
1

GSearch: Ultra-Fast and Scalable Microbial Genome Search 1

by Combining Kmer Hashing with Hierarchical Navigable 2

Small World Graphs 3

 4

Jianshu Zhao1,2,7, Jean Pierre Both3,7, Luis M. Rodriguez-R4,5,6, Konstantinos T. 5

Konstantinidis1,2,4,* 6

1Center for Bioinformatics and Computational Biology, Georgia Institute of Technology, 7

Atlanta, Georgia, USA 8

2School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA 9

3 Université Paris-Saclay, CEA, List, Palaiseau, France 10

4School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 11

Georgia, USA 12

5Department of Microbiology, University of Innsbruck, Innsbruck, Austria 13

6Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria 14

7Those authors contribute equally 15

*Corresponding author, Konstantinos T. Konstantinidis 16

(kostas.konstantinidis@gatech.edu) 17

 18

 19

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

mailto:kostas.konstantinidis@gatech.edu
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

2

Abstract 20

Genome search and/or classification is a key step in microbiome studies and has recently 21

become more challenging due to the increasing number of available (reference) genomes 22

and the fact that traditional methods do not scale well with larger databases. By combining 23

a kmer hashing-based genomic distance metric (ProbMinHash) with a graph based 24

nearest neighbor search algorithm (called Hierarchical Navigable Small World Graphs, or 25

HNSW), we developed a new program, GSearch, that is at least ten times faster than 26

alternative tools due to O(log(N)) time complexity while maintaining high accuracy. 27

GSearch can identify/classify 8,000 query genomes against all available microbial and 28

viral species with sequenced genome representatives (n=~65,000) within several minutes 29

on a personal laptop, using only ~6GB of memory. Further, GSearch can scale well with 30

millions of database genomes based on a database splitting strategy. Therefore, GSearch 31

solves a major bottleneck of microbiome studies that require genome search and/or 32

classification. 33

 34

Keywords: genome search, microbial genomes, MAGs, MinHash, nearest neighbor 35

search, classification, hierarchical small world graphs, HNSW 36

 37

 38

 39

 40

Introduction 41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

3

Identifying or classifying microbial species based on either universal marker genes 42

(e.g., 16S or 18S rRNA genes) or entire genomes represents a re-occurring task in 43

environmental and clinical microbiome studies. However, this task is challenging because 44

i) whether or not microbes (bacteria, fungi) and viruses form discrete population clusters 45

(or species), remains an open question 1, 2, and ii) the microbial species in nature are still 46

severely under-sampled by the available genomes. For instance, there are more than 47

1012 prokaryotic and fungal species in nature according to a recent estimation based on 48

16S rRNA gene or ITS (Internal Transcribed Spacer) analysis 3 and even more viral 49

species (e.g. the number of viral cells outnumbers that of prokaryotic cells by a about a 50

factor of ten in most natural habitats) 4. Yet, only ~17,000 bacterial species have been 51

described and even fewer (around 15,000) are represented by complete or draft genome 52

5. Due to the recent improvements in DNA sequencing and single-cell technologies, 53

metagenomic surveys can now recover hundreds, if not thousands, of these yet-to-be-54

described species from environmental or clinical samples 6, 7, filling in the gap in the 55

described diversity mentioned above. This has created a new challenge, however; that 56

is, identifying these new genomes against the exponentially increasing number of 57

available (described) genomes has become computationally intractable. Nonetheless, the 58

recent high-throughput sequencing of isolate genomes as well as metagenomic studies 59

of natural populations have shown that species may exist and be commonly 60

circumscribed based on a 95% genome-aggregate average nucleotide identity (ANI) 61

threshold, at least for prokaryotes and viruses 8, 9. This threshold represents convenient 62

means in searching and identifying new genomes against the already descried species 63

and determining whether or not they represent novel species 10. 64

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

4

 65

The number of curated draft or complete prokaryotic genomes has reached 66

317,542 in the newest release of the GTDB database, and 2,332,702 in the latest IMG/VR 67

database for viruses, representing 65,703 prokaryotic and 935,122 viral distinct species 68

at the 95% ANI level 11, 12. Searching of query genomes against these large databases to 69

find closely-related database/reference genomes for taxonomy classification based on 70

the traditional brute-force methods, meaning, performing all vs. all searches, has become 71

impractical, even for fast searching algorithms and/or small-to-medium computer clusters. 72

For this task, faster search strategies are necessary. In addition to the searching strategy, 73

the actual algorithm used to determine overall genetic relatedness between the query and 74

the databased genomes is critical. While the traditional blast-based ANI among closely 75

related genomes at the species level, and the genome-aggregate average amino acid 76

identity (AAI) for genomes related at the genus level or above, have been proven to be 77

highly accurate for genetic relatedness estimation across microbial and viral genomes 13-78

15, they are too slow to use when dealing with more than a few dozen of genomes. Faster 79

implementations based on k-mer counting have been recently described to alleviate this 80

bottleneck such as FastANI and MASH 16, 17, but these methods still do not scale with an 81

increasing number of database (or query) genomes, especially based on an all vs. all 82

search strategy. Further, defining genetic distance (or relatedness) based on kmer 83

profiles can be problematic for incomplete genomes, which are commonly recovered from 84

metagenomic surveys, and/or genomes with extensive repeats such as those found in 85

several microbial eukaryotic genomes. Kmer-weighted approaches are advantageous in 86

the latter cases because repeated genomic fragments can be considered when hashing 87

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

5

but they have not been widely adopted yet 18, 19. Recently, a phylogeny-based approach 88

using a handful of universal genes (n ≈ 100) was developed to accelerate genome 89

classification 20. However, phylogenetic replacement based on a concatenated universal 90

gene tree can be memory demanding and slow, especially for a large number of or a few 91

deep-branching (novel) query genomes, and this approach cannot be applied to viral 92

genomes, which lack universal genes. Further, universal genes due to their essentiality, 93

are typically under stronger purifying selection and thus, evolve slower than the genome 94

average. This property makes universal genes appropriate for comparisons among 95

distantly related genomes, e.g., to classify genomes belonging to a new class or a new 96

phylum, but not the species and genus levels 20, 21. 97

One of the most generally used approaches for finding closely related information 98

to a query, while circumventing an all vs. all search, is the K-Nearest Neighbor Search 99

(K-NNS). The K-NNS approach has been used for 16S rRNA gene-based classification 100

followed by a vote strategy 22, 23 and, more recently, for whole genome and metagenome 101

comparisons based on shared kmers 16. Approximate nearest neighbor search (ANN) 102

algorithms, such as locality-sensitive hashing (LSH) 24, 25 , k-dimension tree 26, random 103

projection trees 27, k-graph 28 and proximity graph 29, 30 have been recently used to 104

accelerate search processes. Proximity graph, as implemented for example in the 105

hierarchical navigable small world graph (HNSW) 31, has been shown to be one of the 106

fastest ANN search algorithms 32. HNSW incrementally builds a multi-layer structure 107

consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the 108

stored elements. Then, through smart neighbor selection heuristics, inserting and 109

searching the query elements in the proximity graphs can be very fast while preserving 110

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

6

high accuracy, even for highly clustered data 29, 31. Therefore, finding the closest genomes 111

in a database can be substantially accelerated by using HNSW. 112

Here, we describe GSearch (for Genome Search), a tool that combines one of the 113

most efficient nearest neighbor search approaches (HNSW) with a universal approach to 114

measure genetic relatedness among any microbial genome, including viral genomes, 115

