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Abstract

A core problem in visual object learning is using a finite number of images of a new
object to accurately identify that object in future, novel images. One longstanding,
conceptual hypothesis asserts that this core problem is solved by adult brains through
two connected mechanisms: 1) the re-representation of incoming retinal images as points
in a fixed, multidimensional neural space, and 2) the optimization of linear decision
boundaries in that space, via simple plasticity rules applied to a single downstream
layer. Though this scheme is biologically plausible, the extent to which it explains
learning behavior in humans has been unclear – in part because of a historical lack of
image-computable models of the putative neural space, and in part because of a lack of
measurements of human learning behaviors in difficult, naturalistic settings. Here, we
addressed these gaps by 1) drawing from contemporary, image-computable models of the
primate ventral visual stream to create a large set of testable learning models (n=2,408
models), and 2) using online psychophysics to measure human learning trajectories over
a varied set of tasks involving novel 3D objects (n=371,000 trials), which we then used
to develop (and publicly release) empirical benchmarks for comparing learning models
to humans. We evaluated each learning model on these benchmarks, and found that
learning models that using specific, high-level contemporary representations are
surprisingly aligned with human behavior. While no tested model explained the entirety
of replicable human behavior, these results establish that rudimentary plasticity rules,
when combined with appropriate visual representations, have high explanatory power in
predicting human behavior with respect to this core object learning problem.

Author Summary

A basic conceptual hypothesis for how an adult brain learns to visually identify a new
object is: 1) it re-represents images as points in a fixed, multidimensional space, then 2)
it learns linear decision boundaries that separate images of a new object from others,
using a single layer of plasticity. This hypothesis is considered biologically plausible, but
gauging its power to explain human learning behavior has not been straightforward. In
part, this is because it is difficult to model how brains re-represent images during object
learning. However, ongoing efforts in neuroscience have led to the identification of
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specific, image-computable models that are at least partially accurate descriptions of
the neural representations involved in primate vision. Here, we asked whether any of
those representations, when combined them with simple plasticity rules, could make
accurate predictions over a large body of human object learning behavioral
measurements. We found that specific models could indeed explain a majority of our
behavioral measurements, suggesting the rudimentary, biologically-plausible mechanisms
considered here may be sufficient to explain a core aspect of human object learning.

Introduction 1

People readily learn to recognize new visual objects. As an individual receives views of 2

a new object – new spatial patterns of photons striking their eyes – their ability to 3

correctly recognize new views of that object increases, possibly very rapidly. What are 4

the mechanisms that allow an adult human to do so? 5

Efforts from cognitive science, neuroscience, and machine learning have led to a 6

diverse array of ideas to understand and replicate this human ability, and human 7

example-based learning in general. These works range in levels of specification, from 8

conceptual frameworks that do not directly offer quantitative predictions [1–5], models 9

which depend on unspecified intermediate computations (i.e. non-image-computable 10

models; [6–10]), to end-to-end learning models which take images as input [11–17]. 11

An important step in determining the extent to which any of these ideas are valid 12

descriptors of human object learning (and its underlying neural mechanisms) is to 13

evaluate them on the basis of their ability to predict empirical measurements of human 14

behavior, over a range of task settings. While such model evaluations (which we refer to 15

as “benchmarks”) exist for visual tasks involving known object categories (e.g. [18–20]), 16

the field currently lacks a readily available set of benchmarks for visual tasks involving 17

the learning of novel objects. 18

To begin addressing this gap, we designed novel benchmarks for human object 19

learning. We focused on object learning in the context of binary discrimination tasks, in 20

which a learner must acquire the ability to discriminate two new objects from each 21

other, receiving feedback (correct or incorrect) on each trial. Though this elementary 22

task paradigm does not encompass all possible aspects of “object learning” per se, it 23

exposes subjects to one of its core problems: using a finite number of images of a new 24

object to accurately identify that object in novel images. 25

Our first experimental goal was to measure this ability in adult humans across 26

several tasks, each involving highly varied views of novel 3D objects. The resultant set 27

of measured learning curves (one for each task) formed a large set of human “behavioral 28

signatures” which could then be used as the basis for our first and primary benchmark. 29

Based on the extent a candidate learning model quantitatively reproduced (or failed to 30

reproduce) those human signatures, its empirical validity could be established. 31

Next, motivated by prior suggestions of where humans may be particularly 32

powerful [13, 21], our secondary experimental goal was to take additional measurements 33

of human behavior during the special case of “one-shot” learning, where the subject 34

receives just a single view (that is, a single image) of each object before being asked to 35

generalize to unseen views of that object. Here, we sought to measure human 36

generalization over a variety of tests involving identity-preserving transformations (e.g. 37

translation, scaling, and 3D rotation) in this one-shot setting, then to use the resultant 38

measurements to create our secondary benchmark, which evaluates a model’s ability to 39

replicate human-like patterns of generalization across the same tests. 40

Once we generated these two benchmarks, we used them to evaluate a longstanding 41

conceptual hypothesis for object learning, which posits that adult humans re-represent 42

incoming visual stimuli in a stable, multidimensional Euclidean space, learn linear 43

June 22, 2023 2/45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.12.31.522402doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522402
http://creativecommons.org/licenses/by-nc-nd/4.0/


categorization boundaries in that space, and apply this learned boundary to categorize 44

new stimuli [5, 7, 22]. 45

This overall framework is notable in that it has plausible neural implementations. 46

For example, the re-representation of an image as a location in a multidimensional space 47

could be expressed by the pattern of population firing rates in a visually-driven area; 48

linear categorization boundaries could be implemented by downstream neurons that 49

respond to weighted sums of upstream activity [23]; and those weights could be adjusted 50

through simple, reward-driven plasticity mechanisms [24–26]. 51

However, despite the biological plausibility of this framework, it does not directly 52

generate quantifiable predictions of human behavior. To generate such predictions, the 53

representational space thought to be used by humans must first be specified, as well as 54

the precise form of the plasticity rule. While there are standard learning algorithms 55

that can be written as reward-based plasticity rules operating on a single layer 56

(e.g. [27]), obtaining an accurate specification of the representational space presents a 57

larger challenge, in that this space may have a highly complex relationship with the 58

content of images. 59

Typically, this challenge has been approached by limiting the domain of the learning 60

model to a restricted, often simple domain of images, then assuming that the axes of 61

the representational space correspond to latent variables used to generate those specific 62

images (e.g. [10]). Alternatively, data-driven approaches have been used to estimate the 63

embedding of those specific images in the representational space (see [3]). However, it 64

has not been clear how to extend those approaches to the domain of all arbitrary 65

images, including the kinds of images considered here, or whether any learning models 66

based on the proposed mechanisms would offer accurate predictions of human behavior 67

in more complex and naturalistic visual domains. 68

To address this gap, we drew from ongoing efforts in cognitive science [28–33] and 69

visual neuroscience [34–36] that have established correspondences between the 70

intermediate layers of image-computable, deep convolutional neural networks (DCNNs) 71

and human visual behavior, as well as the activity of neural populations across the 72

primate ventral stream. 73

We took a large sample of those image-computable layers and combined each of 74

them with a variety of simple plasticity rules (drawn from statistical learning theory 75

and reinforcement learning) to create a battery of testable learning models. If humans 76

indeed use a representation that is sufficiently well-approximated by one of those 77

intermediate layers and have plasticity mechanisms that are well-described by one of 78

these plasticity rules, then the corresponding learning model should have close empirical 79

correspondence with observed human behaviors, as evaluated by the benchmarks here. 80

At the outset of this study, we reasoned that, if the behavior produced by any model 81

was found to be indistinguishable from that of humans, it could serve as a leading 82

scientific hypothesis to drive further experiments. If they were not found, predictive 83

gaps could be used to guide future work in improving models of human object learning. 84

Either way, the benchmarks created in this work could facilitate a standard evaluation 85

of current and future visual object learning models. 86

Results 87

We measured human behavior over two variants of an object learning task (Experiments 88

1 & 2). In Experiment 1, we measured human subjects learning to discriminate pairs of 89

novel objects as subjects were provided with an increasing number of views of those 90

objects, and feedback on their choices. In Experiment 2, we also measured humans 91

learning to discriminate between pairs of objects, but provided only one view per object 92

before assessing subjects’ accuracy on a variety of generalization tests. The results of 93
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each experiment are presented below, along with quantitative comparisons of those 94

results with a large set of learning models. Further details of the experiments and the 95

models are provided in the Materials and methods. 96

0.1 Experiment 1: Humans are rapid, but imperfect novel 97

object learners 98

In Experiment 1, we measured a population of anonymous human subjects (n=70) 99

performing 64 learning subtasks. Each subtask required that the subject learn to 100

discriminate a different pair of two novel objects, rendered under high view variation 101

(see Fig 1A). 102

These subtasks proceeded in a trial-by-trial fashion. At the beginning of a trial, a 103

test image containing one of two possible objects was briefly presented (at ≈6°of the 104

visual field for ≈ 200 milliseconds). Then, the subject was asked to report which of the 105

two objects was present “in” that image through a button press, and evaluative 106

feedback (correct or incorrect) was delivered based on their choice (see Fig 1B). The 107

subtask then proceeded to the next trial (for a total of 100 trials). 108

The core measurement we sought to obtain for each subtask was the discrimination 109

accuracy of a typical subject as a function of the number of previously performed trials 110

(i.e. the learning curve for each subtask). To estimate the learning curve for a particular 111

subtask, we recorded the sequence of corrects and incorrects achieved by achieved by 112

multiple subjects (n=50 subjects) performing n=100 randomly sampled trials (see Fig 113

1C), then averaged across subjects to estimate the learning curve for that subtask. We 114

estimated learning curves in this manner for all n=64 subtasks in this experiment 115

(depicted in Fig 1D). 116

Upon examination of these learning curves, we found that on average (over subjects 117

and subtasks), human discrimination accuracy improved immediately – i.e. after a 118

single image example and accompanying positive or negative feedback. By construction, 119

accuracy on the first trial is expected to be 50% (random guessing); but on the 120

following trial, humans had above-chance accuracy (mean 0.65; [0.63, 0.67] 95% 121

bootstrapped CI), indicating behavioral adaptation occurred immediately and rapidly. 122

Average discrimination accuracy continued to rise across learning: the subject-averaged, 123

subtask-averaged accuracy on the last trial (trial 100) was 0.87 (mean; [0.85, 0.88] 95% 124

CI). The subject-averaged, subtask-averaged accuracy over all 100 trials was 0.82 (mean; 125

