 

represents a substantial improvement compared to existing tools for the same purposes.  370 

It is also important to note that we could seamlessly replace ProbMinHash with 371 

another relatedness algorithm should such an algorithm become available and has 372 

advantages in terms of speed and/or precision. Related to this, ANI as currently 373 

implemented -for instance- in FastANI is not appropriate for this function because it is not 374 

metric (that is, for the FastANI distances calculated among three genomes A, B, and C, 375 

(A,B) + (B, C) is not necessary larger than (A,C), especially for genomes related at the 376 

phylum level). To solve this “metric” problem, a norm adjusted proximity graph (NAPG) 377 

was proposed based on inner product and it shows improvements in terms of both speed 378 

and recall 37. This could be another direction for further improving the speed and recall of 379 

GSearch and/or the use of other metrics in place of ProbMinHash distances. In the 380 

meanwhile, ProbMinHash was used in GSearch because it is metric 33, 38, which ensures 381 

neighbor diversity when building the graph, but it is equally applicable to any microbial 382 

genome, including viral and fungal genomes, in addition to its advantages for kmer 383 

weighting and  normalization mentioned above.  384 

Another distinguishing aspect of GSearch (tohnsw module) is the speed and 385 

flexibility in building reference databases. Users could build reference databases (graphs) 386 
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for any number and type (e.g., prokaryotic vs. viral) of genomes, up to several millions of 387 

genomes.  The high efficiency in building graphs allows users to also test and optimize 388 

the key parameters of the graph, the M and ef_construct parameters. For any given 389 

database size, M and ef_construct determine the quality of the graph and graph build 390 

speed. Small M and ef_construct may lead to frequent traps in local minima and thus, low 391 

recall while large M and ef_construct may lead to slow speed without proportional 392 

improvement in recall (Supplemental Table S2). Therefore, there is a tradeoff between 393 

accuracy and speed that should be evaluated first. However, for most users this task 394 

would not be necessary because they will work with pre-built databases such as those 395 

provided here. Further, the search step against these pre-build databases with query 396 

genomes of known taxonomy for evaluating recall and tradeoffs can be performed, within 397 

minutes, on any modern laptop with 5-6 GB of memory (Table 1).  398 

Kmer-based methods for genetic relatedness estimation such as ProbMinHash 399 

have lower accuracy between moderately-to-distantly related genomes compare to 400 

alignment-based tools (see supplement Note 4 for further discussion). Our empirical 401 

evaluation showed that this relatedness level, for nucleotide searches, is around 78% ANI 402 

and 52% AAI for the amino-acid searches (e.g., ProbMinHash distances do not correlate 403 

well with blast-based ANI and AAI at these levels). To circumvent this limitation, we 404 

designed a 3-step framework as part of GSearch to classify bacterial genomes that show 405 

different levels of novelty compared to the database genomes, with high accuracy. This 406 

framework included a search at the universal gene level for deep-branching genomes 407 

that are novel at the phylum level (AAI < 52%), for which searching at the entire proteome 408 

level is less accurate. Recently, methods that employ kmers that allow mismatches, that 409 
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is, spaced kmers 39, have shown promise in accurately estimating genomic relatedness 410 

even among distantly related genomes with gains in speed. To apply spaced kmers to 411 

entire genomes, the recently developed “tensor sketch” approaches could be explored in 412 

the future to simplify the pipeline for bacterial and viral genomes 40. In the meanwhile, the 413 

ProbminHash approach, essentially a Jaccard distance estimation via MinHash-based analysis 414 

of kmers, is highly efficiently, and, importantly, can effectively deal with incomplete 415 

genomes or genomes of (drastically) different length, an known limitation of MASH-based 416 

methods 41. Comparing genomes of different length is not uncommon, e.g., bacterial 417 

genome size can differ by more than two-fold, as can be the case between MAGs of 418 

different level of completeness or when searching a short sequence (e.g., a 419 

bacteriophage genome) against a large genome collection (e.g., the whole viral genome 420 

database). Our own analysis showed that ProbMinHash is robust down to 50% 421 

completeness level (Supplemental Table S6), which is also the most commonly used 422 

standard for selecting MAGs of sufficient/high quality 42. ProbMinHash is also robust with 423 

completed genomes with repeats or gene duplications due to the kmer weighting step. 424 

