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Abstract 10 

A key question in decision making is how humans arbitrate between competing learning and 11 
memory systems to maximize reward. We address this question by probing the balance between 12 
the effects, on choice, of incremental trial-and-error learning versus episodic memories of 13 
individual events. Although a rich literature has studied incremental learning in isolation, the role 14 
of episodic memory in decision making has only recently drawn focus, and little research 15 
disentangles their separate contributions. We hypothesized that the brain arbitrates rationally 16 
between these two systems, relying on each in circumstances to which it is most suited, as 17 
indicated by uncertainty. We tested this hypothesis by directly contrasting contributions of 18 
episodic and incremental influence to decisions, while manipulating the relative uncertainty of 19 
incremental learning using a well-established manipulation of reward volatility. Across two large, 20 
independent samples of young adults, participants traded these influences off rationally, 21 
depending more on episodic information when incremental summaries were more uncertain. 22 
These results support the proposal that the brain optimizes the balance between different forms 23 
of learning and memory according to their relative uncertainties and elucidate the circumstances 24 
under which episodic memory informs decisions. 25 

	 	26 
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Introduction 27 

Effective decision making depends on using memories of past experiences to inform choices in 28 
the present. This process has been extensively studied using models of learning from trial-and-29 
error, many of which rely on error-driven learning rules that in effect summarize experiences using 30 
a running average1–3. This sort of incremental learning provides a simple mechanism for 31 
evaluating actions without maintaining memory traces of each individual experience along the 32 
way, and has rich links to conditioning behavior and putative neural mechanisms for error-driven 33 
learning4. However, recent findings indicate that decisions may also be guided by the retrieval of 34 
individual events, a process often assumed to be supported by episodic memory5–14. Although 35 
theoretical work has suggested a role for episodic memory in initial task acquisition, when 36 
experience is sparse15,16, the use of episodes may be much more pervasive, as its influence has 37 
been detected empirically even in decision tasks that are well-trained and can be solved 38 
normatively using incremental learning alone6,8,10. The apparent ubiquity of episodic memory as 39 
a substrate for decision making raises questions about the circumstances under which it is 40 
recruited and the implications for behavior. 41 

How and when episodic memory is used for decisions relates to a more general challenge in 42 
cognitive control: understanding how the brain balances competing systems for decision making. 43 
An overarching hypothesis is that the brain judiciously adopts different decision strategies in 44 
circumstances for which they are most suited; for example, by determining which system is likely 45 
to produce the most rewarding choices at the least cost. This general idea has been invoked to 46 
explain how the brain arbitrates between deliberative versus habitual decisions and previous work 47 
has suggested a key role for uncertainty in achieving a balance that maximizes reward17,18. 48 
Moreover, imbalances in arbitration have been implicated in dysfunction such as compulsion19,20, 49 
addiction21,22, and rumination23–25 50 

Here we hypothesized that uncertainty is used for effective arbitration between decision systems 51 
and tested this hypothesis by investigating the tradeoff between incremental learning and episodic 52 
memory. This is a particularly favorable setting in which to examine this hypothesis due to a rich 53 
prior literature theoretically analyzing, and experimentally manipulating, the efficacy of 54 
incremental learning in isolation. Studies of this sort typically manipulate the volatility, or frequency 55 
of change, of the environment. In line with predictions made by statistical learning models, these 56 
experiments demonstrate that when the reward associated with an action is more volatile, people 57 
adapt by increasing their incremental learning rates26–32. In this case, incrementally constructed 58 
estimates reflect a running average over fewer experiences, yielding both less accurate and more 59 
uncertain estimates of expected reward. We therefore reasoned that the benefits of incremental 60 
learning are most pronounced when incremental estimation can leverage many experiences or, 61 
in other words, when volatility is low. By contrast, when the environment is either changing 62 
frequently or has recently changed, estimating reward episodically by retrieving a single, well-63 
matched experience should be relatively more favorable. 64 

We tested this hypothesis using a choice task that directly pits these decision systems against 65 
one another11, while manipulating volatility. In particular, we i) independently measured the 66 
contributions of episodic memory vs. incremental learning to choice and ii) altered the uncertainty 67 
about incremental estimates using different levels of volatility. Two large online samples of healthy 68 
young adults (a primary sample with n=254 and a replication sample with n=223) completed three 69 
tasks. The main task of interest combined incremental learning and episodic memory, referred to 70 
throughout as the deck learning and card memory task (middle panel, Figure 1A). On each trial 71 
of this task, participants chose between an orange and a blue card and received feedback 72 
following their choice. The cards appeared on each trial throughout the task, but their relative 73 
value changed over time (Figure 1B). In addition to the color of the card, each card also displayed 74 
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an object. Critically, objects appeared on a card at most twice throughout the task, such that a 75 
chosen object could re-appear between 9-30 trials after it was chosen the first time, and would 76 
deliver the same reward. Thus, participants could make decisions based on incremental learning 77 
of the average value of the orange vs. blue decks, or based on episodic memory for the specific 78 
value of an object which they only saw once before. Additionally, participants made choices 79 
across two environments: a high volatility and a low volatility environment. The environments 80 
differed in how often reversals in deck value occurred. 81 

In addition to the main task, participants also completed two other simple tasks in the experiment. 82 
First, participants completed a simple deck learning task (left panel, Figure 1A) to acclimate them 83 
to each environment and quantify the effects of uncertainty. This task included choices between 84 
a blue or orange colored diamond on each trial, without any trial-unique objects. Second, after 85 
the main task, participants completed a standard subsequent memory task (right panel, Figure 86 
1A) designed to assess the effects of uncertainty on later episodic memory for objects and value 87 
they encountered in the main task. 88 

We predicted that greater uncertainty about incremental values would be related to increased use 89 
of episodic memory. The experimental design provided two opportunities to measure the impact 90 
of uncertainty both across conditions, by comparing between the high and the low volatility 91 
environments, and within condition, by examining how learning and choices were impacted by 92 
each reversal. 93 

Results 94 

Episodic memory is used more under conditions of greater uncertainty about deck value 95 

Participants completed two decision making tasks. The deck learning task familiarized them with 96 
the underlying incremental learning task and established an independent measure of sensitivity 97 
to the volatility manipulation. The separate deck learning and card memory task measured the 98 
additional influence of episodic memory on decisions (Figure 1). In the deck learning task 99 
participants chose between two decks with expected value that changed periodically across two 100 
environments, with one more volatile and the other less volatile. We reasoned that, following each 101 
reversal, participants should be more uncertain about deck value and that this uncertainty should 102 
reduce over time. Because the more volatile environment featured more reversals, this condition 103 
has greater uncertainty overall. In the second deck learning and card memory task, each deck 104 
featured cards with trial-unique objects that could re-appear once after being chosen and were 105 
worth an identical amount at each appearance. We predicted that decisions would be based more 106 
on object value when there was greater uncertainty about deck value. Our logic was that episodic 107 
memory should be deployed when incremental learning is inaccurate and unreliable due to 108 
frequent or recent change. Thus, we expected choices to be more reliant on episodic memory in 109 
the high compared to the low volatility environment and, within an environment, after compared 110 
to before reversals. 111 
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 112 

Figure 1. A) Study Design and Sample Events. Participants completed three tasks in succession. The 113 
first was the deck learning task which consisted of choosing between two colored cards and receiving an 114 
outcome following each choice. One color was worth more on average at any given timepoint and this 115 
mapping changed periodically. Second was the main task of interest, the deck learning and card memory 116 
task, which followed the same structure as the deck learning task but each card also displayed a trial-117 
unique object. Cards that were chosen could appear a second time in the task after 9-30 trials and, if they 118 
re-appeared, were worth the same amount, thereby allowing participants to use episodic memory for 119 
individual cards in addition to learning deck value from feedback. Lastly, participants completed a 120 
subsequent memory task for objects that may have been seen in the deck learning and card memory task. 121 
Participants had to indicate whether they recognized an object and, if they did, whether they chose that 122 
object. If they responded that they had chosen the object they were then asked if they remembered the 123 
value of that object. B) Uncertainty manipulation within and across environments. Uncertainty was 124 
manipulated by varying the volatility of the relationship between cue and reward over time. Participants 125 
completed the task in two environments that differed in their relative volatility. The low volatility environment 126 
featured half as many reversals in deck luckiness as the high volatility environment. Top: The true value of 127 
the blue deck is drawn in gray for an example trial sequence. In blue is estimated blue deck value from the 128 
reduced Bayesian model.30 Trials featuring objects appeared only in the deck learning and card memory 129 
task. Bottom: Uncertainty about deck value as estimated by the model is shown in grey. This plot shows 130 
relative uncertainty, which is the model’s imprecision in its estimate of deck value. 131 
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 132 