[0.81, 0.84] 95% CI). 126

As anticipated, we found that different subtasks (i.e. different pairs of objects) could 127

have widely different learning curves. This is illustrated in Fig 1D, which shows the 128

estimated average human learning curve for each subtask. That is, we observed that 129

some tasks were “easy” for humans to learn, and some were harder (e.g. mean accuracy 130

of ≈0.65 for the most difficult 10% of subtasks). These variations were not artifacts of 131

experimental variability, which we established by estimating the value of Spearman’s 132

rank correlation coefficient between average subtask performances that would be 133

expected upon repetitions of the experiment (ρ = 0.97; see S2 Appendix). Moreover, we 134

found our measures of human learning behavior were robust to the experimental 135

imprecision in online behavioral testing (e.g. from head movement; variation in monitor 136

setups) by replicating a subset of this experiment in a population of in-lab subjects with 137

head-fixation and eye tracking (see S1 Fig). 138

Overall, these observations indicate that 1) humans can acquire a significant amount 139

of learning with respect to novel visual object concepts with a small number of 140

examples (e.g. 4 training examples to reach 75% correct, 6 to reach 90% of their final 141

performance), and 2) learning new objects is highly dependent on the 3D shapes of 142

those objects, with many object pairs being far from perfectly learned within 100 trials. 143
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Fig 1. Humans learning novel objects. A. Images of novel objects. Images of
synthetic 3D object models were created using random viewing parameters (background,
location, scale, and rotational pose). B. Task paradigm. On each trial, a randomly
selected image (of one of two possible objects) was briefly shown to the subject. The
subject had to report the identity of the object by making one of two possible choices
(“F” or “J”). Positive reinforcement was delivered if the subject choice was “correct”,
per an object-choice contingency that the subject learned through trial-and-error (e.g.,
object 1 corresponds to “F”, and object 2 corresponds to “J”). C. Example
subject-level learning data. Each subject performing a subtask performed a
randomly sampled sequence of 100 trials (i.e. images and their choice-reward
contingencies), and we measured their sequence of correct (blue) and incorrect (gray)
choices. Image stimuli were never repeated, ensuring each trial tests the subject’s ability
to generalize to unseen views of the objects. D. Human learning curves. We
averaged across human subjects to estimate accuracy as a function of trials for n=64
subtasks (each consisting of a distinct pair of objects). We found that some subtasks
were found to be reliably harder for humans than others; three example subtasks across
the range of difficulty are highlighted. Learning curves shown are smoothed with a
moving window filter (for visualization only).
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We next asked how well a family of models based on a standard cognitive theory of 144

learning are – or are not – able to explain these behavioral measurements. 145

0.2 Comparing image-computable learning models with humans 146

As described above, the core set of behavioral measurements we obtained in Experiment 147

1 consisted of subject-averaged learning curves for each subtask (accuracy values for 64 148

subtasks across 100 trials). Our next step was to to specify a procedure that assesses 149

how well any given computable model of object learning can quantitatively reproduce 150

those curves. 151

Given a model, this procedure consisted of 1) simulating the same set of subtasks in 152

the model and estimating its learning curves for those subtasks (exactly analogous to 153

how they were estimated in humans), and 2) computing a scalar-valued error score 154

(MSEn) which summarizes the extent to which the learning curves of the model 155

quantitatively matches (or not) the corresponding learning curves in humans. 156

We sought to score models drawn from a standard model family (see Fig 2A). Each 157

model in this family consists of two conceptual stages: which we refer to as 1) an 158

encoding stage which places each incoming image into a representational space, and 2) a 159

tunable decision stage, which generates a choice by using a linear decision boundary in 160

that space. The learning of new object-choice associations is guided by a plasticity rule, 161

which processes environmental feedback (the same feedback information provided to 162

human subjects) to adjust the linear weights of the tunable decision stage. Plasticity 163

occurs only in the decision stage; the encoding stage is held completely fixed. 164

Here, we implemented learning models based on different combinations of encoding 165

stage and plasticity rule. We considered n=344 encoding stages based on specific 166

intermediate layers of Imagenet-pretrained DCNNs [37], and n=7 plasticity rules drawn 167

from statistical learning theory and reinforcement learning (see Baseline model family 168

for details). In total, we implemented models based on all possible combinations of 169

these encoding stages and plasticity rules (n=2,408 learning models). 170

We then tested each model on the same set of subtasks as humans, simulating 171

n=32,000 behavioral sessions per model (n=500 simulations per subtask). We estimated 172

each model’s learning curves for each subtask (i.e. accuracy values over 64 subtasks and 173

100 trials), and scored its similarity to humans using a mean-squared-error statistic 174

(MSEn; details in Bias-corrected mean squared error). We show an illustration of this 175

procedure for an example model shown in Box 3, and a histogram of MSEn scores for 176

all tested models is shown in Fig 4. 177

A higher value of MSEn means the model is a worse predictor of human learning 178

behavior; lower values are better. In principle, no model can be expected to have an 179

MSEn lower than a ”noise floor” σ2
h, which comes from the uncertainty in our 180

experimental estimates of each human learning curve (i.e. from the finite amount of 181

human data collected). Intuitively, the value of σ2
h can be understood as the MSEn 182

score that can be expected from the “perfect” model of human learning behavior. We 183

made an unbiased estimate of this noise floor (σ̂2
h ≈ 0.003, see Noise floor estimation), 184

then compared this to the MSEn scores achieved by the models we tested. We note that 185

the root value of the noise floor (and MSEn) is a rough estimate of the expected error in 186

the native units of the measurements (accuracy values). 187

Many of the models were far from the noise floor, but we found that a subset of 188

models achieved relatively low error. For example, we found the best 1% of the models 189

(which we refer to as “strong baseline models”) had root-mean squared errors of 190√
MSEn ≈ 0.08, coming relatively close to the noise floor (σ̂h ≈ 0.05). Still, all models, 191

including these ones, were statistically distinguishable from humans; all models were 192

rejected as having expected behavior identical to humans with significance level of at 193

least p < 0.001 (see Null hypothesis testing). 194
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Fig 2. Model family of object learning in humans. A. Model family. Each model in
this family had two stages: an encoding stage which re-represents an incoming pixel
image as a vector (x⃗), and a tunable decision stage, which uses x⃗ to generate a choice by
computing linear choice preferences (w⃗c · x⃗), then selecting the most preferred choice.
Subsequent environmental feedback is processed to update the parameters of the
decision stage. Specific models in this family correspond to specific choices of the
encoding stage and plasticity rule. B. Possible neural implementation. The
functionality of the encoding stage in A could be implemented by the ventral stream,
which re-represents incoming retinal images into a pattern of distributed population
activity in high level visual areas, such as area IT. Sensorimotor learning might be
mediated by plasticity in a downstream association region. Midbrain processing of
environmental feedback signals could guide plasticity via dopaminergic (DA) projections.
C. Encoding stages. We built learning models based on several encoding stages, each
based on a specific intermediate layer of an Imagenet-pretrained deep convolutional
neural network. D. Plasticity rules. We drew basic plasticity rules from statistical
learning theory and reinforcement learning (Table 0.13.2). Each rule aims to achieve a
slightly different optimization objective (e.g., the ”square” rule attempts to minimize the
squared error between the choice preference and the subsequent magnitude of reward).
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Fig 3. Model simulations of human learning. A. Example encoding stage
representations of novel object images. Each subtask consists of images of two
novel objects (indicated in black and white dots). The first two principal components of
a 2048-dimensional encoding stage (Inception/layer12) are shown here (computed
separately on the images for each subtask, for clarity). Linear separability can be
observed, to varying degrees. B. Simulating a single trial. Clockwise, starting from
top left: the incoming stimulus image is re-represented by the encoding stage into a
location in a representational space, x̃. Preferences for each choice are computed (x̃ · w̃J

and x̃ · w̃F ), and the most preferred choice is selected, which amounts to making the
choice based on where x̃ falls with respect to a linear decision boundary (w̃J − w̃F ).
Here, the choice “J” is selected, which happens to be the correct choice for this image.
The subsequent reward causes the decision boundary to change based on the plasticity
rule. C. Simulated model behavioral data. For each learning model, we simulated
a total of n=32,000 behavioral sessions (64 subtasks, 500 simulations each), and
recorded its behavior (correct or incorrect) on each trial. D. Comparing model and
human behavior. We averaged across simulations to obtain the model’s learning
curves for each subtask, then compared them to subject-averaged human learning
curves, using a bias-corrected mean-squared error metric (MSEn; see Bias-corrected
mean squared error) to quantify the (dis)similarity of the model to humans.
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Fig 4. Bias-corrected mean-squared errors (MSEn) vs. humans for all models tested.
The n=2,408 models we tested varied widely in the extent of their alignment with
human learning (i.e. their average squared prediction error). We denote the best 1% of
such models as “strong baseline models”. The noise floor corresponds to an estimate of
the lowest possible error achievable (σ2

h = 0.003), given the experimental power in this
study. The vertical line labeled “random guessing” marks the error incurred by a model
which produces a random behavioral output on each trial.
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0.2.1 Model components affecting the score of a model 195

Given the range of MSEn scores we observed, we next wished to perform a secondary 196

analysis on how each of the two components defining a model (its encoding stage and 197

plasticity rule) affected its error score on the benchmark above. One general trend we 198

observed was that models built with encoding stages from deeper layers of DCNNs 199

tended to produce more human-like learning behavior (see Fig 2B). On the other hand, 200

the choice of plasticity rule (which defined by the tunable decision stage) appeared to 201

have little effect in a model’s ability to generate human-like learning behavior (see Fig 202

5A). 203

We quantified these observations by performing a two-way ANOVA over all model 204

scores (see S1 Appendix), treating the plasticity rule and encoding stage as the two 205

factors. This analysis showed that the choice of plasticity rules explained less than 0.1% 206

of the variation in model scores; by contrast, 99.8% of the variation was driven by the 207

encoding stage, showing that the predominant factor defining the behavior of the 208

learning model was the encoding stage. 209

0.2.2 Strong baseline models are largely, but not perfectly, correlated with 210

human performance patterns 211

The set of MSEn scores indicated that all models tested had significant differences from 212

humans, based on their respective learning curves. There are several ways in which 213

these differences could originate – for example, a model might have ”fast” learning 214

curves for tasks that humans learn slowly, and ”slow” learning curves for tasks that 215

humans learn rapidly. Alternatively, a model might have the same pattern of difficulty 216

across subtasks as humans, but simply be slower at learning, overall. 217

To gain insight into these possibilities, we performed an additional analysis in which 218

we compared each model to humans along two more granular statistics: 1) its overall 219

accuracy over all subtasks and trials tested, and 2) its consistency with the patterns of 220

difficulty exhibited by humans across subtasks (see Fig 6A). 221

Intuitively, overall accuracy is a gross measure of a learning system’s overall ability 222

to learn, ranging from 0.5 (chance, no learning occurs) to 0.995 (learning completed 223

after just one trial). Consistency (ρ) quantifies the extent to which a model finds the 224

same subtasks easy and hard as humans, and ranges from ρ = −1 (perfectly 225

anticorrelated pattern of performance) to ρ = 1 (perfectly correlated pattern of 226

performance). A value of ρ = 0 indicates no correlation between the patterns of 227

difficulty across subtasks in a model and humans. 228

These metrics are theoretically unrelated to each other; given any overall accuracy,1 229

a model may have a high or low consistency with humans, and vice versa. Nevertheless, 230

we observed that these two metrics strongly covaried for these models; models with high 231

overall accuracy also tended to have high consistency (see Fig 6B). 232

0.2.3 Humans learn new objects faster than all tested models in 233

low-sample regimes 234

Though many models matched or exceeded human-level overall accuracy (i.e. accuracy 235

averaged over trials 1-100 for all subtasks), we noticed that all models’ accuracy early 236

on in learning consistenctly appeared to be below that of humans (see Fig 7A). We 237

tested for this by comparing the accuracy of models and humans in an initial phase of 238

learning (trials 1-5 for all subtasks), and indeed found that all of the models were 239