In general, the genome relatedness estimated, or best database matching 425 

genomes identified, by GSearch were highly consistent with blast-based AAI results or 426 

phylogenetic placement of the genome using GTDB-Tk, particularly for query genomes 427 

with close relatives in the database related at the species or genus level (Supplementary 428 

File 1, Supplementary Figure S5). For more distantly related query genomes relative to 429 

database genomes, classification results of GSearch showed some differences with 430 

GTDB-Tk. These differences were not always possible to assess further for the most 431 

correct genome placement but could be due, at least partly, to the incompleteness and/or 432 
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contamination of query or/and database genomes, which renders the resulting 433 

concatenated alignment of universal genes used by GTDB-Tk unreliable 43 as only a few 434 

amino-acid positions per gene are used in the final alignment. In contrast, the AAI and 435 

ProbMinHash approaches should be more robust to changes of a small number of genes 436 

because the entire proteome is considered 17.  437 

 Graph-based NNS methods achieve good performance compared to tree based 438 

and locality-sensitive hashing (LSH) methods. Building a HNSW graph relies on proximity 439 

of the database elements; so, if the distances among database elements, in our case 440 

genomes, cannot be effectively estimated via hashing algorithms, the navigation in graph 441 

will be less efficient (e.g., gets trapped in local minima) because the edges to choose 442 

from will not be accurate estimations of the relatedness of the corresponding genomes. 443 

This is especially problematic for highly sparse/distantly related and diverse datasets, like 444 

the viral genome database, in which two phage genomes could often share very little 445 

genomic information (kmers). This is confirmed by our own results when using nucleotide-446 

level search to build the viral graph. Hence, the amino acid level will be much more robust 447 

for viral genomes and is the recommended level to use. Finally, the HNSW graph, and 448 

graph-based K-NNS in general, can be further improved by adding shortcut edges and 449 

maintaining a dynamic list of candidates, compared to a fixed list of candidates by default 450 

44. Graph reordering, a cache optimization that works by placing neighboring nodes in 451 

consecutive (or near-consecutive) memory locations, can also be applied to improve the 452 

speed of HNSW 45. Another new direction for graph based NNS will be using Graphics 453 

Processing Unit (GPU) instead of CPU because GPUs are more efficient in handling 454 
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matrix computations and machine learning tasks 46. We will explore these options in future 455 

versions of GSearch. 456 

 457 

To summarize, GSearch, based on Probminhash and HNSW, solves a major 458 

current challenge in classification of microbial genomes, especially given the exponential 459 

increase in the number of newly sequenced genomes due to its efficiency and scalability. 460 

GSearch will serve the entire microbial sciences for years to come since it can be applied 461 

to fungal, bacterial and viral genomes, while offering a common framework to identify, 462 

classify and study all microbial genomes, and will accelerate the process to find new 463 

biological knowledge. 464 

 465 

Data availability 466 
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 613 

Methods and Materials 614 

Briefly, GSearch is composed of the following steps. Initially, the genetic relatedness 615 

among a collection of database genomes is determined based on the ProbMinHash 616 

algorithm, which computes the normalized weighted Jaccard distance using the 617 

probminhash3a algorithm implemented in the ProbMinHash paper1. The normalized 618 

weighted Jaccard distances are then used as input for building HNSW graphs (note that 619 

a distance computation is required only when that genome pair is required for graph 620 

building, thus GSearch avoids all vs. all distance computations). Genomes are 621 

subsequently recursively added as the nearest neighbors of each node in the built graph 622 

file with the same distance computation procedure. The built graph database file is stored 623 

on disk. Query genomes are then searched against graph database and subsequently, 624 

best neighbors are returned for classification/identification. In this process, the best 625 

neighbor (or neighbors) is also identified based on the smallest normalized weighted 626 

