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ABSTRACT 85 

 86 

Protein phosphorylation is one of the most widespread post-translational modifications in biology. 87 

With the advent of mass spectrometry-based phosphoproteomics, more than 200,000 sites of serine 88 

and threonine phosphorylation have been reported, of which several thousand have been associated 89 

with human diseases and biological processes. For the vast majority of phosphorylation events, it 90 

is not yet known which of the more than 300 protein Ser/Thr kinases encoded in the human genome 91 

is responsible. Here, we utilize synthetic peptide libraries to profile the substrate sequence 92 

specificity of nearly every functional human Ser/Thr kinase. Viewed in its entirety, the substrate 93 

specificity of the kinome was substantially more diverse than expected and was driven extensively 94 

by negative selectivity. Our kinome-wide dataset was used to computationally annotate and 95 

identify the most likely protein kinases for every reported phosphorylation site in the human 96 

Ser/Thr phosphoproteome. For the small minority of phosphosites where the protein kinases 97 

involved have been previously identified, our predictions were in excellent agreement. When this 98 

approach was applied to examine the signaling response of tissues and cell lines to hormones, 99 

growth factors, targeted inhibitors, and environmental or genetic perturbations, it revealed 100 

unexpected insights into pathway complexity and compensation. Overall, these studies reveal the 101 

full extent of substrate specificity of the human Ser/Thr kinome, illuminate cellular signaling 102 

responses, and provide a rich resource to link unannotated phosphorylation events to biological 103 

pathways. 104 

 105 

INTRODUCTION 106 

 107 

Phosphorylation of proteins on serine, threonine, tyrosine, and histidine residues controls 108 

nearly every aspect of eukaryotic cellular function1-4. Misregulation of protein kinase signaling 109 

commonly results in human disease5-8. Deciphering the cellular roles of any protein kinase requires 110 

elucidation of its downstream effector substrates. The majority of kinase-substrate relationships 111 

that have been published to date, however, involve a relatively small number of well-studied 112 

protein kinases, while few, if any, substrates have been identified for the majority of the ~300 113 

human protein Ser/Thr kinases within the human kinome9-11. This lack of knowledge of kinase-114 

substrate relationships limits the interpretation of large mass spectrometry-based 115 
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phosphoproteomic datasets, which to date have collectively reported over 200,000 Ser and Thr 116 

phosphorylation sites on human proteins12-15. The specific kinases responsible for these 117 

phosphorylation events have been reported for <4% of these sites15, severely limiting the 118 

understanding of cellular phosphorylation networks. 119 

  Well-studied serine/threonine kinases are generally known to recognize specific amino 120 

acid residues at multiple positions surrounding the site of phosphorylation16-21. This short linear 121 

motif, which is characteristic of a given protein kinase, ensures fidelity in signaling pathways 122 

regulating phosphorylation at a given Ser or Thr residue. Knowledge of kinase recognition motifs 123 

can facilitate discovery of new substrates, for example by scanning phosphoproteomics data for 124 

matching sequences. However, to date, phosphorylation site sequence motifs are known for only 125 

a subset of the human protein Ser/Thr kinome. In some cases, kinase recognition motifs have been 126 

inferred by alignment of known cellular phosphorylation sites that have been experimentally 127 

identified over many years. This process is slow and laborious and limited to kinases with large 128 

numbers of established substrates. We have previously described combinatorial peptide library 129 

screening methods that allow for rapid determination of specificity for individual kinases based on 130 

phosphorylation of peptide substrates22,23. Here, we apply those methods to experimentally 131 

determine the optimal substrate specificity for nearly the entire human serine-threonine kinome, 132 

characterize the relationship between kinases based on their motifs, and computationally utilize 133 

this data to identify the most likely protein kinase to phosphorylate any site identified by mass 134 

spectrometry or other techniques. Finally, we show how this information can be applied to capture 135 

complex changes in signaling pathways in cells and tissues following genetic, pharmacological, 136 

metabolic, and environmental perturbations.  137 

 138 

RESULTS 139 

 140 

Phosphorylation site substrate specificity of the human serine-threonine kinome 141 

 142 

Substrate recognition motifs across the human Ser-Thr kinome were determined by 143 

performing positional scanning peptide array (PSPA) analysis. We used a previously reported 144 

combinatorial peptide library that systematically substitutes each of 22 amino acids (20 natural 145 

amino acids plus phospho-Thr and phospho-Tyr) at nine positions surrounding a central phospho-146 
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acceptor position containing equivalent amounts of Ser and Thr (Fig. 1a)23. Using purified 147 

recombinant kinase preparations, we successfully obtained phosphorylation site motifs for 303 148 

Ser/Thr kinases, covering every branch of the human Ser/Thr kinase family tree as well as a 149 

collection of atypical protein kinases (Fig. 1b, Fig. S1). The large majority of these kinases, 150 

including 86 understudied “dark” kinases, had not been previously profiled. 151 

Position-specific scoring matrices (PSSMs) derived from quantified PSPA data were 152 

analyzed by hierarchical clustering to compare kinase substrate motifs across the kinome (Fig. 2). 153 

As expected, kinases sharing substantial sequence identity displayed a high degree of similarity in 154 

their optimal substrate motifs. However, we found many cases where clustering by PSSM did not 155 

strictly recapitulate evolutionary phylogenetic relationships between kinases inferred from their 156 

primary sequences (Fig. 2). Instead, members of most major kinase groups were distributed 157 

throughout the dendrogram, reflecting numerous examples where kinases with low overall 158 

sequence identity have converged to phosphorylate similar optimal sequence motifs. For example, 159 

we found that a number of distantly related kinases (in the YANK, casein kinase 1 and 2, GRK, 160 

and TGF-β receptor families) converged to phosphorylate similar sequence motifs despite their 161 

very disparate locations on the kinome tree (Fig. 2, Cluster 3).  162 

 Overall inspection of sequence motifs associated with various branches of the motif-based 163 

dendrogram revealed that approximately ~60% of the Ser-Thr kinome could be represented by 164 

simple assignment to one of three previously observed motif classes: selectivity for basic residues 165 