1Except for models which are either at chance or perform perfect one-shot learning in all situations;
then the correlation coefficient must be undefined.
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Fig 5. Evaluating the effect of model design choices on predictive accuracy of human
learning. A. Example model scores across encoding stages and plasticity rules.
A typical example of the relative contributions of plasticity rule (y-axis) and encoding
stage (x-axis) on model scores (MSEn, encoded by color). B. Overview of all models
tested. In total, we tested encoding stages drawn from a total of n=19 DCNN
architectures, varying widely in depth. A model’s similarity to humans was highly
affected by the choice of encoding stage; those based on deeper layers of DCNNs showed
the most human-like learning behavior. On the other hand, the choice of plasticity rule
had a minuscule effect. C. Predictive accuracy increases as a function of
relative network depth. Learning models with encoding stages based on DCNN
layers closer to the final layer of the architecture tended to be better.
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Fig 6. Comparing models to humans along more granular behavioral signatures of
learning. A. Decomposing model behavior into two metrics. We examined model
behavior along two specific aspects of learning behavior: overall accuracy (top right),
which is the average accuracy of the model over the entire experiment (i.e. averaging
across all 100 trials and all 64 subtasks), and consistency (bottom right), which
conveys how well a model’s pattern of trial-averaged performance over different subtasks
rank-correlates with that of humans (Spearman’s rank correlation coefficient). B.
Consistency and overall accuracy for all models. Strong baseline models
(top-right) matched (or exceeded) humans in terms of overall accuracy, and had similar
(but not identical) patterns of performance with humans (consistency). The gray
regions are the bootstrap-estimated 95% range of each statistic between independent
repetitions of the behavioral experiment. The color map encodes the overall score
(MSEn) of each model (colorbar in Fig 5A).

June 22, 2023 12/45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2022.12.31.522402doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522402
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 7. Humans outperform all strong baseline models in low-sample regimes. A.
Subtask-averaged learning curves for humans and strong baseline models.
The y-axis is the percent chance that the subject made the correct object report
(chance is 50%). The x-axis is the total number of image examples shown prior to the
test trial (log scale). The average learning curves for humans (black) and models
(magenta) show that humans outperform all models in low-sample learning regimes.
Errorbars on the learning curves are the bootstrapped SEM; model errorbars are not
visible. B. No model achieves human-level early accuracy. We tested all models
for whether they could match humans early on in learning. Several models (including all
strong baseline models) were capable of matching or exceeding late accuracy in humans
(average accuracy over trials 95-100), but no model reached human-level accuracy in the
early regime (average over trials 1-5). This trend was present in subtasks across
different levels of difficulty (bottom row). The gray region shows the 95% bootstrapped
CI for each statistic; 95% CIs for models are too small to be shown.

significantly worse than humans in the early phase of learning (all p<0.05, bootstrap 240

hypothesis test, see Fig 7B). 241

We wondered whether this gap was present across levels of difficulty (e.g., that 242

models tended to perform particularly poorly on “hard” subtasks relative to humans, 243

but were human-level for other subtasks), and repeated this analysis across four different 244

difficulty levels of subtasks (where each level consisted of 16 out of the 64 total subtasks 245

we tested, grouped by human difficulty levels). We found models were consistently 246

slower than humans across the difficulty range, though we could not reject a subset 247

(11/20) of the strong baseline models at the easiest and hardest levels (see Fig 7B). 248

Lastly, though all models failed to match humans in the early regime, many models 249

readily matched or exceeded human performance late in learning (i.e. the average 250

accuracy on trials 95-100 of the experiment). 251
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0.3 Experiment 2: Characterizing one-shot object learning in 252

humans 253

Our observation above suggested these models learn more slowly than humans in 254

few-shot learning regimes involving random views of novel objects. To further 255

characterize possible differences between models and humans in this “early learning” 256

regime, we performed an additional behavioral experiment (Experiment 2) in which we 257

measured the ability of humans to generalize following experience with only a single 258

image of each object category. 259

Experiment 2 followed the same task paradigm as Experiment 1 (binary 260

discrimination learning with evaluative feedback). Each behavioral session was based on 261

one of 32 possible subtasks (i.e. 32 possible pairs of novel objects), and began with a 262

”training phase” of 10 trials in which the subject acquired an object-response 263

contingency using a single canonical image for each of the two objects. After the 264

training phase, we then asked subjects to perform trials with ”test images” consisting of 265

transformed versions of the two training images (see One-shot behavioral testing for 266

further details). 267

These test images were generated by applying the five kinds of image variations 268

present in our original experiment (translation, scale, random backgrounds, in-plane 269

object rotation, and out-of-plane object rotation) to the test images. We also generated 270

test images using four additional kinds of image variation that were not present in the 271

original experiment (contrast shifts, pixel deletion, blur, and shot noise), but might 272

nonetheless serve as informative comparisons for identifying functional deficiencies in a 273

model relative to humans. For each kind of transformation, we tested four ”levels” of 274

variation. For example, in measuring humans’ one-shot test accuracy to scale, we 275

showed subjects images where the object was resized to 12.5%, 25%, 50%, and 150% of 276

the size of the object in the original training image (see One-shot stimulus image 277

generation for details). 278

Under this experimental setup, the core measurements we sought to obtain was the 279

subject-averaged discrimination accuracy for n=36 generalization tests (9 transformation 280

types, 4 levels of variation each). Intuitively, each of the n=36 measurements is an 281

estimate of a typical human’s ability to successfully generalize to a specific kind and 282

magnitude of view transformation (e.g. downscaling the size of an object by 50%), after 283

exposure to a single positive and negative example of a new object. Unlike Experiment 284

1, here we combined observations across the 32 subtasks used in this experiment, 285

ignoring the fact that there may be variation in these measurements based on the 286

specific objects involved. We also attempted to correct for any memory or attentional 287

lapses in these estimates (see One-shot behavioral statistics in humans for details). 288

Across these 36 test conditions, we found that humans had varied patterns of 289

generalization (Fig 8B). For example, we observed that accuracy varied systematically 290

based on the level of variation applied with respect to scale, out-of-plane rotation, and 291

blur. On the other hand, human subjects had nearly perfect generalization across all 292

tested levels of variation for translations, backgrounds, contrast shifts, and in-plane 293

rotations. Overall, these diverse patterns of generalization were estimated with a 294

relatively high degree of experimental precision, as quantified by our estimates of the 295

human noise floor for this experiment (root noise floor of σ̂h ≈ 0.02). 296

We next used these measurements to create a benchmark that could be used to 297

compare any computable object learning model – including the models considered in 298

this study – against human object learning in this one-shot setting. 299
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Fig 8. One-shot learning in humans. A. One-shot learning task paradigm. We
performed an additional study (Experiment 2) to characterize human one-shot learning
abilities (using the same task paradigm in Fig 1). The first 10 trials were based on two
images (n=1 image per object) that were resampled in a random order. On trials 11-20,
humans were tested on transformed versions of those two images (nine types of
variation, four variation levels, n=36 total generalization tests) B. Human and
example model one-shot accuracy for all generalization tests. An example
strong baseline model’s pattern of generalization (magenta) is shown overlaid against
that of humans. C. Humans outperform strong baseline models on some kinds
of image variations. We averaged human one-shot accuracy (gray) on each type of
image variation, and overlaid all strong baseline models (magenta). The errorbars are
the the 95% CI (basic bootstrap). D. Comparison of MSEn scores for
Experiment 1 and 2. No strong baseline model could fully explain the pattern of
one-shot generalization observed in humans (Experiment 2), nor their behavior on the
first benchmark (Experiment 1). The error scores are shown on the log scale.
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0.4 Models show weaker one-shot generalization compared to 300

humans 301

As in Experiment 1, the benchmarking procedure for Experiment 2 consisted of 1) 302

generating predictions of behavior from a model by having it perform the same 303

experiment conducted in humans, then 2) scoring the similarity of that behavior to 304

humans using an error statistic (MSEn). Thus, for each model, we replicated the 305

one-shot behavioral experiment (n=16,000 simulated sessions per model), measured 306

their accuracy on each of the 36 generalization tests described above, then compared 307

those behavioral predictions to humans using MSEn. 308

Similar to our results from Experiment 1, here we found that models varied widely 309

in their alignment with human learning behavior, and again found the top 1% subset of 310

models achieved relatively low error (
√
MSEn ≈ 0.06, where the root noise floor is 311

approximately σ̂h ≈ 0.02). And as in Experiment 1, we found that all models had 312

statistically significant differences in their behavior relative to humans, for this 313

experiment. We also observed a positive relationship between the scores of the two 314

benchmarks: models that were most human-like as evaluated by the benchmark based 315

on Experiment 1 also tended to be the most human-like here, in the one-shot setting 316

(see Fig 8D) – though no model explained human behavior in either experiment to the 317

limits of statistical noise. 318

Part of the prediction failures we observed here lay in a failure to generalize as well 319

as humans to several kinds of image variation. For example, we observed that all strong 320

baseline models (identified from the benchmark from Experiment 1) had lower one-shot 321

accuracy than humans in the presence of object pixel deletions, blur, shot noise, and 322

scale shifts (see Fig 8C). 323

0.5 Specific individual humans outperform all models 324

Both benchmarks we developed in this study tested the ability of a model to predict 325

human object learning at the ”subject-averaged” level, where behavioral measurements 326

drawn from several subjects are averaged together. This approach, by design, ignores 327

any individual differences in learning behavior that may exist. 328

We wished to gauge the extent to which any such individual differences were present, 329

and we performed an analysis on our behavioral data from Experiment 1. We identified 330

subjects who performed all 64 subtasks in that experiment (22 out of 70 subjects total) . 331

We then attempted to reject the null hypothesis that there was no significant variation 332

in their overall learning ability (see S3 Appendix). If this hypothesis were to be rejected, 333

it would indicate that individuals must systematically vary in their learning behavior, at 334

least in terms of their overall performance on these tasks. We indeed found that some 335

subjects were reliably better object learners than others (p < 1e-4, permutation test). 336

Given this was the case, we next asked whether any of these individuals had an 337

overall performance level higher than that of the highest performing model we identified 338

in Experiment 1 (an encoding stage based on ResNet152/avgpool, and a tunable decision 339

stage using the square plasticity rule). We identified n=5 individuals whose overall 340

accuracy significantly exceeded that of this model (all p<1e−5, Welch’s t-test, 341

Bonferroni corrected). On average, this subset of humans had an overall accuracy of 342

0.92± 0.01 (SEM over subjects); this was around 4% higher than this model’s average of 343