Figure 2. Evaluating the proportion of incremental and episodic choices. A) Participants’ choices 133 
demonstrate sensitivity to the value of old objects. Group-level averages are shown as points and lines 134 
represent 95% confidence intervals. B) Reversals in deck luckiness altered choice such that the currently 135 
lucky deck was chosen less following a reversal. The line represents the group-level average and the band 136 
represents the 95% confidence interval. C) On incongruent trials, choices were more likely to be based on 137 
episodic memory (e.g. high-valued objects chosen and low-valued objects avoided) in the high compared 138 
to the low volatility environment. Averages for individual subjects are shown as points and lines represent 139 
the group-level average with a 95% confidence interval. D) Median reaction time was longer for incongruent 140 
choices based on episodic memory compared to those based on incremental learning. 141 

We first examined whether participants were separately sensitive to each source of value in the 142 
deck learning and card memory task: the value of the objects (episodic) and of the decks 143 
(incremental). Controlling for average deck value, we found that participants used episodic 144 
memory for object value, evidenced by a greater tendency to choose high-valued old objects than 145 
low-valued old objects (𝛽!"#$%"&' = 0.621, 	95%	𝐶𝐼 = [0.527, 	0.713]; Figure 2A). Likewise, 146 
controlling for object value, we also found that participants used incrementally learned value for 147 
the decks, evidenced by the fact that the higher-valued (lucky) deck was chosen more frequently 148 
on trials immediately preceding a reversal (𝛽()* = 0.038, 	95%	𝐶𝐼 = [−0.038, 	0.113]; 𝛽()+ =149 
0.056, 	95%	𝐶𝐼 = [−0.02, 	0.134]; 𝛽(), = 0.088, 	95%	𝐶𝐼 = [0.009, 	0.166]; 𝛽()- = 0.136, 	95%	𝐶𝐼 =150 
[0.052, 	0.219]; Figure 2B), that this tendency was disrupted by the reversals (𝛽(./ =151 
−0.382, 	95%	𝐶𝐼 = [−0.465,	−0.296]), and by the quick recovery of performance on the trials 152 
following a reversal (𝛽(0- = −0.175, 	95%	𝐶𝐼 = [−0.258,	−0.095]; 𝛽(0, = −0.106, 	95%	𝐶𝐼 =153 
[−0.18,	−0.029]; 𝛽(0+ = −0.084, 	95%	𝐶𝐼 = [−0.158,	−0.006]; 𝛽(0* = 0.129, 	95%	𝐶𝐼 =154 
[0.071, 	0.184]). 155 

Having established that both episodic memory and incremental learning guided choices, we next 156 
sought to determine the impact of uncertainty on episodic memory for object value by isolating 157 
trials on which episodic memory was most likely to be used. To identify reliance on object value, 158 
we first focused on trials where the two sources of value information were incongruent: i.e. trials 159 
for which the high-value deck featured an old object that was of low value (<50¢) or the low-value 160 
deck featured an old object that was of high value (>50¢). We then defined an episodic based 161 
choice index by considering a choice as episodic if the old object was, in the first case, avoided 162 
or, in the second case, chosen. Consistent with our hypothesis, we found greater evidence for 163 
episodic choices (as defined this way) in the high volatility environment compared to the low 164 
volatility environment (𝛽123 = 0.094, 	95%	𝐶𝐼 = [0.017, 	0.17]; Figure 2C). Finally, this analysis 165 
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also gave us the opportunity to test differences in reaction time between incremental and episodic 166 
decisions. Decisions based on episodic value took longer (𝛽1456 = 38.573, 	95%	𝐶𝐼 =167 
[29.703, 	47.736]; Figure 2D), suggesting that episodic retrieval is more costly in time and perhaps 168 
more effortful overall, when compared to relying on cached incremental value. 169 

Uncertainty in incremental values increases sensitivity to episodic value 170 

To capture uncertainty about deck value on a trial-by-trial basis, we adopted a computational 171 
model that tracks uncertainty during learning. We then used this model to test our central 172 
hypothesis: that episodic memory is used more when posterior uncertainty about deck value is 173 
high. 174 

We began by hierarchically fitting two classes of incremental learning models to the behavior on 175 
the deck learning task: a baseline model with a Rescorla-Wagner2 style update (RW) and a 176 
reduced Bayesian model30 (RB) that augments the RW learner with a variable learning rate, which 177 
it modulates by tracking ongoing uncertainty about deck value. This approach–which builds on a 178 
line of work applying Bayesian learning models to capture trial-by-trial modulation in uncertainty 179 
and learning rates in volatile environments26,27,30,32–34–allowed us to first assess incremental 180 
learning free of any contamination due to competition with episodic memory. We then used the 181 
parameters fit to this task for each participant to generate estimates of subjective deck value and 182 
uncertainty around deck value, out of sample, in the deck learning and card memory task. These 183 
estimates were then used alongside episodic value to predict choices on incongruent trials in the 184 
deck learning and card memory task. 185 

We first tested whether participants adjusted their rates of learning in response to uncertainty, 186 
both between environments and due to trial-wise fluctuations in uncertainty about deck value. We 187 
did this by comparing the ability of each combined choice model to predict participants’ decisions 188 
out of sample. To test for effects between environments, we compared models that controlled 189 
learning with either a single free parameter (for RW, a learning rate 𝛼; for RB, a hazard rate H 190 
capturing the expected frequency of reversals) shared across both environments or models with 191 
a separate free parameter for each environment. To test for trial-wise effects within environments, 192 
we compared between RB and RW models: while RW updates deck value with a constant learning 193 
rate, RB tracks ongoing posterior uncertainty about deck value (called relative uncertainty, RU) 194 
and increases its learning rate when this quantity is high. 195 

Participants were both sensitive to the volatility manipulation and incorporated uncertainty into 196 
updating their beliefs about deck value. This is indicated by the fact that the RB combined choice 197 
model that included a separate hazard rate for each environment (RB2H) outperformed both RW 198 
models as well as the RB model with a single hazard rate (Figure 3A). Further, across the entire 199 
sample, participants detected higher levels of volatility in the high volatility environment, as 200 
indicated by the generally larger hazard rates recovered from this model in the high compared to 201 
the low volatility environment (𝐻789 = 0.04, 	95%	𝐶𝐼 = [0.033, 	0.048]; 𝐻:;<= = 0.081, 	95%	𝐶𝐼 =202 

[0.067, 	0.097]; Figure 3B). Next, we examined the model’s ability to estimate uncertainty as a 203 
function of reversals in deck luckiness. Compared to an average of the four trials prior to a 204 
reversal, RU increased immediately following a reversal and stabilized over time (𝛽(./ =205 
0.014, 	95%	𝐶𝐼 = [−0.019, 	0.048]; 𝛽(0- = −0.242, 	95%	𝐶𝐼 = [−0.276,	−0.209]; 𝛽(0, =206 
−0.145, 	95%	𝐶𝐼 = [−0.178,	−0.112]; 𝛽(0+ = −0.1, 	95%	𝐶𝐼 = [−0.131,	−0.07]; 𝛽(0* =207 
−0.079, 	95%	𝐶𝐼 = [−0.108,	−0.048]; Figure 3C). As expected, RU was also, on average, greater 208 
in the high compared to the low volatility environment (𝛽123 = 0.015, 	95%	𝐶𝐼 = [0.012, 	0.018]). 209 
Lastly, we were interested in assessing the relationship between reaction time and RU, as we 210 
expected that higher uncertainty may be reflected in more time needed to resolve decisions. In 211 
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line with this idea, RU was strongly related to reaction time such that choices made under more 212 
uncertain conditions took longer (𝛽>? = 1.685, 	95%	𝐶𝐼 = [0.823, 	2.528]). 213 

 214 

Figure 3. Evaluating model fit and sensitivity to volatility. A) Expected log pointwise predictive density 215 
from each model was calculated from a 20-Fold leave-N-subjects-out cross validation procedure and is 216 
shown here subtracted from the best fitting model. The best fitting model was the reduced Bayesian (RB) 217 
model with two hazard rates (2H) and sensitivity to the interaction between old object value and relative 218 
uncertainty (RU) in the choice function. Error bars represent standard error around ELPD estimates. B) 219 
Participants were sensitive to the relative level of volatility in each environment as measured by the hazard 220 
rate. Group level parameters are superimposed on individual subject parameters. Wide error bars represent 221 
80% posterior intervals and skinny error bars represent 95% posterior intervals. The true hazard rate for 222 
each environment is shown on the interior of the plot. C) Relative uncertainty peaks on the trial following a 223 
reversal and is greater in the high compared to the low volatility environment. Lines represent group means 224 
and bands represent 95% confidence intervals. 225 