ProbMinHash 33, implemented in the Rust language for higher speed. ProbMinHash is 116

based on shared kmers, weighted by their abundance and normalized by total kmer 117

count, which can account for genome incompleteness of prokaryotic genomes and 118

repeats commonly found in eukaryotic and sometimes in prokaryotic genomes. 119

Essentially, ProbMinHash computes the normalized weighted Jaccard distance between 120

each pair of genomes and subsequently, the weighted Jaccard distance normalized by 121

total kmer count is used as input to build HNSW to create the graph of the database 122

genomes. Accordingly, the search of the query genome(s) against the graph to find the 123

nearest neighbors for classification purposes becomes an ultra-fast step using GSearch 124

and can be universally applied to all microbial genomes. The novelty of GSearch also 125

includes a hierarchical pipeline that involves both nucleotide-level (when query genomes 126

have close relatives at the species level) and amino-acid-level searching (when query 127

genomes represent novel species), which provides robust classification for query 128

genomes regardless of their degree of novelty relative to the database genomes, as well 129

as a database-splitting strategy that allows GSearch to scale up well to millions of 130

database genome sequences. 131

 132

Results 133

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

7

Probminhash as a robust metric of genome relatedness for prokaryotic genomes 134

Correlations between ProbMASH distance (we called it ProbMASH after transformation 135

from ProbMinHash distance, see Methods & Materials) and ANI (determined by FastANI) 136

or MASH distance showed that ProbMinHash is robust and slightly better than MASH for 137

determining distances among bacterial genomes related at ~78% ANI, or higher, i.e., 138

genomes assigned to the same or closely-related species (Spearman rho=0.9643 and 139

0.9640 of ProbMinHash and MASH values against corresponding ANI values for the 140

same genome comparisons, respectively, P<0.001, Figure S1a and S1b; note that for 141

finding best matches using the ANI approach as the reference, Spearman rank correlation 142

is more relevant than Pearson correlation). For moderately related genomes, for which 143

nucleotide-level ANI is known to lose accuracy, ProbMinHash was still robust compared 144

to MASH for bacterial genomes (using the best matches found by average amino acid 145

distance or AAI as the reference), especially among genomes showing between ~52% 146

and 95% AAI (Spearman rho=0.90, P<0.01, Supplementary Figure S2a and S2b). Below 147

~50% AAI, both ProbMinHash and MASH distance lose accuracy compared to AAI. 148

However, AAI of just universal genes provides a robust measurement of genetic 149

relatedness at this level of distantly related genomes 21, and we show here that 150

ProbMinHash distance for the same set of universal genes is also robust (Spearman 151

rho=0.9390, P<0.001, Supplementary Figure S3). Thus, for query genomes of organisms 152

with only distant relatives in the database (i.e., deep-branching), for which their closest 153

represented genome in the database is related at the order level or higher, restricting the 154

search to the universal genes can provide robust classifications. 155

 156

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

8

Graph building and search against reference prokaryotic genomes is faster than 157

alternative methods 158

To build the database graph for the entire GTDB v207 database (65,703 unique, non-159

redundant, at the species level, prokaryotic genomes) at the nucleotide level, the tohnsw 160

module of GSearch took 2.3 h on a 24-thread computing node and scaled moderately 161

well with increasing number of threads (Figure 2a). Maximum memory (RAM) required 162

for the building step was 28.3 GB. The total size of written database files on disk was ~3.0 163

GB. There are 3 layers for the resulting graph, 65180, 519, and 4 genomes for layer 0,1 164

and 2 respectively. The searching of query genomes against this database graph, 165

requesting best 50 neighbors for 1000 query genomes, which represented different 166

previously known as well as novel species of eight bacterial phyla (see Methods for details 167

on query genome selection), took 2.3 min (database loading 6 seconds) on a 24-thread 168

machine and also scaled well with increasing number of threads (Figure 3a). The memory 169

requirement for the request (search) step was only 3.0 GB for storing the entire database 170

file in memory. To evaluate the accuracy of these results, we compared the best 171

neighbors found by GSearch with brute-force FastANI and GTDB-Tk. All best neighbors 172

found by brute-force FastANI and GTDB-Tk for query genomes with close relatives in the 173

database (e.g., ANI > 78%) were found by GSearch (Supplemental File 1). Top 5 174

neighbors were 99.4% overlapping and top 10 were 96.3% overlapping between GSearch 175

and the other two methods for the testing query genomes. We also compared the speed 176

with MASH for the same kmer and sketch size and the MASH dist step took 7.51 min to 177

compare 1000 genomes with database using 24 threads. The speed difference compared 178

to MASH was even greater for ~8,000 query genomes. Specifically, it took 12.5 min for 179

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

9

GSearch to find the top 50 best hits (Supplementary Figure S4a) while MASH took 80.8 180

minutes on the same 24-thread machine. However, for a given number of database 181

genomes, the speedup of GSearch is saturated to log(N) as the number of query genome 182

increases, where N is the number of database genomes. Therefore, GSearch will be 183

orders of magnitude faster than MASH for larger species database with millions of 184

genomes (see also viral section below). GSearch search time for a given number of query 185

genomes is related to the number of database genomes in a O(log(N)) manner while 186

brute-force methods are O(N), and our empirical analysis is consistent with the theoretical 187

log(N) prediction (Supplementary Figure S4b and Supplementary Note 3). 188

 189

To build the amino-acid-level graph for moderately related query genomes, all GTDB 190

v207 genomes were used for gene calling by FragGeneScanRs and subsequently, the 191

predicted amino acid sequences for each genome were used for the tohnsw module. The 192

graph building step took 1.4 h (Figure 2b) with a maximum memory required for the 193

building step to be 37.7 GB. The total size of written database files on disk by GSearch 194

was 5.9 GB. There were 65158, 543 and 2 genomes for layer 0,1 and 2 respectively. 195

Requesting 50 neighbors for 1000 genomes at the amino-acid level took 1.52 minutes 196

with a memory requirement of ~6.0 GB (database loading 9 seconds; Figure 3b). The top 197

5 neighbors had a 98.9% recall compared to the brute-force MASH or blast-based AAI 198

approaches, with 97.1% overlap for the 10 top neighbors. In comparison, MASH dist took 199

5.96 min using 24 threads; for 8000 query genomes, MASH dist took 47.2 min while 200

GSearch took 5.6 min. 201

 202

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

10

Finally, for most distantly related query genomes, the graph building for the universal 203

gene set follows the same logic as the amino acid level graph mentioned above except 204

for using a smaller kmer size (k=5) due to the smaller kmer space of ~120 universal genes 205

vs. the whole-genome level (e.g., a few thousand genes). It took 7.76 min to build the 206

database (Figure 2c) and 32 seconds to request 50 neighbors for 1000 queries on a 24 207

threads node (Figure 3c) with a recall similarly high to the amino-acid level search (with 208

top 5 and top 10 recall ranging between 98.2% and 96.1%, respectively). 209

 210

We also evaluated the effect of genome completeness on search and classification 211

accuracy given that bacterial genomes recovered from environmental metagenomes are 212

frequently incomplete. GSearch was robust to genome incompleteness down to 50% 213

completeness level, e.g., with 80% of top 10 best matches are found, while accuracy 214

decreased considerably below this level (Supplementary table S6). 215

 216

Graph database building and searching for viral and fungal genomes 217

Graph building and requesting for viral genomes is not effective at the nucleotide level 218

because many viral genera are too diverse and do not have close relatives in the public 219

genomic database; that is, the database is too sparse. Accordingly, kmer-based methods 220

(e.g., MASH and ProbMinHash) will often lead to imperfect graph structure for viral 221

genomes. Therefore, we build only an amino acid level graph for viral genomes, using all 222

genes in the genome due to the lack of universal genes for viral genomes. Database 223

building took 13.895 h on a 24-thread node and graph file on disk is 15.8 GB 224

(Supplementary Figure S6 (a)). Requesting 1000 neighbors scaled well with increasing 225

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

11

number of threads and took about 3.63 min (database load takes additional 1.1 min) using 226

24 threads (Supplementary Figure S6 (b)). The top 10 neighbors for 1000 query phage 227

genomes were still highly overlapping (98.32% recall; Supplemental Table S1) with the 228

brute-force MASH-based approach. For such large database, GSearch is about 20X 229

faster than the brute-force MASH (Supplementary Tables S1). We also compared 230

GSearch with a new database building method called PhageCloud, which relies on 231

manually curated genome labels (e.g., environmental source) for graph database building 232

in Neo4j database software and Dashing software for distance/relatedness computation. 233