0.88. 344
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Fig 9. Individual differences in learning ability. A. Individual-level learning
curves. We identified 22 subjects who performed all 64 subtasks in Experiment 1, and
computed their subtask-averaged learning curves. Each gray curve corresponds to the
learning curve for a different individual subject (smoothed using state-space estimation
from [38]). In humans, a range of overall learning performance is seen: some subjects
consistently outperformed others (e.g. Subject M, highest accuracy over all trials and
subtasks), while others consistently underperformed (e.g. Subject L, lowest average
accuracy). In magenta are subtask-averaged learning curves corresponding to individual
model simulations from the highest-performing model e tested in this study (encoding
stage = ResNet152/avgpool, plasticity rule = square). B. Some individual humans
outperform all models. Five out of 22 subjects had significantly higher overall
performance than the highest performing model we tested (one-tailed Welch’s t-test,
Bonferroni corrected, p<0.05).
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Discussion 345

A neurally mechanistic understanding of how humans accomplish visual object learning 346

remains an open scientific problem. In this study, we focused on a core behavioral 347

phenomenon entailed in visual object learning: the use of a finite number of image 348

examples of new objects to accurately identify that object in new, unseen images. A 349

necessary step in obtaining descriptions of the underlying neural mechanisms of this 350

core phenomenon is evaluating the empirical alignment of alternative models with 351

respect to measurements of human object learning behavior. To facilitate this, we first 352

collected a set of human measurements in many tasks within this object learning setting 353

(n=371,000 trials), allowing us to quantify the speed of human object learning (<10 354

trials to achieve close-to-asymptotic accuracy), the distinct pattern of learning difficulty 355

they have for different objects, and their extent of generalization to specific image 356

transformations after a single image example. 357

We then developed procedures to evaluate any image-computable object learning 358

model over those same learning settings (which we refer to as “benchmarks” for human 359

visual object learning), and tested a set of simple learning models (n=2,408 models) on 360

those benchmarks. Each of these models consisted of two stages: 1) a fixed encoding 361

stage, which maps incoming images to locations in an internal representational space, 362

followed by 2) a tunable decision stage which aims to improve future choices by 363

adjusting the plastic weights that convert that representation into a choice. 364

Prior to this study, we did not know if some or any of these learning models might 365

be capable of explaining human object learning as assessed on naturalistic images like 366

those used here. As such, we center our discussion on these models, but highlight that 367

our raw behavioral data (and the associated behavioral benchmarks) are now a publicly 368

available resource for testing image-computable object learning models beyond those 369

evaluated here [GitHub]. 370

0.6 Strengths and weaknesses of these object learning models 371

Linear learning on fixed image representations are strong baseline models of 372

human object learning On our first benchmark, which compares a learning model 373

to humans under high view-variation learning conditions, we found a subset of models 374

produced relatively accurate predictions of human learning behavior. The observed 375

alignment of these models with humans does not originate from the fact they 376

successfully learn new objects – these models also fail to rapidly learn the same objects 377

that humans find difficult (Fig 6B), suggesting they have nontrivial similarities with 378

humans, at least behaviorally. 379

We were surprised by the extent of similarity we observed between these models and 380

humans, partly because some have suggested that DCNNs are unlikely to support 381

adequate descriptions of human learning (e.g. [15, 39–42]), and partly because of the 382

simplicity of these models. The results reported here suggest that learning models based 383

on contemporary models of high-level visual neural representations and rudimentary, 384

one-layer plasticity rules are a strong starting point to quantitatively account for the 385

ability (and inability) of humans to learn arbitrary, new objects. 386

We note the present work does not directly engage the ongoing issue of whether the 387

optimization mechanism of backpropagation is somehow involved in human learning [43]. 388

Though the DCNN-based representations used in the learning models in this work were 389

originally created using backpropagation, they were kept completely ”frozen” over 390

behavioral learning, with all behavioral learning achieved through a single layer of 391

weight changes (which does not require backpropagation). At a conceptual level, this 392

work regards DCNN-based representations as estimates of the (adult) human subject’s 393
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internal neural representation at the beginning of task learning, and is agnostic to how 394

they were created before that point. 395

In general, the models we considered are composed only of operations that closely 396

hew to those executed by first-order models of neurons – namely, linear summation of 397

upstream population activity, ramping nonlinearities, and adjustment of local 398

associational strengths using reward signals. This makes them not only plausible 399

descriptions for the computations executed by the brain over object learning, but, with 400

some additional assumptions (Fig 2B), they make predictions of neural phenomena. 401

For example, if the interpretation suggested in Fig 2B is taken at face value, these 402

models make a couple of qualitative predictions. First, given the assumption that the 403

encoding stage corresponds to the output of the ventral visual stream, these models 404

predict that ventral stream representations used by humans over object learning need 405

not undergo plastic changes to mediate behavioral improvements over the duration of 406

the experiments we conducted (seconds-to-minutes timescale). This prediction is in line 407

with prior studies showing adult ventral stream changes are typically moderate and take 408

place on longer timescales (see [44] for review). 409

Moreover, the entirety of the computational learning mechanisms used by these 410

models (i.e. the learning of thresholded, linear combinations of upstream neural activity 411

using reward signals) can plausibly be executed at a single visuomotor synaptic 412

interface where reward-based feedback signals are available. Several regions downstream 413

of the ventral visual stream are possible candidates for this locus of plasticity during 414

invariant object learning; we point to striatal regions receiving both high-level visual 415

inputs and midbrain dopaminergic signals and involved in premotor processing, such as 416

the caudate nucleus, as one set of candidates [45, 46]. 417

Gaps between models and humans in few-shot learning Despite the predictive 418

strength of some models we tested, all models tested were unable to fully explain all 419

replicable human behavior on either behavioral benchmark. One consistent prediction 420

failure we observed in all models was a failure to learn new objects as rapidly as humans 421

in low-sample regimes. We found this to be the case in both Experiment 1 (see Fig 7) 422

and in Experiment 2, where we found that all tested models had lower accuracy than 423

humans after one-shot across a variety of generalization tests (see Fig 8C). For example, 424

we found that these models cannot one-shot generalize as well to scale shifts as humans, 425

replicating previous work [47]. 426

Taken together, these observations show all tested learning models currently have 427

quantitative deficiencies from humans in the few-shot regime. We note that even if our 428

experiments have underestimated human learning speed (e.g. from increased inattention 429

rates on Mechanical Turk [48]), this inference would not change; the estimated gaps in 430

few-shot learning abilities between these models and humans would be larger than the 431

ones we report here. However, other aspects of similarity we found between models and 432

humans – such as their shared patterns of relative difficulty – would be robust to such 433

biases in our experiment. 434

0.7 Future visual object learning models to be tested 435

There are several potential ways to improve the predictive accuracy of the models we 436

tested in this study (i.e. to find more human-like learning models). For example, it is 437

possible that another model based on the conceptual model family we considered in this 438

work could fully predict human learning over the benchmarks we developed, and we 439

simply failed to implement and test that particular model here. If that is the case, such 440

a model could differ from the ones we tested along one or both of its two components: 441

its approximation of the visual representations used by humans during learning (i.e. its 442
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encoding stage), and/or its plasticity rule. Because the choice of plasticity rule had 443

little effect on the predictive power of these models (Fig 5A) and did not interact 444

significantly with the choice of encoding stage, we suggest it is more likely that 445

alternative encoding stages would give rise to a more accurate model. 446

This view is consistent with the fact that the encoding stages we considered 447

(Imagenet-pretrained DCNN representations) are known to only partially approximate 448

the primate ventral stream, as directly measured by electrophysiological studies [36] and 449

inferred by behavioral object categorization studies on images of already-learned 450

objects [18,32,49]. If image-computable representations that more closely adhere to 451

human visual representations could be built and/or identified, we anticipate they would 452

lead to object learning models that close the prediction gap on the benchmarks we 453

developed here. 454

Stepping back, it is also possible that no model from this conceptual model family 455

could lead to fully accurate predictions on these benchmarks (or future benchmarks), 456

but other types of models might do so. For example, one influential class of cognitive 457

theories posits that the brain learns new objects by building structured, internal models 458

of those objects from image exemplars, then uses those internal models to infer the 459

latent content of each new image [8,11,13,15,16,50]. It is possible that models based on 460

these alternate approaches would generate more human-like learning over the tasks we 461

tested here, and could be the key to achieving a full computational description of 462

human object learning. In any case, implementing and testing these models on the 463

benchmarks here is an important direction for future work. 464

0.8 Future extensions of object learning benchmarks 465

0.8.1 Extensions of task paradigm 466

The two benchmarks we developed here certainly do not encompass all aspects of object 467

learning. For example, each benchmark focused on discrimination learning between two 468

novel objects, but humans can potentially learn and report on many more objects 469

simultaneously. Moreover, humans can readily learn object categories at different levels 470

of abstraction, each of which may encompass multiple specific objects [51]. The models 471

tested here scale naturally to task paradigms involving additional objects (via the 472

incorporation of new linear choice preferences to the decision stage), and are capable of 473

learning categories of varying abstraction; comparing them to humans in those richer 474

learning settings (and identifying any of their limits in those settings) could strongly 475

motivate the consideration of more complex models. 476

0.8.2 Extending stimulus presentation time 477

For presenting stimuli, we followed conventions used in previous visual neuroscience 478

studies [18,52] of object perception: achromatic images containing single objects 479

rendered with high view uncertainty on random backgrounds, presented at <10 degrees 480

of visual field and for <200 milliseconds. 481

The chosen stimulus presentation time of 200 milliseconds is too short for a subject 482

to initiate a saccadic eye movement based on the content of the image [53]. Such a 483

choice simplifies the input of any model (i.e., to a single image, rather than the series of 484

images induced by saccades); on the other hand, active viewing of an image via 485

target-directed saccades might be a central mechanism deployed by humans to mediate 486

learning of new objects. 487

We note that if this is the case, our task paradigm (which would disrupt any such 488

saccade-based mechanisms from being used) would be underestimating the number of 489

images needed by humans to achieve learning on new objects, compared to a scenario in 490
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which subjects had unlimited viewing time on each trial. Thus, removing such a bias in 491

our experimental design could potentially reveal larger differences between models and 492

humans. 493

Beyond extending viewing time, designing tasks which more closely hew to typical 494

object learning contexts for humans (e.g. involving colored images and/or movies of 495

potentially multiple objects physically embedded in natural scenes) will be an important 496

direction for future work. 497

0.8.3 Differences between individual subjects 498

We primarily focused on studying human learning at the subject-averaged level, where 499

behavioral measurements are averaged across several individuals (i.e. subject-averaged 500

learning curves; see Fig 1D). However, individual humans may have systematic 501

differences in their learning behavior that are (by design) ignored with this approach. 502

For example, we found that individual subjects may differ in their overall learning 503

abilities: we identified a subpopulation of humans who were significantly more proficient 504

at learning compared to other humans (see Fig 9B). We did not attempt to model this 505

individual variability in this study; whether these differences can be explained by 506

alterations to this model family, if at all, (e.g. through the introduction of random 507

effects to the parameters of the encoding stage and/or plasticity rules) remains an area 508

for future study. 509

Moreover, performing subject-averaging is known to lead to the masking of learning 510

dynamics present at the level of single subjects, such as delayed rises or step increases in 511

accuracy [54]. Performing analyses to compare any such learning dynamics between 512

individual humans and learning models is another important extension of our work. 513

