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Abstract

A key question in decision making is how humans arbitrate between competing learning and
memory systems to maximize reward. We address this question by probing the balance between
the effects, on choice, of incremental trial-and-error learning versus episodic memories of
individual events. Although a rich literature has studied incremental learning in isolation, the role
of episodic memory in decision making has only recently drawn focus, and little research
disentangles their separate contributions. We hypothesized that the brain arbitrates rationally
between these two systems, relying on each in circumstances to which it is most suited, as
indicated by uncertainty. We tested this hypothesis by directly contrasting contributions of
episodic and incremental influence to decisions, while manipulating the relative uncertainty of
incremental learning using a well-established manipulation of reward volatility. Across two large,
independent samples of young adults, participants traded these influences off rationally,
depending more on episodic information when incremental summaries were more uncertain.
These results support the proposal that the brain optimizes the balance between different forms
of learning and memory according to their relative uncertainties and elucidate the circumstances
under which episodic memory informs decisions.
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Introduction

Effective decision making depends on using memories of past experiences to inform choices in
the present. This process has been extensively studied using models of learning from trial-and-
error, many of which rely on error-driven learning rules that in effect summarize experiences using
a running average'™. This sort of incremental learning provides a simple mechanism for
evaluating actions without maintaining memory traces of each individual experience along the
way, and has rich links to conditioning behavior and putative neural mechanisms for error-driven
learning®. However, recent findings indicate that decisions may also be guided by the retrieval of
individual events, a process often assumed to be supported by episodic memory>*. Although
theoretical work has suggested a role for episodic memory in initial task acquisition, when
experience is sparse'®'®, the use of episodes may be much more pervasive, as its influence has
been detected empirically even in decision tasks that are well-trained and can be solved
normatively using incremental learning alone®®'°. The apparent ubiquity of episodic memory as
a substrate for decision making raises questions about the circumstances under which it is
recruited and the implications for behavior.

How and when episodic memory is used for decisions relates to a more general challenge in
cognitive control: understanding how the brain balances competing systems for decision making.
An overarching hypothesis is that the brain judiciously adopts different decision strategies in
circumstances for which they are most suited; for example, by determining which system is likely
to produce the most rewarding choices at the least cost. This general idea has been invoked to
explain how the brain arbitrates between deliberative versus habitual decisions and previous work
has suggested a key role for uncertainty in achieving a balance that maximizes reward'"®.
Moreover, imbalances in arbitration have been implicated in dysfunction such as compulsion'®?°,

addiction?"?2, and rumination®*2®

Here we hypothesized that uncertainty is used for effective arbitration between decision systems
and tested this hypothesis by investigating the tradeoff between incremental learning and episodic
memory. This is a particularly favorable setting in which to examine this hypothesis due to a rich
prior literature theoretically analyzing, and experimentally manipulating, the efficacy of
incremental learning in isolation. Studies of this sort typically manipulate the volatility, or frequency
of change, of the environment. In line with predictions made by statistical learning models, these
experiments demonstrate that when the reward associated with an action is more volatile, people
adapt by increasing their incremental learning rates®*2. In this case, incrementally constructed
estimates reflect a running average over fewer experiences, yielding both less accurate and more
uncertain estimates of expected reward. We therefore reasoned that the benefits of incremental
learning are most pronounced when incremental estimation can leverage many experiences or,
in other words, when volatility is low. By contrast, when the environment is either changing
frequently or has recently changed, estimating reward episodically by retrieving a single, well-
matched experience should be relatively more favorable.

We tested this hypothesis using a choice task that directly pits these decision systems against
one another'', while manipulating volatility. In particular, we i) independently measured the
contributions of episodic memory vs. incremental learning to choice and ii) altered the uncertainty
about incremental estimates using different levels of volatility. Two large online samples of healthy
young adults (a primary sample with n=254 and a replication sample with n=223) completed three
tasks. The main task of interest combined incremental learning and episodic memory, referred to
throughout as the deck learning and card memory task (middle panel, Figure 1A). On each trial
of this task, participants chose between an orange and a blue card and received feedback
following their choice. The cards appeared on each trial throughout the task, but their relative
value changed over time (Figure 1B). In addition to the color of the card, each card also displayed
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75  an object. Critically, objects appeared on a card at most twice throughout the task, such that a
76 chosen object could re-appear between 9-30 trials after it was chosen the first time, and would
77 deliver the same reward. Thus, participants could make decisions based on incremental learning
78 of the average value of the orange vs. blue decks, or based on episodic memory for the specific
79 value of an object which they only saw once before. Additionally, participants made choices
80  across two environments: a high volatility and a low volatility environment. The environments
g1 differed in how often reversals in deck value occurred.

82  In addition to the main task, participants also completed two other simple tasks in the experiment.
83  First, participants completed a simple deck learning task (left panel, Figure 1A) to acclimate them
84  to each environment and quantify the effects of uncertainty. This task included choices between
85 a blue or orange colored diamond on each trial, without any trial-unique objects. Second, after
86  the main task, participants completed a standard subsequent memory task (right panel, Figure
87 1A) designed to assess the effects of uncertainty on later episodic memory for objects and value
88  they encountered in the main task.

89  We predicted that greater uncertainty about incremental values would be related to increased use
90  of episodic memory. The experimental design provided two opportunities to measure the impact
91 of uncertainty both across conditions, by comparing between the high and the low volatility
92 environments, and within condition, by examining how learning and choices were impacted by
93  each reversal.

94 Results
95 Episodic memory is used more under conditions of greater uncertainty about deck value

96 Participants completed two decision making tasks. The deck learning task familiarized them with
97 the underlying incremental learning task and established an independent measure of sensitivity
98  to the volatility manipulation. The separate deck learning and card memory task measured the
99  additional influence of episodic memory on decisions (Figure 1). In the deck learning task
100  participants chose between two decks with expected value that changed periodically across two
101 environments, with one more volatile and the other less volatile. We reasoned that, following each
102 reversal, participants should be more uncertain about deck value and that this uncertainty should
103 reduce over time. Because the more volatile environment featured more reversals, this condition
104  has greater uncertainty overall. In the second deck learning and card memory task, each deck
105  featured cards with trial-unique objects that could re-appear once after being chosen and were
106 worth an identical amount at each appearance. We predicted that decisions would be based more
107 on object value when there was greater uncertainty about deck value. Our logic was that episodic
108  memory should be deployed when incremental learning is inaccurate and unreliable due to
109 frequent or recent change. Thus, we expected choices to be more reliant on episodic memory in
110 the high compared to the low volatility environment and, within an environment, after compared
111 to before reversals.
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113 Figure 1. A) Study Design and Sample Events. Participants completed three tasks in succession. The
114  first was the deck learning task which consisted of choosing between two colored cards and receiving an
115 outcome following each choice. One color was worth more on average at any given timepoint and this
116 mapping changed periodically. Second was the main task of interest, the deck learning and card memory
117 task, which followed the same structure as the deck learning task but each card also displayed a trial-
118 unique object. Cards that were chosen could appear a second time in the task after 9-30 trials and, if they
119 re-appeared, were worth the same amount, thereby allowing participants to use episodic memory for
120 individual cards in addition to learning deck value from feedback. Lastly, participants completed a
121 subsequent memory task for objects that may have been seen in the deck learning and card memory task.
122 Participants had to indicate whether they recognized an object and, if they did, whether they chose that
123 object. If they responded that they had chosen the object they were then asked if they remembered the
124  value of that object. B) Uncertainty manipulation within and across environments. Uncertainty was
125 manipulated by varying the volatility of the relationship between cue and reward over time. Participants
126 completed the task in two environments that differed in their relative volatility. The low volatility environment
127 featured half as many reversals in deck luckiness as the high volatility environment. Top: The true value of
128  the blue deck is drawn in gray for an example trial sequence. In blue is estimated blue deck value from the
129 reduced Bayesian model.?° Trials featuring objects appeared only in the deck learning and card memory
130 task. Bottom: Uncertainty about deck value as estimated by the model is shown in grey. This plot shows
131 relative uncertainty, which is the model’s imprecision in its estimate of deck value.
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133 Figure 2. Evaluating the proportion of incremental and episodic choices. A) Participants’ choices
134  demonstrate sensitivity to the value of old objects. Group-level averages are shown as points and lines
135 represent 95% confidence intervals. B) Reversals in deck luckiness altered choice such that the currently
136 lucky deck was chosen less following a reversal. The line represents the group-level average and the band
137 represents the 95% confidence interval. C) On incongruent trials, choices were more likely to be based on
138 episodic memory (e.g. high-valued objects chosen and low-valued objects avoided) in the high compared
139 to the low volatility environment. Averages for individual subjects are shown as points and lines represent
140 the group-level average with a 95% confidence interval. D) Median reaction time was longer for incongruent
141 choices based on episodic memory compared to those based on incremental learning.