N-terminal to the phosphorylation site (Cluster 1, Fig. 2), directed by a proline residue at the +1 166 

position (Cluster 2), or a general preference for negatively charged (acidic and phosphorylated) 167 

residues at multiple positions (Cluster 3)17,20,24,25. Notably, more than half of all reported 168 

phosphorylation sites observed by MS could be assigned to one of these three signatures (Fig. S2). 169 

However, each of these motif classes could be further subcategorized based on selectivity both for 170 

and against distinct sets of residues at other positions, reflecting considerable diversity within these 171 

clusters (Figs. S3, S4, and S5).  172 

 The remaining ~40% of the Ser/Thr kinome comprised many smaller groups that displayed 173 

unique sequence determinants (Fig. 2, Clusters 4 – 17). For example, motifs for the DNA-damage 174 

response kinases (ATM, ATR, DNAPK and SMG1) clustered into a group that primarily selected 175 

a Gln residue at the +1 position (Cluster 5), consistent with previous studies26,27. Notably, several 176 

clusters displayed shared consensus motifs that have not been well recognized previously, such as 177 
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the group including the IRAK, IRE, WNK, SNRK, and RIP kinases (Cluster 13), whose substrate 178 

motifs contained basic residues both N- and C-terminal to the phosphorylation site with dominant 179 

selection for aromatic residues in the +3 position. As another example, the kinases LKB1, 180 

CAMKK, PINK1, and PBK (Cluster 14) primarily recognized hydrophobic residues N-terminal to 181 

the phosphorylation site in combination with selection for turn-promoting residues (Gly or Asn) 182 

in the +1 position. Structural modeling of kinase-peptide complexes revealed complementary 183 

features within the kinase catalytic clefts likely responsible for recognition of these motifs (Fig. 184 

S6a,b).  185 

 An important and less generally recognized feature that dominated the clustering was 186 

strong negative selection against either positively or negatively charged residues at distinct 187 

positions within a motif, suggesting that electrostatic filtering strongly influences kinase substrate 188 

selection throughout the kinome28,29. We identified additional classes of amino acids, such as 189 

hydrophobic residues, that are selected against by a variety of kinases. These trends suggest that 190 

substrate avoidance plays a fundamental role in dictating correct kinase-substrate interactions30,31. 191 

 Unexpectedly, we observed that many kinases (129 out of 303) selected either a phospho-192 

Thr or a phospho-Tyr as the preferred amino acid in at least one position within the motif (Fig. 193 

S1). In addition to kinases whose dependence on phospho-priming was previously known [GSK3, 194 

casein kinase 1, and casein kinase 2 families32,33, Cluster 3], this phenomenon was particularly 195 

evident for the GRK and YANK family kinases (Fig. S5), both of which have complementary 196 

basic residues within their catalytic domains (Fig. S6c,d). Intriguingly, individual GRK family 197 

members showed unique and specific selection for the location of the phospho-Thr or phospho-198 

Tyr residue within their substrate peptides. GRKs are best known for their role in desensitization 199 

of G-protein coupled receptors (GPCRs), where multisite phosphorylation induces binding of 200 

arrestin proteins to inhibit signaling34,35. Our findings suggest that the capacity for only seven 201 

GRKs to differentially regulate 800 distinct GPCRs likely involves a complex interplay between 202 

initial sequence-specific phosphopriming of GPCRs by other serine/threonine and tyrosine 203 

kinases, followed by a second level of specificity resulting from GRK-dependent phosphorylation 204 

and subsequent recognition by a small number of β-arrestins.  205 

 Features of substrate recognition motifs across the entire kinome could be structurally 206 

rationalized based on the presence of specificity-determining residues at particular positions within 207 

the kinase catalytic domain36,37, leading to both expected and unexpected discoveries. For example, 208 
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we found half of the kinases to display some degree of selectivity for either a Ser or a Thr as the 209 

phospho-acceptor residue (Fig. S7). Consistent with our previously published observations38, Ser 210 

or Thr phospho-acceptor site preference strongly correlated with the identity of the ‘DFG+1’ 211 

residue within the kinase activation loop, with bulky residues (Phe, Trp, Tyr) at this position in 212 

Ser-selective protein kinases and β-branched residues (Val, Ile, Thr) at this position in Thr-213 

selective kinases. For some DFG+1 residues, however, Ser vs. Thr selectivity was unexpectedly 214 

context dependent. For instance, a Leu residue in the DFG+1 position was observed in both Ser-215 

selective and dual specificity kinases, while a DFG+1 Ala residue resulted in a preference for Thr 216 

phosphorylation in the context of some kinases (e.g., the mitogen-activated protein kinase kinase 217 

kinases [MAP3Ks]), but a preference for Ser specificity in others (the IκB kinases [IKKs]). These 218 

observations, notable only within the context of the complete Ser/Thr kinome, indicate that 219 

additional residues beyond the previously established DFG+1 position can influence Ser/Thr 220 

specificity in a context-dependent manner. 221 

 222 

Phosphorylation motifs for the entire human serine/threonine kinome allow comprehensive 223 

annotation of the human phosphoproteome 224 

  225 

Comprehensive knowledge of the human Ser/Thr kinase specificity has the potential to ‘de-226 

orphanize’ the large number of reported phosphorylation sites with no associated kinase. To do so 227 

we generated a kinome-wide annotation of the human Ser/Thr phosphoproteome by 228 

computationally ranking each of ~50,000 high confidence phosphorylation sites against each 229 