Since PhageCloud provides only a website and allows only one genome query at a time, 234

we searched only one viral genome at a time with GSearch and MASH against the same 235

database (Gut Phage Database 34). It took 37 seconds to find the two best matches with 236

PhageCloud while GSearch took 15 seconds (database loading 14 seconds, search 1 237

second) for the same search. MASH on the other hand took 4 minutes to find the same 2 238

best matches. It should be noted, however, that, because the database is already 239

available (loaded) on PhageCloud’s website, 37 seconds is only for search and website 240

responses (average value for 5 runs on 5 different days) whereas GSearch took only 1.5 241

second for the same step. 242

 243

Graph building for fungal genomes is slower compared to prokaryotic genomes, despite 244

the smaller number of available fungal genomes (n=9700) because the average fungal 245

genome size is much larger and kmer and sketch size are accordingly much larger (k=21, 246

s=48000). It took 2.3 h on a 24-thread node to build the nucleotide level graph for these 247

fungal genomes. Searching step was also slower due to the larger kmer space. 248

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

12

Accordingly, it took 3.13 min to identify 50 neighbors for 50 query fungal genomes while 249

MASH tool 4.4 min. Nonetheless, top 5 recall was still very high (~99.4%) against MASH 250

and MUMMER-based ANI for the same datasets. For the amino acid level graph, the time 251

for graph building was only 0.61 h, shorter than the corresponding prokaryotic graph due 252

to the lower coding density of fungal genomes relative to the prokaryotic genomes. 253

Identifying 50 neighbors for 50 query fungal genomes at the amino-acid level took 1.24 254

min (MASH took 2.59 min) with similarly high top 5 and top 10 recall (99.7% and 98.5%, 255

respectively) against brute-force MASH (-a) and blastp-based AAI. Note that the 256

difference in run time will be much larger between MASH and GSearch as the number of 257

fungal database genomes increases in the future, as also exemplified above for the 258

bacterial genomes 259

 260

Combining the three graphs/levels together and comparison with GTDB-Tk for prokaryotic 261

genome classification 262

A three-step pipeline was developed to allow the identification and classification of a 263

query genome, depending on its level of novelty compared to the database genomes 264

(Figure 4). Specifically, when the query genome does not find a match in the database 265

better than ANI > 78%, corresponding to ProbMinHash distance 0.9850, the nucleotide-266

level graph is abandoned, and the amino-acid level is used instead. If no match against 267

the latter graph is found above 52% AAI, corresponding to 0.9375 ProbMinHash distance, 268

the amino-acid level is abandoned, and the universal gene graph is used instead (uAAI 269

based on universal gene below 80% indicates new order or higher taxonomic rank; Figure 270

4). The overall running time to classify 1000 prokaryotic genomes of varied levels of 271

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

13

taxonomic novelty on different computing platforms is showed in Table 1. On a 24-thread 272

Linux node with Intel Xeon Gold 6226 CPU, it took a total of 5.85 minutes while it took 273

19.49 minutes on an intel Core i7 laptop (2017 release) CPU personal laptop (6.02 274

minutes on the most recent ARM64 CPU laptop). Classifying 1000 genomes using GTDB-275

Tk took 5.91 h on the same Linux node with 24 threads (Figure 3 (d), memory requirement 276

was ~328G) while MASH took 53.7 min for 1000 genomes using 24 threads for the 3 277

steps. 278

 279

In terms of accuracy, all query genomes that had a best match higher than 78% ANI 280

against the GTDB database genomes (i.e., a match at the same or closely related 281

species, 699 out of the total 1000) were identically classified by GSearch, GTDB-Tk and 282

FastANI (Supplementary File 1, only 100/699 are shown for simplicity). For the remaining 283

301 genomes that did not have same or closely related species-level matches, for 266 of 284

them (or 87.1%), GSearch also provided the same classification with GTDB-Tk but 285

several inconsistencies were observed for 39/301 genomes (Supplementary Figure S5). 286

Specifically, we noticed that for GTDB-Tk, which relies on RED values and tree topology, 287

several genomes (n=14) were still classified at the genus level even though the AAI value 288

against the best database genome in these case was below 60% (typically, genomes 289

assigned to the same genus show >65% AAI 21), and some genomes (n=16) were still 290

classified at the family level but not at the genus level even though their best AAI value 291

was above 65%. Similarly, several genomes (n=9) were classified at the order level but 292

not family level even though their best AAI value was above 52%. Therefore, high 293

consistency was overall observed between GSearch and GTDB-Tk assignments, and the 294

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

14

few differences noted were probably associated with contaminated (low quality) MAGs or 295

taxonomic inconsistencies, which was challenging to assess further, and/or the 296

peculiarities of each method. Since ProbMinHash distance correlated well with blastp-297

based AAI in the range of AAI values between 52% and 95%, the classification results 298

were always consistent with AAI-based classification using previously proposed 299

thresholds. For example, best matches at AAI 65% ≥ AAI were classified in the same 300

genus by GSearch and blast-based AAI and best matches of 52% < AAI < 65% were 301

typically classified in the same family 35 . 302

 303

Database split for large genomic species database 304

For large databases (for example, >1 million bacterial genomes), the graph building and 305

requesting step could require a large amount of memory (due to the larger kmer space) 306

that is typically not available in a single computer node. We therefore provide a database 307

split solution for such large databases. The average database building time on each node 308

(for each piece of the database after the splitting step) scales linearly with increasing 309

nodes/processors (Supplementary Figure S7(a)) and requires much less memory (1/n 310

total memory compared to when building in one node where n is the number database 311

pieces after splitting; for GTDB v207 nucleotide graph building and n=5, it will be only 312

28.3 G/5=5.66 G). The searching time scales sub-linearly with increasing number of 313

nodes (Supplementary Figure S7(b)), but offers the advantage of a reduced memory 314

footprint with respect to the single-node search. The top 10 best neighbor by splitting the 315

database were exactly the same as the non-splitting strategy (Supplementary file 2). Note 316

that without multi-node support (e.g., run database build sequentially), database build 317

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

15

time is nearly the same with non-split strategy, but memory requirement is only 1/n (GTDB 318

v207, 28.3G/5=5.66G at nucleotide level and 37.7G/5=7.54G at amino acid level), despite 319

the fact that total request time will be larger (time*n in Supplementary Figure S7(b)). 320

However, since the request step is very fast with only 1/n memory requirement (e.g., 321

loaded graph database files for GTDB v207 will be about only 3G/5=0.6G), even for a 322

decent number of pieces, overall runtime is still short with the database split approach. 323

The database split strategy is especially useful when memory requirement is not satisfied 324

on host machine for larger genomic species database (e.g., millions of genomes). 325

 326

Discussion 327

A popular way to assess genetic relatedness among genomes is ANI, which 328

corresponds well to both 16S/18S rRNA gene identity and DNA-DNA hybridization values, 329

the golden standards of fungal and prokaryotic taxonomies 13. However, the number of 330

available microbial genomes has recently grown at an unprecedented speed. For 331

example, there are 30% more (new) species in GTDB v202 (2020) vs. v207 (2022), and 332

the number of bacterial species represented by genomes alone is expected to surpass 1 333

million soon. Therefore, the traditional way that blast-based ANI or faster kmer-based 334

implementations (e.g., FastANI or MASH) are applied as an all vs. all search strategy 335

(brute-force) does not scale because the running time grows linearly with increasing 336

number of query genomes and/or genomes in the database. Phylogenetic approaches 337

based on quick (approximate) maximum likelihood algorithms and a handful of universal 338

genes as implemented -for example- in GTDB-Tk could be faster than brute-force 339

approaches but are often not precise and require a large amount of memory for the 340

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

16

querying step 20, 36 while the database building step could take several weeks of run time 341

because the underlying multiple sequence alignment of the database genomes is 342

computationally intensive. Further, approaches that reply on k-medoid clustering to avoid 343

all vs. all comparisons could be sometimes trapped into local minima because of arbitrary 344

partitioning of database genomes into clusters, a known limitation of these methods 21. 345

Our GSearch software effectively circumvents these limitations by combining a new kmer 346

hashing-based algorithm for fast computation of genetic relatedness among genomes 347