142 We first examined whether participants were separately sensitive to each source of value in the
143 deck learning and card memory task: the value of the objects (episodic) and of the decks
144 (incremental). Controlling for average deck value, we found that participants used episodic
145 memory for object value, evidenced by a greater tendency to choose high-valued old objects than
146 low-valued old objects (Boiavawe = 0.621, 95% CI = [0.527, 0.713]; Figure 2A). Likewise,
147 controlling for object value, we also found that participants used incrementally learned value for
148 the decks, evidenced by the fact that the higher-valued (lucky) deck was chosen more frequently
149 on frials immediately preceding a reversal (B;_4 = 0.038, 95% CI = [—0.038, 0.113]; B;_3 =
150  0.056, 95% CI = [—0.02, 0.134]; B,_, = 0.088, 95% CI = [0.009, 0.166]; B,_; = 0.136, 95% CI =
151 [0.052, 0.219]; Figure 2B), that this tendency was disrupted by the reversals (B;-q =
152 —0.382, 95% CI = [-0.465, —0.296]), and by the quick recovery of performance on the trials
153 following a reversal (B41 = —0.175, 95% CI = [—0.258, —0.095]; B¢+2 = —0.106, 95% CI =
154 [—0.18, —0.029]; Be+s = —0.084, 95% CI = [-0.158, —0.006]; Besa = 0.129, 95% CI =
155 [0.071, 0.184]).

156  Having established that both episodic memory and incremental learning guided choices, we next
157 sought to determine the impact of uncertainty on episodic memory for object value by isolating
158 trials on which episodic memory was most likely to be used. To identify reliance on object value,
159 we first focused on trials where the two sources of value information were incongruent: i.e. trials
160  for which the high-value deck featured an old object that was of low value (<50¢) or the low-value
161 deck featured an old object that was of high value (>50¢). We then defined an episodic based
162 choice index by considering a choice as episodic if the old object was, in the first case, avoided
163 or, in the second case, chosen. Consistent with our hypothesis, we found greater evidence for
164  episodic choices (as defined this way) in the high volatility environment compared to the low
165  volatility environment (Bg,, = 0.094, 95% CI = [0.017, 0.17]; Figure 2C). Finally, this analysis
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166 also gave us the opportunity to test differences in reaction time between incremental and episodic
167 decisions. Decisions based on episodic value took longer (Bggcr = 38.573, 95% CI =
168  [29.703, 47.736]; Figure 2D), suggesting that episodic retrieval is more costly in time and perhaps
169  more effortful overall, when compared to relying on cached incremental value.

170 Uncertainty in incremental values increases sensitivity to episodic value

171 To capture uncertainty about deck value on a trial-by-trial basis, we adopted a computational
172 model that tracks uncertainty during learning. We then used this model to test our central
173 hypothesis: that episodic memory is used more when posterior uncertainty about deck value is
174 high.

175 We began by hierarchically fitting two classes of incremental learning models to the behavior on
176 the deck learning task: a baseline model with a Rescorla-Wagner? style update (RW) and a
177 reduced Bayesian model*® (RB) that augments the RW learner with a variable learning rate, which
178 it modulates by tracking ongoing uncertainty about deck value. This approach—which builds on a
179 line of work applying Bayesian learning models to capture trial-by-trial modulation in uncertainty
180 and learning rates in volatile environments®®%"3%32-34_gllowed us to first assess incremental
181 learning free of any contamination due to competition with episodic memory. We then used the
182 parameters fit to this task for each participant to generate estimates of subjective deck value and
183 uncertainty around deck value, out of sample, in the deck learning and card memory task. These
184  estimates were then used alongside episodic value to predict choices on incongruent trials in the
185  deck learning and card memory task.

186 We first tested whether participants adjusted their rates of learning in response to uncertainty,
187 both between environments and due to trial-wise fluctuations in uncertainty about deck value. We
188 did this by comparing the ability of each combined choice model to predict participants’ decisions
189 out of sample. To test for effects between environments, we compared models that controlled
190  learning with either a single free parameter (for RW, a learning rate «; for RB, a hazard rate H
191 capturing the expected frequency of reversals) shared across both environments or models with
192 a separate free parameter for each environment. To test for trial-wise effects within environments,
193 we compared between RB and RW models: while RW updates deck value with a constant learning
194  rate, RB tracks ongoing posterior uncertainty about deck value (called relative uncertainty, RU)
195 and increases its learning rate when this quantity is high.

196 Participants were both sensitive to the volatility manipulation and incorporated uncertainty into
197 updating their beliefs about deck value. This is indicated by the fact that the RB combined choice
198 model that included a separate hazard rate for each environment (RB2H) outperformed both RW
199  models as well as the RB model with a single hazard rate (Figure 3A). Further, across the entire
200 sample, participants detected higher levels of volatility in the high volatility environment, as
201 indicated by the generally larger hazard rates recovered from this model in the high compared to
202 the low volatility environment (H.,,, = 0.04, 95% CI = [0.033, 0.048]; Hy;sn = 0.081, 95% CI =
203  [0.067, 0.097]; Figure 3B). Next, we examined the model’s ability to estimate uncertainty as a
204  function of reversals in deck luckiness. Compared to an average of the four trials prior to a
205  reversal, RU increased immediately following a reversal and stabilized over time (B:=¢ =
206  0.014, 95% CI = [—0.019, 0.048]; Be+1 = —0.242, 95% CI = [-0.276, —0.209]; Biiz =
207 —0.145, 95% CI = [-0.178, —0.112]; Be+z = —0.1, 95% CI = [—0.131, —0.07]; Biis =
208 —0.079, 95% CI = [—0.108, —0.048]; Figure 3C). As expected, RU was also, on average, greater
209 in the high compared to the low volatility environment (Sz,, = 0.015, 95% CI = [0.012, 0.018]).
210  Lastly, we were interested in assessing the relationship between reaction time and RU, as we
211 expected that higher uncertainty may be reflected in more time needed to resolve decisions. In
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212 line with this idea, RU was strongly related to reaction time such that choices made under more
213 uncertain conditions took longer (Bzy = 1.685, 95% CI = [0.823, 2.528]).
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215 Figure 3. Evaluating model fit and sensitivity to volatility. A) Expected log pointwise predictive density
216 from each model was calculated from a 20-Fold leave-N-subjects-out cross validation procedure and is
217 shown here subtracted from the best fitting model. The best fitting model was the reduced Bayesian (RB)
218 model with two hazard rates (2H) and sensitivity to the interaction between old object value and relative
219 uncertainty (RU) in the choice function. Error bars represent standard error around ELPD estimates. B)
220 Participants were sensitive to the relative level of volatility in each environment as measured by the hazard
221 rate. Group level parameters are superimposed on individual subject parameters. Wide error bars represent
222 80% posterior intervals and skinny error bars represent 95% posterior intervals. The true hazard rate for
223 each environment is shown on the interior of the plot. C) Relative uncertainty peaks on the trial following a
224 reversal and is greater in the high compared to the low volatility environment. Lines represent group means
225  and bands represent 95% confidence intervals.