Having established that participants were affected by uncertainty around beliefs about deck value, 226 
we turned to examine our primary question: whether this uncertainty alters the use of episodic 227 
memory in choices. We first examined effects of RU on our episodic choice index, which 228 
measures choices consistent with episodic value on trials when it disagrees with incremental 229 
learning. This analysis verified that episodic memory was used more on incongruent trial 230 
decisions made under conditions of high RU (𝛽>? = 2.133, 	95%	𝐶𝐼 = [0.7, 	3.535]; Figure 4A). To 231 
more directly test the prediction that participants would use episodic memory when uncertainty is 232 
high, we included trial-by-trial estimates of RU in the RB2H combined choice model, which was 233 
augmented with an additional free parameter to capture any change with RU in the effect of 234 
episodic value on choice. Formally, this parameter measured an effect of the interaction between 235 
these two factors, and the more positive this term the greater the impact of increased uncertainty 236 
on the use of episodic memory. This new combined choice model further improved out-of-sample 237 
predictions (RB2H+RU, Figure 3A). As predicted, while both incremental and episodic value were 238 
used overall (𝛽@'AB$%"&' = 0.488, 	95%	𝐶𝐼 = [0.411, 	0.563]; 𝛽!"#$%"&' = 0.141, 	95%	𝐶𝐼 =239 
[0.092, 	0.19]), episodic value indeed impacted choices more when relative uncertainty was high 240 
(𝛽!"#$%"&':>? = 0.091, 	95%	𝐶𝐼 = [0.051, 	0.13]; Figure 4B). This is consistent with our hypothesis 241 
that episodic value was relied on more when beliefs about incremental value were uncertain. 242 

The analyses above focus on uncertainty present at the time of retrieving episodic value because 243 
this is what we hypothesized would drive competition in the reliance on either system at choice 244 
time. However, in principle, reward uncertainty at the time an object is first encountered might 245 
also affect its encoding, and hence its subsequent use in episodic choice when later retrieved35. 246 
To address this possibility, we looked at the impact of RU resulting from the first time an old 247 
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object’s value was revealed on whether that object was later retrieved for a decision. Using our 248 
episodic based choice index, there was no relationship between the use of episodic memory on 249 
incongruent trial decisions and RU at encoding (𝛽>? = 0.622, 	95%	𝐶𝐼 = [−0.832, 	2.044]; 250 
Supplementary Figure 5). Similarly, we also examined effects of trial-by-trial estimates of RU at 251 
encoding time in the combined choice model by adding another free parameter that captured 252 
change with RU at encoding time in the effect of episodic value on choice. This parameter was 253 
added alongside the effect of RU at retrieval time (from the previous analysis). While there was a 254 
weak effect on choice (𝛽!"#$%"&':>? = 0.042, 	95%	𝐶𝐼 = [0.003, 	0.079]; Supplementary Figure 5), 255 
the inclusion of this parameter did not provide a better fit to subjects’ choices than the combined 256 
choice model with only increased sensitivity due to RU at retrieval time (Supplementary Figure 257 
5), and this result did not replicate in a separate sample (𝛽!"#$%"&':>? = 0.015, 	95%	𝐶𝐼 =258 
[−0.026, 	0.057]). 259 

Episodic and incremental value sensitivity predicts subsequent memory performance 260 

Having determined that decisions depended on episodic memory more when uncertainty about 261 
incremental value was higher, we next sought evidence for similar effects on the quality of 262 
episodic memory. Episodic memory is, of course, imperfect, and value estimates derived from 263 
episodic memory are therefore also uncertain. More uncertain episodic memory should then be 264 
disfavored while the influence of incremental value on choice is promoted instead. Although in 265 
the present study we did not experimentally manipulate the strength of episodic memory, as our 266 
volatility manipulation was designed to affect the uncertainty of incremental estimates, we did 267 
measure memory strength in a subsequent memory test. Thus, we predicted that participants who 268 
base fewer decisions on object value and more decisions on deck value should have poorer 269 
subsequent memory for objects seen in the deck learning and card memory task. 270 

Participants performed well above chance on the test of recognition memory (𝛽/ =271 
1.887, 	95%	𝐶𝐼 = [1.782, 	1.989]), indicating a general ability to discriminate objects seen in the 272 
main task from those that were new. In line with the idea that episodic memory quality also impacts 273 
the relationship between incremental learning and episodic memory, participants with better 274 
subsequent recognition memory were more sensitive to episodic value (𝛽1DE'2F;(;3;(G =275 

0.373, 	95%	𝐶𝐼 = [0.273, 	0.478]; Figure 5A), and these same participants were less sensitive to 276 
incremental value (𝛽62AE'2F;(;3;(G = −0.276, 	95%	𝐶𝐼 = [−0.383,	−0.17]; Figure 5B). This result 277 

provides further evidence for a trade-off between episodic memory and incremental learning, and 278 
provides preliminary support for a broader version of our hypothesis, which is that uncertainty 279 
about value provided by either memory system arbitrates the balance between them. 280 

Replication of the main results in a separate sample 281 

We repeated the tasks described above in an independent online sample of healthy young adults 282 
(n=223) to test the replicability and robustness of our findings. We replicated all effects of 283 
environment and relative uncertainty on episodic-based choice and subsequent memory (see 284 
Supplementary Text and Supplementary Figures 1-4 for details). 285 
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 286 

Figure 4. Evaluating effects of sensitivity to uncertainty on episodic choices. A) Participants’ degree 287 
of episodic-based choice increased with greater RU as predicted by the combined choice model. Points 288 
are group means and error bars are 95% confidence intervals. B) Estimates from the combined choice 289 
model. Participants were biased to choose previously seen objects regardless of their value and were 290 
additionally sensitive to their value. As hypothesized, this sensitivity was increased when relative 291 
uncertainty was higher. There was no bias to choose one deck color over the other and participants were 292 
highly sensitive to estimated deck value. Group level parameters are superimposed on individual subject 293 
parameters. Wide error bars represent 80% posterior intervals and skinny error bars represent 95% 294 
posterior intervals. Estimates are shown in standard units. 295 

Discussion 296 

Research on learning and value-based decision making has focused on how the brain 297 
summarizes its experiences by error-driven incremental learning rules that, in effect, maintain the 298 
running average of many experiences. While recent work has demonstrated that episodic memory 299 
also contributes to value-based decisions5–14, many open questions remain about the 300 
circumstances under which episodic memory is used. Here we used a task which directly 301 
contrasts episodic and incremental influences on decisions and found that participants traded 302 
these influences off rationally, relying more on episodic information when incremental summaries 303 
were less reliable, i.e. more uncertain and based on fewer experiences. We also found evidence 304 
for a complementary modulation of this episodic-incremental balance by episodic memory quality, 305 
suggesting that more uncertain episodic-derived estimates may reduce reliance on episodic 306 
value. Together, these results indicate that reward uncertainty modulates the use of episodic 307 
memory in decisions, suggesting that the brain optimizes the balance between different forms of 308 
learning according to volatility in the environment. 309 
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 310 

Figure 5. Relationship between choice sensitivity and subsequent memory. A) Participants with 311 
greater sensitivity to episodic value as measured by random effects in the combined choice model tended 312 
to better remember objects seen originally in the card learning and deck memory task. B) Participants with 313 
greater sensitivity to incremental value tended to have worse memory for objects from the card learning 314 
and deck memory task. Points represent individual participants, lines are linear fits and bands are 95% 315 
confidence intervals. 316 

Our findings add empirical data to previous theoretical and computational work which has 317 
suggested that decision making can greatly benefit from episodic memory for individual estimates 318 
when available data are sparse. This most obviously arises early in learning a new task, but also 319 
in task transfer, high-dimensional or non-Markovian environments, and (as demonstrated in the 320 
current work) during conditions of rapid change16,36,37. We investigate these theoretical predictions 321 
in the context of human decision making, testing whether humans rely more heavily on episodic 322 
memory when incremental summaries comprising multiple experiences are relatively poor. We 323 
operationalize this tradeoff in terms of uncertainty, exemplifying a more general statistical scheme 324 
for arbitrating between different decision systems by treating them as estimators of action value. 325 
There is precedent for this type of uncertainty-based arbitration in the brain, with the most well-326 
known being the tradeoff between model-free learning and model-based learning17,38. Control 327 
over decision making by model-free and model-based systems has been found to shift in 328 
accordance with the accuracy of their respective predictions18, and humans adjust their reliance 329 
on either system in response to external conditions that provide a relative advantage to one over 330 
the other39–41. Tracking uncertainty provides useful information about when inaccuracy is 331 
expected and helps to maximize utility by deploying whichever system is best at a given time. Our 332 
results add to these findings and expand their principles to include episodic memory in this 333 
tradeoff. 334 

Indeed, one intriguing possibility is that there is more than just an analogy between the 335 
incremental-episodic balance studied here and previous work on model-free versus model-based 336 
competition. Incremental error-driven learning coincides closely with model-free learning in other 337 
settings4,17 and, although it has been proposed that episodic control constitutes a “third way”16, it 338 
is possible that behavioral signatures of model-based learning might instead arise from episodic 339 
control via covert retrieval of individual episodes15,42–44, which contain much of the same 340 
information as a cognitive map or world model. While the present study assesses single-event 341 
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episodic retrieval more overtly, it remains an open question for future work the extent to which 342 
these same processes, and ultimately the same episodic-incremental tradeoff, might also explain 343 
model-based choice as it has been operationalized in other decision tasks. A related line of work 344 
has emphasized a similar role for working memory in maintaining representations of individual 345 
trials for choice9,45–47. Given the capacity constraints of working memory, we think it unlikely that 346 
working memory can account for the effects shown here, which involve memory for dozens of 347 
trial-unique stimuli maintained over tens of trials. 348 