Ser/Thr kinase motif (Fig. 3a, Table S2)39. Interestingly, more than 98% of these phosphorylation 230 

sites ranked favorably for at least one kinase we profiled (i.e., the site scored in the top 10% of all 231 

sites in the human phosphoproteome for that kinase). These annotations were strongly concordant 232 

with sites for which protein kinases involved have been previously identified. For phosphorylation 233 

sites whose upstream kinase has been previously verified by at least 3 independent reports, 234 

encompassing 969 sites and over 1/3rd of the kinome, our motif-based approach yielded a median 235 

percentile of 93% (i.e., the reported site received a higher score than 93% of all putative 236 

phosphorylation sites in the phosphoproteome for its established kinase) (Fig. S8a). Furthermore, 237 

when we back-mapped the motifs of all 303 profiled kinases onto the literature-reported 238 

phosphorylation sites, our approach yielded a median reported kinase percentile of 92%, (i.e., the 239 
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reported kinase scored more favorably than 92% of all profiled kinases in our atlas for its 240 

established substrate) (Fig. S8b). These rankings further improved when we considered kinase-241 

substrate pairs with higher numbers of prior reports (Figs. S9, S10), suggesting that in a large 242 

majority of cases the linear sequence context of phosphorylation sites contributes substantially to 243 

kinase-substrate relationships. 244 

Remarkably, motif predictions alone successfully identified numerous prominently studied 245 

kinase substrate relationships. For example, phosphorylase kinases PHKG1 and PHKG2 emerged 246 

as the top two hits (out of 303 kinases) for phosphorylating Ser15 of glycogen phosphorylase (Fig. 247 

3b). This phosphoregulatory event, the very first to be discovered40,41, opened up the entire field 248 

of phosphorylation-dependent signal transduction. The most highly cited kinase-substrate 249 

interaction reported to date is phosphorylation of the tumor suppressor p53 at Ser15 by the DNA 250 

damage-activated kinase ATM, which scored as the top-ranking kinase associated with that site 251 

(Fig. 3c). Notably, other kinases reported to phosphorylate the same site, ATR, SMG1, and 252 

DNAPK, scored within the top 4 predicted kinases42,43.  253 

Our approach could also correctly identify kinases for phosphorylation events driven by 254 

substrate co-localization or non-catalytic docking interactions, where we expected less dependence 255 

on the phosphorylation site motifs of their kinases. For example, we correctly identified both the 256 

mitochondrial-localized phosphorylation of pyruvate dehydrogenase by the pyruvate 257 

dehydrogenase kinases (Fig. S11a) and the docking-driven phosphorylation of the MAP kinase 258 

ERK by MEK (Fig. S11b)44-48. Interestingly, the phosphorylation site on ERK was selected against 259 

by nearly every human protein kinase we profiled except MEK, explaining how ERK can be 260 

exclusively regulated by MEK while avoiding phosphorylation by the kinome at large. Finally, 261 

our approach could tease apart kinase subfamilies with similar motifs and correctly assign them to 262 

their established substrates. For example, we could distinguish the CDK family kinases assuming 263 

classical roles in cell cycle progression (CDK1,2,3,4 and 6) from the subset of CDKs that govern 264 

gene transcription (CDK7,8,9,12,13 and 19) (Fig. S12)49,50. 265 

Functional annotation of the human phosphoproteome allowed us to explore global trends 266 

in kinase-substrate interactions. We found that most phosphorylation sites could be assigned to a 267 

very small number of putative kinases (i.e., BRAF-MEK1, ATM-p53, and CDK4-Rb in Fig. 3d). 268 

However, a substantial minority of sites lacked unique negative sequence-discriminating features, 269 

and instead matched well to the optimal phosphorylation motifs for a greater number of kinases 270 
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(i.e., Ser119 of CREB, Ser9 of GSK3B, and Thr1079 of LATS1; Fig. 3d) 25,51-53. This could suggest 271 

the importance of other kinase-determining factors (scaffolds, localization, etc.) for proper kinase-272 

substrate recognition, or may indicate that these specific phosphorylation sites are points of 273 

convergence for multiple signaling pathways. For example, cAMP response element binding 274 

protein (CREB) is canonically phosphorylated at Ser119 by cAMP-dependent protein kinase 275 

(PKA), however, numerous prior reports demonstrate that a broad range of cellular stimuli and 276 

drug perturbations impinge on phosphorylation of this site by no less than ten distinct kinases15,54. 277 

Taken together, these findings suggest that the presence of negative selectivity elements flanking 278 

a putative phosphorylation site can be used to insulate a substrate from inappropriate 279 

phosphorylation by dozens of related kinases, while the absence of such negative selectivity can 280 

allow protein kinases in distinct pathways to converge on the same target. 281 

 282 

Global motif analysis reveals how kinase perturbations and pathway rewiring reshape the 283 

phosphoproteome 284 

 285 

 Cell signaling networks are complex and dynamic. Perturbation of kinase signaling 286 

pathways by genetic manipulations, treatment with growth factors and ligands, environmental 287 

stress, or small molecule inhibitors reshapes the phosphoproteome through both direct and indirect 288 

effects as a consequence of secondary signaling responses and/or off-target effects from the 289 

experimental treatment13,55,56. Due to the interconnected and dynamic nature of phosphorylation 290 

networks, distinguishing initial signaling events from those that result from the subsequent 291 

activation of additional signaling pathways is a common and challenging problem. We reasoned 292 

that kinases underlying both primary and secondary phosphorylation events could potentially be 293 

revealed by a global motif-based analysis of changes in the corresponding phosphoproteome. To 294 

test this idea, we used publicly available MS datasets from cells collected in the absence or 295 

presence of various perturbations and scored all phosphorylation sites with our atlas of 296 

serine/threonine kinase motifs. Kinase motifs significantly enriched or depleted following 297 

experimental treatment were then represented as volcano plots of motif frequencies and adjusted 298 

p-values (Fig. 4a).  299 

 Using this approach, we found that sequence motifs corresponding to the most direct target 300 

of a genetic or chemical perturbation were among the most significantly regulated (seen, for 301 
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example, with genetic deletion of the secreted primordial casein kinase FAM20C (Fig. 4b))57. 302 