226 Having established that participants were affected by uncertainty around beliefs about deck value,
227 we turned to examine our primary question: whether this uncertainty alters the use of episodic
228 memory in choices. We first examined effects of RU on our episodic choice index, which
229  measures choices consistent with episodic value on trials when it disagrees with incremental
230 learning. This analysis verified that episodic memory was used more on incongruent trial
231 decisions made under conditions of high RU (Bzy = 2.133, 95% CI = [0.7, 3.535]; Figure 4A). To
232 more directly test the prediction that participants would use episodic memory when uncertainty is
233 high, we included trial-by-trial estimates of RU in the RB2H combined choice model, which was
234 augmented with an additional free parameter to capture any change with RU in the effect of
235  episodic value on choice. Formally, this parameter measured an effect of the interaction between
236 these two factors, and the more positive this term the greater the impact of increased uncertainty
237 on the use of episodic memory. This new combined choice model further improved out-of-sample
238 predictions (RB2H+RU, Figure 3A). As predicted, while both incremental and episodic value were
239 used overall (Bpeckvaie = 0488, 95% CI = [0.411, 0.563];  Boiavame = 0.141, 95% CI =
240  [0.092, 0.19]), episodic value indeed impacted choices more when relative uncertainty was high
241 (Bowavae:ru = 0.091, 95% CI = [0.051, 0.13]; Figure 4B). This is consistent with our hypothesis
242 that episodic value was relied on more when beliefs about incremental value were uncertain.

243 The analyses above focus on uncertainty present at the time of retrieving episodic value because
244  this is what we hypothesized would drive competition in the reliance on either system at choice
245 time. However, in principle, reward uncertainty at the time an object is first encountered might
246 also affect its encoding, and hence its subsequent use in episodic choice when later retrieved®®.
247 To address this possibility, we looked at the impact of RU resulting from the first time an old
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248  object’s value was revealed on whether that object was later retrieved for a decision. Using our
249 episodic based choice index, there was no relationship between the use of episodic memory on
250 incongruent trial decisions and RU at encoding (Bgy = 0.622, 95% CI = [—0.832, 2.044];
251 Supplementary Figure 5). Similarly, we also examined effects of trial-by-trial estimates of RU at
252 encoding time in the combined choice model by adding another free parameter that captured
253  change with RU at encoding time in the effect of episodic value on choice. This parameter was
254  added alongside the effect of RU at retrieval time (from the previous analysis). While there was a
255  weak effect on choice (Boiavaiwe:ry = 0.042, 95% CI = [0.003, 0.079]; Supplementary Figure 5),
256 the inclusion of this parameter did not provide a better fit to subjects’ choices than the combined
257 choice model with only increased sensitivity due to RU at retrieval time (Supplementary Figure
258 5), and this result did not replicate in a separate sample (Boiavaiue:ry = 0.015, 95% CI =
259 [—0.026, 0.057]).

260 Episodic and incremental value sensitivity predicts subsequent memory performance

261 Having determined that decisions depended on episodic memory more when uncertainty about
262  incremental value was higher, we next sought evidence for similar effects on the quality of
263  episodic memory. Episodic memory is, of course, imperfect, and value estimates derived from
264  episodic memory are therefore also uncertain. More uncertain episodic memory should then be
265  disfavored while the influence of incremental value on choice is promoted instead. Although in
266  the present study we did not experimentally manipulate the strength of episodic memory, as our
267 volatility manipulation was designed to affect the uncertainty of incremental estimates, we did
268  measure memory strength in a subsequent memory test. Thus, we predicted that participants who
269  base fewer decisions on object value and more decisions on deck value should have poorer
270  subsequent memory for objects seen in the deck learning and card memory task.

271 Participants performed well above chance on the test of recognition memory (B, =
272 1.887, 95% CI = [1.782, 1.989]), indicating a general ability to discriminate objects seen in the
273 main task from those that were new. In line with the idea that episodic memory quality also impacts
274 the relationship between incremental learning and episodic memory, participants with better
275 subsequent recognition memory were more sensitive to episodic value (Bepsensitivity =
276 0.373, 95% CI = [0.273, 0.478]; Figure 5A), and these same participants were less sensitive to
277 incremental value (Bncsensitivicy = —0.276, 95% CI = [—0.383, —0.17]; Figure 5B). This result
278 provides further evidence for a trade-off between episodic memory and incremental learning, and
279 provides preliminary support for a broader version of our hypothesis, which is that uncertainty
280  about value provided by either memory system arbitrates the balance between them.

281  Replication of the main results in a separate sample

282  We repeated the tasks described above in an independent online sample of healthy young adults
283  (n=223) to test the replicability and robustness of our findings. We replicated all effects of
284  environment and relative uncertainty on episodic-based choice and subsequent memory (see
285  Supplementary Text and Supplementary Figures 1-4 for details).
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287 Figure 4. Evaluating effects of sensitivity to uncertainty on episodic choices. A) Participants’ degree
288  of episodic-based choice increased with greater RU as predicted by the combined choice model. Points
289  are group means and error bars are 95% confidence intervals. B) Estimates from the combined choice
290 model. Participants were biased to choose previously seen objects regardless of their value and were
291 additionally sensitive to their value. As hypothesized, this sensitivity was increased when relative
292 uncertainty was higher. There was no bias to choose one deck color over the other and participants were
293 highly sensitive to estimated deck value. Group level parameters are superimposed on individual subject
294 parameters. Wide error bars represent 80% posterior intervals and skinny error bars represent 95%
295 posterior intervals. Estimates are shown in standard units.

206 Discussion

297 Research on learning and value-based decision making has focused on how the brain
298  summarizes its experiences by error-driven incremental learning rules that, in effect, maintain the
299  running average of many experiences. While recent work has demonstrated that episodic memory
300 also contributes to value-based decisions®'™, many open questions remain about the
301 circumstances under which episodic memory is used. Here we used a task which directly
302  contrasts episodic and incremental influences on decisions and found that participants traded
303 these influences off rationally, relying more on episodic information when incremental summaries
304  were less reliable, i.e. more uncertain and based on fewer experiences. We also found evidence
305  for a complementary modulation of this episodic-incremental balance by episodic memory quality,
306  suggesting that more uncertain episodic-derived estimates may reduce reliance on episodic
307 value. Together, these results indicate that reward uncertainty modulates the use of episodic
308 memory in decisions, suggesting that the brain optimizes the balance between different forms of
309  learning according to volatility in the environment.
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311 Figure 5. Relationship between choice sensitivity and subsequent memory. A) Participants with
312 greater sensitivity to episodic value as measured by random effects in the combined choice model tended
313 to better remember objects seen originally in the card learning and deck memory task. B) Participants with
314  greater sensitivity to incremental value tended to have worse memory for objects from the card learning
315 and deck memory task. Points represent individual participants, lines are linear fits and bands are 95%
316 confidence intervals.

317 Our findings add empirical data to previous theoretical and computational work which has
318 suggested that decision making can greatly benefit from episodic memory for individual estimates
319  when available data are sparse. This most obviously arises early in learning a new task, but also
320 in task transfer, high-dimensional or non-Markovian environments, and (as demonstrated in the
321 current work) during conditions of rapid change'®*¢*. We investigate these theoretical predictions
322 in the context of human decision making, testing whether humans rely more heavily on episodic
323 memory when incremental summaries comprising multiple experiences are relatively poor. We
324  operationalize this tradeoff in terms of uncertainty, exemplifying a more general statistical scheme
325  for arbitrating between different decision systems by treating them as estimators of action value.
326 There is precedent for this type of uncertainty-based arbitration in the brain, with the most well-
327 known being the tradeoff between model-free learning and model-based learning'’*¢. Control
328  over decision making by model-free and model-based systems has been found to shift in
329  accordance with the accuracy of their respective predictions'®, and humans adjust their reliance
330  on either system in response to external conditions that provide a relative advantage to one over
331 the other’®*'. Tracking uncertainty provides useful information about when inaccuracy is
332 expected and helps to maximize utility by deploying whichever system is best at a given time. Our
333 results add to these findings and expand their principles to include episodic memory in this
334  tradeoff.

