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Abstract

A core problem in visual object learning is using a finite number of images of a new
object to accurately identify that object in future, novel images. One longstanding,
conceptual hypothesis asserts that this core problem is solved by adult brains through
two connected mechanisms: 1) the re-representation of incoming retinal images as points
in a fixed, multidimensional neural space, and 2) the optimization of linear decision
boundaries in that space, via simple plasticity rules applied to a single downstream
layer. Though this scheme is biologically plausible, the extent to which it explains
learning behavior in humans has been unclear — in part because of a historical lack of
image-computable models of the putative neural space, and in part because of a lack of
measurements of human learning behaviors in difficult, naturalistic settings. Here, we
addressed these gaps by 1) drawing from contemporary, image-computable models of the
primate ventral visual stream to create a large set of testable learning models (n=2,408
models), and 2) using online psychophysics to measure human learning trajectories over
a varied set of tasks involving novel 3D objects (n=371,000 trials), which we then used
to develop (and publicly release) empirical benchmarks for comparing learning models
to humans. We evaluated each learning model on these benchmarks, and found that
learning models that using specific, high-level contemporary representations are
surprisingly aligned with human behavior. While no tested model explained the entirety
of replicable human behavior, these results establish that rudimentary plasticity rules,
when combined with appropriate visual representations, have high explanatory power in
predicting human behavior with respect to this core object learning problem.

Author Summary

A basic conceptual hypothesis for how an adult brain learns to visually identify a new
object is: 1) it re-represents images as points in a fixed, multidimensional space, then 2)
it learns linear decision boundaries that separate images of a new object from others,
using a single layer of plasticity. This hypothesis is considered biologically plausible, but
gauging its power to explain human learning behavior has not been straightforward. In
part, this is because it is difficult to model how brains re-represent images during object
learning. However, ongoing efforts in neuroscience have led to the identification of
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specific, image-computable models that are at least partially accurate descriptions of
the neural representations involved in primate vision. Here, we asked whether any of
those representations, when combined them with simple plasticity rules, could make
accurate predictions over a large body of human object learning behavioral
measurements. We found that specific models could indeed explain a majority of our
behavioral measurements, suggesting the rudimentary, biologically-plausible mechanisms
considered here may be sufficient to explain a core aspect of human object learning.

Introduction

People readily learn to recognize new visual objects. As an individual receives views of
a new object — new spatial patterns of photons striking their eyes — their ability to
correctly recognize new views of that object increases, possibly very rapidly. What are
the mechanisms that allow an adult human to do so?

Efforts from cognitive science, neuroscience, and machine learning have led to a
diverse array of ideas to understand and replicate this human ability, and human
example-based learning in general. These works range in levels of specification, from
conceptual frameworks that do not directly offer quantitative predictions [1-5], models
which depend on unspecified intermediate computations (i.e. non-image-computable
models; [6-10]), to end-to-end learning models which take images as input [11-17].

An important step in determining the extent to which any of these ideas are valid
descriptors of human object learning (and its underlying neural mechanisms) is to
evaluate them on the basis of their ability to predict empirical measurements of human
behavior, over a range of task settings. While such model evaluations (which we refer to
as “benchmarks”) exist for visual tasks involving known object categories (e.g. [18-20]),
the field currently lacks a readily available set of benchmarks for visual tasks involving
the learning of novel objects.

To begin addressing this gap, we designed novel benchmarks for human object
learning. We focused on object learning in the context of binary discrimination tasks, in
which a learner must acquire the ability to discriminate two new objects from each
other, receiving feedback (correct or incorrect) on each trial. Though this elementary
task paradigm does not encompass all possible aspects of “object learning” per se, it
exposes subjects to one of its core problems: using a finite number of images of a new
object to accurately identify that object in novel images.

Our first experimental goal was to measure this ability in adult humans across
several tasks, each involving highly varied views of novel 3D objects. The resultant set
of measured learning curves (one for each task) formed a large set of human “behavioral

signatures” which could then be used as the basis for our first and primary benchmark.

Based on the extent a candidate learning model quantitatively reproduced (or failed to
reproduce) those human signatures, its empirical validity could be established.

Next, motivated by prior suggestions of where humans may be particularly
powerful [13,21], our secondary experimental goal was to take additional measurements
of human behavior during the special case of “one-shot” learning, where the subject
receives just a single view (that is, a single image) of each object before being asked to
generalize to unseen views of that object. Here, we sought to measure human
generalization over a variety of tests involving identity-preserving transformations (e.g.
translation, scaling, and 3D rotation) in this one-shot setting, then to use the resultant
measurements to create our secondary benchmark, which evaluates a model’s ability to
replicate human-like patterns of generalization across the same tests.

Once we generated these two benchmarks, we used them to evaluate a longstanding
conceptual hypothesis for object learning, which posits that adult humans re-represent
incoming visual stimuli in a stable, multidimensional Euclidean space, learn linear
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categorization boundaries in that space, and apply this learned boundary to categorize
new stimuli [5,7,22].

This overall framework is notable in that it has plausible neural implementations.
For example, the re-representation of an image as a location in a multidimensional space
could be expressed by the pattern of population firing rates in a visually-driven area;
linear categorization boundaries could be implemented by downstream neurons that
respond to weighted sums of upstream activity [23]; and those weights could be adjusted
through simple, reward-driven plasticity mechanisms [24-26].

However, despite the biological plausibility of this framework, it does not directly
generate quantifiable predictions of human behavior. To generate such predictions, the
representational space thought to be used by humans must first be specified, as well as
the precise form of the plasticity rule. While there are standard learning algorithms
that can be written as reward-based plasticity rules operating on a single layer
(e.g. [27]), obtaining an accurate specification of the representational space presents a
larger challenge, in that this space may have a highly complex relationship with the
content of images.

Typically, this challenge has been approached by limiting the domain of the learning
model to a restricted, often simple domain of images, then assuming that the axes of
the representational space correspond to latent variables used to generate those specific
images (e.g. [10]). Alternatively, data-driven approaches have been used to estimate the
embedding of those specific images in the representational space (see [3]). However, it
has not been clear how to extend those approaches to the domain of all arbitrary
images, including the kinds of images considered here, or whether any learning models
based on the proposed mechanisms would offer accurate predictions of human behavior
in more complex and naturalistic visual domains.

To address this gap, we drew from ongoing efforts in cognitive science [28-33] and
visual neuroscience [34-36] that have established correspondences between the
intermediate layers of image-computable, deep convolutional neural networks (DCNNs)
and human visual behavior, as well as the activity of neural populations across the
primate ventral stream.

We took a large sample of those image-computable layers and combined each of
them with a variety of simple plasticity rules (drawn from statistical learning theory
and reinforcement learning) to create a battery of testable learning models. If humans
indeed use a representation that is sufficiently well-approximated by one of those
intermediate layers and have plasticity mechanisms that are well-described by one of
these plasticity rules, then the corresponding learning model should have close empirical
correspondence with observed human behaviors, as evaluated by the benchmarks here.

At the outset of this study, we reasoned that, if the behavior produced by any model
was found to be indistinguishable from that of humans, it could serve as a leading
scientific hypothesis to drive further experiments. If they were not found, predictive

gaps could be used to guide future work in improving models of human object learning.

Either way, the benchmarks created in this work could facilitate a standard evaluation
of current and future visual object learning models.

Results

We measured human behavior over two variants of an object learning task (Experiments
1 & 2). In Experiment 1, we measured human subjects learning to discriminate pairs of
novel objects as subjects were provided with an increasing number of views of those
objects, and feedback on their choices. In Experiment 2, we also measured humans
learning to discriminate between pairs of objects, but provided only one view per object
before assessing subjects’ accuracy on a variety of generalization tests. The results of
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each experiment are presented below, along with quantitative comparisons of those
results with a large set of learning models. Further details of the experiments and the
models are provided in the Materials and methods.

0.1 Experiment 1: Humans are rapid, but imperfect novel
object learners

In Experiment 1, we measured a population of anonymous human subjects (n=70)
performing 64 learning subtasks. Each subtask required that the subject learn to
discriminate a different pair of two novel objects, rendered under high view variation
(see Fig 1A).

These subtasks proceeded in a trial-by-trial fashion. At the beginning of a trial, a
test image containing one of two possible objects was briefly presented (at =6°of the
visual field for ~ 200 milliseconds). Then, the subject was asked to report which of the
two objects was present “in” that image through a button press, and evaluative
feedback (correct or incorrect) was delivered based on their choice (see Fig 1B). The
subtask then proceeded to the next trial (for a total of 100 trials).

The core measurement we sought to obtain for each subtask was the discrimination
accuracy of a typical subject as a function of the number of previously performed trials
(i.e. the learning curve for each subtask). To estimate the learning curve for a particular
subtask, we recorded the sequence of corrects and incorrects achieved by achieved by
multiple subjects (n=50 subjects) performing n=100 randomly sampled trials (see Fig
1C), then averaged across subjects to estimate the learning curve for that subtask. We
estimated learning curves in this manner for all n=64 subtasks in this experiment
(depicted in Fig 1D).