Further, our findings help to clarify the impacts of uncertainty, novelty, and prediction error on 349 
episodic memory more broadly. Recent studies found that new episodes are more likely to be 350 
encoded under novel circumstances while prior experiences are more likely to be retrieved when 351 
conditions are familiar11,12,35,48. Shifts between these states of memory are thought to be 352 
modulated by one’s focus on internal or external sources of information49,50 and signaled by 353 
prediction errors based in episodic memory51–54. Relatedly, unsigned prediction errors, which are 354 
a marker of surprise, improve later episodic memory55–58. Findings have even suggested that 355 
states of familiarity and novelty can bias decisions toward the use of single past experiences or 356 
not11,12. One alternative hypothesis that emerges from this work is that change-induced 357 
uncertainty and novelty could exert similar effects on memory, such that novelty signaled by 358 
expectancy violations increases encoding in a protracted manner that dwindles as uncertainty is 359 
resolved, or the state of the environment becomes familiar. Our results do not support this 360 
interpretation. Decisions were guided more by individual memories on more uncertain retrieval 361 
trials with little effects of uncertainty at encoding time. It therefore seems likely that uncertainty 362 
and novelty operate in concert but remain largely separate concepts, an interpretation supported 363 
by recent evidence59. 364 

This work raises further questions about the neurobiological basis of memory-based decisions 365 
and the role of neuromodulation in signaling uncertainty and aiding memory. In particular, studies 366 
have revealed unique functions for norepinephrine (NE) and acetylcholine (ACh) on uncertainty 367 
and learning. These findings suggest that volatility, as defined here, is likely to impact the 368 
noradrenergic modulatory system, which has been found to signal unexpected changes 369 
throughout learning29,34,60,61. Noradrenergic terminals densely innervate the hippocampus62, and 370 
a role for NE in both explicit memory formation63 and retrieval64 has been posited. Future studies 371 
involving a direct investigation of NE or an indirect investigation using pupillometry29 may help to 372 
isolate its contributions to the interaction between incremental learning and episodic memory in 373 
decision making. ACh is also important for learning and memory, as memory formation is 374 
facilitated by ACh in the hippocampus, which may contribute to its role in separating and storing 375 
new experiences48,49. In addition to this role, ACh is heavily involved in incremental learning and 376 
has been widely implicated in signaling expected uncertainty, or noise60,65. ACh may therefore 377 
play an important part in managing the tradeoff between incremental learning and episodic 378 
memory. While we held the level of expected uncertainty constant throughout our task, altering 379 
this quantity in future work may prove fruitful. 380 

Separately, while in the present study we disadvantaged incremental learning relative to episodic 381 
memory, similar predictions about their balance could be made by instead preferentially 382 
manipulating episodic memory. There are, for instance, clear theoretical benefits to deploying 383 
episodic memory under other task circumstances in which incremental learning is generally ill 384 
suited, such as in environments that are high dimensional or require planning far into the future15. 385 
In principle, individual past experiences can be precisely targeted in these situations depending 386 
on the relevance of their features to decisions in the present. Recent advances in computational 387 
neuroscience have, for example, demonstrated that artificial agents endowed with episodic 388 
memory are able to exploit its rich representation of past experience to make faster, more effective 389 
decisions16,36,37. While here we provided episodic memory as an alternative source of value to be 390 
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used in the presence of uncertainty about incremental estimates, future studies making use of 391 
paradigms tailored more directly toward episodic memory’s assets will help to further elucidate 392 
how and when the human brain recruits episodic memory for decisions. 393 

In conclusion, we have demonstrated that uncertainty induced by volatile environments impacts 394 
whether incremental learning or episodic memory is recruited for decisions. Greater uncertainty 395 
increased the likelihood that single experiences were retrieved for decision making. This effect 396 
suggests that episodic memory aids decision making when simpler sources of value are less 397 
accurate. By focusing on uncertainty, our results tie together disparate findings about when 398 
episodic memory is recruited for decisions and shed light on the exact circumstances under which 399 
the computational expense of episodic memory is worthwhile. 400 

Materials and Methods 401 

Experimental Tasks 402 

The primary experimental task used here builds upon a paradigm previously developed by our 403 
lab11 to successfully measure the relative contribution of incremental and episodic memory to 404 
decisions (Figure 1A). Participants were told that they would be playing a card game where their 405 
goal was to win as much money as possible. Each trial consisted of a choice between two decks 406 
of cards that differed based on their color (blue or orange). Participants had two seconds to decide 407 
between the decks and, upon making their choice, a green box was displayed around their choice 408 
until the full two seconds had passed. The outcome of each decision was then immediately 409 
displayed for one second. Following each decision, participants were shown a fixation cross 410 
during the intertrial interval period which varied in length (mean = 1.5 seconds, min = 1 seconds, 411 
max = 2 seconds). Decks were equally likely to appear on either side of the screen (left or right) 412 
on each trial and screen side was not predictive of outcomes. Participants completed a total of 413 
320 trials and were given a 30 second break every 80 trials. 414 

Participants were made aware that there were two ways they could earn bonus money throughout 415 
the task, which allowed for the use of incremental and episodic memory respectively. First, at any 416 
point in the experiment one of the two decks was “lucky”, meaning that the expected value (𝑉) of 417 
one deck color was higher than the other (𝑉"&ABG=73¢, 𝑉&2"&ABG=27¢). Outcomes ranged from $0 418 

to $1 in increments of 20¢. Critically, the mapping from 𝑉 to deck color underwent an unsignaled 419 
reversal periodically throughout the experiment (Figure 1B), which incentivized participants to 420 
utilize each deck’s recent reward history in order to determine the identity of the currently lucky 421 
deck. Each participant completed the task over two environments (with 160 trials in each) that 422 
differed in their relative volatility: a low volatility environment with eight 𝑉 reversals, occurring 423 
every 20 trials on average, and a high volatility environment with sixteen 𝑉 reversals, occurring 424 
every 10 trials on average. Participants were told that they would be playing in two different 425 
casinos and that in one casino deck luckiness changed less frequently while in the other deck 426 
luckiness changed more frequently. Participants were also made aware of which casino they were 427 
currently in by a border on the screen, with a solid black line indicating the low volatility casino 428 
and a dashed black line indicating the high volatility casino. Environment order was randomized 429 
for each participant. 430 

Second, in order to allow us to assess the use of episodic memory throughout the task, each card 431 
within a deck featured an image of a trial-unique object that could re-appear once throughout the 432 
experiment after initially being chosen. Participants were told that if they encountered a card a 433 
second time it would be worth the same amount as when it was first chosen, regardless of whether 434 
its deck color was currently lucky or not. On a given trial 𝑡, cards chosen once from trials 𝑡 − 9 435 
through 𝑡 − 30 had a 60% chance of reappearing following a sampling procedure designed to 436 
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prevent each deck’s expected value from becoming skewed by choice, minimize the correlation 437 
between the expected value of previously seen cards and deck expected value, and ensure that 438 
choosing a previously selected card remained close to 50¢. 439 

Participants also completed a separate decision making task prior to the combined deck learning 440 
and card memory task that was identical in design but lacked trial-unique objects on each card. 441 
This task, the deck learning task, was designed to isolate the sole contribution of incremental 442 
learning to decisions and to allow participants to gain prior experience with each environment’s 443 
volatility level. Participants completed the combined deck learning and card memory task 444 
immediately following completion of the deck learning task. Instructions were presented 445 
immediately prior to each task and participants completed five practice trials and a comprehension 446 
quiz prior to starting each. 447 

Following completion of the combined deck learning and card memory task, we tested 448 
participants’ memory for the trial-unique objects. Participants completed 80 (up to) three part 449 
memory trials. An object was first displayed on the screen and participants were asked whether 450 
or not they had previously seen the object and were given five response options: Definitely New, 451 
Probably New, Don’t Know, Probably Old, Definitely Old. If the participant indicated that they had 452 
not seen the object before or did not know, they moved on to the next trial. If, however, they 453 
indicated that they had seen the object before they were then asked if they had chosen the object 454 
or not. Lastly, if they responded that they had chosen the object, they were asked what the value 455 
of that object was (with options spanning each of the six possible object values between $0-1). 456 
Of the 80 trials, 48 were previously seen objects and 32 were new objects that had not been seen 457 
before. Of the 48 previously seen objects, half were sampled from each environment (24 each) 458 
and, of these, an equal number were taken from each possible object value (with 4 from each 459 
value in each environment). As with the decision-making tasks, participants were required to pass 460 
a comprehension quiz prior to starting the memory task. 461 

All tasks were programmed using the jsPsych JavaScript library66 and hosted on a Google Cloud 462 
server running Apache and the Ubuntu operating system. Object images were selected from 463 
publicly available stimulus sets67,68 for a total of 665 unique objects that could appear in each run 464 
of the experiment. 465 