335 Indeed, one intriguing possibility is that there is more than just an analogy between the
336 incremental-episodic balance studied here and previous work on model-free versus model-based
337 competition. Incremental error-driven learning coincides closely with model-free learning in other
338 settings*'” and, although it has been proposed that episodic control constitutes a “third way”'®, it
339 is possible that behavioral signatures of model-based learning might instead arise from episodic
340  control via covert retrieval of individual episodes'®***** which contain much of the same
341 information as a cognitive map or world model. While the present study assesses single-event
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342 episodic retrieval more overtly, it remains an open question for future work the extent to which
343 these same processes, and ultimately the same episodic-incremental tradeoff, might also explain
344 model-based choice as it has been operationalized in other decision tasks. A related line of work
345 has emphasized a similar role for working memory in maintaining representations of individual
346 trials for choice®***'. Given the capacity constraints of working memory, we think it unlikely that
347 working memory can account for the effects shown here, which involve memory for dozens of
348 trial-unique stimuli maintained over tens of trials.

349 Further, our findings help to clarify the impacts of uncertainty, novelty, and prediction error on
350  episodic memory more broadly. Recent studies found that new episodes are more likely to be
351 encoded under novel circumstances while prior experiences are more likely to be retrieved when
352 conditions are familiar'''?%548 Shifts between these states of memory are thought to be
353  modulated by one’s focus on internal or external sources of information***® and signaled by
354  prediction errors based in episodic memory®'>*. Relatedly, unsigned prediction errors, which are
355  a marker of surprise, improve later episodic memory®>®, Findings have even suggested that
356 states of familiarity and novelty can bias decisions toward the use of single past experiences or
357 not'"'?. One alternative hypothesis that emerges from this work is that change-induced
358  uncertainty and novelty could exert similar effects on memory, such that novelty signaled by
359  expectancy violations increases encoding in a protracted manner that dwindles as uncertainty is
360 resolved, or the state of the environment becomes familiar. Our results do not support this
361 interpretation. Decisions were guided more by individual memories on more uncertain retrieval
362 trials with little effects of uncertainty at encoding time. It therefore seems likely that uncertainty
363  and novelty operate in concert but remain largely separate concepts, an interpretation supported
364 by recent evidence®.

365  This work raises further questions about the neurobiological basis of memory-based decisions
366  and the role of neuromodulation in signaling uncertainty and aiding memory. In particular, studies
367  have revealed unique functions for norepinephrine (NE) and acetylcholine (ACh) on uncertainty
368 and learning. These findings suggest that volatility, as defined here, is likely to impact the
369  noradrenergic modulatory system, which has been found to signal unexpected changes
370 throughout learning®34%%" Noradrenergic terminals densely innervate the hippocampus®, and
371 arole for NE in both explicit memory formation®® and retrieval® has been posited. Future studies
372 involving a direct investigation of NE or an indirect investigation using pupillometry?® may help to
373 isolate its contributions to the interaction between incremental learning and episodic memory in
374  decision making. ACh is also important for learning and memory, as memory formation is
375 facilitated by ACh in the hippocampus, which may contribute to its role in separating and storing
376 new experiences*®*°. In addition to this role, ACh is heavily involved in incremental learning and
377 has been widely implicated in signaling expected uncertainty, or noise®®®. ACh may therefore
378 play an important part in managing the tradeoff between incremental learning and episodic
379 memory. While we held the level of expected uncertainty constant throughout our task, altering
380  this quantity in future work may prove fruitful.

381  Separately, while in the present study we disadvantaged incremental learning relative to episodic
382 memory, similar predictions about their balance could be made by instead preferentially
383  manipulating episodic memory. There are, for instance, clear theoretical benefits to deploying
384  episodic memory under other task circumstances in which incremental learning is generally ill
385 suited, such as in environments that are high dimensional or require planning far into the future®.
386 In principle, individual past experiences can be precisely targeted in these situations depending
387  on the relevance of their features to decisions in the present. Recent advances in computational
388  neuroscience have, for example, demonstrated that artificial agents endowed with episodic
389 memory are able to exploit its rich representation of past experience to make faster, more effective
390  decisions'®*®3" While here we provided episodic memory as an alternative source of value to be
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391 used in the presence of uncertainty about incremental estimates, future studies making use of
392 paradigms tailored more directly toward episodic memory’s assets will help to further elucidate
393 how and when the human brain recruits episodic memory for decisions.

394 In conclusion, we have demonstrated that uncertainty induced by volatile environments impacts
395 whether incremental learning or episodic memory is recruited for decisions. Greater uncertainty
396 increased the likelihood that single experiences were retrieved for decision making. This effect
397 suggests that episodic memory aids decision making when simpler sources of value are less
398  accurate. By focusing on uncertainty, our results tie together disparate findings about when
399 episodic memory is recruited for decisions and shed light on the exact circumstances under which
400 the computational expense of episodic memory is worthwhile.

401 Materials and Methods

402  Experimental Tasks

403  The primary experimental task used here builds upon a paradigm previously developed by our
404 lab" to successfully measure the relative contribution of incremental and episodic memory to
405  decisions (Figure 1A). Participants were told that they would be playing a card game where their
406  goal was to win as much money as possible. Each trial consisted of a choice between two decks
407 of cards that differed based on their color (blue or orange). Participants had two seconds to decide
408  between the decks and, upon making their choice, a green box was displayed around their choice
409  until the full two seconds had passed. The outcome of each decision was then immediately
410  displayed for one second. Following each decision, participants were shown a fixation cross
411 during the intertrial interval period which varied in length (mean = 1.5 seconds, min = 1 seconds,
412 max = 2 seconds). Decks were equally likely to appear on either side of the screen (left or right)
413 on each trial and screen side was not predictive of outcomes. Participants completed a total of
414 320 trials and were given a 30 second break every 80 trials.

415  Participants were made aware that there were two ways they could earn bonus money throughout
416  the task, which allowed for the use of incremental and episodic memory respectively. First, at any
417 point in the experiment one of the two decks was “lucky”, meaning that the expected value (V) of
418 one deck color was higher than the other (Vyy,ck,=73¢, Vyniucky=27¢). Outcomes ranged from $0
419 to $1 in increments of 20¢. Critically, the mapping from V to deck color underwent an unsignaled
420  reversal periodically throughout the experiment (Figure 1B), which incentivized participants to
421 utilize each deck’s recent reward history in order to determine the identity of the currently lucky
422 deck. Each participant completed the task over two environments (with 160 trials in each) that
423 differed in their relative volatility: a low volatility environment with eight V reversals, occurring
424 every 20 trials on average, and a high volatility environment with sixteen V reversals, occurring
425  every 10 trials on average. Participants were told that they would be playing in two different
426  casinos and that in one casino deck luckiness changed less frequently while in the other deck
427 luckiness changed more frequently. Participants were also made aware of which casino they were
428  currently in by a border on the screen, with a solid black line indicating the low volatility casino
429  and a dashed black line indicating the high volatility casino. Environment order was randomized
430  for each participant.