Jaccard distance obtained. 627 

 628 

ProbMinHash 629 

Details of differences between ProbMinHash and traditional MinHash can be found in 630 

Supplenmentary Methods & Materials. We reimplemented the Probminhash algorithm in 631 

Rust to estimate genetic relatedness between any two genomes based on normalized 632 
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(weighted) Jaccard distances according to the original ProbMinHash paper 1 633 

(Supplementary Note 1) . The Rust reimplementation of Probminhash can be found at: 634 

https://github.com/jean-pierreBoth/probminhash. Two important parameters of 635 

Probminhash are the sketch size and kmer size. Similar to MinHash sketches, 636 

Probminhash sketches are also shared hashes from hashed kmer set by taking into 637 

account the kmer weights and also total kmer count (See Figure 1 of MASH paper). Time 638 

complexity analysis for ProbMinHash is shown in Supplementary Note 3. 639 

To benchmark probminhash against MASH, both tools were run with the same 640 

sketch size (s=12000) and kmer size (k=16) for bacterial genomes at the nucleotide level 641 

and kmer size (k=7) at the amino acid level for both database building and searching. For 642 

fungal genomes a larger sketch size (48000) was used due to much larger genome sizes. 643 

Details of kmer choosing logic can be found in Supplementary Note 2. For graph search 644 

results, we also performed the same transformation of MASH distance from normalized 645 

weighted Jaccard distance to probMASH distance for convenient comparison to ANI 646 

based methods. 647 

 648 

Hierarchical Navigable Small World Graphs (HNSW) 649 

Generally, the framework of graph-based ANN search algorithm (here HNSW) can be 650 

summarized as the following two steps: 1) build a proximity graph (HNSW) where each 651 

node represents a database vector. Each database vector will connect with a few of its 652 

neighbors while maintaining small world property in each layer of HNSW. 2) Given a query 653 
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vector (or sequence, kmer profile in our case), perform a greedy search on the proximity 654 

graph by comparing the query vector with database vectors under the searching 655 

measures (e.g., cosine similarity or L2 similarity, in our case probminhash distance). 656 

Then, the most similar candidates are returned as outputs. The key point for these two-657 

step methods is step 1, to construct a high-quality index graph, which provides a proper 658 

balance between the searching efficiency and effectiveness. To guarantee the searching 659 

efficiency, the degree (number of maximum allowed neighbors, denoted as M) of each 660 

node is usually restricted to a small number (normally 20~200) while width of search for 661 

neighbor during inserting (denoted as ef_construct) is usually a larger number (higher 662 

than 1000) to increase the chance to find best M neighbors by increasing the diversity of 663 

neighbors due to the large number of neighbors retained. Building graph and searching 664 

query against the graph follow very similar greedy search procedures except that there is 665 

an extra reverse updating of neighbors list for each vector when inserting database vector 666 

(building), one by one, into the existing graph (Figure 1a). The first phase of the 667 

insertion/building process starts from the top layer by greedily traversing the graph in 668 

order to find maximum M closest neighbors to the inserted element P in the layer by doing 669 

ef_construct times search (Figure 1a). After that, the algorithm continues the search from 670 

the next layer using the closest neighbor found from the previous layer as entry point, and 671 

the process repeats until to the bottom layer. Closest neighbors at each layer are found 672 

by a greedy and heuristic search algorithm (Figure 1b and c). For building, after searches 673 

are finished at the bottom layer for each inserted element, a reverse update step will be 674 

performed to update the neighbor list of each node in the existing graph while for 675 

searching this is not needed. The overall database building time complexity is 676 
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O(N*log(N)), where N is the number of nodes in the graph. For searching, since there is 677 

no need to reverse update best neighbor list for each node in the graph, time complexity 678 

is (only) O(log(N)) (See Supplementary Note 3). Theoretical guarantee of graph-based 679 