When quantitative phosphoproteomics data from HepG2 cells lacking FAM20C58 were analyzed 303 

by our kinome-wide dataset, the most downregulated kinase recognition motif corresponded to 304 

that of FAM20C. Similarly, when skeletal muscle-like myotube cells were stimulated for 30 305 

minutes with isoproterenol59, the most upregulated phosphorylation motifs corresponded to 306 

multiple isoforms of cAMP-dependent protein kinase (PKA), canonical effector kinases 307 

downstream of the β1 and β2 adrenergic receptors  (Fig. 4c)60,61. Of note, PKA motifs are highly 308 

similar to those of several other basophilic kinases yet we could identify their enrichment in this 309 

scenario. In addition, our comprehensive serine/threonine kinome motif collection elucidated 310 

secondary signaling events in a dataset from HeLa cells arrested in mitosis using the PLK1 311 

inhibitor BI-2536 (Fig. 4d)62 where, in addition to observing a striking downregulation of 312 

substrates containing the optimal PLK1 motif, we also noted significant upregulation of substrates 313 

phosphorylated by ATM and ATR. This finding is in good agreement with prior reports that PLK1 314 

can suppress DNA damage signaling in mitotic cells63,64.  315 

Our motif-based analysis could also be used to reveal key signaling events resulting from 316 

more complex interventions. For example, we interrogated phosphoproteomic data from A549 317 

cells treated with 6 Gy of ionizing radiation (Fig. 4e)65. Our analysis revealed the up- and down-318 

regulation of numerous signaling pathways, including upregulation of canonical kinases involved 319 

in the DNA damage response (ATM, ATR, DNAPK, SMG1) and downregulation of canonical 320 

kinases involved in cell cycle progression (CDK1, 2, 4, and 6) consistent with G1/S and G2/M 321 

arrest. Furthermore, we found up- and down-regulation of less appreciated DNA damage-322 

responsive kinases [MAPKAPK2 66,67, PLK3 68, and LRKK2 69].  323 

 The full collection of serine/threonine kinome motifs also allowed temporal dynamics of 324 

signaling to be resolved from time-resolved phosphoproteomic datasets. For example, motif-based 325 

analysis of phosphoproteomic data from insulin-treated 3T3-L1 adipocytes70 revealed rapid 326 

activation of the phosphoinositide 3-kinase signaling pathway within 1 minute after insulin 327 

stimulation followed by subsequent activation of the MAPK pathway, together with 328 

downregulation of AMP- and cAMP-dependent protein kinases within 60 minutes (Fig. 4f). 329 

Similarly, phosphoproteomic data analysis from LPS-stimulated dendritic cells71 suggested 330 

marked upregulation at 30 minutes of a set of stress-activated kinases including the IKKs, JNK 331 

and p38 MAPKs, along with the MAPKAPK family of p38 effector kinases, followed within 4 332 
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hours by subsequent upregulation of the PIM kinases and suppression of the MAPKs in parallel 333 

with the downregulation of their upstream MAPK3Ks (MEKK1, MEKK2, and ZAK)72,73, 334 

suggestive of a negative feedback loop (Fig. 4g). Thus, comprehensive motif-based approaches, 335 

when applied to time-resolved phosphoproteomics experiments, can decipher the distinct temporal 336 

dynamics of different groups of kinases. 337 

 338 

DISCUSSION 339 

 340 

This work presents the full spectrum of substrate motifs of the human serine/threonine 341 

kinome and provides an unbiased global framework to further explore their cellular functions. 342 

Globally, these motifs are substantially more diverse than expected, suggesting a broader substrate 343 

repertoire of the kinome. Hierarchical clustering of this dataset reorganized the kinome into 17 344 

motif-classes and introduced several novel shared motif features (Fig. 2). For kinases with similar 345 

motifs, we saw multiple cases where their minor differences translated into dramatically different 346 

substrate predictions and motif enrichments (Fig. S11, Fig. 4c-g) and rationalized how such 347 

biochemically similar kinases can have divergent biological roles.  348 

The serine/threonine kinases we profiled were, almost without exception, strongly 349 

discriminatory against specific motif features. This negative selection rationalizes how kinases 350 

sharing similar positively selected residues in their motifs can regulate distinct signaling pathways 351 

with specialized cellular functions, and how substrates are insulated from inappropriate 352 

phosphorylation by irrelevant kinases. Intriguingly, these findings suggest that fidelity in kinase 353 

signaling pathways is largely achieved through selective pressure on substrates to avoid 354 

phosphorylation by the majority of irrelevant kinases, and that this may occur by tuning the amino 355 

acid sequences surrounding the phosphorylation sites to be disfavored by non-cognate kinases. 356 

Since this negative selection contributes substantially to proper substrate recognition, accurate 357 

identification of kinase-substrate relationships requires a comprehensive knowledge of kinase 358 

phosphorylation motifs – not only for an individual kinase of interest, but also for all other kinases 359 

in the human kinome that might compete for the same substrate pool. 360 

 When this kinome-wide dataset was used to predict specific kinases responsible for 361 

substrate phosphorylation solely based on the amino acid sequence surrounding the 362 

phosphorylation site, the results were remarkably accurate at identifying correct kinase-substrate 363 
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relationships, even without knowledge of tissue specificity, scaffolding effects, or subcellular 364 

localization. Including such additional information is likely to further improve these predictive 365 

approaches74,75. Interrogation of MS phosphoproteomic datasets using this global collection of 366 

motifs yielded new potential biological insights and new putative kinase substrates (Fig. 4). For 367 

example, in cells undergoing exposure to ionizing radiation (Fig. 4e), ATM was predicted to target 368 