Upon examination of these learning curves, we found that on average (over subjects
and subtasks), human discrimination accuracy improved immediately — i.e. after a
single image example and accompanying positive or negative feedback. By construction,
accuracy on the first trial is expected to be 50% (random guessing); but on the
following trial, humans had above-chance accuracy (mean 0.65; [0.63, 0.67] 95%
bootstrapped CI), indicating behavioral adaptation occurred immediately and rapidly.
Average discrimination accuracy continued to rise across learning: the subject-averaged,
subtask-averaged accuracy on the last trial (trial 100) was 0.87 (mean; [0.85, 0.88] 95%
CI). The subject-averaged, subtask-averaged accuracy over all 100 trials was 0.82 (mean;
[0.81, 0.84] 95% CI).

As anticipated, we found that different subtasks (i.e. different pairs of objects) could
have widely different learning curves. This is illustrated in Fig 1D, which shows the
estimated average human learning curve for each subtask. That is, we observed that
some tasks were “easy” for humans to learn, and some were harder (e.g. mean accuracy
of 20.65 for the most difficult 10% of subtasks). These variations were not artifacts of
experimental variability, which we established by estimating the value of Spearman’s
rank correlation coefficient between average subtask performances that would be
expected upon repetitions of the experiment (p = 0.97; see S2 Appendix). Moreover, we
found our measures of human learning behavior were robust to the experimental
imprecision in online behavioral testing (e.g. from head movement; variation in monitor
setups) by replicating a subset of this experiment in a population of in-lab subjects with
head-fixation and eye tracking (see S1 Fig).

Overall, these observations indicate that 1) humans can acquire a significant amount
of learning with respect to novel visual object concepts with a small number of
examples (e.g. 4 training examples to reach 75% correct, 6 to reach 90% of their final
performance), and 2) learning new objects is highly dependent on the 3D shapes of

those objects, with many object pairs being far from perfectly learned within 100 trials.
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Fig 1. Humans learning novel objects. A. Images of novel objects. Images of
synthetic 3D object models were created using random viewing parameters (background,
location, scale, and rotational pose). B. Task paradigm. On each trial, a randomly
selected image (of one of two possible objects) was briefly shown to the subject. The
subject had to report the identity of the object by making one of two possible choices
(“F” or “J”). Positive reinforcement was delivered if the subject choice was “correct”,
per an object-choice contingency that the subject learned through trial-and-error (e.g.,
object 1 corresponds to “F”, and object 2 corresponds to “J”). C. Example
subject-level learning data. Each subject performing a subtask performed a
randomly sampled sequence of 100 trials (i.e. images and their choice-reward
contingencies), and we measured their sequence of correct (blue) and incorrect (gray)
choices. Image stimuli were never repeated, ensuring each trial tests the subject’s ability
to generalize to unseen views of the objects. D. Human learning curves. We
averaged across human subjects to estimate accuracy as a function of trials for n=64
subtasks (each consisting of a distinct pair of objects). We found that some subtasks
were found to be reliably harder for humans than others; three example subtasks across
the range of difficulty are highlighted. Learning curves shown are smoothed with a
moving window filter (for visualization only).
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We next asked how well a family of models based on a standard cognitive theory of
learning are — or are not — able to explain these behavioral measurements.

0.2 Comparing image-computable learning models with humans

As described above, the core set of behavioral measurements we obtained in Experiment
1 consisted of subject-averaged learning curves for each subtask (accuracy values for 64
subtasks across 100 trials). Our next step was to to specify a procedure that assesses
how well any given computable model of object learning can quantitatively reproduce
those curves.

Given a model, this procedure consisted of 1) simulating the same set of subtasks in
the model and estimating its learning curves for those subtasks (exactly analogous to
how they were estimated in humans), and 2) computing a scalar-valued error score
(MSE,,) which summarizes the extent to which the learning curves of the model
quantitatively matches (or not) the corresponding learning curves in humans.

We sought to score models drawn from a standard model family (see Fig 2A). Each
model in this family consists of two conceptual stages: which we refer to as 1) an
encoding stage which places each incoming image into a representational space, and 2) a
tunable decision stage, which generates a choice by using a linear decision boundary in
that space. The learning of new object-choice associations is guided by a plasticity rule,
which processes environmental feedback (the same feedback information provided to
human subjects) to adjust the linear weights of the tunable decision stage. Plasticity
occurs only in the decision stage; the encoding stage is held completely fixed.

Here, we implemented learning models based on different combinations of encoding
stage and plasticity rule. We considered n=344 encoding stages based on specific
intermediate layers of Imagenet-pretrained DCNNs [37], and n=7 plasticity rules drawn
from statistical learning theory and reinforcement learning (see Baseline model family
for details). In total, we implemented models based on all possible combinations of
these encoding stages and plasticity rules (n=2,408 learning models).

We then tested each model on the same set of subtasks as humans, simulating
n=32,000 behavioral sessions per model (n=500 simulations per subtask). We estimated
each model’s learning curves for each subtask (i.e. accuracy values over 64 subtasks and
100 trials), and scored its similarity to humans using a mean-squared-error statistic
(MSE,,; details in Bias-corrected mean squared error). We show an illustration of this
procedure for an example model shown in Box 3, and a histogram of MSE,, scores for
all tested models is shown in Fig 4.

A higher value of MSE,, means the model is a worse predictor of human learning
behavior; lower values are better. In principle, no model can be expected to have an
MSE,, lower than a "noise floor” o7, which comes from the uncertainty in our
experimental estimates of each human learning curve (i.e. from the finite amount of
human data collected). Intuitively, the value of o7 can be understood as the MSE,,
score that can be expected from the “perfect” model of human learning behavior. We
made an unbiased estimate of this noise floor (67 ~ 0.003, see Noise floor estimation),
then compared this to the MSE,, scores achieved by the models we tested. We note that
the root value of the noise floor (and MSE,,) is a rough estimate of the expected error in
the native units of the measurements (accuracy values).

Many of the models were far from the noise floor, but we found that a subset of
models achieved relatively low error. For example, we found the best 1% of the models
(which we refer to as “strong baseline models”) had root-mean squared errors of
VvMSE,, ~ 0.08, coming relatively close to the noise floor (65, ~ 0.05). Still, all models,
including these ones, were statistically distinguishable from humans; all models were
rejected as having expected behavior identical to humans with significance level of at
least p < 0.001 (see Null hypothesis testing).
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Fig 2. Model family of object learning in humans. A. Model family. Each model in
this family had two stages: an encoding stage which re-represents an incoming pixel
image as a vector (Z), and a tunable decision stage, which uses & to generate a choice by
computing linear choice preferences (. - ¥), then selecting the most preferred choice.
Subsequent environmental feedback is processed to update the parameters of the
decision stage. Specific models in this family correspond to specific choices of the
encoding stage and plasticity rule. B. Possible neural implementation. The
functionality of the encoding stage in A could be implemented by the ventral stream,
which re-represents incoming retinal images into a pattern of distributed population
activity in high level visual areas, such as area I'T. Sensorimotor learning might be
mediated by plasticity in a downstream association region. Midbrain processing of
environmental feedback signals could guide plasticity via dopaminergic (DA) projections.
C. Encoding stages. We built learning models based on several encoding stages, each
based on a specific intermediate layer of an Imagenet-pretrained deep convolutional
neural network. D. Plasticity rules. We drew basic plasticity rules from statistical
learning theory and reinforcement learning (Table 0.13.2). Each rule aims to achieve a
slightly different optimization objective (e.g., the ”square” rule attempts to minimize the
squared error between the choice preference and the subsequent magnitude of reward).
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A Encoding stage: Inception/layer12 (first 2 PCs for each subtask’s images are shown, out of 2048 total)
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Fig 3. Model simulations of human learning. A. Example encoding stage
representations of novel object images. Each subtask consists of images of two
novel objects (indicated in black and white dots). The first two principal components of
a 2048-dimensional encoding stage (Inception/layer12) are shown here (computed
separately on the images for each subtask, for clarity). Linear separability can be
observed, to varying degrees. B. Simulating a single trial. Clockwise, starting from
top left: the incoming stimulus image is re-represented by the encoding stage into a
location in a representational space, X. Preferences for each choice are computed (X - W ;
and X - wg), and the most preferred choice is selected, which amounts to making the
choice based on where x falls with respect to a linear decision boundary (W; — wg).
Here, the choice “J” is selected, which happens to be the correct choice for this image.
The subsequent reward causes the decision boundary to change based on the plasticity
rule. C. Simulated model behavioral data. For each learning model, we simulated
a total of n=32,000 behavioral sessions (64 subtasks, 500 simulations each), and
recorded its behavior (correct or incorrect) on each trial. D. Comparing model and
human behavior. We averaged across simulations to obtain the model’s learning
curves for each subtask, then compared them to subject-averaged human learning
curves, using a bias-corrected mean-squared error metric (MSE,,; see Bias-corrected
mean squared error) to quantify the (dis)similarity of the model to humans.
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Fig 4. Bias-corrected mean-squared errors (MSE,,) vs. humans for all models tested.
The n=2,408 models we tested varied widely in the extent of their alignment with
human learning (i.e. their average squared prediction error). We denote the best 1% of
such models as “strong baseline models”. The noise floor corresponds to an estimate of
the lowest possible error achievable (o7 = 0.003), given the experimental power in this
study. The vertical line labeled “random guessing” marks the error incurred by a model
which produces a random behavioral output on each trial.
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0.2.1 Model components affecting the score of a model

Given the range of MSE,, scores we observed, we next wished to perform a secondary
analysis on how each of the two components defining a model (its encoding stage and
plasticity rule) affected its error score on the benchmark above. One general trend we
observed was that models built with encoding stages from deeper layers of DCNNs
tended to produce more human-like learning behavior (see Fig 2B). On the other hand,
the choice of plasticity rule (which defined by the tunable decision stage) appeared to
have little effect in a model’s ability to generate human-like learning behavior (see Fig
5A).