algorithm can be found in Supplementary Note 5. We reimplemented the original hnswlib 680 

library written in C++ using the Rust programming language for its memory safety and 681 

thread use efficiency 11, which can be found here (https://github.com/jean-682 

pierreBoth/hnswlib-rs). Benchmarks for this package against standard datasets can be 683 

found in the Supplementary Methods & Materials. 684 

 685 

Details of program implementation in Rust 686 

There are 2 modules in total: tohnsw and request. Tohnsw is to build graph by gradually 687 

inserting genomes into graph while request is to query new genomes against the graph 688 

database built in the tohnsw step. Tohnsw starts from reading database genomes and 689 

generating kmer profile and sketches for distance calculation. By selecting a random 690 

genome as the first genome to insert to the graph, tohnsw module gradually add genomes 691 

to existing graph file following HNSW constructing rules mentioned above by computing 692 

ProbMinHash distance between genomes. Whenever a genome is going to be inserted 693 

into the existing graph, each genome in the graph is associated with a list that stores the 694 

M closest neighbors/genomes to the genome and the distance to these neighbors. Then, 695 

the distances of this genome with the nearest neighbors (M) of entry genome in this layer 696 

will be computed/searched (ef_construct times) using probminhash3a algorithm and the 697 

smallest distance of the neighbor genomes will be the new entry genome. This process 698 

will be repeated until the nearest genomes (<= M) in the layer are found and 699 
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subsequently, the program will go to the layer below, using the genome that was 700 

represented by the nearest genome in the above layer as new entry genome in the new 701 

layer. The search layer algorithm is repeated until to the bottom layer is 702 

reached/analyzed. In contrast to the default settings in the original hnswlib, we allow the 703 

two parameters of neighbor selecting heuristics, extendCandidates to be true and 704 

keepPrunedConnections to be false because our genomic data is extremely clustered 705 

and there is no need to fix the number of connections per element considering the 706 

maximum connection allowed. Request module will load the graph database and then 707 

search query genomes against it to return the best neighbors of each query, following 708 

exact the same procedure with building step without updating the database. Both tohnsw 709 

and request module are operating in parallel for high performance (see Supplementary 710 

Note 6). The GSearch software can be found here: https://github.com/jean-711 

pierreBoth/gsearch  GSearch relies on Kmerutils (https://github.com/jean-712 

pierreBoth/kmerutils), which is a Rust package we developed to manipulate genomic 713 

fasta files including kmer string compression, kmer counting, filtering using cuckoo filter 714 

et.al.  715 

Installation guide, manual and pre-built binaries can also be found on the website. We 716 

provide static binaries on the release page for major platforms such as Linux and MacOS, 717 

with support for different CPU structures, e.g. Intel x86_64 or ARM64. GSearch program 718 

can be run like this : 1) Build a graph database, which can be done running the following 719 

command: tohnsw -d ./GTDB_r207 -k 16 -s 12000 -n 128 --ef 1600; 2) Request neighbors 720 

of query genomes: request -b . -r ../query_folder -n 50 (--aa). Note that with the --add 721 

option in tohnsw module, genomes in the directory will be added to existing graph 722 
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database, loaded from current directory, thus avoiding building graph database from the 723 

very beginning when there are only a small number of new genomes species compared 724 

to the current database. However, for larger number of new genome species, rebuild from 725 

start is suggested to be able to choose an optimal M and ef_construct to maintain high 726 

accuracy.  727 

 728 

Prokaryotic classification pipeline 729 

      The amino-acid level graph showed that closest neighbors were found, with high 730 

recall, when the query shared at least 52% AAI to its best neighbor. For more divergent 731 

genomes, showing lower than 52% AAI, whole-genome amino-acid level graph loses 732 

accuracy and we had to switch to universal, single-copy protein-coding genes. For the 733 

nucleotide-level graph, we used kmer=16 for bacteria and archaea to have high specificity 734 

for closely related database genomes (e.g., sharing about 95% ANI). For building the 735 

whole-genome amino-acid graph, we used k=7 to have the best specificity without 736 