35 of the phosphorylation sites that were upregulated, most of which have never been associated 369 

as substrates for ATM (Table S3). As the application of phosphoproteomics to human clinical 370 

samples and disease model systems continues to advance76, our comprehensive motif-based 371 

approach will be uniquely equipped to unravel complex signaling events that underlie human 372 

disease progressions, mechanisms of cancer drug resistance, dietary interventions, and other 373 

important physiological processes. In sum, we foresee this providing a valuable resource for a 374 

broad spectrum of researchers who study signaling pathways in human biology and disease. 375 

 376 
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MATERIALS & METHODS 

 

Plasmids 

For expression and purification from bacteria, DNA sequences for the human Ser/Thr kinases, 

kinase binding partners, and chaperones listed below were codon-optimized for E. coli using 

GeneSmart prediction software (Genscript). Optimized coding sequences were synthesized as 

gBlocks (Integrated DNA Technologies) carrying 16-base pair overhangs at the 5’ and 3’ ends to 

facilitate in-fusion cloning (Clontech) into pET expression vectors (EMD MIllipore). 

 

pCDFDuet1 constructs: 

HSP90AA1-His6 (full length), hereafter referred to as “HSP90,” untagged HSP90 (full length), 

His6-MO25a (full length), His6-ALPHAK3/ALPK1 NTD (1-474), and His8-CCNC (full length) in 

tandem with MED12-His8 (1-100), and untagged CK2B (full length). 

 

pET28a constructs:  

His6-PDPK1 (full length), His6-PRP4/PRPF4B (519-end), GST-CHAK1/TRPM6 (1699-end), 

His6-caMLCK/MYLK3 (490-end), untagged MEK5/MAP2K5-DD (full length), His6-

ERK7/MAPK15 (full length), His6-SUMO-ALPHAK3/ALPK1 CTD (959-end), MYO3A-His6 (1-

308), His6-NIK/MAP3K14 (327-673), and BMPR2-His6 (172-504). 

 

pETDuet1 constructs: 

His6-CDK8 (full length), His6-CDK19 (full length), ERK5/MAPK7-His6 (1-405), His6-AAK1 (27-

365), His6-BIKE (37-345), CK2A1-His6 (full length), CK2A2-His6 (full length), His10-MBP-

MEKK1/MAP3K1 (1174-end), His6-CLK1 (128-end), His8-PLK2 (57-360), His10-MAP3K15 

(631-922), His6-SUMO-ASK1/MAP3K5 (659-951), and His6-TAO2 (1-350).  

 

pACYDuet1 construct: 

Untagged CDC37 (full length). 
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Mammalian expression constructs 

For enhanced expression in mammalian lines cells, the DNA sequences of His6-GST-SBK (full 

length) and Flag-His6-WNK3 (1-434) were optimized for expression in H. sapiens using 

GeneSmart (Genscript) and synthesized as gBlocks (Integrated DNA Technologies) carrying 16-

base pair overhangs to facilitate in-fusion cloning into digested pCDNA3.4 (Thermo). 

 

To generate a mammalian expression construct for the TAK1/MAP3K7, the coding sequence for 

this kinase (GE Healthcare Dharmacon: MHS6278-202756930) and its binding partner TAB1 (GE 

Healthcare Dharmacon: MHS6278-202760135) were PCR amplified and ligated as a fusion 

construct (TAK1 (1-303)-TAB1(451-end)) into the mammalian expression vector pLenti-X by in-

fusion. 

 

Expression constructs purchased or obtained from other laboratories: 

Bacterial expression constructs for GST-VRK1 (full length) and GST-VRK2 (full length), in 

pGEX-4T, were received as gifts from Pedro Lazo at CSIC-Universidad de Salamanca 1. Bacterial 

expression construct for mouse CDKL5-His6 (1-352), in pET23a+, was received as a gift from 

Syouichi Katayama at Ritsumeikan University 2. Bacterial expression constructs for His6-SUMO-

PDHK1 (full length), His6-SUMO-PDHK4 (full length), pGroESL (GroEL/GroES), and MBP-

BCKDK (full length) were received as gifts from David Chuang, Shih-Chia Tso, and Richard 

Wynn at UT Southwestern Medical Center 3,4. pProEx HTa-BRAF_16mut V600E (444-721) was 

a gift from Marc Therrien at Université de Montréal 5. Mammalian expression constructs for Flag-

ATR (S1333A) and HA-ATRIP were provided by David Cortez at Vanderbilt University School 

of Medicine 6. Bacterial expression constructs for DMPK1, CAMK1A, CAMK1G, CAMK2G, 

PHKG2, CDKL1, GAK, and lambda phosphatase were purchased from Addgene (Addgene Kit 

#1000000094) 7. 

 

 

Expression and Purification from bacteria 

Transformations were performed with BL21 Star cells (Thermo Fisher) unless specified otherwise. 

Antibiotic concentrations used: Carbenicillin (100 mg/L), Kanamycin (50 mg/L), Spectinomycin 

(25 mg/L), and Chloramphenicol (25 mg/L in EtOH, prepared fresh). Transformed cells were 
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grown in 1L Terrific broth by shaking at 190 rpm at 37°C until optical density reached 0.7-0.8, at 

which point 1mM IPTG was added to induce expression. The cells were then transferred to a 

refrigerated shaker and shaken at 220 rpm at 18°C for 16-20 hours. Cells were centrifuged at 6,000 

x g, and pellets were snap freezed in liquid nitrogen and stored at -80 °C.  

 

All steps in the protein purification were performed at 4°C. Cell pellet was solubilized in lysis 

buffer (see contents below), using spatula to disperse, and lysed by probe sonication. The lysate 

was centrifuged at 20,000 x g for 1 h and the supernatant was combined with affinity purification 

resin, nickel NTA (Qiagen) or glutathione sepharose (GE Health), that had been rinsed in base 

buffer. The supernatant-bead slurry was agitated using a rotisserie for 30 minutes. Resin was 

washed with 1 L base buffer and eluted in 10 bed volumes of elution buffer. Eluted protein was 

concentrated using Ultra Centrifugal Filter Units (Amicon), supplemented with 1 mM DTT and 

25% glycerol, and snap freezed in liquid nitrogen and stored at -80 °C.  