(ProbMinHash) with a graph based nearest neighbor search algorithm (HNSW). 348

Accordingly, GSearch is at least an order of magnitude faster than alternative approaches 349

for the same purposes. Note that GSearch could also be applied to whole metagenome 350

search and identification of the most similar metagenomes in a series because 351

ProbMinHash can estimate metagenomic distance in a similar way to genomes. 352

To the best of our knowledge, no current tool can efficiently search very large 353

genome databases. GSearch is able to handle a million microbial genomes on a small-354

to-average computer cluster since the dumped database file size is proportional to the 355

total number of genomes in database for fixed sketch size and graph parameters. 356

Specifically, with one million genomes, the dumped file size (amino acid) will be 357

5.9G*20=118 GB (now we have only ~60K, for which database file size is 5.9G), a modest 358

computational requirement for current computer clusters or even personal laptop 359

computer. Further, due to the nature of graph based NNS algorithms, there is no need to 360

build the entire database at once, but the database can be split it into smaller pieces and 361

thus, a separate graph database be built for each piece as exemplified above and 362

depending on the computational resources available. For a modern laptop with 16 GB 363

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

17

memory, a database on one million species can be split into 10 pieces, so the dumped 364

file for each piece will be only 11.8 GB, which can be loaded into memory, and then collect 365

the results from each piece within an approximate total running time of 30 minutes 366

(assuming each part will be 3 minutes for 1000 query genomes against 0.1 million 367

database genomes). With this logic, a computing node with 24 threads and 256 GB of 368

memory available can easily deal with 20 million bacterial database genomes. This 369

represents a substantial improvement compared to existing tools for the same purposes. 370

It is also important to note that we could seamlessly replace ProbMinHash with 371

another relatedness algorithm should such an algorithm become available and has 372

advantages in terms of speed and/or precision. Related to this, ANI as currently 373

implemented -for instance- in FastANI is not appropriate for this function because it is not 374

metric (that is, for the FastANI distances calculated among three genomes A, B, and C, 375

(A,B) + (B, C) is not necessary larger than (A,C), especially for genomes related at the 376

phylum level). To solve this “metric” problem, a norm adjusted proximity graph (NAPG) 377

was proposed based on inner product and it shows improvements in terms of both speed 378

and recall 37. This could be another direction for further improving the speed and recall of 379

GSearch and/or the use of other metrics in place of ProbMinHash distances. In the 380

meanwhile, ProbMinHash was used in GSearch because it is metric 33, 38, which ensures 381

neighbor diversity when building the graph, but it is equally applicable to any microbial 382

genome, including viral and fungal genomes, in addition to its advantages for kmer 383

weighting and normalization mentioned above. 384

Another distinguishing aspect of GSearch (tohnsw module) is the speed and 385

flexibility in building reference databases. Users could build reference databases (graphs) 386

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

18

for any number and type (e.g., prokaryotic vs. viral) of genomes, up to several millions of 387

genomes. The high efficiency in building graphs allows users to also test and optimize 388

the key parameters of the graph, the M and ef_construct parameters. For any given 389

database size, M and ef_construct determine the quality of the graph and graph build 390

speed. Small M and ef_construct may lead to frequent traps in local minima and thus, low 391

recall while large M and ef_construct may lead to slow speed without proportional 392

improvement in recall (Supplemental Table S2). Therefore, there is a tradeoff between 393

accuracy and speed that should be evaluated first. However, for most users this task 394

would not be necessary because they will work with pre-built databases such as those 395

provided here. Further, the search step against these pre-build databases with query 396

genomes of known taxonomy for evaluating recall and tradeoffs can be performed, within 397

minutes, on any modern laptop with 5-6 GB of memory (Table 1). 398

Kmer-based methods for genetic relatedness estimation such as ProbMinHash 399

have lower accuracy between moderately-to-distantly related genomes compare to 400

alignment-based tools (see supplement Note 4 for further discussion). Our empirical 401

evaluation showed that this relatedness level, for nucleotide searches, is around 78% ANI 402

and 52% AAI for the amino-acid searches (e.g., ProbMinHash distances do not correlate 403

well with blast-based ANI and AAI at these levels). To circumvent this limitation, we 404

designed a 3-step framework as part of GSearch to classify bacterial genomes that show 405

different levels of novelty compared to the database genomes, with high accuracy. This 406

framework included a search at the universal gene level for deep-branching genomes 407

that are novel at the phylum level (AAI < 52%), for which searching at the entire proteome 408

level is less accurate. Recently, methods that employ kmers that allow mismatches, that 409

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

19

is, spaced kmers 39, have shown promise in accurately estimating genomic relatedness 410

even among distantly related genomes with gains in speed. To apply spaced kmers to 411

entire genomes, the recently developed “tensor sketch” approaches could be explored in 412

the future to simplify the pipeline for bacterial and viral genomes 40. In the meanwhile, the 413

ProbminHash approach, essentially a Jaccard distance estimation via MinHash-based analysis 414

of kmers, is highly efficiently, and, importantly, can effectively deal with incomplete 415

genomes or genomes of (drastically) different length, an known limitation of MASH-based 416

methods 41. Comparing genomes of different length is not uncommon, e.g., bacterial 417

genome size can differ by more than two-fold, as can be the case between MAGs of 418

different level of completeness or when searching a short sequence (e.g., a 419

bacteriophage genome) against a large genome collection (e.g., the whole viral genome 420

database). Our own analysis showed that ProbMinHash is robust down to 50% 421

completeness level (Supplemental Table S6), which is also the most commonly used 422

standard for selecting MAGs of sufficient/high quality 42. ProbMinHash is also robust with 423

completed genomes with repeats or gene duplications due to the kmer weighting step. 424

In general, the genome relatedness estimated, or best database matching 425

genomes identified, by GSearch were highly consistent with blast-based AAI results or 426

phylogenetic placement of the genome using GTDB-Tk, particularly for query genomes 427

with close relatives in the database related at the species or genus level (Supplementary 428

File 1, Supplementary Figure S5). For more distantly related query genomes relative to 429

database genomes, classification results of GSearch showed some differences with 430

GTDB-Tk. These differences were not always possible to assess further for the most 431

correct genome placement but could be due, at least partly, to the incompleteness and/or 432

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

20

contamination of query or/and database genomes, which renders the resulting 433

concatenated alignment of universal genes used by GTDB-Tk unreliable 43 as only a few 434

amino-acid positions per gene are used in the final alignment. In contrast, the AAI and 435

ProbMinHash approaches should be more robust to changes of a small number of genes 436

because the entire proteome is considered 17. 437

 Graph-based NNS methods achieve good performance compared to tree based 438

and locality-sensitive hashing (LSH) methods. Building a HNSW graph relies on proximity 439

of the database elements; so, if the distances among database elements, in our case 440

genomes, cannot be effectively estimated via hashing algorithms, the navigation in graph 441

will be less efficient (e.g., gets trapped in local minima) because the edges to choose 442

from will not be accurate estimations of the relatedness of the corresponding genomes. 443

This is especially problematic for highly sparse/distantly related and diverse datasets, like 444

the viral genome database, in which two phage genomes could often share very little 445

genomic information (kmers). This is confirmed by our own results when using nucleotide-446

level search to build the viral graph. Hence, the amino acid level will be much more robust 447

for viral genomes and is the recommended level to use. Finally, the HNSW graph, and 448

graph-based K-NNS in general, can be further improved by adding shortcut edges and 449

maintaining a dynamic list of candidates, compared to a fixed list of candidates by default 450

44. Graph reordering, a cache optimization that works by placing neighboring nodes in 451

consecutive (or near-consecutive) memory locations, can also be applied to improve the 452

speed of HNSW 45. Another new direction for graph based NNS will be using Graphics 453

Processing Unit (GPU) instead of CPU because GPUs are more efficient in handling 454

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

21

matrix computations and machine learning tasks 46. We will explore these options in future 455

versions of GSearch. 456

 457

To summarize, GSearch, based on Probminhash and HNSW, solves a major 458

current challenge in classification of microbial genomes, especially given the exponential 459

increase in the number of newly sequenced genomes due to its efficiency and scalability. 460