We quantified these observations by performing a two-way ANOVA over all model
scores (see S1 Appendix), treating the plasticity rule and encoding stage as the two
factors. This analysis showed that the choice of plasticity rules explained less than 0.1%
of the variation in model scores; by contrast, 99.8% of the variation was driven by the
encoding stage, showing that the predominant factor defining the behavior of the
learning model was the encoding stage.

0.2.2 Strong baseline models are largely, but not perfectly, correlated with
human performance patterns

The set of MSE,, scores indicated that all models tested had significant differences from
humans, based on their respective learning curves. There are several ways in which
these differences could originate — for example, a model might have ”fast” learning
curves for tasks that humans learn slowly, and ”slow” learning curves for tasks that
humans learn rapidly. Alternatively, a model might have the same pattern of difficulty
across subtasks as humans, but simply be slower at learning, overall.

To gain insight into these possibilities, we performed an additional analysis in which
we compared each model to humans along two more granular statistics: 1) its overall
accuracy over all subtasks and trials tested, and 2) its consistency with the patterns of
difficulty exhibited by humans across subtasks (see Fig 6A).

Intuitively, overall accuracy is a gross measure of a learning system’s overall ability
to learn, ranging from 0.5 (chance, no learning occurs) to 0.995 (learning completed
after just one trial). Consistency (p) quantifies the extent to which a model finds the
same subtasks easy and hard as humans, and ranges from p = —1 (perfectly
anticorrelated pattern of performance) to p = 1 (perfectly correlated pattern of
performance). A value of p = 0 indicates no correlation between the patterns of
difficulty across subtasks in a model and humans.

These metrics are theoretically unrelated to each other; given any overall accuracy,’
a model may have a high or low consistency with humans, and vice versa. Nevertheless,
we observed that these two metrics strongly covaried for these models; models with high
overall accuracy also tended to have high consistency (see Fig 6B).

0.2.3 Humans learn new objects faster than all tested models in
low-sample regimes

Though many models matched or exceeded human-level overall accuracy (i.e. accuracy
averaged over trials 1-100 for all subtasks), we noticed that all models’ accuracy early
on in learning consistenctly appeared to be below that of humans (see Fig 7A). We
tested for this by comparing the accuracy of models and humans in an initial phase of
learning (trials 1-5 for all subtasks), and indeed found that all of the models were

1Except for models which are either at chance or perform perfect one-shot learning in all situations;
then the correlation coefficient must be undefined.
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Fig 5. Evaluating the effect of model design choices on predictive accuracy of human
learning. A. Example model scores across encoding stages and plasticity rules.
A typical example of the relative contributions of plasticity rule (y-axis) and encoding
stage (x-axis) on model scores (MSE,,, encoded by color). B. Overview of all models
tested. In total, we tested encoding stages drawn from a total of n=19 DCNN
architectures, varying widely in depth. A model’s similarity to humans was highly
affected by the choice of encoding stage; those based on deeper layers of DCNNs showed
the most human-like learning behavior. On the other hand, the choice of plasticity rule
had a minuscule effect. C. Predictive accuracy increases as a function of
relative network depth. Learning models with encoding stages based on DCNN
layers closer to the final layer of the architecture tended to be better.
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Fig 6. Comparing models to humans along more granular behavioral signatures of
learning. A. Decomposing model behavior into two metrics. We examined model
behavior along two specific aspects of learning behavior: overall accuracy (top right),
which is the average accuracy of the model over the entire experiment (i.e. averaging
across all 100 trials and all 64 subtasks), and consistency (bottom right), which
conveys how well a model’s pattern of trial-averaged performance over different subtasks
rank-correlates with that of humans (Spearman’s rank correlation coefficient). B.
Consistency and overall accuracy for all models. Strong baseline models
(top-right) matched (or exceeded) humans in terms of overall accuracy, and had similar
(but not identical) patterns of performance with humans (consistency). The gray
regions are the bootstrap-estimated 95% range of each statistic between independent
repetitions of the behavioral experiment. The color map encodes the overall score
(MSE,,) of each model (colorbar in Fig 5A).
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Fig 7. Humans outperform all strong baseline models in low-sample regimes. A.
Subtask-averaged learning curves for humans and strong baseline models.
The y-axis is the percent chance that the subject made the correct object report
(chance is 50%). The x-axis is the total number of image examples shown prior to the
test trial (log scale). The average learning curves for humans (black) and models
(magenta) show that humans outperform all models in low-sample learning regimes.
Errorbars on the learning curves are the bootstrapped SEM; model errorbars are not
visible. B. No model achieves human-level early accuracy. We tested all models
for whether they could match humans early on in learning. Several models (including all
strong baseline models) were capable of matching or exceeding late accuracy in humans
(average accuracy over trials 95-100), but no model reached human-level accuracy in the
early regime (average over trials 1-5). This trend was present in subtasks across
different levels of difficulty (bottom row). The gray region shows the 95% bootstrapped
CI for each statistic; 95% CIs for models are too small to be shown.

significantly worse than humans in the early phase of learning (all p<0.05, bootstrap
hypothesis test, see Fig 7B).

We wondered whether this gap was present across levels of difficulty (e.g., that
models tended to perform particularly poorly on “hard” subtasks relative to humans,
but were human-level for other subtasks), and repeated this analysis across four different
difficulty levels of subtasks (where each level consisted of 16 out of the 64 total subtasks
we tested, grouped by human difficulty levels). We found models were consistently
slower than humans across the difficulty range, though we could not reject a subset
(11/20) of the strong baseline models at the easiest and hardest levels (see Fig 7B).

Lastly, though all models failed to match humans in the early regime, many models
readily matched or exceeded human performance late in learning (i.e. the average
accuracy on trials 95-100 of the experiment).
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0.3 Experiment 2: Characterizing one-shot object learning in

humans 253

Our observation above suggested these models learn more slowly than humans in 254
few-shot learning regimes involving random views of novel objects. To further 255
characterize possible differences between models and humans in this “early learning” 256
regime, we performed an additional behavioral experiment (Experiment 2) in which we 2
measured the ability of humans to generalize following experience with only a single 258
image of each object category. 250
Experiment 2 followed the same task paradigm as Experiment 1 (binary 260
discrimination learning with evaluative feedback). Each behavioral session was based on 2
one of 32 possible subtasks (i.e. 32 possible pairs of novel objects), and began with a 262
"training phase” of 10 trials in which the subject acquired an object-response 263
contingency using a single canonical image for each of the two objects. After the 264
training phase, we then asked subjects to perform trials with ”test images” consisting of s
transformed versions of the two training images (see One-shot behavioral testing for 266
further details). 267
These test images were generated by applying the five kinds of image variations 268
present in our original experiment (translation, scale, random backgrounds, in-plane 269

object rotation, and out-of-plane object rotation) to the test images. We also generated 2w
test images using four additional kinds of image variation that were not present in the on
original experiment (contrast shifts, pixel deletion, blur, and shot noise), but might 2
nonetheless serve as informative comparisons for identifying functional deficiencies in a 213
model relative to humans. For each kind of transformation, we tested four "levels” of 2

variation. For example, in measuring humans’ one-shot test accuracy to scale, we 215
showed subjects images where the object was resized to 12.5%, 25%, 50%, and 150% of 27
the size of the object in the original training image (see One-shot stimulus image 217
generation for details). 278

Under this experimental setup, the core measurements we sought to obtain was the 2
subject-averaged discrimination accuracy for n=36 generalization tests (9 transformation 2s
types, 4 levels of variation each). Intuitively, each of the n=36 measurements is an 281
estimate of a typical human’s ability to successfully generalize to a specific kind and 28
magnitude of view transformation (e.g. downscaling the size of an object by 50%), after  2s3
exposure to a single positive and negative example of a new object. Unlike Experiment 2

1, here we combined observations across the 32 subtasks used in this experiment, 285
ignoring the fact that there may be variation in these measurements based on the 286
specific objects involved. We also attempted to correct for any memory or attentional 2
lapses in these estimates (see One-shot behavioral statistics in humans for details). 288