431 Second, in order to allow us to assess the use of episodic memory throughout the task, each card
432 within a deck featured an image of a trial-unique object that could re-appear once throughout the
433 experiment after initially being chosen. Participants were told that if they encountered a card a
434  second time it would be worth the same amount as when it was first chosen, regardless of whether
435 its deck color was currently lucky or not. On a given trial t, cards chosen once from trials t — 9
436 through t — 30 had a 60% chance of reappearing following a sampling procedure designed to
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437 prevent each deck’s expected value from becoming skewed by choice, minimize the correlation
438 between the expected value of previously seen cards and deck expected value, and ensure that
439  choosing a previously selected card remained close to 50¢.

440  Participants also completed a separate decision making task prior to the combined deck learning
441 and card memory task that was identical in design but lacked trial-unique objects on each card.
442 This task, the deck learning task, was designed to isolate the sole contribution of incremental
443 learning to decisions and to allow participants to gain prior experience with each environment’s
444 volatility level. Participants completed the combined deck learning and card memory task
445 immediately following completion of the deck learning task. Instructions were presented
446 immediately prior to each task and participants completed five practice trials and a comprehension
447 quiz prior to starting each.

448 Following completion of the combined deck learning and card memory task, we tested
449  participants’ memory for the trial-unique objects. Participants completed 80 (up to) three part
450  memory trials. An object was first displayed on the screen and participants were asked whether
451 or not they had previously seen the object and were given five response options: Definitely New,
452 Probably New, Don’t Know, Probably Old, Definitely Old. If the participant indicated that they had
453 not seen the object before or did not know, they moved on to the next trial. If, however, they
454  indicated that they had seen the object before they were then asked if they had chosen the object
455 or not. Lastly, if they responded that they had chosen the object, they were asked what the value
456 of that object was (with options spanning each of the six possible object values between $0-1).
457 Of the 80 trials, 48 were previously seen objects and 32 were new objects that had not been seen
458  before. Of the 48 previously seen objects, half were sampled from each environment (24 each)
459  and, of these, an equal number were taken from each possible object value (with 4 from each
460  value in each environment). As with the decision-making tasks, participants were required to pass
461 a comprehension quiz prior to starting the memory task.

462 All tasks were programmed using the jsPsych JavaScript library®® and hosted on a Google Cloud
463  server running Apache and the Ubuntu operating system. Object images were selected from
464 publicly available stimulus sets®”% for a total of 665 unique objects that could appear in each run
465  of the experiment.

466  Participants

467 Atotal of 418 participants between the ages of 18 - 35 were recruited for our main sample through
468 Amazon Mechanical Turk using the Cloud Research Approved Participants feature®®. Recruitment
469  was restricted to the United States and nine dollars of compensation was provided following
470 completion of the 50 minute experiment. Participants were also paid a bonus in proportion to their
471 final combined earnings on both the training task and the combined deck learning and card
472 memory task (total earnings / 100). Before starting each task, all participants were required to
473 score 100% on a quiz that tested their comprehension of the instructions and were made to repeat
474  the instructions until this score was achieved. Informed consent was obtained with approval from
475 the Columbia University Institutional Review Board.

476 From the initial pool of participants, we excluded those who did not meet our pre-defined
477 performance criteria. Participants were excluded from analysis on the deck learning and card
478 memory task if they i) responded to fewer trials than the group average minus one standard
479 deviation on the deck learning and card memory task, ii) responded faster than the group average
480  minus one standard deviation on this task, or iii) did not demonstrate faster learning in the high
481 compared to the low volatility environment on the independent deck learning task. Our reasoning
482 for this latter decision was that it is only possible to test for effects of volatility on episodic memory
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483  recruitment in participants who were sensitive to the difference in volatility between the
484 environments, and it is well-established that a higher learning rate should be used in more volatile
485  conditions?®®. Further, our independent assessment of deck learning was designed to avoid issues
486  Of selection bias in this procedure. We measured the effect of environment on learning by fitting
487  a mixed effects logistic regression model to predict if subjects chose the lucky deck up to five
488 trials after a reversal event in the deck learning task. For each subject s and trial t, this model
489  predicts the probability that the lucky deck was chosen:

490 p(ChooseLucky) = a(Boy + b sr) + TSinceRev, X Envy(By + bys[t1))

491 o(x) = e
492 where s are fixed effects, bs are random effects, TSinceRev is the trial number coded as distance
493  from a reversal event (1-5), and Env is the environment a choice was made in coded as -0.5 and
494 0.5 for the low and high volatility environments respectively. Participants with positive values of
495 by can be said to have chosen the lucky deck more quickly following a reversal in the high
496  compared to the low volatility environment, and we included only these participants in the rest of
497 our analyses. A total of 254 participants survived after applying these criteria.

498  Deck Learning and Card Memory Task Behavioral Analysis

499  We first analyzed the extent to which previously seen (old) objects were used in the combined
500 deck learning and card memory task by fitting the following mixed effects regression model to
501 predict whether an old object was chosen:

502 p(Choose0ld) = a(By + bos[¢) + OldValy(By + by sp¢)) + TrueDeckVali (B, + by siry))

503  where 0ldVal is the centered value (between -0.5 and 0.5) of an old object. We additionally
504  controlled for the influence of deck value on this analysis by adding a regressor, TrueDeckVal,
505  which is the centered true average value of the deck on which each object was shown. Trials not
506  featuring old objects were dropped from this analysis.

507  We then similarly assessed the extent to which participants engaged in incremental learning
508  overall by looking at the impact of reversals on incremental accuracy directly. To do this, we
509  grouped trials according to their distance from a reversal, up to four trials prior to (t = —4: —1),
510  during (t = 0), and after (t = 1:4) a reversal occurred. We then dummy coded them to measure
511 their effects on incremental accuracy separately. We also controlled for the influence of old object
512 value in this analysis by including in this regression the coded value of a previously seen object
513 (ranging from 0.5 if the value was $1 on the lucky deck or $0 on the lucky deck to -0.5 if the value
514 was $0 on the lucky deck and $1 on the unlucky deck), for a total of 18 estimated effects:

515 p(ChooseLucky) = 0(T-4.4(B1:9 + b1.9se)) + T-a:4 X 0ldVal;(Bro:18 + bro:18,5[¢]))

516  To next focus on whether there was an effect of environment on the extent to which the value of
517 old objects was used for decisions, we restricted all further analyses involving old objects to
518 “incongruent” trials, which were defined as trials on which either the old object was high valued
519 (>50¢) and on the unlucky deck or low valued (<50¢) and on the lucky deck. To better capture
520  participants’ beliefs, deck luckiness was determined by the best-fitting incremental learning model
521 (see next section) rather than using the experimenter-controlled ground truth: whichever deck had
522 the higher model-derived value estimate on a given trial was labeled the lucky deck. Our logic in
523 using only incongruent trials was that choices that stray from choosing whichever deck is more
524  valuable should reflect choices that were based on the episodic value for an object. Lastly, we
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525 defined our outcome measure of episodic based choice index (EBCI) to equal 1 on trials where
526  the “correct” episodic response was given (i.e. high valued objects were chosen and low valued
527 object were avoided), and 0 on trials where the “correct” incremental response was given (i.e. the
528  opposite was true). A single mixed effects logistic regression was then used to assess possible
529  effects of environment Env on EBCI:

530 P(EBCI) = a(Bo + bosje) + Enve(B1 + byspe)))
531 where here Env was coded identically to the above analyses.

532  To assess the effect of episodic-based choices on reaction time (RT), we used the following mixed
533  effects linear regression model:

534 RTt = ﬁo + bO,S[t] + EBCIt(ﬁl + bl,S[t]) + SWltCht(ﬁz + bZ,S[t]) + ChosenValt(ﬁ3 + b3,5[t])

535  where EBCI was coded as -0.5 for incremental-based trials and 0.5 for episodic-based trials. We
536  also included covariates to control for two other possible effects on RT. The first, Switch, captured
537 possible RT slowing due to switching from choosing one deck to the other and was coded as -0.5
538  if a stay occurred and 0.5 if a switch occurred. The second, ChosenVal, captured any effects due
539  to the value of the option that may have guided choice, and was set to be the value of the
540  previously seen object on episodic-based trials and the running average true value on
541 incremental-based trials.