compromising sensitivity, which is also consistent with previous results on classification 737 

of amino acid sequences based on kmers 2. For building graph based on universal gene 738 

set, we use k=5 because of much smaller total amino acid size. For further details on the 739 

range of kmer to use for bacteria genome and proteome, viral genome and proteome, 740 

see Supplemental Notes 2.  741 

The proteome of each genome was predicted by FragGeneScanRs v0.0.1 for 742 

performance purpose as opposed to Prodigal despite small loss in precision 743 

(Supplementary Table S5) 3. Hmmsearch in the hmmer (v3.3.2) software 16 was used to 744 

extract the universal gene set for bacteria and archaea genomes (universal gene graph). 745 
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Note that for viral genomes, this last step was not used because there are no universal 746 

single copy genes for viral genomes. Evaluation of the speed and memory requirements 747 

for all steps mentioned above were performed on a RHEL (Red Hat Enterprise Linux) 748 

v7.9 with 2.70 GHz Intel(R) Xeon(R) Gold 6226 CPU. Unless noted otherwise, all 24 749 

threads of the node are available by default. 750 

 751 

Distributed implementation and database splitting 752 

To accommodate the increasing number of genomes that become available at an 753 

unprecedented speed in recent years and will soon reach 1 million or more, we provide 754 

an option to randomly split the database into a given number of pieces and build graph 755 

database separately for each piece. In the end, all best neighbors returned from each 756 

piece will be pooled and sorted by distance to have a new best K neighbor collection 757 

returned to the user for each query genome. We hereby prove that in terms of requesting 758 

top K best neighbors, the database split strategy is equivalent to non-split database 759 

strategy as long as the requested best neighbors for each database piece is larger than 760 

or equals to requested best neighbors in the non-split strategy. The underlying reason is 761 

that the best neighbors globally are also the best locally 4. The database split and request 762 

will be done sequentially, on one node, without multi-node support. For now, we split 763 

GTDB database in to 5 pieces for testing purposes. In theory, a large database can be 764 

split into any pieces as long as each piece can be used to build HNSW. In practice, a 765 

reasonable way to decide on the number of database pieces to use is so that memory 766 

requirement for each piece is equal or smaller than the total memory of host machine. 767 
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The database split idea has been used in several graph-based larger scale (e.g., billions) 768 

nearest neighbor search tasks in industry 4, 5.  769 

 770 

Species database and testing genomes for benchmarking and recall 771 

GTDB version 207 was used to build the database for bacteria and archaea genome 772 

species 6. The IMGVR database version 3, with species representatives at a ≥95% ANI, 773 

was used for for viral database building 7. For fungal genomes, all genomes downloaded 774 

from the MycoCosm project (on 24th Jan., 2022) were used 8. The amino acid sequences 775 

of predicted gene on the genomes were obtained using FragGeneScanRs. The Universal 776 

Single Copy Gene (USCG) gene set for GTDB genomes were extracted via hmmer 777 

software. 778 

To test the performance of our pipeline, we specifically chose genomes that are 779 

not included in the GTDB database (the database was used for graph building). In 780 

particular, the bacterial/archaeal genomes, mostly MAGs, reported by Ye and colleagues 781 

9 and Tara Ocean MAGs (total 8,466 MAGs) 10 were used. We randomly selected 1000 782 

genomes/MAGs from Ye’s collection and use them as query genomes to test the 783 

performance and accuracy of GSearch. To compare with other database search tools for 784 

large database e.g., the viral database, we compare GSearch with PhageCloud 11, which 785 

builds a graph database based on the labels of each viral genome (e.g., environment 786 

source) and its search algorithm is Dashing212. 787 

 788 

Recall of AAI-, ANI- and MinHash-based nearest neighbor searching for 789 

bacteria/archaea, fungi and viral genomes. 790 
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To benchmark how GSearch performs compared to ANI/AAI- and MinHash-based tools, 791 

we ran FastANI, Diamond blastp-based AAI and Mash to find the best neighbors for the 792 

same query genome dataset and evaluated whether or not the best neighbors found by 793 