 

Standard lysis buffer: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, HALT 

EDTA-free phosphatase and protease inhibitor cocktail (Life technologies), 5 mM beta-

mercaptoethanol, 1-3 grams of lysozyme (Sigma) 

Standard base buffer: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol 

(include 50 mM imidazole for purifications involving polyhistidine-tag) 

Standard wash buffer: 50 mM Tris pH 8.0, 500 mM NaCl, 2 mM MgCl2, 2% glycerol (include 50 

mM imidazole for purifications involving polyhistidine-tag) 

Polyhistidine-tag elution buffer: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, 

350 mM imidazole 

GST-tag elution buffer: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, 10 mM 

glutathione (pH adjusted after addition of glutathione) 

 

The kinases BRAF and NIK were co-expressed with untagged HSP90/CDC37. CDK8 was co-

purified with CCNC/MED12. CDK19 was co-purified with CCNC/MED12 pCDFDuet1. CK2A1 

and CK2A2 were co-purified with CK2B. ERK5 was co-expressed with MEK5DD. ALPHAK3 

NTD (pCDFDuet1) and CTD (pETDuet1) were co-purified. DMPK1, CAMK1A, CAMK1G, 
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CAMK2G, PHKG2, CDKL1, and GAK were co-expressed with lambda phosphatase in Rosetta 2 

cells (Novagen). 

 

PDHK1, PDHK4, BCKDK were co-expressed with GroeL/GroeS and purified with the following 

buffers: Lysis buffer (100 mM potassium phosphate pH 7.5, 10 mM L-arginine (stock pH-adjusted 

to 7.5), 500 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 0.2% Triton X-100, lysozyme), wash buffer 

(50 mM potassium phosphate pH 7.5, 10 mM arginine, 500 mM NaCl, 0.1% Triton X-100, 2 mM 

MgCl2), and Elution buffer (25 mM Tris pH 7.5, 120 mM KCl, 0.02% Tween-20, 50 mM 

Arginine, 350 mM imidazole for PDHK1 and PDHK4 only, 20 mM maltose for BCKDK only). 

BCKDK was purified by its MBP tag on amylose resin (NEB). 

 

CDKL5 was expressed in BL21-codonplus(DE3)-RIL cells. 

 

KIS (full length) was purified as described previously8. 

 

Expression and purification from mammalian cells 

Transfection 

Expi293F cells (Thermo Fisher) were cultured in 500mL Expi293 Expression Medium (Thermo 

Fisher) in 2L spinner flasks on a magnetic stirring platform at 100 RPM at 36.8°C with 8% CO2. 

For transfection, 500 μg of expression constructs were diluted in Opti-MEM I Reduced Serum 

Medium (Thermo Fisher). ExpiFectamine 293 Reagent (Thermo Fisher) was diluted with Opti-

MEM separately then combined with diluted plasmid DNA for 10 minutes at room temperature. 

The mixture was then transferred to the cells (3 X 106 cells/mL) and stirred. 20 hours after 

transfection, ExpiFectamine 293 Transfection Enhancer 1 and Enhancer 2 (Thermo Fisher) were 

added to the cells. Two days later, the cells were centrifuged at 300 X g for 5 min, snap freezed in 

liquid nitrogen, and stored at -80°C (3 days post-transfection).  

Purification 

All steps of protein purification were performed at 4°C. Cell pellet was solubilized in lysis buffer, 

using spatula to disperse, and lysed by Dounce homogenization (20 strokes). The lysate was 

centrifuged at 100,000 x g for 1 h and the supernatant was combined with affinity purification 

resin, nickel NTA (Qiagen), glutathione sepharose (GE Health), or Anti-Flag M2 affinity gel 
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(Sigma), and agitated on rotisserie for 30 min (nickel and glutathione beads) or 1 hour (Anti-flag 

beads). Resin was washed with 1 L base buffer and eluted in 10 bed volumes of elution buffer. For 

elution of flag tagged-proteins, beads were immersed in elution buffer (0.15 ug/mL 3X Flag 

peptide (Sigma)) and agitated on rotisserie for 1 hour prior to elution. Eluted protein was 

concentrated using Ultra Centrifugal Filter Units (Amicon), supplemented with 1 mM DTT and 

25% glycerol, and snap freezed in liquid nitrogen and stored at -80°C.  

Standard lysis buffer: 50 mM Tris pH 8.0, 150 mM NaCl, 2 mM MgCl2, 5% glycerol, 1% Triton 

X-100, 5 mM β-mercaptoethanol, HALT protease inhibitors. 

Standard base buffer: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol.  

Standard wash buffer: 50 mM Tris pH 8.0, 500 mM NaCl, 2 mM MgCl2, 2% glycerol.  

 

His6-GST-tagged SBK was purified sequentially on nickel and then glutathione resins. The first 

wash buffer included 25 mM imidazole. SBK1 elution buffer for polyhistidine tag: 50 mM Tris 

pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, 250 mM imidazole. SBK1 elution buffer for 

GST tag: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, 10 mM glutathione. 

 

Flag-TAK1-TAB1 elution buffer: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, 

0.15 ug/mL 3X Flag peptide. 

 

Flag-His6-WNK3 was purified sequentially on nickel and then anti-flag resins. The first wash 

buffer contained 25 mM imidazole. Flag-tag elution buffer (chloride-free): 50 mM Tris pH 7.5, 2 

mM MgAc2, 2% glycerol, 0.15 ug/mL 3X Flag peptide. 