Participants 466 

A total of 418 participants between the ages of 18 - 35 were recruited for our main sample through 467 
Amazon Mechanical Turk using the Cloud Research Approved Participants feature69. Recruitment 468 
was restricted to the United States and nine dollars of compensation was provided following 469 
completion of the 50 minute experiment. Participants were also paid a bonus in proportion to their 470 
final combined earnings on both the training task and the combined deck learning and card 471 
memory task (total earnings / 100). Before starting each task, all participants were required to 472 
score 100% on a quiz that tested their comprehension of the instructions and were made to repeat 473 
the instructions until this score was achieved. Informed consent was obtained with approval from 474 
the Columbia University Institutional Review Board. 475 

From the initial pool of participants, we excluded those who did not meet our pre-defined 476 
performance criteria. Participants were excluded from analysis on the deck learning and card 477 
memory task if they i) responded to fewer trials than the group average minus one standard 478 
deviation on the deck learning and card memory task, ii) responded faster than the group average 479 
minus one standard deviation on this task, or iii) did not demonstrate faster learning in the high 480 
compared to the low volatility environment on the independent deck learning task. Our reasoning 481 
for this latter decision was that it is only possible to test for effects of volatility on episodic memory 482 
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recruitment in participants who were sensitive to the difference in volatility between the 483 
environments, and it is well-established that a higher learning rate should be used in more volatile 484 
conditions26. Further, our independent assessment of deck learning was designed to avoid issues 485 
of selection bias in this procedure. We measured the effect of environment on learning by fitting 486 
a mixed effects logistic regression model to predict if subjects chose the lucky deck up to five 487 
trials after a reversal event in the deck learning task. For each subject 𝑠 and trial 𝑡, this model 488 
predicts the probability that the lucky deck was chosen: 489 

𝑝(𝐶ℎ𝑜𝑜𝑠𝑒𝐿𝑢𝑐𝑘𝑦) = 𝜎(𝛽/ + 𝑏/,F[(] + 𝑇𝑆𝑖𝑛𝑐𝑒𝑅𝑒𝑣( × 𝐸𝑛𝑣((𝛽- + 𝑏-,F[(])) 490 

𝜎(𝑥) =
1

1 + 𝑒)K
 491 

where 𝛽s are fixed effects, 𝑏s are random effects, 𝑇𝑆𝑖𝑛𝑐𝑒𝑅𝑒𝑣 is the trial number coded as distance 492 
from a reversal event (1-5), and 𝐸𝑛𝑣 is the environment a choice was made in coded as -0.5 and 493 
0.5 for the low and high volatility environments respectively. Participants with positive values of 494 
𝑏- can be said to have chosen the lucky deck more quickly following a reversal in the high 495 
compared to the low volatility environment, and we included only these participants in the rest of 496 
our analyses. A total of 254 participants survived after applying these criteria. 497 

Deck Learning and Card Memory Task Behavioral Analysis 498 

We first analyzed the extent to which previously seen (old) objects were used in the combined 499 
deck learning and card memory task by fitting the following mixed effects regression model to 500 
predict whether an old object was chosen: 501 

𝑝(𝐶ℎ𝑜𝑜𝑠𝑒𝑂𝑙𝑑) = 𝜎(𝛽/ + 𝑏/,F[(] + 𝑂𝑙𝑑𝑉𝑎𝑙((𝛽- + 𝑏-,F[(]) + 𝑇𝑟𝑢𝑒𝐷𝑒𝑐𝑘𝑉𝑎𝑙((𝛽, + 𝑏,,F[(])) 502 

where 𝑂𝑙𝑑𝑉𝑎𝑙 is the centered value (between -0.5 and 0.5) of an old object. We additionally 503 
controlled for the influence of deck value on this analysis by adding a regressor, 𝑇𝑟𝑢𝑒𝐷𝑒𝑐𝑘𝑉𝑎𝑙, 504 
which is the centered true average value of the deck on which each object was shown. Trials not 505 
featuring old objects were dropped from this analysis. 506 

We then similarly assessed the extent to which participants engaged in incremental learning 507 
overall by looking at the impact of reversals on incremental accuracy directly. To do this, we 508 
grouped trials according to their distance from a reversal, up to four trials prior to (𝑡 = −4:−1), 509 
during (𝑡 = 0), and after (𝑡 = 1: 4) a reversal occurred. We then dummy coded them to measure 510 
their effects on incremental accuracy separately. We also controlled for the influence of old object 511 
value in this analysis by including in this regression the coded value of a previously seen object 512 
(ranging from 0.5 if the value was $1 on the lucky deck or $0 on the lucky deck to -0.5 if the value 513 
was $0 on the lucky deck and $1 on the unlucky deck), for a total of 18 estimated effects: 514 

𝑝(𝐶ℎ𝑜𝑜𝑠𝑒𝐿𝑢𝑐𝑘𝑦) = 𝜎(𝑇)*:*(𝛽-:L + 𝑏-:L,F[(]) + 𝑇)*:* × 𝑂𝑙𝑑𝑉𝑎𝑙((𝛽-/:-M + 𝑏-/:-M,F[(])) 515 

To next focus on whether there was an effect of environment on the extent to which the value of 516 
old objects was used for decisions, we restricted all further analyses involving old objects to 517 
“incongruent” trials, which were defined as trials on which either the old object was high valued 518 
(>50¢) and on the unlucky deck or low valued (<50¢) and on the lucky deck. To better capture 519 
participants’ beliefs, deck luckiness was determined by the best-fitting incremental learning model 520 
(see next section) rather than using the experimenter-controlled ground truth: whichever deck had 521 
the higher model-derived value estimate on a given trial was labeled the lucky deck. Our logic in 522 
using only incongruent trials was that choices that stray from choosing whichever deck is more 523 
valuable should reflect choices that were based on the episodic value for an object. Lastly, we 524 
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defined our outcome measure of episodic based choice index (EBCI) to equal 1 on trials where 525 
the “correct” episodic response was given (i.e. high valued objects were chosen and low valued 526 
object were avoided), and 0 on trials where the “correct” incremental response was given (i.e. the 527 
opposite was true). A single mixed effects logistic regression was then used to assess possible 528 
effects of environment 𝐸𝑛𝑣 on EBCI: 529 

𝑝(𝐸𝐵𝐶𝐼) = 𝜎(𝛽/ + 𝑏/,F[(] + 𝐸𝑛𝑣((𝛽- + 𝑏-,F[(])) 530 

where here 𝐸𝑛𝑣 was coded identically to the above analyses. 531 

To assess the effect of episodic-based choices on reaction time (RT), we used the following mixed 532 
effects linear regression model: 533 

𝑅𝑇( = 𝛽/ + 𝑏/,F[(] + 𝐸𝐵𝐶𝐼((𝛽- + 𝑏-,F[(]) + 𝑆𝑤𝑖𝑡𝑐ℎ((𝛽, + 𝑏,,F[(]) + 𝐶ℎ𝑜𝑠𝑒𝑛𝑉𝑎𝑙((𝛽+ + 𝑏+,F[(]) 534 

where 𝐸𝐵𝐶𝐼 was coded as -0.5 for incremental-based trials and 0.5 for episodic-based trials. We 535 
also included covariates to control for two other possible effects on RT. The first, 𝑆𝑤𝑖𝑡𝑐ℎ, captured 536 
possible RT slowing due to switching from choosing one deck to the other and was coded as -0.5 537 
if a stay occurred and 0.5 if a switch occurred. The second, 𝐶ℎ𝑜𝑠𝑒𝑛𝑉𝑎𝑙, captured any effects due 538 
to the value of the option that may have guided choice, and was set to be the value of the 539 
previously seen object on episodic-based trials and the running average true value on 540 
incremental-based trials. 541 

For these regression models as well as those described in the following sections, fixed effects are 542 
reported in the text as the median of each parameter’s marginal posterior distribution alongside 543 
95% credible intervals, which indicate where 95% of the posterior density falls. Parameter values 544 
outside of this range are unlikely given the model, data, and priors. Thus, if the range of likely 545 
values does not include zero, we conclude that a meaningful effect was observed. 546 

Incremental Learning Models 547 

We next assessed the performance of several reinforcement learning models on our task in order 548 
to best capture incremental learning. A detailed description of each model can be found in the 549 
Supplementary Methods. In brief, these included one model that performed Rescorla-Wagner2 550 
style updating with both a single (RW1𝛼) and a separate (RW2𝛼) fixed learning rate for each 551 
environment, and two reduced Bayesian (RB) models30 with both a single (RB1H) and a separate 552 
hazard rate for each environment (RB1H). Models were fit to the deck learning task (see 553 
Posterior Inference and Supplementary Methods) and used to generate subject-wise 554 
estimates of deck value, and where applicable, uncertainty in the combined deck learning and 555 
card memory task. 556 