GSearch were the same. FastANI parameters for the bacterial dataset were the following: 794 

fastANI --ql query_path.txt --rl gtdb_path.txt -k 16 -p 24 --minFrac 3000 -o ANI.txt. GTDB 795 

database was split into 50 subsets and each subset was parallelly run on a multi-node 796 

supercomputer to reduce memory requirement. MASH parameters were: mash sketch -a 797 

(for AA only) -k 21 (7 for AA) -s 12000 -p 24 GTDB/*.fna > gtdb.msh; mash dist -p 24 798 

gtdb.msh query.msh. For AAI calculation, the corresponding script of the enveomics 799 

package 13 was used: aai.rb -1 query.faa -2 db.faa -p diamond -t 24. Hmmer was used to 800 

search for universal single copy gene against pre-built hmm profiles (120 for archaea and 801 

122 for bacteria respectively); the profiles were obtained from the GTDB-Tk software. For 802 

viral genomes, FastANI fragment size of 1000 was used instead of 3000 while aai.rb 803 

fragment size was 500 instead of 1000 with minimal number of matches of 5. For viral 804 

genomes, MASH kmer size of 11 and 7 was used for nucleotide and amino acid levels, 805 

respectively. For fungal genomes, we use MUMMER v4.0.0 with default parameters for 806 

ANI calculation 14. Gene prediction for fungal genomes was performed using GeneMark-807 

ES v2 (--fungus --ES) 15. Kmer size 21 and 11 was used for fungal genomes in MASH for 808 

nucleotides and amino acid levels, respectively. Detailed description of kmer size for each 809 

type of genome can be found in Supplemental Note 2. 810 

We calculated recall for our tool compared to standard ANI/AAI and MASH in the 811 

following way: since biological species database are generally sparse because we are far 812 

away from sequencing all species in the environment and likely the existence of natural 813 
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gaps in diversity, a larger top K by HNSW (e.g., 100) compared to the value used in 814 

standard benchmark dataset will offer little, if any advantage, especially when the query 815 

genomes are relatively new, e.g. a new family compare to database genomes. Therefore, 816 

we use top 5 and 10. Top 5 and top 10 recall are calculated based on top 5 and 10 817 

neighbors found by GSearch and the alterantive tools, and if all top 5 or 10 found by the 818 

latter tools were also in top 5 or 10 of our tool, then recall was 100%. Similarly, if only 4 819 

or 9 are found by our tools, then recall was 80% and 90% respectively. However, if the 820 

distance of query to some of the top 10 or top 5 neighbors found by GSearch at the 821 

nucleotide level was larger than 0.9850 for bacterial genomes, these matches will be 822 

filtered out and only those neighbors below 0.9850 will be used  (e.g. 8 out of 10 are kept, 823 

so only top 8 is compared) because we have shown that above this threshold, MinHash-824 

based methods will lose accuracy and this is not specific to HNSW. Similar rules were 825 

applied for the amino acid level searches with the threshold value of 0.9720 used for 826 

filtering out bacterial genomes.  827 
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 Figures 874 

Figure 1. Schematic overview of GSearch building graph and searching graph 875 

steps. (a) Graph was clasped into hierarchical layers following exponential decay 876 

probability. In this graph, ef and M, represent the number of searches when finding 877 

nearest neighbors and maximum allowed number of neighbors for each node, 878 

respectively (See Materials and Methods for details). In each layer, starting from an 879 

entry node (random or inherit from layer above it, depending on whether it is the top 880 

layer or not), GSearch finds the closest connected neighbor of the entry node and 881 

assigns it as the new entry point P (b), and then traverses in a greedy manner (i.e., 882 

update the entry point using the newly found closest connected neighbor (c)) until the 883 

nearest neighbor in the layer is found, and then goes to next layer. This process is 884 

repeated until the required number of nearest neighbors are all found for the given new 885 

querying/inserting point. For building graph, after the required number of nearest 886 

neighbors are found, a reverse update step is performed to update neighbor list of all 887 

nodes in the graph. 888 

 889 
 890 
 891 
 892 
 893 
 894 
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 923 
Figure 2. Scalability of database building process with the number of threads used. 924 