GSearch will serve the entire microbial sciences for years to come since it can be applied 461

to fungal, bacterial and viral genomes, while offering a common framework to identify, 462

classify and study all microbial genomes, and will accelerate the process to find new 463

biological knowledge. 464

 465

Data availability 466

All the mentioned pre-built database for bacteria, fungi and phage genomes can be found 467

at: http://enve-omics.ce.gatech.edu/data/gsearch 468

 469

Author Contribution 470

J.Z, L.M and K.K designed the work, J.Z and J.P-B wrote the code (Genome part and 471

algorithm part respectively), J.P-B implemented the Rust libraries of Kmerutils, 472

Probminhash and Hnswlib-rs. J.Z and K.K wrote the paper. J.Z did the analysis and 473

benchmark. 474

 475

Acknowledgment 476

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

http://enve-omics.ce.gatech.edu/data/gsearch
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

22

This work was supported, in part, by the US National Science Foundation (Award No 477

1759831 and 2129823 to KTK). We want to thank PACE (Partnership for Advanced 478

Computing Environment) at Georgia Tech for providing computing resources. We want 479

to thank Kenji Gerhardt for helpful discussions on benchmarking against traditional 480

ANI/AAI based tools and Chirag Jain for discussions on the graph based nearest neighbor 481

search. 482

 483

References 484

 485

1. Bobay, L.-M. & Ochman, H. Biological species in the viral world. Proceedings of the 486

National Academy of Sciences 115, 6040-6045 (2018). 487

2. Bobay, L.-M. & Ochman, H. Biological Species Are Universal across Life’s Domains. 488

Genome Biology and Evolution 9, 491-501 (2017). 489

3. Locey, K.J. & Lennon, J.T. Scaling laws predict global microbial diversity. Proceedings 490

of the National Academy of Sciences 113, 5970-5975 (2016). 491

4. Chevallereau, A., Pons, B.J., van Houte, S. & Westra, E.R. Interactions between bacterial 492

and phage communities in natural environments. Nature Reviews Microbiology 20, 49-62 493

(2022). 494

5. Federhen, S. Type material in the NCBI Taxonomy Database. Nucleic Acids Research 43, 495

D1086-D1098 (2014). 496

6. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut 497

microbiome. Nature Biotechnology 39, 105-114 (2021). 498

7. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nature Biotechnology 39, 499

499-509 (2021). 500

8. Caro‐Quintero, A. & Konstantinidis, K.T. Bacterial species may exist, metagenomics 501

reveal. Environmental microbiology 14, 347-355 (2012). 502

9. Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome 503

sequence space. Nature 513, 242-245 (2014). 504

10. Rodriguez-R, L.M., Jain, C., Conrad, R.E., Aluru, S. & Konstantinidis, K.T. Reply to: 505

“Re-evaluating the evidence for a universal genetic boundary among microbial species”. 506

Nature Communications 12, 4060 (2021). 507

11. Parks, D.H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a 508

phylogenetically consistent, rank normalized and complete genome-based taxonomy. 509

Nucleic Acids Research (2021). 510

12. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for 511

interrogating genomes of uncultivated viruses. Nucleic acids research 49, D764-D775 512

(2021). 513

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

23

13. Konstantinidis, K.T. & Tiedje, J.M. Genomic insights that advance the species definition 514

for prokaryotes. Proceedings of the National Academy of Sciences 102, 2567-2572 515

(2005). 516

14. Konstantinidis, K.T. & Tiedje, J.M. Towards a Genome-Based Taxonomy for 517

Prokaryotes. Journal of Bacteriology 187, 6258-6264 (2005). 518

15. Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome 519

sequence similarities. International Journal of Systematic and Evolutionary Microbiology 520

57, 81-91 (2007). 521

16. Ondov, B.D. et al. Mash: fast genome and metagenome distance estimation using 522

MinHash. Genome Biology 17, 132 (2016). 523

17. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T. & Aluru, S. High 524

throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. 525

Nature Communications 9, 5114 (2018). 526

18. Brown, C.T. & Irber, L. sourmash: a library for MinHash sketching of DNA. Journal of 527

Open Source Software 1, 27 (2016). 528

19. Bovee, R. & Greenfield, N. Finch: a tool adding dynamic abundance filtering to genomic 529

MinHashing. Journal of Open Source Software 3, 505 (2018). 530

20. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk: a toolkit to 531

classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925-1927 532

(2019). 533

21. Rodriguez-R, L.M. et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic 534

and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic 535

Acids Research 46, W282-W288 (2018). 536

22. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Naïve Bayesian Classifier for Rapid 537

Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and 538

Environmental Microbiology 73, 5261-5267 (2007). 539

23. Schloss, P.D. et al. Introducing mothur: Open-Source, Platform-Independent, 540

Community-Supported Software for Describing and Comparing Microbial Communities. 541

Applied and Environmental Microbiology 75, 7537-7541 (2009). 542

24. Indyk, P. & Motwani, R. in Proceedings of the thirtieth annual ACM symposium on 543

Theory of computing 604-613 (1998). 544

25. Gionis, A., Indyk, P. & Motwani, R. in Vldb, Vol. 99 518-529 (1999). 545

26. Bentley, J.L. Multidimensional binary search trees used for associative searching. 546

Communications of the ACM 18, 509-517 (1975). 547

27. Dasgupta, S. & Sinha, K. in Proceedings of the 26th Annual Conference on Learning 548

Theory, Vol. 30. (eds. S.-S. Shai & S. Ingo) 317--337 (PMLR, Proceedings of Machine 549

Learning Research; 2013). 550

28. Dong, W., Moses, C. & Li, K. in Proceedings of the 20th international conference on 551

World wide web 577-586 (2011). 552

29. Malkov, Y., Ponomarenko, A., Logvinov, A. & Krylov, V. Approximate nearest neighbor 553

algorithm based on navigable small world graphs. Information Systems 45, 61-68 (2014). 554

30. Fu, C., Xiang, C., Wang, C. & Cai, D. Fast approximate nearest neighbor search with the 555

navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017). 556

31. Malkov, Y.A. & Yashunin, D.A. Efficient and Robust Approximate Nearest Neighbor 557

Search Using Hierarchical Navigable Small World Graphs. IEEE Transactions on 558

Pattern Analysis and Machine Intelligence 42, 824-836 (2020). 559

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

24

32. Aumüller, M., Bernhardsson, E. & Faithfull, A. ANN-Benchmarks: A benchmarking tool 560

for approximate nearest neighbor algorithms. Information Systems 87, 101374 (2020). 561

33. Ertl, O. ProbMinHash – A Class of Locality-Sensitive Hash Algorithms for the 562

(Probability) Jaccard Similarity. IEEE Transactions on Knowledge and Data 563

Engineering, 1-1 (2020). 564

34. Camarillo-Guerrero, L.F., Almeida, A., Rangel-Pineros, G., Finn, R.D. & Lawley, T.D. 565

Massive expansion of human gut bacteriophage diversity. Cell 184, 1098-1109.e1099 566

(2021). 567

35. Konstantinidis, K.T., Rosselló-Móra, R. & Amann, R. Uncultivated microbes in need of 568

their own taxonomy. The ISME Journal 11, 2399-2406 (2017). 569

36. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk v2: memory 570

friendly classification with the Genome Taxonomy Database. bioRxiv, 571

2022.2007.2011.499641 (2022). 572

37. Tan, S. et al. in Proceedings of the 27th ACM SIGKDD Conference on Knowledge 573

Discovery & Data Mining 1552–1560 (Association for Computing Machinery, 574

Virtual Event, Singapore; 2021). 575

38. Moulton, R. & Jiang, Y. in 2018 IEEE International Conference on Data Mining (ICDM) 576

347-356 (2018). 577

39. Břinda, K., Sykulski, M. & Kucherov, G. Spaced seeds improve k-mer-based 578

metagenomic classification. Bioinformatics 31, 3584-3592 (2015). 579

40. Joudaki, A., Rätsch, G. & Kahles, A. Fast Alignment-Free Similarity Estimation By 580

Tensor Sketching. bioRxiv (2021). 581

41. Koslicki, D. & Zabeti, H. Improving MinHash via the containment index with 582

applications to metagenomic analysis. Applied Mathematics and Computation 354, 206-583