Lastly, we did not attempt to model any systematic increases in a subject’s learning 514

performance as they performed more and more subtasks available to them (in either 515

Experiment 1 or 2). This phenomenon (learning-to-learn, learning sets, or 516

meta-learning) is well-known in psychology [55], but to our knowledge has not been 517

systematically measured or modeled in the domain of human object learning. 518

Expanding these benchmarks (and models) to measure and account for such effects is 519

an important future step of building models of the work done here. 520

Materials and methods 521

0.9 Overview of experiments 522

For both experiments, the core measurement we sought to obtain was the discrimination 523

performance of a typical subject as they received increasing numbers of exposures to 524

images of the to-be-learned (i.e. new) objects. 525

We assumed that different pairs of objects result in potentially different rates of 526

learning, and we wanted to capture those differences. Thus, in Experiment 1, we aimed 527

to survey the empirical landscape of this human ability by acquiring this learning curve 528

measurement for many different pairs of objects (n=64 pairs). Specifically, for each pair 529

of to-be-learned objects (referred to as a ”subtask”), we aimed to measure 530

(subject-averaged) human learning performance across 100 learning trials, where each 531

trial presented a test image generated by one of the objects under high viewpoint 532

uncertainty (e.g. random backgrounds, object location, and scale). We refer to this 533

100-dimensional set of measurements as the learning curve for each subtask. 534

In Experiment 2, we aimed to measure the pattern of human learning that results 535

from their experience with just a single canonical example of each of the to-be-learned 536

objects (a.k.a. ”one-shot learning”). Specifically, we wished to measure the pattern of 537
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human discrimination ability over various kinds of identity-preserving image 538

transformations (e.g, object scaling, transformation, and rotation). In total, we tested 539

nine kinds of transformations. We anticipated that humans would show distinct 540

patterns of generalization across these transformations, and we aimed to measure the 541

human commonalities in those patterns (i.e. averages across subjects). 542

Experiments 1 and 2 both utilized a two-way object learning task paradigm that is 543

conceptually outlined in Fig 1B. The two experiments differed only in the manner in 544

which test images were generated and sampled for presentation, and we describe those 545

differences in detail in their respective sections. Before that, we provide more detail on 546

the specific procedures and parameters we used to implement the common two-way 547

object learning task paradigm. 548

0.10 Task paradigm 549

For both experiments, human subjects were recruited from Mechanical Turk [56], and 550

ran tasks on their personal computers. Demographic information (age, sex, gender, or 551

ethnicity) was not collected; all online subjects were anonymous. We also recruited 552

n = 4 subjects for testing in the lab. We designed and administered these experiments 553

in accordance to a protocol approved by the Massachusetts Institute of Technology 554

Committee on the Use of Humans as Experimental Subjects (Protocol # 555

0812003043A017). 556

Each experiment (Experiments 1 & 2) consisted of a set of subtasks. For each 557

subtask, we asked a population of human subjects to learn that subtask, and we refer to 558

the collection of trials corresponding to a specific subject in a subtask as a ”session”. 559

At the beginning of each session, the subject was instructed that there would be two 560

possible objects – one belonging to the ”F” category and the other belonging to the ”J” 561

category. The subject’s goal was to correctly indicate the category assignment for each 562

test image. The specific instructions were: ”On each trial, you’ll view a rapidly flashed 563

image of an object. Your task is to figure out which button to press (either ”F” or ”J” 564

on your keyboard) after viewing a particular image. Each button corresponds to an 565

object (for example, a car might correspond to F, while a dog might correspond to J).” 566

Subjects were also informed that they would receive a monetary bonus (in addition 567

to a base payment) for each correctly indicated test image, incentivizing them to learn. 568

We next describe the structure of a single trial in detail below. 569

0.10.1 Test image presentation 570

Each trial began with a display start screen that was uniformly gray except for a small 571

black dot at the center of the screen, which indicated the future center of each test 572

image.2 We intended for this fixation point to encourage the subject to consistently 573

view each test image at the center of their field of view (see S2 for in-lab eye 574

measurements). The subject then initiated the trial by pressing the space bar on their 575

keyboard. Once pressed, a test image (occupying ≈ 6◦ of the visual field) belonging to 576

one of the two possible object categories immediately appeared. That test image 577

remained on the screen for ≈ 200 milliseconds before disappearing (and returning the 578

screen to uniform gray).3 579

For each subject and each trial, the test image was selected by first randomly 580

picking (with equal probability) one of the two objects as the generator of the test 581

2The center of the test image is not necessarily the same as the center of the object in the test image.
3We assumed our subjects used computer monitors with a 16:9 aspect ratio, and naturally positioned

themselves so the horizontal extent of the monitor occupied between 40◦-70◦ degrees of their visual field.
Under that assumption, we estimate the visual angle of the stimulus would vary between a minimum
and maximum of ≈ 4◦ − 8◦. Given a monitor has a 60 Hz refresh rate, we expect the actual test image
duration to vary between ≈ 183− 217 milliseconds.
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image. Then, given that selected object, an image of that object was randomly selected 582

from a pool of pre-rendered possible images. Test images were always selected without 583

replacement (i.e. once selected, that test image was removed from the pool of possible 584

future test images for that behavioral session). 585

0.10.2 Subject choice reporting 586

Fifty milliseconds after the disappearance of the test image, the display cued the subject 587

to report the object that was ”in” the image. The display showed two identical white 588

circles – one on the lower left side of the fixation point and the other on the lower right 589

side of the fixation point. The subject was previously instructed to select either the ”F” 590

or ”J” keys on their keyboard. We randomly selected one of the two possible 591

object-to-key mappings prior to the start of each session, and held it fixed throughout 592

the entire session. This mapping was not told to the subject; thus, on the first trial, 593

subjects were (by design) at chance accuracy. 594

To achieve perfect performance, a subject would need to associate each test image of 595

an object to its corresponding action choice, and not to the other choice (i.e., achieving 596

a true positive rate of 1 and a false positive rate of 0). 597

Subjects had up to 10 seconds to make their choice. If they failed to make a selection 598

within that time, the task returned to the trial initiation phase (above) and the outcome 599

of the trial was regarded as being equivalent to the selection of the incorrect choice.4. 600

0.10.3 Trial feedback 601

As subjects received feedback which informed them whether their choice was correct or 602

incorrect (i.e. corresponding to the object that was present in the preceding image or 603

not), they could in principle learn object-to-action associations that enabled them to 604

make correct choices on future trials. 605

Trial feedback was provided immediately after the subject’s choice was made. If they 606

made the correct choice, the display changed to a feedback screen that displayed a 607

reward cue (a green checkmark). If they made an error, a black ”x” was displayed 608

instead. Reward cues remained on the screen for 50 milliseconds, and were accompanied 609

by an increment to their monetary reward (see above). Error cues remained on the 610

screen for 500 milliseconds. Following either feedback screen, a 50 millisecond delay 611

occurred, consisting of a uniform gray background. Finally, the display returned to the 612

start screen, and the subject was free to initiate the next trial. 613

0.11 Experiment 1: Learning objects under high view variation 614

Our primary human learning benchmark (Experiment 1) was based on measurements of 615

human learning curves over subtasks involving images of novel objects rendered under 616

high view-variation. We describe our procedure for generating those images, collecting 617

human behavioral measurements, and benchmarking models against those 618

measurements below. 619

0.11.1 High-variation stimulus image generation 620

We designed 3D object models (n=128) using the ”Mutator” generative design 621

process [57]. We generated a collection of images for each of those 3D objects using the 622

POV-Ray rendering program [58]. To generate each image, we randomly selected the 623

viewing parameters of the object, including its projected size on the image plane 624

4In practice, this was quite rare and corresponded to ≈0.04% of all trials that are included in the
results in this work.
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(25%-50% of total image size, uniformly sampled), its location (±40% translation from 625

image center for both x and y planes, uniformly sampled), and its pose relative to the 626

camera (uniformly sampled random 3D rotations). We then superimposed this view on 627

top of a random, naturalistic background drawn from a database used in a previously 628

reported study [52]. All images used in this experiment were grayscale, and generated at 629

a resolution of 256x256 pixels. We show an example of 32 objects (out of 128 total) in 630

Fig 1A, along with example stimulus images for two of those objects on the right. 631

0.11.2 Design of subtasks 632

We randomly paired the 128 novel objects described above into pairs (without 633

replacement) to create n=64 subtasks for Experiment 1, each consisting of a distinct 634

pair of novel objects. Each behavioral session for a subtask consisted of 100 trials, 635

regardless of the subject’s performance. On each trial of a session, one of the two 636

objects was randomly selected, and then a test image of that object was drawn 637

randomly without replacement from a pre-rendered set of 100 images of that object 638

(generated using the process above). That test image was then presented to the subject 639

(as described in Test image presentation). We collected 50 sessions per subtask and all 640

sessions for each subtask were obtained from separate human subjects, each of whom we 641

believe had not seen images of either of the subtask’s objects before participation. 642

0.11.3 Subject recruitment and data collection 643

Human subjects were recruited on the Mechanical Turk platform [56] through a 644

two-step screening process. The goal of the first step was to verify that our task 645

software successfully ran on their personal computer, and to ensure our subject 646

population understood the instructions. To do this, subjects were asked to perform a 647

prescreening subtask with two common objects (elephant vs. bear) using 100 trials of 648

the behavioral task paradigm (described in Task paradigm above). If the subject failed 649

to complete this task with an average overall accuracy of at least 85%, we intentionally 650

excluded them from all subsequent experiments in this study. 651

The goal of the second step was to allow subjects to further familiarize themselves 652

with the task paradigm. To do this, we asked subjects to complete a series of four 653

”warmup” subtasks, each involving two novel objects (generated using the same 654

”Mutator” software, but distinct from the 128 described above). Subjects who 655

completed all four of these warmup subtasks, regardless of accuracy, were enrolled in 656

Experiment 1. Data for these warmup subtasks were not included in any analysis 657

presented in this study. In total, we recruited n=70 individual Mechanical Turk workers 658

for Experiment 1. 659

Once a subject was recruited (above), they were allowed to perform as many of the 660

64 subtasks as they wanted, though they were not allowed to perform the same subtask 661

more than once (median n=61 total subtasks completed, min=1, max=64). We aimed 662

to measure 50 sessions per subtask (i.e. 50 unique subjects), where each subject’s 663

session consisted of an independently sampled, random sequence of trials. Each of these 664

subtasks followed the same task paradigm (described in Methods Task paradigm), and 665

each session lasted 100 trials. Thus, the total amount of data we aimed to collect was 666