Across these 36 test conditions, we found that humans had varied patterns of 289

generalization (Fig 8B). For example, we observed that accuracy varied systematically 20
based on the level of variation applied with respect to scale, out-of-plane rotation, and 20

blur. On the other hand, human subjects had nearly perfect generalization across all 202
tested levels of variation for translations, backgrounds, contrast shifts, and in-plane 203
rotations. Overall, these diverse patterns of generalization were estimated with a 204
relatively high degree of experimental precision, as quantified by our estimates of the 205
human noise floor for this experiment (root noise floor of 6 ~ 0.02). 296

We next used these measurements to create a benchmark that could be used to 207
compare any computable object learning model — including the models considered in 208
this study — against human object learning in this one-shot setting. 209
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Fig 8. One-shot learning in humans. A. One-shot learning task paradigm. We
performed an additional study (Experiment 2) to characterize human one-shot learning
abilities (using the same task paradigm in Fig 1). The first 10 trials were based on two
images (n=1 image per object) that were resampled in a random order. On trials 11-20,
humans were tested on transformed versions of those two images (nine types of
variation, four variation levels, n=36 total generalization tests) B. Human and
example model one-shot accuracy for all generalization tests. An example
strong baseline model’s pattern of generalization (magenta) is shown overlaid against
that of humans. C. Humans outperform strong baseline models on some kinds
of image variations. We averaged human one-shot accuracy (gray) on each type of
image variation, and overlaid all strong baseline models (magenta). The errorbars are
the the 95% CI (basic bootstrap). D. Comparison of MSE,, scores for
Experiment 1 and 2. No strong baseline model could fully explain the pattern of
one-shot generalization observed in humans (Experiment 2), nor their behavior on the
first benchmark (Experiment 1). The error scores are shown on the log scale.
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0.4 Models show weaker one-shot generalization compared to
humans

As in Experiment 1, the benchmarking procedure for Experiment 2 consisted of 1)
generating predictions of behavior from a model by having it perform the same
experiment conducted in humans, then 2) scoring the similarity of that behavior to
humans using an error statistic (MSE,,). Thus, for each model, we replicated the
one-shot behavioral experiment (n=16,000 simulated sessions per model), measured
their accuracy on each of the 36 generalization tests described above, then compared
those behavioral predictions to humans using MSE,, .

Similar to our results from Experiment 1, here we found that models varied widely
in their alignment with human learning behavior, and again found the top 1% subset of
models achieved relatively low error (v MSE,, =~ 0.06, where the root noise floor is
approximately 65, =~ 0.02). And as in Experiment 1, we found that all models had
statistically significant differences in their behavior relative to humans, for this
experiment. We also observed a positive relationship between the scores of the two
benchmarks: models that were most human-like as evaluated by the benchmark based
on Experiment 1 also tended to be the most human-like here, in the one-shot setting
(see Fig 8D) — though no model explained human behavior in either experiment to the
limits of statistical noise.

Part of the prediction failures we observed here lay in a failure to generalize as well
as humans to several kinds of image variation. For example, we observed that all strong
baseline models (identified from the benchmark from Experiment 1) had lower one-shot
accuracy than humans in the presence of object pixel deletions, blur, shot noise, and
scale shifts (see Fig 8C).

0.5 Specific individual humans outperform all models

Both benchmarks we developed in this study tested the ability of a model to predict
human object learning at the ”subject-averaged” level, where behavioral measurements
drawn from several subjects are averaged together. This approach, by design, ignores
any individual differences in learning behavior that may exist.

We wished to gauge the extent to which any such individual differences were present,
and we performed an analysis on our behavioral data from Experiment 1. We identified

subjects who performed all 64 subtasks in that experiment (22 out of 70 subjects total) .

We then attempted to reject the null hypothesis that there was no significant variation
in their overall learning ability (see S3 Appendix). If this hypothesis were to be rejected,
it would indicate that individuals must systematically vary in their learning behavior, at
least in terms of their overall performance on these tasks. We indeed found that some
subjects were reliably better object learners than others (p < le-4, permutation test).

Given this was the case, we next asked whether any of these individuals had an
overall performance level higher than that of the highest performing model we identified
in Experiment 1 (an encoding stage based on ResNet152/avgpool, and a tunable decision
stage using the square plasticity rule). We identified n=>5 individuals whose overall
accuracy significantly exceeded that of this model (all p<le—5, Welch’s t-test,
Bonferroni corrected). On average, this subset of humans had an overall accuracy of
0.92+ 0.01 (SEM over subjects); this was around 4% higher than this model’s average of
0.88.

June 22, 2023

16/45

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344


https://doi.org/10.1101/2022.12.31.522402
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.31.522402; this version posted June 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

A Learning curves for individual subjects
(average over n=64 subtasks)

Human subject M
Individual model

simulations
> /
8 » Human subject L
S
v
]
<
50% -
0 1 10 100
Trial

J

overall accuracy

0.95

0.90

o

13

vl
1

o

Y

S
1

0.75 o

EAERR

Ol .
Subject L

L ] —
Subject M

&

Rl

0.70

human subjects
(n=22)

model
simulations

Fig 9. Individual differences in learning ability. A. Individual-level learning
curves. We identified 22 subjects who performed all 64 subtasks in Experiment 1, and
computed their subtask-averaged learning curves. Each gray curve corresponds to the
learning curve for a different individual subject (smoothed using state-space estimation
from [38]). In humans, a range of overall learning performance is seen: some subjects
consistently outperformed others (e.g. Subject M, highest accuracy over all trials and
subtasks), while others consistently underperformed (e.g. Subject L, lowest average
accuracy). In magenta are subtask-averaged learning curves corresponding to individual
model simulations from the highest-performing model e tested in this study (encoding
stage = ResNet152/avgpool, plasticity rule = square). B. Some individual humans
outperform all models. Five out of 22 subjects had significantly higher overall
performance than the highest performing model we tested (one-tailed Welch’s t-test,

Bonferroni corrected, p<0.05).
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Discussion

A neurally mechanistic understanding of how humans accomplish visual object learning
remains an open scientific problem. In this study, we focused on a core behavioral
phenomenon entailed in visual object learning: the use of a finite number of image
examples of new objects to accurately identify that object in new, unseen images. A
necessary step in obtaining descriptions of the underlying neural mechanisms of this
core phenomenon is evaluating the empirical alignment of alternative models with
respect to measurements of human object learning behavior. To facilitate this, we first
collected a set of human measurements in many tasks within this object learning setting
(n=371,000 trials), allowing us to quantify the speed of human object learning (<10
trials to achieve close-to-asymptotic accuracy), the distinct pattern of learning difficulty
they have for different objects, and their extent of generalization to specific image
transformations after a single image example.

We then developed procedures to evaluate any image-computable object learning
model over those same learning settings (which we refer to as “benchmarks” for human
visual object learning), and tested a set of simple learning models (n=2,408 models) on
those benchmarks. Each of these models consisted of two stages: 1) a fixed encoding
stage, which maps incoming images to locations in an internal representational space,
followed by 2) a tunable decision stage which aims to improve future choices by
adjusting the plastic weights that convert that representation into a choice.

Prior to this study, we did not know if some or any of these learning models might
be capable of explaining human object learning as assessed on naturalistic images like
those used here. As such, we center our discussion on these models, but highlight that
our raw behavioral data (and the associated behavioral benchmarks) are now a publicly
available resource for testing image-computable object learning models beyond those
evaluated here [GitHub].

0.6 Strengths and weaknesses of these object learning models

Linear learning on fixed image representations are strong baseline models of
human object learning On our first benchmark, which compares a learning model
to humans under high view-variation learning conditions, we found a subset of models
produced relatively accurate predictions of human learning behavior. The observed
alignment of these models with humans does not originate from the fact they
successfully learn new objects — these models also fail to rapidly learn the same objects
that humans find difficult (Fig 6B), suggesting they have nontrivial similarities with
humans, at least behaviorally.

We were surprised by the extent of similarity we observed between these models and
humans, partly because some have suggested that DCNNs are unlikely to support
adequate descriptions of human learning (e.g. [15,39-42]), and partly because of the
simplicity of these models. The results reported here suggest that learning models based
on contemporary models of high-level visual neural representations and rudimentary,
one-layer plasticity rules are a strong starting point to quantitatively account for the
ability (and inability) of humans to learn arbitrary, new objects.

We note the present work does not directly engage the ongoing issue of whether the
optimization mechanism of backpropagation is somehow involved in human learning [43].
Though the DCNN-based representations used in the learning models in this work were
originally created using backpropagation, they were kept completely ”frozen” over
behavioral learning, with all behavioral learning achieved through a single layer of
weight changes (which does not require backpropagation). At a conceptual level, this
work regards DCNN-based representations as estimates of the (adult) human subject’s
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internal neural representation at the beginning of task learning, and is agnostic to how
they were created before that point.