Combined Choice Models 557 

After fitting the above hierarchical models to the deck learning task, parameter estimates for each 558 
subject were then used to generate trial-by-trial timeseries for deck value and uncertainty (where 559 
applicable) throughout performance on the combined deck learning and card memory task. Mixed 560 
effects Bayesian logistic regressions for each incremental learning model were then used to 561 
capture the effects of multiple memory-based sources of value on incongruent trial choices in this 562 
task. For each subject 𝑠 and trial 𝑡, these models can be written as: 563 
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𝑝(𝐶ℎ𝑜𝑜𝑠𝑒𝑂𝑟𝑎𝑛𝑔𝑒) = 𝜎(𝛽/ + 𝑏/,F[(] +
𝐷𝑒𝑐𝑘𝑉𝑎𝑙((𝛽- + 𝑏-,F[(]) +
𝑂𝑙𝑑((𝛽, + 𝑏,,F[(]) +
𝑂𝑙𝑑𝑉𝑎𝑙((𝛽+ + 𝑏+,F[(]))

 564 

where the intercept captures a bias toward choosing either of the decks regardless of outcome, 565 
𝐷𝑒𝑐𝑘𝑉𝑎𝑙 is the deck value estimated from each model, the effect of 𝑂𝑙𝑑 captures a bias toward 566 
choosing a previously seen card regardless of its value, and 𝑂𝑙𝑑𝑉𝑎𝑙 is the coded value of a 567 
previously seen object (ranging from 0.5 if the value was $1 on the orange deck or $0 on the blue 568 
deck to -0.5 if the value was $0 on the orange deck and $1 on the blue deck). An additional fifth 569 
regression that also incorporated our hypothesized effect of increased sensitivity to old object 570 
value when uncertainty about deck value is higher was also fit. This regression was identical to 571 
the others but included an additional interaction effect of uncertainty and old object value: 572 
𝑂𝑙𝑑𝑉𝑎𝑙( × 𝑈𝑛𝑐((𝛽* + 𝑏*,F[(]) and used the RB2H model’s 𝐷𝑒𝑐𝑘𝑉𝑎𝑙 estimate alongside its estimate 573 

of relative uncertainty (RU) to estimate the effect of 𝑂𝑙𝑑𝑉𝑎𝑙 × 𝑈𝑛𝑐. RU was chosen over CPP 574 
because it captures the reducible uncertainty about deck value, which is the quantity we were 575 
interested in for this study. Prior to fitting the model, all predictors were z scored in order to report 576 
effects in standard units. 577 

Relative Uncertainty Analyses 578 

We conducted several other analyses that tested effects on or of relative uncertainty (RU) 579 
throughout the combined deck learning and card memory task. RU was mean-centered in each 580 
of these analyses. First, we assessed separately the effect of RU at retrieval time on EBCI using 581 
a mixed effects logistic regression: 582 

𝑝(𝐸𝐵𝐶𝐼) = 𝜎(𝛽/ + 𝑏/,F[(] + 𝑅𝑈((𝛽- + 𝑏-,F[(]) + 𝑅𝑈(,(𝛽, + 𝑏,,F[(])) 583 

An additional binomial term was included in this model to allow for the possibility that the effect of 584 
RU is nonlinear, although this term was found to have no effect. The effect of RU at encoding 585 
time was assessed using an identical model but with RU at encoding included instead of RU at 586 
retrieval. 587 

Next, to ensure that the RB model captured uncertainty related to changes in deck luckiness, we 588 
tested for an effect of environment on RU using a mixed effects linear regression: 589 

𝑅𝑈( = 𝛽/ + 𝑏/,F[(] + 𝐸𝑛𝑣((𝛽- + 𝑏-,F[(]) 590 

We then also looked at the impact of reversals on RU. To do this, we calculated the difference in 591 
RU on reversal trials and up to four trials following a reversal from the average RU on the four 592 
trials immediately preceding a reversal. Then, using a dummy coded approach similar to that used 593 
for the model testing effects of reversals on incremental accuracy, we fit the following mixed 594 
effects linear regression with 5 effects: 595 

𝑅𝑈𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒( = 𝑇/:*(𝛽-:N + 𝑏-:N,F[(]) 596 

We also assessed the effect of RU on reaction time using another mixed effects linear regression: 597 

𝑅𝑇( = 𝛽/ + 𝑏/,F[(] + 𝑅𝑈((𝛽- + 𝑏-,F[(]) 598 
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Subsequent Memory Task Behavioral Analysis 599 

Performance on the subsequent memory task was analyzed in two ways. First, recognition 600 
memory was assessed by computing the signal detection metric d prime for each participant 601 
adjusted for extreme proportions using a log-linear rule70. The relationship with d prime and 602 
sensitivity to both episodic value and incremental value was then determined using simple linear 603 
regressions of the form 𝑑𝑝𝑟𝑖𝑚𝑒F = 𝛽/ + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦F(𝛽-) where 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 was either the random 604 
effect of episodic value from the combined choice model for each participant or the random effect 605 
of incremental value from the combined choice value for each participant. 606 

Posterior Inference and Model Comparison 607 

Parameters for all incremental learning models were estimated using hierarchical Bayesian 608 
inference such that group-level priors were used to regularize subject-level estimates. This 609 
approach to fitting reinforcement learning models improves parameter identifiability and predictive 610 
accuracy71. The joint posterior was approximated using No-U-Turn Sampling72 as implemented in 611 
stan73. Four chains with 2000 samples (1000 discarded as burn-in) were run for a total of 4000 612 
posterior samples per model. Chain convergence was determined by ensuring that the Gelman-613 
Rubin statistic 𝑅_ was close to 1. A full description of the parameterization and choice of priors for 614 
each model can be found in the Supplementary Methods. All regression models were fit using 615 
No-U-Turn Sampling in Stan with the same number of chains and samples. Default weakly-616 
informative priors implemented in the rstanarm package74 were used for each regression model. 617 
Model fit for the combined choice models was assessed by separating each dataset into 20 folds 618 
and performing a cross validation procedure by leaving out N/20 subjects per fold where N is the 619 
number of subjects in each sample. The expected log pointwise predictive density (ELPD) was 620 
then computed and used as a measure of out-of-sample predictive fit for each model. 621 

Replication 622 

We identically repeated all procedures and analyses applied to the main sample on an 623 
independently collected replication sample. A total of 401 participants were again recruited 624 
through Amazon Mechanical Turk and 223 survived exclusion procedures carried out identically 625 
to those used for the main sample. 626 

Citation race and gender diversity statement 627 

The gender balance of papers cited within this work was quantified using databases that store 628 
the probability of a first name being carried by a woman. Excluding self-citations to the first and 629 
last authors of the current paper, the gender breakdown of our references is 12.16% 630 
woman(first)/woman(last), 6.76% man/woman, 23.44% woman/man, and 57.64% man/man. This 631 
method is limited in that a) names, pronouns, and social media profiles used to construct the 632 
databases may not, in every case, be indicative of gender identity and b) it cannot account for 633 
intersex, non-binary, or transgender people. Second, we obtained predicted racial/ethnic category 634 
of the first and last author of each reference using databases that store the probability of a first 635 
and last name being carried by an author of color. By this measure (and excluding self-citations), 636 
our references contain 9.55% author of color (first)/author of color(last), 19.97% white 637 
author/author of color, 22.7% author of color/white author, and 47.78% white author/white author. 638 
This method is limited in that a) using names and Florida Voter Data to make the predictions may 639 
not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous and mixed-race 640 
authors, or those who may face differential biases due to the ambiguous racialization or 641 
ethnicization of their names. 642 
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 823 

Supplementary Figure 1. Recreation of Figure 2 in the main text using the replication dataset. A) 824 
Participants’ choices demonstrate sensitivity to the value of old objects. B) Reversals in deck luckiness 825 
altered choice such that the currently lucky deck was chosen less following a reversal. C) On incongruent 826 
trials, choices were more likely to be based on episodic memory in the high compared to the low volatility 827 
environment. D) Reaction time was longer for incongruent choices based on episodic memory compared 828 
to those based on incremental learning. 829 

	 	830 
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 831 

Supplementary Figure 2. Recreation of Figure 3 in the main text using the replication dataset. A) The best 832 
fitting model was again the reduced Bayesian (RB) model with two hazard rates (2H) and sensitivity to the 833 
interaction between old object value and relative uncertainty (RU) in the choice function. B) Participants 834 
were affected by the relative level of volatility in each environment as measured by the hazard rate. Group 835 
level parameters are superimposed on individual subject parameters. C) Relative uncertainty peaks on the 836 
trial following a reversal and is greater in the high compared to the low volatility environment. 837 

	 	838 
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 839 

Supplementary Figure 3. Recreation of Figure 4 in the main text using the replication dataset. A) 840 
Participants’ degree of episodic-based choice increases with greater RU. B) Estimates from the combined 841 
choice model. Participants were biased to choose previously seen objects regardless of their value and 842 
were additionally sensitive to their value. As hypothesized, this sensitivity was increased when relative 843 
uncertainty was higher. There was no bias to choose one deck color over the other and participants were 844 
highly sensitive to estimated deck value. 845 