 

350 uL Flag-ATR (S1333A) and 150 ug Ha-ATRIP were co-transfected into Expi293 cells and 

incubated for one additional day following addition of enhancers (4 days post-transfection). 

ATR lysis buffer: 50 mM HEPES pH 7.4, 150 mM NaCl, 10% glycerol, 0.25% Tween 20, 2 mM 

MgCl2, DTT. 

ATR wash buffer: 50 mM HEPES pH 7.4, 150 mM NaCl, 0.01% Brij-35, 2 mM MgCl2, 5 mM 

ATP, DTT. 
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ATR elution buffer: 20 mM HEPES pH 7.4, 150 mM NaCl, 0.01% Brij-35, DTT, 0.15 ug/mL 3X 

Flag peptide. 

Eluates were concentrated to 1 mL in 100K MWCO Amicon tubes and resolved by MonoS column 

in in 0-1M NaCl gradient (buffer 25 mM Bis Tris pH 6.9, 0.01% Brij-35, and 5 mM TCEP). 1 mL 

fraction were collected. Fractions 1-4 were combined and concentrated to 1 mL in 100K MWCO 

and resolved by size exclusion (Superose 6) in 20 mM HEPES pH 7.4, 200 mM NaCl, 0.01% Brij-

35, and 5 mM TCEP. 1 mL fraction were collected. Fractions 11-14 were verified to be pure 

ATR:ATRIP complex on SDS-PAGE and profiled in PSPA. 

 

SMG1:SMG9 complexes were purified from HEK293T cells as described previously9. 

 

RIPK1, RIPK2, and RIPK3 were purified from insect cells as described previously10.  

 

Recombinant active kinases obtained from other laboratories: 

Recombinant active CDK12:CycK, CDK13:CycK, and CDK9:CycT complexes were provided as 

gifts from Matthias Geyer at University of Bonn11,12. 

Recombinant active DCAMKL1/DCLK1 and MELK were provided as gifts from Nathanael Gray 

and Kenneth Westover13,14. 

Recombinant active PRPK(full length):CGI121(full length) complex was provided as a gift from 

Leo Wan and Frank Sicheri at the Lunenfeld-Tanenbaum Research Institute15. 

Recombinant active HASPIN (452-798) was provided as a gift from Andrea Musacchio at the 

Institute of Molecular Physiology in Dortmund16. 

Recombinant active YSK1 was provided as a gift from Xuelian Luo at UT Southwestern Medical 

Center17. 

 

Catalog and lot numbers of purchased recombinant kinases are listed in Table S1. 

 

Peptide library arrays  

Recombinant kinase was distributed across 384-well plate, mixed with the peptide substrate library 

in solution phase (Anaspec #AS-62017-1 and #AS-62335), and incubated for 90 mins (Assay 

conditions for each kinase described in Table S1)18-22. Each well contains a mixture of peptides 
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with a centralized phosphor-acceptor (serine and threonine at a 1:1 ratio) and one fixed amino acid 

in a randomized background. All 20 natural amino acids, plus two PTM residues (phospho-Thr 

and phospho-Tyr), were substituted into positions -5 to +4 to generate 198 unique peptide mixtures 

(22 amino acids X 9 fixed positions). After reaction, peptides were separated were spotted on 

streptavidin-conjugated membranes (Promega #V2861) where they tightly associated via their C-

terminal biotinylations. The membranes were rinsed to remove free ATP and kinase and imaged 

with Typhoon FLA 7000 phosphorimager (GE). Raw data (GEL file) was quantified by 

ImageQuant (GE). For the kinase ALPHAK3, spots were normalized to surrounding background, 

due to spatial variation in background signal. PDHK1 and PDHK4 showed dual specificity for 

serine and tyrosine. For these kinases, we utilized a customized peptide substrate library devoid of 

tyrosines at randomized positions. 

 

In total, 286 human kinase motifs, one motif from a mouse kinase ortholog (CDKL5), and one 

motif from an arthropod Pediculus humanus corporis kinase ortholog (PINK1), were combined 

with 15 human kinase motifs we previously published, that included AKT123, SRPK124, SRPK224, 

SRPK324, CK1D24, DYRK1A25, DYRK225, GSK3A25, GSK3B25, CK1A25, CK1E25, CK1G125, 

CDK1026, CDK227, CDK327, CDK1827, and CDK728. 

 

Matrix processing 

The matrices were column-normalized (at all positions) by the sum of the 17 randomized amino 

acids (excluding serine, threonine, and cysteine), to yield positional specific scoring matrices 

(PSSMs). PDHK1 and PDHK4 were normalized by the 16 randomized amino acids (excluding 

serine, threonine, cysteine, and additionally tyrosine), corresponding to the uniquely customized 

peptide library that profiled these kinases. The cysteine row was scaled by its median to be 1/17 

(1/16 for PDHK1 and PDHK4). The serine and threonine values in each position were set to be 

the median of that position. The ratio of serine vs threonine phospho-acceptor favorability (S0 and 

T0, respectively) was determined by summing up the values of the serine and threonine rows in 

the densitometry matrix (SS and ST, respectively), and then normalized by the higher value among 

the two: 
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Matrix clustering 

The dendrogram in Fig. 2 was generated using the normalized matrices with the 20 unmodified 

amino acids, as well as phosphothreonine and phosphotyrosine. Linkage matrix was computed 

through the SciPy package in Python (v1.7.1), using ‘ward’ method. Results were converted to 

Newick tree format and plotted using FigTree (v1.4.4). 

 

Substrate scoring 

For scoring substrates, the values of the corresponding amino acids in the corresponding positions 

were multiplied and scaled by the probability of a random peptide: 

 

 

            
  

For the percentile-score of a substrate by a given kinase, we first computed the a priori score 

distribution of that kinase by scoring all the reported S/T phosphorylation sites on 

PhosphoSitePlus29 (downloaded on July 2021) with at least five high-throughput detections or one 

low-throughout detection, by the method discussed earlier. The percentile-score of a kinase-

substrate pair is defined as the percentile ranking of the substrate within the score distribution of 

each kinase. This value was used for kinase enrichment as described before. 