64 subtasks× 100 trials× 50 subjects = 320k measurements. 667

0.11.4 Behavioral statistics in humans 668

We aimed to estimate a typical subject’s accuracy at each trial, conditioned on a 669

specific subtask. We therefore computed 64× 100 accuracy estimates (subtask× trial) 670

by taking the sample mean across subjects. We refer to this [64, 100] matrix of point 671
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statistics as Ĥ. Each row vector Ĥs has 100 entries, and corresponds to the mean 672

human ”learning curve” for subtask s = {1, 2, ...64}. 673

Because each object was equally likely to be shown on any given test trial, each of 674

these 100 values of Ĥs may be interpreted as an estimate of the average of the true 675

positive and true negative rates (i.e. the balanced accuracy). The balanced accuracy is 676

related to the concept of sensitivity from signal detection theory – the ability for a 677

subject to discriminate two categories of signals [59]. We note that an independent 678

feature of signal detection behavior is the bias – the prior probability with which the 679

subject would report a category. We did not attempt to quantify or compare the bias in 680

models and humans in this study. 681

0.11.5 Simulating behavioral sessions in computational models 682

To obtain the learning curve predictions of each computational model, we required that 683

each model perform the same set of subtasks that the humans performed, as described 684

above. We imposed the same requirements on the model as we did on the human 685

subjects: that it begins each session without knowledge of the correct object-action 686

contingency, that it should generate a action choice based solely on a pixel image input, 687

and that it can update its future choices based on the history of scalar-valued feedback 688

(”correct” or ”incorrect”). If the choices later in the session are more accurate than 689

those earlier in the session, then we colloquially say that the model has ”learned”, and 690

comparing and contrasting the learning curves of models with those of humans was a 691

key goal of Experiment 1. 692

We ran n=32,000 simulated behavioral sessions for each model (500 simulated 693

sessions for each of the 64 subtasks), where on each simulation a random sequence of 694

trials was sampled in an identical fashion as in humans (see above). During each 695

simulation, we recorded the same raw ”behavioral” data as in humans (i.e. sequences of 696

correct and incorrect choices), then applied the same procedure we used to compute Ĥ 697

(see above) to compute an analogous collection of point statistics on the model’s raw 698

behavior, which we refer to as M̂ . 699

0.11.6 Comparing model learning with human learning 700

The learning behavior generated by an computable model of human learning (M̂) 701

should minimally replicate the measured learning behavior of humans (i.e. Ĥ), to the 702

limits of statistical noise. To identify any such models, we developed a scoring 703

procedure to compare the similarity of the learning behavior in humans with any 704

candidate learning model. We describe this procedure below. 705

Bias-corrected mean squared error Given a collection of human measurements Ĥ 706

(here, a matrix of accuracy estimates for S = 64 subtasks over T = 100 trials) and 707

corresponding model measurements (M̂), we computed a standard goodness-of-fit 708

metric, the mean-squared error (MSE; lower is better). The formula for the MSE is 709

given by: 710

MSE(M̂, Ĥ) =
1

S · T

S∑
s=1

T∑
t=1

(M̂st − Ĥst)
2 (1)

Because Ĥst and M̂st are random variables (i.e. sample means), the MSE itself is a 711

random variable. It can be seen that the expected value of MSE(M̂, Ĥ) consists of two 712

conceptual components: the expected difference between the model and humans, and 713

noise components: 714
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E[MSE(M̂, Ĥ)] =
1

S · T

S∑
s=1

T∑
t=1

(
E[M̂st]−E[Ĥst]

)2

+ σ2
(
Ĥst

)
+ σ2

(
M̂st

)
(2)

Where E[·] denotes the expected value, and σ2(·) denotes the variance due to finite 715

sampling (a.k.a. ”noise”). 716

Equation (2) shows that the expected MSE for a model depends not only on its 717

expected predictions E[M̂st], but also its sampling variance σ2(M̂st). In the present 718

case where M̂st is the mean over independent (but not necessarily identically 719

distributed) Bernoulli variables, the value of σ2(M̂st) happens to depend on the 720

expected prediction of the model itself, E[M̂st].
5

721

Because the sampling variance of the model depends on its predictions, it is therefore 722

conceptually possible that a model with worse (expected) predictions could achieve a 723

lower expected MSE, simply because its associated sampling variance is lower.6 724

We corrected for this inferential bias by estimating, then subtracting, these variance 725

terms from the ”raw” MSE for each model we tested.7. We refer to this bias-corrected 726

error as MSEn. 727

MSEn(M̂, Ĥ) =
1

S · T

S∑
s=1

T∑
t=1

(M̂st − Ĥst)
2 − σ̂2

(
M̂st

)
(3)

Where σ̂2
(
M̂st

)
is an unbiased estimator of the variance of M̂st. We write the 728

equation for σ̂2
(
M̂st

)
below, where kst is the number of observed correct choices over 729

the nst model simulations conducted for subtask s and trial t: 730

σ̂2
(
M̂st

)
=

kst

nst

(
1− kst

nst

)
nst − 1

(4)

Because E
[
σ̂2

(
M̂st

)]
= σ2

(
M̂st

)
, the expected value of MSEn can be shown to be: 731

E[MSEn(M̂, Ĥ)] =
1

S · T

S∑
s=1

T∑
t=1

(
E[M̂st]−E[Ĥst]

)2

+ σ2
(
Ĥst

)
(5)

Intuitively, MSEn is an estimate of the mean-squared error that would be achieved 732

by a model if we had a noiseless estimate of its predictions (i.e. had an infinite number 733

of simulations of that model been performed). We note that the value of its square root, 734√
MSEn, gives a rough8 estimate of the average deviation between a model’s prediction 735

and human measurements, in units of the measurements (in this study, units of 736

accuracy). 737

5This can be seen by the expression for the variance of M̂st, which is a mean over independent

(but not necessarily identically distributed) Bernoulli variables: σ2
(
M̂st

)
=

pst(1−pst)
nst

. The value of

E[M̂st] is the expected behavior of the model on trial t of subtask s, and nst is the number of model
simulations.

6And/or because more model simulations were performed – though in this study, all tested models
performed the same number of simulations, n=500.

7In practice, this correction was relatively small, because of the high number of simulations that
were conducted.

8This estimator is biased.
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Noise floor estimation It can be in Equation (5) that there are terms σ2
(
Ĥst

)
, 738

originating from the uncertainty in our experimental estimates of human behavior. 739

These terms are always positive, and create a lower bound on the expected MSEn for all 740

models. That is, even if a model is expected to perfectly match the subject-averaged 741

behavior of humans (where E[Mst] = E[Hst], for all subtasks s and trials t), it cannot 742

be expected to achieve an error below this lower bound. We call this lower bound the 743

”noise floor”, and use the symbol σ2
h to refer to it: 744

σ2
h =

1

S · T

S∑
s=1

T∑
t=1

σ2(Ĥst) (6)

It is possible to make an unbiased estimate of the noise floor (σ2
h) if one can make 745

unbiased estimates of each σ2(Ĥst) term. We did so by using the unbiased estimator 746

from Equation (4). We write the full expression for our estimate of the noise floor, σ̂2
h, 747

below: 748

σ2
h =

1

S · T

S∑
s=1

T∑
t=1

kst

nst

(
1− kst

nst

)
nst − 1

(7)

Where kst is the number of human subjects (out of nst total subjects) that made a 749

correct choice on subtask s and trial t. The square root of this value, σh, gives a rough 750

estimate of the average deviation one would expect in our subject-averaged 751

measurements of behavior (Ĥst) over repetitions of the experiment (i.e. upon another 752

resampling of human subjects and behavioral sessions). 753

Null hypothesis testing For each model we tested, we attempted to reject the null 754

hypothesis that E[Ĥst] = E[M̂st], for all subtasks s and trials t. To do so, we first 755

approximated the distribution for MSEn(Ĥ, M̂) that would be expected under this null 756

hypothesis, using bootstrapping. 757

To do so, we first computed bootstrap replicates of Ĥ and approximated samples of 758

the null model M̂⋆ (where E[Ĥst] = E[M̂⋆
st]). A bootstrap replicate of Ĥ was 759

constructed by first resampling individual human sessions without replacement, taking 760

the same number of resamples per subtask as in the original experiment. We then 761

computed the replicate H̃ using the same procedure described in Behavioral statistics in 762

humans. Behavior from the null model cannot be sampled directly (i.e. we do not have 763

the ”true model” of human learning), but by definition shares the same expected 764

behavior as a randomly sampled, individual human. We therefore created a bootstrap 765

sample of the null model M̃⋆ by (also) taking resamples of individual human sessions, 766

setting the number of resamples per subtask to the number of model simulations 767

conducted per subtask (here, n=500 simulations per subtask). We then computed and 768

saved MSEn(H̃, M̃⋆) for that iteration, and repeated this process for B=1,000 iterations 769

to obtain an approximate null distribution for MSEn. 770

If a model’s actual MSEn(M̂, Ĥ) score fell above the α-quantile of the estimated null 771

distribution, we rejected it on the basis of having significantly more error than what 772

would be expected from a ”true” model of humans (with estimated significance level α). 773

Lapse rate correction Lastly, we corrected for any lapse rates present in the human 774

data. We defined the lapse rate as the probability with which a subject would randomly 775

guess on a trial, and we assumed this rate was constant across all trials and subtasks. 776

To correct for any such lapse rate in the human data, we fit a simulated lapse rate γ 777
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parameter to each model, prior to computing its MSEn. Given a lapse rate parameter of 778

γ (ranging between 0 and 1), a model would, on each trial, guess randomly with 779

probability γ. For each model, we identified the value of γ that minimized its empirical 780

MSEn . 781

We note that fitting γ can only drive the behavior of a model toward randomness; it 782

cannot artificially introduce improvements in its learning performance. 783

0.12 Experiment 2: One-shot human object learning benchmark 784

For the second benchmark in this study, we compared one-shot generalization in 785

humans and models. Our basic approach was to allow humans to learn to distinguish 786

between two novel objects using a single image per object, then test them on new, 787

transformed views of the support set. 788

0.12.1 One-shot behavioral testing 789

We used the same task paradigm described in Task paradigm (i.e. two-way object 790

discrimination with evaluative feedback). We created 64 object models for this 791

experiment (randomly paired without replacement to give a total of 32 subtasks). These 792

objects were different from the ones used in the previous benchmark (described in 793

Experiment 1: Learning objects under high view variation). 794

At the beginning of each session, we randomly assigned the subject to perform one 795

of 32 subtasks. Identical to Experiment 1, each trial required that the subject view an 796

image of an object, make a choice (”F” or ”J”), and receive feedback based on their 797

choice. Each session consisted of 20 trials total, which was split into a ”training phase” 798

and ”testing phase”, which we describe below. 799

Training phase The first ten trials (the ”training phase”) of the session were based 800

on a single image for each object object (i.e. n=2 distinct images were shown over the 801

first 10 trials). We ensured the subject performed trial with each training image five 802

times total in the training phase; randomly permuting the order in which these trials 803

were shown. 804

Testing phase On trials 11-20 of the session (the ”testing phase”), we presented 805

trials containing new, transformed views of the two images used in the training phase. 806