	 	846 
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 847 

Supplementary Figure 4 Recreation of Figure 5 in the main text using the replication dataset. A) 848 
Participants with greater sensitivity to episodic value tended to better remember objects from the deck 849 
learning and card memory task. B) Participants with greater sensitivity to incremental value tended to have 850 
worse memory for objects from the card learning and deck memory task. 851 

	 	852 
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 853 

Supplementary Figure 5. Results of relative uncertainty (RU) at encoding time on episodic-based choice 854 
in the main (A,B,C) and replication (D,E,F) sample. A) There was no relationship between RU at encoding 855 
and the degree to which participants based decisions on episodic value. B) Estimates from the combined 856 
choice model including both effects of RU at retrieval time and RU at encoding time. Relative to the effect 857 
of the interaction between RU at retrieval time and old object value, the equivalent effect for RU at encoding 858 
time was small in the main sample. C) Expected log pointwise predictive density for the combined choice 859 
model including only an effect of the interaction between RU at retrieval time and old object value (presented 860 
in the text) and the model also including the interaction between RU at encoding time and old object value. 861 
Including RU at encoding time did not improve model performance. D) There was again no relationship 862 
between RU at encoding and episodic-based choice in the replication sample. E) In the replication sample, 863 
there was no effect of the interaction between RU at encoding and old object value on choice behavior. F) 864 
Including RU at encoding time again did not improve model performance in the replication sample. 865 

	 	866 
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Replication Results 867 

Here we repeat and describe all analyses reported in the main text with replication sample. All 868 
results are reported in the same order as in the main text. 869 

Episodic memory is used more under conditions of greater uncertainty 870 

Participants in the replication sample were substantially more likely to chose high-valued old 871 
objects compared to low-valued old objects (𝛽!"#$%"&' = 0.723, 	95%	𝐶𝐼 = [0.624, 	0.827]; 872 
Supplementary Figure 1A). Participants also altered their behavior in response to reversals in 873 
deck value. The higher-valued (lucky) deck was chosen more frequently on trials immediately 874 
preceding a reversal (𝛽()* = 0.095, 	95%	𝐶𝐼 = [0.016, 	0.176]; 𝛽()+ = 0.128, 	95%	𝐶𝐼 =875 
[0.047, 	0.213]; 𝛽(), = 0.168, 	95%	𝐶𝐼 = [0.085, 	0.251]; 𝛽()- = 0.161, 	95%	𝐶𝐼 = [0.075, 	0.25]; 876 
Supplementary Figure 1B). This tendency was then disrupted by trials on which a reversal 877 
occurred (𝛽(./ = −0.373, 	95%	𝐶𝐼 = [−0.464,	−0.286]), with performance quickly recovering as 878 
the newly lucky deck became chosen more frequently on the trials following a reversal (𝛽(0- =879 
−0.256, 	95%	𝐶𝐼 = [−0.337,	−0.175]; 𝛽(0, = −0.144, 	95%	𝐶𝐼 = [−0.22,	−0.064]; 𝑡 + 3: 𝛽(0+ =880 
−0.024, 	95%	𝐶𝐼 = [−0.102, 	0.053]; 𝛽(0* = 0.113, 	95%	𝐶𝐼 = [0.055, 	0.174]). Thus, participants in 881 
the replication sample were also sensitive to reversals in deck value, thereby indicating that they 882 
engaged in incremental learning throughout the task. 883 

Participants in the replication sample also based more decisions on episodic value in the high 884 
volatility environment compared to the low volatility environment (𝛽123 = 0.145, 	95%	𝐶𝐼 =885 
[0.063, 	0.229]; Supplementary Figure 1C). Furthermore, decisions based on episodic value 886 
again took longer (𝛽1456 = 41.38, 	95%	𝐶𝐼 = [30.823, 	51.707]; Supplementary Figure 1D). 887 

Uncertainty increases sensitivity to episodic value 888 

In the replication sample, the reduced Bayesian model with two hazard rates was again the best 889 
fitting model (Supplementary Figure 2A). Participants detected higher levels of volatility in the 890 
high compared to the low volatility environment, as indicated by the generally larger hazard rates 891 
recovered from the high compared to the low volatility environment (𝛽789 = 0.048, 	95%	𝐶𝐼 =892 
[0.038, 	0.06]; 𝛽:;<= = 0.071, 	95%	𝐶𝐼 = [0.058, 	0.088]; Supplementary Figure 2B). Compared to 893 

an average of the four trials prior to a reversal, RU also increased immediately following a reversal 894 
and stabilized over time (𝛽(./ = 0.021, 	95%	𝐶𝐼 = [−0.014, 	0.056]; 𝛽(0- = −0.22, 	95%	𝐶𝐼 =895 
[−0.253,	−0.185]; 𝛽(0, = −0.144, 	95%	𝐶𝐼 = [−0.178,	−0.11]; 𝛽(0+ = −0.098, 	95%	𝐶𝐼 =896 
[−0.129,	−0.064]; 𝛽(0* = −0.05, 	95%	𝐶𝐼 = [−0.083,	−0.019]; Supplementary Figure 2C). RU 897 
was again also, on average, greater in the high compared to the low volatility environment (𝛽123 =898 
0.01, 	95%	𝐶𝐼 = [0.007, 	0.013]) and related to reaction time such that choices made under more 899 
uncertain conditions took longer (𝛽>? = 1.364, 	95%	𝐶𝐼 = [0.407, 	2.338]). 900 

Episodic memory was also used more on incongruent trial decisions made under conditions of 901 
high RU (𝛽>? = 2.718, 	95%	𝐶𝐼 = [1.096, 	4.436]; Supplementary Figure 3A). We again fit the 902 
combined choice model to the replication sample and found the following. Participants again used 903 
both sources of value throughout the task: both deck value as estimated by the model 904 
(𝛽@'AB$%"&' = 0.42, 	95%	𝐶𝐼 = [0.336, 	0.505]; Supplementary Figure 3B) and the episodic value 905 
from old objects (𝛽!"#$%"&' = 0.188, 	95%	𝐶𝐼 = [0.13, 	0.245]) strongly impacted choice. Lastly, 906 
episodic value again impacted choices more when relative uncertainty was high (𝛽!"#$%"&':>? =907 
0.069, 	95%	𝐶𝐼 = [0.024, 	0.113]). 908 

Finally, there was again no relationship between the use of episodic memory on incongruent trial 909 
decision and RU at encoding (𝛽>? = 0.99, 	95%	𝐶𝐼 = [−0.642, 	2.576]; Supplementary Figure 5). 910 
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Unlike in the main sample, however, including a sixth parameter to assess increased sensitivity 911 
to old object value due to RU at encoding time did not have an effect in the combined choice 912 
model (𝛽!"#$%"&':>? = 0.015, 	95%	𝐶𝐼 = [−0.026, 	0.057]; Supplementary Figure 5), which is also 913 
reported in the main text. As with the main sample, including this parameter did not provide a 914 
better fit to subjects’ choices than the combined choice model with only increased sensitivity due 915 
to RU at retrieval time. 916 

Episodic and Incremental value sensitivity predicts subsequent memory performance 917 

Participants in the replication sample again performed well above chance on the test of 918 
recognition memory (𝛽/ = 1.874, 	95%	𝐶𝐼 = [1.772, 	1.977]). Participants with better subsequent 919 
recognition memory were again more sensitive to episodic value (𝛽1DE'2F;(;3;(G = 0.334, 	95%	𝐶𝐼 =920 

[0.229, 	0.44]; Supplementary Figure 4A), and these same participants were again less sensitive 921 
to incremental value (𝛽62AE'2F;(;3;(G = −0.124, 	95%	𝐶𝐼 = [−0.238,	−0.009]; Supplementary 922 

Figure 4B). 923 

Supplementary Methods 924 

Description of Incremental Learning Models 925 

Rescorla Wagner (RW) 926 

The first model we considered was a standard model-free reinforcement learner that assumes a 927 
stored value (𝑄) for each deck is updated over time. 𝑄 is then referenced on each decision in 928 
order to guide choices. After each outcome 𝑜(, the value for the orange deck 𝑄! is updated 929 
according to the following rule1 if the orange deck chosen: 930 

𝑄!,(0- = 𝑄!,( + 𝛼(𝑜( − 𝑄!,() 931 

And is not updated if the blue deck is chosen: 932 

𝑄!,(0- = 𝑄!,( 933 

Likewise, the value for the blue deck 𝑄4 is updated equivalently. Large differences between 934 
estimated value and outcomes therefore have a larger impact on updates, but the overall degree 935 
of updating is controlled by the learning rate, 𝛼. Two versions of this model were fit, one with a 936 
single learning rate (RW1𝛼), and one with two learning rates (RW2𝛼), 𝛼"89 or 𝛼=;<=, depending 937 

on which environment the current trial was completed in. These parameters are constrained to lie 938 
between 0 and 1. A separate learning rate was used for each environment in the (RW2𝛼) version 939 
to capture the well-established idea that a higher learning rate should be used in more volatile 940 
conditions2. 941 