 

Kinase enrichment analysis 

The single phosphorylation sites (not including multi-phosphorylated peptides) in the analyzed 

phosphoproteomics studies were scored by all the characterized kinases (303 S/T kinases), and 
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their ranks in the known phosphoproteome score distribution were determined as described above. 

For every non-duplicate, singly phosphorylated site, kinases that ranked within the top-15 kinases 

for the S/T kinases were considered as biochemically favored kinases for that phosphorylation site. 

For assessing kinase motif enrichment in phosphoproteomics datasets, we compared the 

percentage of phosphorylation sites for which each kinase was predicted among the 

upregulated/downregulated (increased/decreased, respectively) phosphorylation sites (sites with 

|log2Fold-Change| equal or greater than the logFC threshold), versus the percentage of 

biochemically favored phosphorylation sites for that kinase within the set of unregulated 

(unchanged) sites in this study (sites with |log2Fold-Change| less than the logFC threshold). LogFC 

threshold was determined to be 1.5 for all panels in Fig. 4, except for Fig. 4e where the threshold 

was set to 0.5 due to low range of the logFC in the data. Contingency tables were corrected using 

Haldane correction (adding 0.5 to the cases with zero in one of the counts). Statistical significance 

was determined using one-sided Fisher’s exact test, and the corresponding p-values were adjusted 

using the Benjamini-Hochberg procedure. Kinases that were significant (adjusted p-value <= 0.1) 

for both upregulated and downregulated analysis were excluded from downstream analysis. Then, 

for every kinase, the most significant enrichment side (upregulated or downregulated) was selected 

based on the adjusted p-value and presented in the volcano plots. 

 

Sequence logos 

Sequence logos were made using logomaker package in Python30. For individual kinases, the 

normalized matrix was used, where the height of every letter is the ratio of its value to the median 

value of that position. The serine and threonine heights in the central position (position zero) were 

set to the ratio between their favorability, and to sum up to the maximal height in the peripheral 

positions. For clustered groups of kinases, the average matrix was calculated and presented as 

sequence logo as described above. 

 

Comparative analyses between amino acids in the kinase domains and their substrate 

specificities 

For Fig. S7, kinases were sorted by their log2(S0/T0) values. For the sequence logo, kinase 

domains of 290 available kinases were obtained from previously aligned kinase sequences [PMID: 

31875044]. The alignments to residues Met1-Leu296 in CDK2 (PDB: 1QMZ) were obtained for 
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each kinase, and the frequencies of amino acids for each 15 kinases were calculated and plotted as 

a sequence logo. 

 

Known kinase-substrate pairs 

Experimentally validated kinase-substrate relationships were obtained from PhosphoSitePlus (July 

2021, Table S2). Number of reports for each pair was determined by the sum of the in vivo and in 

vitro reports. 

 

Illustrations 

Experimental schema and illustrative models were generated by BioRender 

(https://biorender.com/) and Chemdraw. Kinome images generated and modified using Coral: 

http://phanstiel-lab.med.unc.edu/CORAL/. Structural illustrations were generated with PYMOL. 

Generic kinase domains in Figs 1 and 3:  PKAα (pdb 1ATP). Kinase and substrate structures in 

Fig. 3: ATM (pdb 7SIC), p53 (chimera of alphaFold AF-P04637-F1-model_v2_1 (1-95) and 

2ATA (96-292)), PHKG2 (pdb 2Y7J), and PYGM (pdb 1ABB) 
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Fig. 1 Profiling the substrate specificity of the human serine/threonine kinome.
(A) Experimental workflow for positional scanning peptide arrays and representative results. (B) Dendrogram of the human protein
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Fig. 2 Phosphorylation site motif tree of the human Ser/Thr kinome.
Hierarchichal clustering of 303 Ser/Thr kinase position specific scoring matrices (PSSMs). Kinase names are 
color-labeled according to their phylogenetic relationships (top right)2. 
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Fig. 3 Phosphorylation motifs for the human serine/threonine kinome allow comprehensive scoring and annotation of 
the human phosphoproteome.
(A) Schematic of the substrate scoring process. (B) Results for Ser15 on glycogen phosphorylase alongside PSSM and sub-
strate motif logo of its established kinase glycogen phosphorylase kinase. (C) Results for Ser15 on p53 alongside its established 
kinase ATM. (D) Annotation of the human Ser and Thr phosphoproteome by percentile-scores from 303 Ser/Thr kinases as illus-
trated in (A). ~50,000 scored phosphorylation sites were sorted along the x-axis by their median kinase percentile-score. On 
the y-axis, kinase percentile scores were sorted by rank separately for each site and represented by heatmap. 
Examples of well-studied kinase-substrate relationships are highlighted (yellow squares). Inset: Phosphorylation sites on the 
left end of plot scored favorably for many kinases while sites on the right end scored favorably for fewer kinases.
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Fig. 4 Global motif analysis reveals how kinase perturbations and pathway rewiring reshape the phosphoproteome.
(A) Schematic depiction of motif enrichment analysis of phosphoproteomics data. (B-G) Results from published datasets: (B) conditioned medium of HepG2
cells following genetic deletion of FAM20C58, (C) cultured myotubes following 30-minute treatment with 2 μM isoproterenol59, (D) HeLa cells following mitotic
arrest by 45-minute treatment with 0.1 μM PLK1 inhibitor BI-253662, (E) A549 cells 2 hours following exposure to 6 Gy of ionizing radiation65, (F) 3T3-L1
adipocytes following serum starvation and then 1-minute and 60-minute treatment with 100 nM insulin70, (G) C57BL/6J mouse bone-marrow derived dendrit-
ic cells following 30-minute and 4-hour treatment with 100 ng/mL LPS71.
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