215 (2019). 584

42. Bowers, R.M. et al. Minimum information about a single amplified genome (MISAG) 585

and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature 586

Biotechnology 35, 725-731 (2017). 587

43. Tan, G. et al. Current Methods for Automated Filtering of Multiple Sequence Alignments 588

Frequently Worsen Single-Gene Phylogenetic Inference. Systematic Biology 64, 778-791 589

(2015). 590

44. Prokhorenkova, L. & Shekhovtsov, A. in Proceedings of the 37th International 591

Conference on Machine Learning, Vol. 119. (eds. D. Hal, III & S. Aarti) 7803--7813 592

(PMLR, Proceedings of Machine Learning Research; 2020). 593

45. Coleman, B., Segarra, S., Shrivastava, A. & Smola, A. Graph Reordering for Cache-594

Efficient Near Neighbor Search. arXiv preprint arXiv:2104.03221 (2021). 595

46. Groh, F., Ruppert, L., Wieschollek, P. & Lensch, H. GGNN: Graph-based GPU Nearest 596

Neighbor Search. IEEE Transactions on Big Data, 1-1 (2022). 597

 598

 599

 600

 601

 602

 603

 604

 605

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

25

 606

 607

 608

 609

 610

 611

 612

 613

Methods and Materials 614

Briefly, GSearch is composed of the following steps. Initially, the genetic relatedness 615

among a collection of database genomes is determined based on the ProbMinHash 616

algorithm, which computes the normalized weighted Jaccard distance using the 617

probminhash3a algorithm implemented in the ProbMinHash paper1. The normalized 618

weighted Jaccard distances are then used as input for building HNSW graphs (note that 619

a distance computation is required only when that genome pair is required for graph 620

building, thus GSearch avoids all vs. all distance computations). Genomes are 621

subsequently recursively added as the nearest neighbors of each node in the built graph 622

file with the same distance computation procedure. The built graph database file is stored 623

on disk. Query genomes are then searched against graph database and subsequently, 624

best neighbors are returned for classification/identification. In this process, the best 625

neighbor (or neighbors) is also identified based on the smallest normalized weighted 626

Jaccard distance obtained. 627

 628

ProbMinHash 629

Details of differences between ProbMinHash and traditional MinHash can be found in 630

Supplenmentary Methods & Materials. We reimplemented the Probminhash algorithm in 631

Rust to estimate genetic relatedness between any two genomes based on normalized 632

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

26

(weighted) Jaccard distances according to the original ProbMinHash paper 1 633

(Supplementary Note 1) . The Rust reimplementation of Probminhash can be found at: 634

https://github.com/jean-pierreBoth/probminhash. Two important parameters of 635

Probminhash are the sketch size and kmer size. Similar to MinHash sketches, 636

Probminhash sketches are also shared hashes from hashed kmer set by taking into 637

account the kmer weights and also total kmer count (See Figure 1 of MASH paper). Time 638

complexity analysis for ProbMinHash is shown in Supplementary Note 3. 639

To benchmark probminhash against MASH, both tools were run with the same 640

sketch size (s=12000) and kmer size (k=16) for bacterial genomes at the nucleotide level 641

and kmer size (k=7) at the amino acid level for both database building and searching. For 642

fungal genomes a larger sketch size (48000) was used due to much larger genome sizes. 643

Details of kmer choosing logic can be found in Supplementary Note 2. For graph search 644

results, we also performed the same transformation of MASH distance from normalized 645

weighted Jaccard distance to probMASH distance for convenient comparison to ANI 646

based methods. 647

 648

Hierarchical Navigable Small World Graphs (HNSW) 649

Generally, the framework of graph-based ANN search algorithm (here HNSW) can be 650

summarized as the following two steps: 1) build a proximity graph (HNSW) where each 651

node represents a database vector. Each database vector will connect with a few of its 652

neighbors while maintaining small world property in each layer of HNSW. 2) Given a query 653

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://github.com/jean-pierreBoth/probminhash
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

27

vector (or sequence, kmer profile in our case), perform a greedy search on the proximity 654

graph by comparing the query vector with database vectors under the searching 655

measures (e.g., cosine similarity or L2 similarity, in our case probminhash distance). 656

Then, the most similar candidates are returned as outputs. The key point for these two-657

step methods is step 1, to construct a high-quality index graph, which provides a proper 658

balance between the searching efficiency and effectiveness. To guarantee the searching 659

efficiency, the degree (number of maximum allowed neighbors, denoted as M) of each 660

node is usually restricted to a small number (normally 20~200) while width of search for 661

neighbor during inserting (denoted as ef_construct) is usually a larger number (higher 662

than 1000) to increase the chance to find best M neighbors by increasing the diversity of 663

neighbors due to the large number of neighbors retained. Building graph and searching 664

query against the graph follow very similar greedy search procedures except that there is 665

an extra reverse updating of neighbors list for each vector when inserting database vector 666

(building), one by one, into the existing graph (Figure 1a). The first phase of the 667

insertion/building process starts from the top layer by greedily traversing the graph in 668

order to find maximum M closest neighbors to the inserted element P in the layer by doing 669

ef_construct times search (Figure 1a). After that, the algorithm continues the search from 670

the next layer using the closest neighbor found from the previous layer as entry point, and 671

the process repeats until to the bottom layer. Closest neighbors at each layer are found 672

by a greedy and heuristic search algorithm (Figure 1b and c). For building, after searches 673

are finished at the bottom layer for each inserted element, a reverse update step will be 674

performed to update the neighbor list of each node in the existing graph while for 675

searching this is not needed. The overall database building time complexity is 676

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

28

O(N*log(N)), where N is the number of nodes in the graph. For searching, since there is 677

no need to reverse update best neighbor list for each node in the graph, time complexity 678

is (only) O(log(N)) (See Supplementary Note 3). Theoretical guarantee of graph-based 679

algorithm can be found in Supplementary Note 5. We reimplemented the original hnswlib 680

library written in C++ using the Rust programming language for its memory safety and 681

thread use efficiency 11, which can be found here (https://github.com/jean-682

pierreBoth/hnswlib-rs). Benchmarks for this package against standard datasets can be 683

found in the Supplementary Methods & Materials. 684

 685

Details of program implementation in Rust 686

There are 2 modules in total: tohnsw and request. Tohnsw is to build graph by gradually 687

inserting genomes into graph while request is to query new genomes against the graph 688

database built in the tohnsw step. Tohnsw starts from reading database genomes and 689

generating kmer profile and sketches for distance calculation. By selecting a random 690

genome as the first genome to insert to the graph, tohnsw module gradually add genomes 691

to existing graph file following HNSW constructing rules mentioned above by computing 692

ProbMinHash distance between genomes. Whenever a genome is going to be inserted 693

into the existing graph, each genome in the graph is associated with a list that stores the 694

M closest neighbors/genomes to the genome and the distance to these neighbors. Then, 695

the distances of this genome with the nearest neighbors (M) of entry genome in this layer 696

will be computed/searched (ef_construct times) using probminhash3a algorithm and the 697

smallest distance of the neighbor genomes will be the new entry genome. This process 698

will be repeated until the nearest genomes (<= M) in the layer are found and 699

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://github.com/jean-pierreBoth/hnswlib-rs
https://github.com/jean-pierreBoth/hnswlib-rs
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

29

subsequently, the program will go to the layer below, using the genome that was 700

represented by the nearest genome in the above layer as new entry genome in the new 701

layer. The search layer algorithm is repeated until to the bottom layer is 702

reached/analyzed. In contrast to the default settings in the original hnswlib, we allow the 703

two parameters of neighbor selecting heuristics, extendCandidates to be true and 704

keepPrunedConnections to be false because our genomic data is extremely clustered 705

and there is no need to fix the number of connections per element considering the 706

maximum connection allowed. Request module will load the graph database and then 707

search query genomes against it to return the best neighbors of each query, following 708

exact the same procedure with building step without updating the database. Both tohnsw 709

and request module are operating in parallel for high performance (see Supplementary 710