Panels show total wall time (y=axes) for building GTDB genome (nucleotide level) (a), whole-925 

genome proteome (amino acid level) (b) and universal gene set proteome (c) databases. All 926 

tests were run on a 24-thread Intel (R) Xeon (R) Gold 6226 processor, with 40GB memory 927 

available.  928 
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 942 
 943 
Figure 3. Total request time (wall time) for searching query genomes against the pre-built 944 
reference databases. Shown are all GTDB genomes (v207) at the whole-genome nucleotide 945 
(a), whole-genome proteome (b) and universal gene set proteome (c) levels. 100, 300 and 1000 946 
query genomes (figure key) were used on a 24-thread Intel (R) Xeon (R) Gold 6226 processor. 947 
On average, database loading time ranged from 5-10 seconds. (d) is time needed to classify the 948 
same genomes using GTDB-Tk on the same 24-thread node. 949 
 950 
 951 
 952 
 953 
 954 
 955 
 956 
 957 
 958 
 959 
 960 
 961 
 962 
 963 
 964 
 965 
 966 
Figure 4. Overview of the GSearch pipeline for classifying prokaryotic genomes. Orange 967 
boxes denote steps that aim to prepare genome files, in different formats, for graph building 968 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/


39 

while green boxes denote building steps of the graph database (in nucleotide or amino acid 969 
format). Blue boxes indicate input/query genomes to search against the database while grey 970 
boxes indicate classification output for each input. Gene prediction was done using 971 
FragGeneScanRs and hmmsearch as part of the hmmer software for homology search. Two 972 
key steps of GSearch: tohnsw (aa) and request (aa) are used to build graph database and 973 
request new genomes, respectively. Two thresholds are used in the pipeline to decide between 974 
whole nucleotide vs. whole-genome amino acid search and whole-genome amino acid vs. 975 
universal gene amino acid, 78% ANI and 52% AAI, corresponding to Probminhash distance 976 
0.9850 and 0.9375, respectively (see main text for details). 977 
 978 

   979 

 980 

 981 

 982 

 983 

 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 

Tables 992 
 993 
Table 1. Request/search performance on major CPU platforms for GTDB v207 database for 994 
1000 queries. 995 
 996 
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CPU Number 
of 

threads 

Clock 
speed 
(GHz) 

Request 
time for nt 

(min) 

Gene 
Prediction-

FGSrs 
(min)c 

Request 
time for 

proteome 
(min) 

hmmsear
ch time 
(min)d 

Request 
time for 
USCG 
(min) 

Intel (R) Xeon 
(R) Gold 
6226a 

24 2.70 2.329 1.348 1.334 0.524 0.117 

Intel (R) Core 
i7-7770HQb 

8 2.80 8.654 6.764 2.041 1.534 0.510 

AMD EPYC 
7513aa 

32(24 
used) 

2.60 1.937 1.120 1.021 0.345 0.102 

Apple M1 Prob 10 3.22 2.369 2.12 0.866 0.498 0.168 

 997 
 998 
a RHEL v7.9, Linux v3.10.0-1160, all threads used. 999 
bMacOS v12.3, Darwin 21.4.0, all threads used. 1000 
cParallel package was used to run multiprocess at the same time. FGSrs stands for FragGeneScanRs. Note that in practice only 1001 
those genomes failed in the Request for nt step (best found is less than 78% ANI) will be used in this step. 1002 
dOnly 100 genomes are used for testing hmmsearch because this step is for very new genomes at order level or above and we 1003 
often do not have that many new genomes in a real-world dataset. Parallel Packages was used to run multiple processes of 1004 
hmmsearch, one thread per process for hmmsearch. 1005 
 1006 

 1007 
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