In general, the models we considered are composed only of operations that closely
hew to those executed by first-order models of neurons — namely, linear summation of
upstream population activity, ramping nonlinearities, and adjustment of local
associational strengths using reward signals. This makes them not only plausible
descriptions for the computations executed by the brain over object learning, but, with
some additional assumptions (Fig 2B), they make predictions of neural phenomena.

For example, if the interpretation suggested in Fig 2B is taken at face value, these
models make a couple of qualitative predictions. First, given the assumption that the
encoding stage corresponds to the output of the ventral visual stream, these models
predict that ventral stream representations used by humans over object learning need
not undergo plastic changes to mediate behavioral improvements over the duration of
the experiments we conducted (seconds-to-minutes timescale). This prediction is in line
with prior studies showing adult ventral stream changes are typically moderate and take
place on longer timescales (see [44] for review).

Moreover, the entirety of the computational learning mechanisms used by these
models (i.e. the learning of thresholded, linear combinations of upstream neural activity
using reward signals) can plausibly be executed at a single visuomotor synaptic
interface where reward-based feedback signals are available. Several regions downstream
of the ventral visual stream are possible candidates for this locus of plasticity during
invariant object learning; we point to striatal regions receiving both high-level visual
inputs and midbrain dopaminergic signals and involved in premotor processing, such as
the caudate nucleus, as one set of candidates [45,46].

Gaps between models and humans in few-shot learning Despite the predictive
strength of some models we tested, all models tested were unable to fully explain all
replicable human behavior on either behavioral benchmark. One consistent prediction
failure we observed in all models was a failure to learn new objects as rapidly as humans
in low-sample regimes. We found this to be the case in both Experiment 1 (see Fig 7)
and in Experiment 2, where we found that all tested models had lower accuracy than
humans after one-shot across a variety of generalization tests (see Fig 8C). For example,
we found that these models cannot one-shot generalize as well to scale shifts as humans,
replicating previous work [47].

Taken together, these observations show all tested learning models currently have
quantitative deficiencies from humans in the few-shot regime. We note that even if our
experiments have underestimated human learning speed (e.g. from increased inattention
rates on Mechanical Turk [48]), this inference would not change; the estimated gaps in
few-shot learning abilities between these models and humans would be larger than the
ones we report here. However, other aspects of similarity we found between models and
humans — such as their shared patterns of relative difficulty — would be robust to such
biases in our experiment.

0.7 Future visual object learning models to be tested

There are several potential ways to improve the predictive accuracy of the models we
tested in this study (i.e. to find more human-like learning models). For example, it is
possible that another model based on the conceptual model family we considered in this
work could fully predict human learning over the benchmarks we developed, and we
simply failed to implement and test that particular model here. If that is the case, such
a model could differ from the ones we tested along one or both of its two components:
its approximation of the visual representations used by humans during learning (i.e. its
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encoding stage), and/or its plasticity rule. Because the choice of plasticity rule had
little effect on the predictive power of these models (Fig 5A) and did not interact
significantly with the choice of encoding stage, we suggest it is more likely that
alternative encoding stages would give rise to a more accurate model.

This view is consistent with the fact that the encoding stages we considered
(Imagenet-pretrained DCNN representations) are known to only partially approximate
the primate ventral stream, as directly measured by electrophysiological studies [36] and
inferred by behavioral object categorization studies on images of already-learned
objects [18,32,49]. If image-computable representations that more closely adhere to
human visual representations could be built and/or identified, we anticipate they would
lead to object learning models that close the prediction gap on the benchmarks we
developed here.

Stepping back, it is also possible that no model from this conceptual model family
could lead to fully accurate predictions on these benchmarks (or future benchmarks),
but other types of models might do so. For example, one influential class of cognitive
theories posits that the brain learns new objects by building structured, internal models
of those objects from image exemplars, then uses those internal models to infer the
latent content of each new image [8,11,13,15,16,50]. It is possible that models based on
these alternate approaches would generate more human-like learning over the tasks we
tested here, and could be the key to achieving a full computational description of
human object learning. In any case, implementing and testing these models on the
benchmarks here is an important direction for future work.

0.8 Future extensions of object learning benchmarks
0.8.1 Extensions of task paradigm

The two benchmarks we developed here certainly do not encompass all aspects of object
learning. For example, each benchmark focused on discrimination learning between two
novel objects, but humans can potentially learn and report on many more objects
simultaneously. Moreover, humans can readily learn object categories at different levels
of abstraction, each of which may encompass multiple specific objects [51]. The models
tested here scale naturally to task paradigms involving additional objects (via the
incorporation of new linear choice preferences to the decision stage), and are capable of
learning categories of varying abstraction; comparing them to humans in those richer
learning settings (and identifying any of their limits in those settings) could strongly
motivate the consideration of more complex models.

0.8.2 Extending stimulus presentation time

For presenting stimuli, we followed conventions used in previous visual neuroscience
studies [18,52] of object perception: achromatic images containing single objects
rendered with high view uncertainty on random backgrounds, presented at <10 degrees
of visual field and for <200 milliseconds.

The chosen stimulus presentation time of 200 milliseconds is too short for a subject
to initiate a saccadic eye movement based on the content of the image [53]. Such a
choice simplifies the input of any model (i.e., to a single image, rather than the series of
images induced by saccades); on the other hand, active viewing of an image via
target-directed saccades might be a central mechanism deployed by humans to mediate
learning of new objects.

We note that if this is the case, our task paradigm (which would disrupt any such
saccade-based mechanisms from being used) would be underestimating the number of
images needed by humans to achieve learning on new objects, compared to a scenario in
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which subjects had unlimited viewing time on each trial. Thus, removing such a bias in
our experimental design could potentially reveal larger differences between models and
humans.

Beyond extending viewing time, designing tasks which more closely hew to typical
object learning contexts for humans (e.g. involving colored images and/or movies of
potentially multiple objects physically embedded in natural scenes) will be an important
direction for future work.

0.8.3 Differences between individual subjects

We primarily focused on studying human learning at the subject-averaged level, where
behavioral measurements are averaged across several individuals (i.e. subject-averaged
learning curves; see Fig 1D). However, individual humans may have systematic
differences in their learning behavior that are (by design) ignored with this approach.

For example, we found that individual subjects may differ in their overall learning
abilities: we identified a subpopulation of humans who were significantly more proficient
at learning compared to other humans (see Fig 9B). We did not attempt to model this
individual variability in this study; whether these differences can be explained by
alterations to this model family, if at all, (e.g. through the introduction of random
effects to the parameters of the encoding stage and/or plasticity rules) remains an area
for future study.

Moreover, performing subject-averaging is known to lead to the masking of learning
dynamics present at the level of single subjects, such as delayed rises or step increases in
accuracy [54]. Performing analyses to compare any such learning dynamics between
individual humans and learning models is another important extension of our work.

Lastly, we did not attempt to model any systematic increases in a subject’s learning
performance as they performed more and more subtasks available to them (in either
Experiment 1 or 2). This phenomenon (learning-to-learn, learning sets, or
meta-learning) is well-known in psychology [55], but to our knowledge has not been
systematically measured or modeled in the domain of human object learning.
Expanding these benchmarks (and models) to measure and account for such effects is
an important future step of building models of the work done here.

Materials and methods

0.9 Overview of experiments

For both experiments, the core measurement we sought to obtain was the discrimination
performance of a typical subject as they received increasing numbers of exposures to
images of the to-be-learned (i.e. new) objects.

We assumed that different pairs of objects result in potentially different rates of
learning, and we wanted to capture those differences. Thus, in Experiment 1, we aimed
to survey the empirical landscape of this human ability by acquiring this learning curve
measurement for many different pairs of objects (n=64 pairs). Specifically, for each pair
of to-be-learned objects (referred to as a ”subtask”), we aimed to measure
(subject-averaged) human learning performance across 100 learning trials, where each
trial presented a test image generated by one of the objects under high viewpoint
uncertainty (e.g. random backgrounds, object location, and scale). We refer to this
100-dimensional set of measurements as the learning curve for each subtask.

In Experiment 2, we aimed to measure the pattern of human learning that results
from their experience with just a single canonical example of each of the to-be-learned
objects (a.k.a. ”one-shot learning”). Specifically, we wished to measure the pattern of
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human discrimination ability over various kinds of identity-preserving image
transformations (e.g, object scaling, transformation, and rotation). In total, we tested
nine kinds of transformations. We anticipated that humans would show distinct
patterns of generalization across these transformations, and we aimed to measure the
human commonalities in those patterns (i.e. averages across subjects).

Experiments 1 and 2 both utilized a two-way object learning task paradigm that is
conceptually outlined in Fig 1B. The two experiments differed only in the manner in
which test images were generated and sampled for presentation, and we describe those
differences in detail in their respective sections. Before that, we provide more detail on
the specific procedures and parameters we used to implement the common two-way
object learning task paradigm.

0.10 Task paradigm

For both experiments, human subjects were recruited from Mechanical Turk [56], and
ran tasks on their personal computers. Demographic information (age, sex, gender, or
ethnicity) was not collected; all online subjects were anonymous. We also recruited

n = 4 subjects for testing in the lab. We designed and administered these experiments
in accordance to a protocol approved by the Massachusetts Institute of Technology
Committee on the Use of Humans as Experimental Subjects (Protocol #
0812003043A017).