Reduced Bayesian (RB) 942 

The second model we considered was the reduced Bayesian (RB) model developed by Nassar 943 
and colleagues3. This model tracks and updates its belief that the orange deck is lucky based on 944 
trialwise outcomes, 𝑜(, using the following prediction error-based update: 945 

𝐵(0- = 𝐵( + 𝛼((𝑜( − 𝐵() 946 

This update is identical to that used in the RW model, however the learning rate 𝛼( is itself updated 947 
following each outcome according to the following rule: 948 

𝛼( = 𝛺( + (1 − 𝛺()𝜏( 949 
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where 𝛺( is the probability that a change in deck luckiness has occurred on the most recent trial 950 
(the change point probability or CPP) and 𝜏( is the imprecision in the model’s belief about deck 951 
value (the relative uncertainty or RU). The learning rate therefore increases whenever CPP or RU 952 
increase. CPP can be written as: 953 

𝛺( =
𝒰(𝑜(|0,1)𝐻

𝒰(𝑜(|0,1)𝐻 +𝒩(𝑜(|𝐵( , 𝜎,)(1 − 𝐻)
 954 

where 𝐻 is the hazard rate or probability of a change in deck luckiness. Two versions of this model 955 
were fit, one with a single hazard rate (RB1H), and one with two hazard rates (RB2H), 𝐻"89 and 956 
𝐻=;<=, depending on the environment the current trial was completed in. In this equation, the 957 

numerator represents the probability that an outcome was sampled from a new average deck 958 
value, whereas the denominator indicates the combined probability of a change and the 959 
probability that the outcome was generated by a Gaussian distribution centered around the most 960 
recent belief about deck luckiness and the variance of this distribution, 𝜎,. Because CPP is a 961 
probability, it is constrained to lie between 0 and 1. In our implementation, 𝐻 was a free parameter 962 
(see Posterior Inference section below) and 𝛺- was initialized to 1. 963 

RU, which is the uncertainty about deck value relative to the amount of noise in the environment, 964 
is quite similar to the Kalman gain used in Kalman filtering4: 965 

𝑘( = 𝛺(𝜎, + (1 − 𝛺()𝜏(𝜎, + 𝛺((1 − 𝛺()((𝑜( − 𝐵()(1 − 𝜏()), 966 

𝜏(0- =
𝑘(

𝑘( + 𝜎,
 967 

where 𝜎, is the observation noise and was here fixed to the true observation noise (0.33). 𝑘( 968 
consists of three terms: the first is the variance of the deck value distribution conditional on a 969 
change point, the second is the variance of the deck value distribution conditional on no change, 970 
and the third is the variance due to the difference in means between these two distributions. These 971 
terms are then used in the equation for 𝜏(0- to provide the uncertainty about whether an outcome 972 
was due to a change in deck value or the noise in observations that is expected when a change 973 
point has not occurred. Because this model does not follow the two-armed bandit assumption of 974 
our task (that is, that outcomes come from two separate decks), all outcomes were coded in terms 975 
of the orange deck. For example, this means that an outcome worth $1 on the orange deck is 976 
treated the same as an outcome worth $0 on the blue deck by this model. While this description 977 
represents a brief overview of the critical equations of the reduced Bayesian model, a full 978 
explanation can be found in Nassar et al., 20103. 979 

Softmax Choice 980 

All incremental learning models were paired with a softmax choice function in order to predict 981 
participants’ decisions on each trial: 982 

𝜃( =
1

1 + 𝑒)(P!0P"$#)
 983 

where 𝜃( is the probability that the orange deck was chosen on trial 𝑡. This function also consists 984 
of two inverse temperature parameters: 𝛽/ to model an intercept and 𝛽- to model the slope of the 985 
decision function related to deck value. The primary difference for each model was how 𝑉( is 986 
computed: RW (𝑉( = 𝑄!,( − 𝑄4,(); RB (𝑉( = 𝐵(). In each of these cases, a positive 𝑉( indicates 987 

evidence that the orange deck is more valuable while a negative 𝑉( indicates evidence that the 988 
blue deck is more valuable. 989 
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Posterior Inference 990 

For all incremental learning models, the likelihood function can be written as: 991 

𝑐F,( ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃F,() 992 

where 𝑐F,( is 1 if subject 𝑠 chose the orange deck on trial 𝑡 and 0 if blue was chosen. Following 993 

the recommendations of Gelman and Hill, 20065 and van Geen and Gerraty, 20216, 𝛽F is drawn 994 
from a multivariate normal distribution with mean vector 𝜇P and covariance matrix 𝛴P: 995 

𝛽F ∼ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(𝜇P , 𝛴P) 996 

where 𝛴P is decomposed into a vector of coefficient scales 𝜏P and a correlation matrix 𝛺P via: 997 

𝛴P = 𝑑𝑖𝑎𝑔(𝜏P) × 𝛺P × 𝑑𝑖𝑎𝑔(𝜏P) 998 

Weakly-informative hyperpriors were then set on the hyperparameters 𝜇P , 𝛺P and 𝜏P: 999 

𝜇P ∼ 𝒩(0,5) 1000 

𝜏P ∼ 𝐶𝑎𝑢𝑐ℎ𝑦0(0,2.5) 1001 

𝛺P ∼ 𝐿𝐾𝐽𝐶𝑜𝑟𝑟(2) 1002 

These hyperpriors were chosen for their respective desirable properties: the half cauchy is 1003 
bounded at zero and has a relatively heavy tail which is useful for scale parameters, the LKJ prior 1004 
with shape = 2 concentrates some mass around the unit matrix thereby favoring less correlation7, 1005 
and the normal is a standard choice for regression coefficients. 1006 

Because sampling from heavy tailed distributions like the Cauchy is difficult for Hamiltonian Monte 1007 
Carlo8, a reparameterization of the Cauchy distribution was used here. 𝜏P was thereby defined as 1008 

the transform of a uniformly distributed variable 𝜏P_𝑢 using the Cauchy inverse cumulative 1009 

distribution function such that: 1010 

𝐹K)-(𝜏P_𝑢) = 𝜏P(𝜋(𝜏P_𝑢 −
1
2
)) 1011 

𝜏P_𝑢 ∼ 𝒰(0,1) 1012 

In addition, a multivariate non-centered parameterization specifying the model in terms of the 1013 
Cholesky factorized correlation matrix was used in order to shift the data’s correlation with the 1014 
parameters to the hyperparameters, which increases the efficiency of sampling the parameters 1015 
of hierarchical models8. The full correlation matrix 𝛺P was replaced with a Cholesky factorized 1016 

parameter 𝐿R$ such that: 1017 

𝛺P = 𝐿R$ × 𝐿R$
S  1018 

𝛽F = 𝜇P + (𝑑𝑖𝑎𝑔(𝜏) × 𝐿R$ × 𝑧)
S 1019 

𝐿R$ ∼ 𝐿𝐾𝐽𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦(2) 1020 

𝑧 ∼ 𝒩(0,1) 1021 
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where multiplying the Cholesky factor of the correlation matrix by the standard normally distributed 1022 
additional parameter 𝑧 and adding the group mean 𝜇P creates a 𝛽F vector distributed identically 1023 

to the original model. 1024 

While the choice function is identical for each model, the parameters used in generating deck 1025 
value differ for each. All were fit hierarchically and were modeled with the following priors and 1026 
hyperpriors: 1027 

Rescorla Wagner with a single learning rate (RW1𝛼): 1028 

𝛼 ∼ 𝛽(𝑎1, 𝑎2)
𝑎1 ∼ 𝒩(0,5)
𝑎2 ∼ 𝒩(0,5)

 1029 

Rescorla Wagner with two learning rates (RW2𝛼): 1030 

𝛼"89 ∼ 𝛽(𝑎1"89 , 𝑎2"89)
𝛼=;<= ∼ 𝛽(𝑎1=;<= , 𝑎2=;<=)

𝑎1"89 ∼ 𝒩(0,5)
𝑎2"89 ∼ 𝒩(0,5)
𝑎1=;<= ∼ 𝒩(0,5)
𝑎2=;<= ∼ 𝒩(0,5)

 1031 

Reduced Bayes with a single hazard rate (RB1H): 1032 

𝐻 ∼ 𝛽(ℎ1, ℎ2)
ℎ1 ∼ 𝒩(0,5)
ℎ2 ∼ 𝒩(0,5)

 1033 

Reduced Bayes with two hazard rates (RB2H): 1034 

𝐻"89 ∼ 𝛽(ℎ1"89 , ℎ2"89)
𝐻=;<= ∼ 𝛽(ℎ1=;<= , ℎ2=;<=)

ℎ1"89 ∼ 𝒩(0,5)
ℎ2"89 ∼ 𝒩(0,5)
ℎ1=;<= ∼ 𝒩(0,5)
ℎ2=;<= ∼ 𝒩(0,5)

 1035 
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