Note 6). The GSearch software can be found here: https://github.com/jean-711

pierreBoth/gsearch GSearch relies on Kmerutils (https://github.com/jean-712

pierreBoth/kmerutils), which is a Rust package we developed to manipulate genomic 713

fasta files including kmer string compression, kmer counting, filtering using cuckoo filter 714

et.al. 715

Installation guide, manual and pre-built binaries can also be found on the website. We 716

provide static binaries on the release page for major platforms such as Linux and MacOS, 717

with support for different CPU structures, e.g. Intel x86_64 or ARM64. GSearch program 718

can be run like this : 1) Build a graph database, which can be done running the following 719

command: tohnsw -d ./GTDB_r207 -k 16 -s 12000 -n 128 --ef 1600; 2) Request neighbors 720

of query genomes: request -b . -r ../query_folder -n 50 (--aa). Note that with the --add 721

option in tohnsw module, genomes in the directory will be added to existing graph 722

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://github.com/jean-pierreBoth/gsearch
https://github.com/jean-pierreBoth/gsearch
https://github.com/jean-pierreBoth/kmerutils
https://github.com/jean-pierreBoth/kmerutils
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

30

database, loaded from current directory, thus avoiding building graph database from the 723

very beginning when there are only a small number of new genomes species compared 724

to the current database. However, for larger number of new genome species, rebuild from 725

start is suggested to be able to choose an optimal M and ef_construct to maintain high 726

accuracy. 727

 728

Prokaryotic classification pipeline 729

 The amino-acid level graph showed that closest neighbors were found, with high 730

recall, when the query shared at least 52% AAI to its best neighbor. For more divergent 731

genomes, showing lower than 52% AAI, whole-genome amino-acid level graph loses 732

accuracy and we had to switch to universal, single-copy protein-coding genes. For the 733

nucleotide-level graph, we used kmer=16 for bacteria and archaea to have high specificity 734

for closely related database genomes (e.g., sharing about 95% ANI). For building the 735

whole-genome amino-acid graph, we used k=7 to have the best specificity without 736

compromising sensitivity, which is also consistent with previous results on classification 737

of amino acid sequences based on kmers 2. For building graph based on universal gene 738

set, we use k=5 because of much smaller total amino acid size. For further details on the 739

range of kmer to use for bacteria genome and proteome, viral genome and proteome, 740

see Supplemental Notes 2. 741

The proteome of each genome was predicted by FragGeneScanRs v0.0.1 for 742

performance purpose as opposed to Prodigal despite small loss in precision 743

(Supplementary Table S5) 3. Hmmsearch in the hmmer (v3.3.2) software 16 was used to 744

extract the universal gene set for bacteria and archaea genomes (universal gene graph). 745

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

31

Note that for viral genomes, this last step was not used because there are no universal 746

single copy genes for viral genomes. Evaluation of the speed and memory requirements 747

for all steps mentioned above were performed on a RHEL (Red Hat Enterprise Linux) 748

v7.9 with 2.70 GHz Intel(R) Xeon(R) Gold 6226 CPU. Unless noted otherwise, all 24 749

threads of the node are available by default. 750

 751

Distributed implementation and database splitting 752

To accommodate the increasing number of genomes that become available at an 753

unprecedented speed in recent years and will soon reach 1 million or more, we provide 754

an option to randomly split the database into a given number of pieces and build graph 755

database separately for each piece. In the end, all best neighbors returned from each 756

piece will be pooled and sorted by distance to have a new best K neighbor collection 757

returned to the user for each query genome. We hereby prove that in terms of requesting 758

top K best neighbors, the database split strategy is equivalent to non-split database 759

strategy as long as the requested best neighbors for each database piece is larger than 760

or equals to requested best neighbors in the non-split strategy. The underlying reason is 761

that the best neighbors globally are also the best locally 4. The database split and request 762

will be done sequentially, on one node, without multi-node support. For now, we split 763

GTDB database in to 5 pieces for testing purposes. In theory, a large database can be 764

split into any pieces as long as each piece can be used to build HNSW. In practice, a 765

reasonable way to decide on the number of database pieces to use is so that memory 766

requirement for each piece is equal or smaller than the total memory of host machine. 767

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

32

The database split idea has been used in several graph-based larger scale (e.g., billions) 768

nearest neighbor search tasks in industry 4, 5. 769

 770

Species database and testing genomes for benchmarking and recall 771

GTDB version 207 was used to build the database for bacteria and archaea genome 772

species 6. The IMGVR database version 3, with species representatives at a ≥95% ANI, 773

was used for for viral database building 7. For fungal genomes, all genomes downloaded 774

from the MycoCosm project (on 24th Jan., 2022) were used 8. The amino acid sequences 775

of predicted gene on the genomes were obtained using FragGeneScanRs. The Universal 776

Single Copy Gene (USCG) gene set for GTDB genomes were extracted via hmmer 777

software. 778

To test the performance of our pipeline, we specifically chose genomes that are 779

not included in the GTDB database (the database was used for graph building). In 780

particular, the bacterial/archaeal genomes, mostly MAGs, reported by Ye and colleagues 781

9 and Tara Ocean MAGs (total 8,466 MAGs) 10 were used. We randomly selected 1000 782

genomes/MAGs from Ye’s collection and use them as query genomes to test the 783

performance and accuracy of GSearch. To compare with other database search tools for 784

large database e.g., the viral database, we compare GSearch with PhageCloud 11, which 785

builds a graph database based on the labels of each viral genome (e.g., environment 786

source) and its search algorithm is Dashing212. 787

 788

Recall of AAI-, ANI- and MinHash-based nearest neighbor searching for 789

bacteria/archaea, fungi and viral genomes. 790

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

33

To benchmark how GSearch performs compared to ANI/AAI- and MinHash-based tools, 791

we ran FastANI, Diamond blastp-based AAI and Mash to find the best neighbors for the 792

same query genome dataset and evaluated whether or not the best neighbors found by 793

GSearch were the same. FastANI parameters for the bacterial dataset were the following: 794

fastANI --ql query_path.txt --rl gtdb_path.txt -k 16 -p 24 --minFrac 3000 -o ANI.txt. GTDB 795

database was split into 50 subsets and each subset was parallelly run on a multi-node 796

supercomputer to reduce memory requirement. MASH parameters were: mash sketch -a 797

(for AA only) -k 21 (7 for AA) -s 12000 -p 24 GTDB/*.fna > gtdb.msh; mash dist -p 24 798

gtdb.msh query.msh. For AAI calculation, the corresponding script of the enveomics 799

package 13 was used: aai.rb -1 query.faa -2 db.faa -p diamond -t 24. Hmmer was used to 800

search for universal single copy gene against pre-built hmm profiles (120 for archaea and 801

122 for bacteria respectively); the profiles were obtained from the GTDB-Tk software. For 802

viral genomes, FastANI fragment size of 1000 was used instead of 3000 while aai.rb 803

fragment size was 500 instead of 1000 with minimal number of matches of 5. For viral 804

genomes, MASH kmer size of 11 and 7 was used for nucleotide and amino acid levels, 805

respectively. For fungal genomes, we use MUMMER v4.0.0 with default parameters for 806

ANI calculation 14. Gene prediction for fungal genomes was performed using GeneMark-807

ES v2 (--fungus --ES) 15. Kmer size 21 and 11 was used for fungal genomes in MASH for 808

nucleotides and amino acid levels, respectively. Detailed description of kmer size for each 809

type of genome can be found in Supplemental Note 2. 810

We calculated recall for our tool compared to standard ANI/AAI and MASH in the 811

following way: since biological species database are generally sparse because we are far 812

away from sequencing all species in the environment and likely the existence of natural 813