Each experiment (Experiments 1 & 2) consisted of a set of subtasks. For each
subtask, we asked a population of human subjects to learn that subtask, and we refer to
the collection of trials corresponding to a specific subject in a subtask as a ”session”.

At the beginning of each session, the subject was instructed that there would be two
possible objects — one belonging to the "F” category and the other belonging to the ”J”
category. The subject’s goal was to correctly indicate the category assignment for each
test image. The specific instructions were: ”On each trial, you’ll view a rapidly flashed
image of an object. Your task is to figure out which button to press (either "F” or 7J”
on your keyboard) after viewing a particular image. Each button corresponds to an
object (for example, a car might correspond to F, while a dog might correspond to J).”

Subjects were also informed that they would receive a monetary bonus (in addition
to a base payment) for each correctly indicated test image, incentivizing them to learn.
We next describe the structure of a single trial in detail below.

0.10.1 Test image presentation

Each trial began with a display start screen that was uniformly gray except for a small
black dot at the center of the screen, which indicated the future center of each test
image.? We intended for this fixation point to encourage the subject to consistently
view each test image at the center of their field of view (see S2 for in-lab eye
measurements). The subject then initiated the trial by pressing the space bar on their
keyboard. Once pressed, a test image (occupying = 6° of the visual field) belonging to
one of the two possible object categories immediately appeared. That test image
remained on the screen for ~ 200 milliseconds before disappearing (and returning the
screen to uniform gray).?

For each subject and each trial, the test image was selected by first randomly
picking (with equal probability) one of the two objects as the generator of the test

2The center of the test image is not necessarily the same as the center of the object in the test image.

3We assumed our subjects used computer monitors with a 16:9 aspect ratio, and naturally positioned
themselves so the horizontal extent of the monitor occupied between 40°-70° degrees of their visual field.
Under that assumption, we estimate the visual angle of the stimulus would vary between a minimum
and maximum of = 4° — 8°. Given a monitor has a 60 Hz refresh rate, we expect the actual test image
duration to vary between ~ 183 — 217 milliseconds.
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image. Then, given that selected object, an image of that object was randomly selected
from a pool of pre-rendered possible images. Test images were always selected without
replacement (i.e. once selected, that test image was removed from the pool of possible
future test images for that behavioral session).

0.10.2 Subject choice reporting

Fifty milliseconds after the disappearance of the test image, the display cued the subject
to report the object that was ”in” the image. The display showed two identical white
circles — one on the lower left side of the fixation point and the other on the lower right
side of the fixation point. The subject was previously instructed to select either the ”F”
or 7J” keys on their keyboard. We randomly selected one of the two possible
object-to-key mappings prior to the start of each session, and held it fixed throughout
the entire session. This mapping was not told to the subject; thus, on the first trial,
subjects were (by design) at chance accuracy.

To achieve perfect performance, a subject would need to associate each test image of
an object to its corresponding action choice, and not to the other choice (i.e., achieving
a true positive rate of 1 and a false positive rate of 0).

Subjects had up to 10 seconds to make their choice. If they failed to make a selection
within that time, the task returned to the trial initiation phase (above) and the outcome
of the trial was regarded as being equivalent to the selection of the incorrect choice.*.

0.10.3 Trial feedback

As subjects received feedback which informed them whether their choice was correct or
incorrect (i.e. corresponding to the object that was present in the preceding image or
not), they could in principle learn object-to-action associations that enabled them to
make correct choices on future trials.

Trial feedback was provided immediately after the subject’s choice was made. If they
made the correct choice, the display changed to a feedback screen that displayed a
reward cue (a green checkmark). If they made an error, a black ”x” was displayed
instead. Reward cues remained on the screen for 50 milliseconds, and were accompanied
by an increment to their monetary reward (see above). Error cues remained on the
screen for 500 milliseconds. Following either feedback screen, a 50 millisecond delay
occurred, consisting of a uniform gray background. Finally, the display returned to the
start screen, and the subject was free to initiate the next trial.

0.11 Experiment 1: Learning objects under high view variation

Our primary human learning benchmark (Experiment 1) was based on measurements of
human learning curves over subtasks involving images of novel objects rendered under
high view-variation. We describe our procedure for generating those images, collecting
human behavioral measurements, and benchmarking models against those
measurements below.

0.11.1 High-variation stimulus image generation

We designed 3D object models (n=128) using the ”Mutator” generative design
process [57]. We generated a collection of images for each of those 3D objects using the
POV-Ray rendering program [58]. To generate each image, we randomly selected the
viewing parameters of the object, including its projected size on the image plane

4In practice, this was quite rare and corresponded to ~0.04% of all trials that are included in the
results in this work.
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(25%-50% of total image size, uniformly sampled), its location (+40% translation from
image center for both x and y planes, uniformly sampled), and its pose relative to the
camera (uniformly sampled random 3D rotations). We then superimposed this view on
top of a random, naturalistic background drawn from a database used in a previously

reported study [52]. All images used in this experiment were grayscale, and generated at
a resolution of 256x256 pixels. We show an example of 32 objects (out of 128 total) in
Fig 1A, along with example stimulus images for two of those objects on the right.

0.11.2 Design of subtasks

We randomly paired the 128 novel objects described above into pairs (without
replacement) to create n=64 subtasks for Experiment 1, each consisting of a distinct
pair of novel objects. Each behavioral session for a subtask consisted of 100 trials,
regardless of the subject’s performance. On each trial of a session, one of the two
objects was randomly selected, and then a test image of that object was drawn
randomly without replacement from a pre-rendered set of 100 images of that object
(generated using the process above). That test image was then presented to the subject
(as described in Test image presentation). We collected 50 sessions per subtask and all
sessions for each subtask were obtained from separate human subjects, each of whom we
believe had not seen images of either of the subtask’s objects before participation.

0.11.3 Subject recruitment and data collection

Human subjects were recruited on the Mechanical Turk platform [56] through a
two-step screening process. The goal of the first step was to verify that our task
software successfully ran on their personal computer, and to ensure our subject
population understood the instructions. To do this, subjects were asked to perform a
prescreening subtask with two common objects (elephant vs. bear) using 100 trials of
the behavioral task paradigm (described in Task paradigm above). If the subject failed
to complete this task with an average overall accuracy of at least 85%, we intentionally
excluded them from all subsequent experiments in this study.

The goal of the second step was to allow subjects to further familiarize themselves
with the task paradigm. To do this, we asked subjects to complete a series of four
”warmup” subtasks, each involving two novel objects (generated using the same
”Mutator” software, but distinct from the 128 described above). Subjects who
completed all four of these warmup subtasks, regardless of accuracy, were enrolled in
Experiment 1. Data for these warmup subtasks were not included in any analysis
presented in this study. In total, we recruited n=70 individual Mechanical Turk workers
for Experiment 1.

Once a subject was recruited (above), they were allowed to perform as many of the
64 subtasks as they wanted, though they were not allowed to perform the same subtask
more than once (median n=61 total subtasks completed, min=1, max=64). We aimed
to measure 50 sessions per subtask (i.e. 50 unique subjects), where each subject’s
session consisted of an independently sampled, random sequence of trials. Each of these
subtasks followed the same task paradigm (described in Methods Task paradigm), and
each session lasted 100 trials. Thus, the total amount of data we aimed to collect was
64 subtasks x 100 trials x 50 subjects = 320k measurements.

0.11.4 Behavioral statistics in humans

We aimed to estimate a typical subject’s accuracy at each trial, conditioned on a
specific subtask. We therefore computed 64 x 100 accuracy estimates (subtask x trial)
by taking the sample mean across subjects. We refer to this [64, 100] matrix of point
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statistics as H. Each row vector H, has 100 entries, and corresponds to the mean
human ”learning curve” for subtask s = {1,2,...64}.

Because each object was equally likely to be shown on any given test trial, each of
these 100 values of H, may be interpreted as an estimate of the average of the true
positive and true negative rates (i.e. the balanced accuracy). The balanced accuracy is
related to the concept of sensitivity from signal detection theory — the ability for a
subject to discriminate two categories of signals [59]. We note that an independent
feature of signal detection behavior is the bias — the prior probability with which the
subject would report a category. We did not attempt to quantify or compare the bias in
models and humans in this study.

0.11.5 Simulating behavioral sessions in computational models

To obtain the learning curve predictions of each computational model, we required that
each model perform the same set of subtasks that the humans performed, as described
above. We imposed the same requirements on the model as we did on the human
subjects: that it begins each session without knowledge of the correct object-action
contingency, that it should generate a action choice based solely on a pixel image input,
and that it can update its future choices based on the history of scalar-valued feedback
("correct” or ”incorrect”). If the choices later in the session are more accurate than
those earlier in the session, then we colloquially say that the model has "learned”, and
comparing and contrasting the learning curves of models with those of humans was a
key goal of Experiment 1.