542 For these regression models as well as those described in the following sections, fixed effects are
543  reported in the text as the median of each parameter’s marginal posterior distribution alongside
544  95% credible intervals, which indicate where 95% of the posterior density falls. Parameter values
545  outside of this range are unlikely given the model, data, and priors. Thus, if the range of likely
546  values does not include zero, we conclude that a meaningful effect was observed.

547  Incremental Learning Models

548 We next assessed the performance of several reinforcement learning models on our task in order
549  to best capture incremental learning. A detailed description of each model can be found in the
550  Supplementary Methods. In brief, these included one model that performed Rescorla-Wagner?
551 style updating with both a single (RW1a) and a separate (RW2«) fixed learning rate for each
552 environment, and two reduced Bayesian (RB) models* with both a single (RB1H) and a separate
553  hazard rate for each environment (RB1H). Models were fit to the deck learning task (see
554  Posterior Inference and Supplementary Methods) and used to generate subject-wise
555  estimates of deck value, and where applicable, uncertainty in the combined deck learning and
556  card memory task.

557 Combined Choice Models

558  After fitting the above hierarchical models to the deck learning task, parameter estimates for each
559  subject were then used to generate trial-by-trial timeseries for deck value and uncertainty (where
560  applicable) throughout performance on the combined deck learning and card memory task. Mixed
561  effects Bayesian logistic regressions for each incremental learning model were then used to
562  capture the effects of multiple memory-based sources of value on incongruent trial choices in this
563  task. For each subject s and trial t, these models can be written as:
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p(ChooseOrange) = o (By + bospe) +
DeckVal,(By + byspey) +
Oldy (B2 + base)) +
OldVal,(Bs + bz spt)))

564

565  where the intercept captures a bias toward choosing either of the decks regardless of outcome,
566  DeckVal is the deck value estimated from each model, the effect of 0ld captures a bias toward
567 choosing a previously seen card regardless of its value, and 0ldVal is the coded value of a
568 previously seen object (ranging from 0.5 if the value was $1 on the orange deck or $0 on the blue
569  deck to -0.5 if the value was $0 on the orange deck and $1 on the blue deck). An additional fifth
570  regression that also incorporated our hypothesized effect of increased sensitivity to old object
571 value when uncertainty about deck value is higher was also fit. This regression was identical to
572 the others but included an additional interaction effect of uncertainty and old object value:
573 OldVal; X Unci(Bs + bss) and used the RB2H model's DeckVal estimate alongside its estimate

574 of relative uncertainty (RU) to estimate the effect of 0ldVal x Unc. RU was chosen over CPP
575  because it captures the reducible uncertainty about deck value, which is the quantity we were
576  interested in for this study. Prior to fitting the model, all predictors were z scored in order to report
577 effects in standard units.

578  Relative Uncertainty Analyses

579  We conducted several other analyses that tested effects on or of relative uncertainty (RU)
580  throughout the combined deck learning and card memory task. RU was mean-centered in each
581  of these analyses. First, we assessed separately the effect of RU at retrieval time on EBCI using
582 a mixed effects logistic regression:

583 p(EBCI) = 0 (Bo + bospeg + RUL(By + by sp)) + RUZ (B2 + bys1)))

584  An additional binomial term was included in this model to allow for the possibility that the effect of
585  RU is nonlinear, although this term was found to have no effect. The effect of RU at encoding
586  time was assessed using an identical model but with RU at encoding included instead of RU at
587  retrieval.

588  Next, to ensure that the RB model captured uncertainty related to changes in deck luckiness, we
580  tested for an effect of environment on RU using a mixed effects linear regression:

590 RUy = Bo+ bospe) + Enve(By + by ge))

5901 We then also looked at the impact of reversals on RU. To do this, we calculated the difference in
592  RU on reversal trials and up to four trials following a reversal from the average RU on the four
593 trials immediately preceding a reversal. Then, using a dummy coded approach similar to that used
594  for the model testing effects of reversals on incremental accuracy, we fit the following mixed
595  effects linear regression with 5 effects:

596 RUDifference; = To.4(B1:5 + b1:ss(e))
597 We also assessed the effect of RU on reaction time using another mixed effects linear regression:

598 RT, = Bo + bospe) + RU(B1 + byspe)
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599  Subsequent Memory Task Behavioral Analysis

600 Performance on the subsequent memory task was analyzed in two ways. First, recognition
601 memory was assessed by computing the signal detection metric d prime for each participant
602 adjusted for extreme proportions using a log-linear rule’. The relationship with d prime and
603  sensitivity to both episodic value and incremental value was then determined using simple linear
604  regressions of the form dprimes = By + Sensitivity;(f;) where Sensitivity was either the random
605 effect of episodic value from the combined choice model for each participant or the random effect
606  of incremental value from the combined choice value for each participant.

607  Posterior Inference and Model Comparison

608  Parameters for all incremental learning models were estimated using hierarchical Bayesian
609 inference such that group-level priors were used to regularize subject-level estimates. This
610  approach to fitting reinforcement learning models improves parameter identifiability and predictive
611 accuracy’'. The joint posterior was approximated using No-U-Turn Sampling’? as implemented in
612  stan’®. Four chains with 2000 samples (1000 discarded as burn-in) were run for a total of 4000
613  posterior samples per model. Chain convergence was determined by ensuring that the Gelman-
614  Rubin statistic R was close to 1. A full description of the parameterization and choice of priors for
615  each model can be found in the Supplementary Methods. All regression models were fit using
616  No-U-Turn Sampling in Stan with the same number of chains and samples. Default weakly-
617  informative priors implemented in the rstanarm package’ were used for each regression model.
618  Model fit for the combined choice models was assessed by separating each dataset into 20 folds
619  and performing a cross validation procedure by leaving out N/20 subjects per fold where N is the
620 number of subjects in each sample. The expected log pointwise predictive density (ELPD) was
621  then computed and used as a measure of out-of-sample predictive fit for each model.

622 Replication

623  We identically repeated all procedures and analyses applied to the main sample on an
624  independently collected replication sample. A total of 401 participants were again recruited
625  through Amazon Mechanical Turk and 223 survived exclusion procedures carried out identically
626  to those used for the main sample.

627  Citation race and gender diversity statement

628  The gender balance of papers cited within this work was quantified using databases that store
629  the probability of a first name being carried by a woman. Excluding self-citations to the first and
630 last authors of the current paper, the gender breakdown of our references is 12.16%
631 woman(first)/woman(last), 6.76% man/woman, 23.44% woman/man, and 57.64% man/man. This
632 method is limited in that a) names, pronouns, and social media profiles used to construct the
633  databases may not, in every case, be indicative of gender identity and b) it cannot account for
634  intersex, non-binary, or transgender people. Second, we obtained predicted racial/ethnic category
635  of the first and last author of each reference using databases that store the probability of a first
636  and last name being carried by an author of color. By this measure (and excluding self-citations),
637 our references contain 9.55% author of color (first)/author of color(last), 19.97% white
638  author/author of color, 22.7% author of color/white author, and 47.78% white author/white author.
639  This method is limited in that a) using names and Florida Voter Data to make the predictions may
640  not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous and mixed-race
641  authors, or those who may face differential biases due to the ambiguous racialization or
642  ethnicization of their names.
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Supplementary Figure 1. Recreation of Figure 2 in the main text using the replication dataset. A)
Participants’ choices demonstrate sensitivity to the value of old objects. B) Reversals in deck luckiness
altered choice such that the currently lucky deck was chosen less following a reversal. C) On incongruent
trials, choices were more likely to be based on episodic memory in the high compared to the low volatility
environment. D) Reaction time was longer for incongruent choices based on episodic memory compared
to those based on incremental learning.
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832 Supplementary Figure 2. Recreation of Figure 3 in the main text using the replication dataset. A) The best
833 fitting model was again the reduced Bayesian (RB) model with two hazard rates (2H) and sensitivity to the
834 interaction between old object value and relative uncertainty (RU) in the choice function. B) Participants
835  were affected by the relative level of volatility in each environment as measured by the hazard rate. Group
836 level parameters are superimposed on individual subject parameters. C) Relative uncertainty peaks on the
837 trial following a reversal and is greater in the high compared to the low volatility environment.
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840  Supplementary Figure 3. Recreation of Figure 4 in the main text using the replication dataset. A)
841 Participants’ degree of episodic-based choice increases with greater RU. B) Estimates from the combined
842  choice model. Participants were biased to choose previously seen objects regardless of their value and
843  were additionally sensitive to their value. As hypothesized, this sensitivity was increased when relative
844