For each trial in the test phase, we randomly sampled an unseen test image, each of 807

which was a transformed version of one of the training images. There were 36 possible 808

transformations (9 transformation types, with 4 possible levels of strength). We 809

describe how we generated each set of test images in the next section (see Fig 1B for 810

examples). On the 15th and 20th trial, we presented ”catch trials” consisting of the 811

original training images. Throughout the test phase, we continued to deliver evaluative 812

feedback on each trial. 813

0.12.2 One-shot stimulus image generation 814

Here, we describe how we generated all of the images used in Experiment 2. First, we 815

generated each 3D object model using the Mutator process (see High-variation stimulus 816

image generation). Then, for each object (n=64 objects), we generated a single 817

canonical training image – a 256x256 grayscale image of the object occupying ≈ 50% of 818

the image plane, centered on a gray background. We randomly sampled its three axes of 819

pose from the uniform rotational distribution. 820

For each training image, we generated a corresponding set of test images by applying 821

different kinds of image transformations we wished to measure human generalization on. 822
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In total, we generated test images based on 9 transformation types, and we applied each 823

transformation type at 4 levels of ”strength”. We describe those 9 types with respect to 824

a single training image, below. 825

Translation We translated the object in the image plane of the training image. To do 826

so, we randomly sampled a translation vector in the image plane (uniformly sampling 827

an angle from θ ∈ [0°, 360°]), and translated it r pixels in that direction. We repeated 828

this process (independently sampling θ each time) for r = 16, 32, 64, and 96 pixels 829

(where the total image size 256× 256 pixels), for two iterations (for a total of eight 830

translated images). 831

Backgrounds We gradually replaced the original, uniform gray background with a 832

randomly selected, naturalistic background. Each original background pixel bij in the 833

training image was gradually replaced with a naturalistic image c using the formula 834

b′ij = (1− α)bij + αcij . We varied α at four logarithmically spaced intervals, 835

α = 0.1, 0.21, 0.46, 1. Note that at α = 1, the original gray background is completely 836

replaced by the new, naturalistic background. We generated two test images per α level, 837

independently sampling the background on each iteration (for a total of eight images 838

per object). 839

Scale We rescaled the object’s size on the image to 12.5%, 25%, 50%, and 150% of the 840

original size (four images of the object at different scales). 841

Out-of-plane rotations We rotated the object along equally spaced 45° increments, 842

rendering a test image at each increment. We did so along two separate rotational axes 843

(horizontal and vertical), leading to n=13 test images total based on out-of-plane 844

rotations. 845

In-plane rotation We rotated the object inside of the image-plane, along 45° 846

increments. This resulted in n=7 test images based on in-plane rotations. 847

Contrast We varied the contrast of the image. For each pixel pij (where pixels range 848

in value of 0 and 1), we adjusted the contrast using the equation 849

p′ij = 10c(pij) + 0.5(1− 10c), varying c from −0.8,−0.4, 0.4 and 0.8. 850

Pixel deletion We removed pixels corresponding to the object in the training image, 851

replacing them with the background color (gray). We removed 25%, 50%, 75%, and 95% 852

of the pixels, selecting the pixels randomly for each training image. 853

Blur We blurred the training image using a Gaussian kernel. We applied blurring 854

with kernel radii of 2, 4, 8, and 16 pixels (with an original image resolution of 256× 256 855

pixels) to create a total of 4 blurred images. 856

Gaussian noise We applied Gaussian noise to the pixels of the training image. For 857

each pixel pij , we added i.i.d. Gaussian noise: 858

p′ij = pij +N (0, σ)

We applied noise with σ = 0.125, 0.25, 0.375 and 0.5 (where pixels range in 859

luminance value between 0 and 1). We then clipped the resultant pixels to lie between 0 860

and 1. 861
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0.12.3 Human behavioral measurements for Experiment 2 862

Subject recruitment We used the same two-step subject recruitment procedure 863

described above (see Subject recruitment and data collection), and recruited n=170 864

human subjects. Some of these subjects overlapped with those in Experiment 1 (n=9 865

subjects participated in both experiments). 866

All recruited subjects were invited to participate in up to 32 behavioral sessions. We 867

disallowed them from repeating subtasks they had performed previously. Subjects were 868

required to perform a minimum of four such behavioral sessions. In total, we collected 869

n=2,547 sessions (≈ 51k trials) for Experiment 2. 870

One-shot behavioral statistics in humans We aimed to estimate the expected 871

accuracy of a subject on each of the 36 possible transformations, correcting for 872

attentional and memory lapses. 873

To do so, we combined observations across the eight test trials in the testing phase 874

to compute accuracy estimate for each of the 36 transformations; that is, we did not 875

attempt to quantify how accuracy varied across the testing phase (unlike the previous 876

benchmark). We also combined observations across the 32 subtasks in this experiment. 877

In doing so, we were attempting to measure the average generalization ability for each 878

type of transformation (at a specific magnitude of transformation change from the 879

training image), ignoring the fact that generalization performance likely depends on 880

both the objects to be discriminated (i.e. the appearance of the objects in each 881

subtask), the specific training images that were used, and the testing views of each 882

object (e.g. the specific way in which an object was rotated likely affects generalization – 883

not just the absolute magnitude of rotation). In total, we computed 36 point statistics 884

(one per transformation). 885

Estimating performance relative to catch performance Here we assumed that 886

each human test performance measurement was based on a combination of the subject’s 887

ability to successfully generalize, a uniform guessing rate (i.e. the probability with 888

which a subject executes a 50-50 random choice), and the extent to which the subject 889

successfully acquired and recalled the training image-response contingency (i.e. from the 890

first 10 trials). We attempted to estimate the test performance of a human subject that 891

could 1) fully recall the association between each training image and its correct choice 892

during the training phase, and 2) had a guess rate of zero on the test trials. 893

To do so, we used trials 15 and 20 of each session, where one of the two training 894

images was presented to the subject (”catch trials”). Our main assumption here was 895

that performance on these trials would be 100% assuming the subject had perfect recall, 896

and had a guess rate of zero. Under that assumption, the actual, empirically observed 897

accuracy pcatch would be related to any overall guess and/or recall failure rate γ by the 898

equation γ = 2− 2pcatch. We then adjusted each of the point statistics (i.e. test 899

performances) to estimate their values had γ been equal to zero, by applying the 900

following formula: 901

p′ =
p

1− γ
− γ

2− 2γ

We refer to the collection of 36 point statistics (following lapse rate correction) as 902

Ĥos. 903

0.12.4 Comparing model one-shot learning with human one-shot learning 904

Model simulation of Experiment 2 For this benchmark, we required that a model 905

perform a total of 16,000 simulated behavioral sessions (500 simulated sessions for each 906
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of the 32 possible subtasks). Each simulated session proceeded using the same task 907

paradigm as in humans (i.e. 10 training trials, followed by a test phase containing 8 test 908

trials and 2 catch trials). Based on the model’s behavior over those simulations, we 909

computed the same set of point statistics described above, though we did not correct for 910

any attentional lapses or recall lapses in the model, which we assumed was absent in 911

models. In this manner, for each model, we obtained a collection of point statistics 912

reflecting their behavior on this experiment, M̂os. 913

Bias-corrected mean-squared error and null hypothesis testing We used the 914

same statistical approach for our primary benchmark (introduced in Comparing model 915

learning with human learning) to summarize the alignment of a model with humans. 916

That is, we used the bias-corrected error metric MSEn as our metric of comparison: 917

MSEn(M̂
os, Ĥos) =

1

36

36∑
i=1

(
M̂os

i − Ĥos
i

)2

− ŝ2
(
M̂os

i

)
We estimated the null distribution for MSEn using bootstrap resampling, following 918

the same procedure outlined in the first benchmark (bootstrap-resampling individual 919

sessions). 920

0.13 Baseline model family 921

For a model to be scored on the benchmarks we described above, it must fulfill only the 922

following three requirements: 1) it takes in any pixel image as its only sensory input (i.e. 923

it is image computable), 2) it can produce an action in response to that image, and 3) it 924

can receive scalar-valued feedback (rewards). Here, we implemented several models 925

which fulfill those requirements. 926

All models we implemented consist of two components. First, there is an encoding 927

stage which re-represents the raw pixel input as a vector x⃗ in a multidimensional 928

Euclidean space.The parameters of this part of the model are held fixed (i.e., no 929

learning takes place in the encoding stage). 930

The second part is a tunable decision stage, which takes that representational vector 931

and produces a set of C choice preferences (in this study, C = 2). The preference for 932

each choice is computed through a dot product w⃗c · x⃗, where w⃗c is a vector of weights 933

for choice c. The choice with the highest preference score is selected, and ties are broken 934

randomly. 935

After the model makes its choice, the environment may respond with some feedback 936

(e.g. positive or negative reward). At that point, the decision stage can process that 937

feedback and use it to change its parameters (i.e. to learn). All learning in the models 938

tested here takes place only in the parameters of the decision stage (all weight vectors 939

w⃗1...w⃗C); the encoding stage has completely fixed parameters. 940

In total, any given model in this study is defined by these two components – the 941

encoding stage and the decision stage. We provide further details for those two 942

components below. 943

0.13.1 Encoding stages 944

The encoding stages were intermediate layers of deep convolutional neural network 945

architectures (DCNNs). We drew a selection of such layers from a pool of 19 network 946

architectures available through the PyTorch library [60], each of which had pretrained 947

parameters for solving the Imagenet object classification task [37]. 948
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For each architecture, we selected a subset of these intermediate layers to test in this 949

study, spanning the range from early on in the architecture to the final output layer 950

(originally designed for Imagenet). We resized pixel images to a standard size of 951

224x224 pixels using bilinear interpolation. In total, we tested n=344 intermediate 952

layers as encoding stages. 953

Dimensionality reduction Once an input image is fed into a DCNN architecture, 954

each of its layers produces a representational vector of a dimensionality specified by the 955

architecture of the model. Depending on the layer, this dimensionality may be relatively 956

large (¿105), making it hard to efficiently perform numerical calculations on 957

contemporary hardware. We therefore performed dimensionality reduction as a 958

preprocessing step. We performed dimensionality reduction using random Gaussian 959

projections to a standard size of 2048, if the original dimensionality of the layer was 960

greater than this number. This procedure approximately preserves the original 961

representational structure of the layer (i.e., pairwise distances between points in that 962

space) [61] and is similar to to computing and retaining the first 2048 principal 963

components of the representation. 964

Feature normalization Once dimensionality reduction was performed, we performed 965

another standardization step. We computed centering and scaling parameters for each 966

layer, so that its activations fit inside a sphere of radius 1 centered about the origin (i.e. 967

∥x⃗∥ ≤ 1, for all x⃗). 968

To do so, we computed the activations of the layer over using the images from the 969