We ran n=32,000 simulated behavioral sessions for each model (500 simulated
sessions for each of the 64 subtasks), where on each simulation a random sequence of
trials was sampled in an identical fashion as in humans (see above). During each
simulation, we recorded the same raw ”behavioral” data as in humans (i.e. sequences of
correct and incorrect choices), then applied the same procedure we used to compute H
(see above) to compute an analogous collection of point statistics on the model’s raw
behavior, which we refer to as M.

0.11.6 Comparing model learning with human learning

The learning behavior generated by an computable model of human learning (M)
should minimally replicate the measured learning behavior of humans (i.e. H ), to the
limits of statistical noise. To identify any such models, we developed a scoring
procedure to compare the similarity of the learning behavior in humans with any
candidate learning model. We describe this procedure below.

Bias-corrected mean squared error Given a collection of human measurements H
(here, a matrix of accuracy estimates for S = 64 subtasks over T'= 100 trials) and
corresponding model measurements (M ), we computed a standard goodness-of-fit
metric, the mean-squared error (MSE; lower is better). The formula for the MSE is
given by:

MSE(NE, 1) = —— S S (Wt — ) (1)

S T
572 2

s=1t=1

Because Hy; and My, are random variables (i.e. sample means), the MSE itself is a
random variable. It can be seen that the expected value of MSE(M JH ) consists of two
conceptual components: the expected difference between the model and humans, and
noise components:
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E[MSE(N, H)] = o— ZS:ZT: ( — E[H, ])2 + o2 (Hf) + o (]\L) 2)

s:l t=1

Where E[-] denotes the expected value, and ¢%(-) denotes the variance due to finite
sampling (a.k.a. "noise”).

Equation (2) shows that the expected MSE for a model depends not only on its
expected predictions E[M ¢], but also its sampling variance o2 (M +). In the present
case where My, is the mean over independent (but not necessarily identically
distributed) Bernoulli variables, the value of 02(M,;) happens to depend on the
expected prediction of the model itself, E[M]. °

Because the sampling variance of the model depends on its predictions, it is therefore
conceptually possible that a model with worse (expected) predictions could achieve a
lower expected MSE, simply because its associated sampling variance is lower.5

We corrected for this inferential bias by estimating, then subtracting, these variance
terms from the "raw” MSE for each model we tested.”. We refer to this bias-corrected
error as MSE,,.

R SR R ®

s=1t=1

MSE,, (M, H) =

Where 62 (Mst> is an unbiased estimator of the variance of M. We write the

equation for 62 (Mst> below, where kg; is the number of observed correct choices over
the ng; model simulations conducted for subtask s and trial t:

Est _ Est
6% (NI ) = 222 n(l — ’1“1) (4)

Because E {&2 (Mst>] = g2 (Mst), the expected value of MSE,, can be shown to be:

- 1 L& N2
E[MSEn(M,H)]:S—TZZ( E[Hg ]) +0? (Hf> (5)

s=1t=1

Intuitively, MSE,, is an estimate of the mean-squared error that would be achieved
by a model if we had a noiseless estimate of its predictions (i.e. had an infinite number
of simulations of that model been performed). We note that the value of its square root,
VMSE,,, gives a rough® estimate of the average deviation between a model’s prediction
and human measurements, in units of the measurements (in this study, units of
accuracy).

5This can be seen by the expression for the variance of M, which is a mean over independent

(but not necessarily identically distributed) Bernoulli variables: o2 (Mst) = %ﬁt”“). The value of

E[Mst] is the expected behavior of the model on trial ¢ of subtask s, and ns: is the number of model
simulations.

6And/or because more model simulations were performed — though in this study, all tested models
performed the same number of simulations, n=500.

"In practice, this correction was relatively small, because of the high number of simulations that
were conducted.

8This estimator is biased.
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Noise floor estimation It can be in Equation (5) that there are terms o> Hy),

originating from the uncertainty in our experimental estimates of human behavior.
These terms are always positive, and create a lower bound on the expected MSE,, for all
models. That is, even if a model is expected to perfectly match the subject-averaged
behavior of humans (where E[M;] = E[H;], for all subtasks s and trials ¢), it cannot
be expected to achieve an error below this lower bound. We call this lower bound the
"noise floor”, and use the symbol o7 to refer to it:

s T
1 X
oh = ST > > 0% (Ha) (6)
s=1t=1

It is possible to make an unbiased estimate of the noise floor (¢7) if one can make
unbiased estimates of each o%(Hg;) term. We did so by using the unbiased estimator
from Equation (4). We write the full expression for our estimate of the noise floor, 67,
below:

d-seny S -

Where ks is the number of human subjects (out of ng total subjects) that made a
correct choice on subtask s and trial £. The square root of this value, oy, gives a rough
estimate of the average deviation one would expect in our subject-averaged
measurements of behavior (ﬁst) over repetitions of the experiment (i.e. upon another
resampling of human subjects and behavioral sessions).

N

Null hypothesis testing For each model we tested, we attempted to reject the null
hypothesis that E[H;] = E[M,], for all subtasks s and trials ¢. To do so, we first
approximated the distribution for MSEn(ﬁ M ) that would be expected under this null
hypothesis, using bootstrapping.

To do so, we first computed bootstrap replicates of H and approximated samples of
the null model M* (where E[Hy] = E[MZ,]). A bootstrap replicate of H was
constructed by first resampling individual human sessions without replacement, taking
the same number of resamples per subtask as in the original experiment. We then
computed the replicate H using the same procedure described in Behavioral statistics in
humans. Behavior from the null model cannot be sampled directly (i.e. we do not have
the ”true model” of human learning), but by definition shares the same expected
behavior as a randomly sampled, individual human. We therefore created a bootstrap
sample of the null model M* by (also) taking resamples of individual human sessions,
setting the number of resamples per subtask to the number of model simulations
conducted per subtask (here, n=500 simulations per subtask). We then computed and
saved MSE,,(H, M*) for that iteration, and repeated this process for B=1,000 iterations
to obtain an approximate null distribution for MSE,,.

If a model’s actual MSE,, (M, H) score fell above the a-quantile of the estimated null
distribution, we rejected it on the basis of having significantly more error than what

would be expected from a ”true” model of humans (with estimated significance level «).

Lapse rate correction Lastly, we corrected for any lapse rates present in the human
data. We defined the lapse rate as the probability with which a subject would randomly
guess on a trial, and we assumed this rate was constant across all trials and subtasks.
To correct for any such lapse rate in the human data, we fit a simulated lapse rate
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parameter to each model, prior to computing its MSE,,. Given a lapse rate parameter of
v (ranging between 0 and 1), a model would, on each trial, guess randomly with
probability . For each model, we identified the value of v that minimized its empirical
MSE, .

We note that fitting v can only drive the behavior of a model toward randomness; it
cannot artificially introduce improvements in its learning performance.

0.12 Experiment 2: One-shot human object learning benchmark

For the second benchmark in this study, we compared one-shot generalization in
humans and models. Our basic approach was to allow humans to learn to distinguish
between two novel objects using a single image per object, then test them on new,
transformed views of the support set.

0.12.1 One-shot behavioral testing

We used the same task paradigm described in Task paradigm (i.e. two-way object
discrimination with evaluative feedback). We created 64 object models for this
experiment (randomly paired without replacement to give a total of 32 subtasks). These
objects were different from the ones used in the previous benchmark (described in
Experiment 1: Learning objects under high view variation).

At the beginning of each session, we randomly assigned the subject to perform one
of 32 subtasks. Identical to Experiment 1, each trial required that the subject view an
image of an object, make a choice ("F” or ”J”), and receive feedback based on their
choice. Each session consisted of 20 trials total, which was split into a ”training phase’
and ”testing phase”, which we describe below.

)

Training phase The first ten trials (the ”training phase”) of the session were based
on a single image for each object object (i.e. n=2 distinct images were shown over the
first 10 trials). We ensured the subject performed trial with each training image five
times total in the training phase; randomly permuting the order in which these trials
were shown.

Testing phase On trials 11-20 of the session (the ”testing phase”), we presented
trials containing new, transformed views of the two images used in the training phase.
For each trial in the test phase, we randomly sampled an unseen test image, each of
which was a transformed version of one of the training images. There were 36 possible
transformations (9 transformation types, with 4 possible levels of strength). We
describe how we generated each set of test images in the next section (see Fig 1B for
examples). On the 15th and 20th trial, we presented ”catch trials” consisting of the
original training images. Throughout the test phase, we continued to deliver evaluative
feedback on each trial.

0.12.2 One-shot stimulus image generation

Here, we describe how we generated all of the images used in Experiment 2. First, we
generated each 3D object model using the Mutator process (see High-variation stimulus
image generation). Then, for each object (n=64 objects), we generated a single
canonical training image — a 256x256 grayscale image of the object occupying =~ 50% of
the image plane, centered on a gray background. We randomly sampled its three axes of
pose from the uniform rotational distribution.

For each training image, we generated a corresponding set of test images by applying
different kinds of image transformations we wished to measure human generalization on.
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In total, we generated test images based on 9 transformation types, and we applied each
transformation type at 4 levels of ”strength”. We describe those 9 types with respect to
a single training image, below.