uncertainty was higher. There was no bias to choose one deck color over the other and participants were
845  highly sensitive to estimated deck value.
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848 Supplementary Figure 4 Recreation of Figure 5 in the main text using the replication dataset. A)
849 Participants with greater sensitivity to episodic value tended to better remember objects from the deck
850 learning and card memory task. B) Participants with greater sensitivity to incremental value tended to have

851 worse memory for objects from the card learning and deck memory task.
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853

854  Supplementary Figure 5. Results of relative uncertainty (RU) at encoding time on episodic-based choice
855 in the main (A,B,C) and replication (D,E,F) sample. A) There was no relationship between RU at encoding
856  and the degree to which participants based decisions on episodic value. B) Estimates from the combined
857 choice model including both effects of RU at retrieval time and RU at encoding time. Relative to the effect
858  of the interaction between RU at retrieval time and old object value, the equivalent effect for RU at encoding
859  time was small in the main sample. C) Expected log pointwise predictive density for the combined choice
860  model including only an effect of the interaction between RU at retrieval time and old object value (presented
861 in the text) and the model also including the interaction between RU at encoding time and old object value.
862 Including RU at encoding time did not improve model performance. D) There was again no relationship
863 between RU at encoding and episodic-based choice in the replication sample. E) In the replication sample,
864  there was no effect of the interaction between RU at encoding and old object value on choice behavior. F)
865 Including RU at encoding time again did not improve model performance in the replication sample.
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867 Replication Results

868  Here we repeat and describe all analyses reported in the main text with replication sample. All
869  results are reported in the same order as in the main text.

g70  Episodic memory is used more under conditions of greater uncertainty

871 Participants in the replication sample were substantially more likely to chose high-valued old
872 objects compared to low-valued old objects (Boiavawe = 0.723, 95% CI = [0.624, 0.827];
873 Supplementary Figure 1A). Participants also altered their behavior in response to reversals in
874  deck value. The higher-valued (lucky) deck was chosen more frequently on trials immediately
875 preceding a reversal (Bi_4 = 0.095, 95% CI = [0.016, 0.176]; f;—3 = 0.128, 95% CI =
876 [0.047, 0.213]; f;—» = 0.168, 95% CI = [0.085, 0.251]; B;—1 = 0.161, 95% CI = [0.075, 0.25];
877 Supplementary Figure 1B). This tendency was then disrupted by trials on which a reversal
878 occurred (B=o = —0.373, 95% CI = [—0.464, —0.286]), with performance quickly recovering as
879 the newly lucky deck became chosen more frequently on the trials following a reversal (B:;1 =
880  —0.256, 95% CI = [-0.337, —0.175]; Biy2 = —0.144, 95% CI = [-0.22, —0.064]; t + 3: Biy3 =
881 —0.024, 95% CI = [—0.102, 0.053]; B¢+4 = 0.113, 95% CI = [0.055, 0.174]). Thus, participants in
882  the replication sample were also sensitive to reversals in deck value, thereby indicating that they
883  engaged in incremental learning throughout the task.

884  Participants in the replication sample also based more decisions on episodic value in the high
gg5  volatility environment compared to the low volatility environment (Bg,, = 0.145, 95% CI =
886  [0.063, 0.229]; Supplementary Figure 1C). Furthermore, decisions based on episodic value
887 again took longer (Brgcr = 41.38, 95% CI = [30.823, 51.707]; Supplementary Figure 1D).

888 Uncertainty increases sensitivity to episodic value

889  In the replication sample, the reduced Bayesian model with two hazard rates was again the best
goo  fitting model (Supplementary Figure 2A). Participants detected higher levels of volatility in the
891 high compared to the low volatility environment, as indicated by the generally larger hazard rates
892  recovered from the high compared to the low volatility environment (8.,,, = 0.048, 95% CI =
893 [0.038, 0.06]; Byign = 0.071, 95% CI = [0.058, 0.088]; Supplementary Figure 2B). Compared to
894  an average of the four trials prior to a reversal, RU also increased immediately following a reversal
895 and stabilized over time (B;-o =0.021, 95% CI = [-0.014, 0.056]; P;+1 = —0.22, 95% CI =
896  [—0.253, —0.185]; Bi+2 = —0.144, 95% CI = [-0.178, —0.11]; Bi+3 = —0.098, 95% CI =
897  [—0.129, —0.064]; Bi14 = —0.05, 95% CI = [—0.083, —0.019]; Supplementary Figure 2C). RU
898  was again also, on average, greater in the high compared to the low volatility environment (8z,, =
899  0.01, 95% CI = [0.007, 0.013]) and related to reaction time such that choices made under more
900  uncertain conditions took longer (Bzy = 1.364, 95% CI = [0.407, 2.338]).

901  Episodic memory was also used more on incongruent trial decisions made under conditions of
902 high RU (Bry = 2.718, 95% CI = [1.096, 4.436]; Supplementary Figure 3A). We again fit the
903  combined choice model to the replication sample and found the following. Participants again used
904  both sources of value throughout the task: both deck value as estimated by the model
905  (Bpeckvaie = 042, 95% CI = [0.336, 0.505]; Supplementary Figure 3B) and the episodic value
906 from old objects (Boiavawe = 0.188, 95% CI = [0.13, 0.245]) strongly impacted choice. Lastly,
907  episodic value again impacted choices more when relative uncertainty was high (Boiavaiue:ry =
98  0.069, 95% CI = [0.024, 0.113]).

909  Finally, there was again no relationship between the use of episodic memory on incongruent trial
910  decision and RU at encoding (Bzy = 0.99, 95% CI = [—-0.642, 2.576]; Supplementary Figure 5).
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911 Unlike in the main sample, however, including a sixth parameter to assess increased sensitivity
912 to old object value due to RU at encoding time did not have an effect in the combined choice
913 model (Boiavaiue:ry = 0.015, 95% CI = [—0.026, 0.057]; Supplementary Figure 5), which is also
914  reported in the main text. As with the main sample, including this parameter did not provide a
915  better fit to subjects’ choices than the combined choice model with only increased sensitivity due
916  to RU at retrieval time.

917 Episodic and Incremental value sensitivity predicts subsequent memory performance

918  Participants in the replication sample again performed well above chance on the test of
919 recognition memory (S, = 1.874, 95% CI = [1.772, 1.977]). Participants with better subsequent
920  recognition memory were again more sensitive to episodic value (Bgpsensitivicy = 0.334, 95% CI =

921 [0.229, 0.44]; Supplementary Figure 4A), and these same participants were again less sensitive
922 to incremental value (Bincsensitiviey = —0.124, 95% CI = [—0.238, —0.009]; Supplementary
923  Figure 4B).