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

34

gaps in diversity, a larger top K by HNSW (e.g., 100) compared to the value used in 814

standard benchmark dataset will offer little, if any advantage, especially when the query 815

genomes are relatively new, e.g. a new family compare to database genomes. Therefore, 816

we use top 5 and 10. Top 5 and top 10 recall are calculated based on top 5 and 10 817

neighbors found by GSearch and the alterantive tools, and if all top 5 or 10 found by the 818

latter tools were also in top 5 or 10 of our tool, then recall was 100%. Similarly, if only 4 819

or 9 are found by our tools, then recall was 80% and 90% respectively. However, if the 820

distance of query to some of the top 10 or top 5 neighbors found by GSearch at the 821

nucleotide level was larger than 0.9850 for bacterial genomes, these matches will be 822

filtered out and only those neighbors below 0.9850 will be used (e.g. 8 out of 10 are kept, 823

so only top 8 is compared) because we have shown that above this threshold, MinHash-824

based methods will lose accuracy and this is not specific to HNSW. Similar rules were 825

applied for the amino acid level searches with the threshold value of 0.9720 used for 826

filtering out bacterial genomes. 827

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

35

References 828

 829

1. Ertl, O. ProbMinHash – A Class of Locality-Sensitive Hash Algorithms for the 830

(Probability) Jaccard Similarity. IEEE Transactions on Knowledge and Data 831

Engineering, 1-1 (2020). 832

2. Déraspe, M., Boisvert, S., Laviolette, F., Roy, P.H. & Corbeil, J. Fast protein database as 833

a service with kAAmer. bioRxiv, 2020.2004.2001.019984 (2020). 834

3. Van der Jeugt, F., Dawyndt, P. & Mesuere, B. FragGeneScanRs: faster gene prediction 835

for short reads. BMC Bioinformatics 23, 198 (2022). 836

4. Malkov, Y.A. & Yashunin, D.A. Efficient and Robust Approximate Nearest Neighbor 837

Search Using Hierarchical Navigable Small World Graphs. IEEE Transactions on 838

Pattern Analysis and Machine Intelligence 42, 824-836 (2020). 839

5. Fu, C., Xiang, C., Wang, C. & Cai, D. Fast approximate nearest neighbor search with the 840

navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017). 841

6. Parks, D.H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a 842

phylogenetically consistent, rank normalized and complete genome-based taxonomy. 843

Nucleic Acids Research (2021). 844

7. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for 845

interrogating genomes of uncultivated viruses. Nucleic acids research 49, D764-D775 846

(2021). 847

8. Grigoriev, I.V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic 848

acids research 42, D699-D704 (2014). 849

9. Ye, L., Mei, R., Liu, W.-T., Ren, H. & Zhang, X.-X. Machine learning-aided analyses of 850

thousands of draft genomes reveal specific features of activated sludge processes. 851

Microbiome 8, 1-13 (2020). 852

10. Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000 853

prokaryotic genomes originated from various marine environments. Scientific Data 9, 854

305 (2022). 855

11. Rangel-Pineros, G. et al. From Trees to Clouds: PhageClouds for Fast Comparison of∼ 856

640,000 Phage Genomic Sequences and Host-Centric Visualization Using Genomic 857

Network Graphs. PHAGE 2, 194-203 (2021). 858

12. Baker, D.N. & Langmead, B. Dashing 2: genomic sketching with multiplicities and 859

locality-sensitive hashing. bioRxiv (2022). 860

13. Rodriguez-R, L.M. & Konstantinidis, K.T. (PeerJ Preprints, 2016). 861

14. Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLOS 862

Computational Biology 14, e1005944 (2018). 863

15. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O. & Borodovsky, M. Gene 864

prediction in novel fungal genomes using an ab initio algorithm with unsupervised 865

training. Genome research 18, 1979-1990 (2008). 866

 867

 868

 869

 870

 871

 872

 873

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

36

 Figures 874

Figure 1. Schematic overview of GSearch building graph and searching graph 875

steps. (a) Graph was clasped into hierarchical layers following exponential decay 876

probability. In this graph, ef and M, represent the number of searches when finding 877

nearest neighbors and maximum allowed number of neighbors for each node, 878

respectively (See Materials and Methods for details). In each layer, starting from an 879

entry node (random or inherit from layer above it, depending on whether it is the top 880

layer or not), GSearch finds the closest connected neighbor of the entry node and 881

assigns it as the new entry point P (b), and then traverses in a greedy manner (i.e., 882

update the entry point using the newly found closest connected neighbor (c)) until the 883

nearest neighbor in the layer is found, and then goes to next layer. This process is 884

repeated until the required number of nearest neighbors are all found for the given new 885

querying/inserting point. For building graph, after the required number of nearest 886

neighbors are found, a reverse update step is performed to update neighbor list of all 887

nodes in the graph. 888

 889
 890
 891
 892
 893
 894

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

37

 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
Figure 2. Scalability of database building process with the number of threads used. 924

Panels show total wall time (y=axes) for building GTDB genome (nucleotide level) (a), whole-925

genome proteome (amino acid level) (b) and universal gene set proteome (c) databases. All 926

tests were run on a 24-thread Intel (R) Xeon (R) Gold 6226 processor, with 40GB memory 927

available. 928

 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

38

 942
 943
Figure 3. Total request time (wall time) for searching query genomes against the pre-built 944
reference databases. Shown are all GTDB genomes (v207) at the whole-genome nucleotide 945
(a), whole-genome proteome (b) and universal gene set proteome (c) levels. 100, 300 and 1000 946
query genomes (figure key) were used on a 24-thread Intel (R) Xeon (R) Gold 6226 processor. 947
On average, database loading time ranged from 5-10 seconds. (d) is time needed to classify the 948
same genomes using GTDB-Tk on the same 24-thread node. 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
Figure 4. Overview of the GSearch pipeline for classifying prokaryotic genomes. Orange 967
boxes denote steps that aim to prepare genome files, in different formats, for graph building 968

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

39

while green boxes denote building steps of the graph database (in nucleotide or amino acid 969
format). Blue boxes indicate input/query genomes to search against the database while grey 970
boxes indicate classification output for each input. Gene prediction was done using 971
FragGeneScanRs and hmmsearch as part of the hmmer software for homology search. Two 972
key steps of GSearch: tohnsw (aa) and request (aa) are used to build graph database and 973
request new genomes, respectively. Two thresholds are used in the pipeline to decide between 974
whole nucleotide vs. whole-genome amino acid search and whole-genome amino acid vs. 975
universal gene amino acid, 78% ANI and 52% AAI, corresponding to Probminhash distance 976
0.9850 and 0.9375, respectively (see main text for details). 977
 978

 979

 980

 981

 982

 983

 984

 985

 986

 987

 988

 989

 990

 991

Tables 992
 993
Table 1. Request/search performance on major CPU platforms for GTDB v207 database for 994
1000 queries. 995
 996

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

40

CPU Number
of

threads

Clock
speed
(GHz)

Request
time for nt

(min)

Gene
Prediction-

FGSrs
(min)c

Request
time for

proteome
(min)

hmmsear
ch time
(min)d

Request
time for
USCG
(min)

Intel (R) Xeon
(R) Gold
6226a

24 2.70 2.329 1.348 1.334 0.524 0.117

Intel (R) Core
i7-7770HQb

8 2.80 8.654 6.764 2.041 1.534 0.510

AMD EPYC
7513aa

32(24
used)

2.60 1.937 1.120 1.021 0.345 0.102

Apple M1 Prob 10 3.22 2.369 2.12 0.866 0.498 0.168

 997
 998
a RHEL v7.9, Linux v3.10.0-1160, all threads used. 999
bMacOS v12.3, Darwin 21.4.0, all threads used. 1000
cParallel package was used to run multiprocess at the same time. FGSrs stands for FragGeneScanRs. Note that in practice only 1001
those genomes failed in the Request for nt step (best found is less than 78% ANI) will be used in this step. 1002
dOnly 100 genomes are used for testing hmmsearch because this step is for very new genomes at order level or above and we 1003
often do not have that many new genomes in a real-world dataset. Parallel Packages was used to run multiple processes of 1004
hmmsearch, one thread per process for hmmsearch. 1005
 1006

 1007

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

	References
	References