”warmup” tasks human subjects were exposed to prior to performing any task in this 970

study (i.e. 50 randomly selected images of 8 objects, see Subject recruitment and data 971

collection). We computed the sample mean of those activations, and set this as the new 972

origin of the encoding stage (i.e. the centering parameter). Then, we took the 99th 973

quantile of the activation norms (over those same images) to calculate the approximate 974

radius of the representation, and set this as our scaling parameter (i.e. dividing all 975

activations by this number). Any activations with a norm greater than this radius were 976

scaled to have a norm of 1. 977

Other kinds of feature standardization schemes are possible: for instance, one could 978

center and scale the sensory representations for each subtask separately. However, such 979

a procedure would expose models to the statistics of subtasks that are meant to be 980

independent tests of their ability to learn new objects – statistics which we considered 981

to be predictions of the encoding stage. 982

0.13.2 Tunable decision stage 983

Once the encoding stage re-represents an incoming pixel image as a multidimensional 984

vector x⃗ ∈ Rd, a tunable decision stage takes that vector as an input, and produces a 985

choice as an output. 986

Generating a decision To select a choice, the tunable decision stage first generates 987

choice preferences for each of the C possible actions, using the dot products w⃗i · x⃗ for 988

i = 1...C. Then, the choice with the highest preference is selected 989

(c = argmaxi (w⃗i · x⃗)). If all choices have the same preference value, a choice is 990

randomly selected. 991

Learning from feedback Once a choice is selected, the environment may convey 992

some scalar-valued feedback (e.g. reward or punish signals). The model may use this 993

feedback to change its future behavior (i.e., to learn). For all models considered here, 994
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this may be accomplished (only) by changing its weight vectors w⃗1, ...w⃗C . Thus, learning 995

on each trial can be summarized by the changes to each weight vector by some δ⃗i ∈ Rd: 996

w⃗i ← w⃗i + δ⃗i

There are many possible choices on how each δ⃗i may be computed from feedback; 997

here, we focused on a set of seven rules based on the stochastic gradient descent 998

algorithm for training a binary classifier or regression function. In all cases except one,9 999

the underlying strategy of each decision stage can be understood as predicting the 1000

reward following the selection of each possible choice, and using these predictions to 1001

select the choice it believes will lead to the highest reward. 1002

Specifically, we tested the plasticity rules induced by the gradient descent update on 1003

the perceptron, cross-entropy, exponential, square, hinge, and mean absolute error loss 1004

functions (shown in Fig 2D), as well as the REINFORCE plasticity rule. They are 1005

summarized in Table 0.13.2. 1006

Each of these plasticity rules has a single free parameter – a learning rate. For each 1007

plasticity rule, there is a predefined range of learning rates that guarantees the 1008

non-divergence of the decision stage, based on the smoothness or Lipschitz constant of 1009

each of the plasticity rule’s associated loss function [62]. We did not investigate different 1010

learning rates in this study; instead, we simply selected the highest learning rate 1011

possible (such that divergence would not occur) for each plasticity rule. 1012

Supporting information 1013

S1 Table. Summary of plasticity rules. Each plasticity rule can be understood by 1014

the update δ⃗i it generates for each weight vector w⃗i ← w⃗i + δ⃗i, based on the current 1015

input x⃗ ∈ Rd, the selected choice c ∈ {0, 1, ...C}, and the subsequent environmental 1016

reward r ∈ [−1, 1]. Each plasticity rule is parameterized by a learning rate α, between 0 1017

and 1. These equations assume that the input x⃗ has a bounded norm of ∥x⃗∥ ≤ 1. 1018

S1 Appendix. Effect of model choices on human behavioral similarity. As 1019

described in Section 0.13, each model in this study was defined by two components (the 1020

encoding stage and the plasticity rule). We wished to evaluate the effect of each of these 1021

components in driving the similarity of the model to human behavior. For example, it 1022

was possible that all models with the same encoding stage had the same learning score, 1023

regardless of which plasticity rule they used (or vice versa). 1024

To test for these possibilities, we performed a two-way ANOVA over all observed 1025

model scores (in MSEn) computed in this study, using the encoding stage and plasticity 1026

rule as the two factors, and MSEn as the dependent variable. By doing so, we were able 1027

to estimate the amount of variation in model scores that could be explained by each 1028

individual component, and thereby gauge their relative importance. We briefly describe 1029

the procedure for this analysis below. First, we wrote the MSEn score of each model as 1030

a combination of four variables: 1031

MSEn(encoding stage i, rule j) = µ+ ei + rj + γij

Where µ is the average MSEn score, over all models. The variables ei and rj encode 1032

the value of the average difference from µ given encoding stage i and rule j, respectively. 1033

9The REINFORCE plasticity rule is a ”policy gradient” rule that optimizes parameters directly
against the rate of reward; it does not aim to predict reward.
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Plasticity rule Weight update for selected choice (δ⃗c)

Perceptron δ⃗c =

{
αrx⃗ if r (w⃗c · x⃗) ≤ 0

0 else

Hinge δ⃗c =

{
αrx⃗ if r (w⃗c · x⃗) < 1

0 else

MAE δ⃗c =

{
αx⃗ if (w⃗c · x⃗) < r

−αx⃗ else

Square δ⃗c = α (r − w⃗c · x⃗) x⃗
Exponential δ⃗c = αr exp (−rw⃗c · x⃗) x⃗

Cross-entropy δ⃗c = αr
(

4
1+exp (rw⃗c·x⃗)

)
x⃗

REINFORCE δ⃗c = αr
(
1− exp

(
w⃗c · x⃗− log

(∑C
j=1 exp (w⃗j · x⃗)

)))
x⃗

δ⃗i ̸=c = −αr exp
(
w⃗i · x⃗− log

(∑C
j=1 exp (w⃗j · x⃗)

))
x⃗

Except for REINFORCE, each rule above only changes the weight vector for the selected
choice c; the other weight vector(s) are left unchanged (δ⃗i ̸=c = 0). Additionally, the
Exponential plasticity rule performs a weight normalization step (not shown): if the
norm of the weights exceed a certain threshold (∥wi∥ > B) , the weights are projected to
the closest weight vector w′

i = argminu;∥u∥=B (∥u− wi∥) with ∥w′
i∥ = B. In this study,

we chose B = 10.

Any remaining residual is assigned to γij (i.e. corresponding to any interaction between 1034

rule and encoding stage). The importance of each model component could be assessed 1035

by calculating the proportion of variation in model scores that could be explained by 1036

the selection of component alone. 1037

S2 Appendix. Subtask consistency. In our primary benchmark, we measured 1038

human learning over 64 distinct subtasks, each consisting of 100 trials. For each subtask, 1039

the trial-averaged accuracy is a measure of the overall “difficulty” of learning that 1040

subtask, ranging from chance (0.5; no learning occurred over 100 trials) to perfect 1041

one-shot learning (0.995, perfect performance after a single example). For each of the 64 1042

subtasks, one may estimate their trial-averaged performances (obtaining a length 64 1043

“difficulty vector”), and use this as the basis of comparison between two learning systems 1044

(e.g. humans and a specific model). 1045

To do so, we computed Spearman’s rank correlation coefficient (ρ) between a 1046

model’s difficulty vector and the human’s difficulty vector. The value of ρ may range 1047

between -1 and 1. If ρ = 1, the model has the same ranking of difficulty between the 1048

different subtasks (i.e., finds the same subtasks easy and hard). If ρ = 0, there is no 1049

correlation in the rankings. 1050

In addition to computing ρ between each model and humans, we estimated the ρ 1051

that would be expected between two independent repetitions of the experiment we 1052

conducted here (i.e., an estimate of experimental reliability in measuring this difficulty 1053

vector). To do this, we took two independent bootstrap resamples of the experimental 1054

data, calculated their respective difficulty vectors, and computed the ρ between them. 1055

We repeated this process for B = 1, 000 bootstrap iterations, and thereby obtained the 1056

expected distribution of experimental-repeat ρ. 1057

S3 Appendix. Individual variability in overall learning ability. 1058

In this work, we focused primarily on subject-averaged measurements of human 1059

learning. However, individual subjects may also systematically differ from each other. 1060
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We aimed to investigate whether any such differences existed in learning behavior for 1061

the subtasks we tested in this study. 1062

Here, we attempted to reject the null hypothesis that all subjects had the same 1063

learning behavior. To do so, we tested whether there were statistically significant 1064

differences in overall learning performance between individuals – that is, whether some 1065

individuals were “better” or “worse” learners. If this was the case, this implies 1066

individuals differ (at least in terms of overall learning performance), and the null 1067

hypothesis could be rejected. 1068

Permutation test for individual variability in overall learning ability. To test this null 1069

hypothesis, we identified a subset of human subjects who conducted all 64 subtasks in 1070

the primary, high-variation benchmark (n=22 subjects). For each subject, we computed 1071

their “overall learning performance”, which was their empirically observed average 1072

performance over all n=64 subtasks. That is, for subject s, we computed: 1073

Ĝs =
1

64

64∑
i=1

ĝis

Where ĝis is the trial-averaged performance on subtask i, for subject s. The value of 1074

Ĝs is a gross measure of the subject’s ability to learn the objects in this study, ranging 1075

from 0.5 (no learning on all subtasks) to 0.995 (perfect one-shot learning on all subtasks). 1076

In total, we computed n=22 estimates of Ĝs (one for each subject in this analysis). 1077

We then computed the sample variance over the various Ĝs: 1078

σ̂2 =
1

S − 1

S∑
s=1

(Ĝs − Ḡ)2

Where Ḡ is the mean of overall lifetime performances. Intuitively, σ̂2 is high if 1079

individuals differ in their overall learning performance, and is low if all individuals have 1080

the same overall learning performance (as would be the case under the null hypothesis). 1081

We performed a permutation test on σ̂2 to test whether it was significantly higher 1082

than would be expected under the null hypothesis, permuting the assignments of each 1083

ĝis to each subject s. For each permutation, we computed the replication test statistic 1084

σ̃2 (using the same formulas above, on the permuted data). We performed P = 10, 000 1085

permutation replications, then computed the one-sided achieved significance level by 1086

counting the number of replication test statistics greater than the actual, experimentally 1087

observed value σ̂2. 1088

Testing whether specific humans outperform a model. To test whether a specific 1089

human has significantly higher overall learning abilities than a specific model (over the 1090

subtasks tested in this study), we performed Welch’s t-test for unequal variances on the 1091

overall learning performance, Ĝ (defined above). That is, for a specific subject s and 1092

model m, we attempted to reject the null hypothesis that Ĝs ≤ Ĝm. 1093

We adjusted for multiple comparisons using the Bonferroni correction (using the 1094

total number of pairwise comparisons we made between a model m and specific subjects 1095

s). 1096

S1 Fig. In-lab vs. online behavioral measurements. 1097

S2 Fig. Eyetracking measurements. 1098
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Fig S1. Comparison of online learning measurements with in-lab learning
measurements. We took measurements for n=16 randomly selected subtasks from
Experiment 1 in a group of in-lab human subjects (n=4) that used a chinrest and
calibrated monitor setup. In A, we show that the overall accuracy of these in-lab
subjects fell within the empirical support of the subject distribution from our online
experiments. In B, we show that patterns of average accuracy (over subtasks) were
tightly correlated between the in-lab and online populations (Spearman’s ρ = 0.94; see
S2 Appendix). Errorbars are SEM (simple bootstrap over subjects).

Fig S2. Distribution of gaze locations during learning task. We passively
recorded eye movements from our in-lab subjects using an Eyelink 1000 Plus
(monocular; desktop mounted) as they performed the task. In A is the overall
distribution of the subjects’ gaze position (shown in blue) at the time of onset of
stimulus presentation (i.e. distribution over subjects and trials). In B is the distribution
of gaze distance from stimulus center (logscale) over all subjects and trials; the median
distance from the center of the stimulus was 0.57°± 0.13° (mean ± standard deviation
over subjects). We found that on ≈95% of trials, the subject’s gaze was located in the
test image region when it appeared on the screen.
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