924  Supplementary Methods
925  Description of Incremental Learning Models
926  Rescorla Wagner (RW)

927 The first model we considered was a standard model-free reinforcement learner that assumes a
928  stored value (Q) for each deck is updated over time. Q is then referenced on each decision in
929  order to guide choices. After each outcome o;, the value for the orange deck Q, is updated
930  according to the following rule' if the orange deck chosen:

931 Qo,t+1 = Qo + a(or — Qot)

932  And is not updated if the blue deck is chosen:

933 Qo,t+1 = Qo

934  Likewise, the value for the blue deck Qg is updated equivalently. Large differences between
935  estimated value and outcomes therefore have a larger impact on updates, but the overall degree
936  of updating is controlled by the learning rate, a. Two versions of this model were fit, one with a
937 single learning rate (RW1a), and one with two learning rates (RW2a), a;,,, OF apign, depending
938 on which environment the current trial was completed in. These parameters are constrained to lie
939  between 0 and 1. A separate learning rate was used for each environment in the (RW2a) version
940  to capture the well-established idea that a higher learning rate should be used in more volatile
941 conditions?.

942  Reduced Bayesian (RB)

943  The second model we considered was the reduced Bayesian (RB) model developed by Nassar
944  and colleagues®. This model tracks and updates its belief that the orange deck is lucky based on
945  trialwise outcomes, o;, using the following prediction error-based update:

946 By1 = By + ai(or — By)

947 This update is identical to that used in the RW model, however the learning rate «; is itself updated
948  following each outcome according to the following rule:

949 at = ‘Qt + (1 - ‘Qt)Tt
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950  where (2, is the probability that a change in deck luckiness has occurred on the most recent trial
951  (the change point probability or CPP) and 7, is the imprecision in the model’s belief about deck
952 value (the relative uncertainty or RU). The learning rate therefore increases whenever CPP or RU
953  increase. CPP can be written as:

0 - U(o,|0,1)H
7 U0, |0,1)H + N (0| By, 02)(1 — H)

954

955  where H is the hazard rate or probability of a change in deck luckiness. Two versions of this model
956  were fit, one with a single hazard rate (RB1H), and one with two hazard rates (RB2H), H,,,, and
957  Hpign, depending on the environment the current trial was completed in. In this equation, the
958  numerator represents the probability that an outcome was sampled from a new average deck
959  value, whereas the denominator indicates the combined probability of a change and the
960  probability that the outcome was generated by a Gaussian distribution centered around the most
961  recent belief about deck luckiness and the variance of this distribution, o2. Because CPP is a
962  probability, it is constrained to lie between 0 and 1. In our implementation, H was a free parameter
963  (see Posterior Inference section below) and 2, was initialized to 1.

964 RU, which is the uncertainty about deck value relative to the amount of noise in the environment,
965 is quite similar to the Kalman gain used in Kalman filtering*:

966 kt = .QtO'Z + (1 - .Qt)TtO-Z + Qt(l - .Qt)((ot - Bt)(l - Tt))z
967 T =3 52

968  where o2 is the observation noise and was here fixed to the true observation noise (0.33). k,
969  consists of three terms: the first is the variance of the deck value distribution conditional on a
970  change point, the second is the variance of the deck value distribution conditional on no change,
971 and the third is the variance due to the difference in means between these two distributions. These
o72  terms are then used in the equation for 7,,, to provide the uncertainty about whether an outcome
973 was due to a change in deck value or the noise in observations that is expected when a change
974  point has not occurred. Because this model does not follow the two-armed bandit assumption of
975  our task (that is, that outcomes come from two separate decks), all outcomes were coded in terms
o76  of the orange deck. For example, this means that an outcome worth $1 on the orange deck is
977 treated the same as an outcome worth $0 on the blue deck by this model. While this description
o78  represents a brief overview of the critical equations of the reduced Bayesian model, a full
979  explanation can be found in Nassar et al., 20103

980 Softmax Choice

981  All incremental learning models were paired with a softmax choice function in order to predict
982  participants’ decisions on each trial:

1

983 O = 1 + e~ (BotB1Ve)

984  where 6, is the probability that the orange deck was chosen on trial t. This function also consists
985  of two inverse temperature parameters: 8, to model an intercept and 8; to model the slope of the
986  decision function related to deck value. The primary difference for each model was how V; is
987 computed: RW (V, = Qo — Qp:); RB (V; = B;). In each of these cases, a positive V, indicates
988  evidence that the orange deck is more valuable while a negative V; indicates evidence that the
989  blue deck is more valuable.
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990  Posterior Inference
991  For all incremental learning models, the likelihood function can be written as:
992 cst ~ Bernoulli(8s,)

993  where cg, is 1 if subject s chose the orange deck on trial t and 0 if blue was chosen. Following
994  the recommendations of Gelman and Hill, 2006° and van Geen and Gerraty, 2021, g, is drawn
995  from a multivariate normal distribution with mean vector iz and covariance matrix 2;:

996 Bs ~ MultivariateNormal(ug, Xg)
997 where X; is decomposed into a vector of coefficient scales 7; and a correlation matrix (g via:
998 2p = diag(tp) X g X diag(tg)

999 Weakly-informative hyperpriors were then set on the hyperparameters iz, 2z and 74:

1000 ug ~ N(0,5)
1001 Tg ~ Cauchy*(0,2.5)
1002 Qg ~ LK]Corr(2)

1003  These hyperpriors were chosen for their respective desirable properties: the half cauchy is
1004  bounded at zero and has a relatively heavy tail which is useful for scale parameters, the LKJ prior
1005 with shape = 2 concentrates some mass around the unit matrix thereby favoring less correlation’,
1006  and the normal is a standard choice for regression coefficients.

1007  Because sampling from heavy tailed distributions like the Cauchy is difficult for Hamiltonian Monte
1008  Carlo®, a reparameterization of the Cauchy distribution was used here. 73 was thereby defined as

1009  the transform of a uniformly distributed variable 7;z_u using the Cauchy inverse cumulative
1010 distribution function such that:

1
1011 Fl(tp_u) = tp(n(tp_u — E))
1012 g_u ~ U0,1)

1013 In addition, a multivariate non-centered parameterization specifying the model in terms of the
1014  Cholesky factorized correlation matrix was used in order to shift the data’s correlation with the
1015  parameters to the hyperparameters, which increases the efficiency of sampling the parameters
1016  of hierarchical models®. The full correlation matrix Nz was replaced with a Cholesky factorized

1017 ~ parameter LﬂB such that:

1018 P =LQB><L§B

1019 Bs = up + (diag(t) X Lo, X z2)T
1020 LQB ~ LK]Cholesky(2)

1021 z~WN(0,1)
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where multiplying the Cholesky factor of the correlation matrix by the standard normally distributed
additional parameter z and adding the group mean p; creates a g vector distributed identically
to the original model.

While the choice function is identical for each model, the parameters used in generating deck
value differ for each. All were fit hierarchically and were modeled with the following priors and
hyperpriors:

Rescorla Wagner with a single learning rate (RW1a):

a~ f(al,a2)
al ~ N(0,5)
a2 ~ N(0,5)

Rescorla Wagner with two learning rates (RW2a):

Aow ~ ﬁ(allow' azlow)
Anhigh ~ B@lhign, A2hign)
alyw ~ N(0,5)

a2;ow ~ N(0,5)

alpign ~ N(0,5)

aZpign ~ N (0,5)

Reduced Bayes with a single hazard rate (RB1H):

H ~ B(h1,h2)
hl ~ N'(0,5)
h2 ~ N'(0,5)

Reduced Bayes with two hazard rates (RB2H):

Hiow ~ ﬁ(hllowv hzlow)
Hhigh ~ ﬁ(hlhighr hzhigh)
h1l,,, ~ N (0,5)

h2,,, ~ N (0,5)

h1pign ~ N (0,5)

h2pign ~ N (0,5)
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