Translation We translated the object in the image plane of the training image. To do
so, we randomly sampled a translation vector in the image plane (uniformly sampling
an angle from 6 € [0°,360°]), and translated it r pixels in that direction. We repeated
this process (independently sampling 6 each time) for r = 16, 32,64, and 96 pixels
(where the total image size 256 x 256 pixels), for two iterations (for a total of eight
translated images).

Backgrounds We gradually replaced the original, uniform gray background with a
randomly selected, naturalistic background. Each original background pixel b;; in the
training image was gradually replaced with a naturalistic image ¢ using the formula
b; = (1 — a)bij + ac;j. We varied o at four logarithmically spaced intervals,

a =0.1,0.21,0.46, 1. Note that at o = 1, the original gray background is completely
replaced by the new, naturalistic background. We generated two test images per « level,
independently sampling the background on each iteration (for a total of eight images
per object).

Scale We rescaled the object’s size on the image to 12.5%, 25%, 50%, and 150% of the
original size (four images of the object at different scales).

Out-of-plane rotations We rotated the object along equally spaced 45° increments,
rendering a test image at each increment. We did so along two separate rotational axes
(horizontal and vertical), leading to n=13 test images total based on out-of-plane
rotations.

In-plane rotation We rotated the object inside of the image-plane, along 45°
increments. This resulted in n=7 test images based on in-plane rotations.

Contrast We varied the contrast of the image. For each pixel p;; (where pixels range
in value of 0 and 1), we adjusted the contrast using the equation
pi; = 10°(pi;) + 0.5(1 — 10°), varying ¢ from —0.8,—0.4,0.4 and 0.8.

Pixel deletion We removed pixels corresponding to the object in the training image,
replacing them with the background color (gray). We removed 25%, 50%, 75%, and 95%
of the pixels, selecting the pixels randomly for each training image.

Blur We blurred the training image using a Gaussian kernel. We applied blurring
with kernel radii of 2, 4, 8, and 16 pixels (with an original image resolution of 256 x 256
pixels) to create a total of 4 blurred images.

Gaussian noise We applied Gaussian noise to the pixels of the training image. For
each pixel p;;, we added ¢.7.d. Gaussian noise:

pi; = pij + N(0,0)

We applied noise with o = 0.125, 0.25, 0.375 and 0.5 (where pixels range in
luminance value between 0 and 1). We then clipped the resultant pixels to lie between 0
and 1.
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0.12.3 Human behavioral measurements for Experiment 2

Subject recruitment We used the same two-step subject recruitment procedure
described above (see Subject recruitment and data collection), and recruited n=170
human subjects. Some of these subjects overlapped with those in Experiment 1 (n=9
subjects participated in both experiments).

All recruited subjects were invited to participate in up to 32 behavioral sessions. We
disallowed them from repeating subtasks they had performed previously. Subjects were
required to perform a minimum of four such behavioral sessions. In total, we collected
n=2547 sessions (/= 51k trials) for Experiment 2.

One-shot behavioral statistics in humans We aimed to estimate the expected
accuracy of a subject on each of the 36 possible transformations, correcting for
attentional and memory lapses.

To do so, we combined observations across the eight test trials in the testing phase
to compute accuracy estimate for each of the 36 transformations; that is, we did not
attempt to quantify how accuracy varied across the testing phase (unlike the previous
benchmark). We also combined observations across the 32 subtasks in this experiment.
In doing so, we were attempting to measure the average generalization ability for each
type of transformation (at a specific magnitude of transformation change from the
training image), ignoring the fact that generalization performance likely depends on
both the objects to be discriminated (i.e. the appearance of the objects in each
subtask), the specific training images that were used, and the testing views of each
object (e.g. the specific way in which an object was rotated likely affects generalization —
not just the absolute magnitude of rotation). In total, we computed 36 point statistics
(one per transformation).

Estimating performance relative to catch performance Here we assumed that
each human test performance measurement was based on a combination of the subject’s
ability to successfully generalize, a uniform guessing rate (i.e. the probability with
which a subject executes a 50-50 random choice), and the extent to which the subject
successfully acquired and recalled the training image-response contingency (i.e. from the
first 10 trials). We attempted to estimate the test performance of a human subject that
could 1) fully recall the association between each training image and its correct choice
during the training phase, and 2) had a guess rate of zero on the test trials.

To do so, we used trials 15 and 20 of each session, where one of the two training
images was presented to the subject ("catch trials”). Our main assumption here was
that performance on these trials would be 100% assuming the subject had perfect recall,
and had a guess rate of zero. Under that assumption, the actual, empirically observed
accuracy peatch would be related to any overall guess and/or recall failure rate v by the
equation ¥ = 2 — 2pcatch. We then adjusted each of the point statistics (i.e. test
performances) to estimate their values had 7 been equal to zero, by applying the
following formula:

/:L_ Y
11—y 2-—-2y

 We refer to the collection of 36 point statistics (following lapse rate correction) as
Hes.

p

0.12.4 Comparing model one-shot learning with human one-shot learning

Model simulation of Experiment 2 For this benchmark, we required that a model
perform a total of 16,000 simulated behavioral sessions (500 simulated sessions for each
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of the 32 possible subtasks). Each simulated session proceeded using the same task
paradigm as in humans (i.e. 10 training trials, followed by a test phase containing 8 test
trials and 2 catch trials). Based on the model’s behavior over those simulations, we
computed the same set of point statistics described above, though we did not correct for
any attentional lapses or recall lapses in the model, which we assumed was absent in
models. In this manner, for each model, we obtained a collection of point statistics
reflecting their behavior on this experiment, M5,

Bias-corrected mean-squared error and null hypothesis testing We used the
same statistical approach for our primary benchmark (introduced in Comparing model
learning with human learning) to summarize the alignment of a model with humans.
That is, we used the bias-corrected error metric MSE,, as our metric of comparison:

36
~ ~ 1 ~ ~ 2 N
M&%MPiH“%:%E @w”fo)A@QQﬁﬁ

1=
We estimated the null distribution for MSE,, using bootstrap resampling, following
the same procedure outlined in the first benchmark (bootstrap-resampling individual
sessions).
0.13 Baseline model family

For a model to be scored on the benchmarks we described above, it must fulfill only the

following three requirements: 1) it takes in any pixel image as its only sensory input (i.e.

it is image computable), 2) it can produce an action in response to that image, and 3) it
can receive scalar-valued feedback (rewards). Here, we implemented several models
which fulfill those requirements.

All models we implemented consist of two components. First, there is an encoding
stage which re-represents the raw pixel input as a vector # in a multidimensional
Euclidean space.The parameters of this part of the model are held fixed (i.e., no
learning takes place in the encoding stage).

The second part is a tunable decision stage, which takes that representational vector
and produces a set of C' choice preferences (in this study, C' = 2). The preference for
each choice is computed through a dot product w, - Z, where @, is a vector of weights
for choice c¢. The choice with the highest preference score is selected, and ties are broken
randomly.

After the model makes its choice, the environment may respond with some feedback
(e.g. positive or negative reward). At that point, the decision stage can process that
feedback and use it to change its parameters (i.e. to learn). All learning in the models
tested here takes place only in the parameters of the decision stage (all weight vectors
wW1...W¢); the encoding stage has completely fixed parameters.

In total, any given model in this study is defined by these two components — the
encoding stage and the decision stage. We provide further details for those two
components below.

0.13.1 Encoding stages

The encoding stages were intermediate layers of deep convolutional neural network
architectures (DCNNs). We drew a selection of such layers from a pool of 19 network
architectures available through the PyTorch library [60], each of which had pretrained
parameters for solving the Imagenet object classification task [37].
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For each architecture, we selected a subset of these intermediate layers to test in this
study, spanning the range from early on in the architecture to the final output layer
(originally designed for Imagenet). We resized pixel images to a standard size of
224x224 pixels using bilinear interpolation. In total, we tested n=344 intermediate
layers as encoding stages.

Dimensionality reduction Once an input image is fed into a DCNN architecture,
each of its layers produces a representational vector of a dimensionality specified by the
architecture of the model. Depending on the layer, this dimensionality may be relatively
large (;10%), making it hard to efficiently perform numerical calculations on
contemporary hardware. We therefore performed dimensionality reduction as a
preprocessing step. We performed dimensionality reduction using random Gaussian
projections to a standard size of 2048, if the original dimensionality of the layer was
greater than this number. This procedure approximately preserves the original
representational structure of the layer (i.e., pairwise distances between points in that
space) [61] and is similar to to computing and retaining the first 2048 principal
components of the representation.

Feature normalization Once dimensionality reduction was performed, we performed
another standardization step. We computed centering and scaling parameters for each

layer, so that its activations fit inside a sphere of radius 1 centered about the origin (i.e.

[IZ]] < 1, for all Z).

To do so, we computed the activations of the layer over using the images from the
?warmup” tasks human subjects were exposed to prior to performing any task in this
study (i.e. 50 randomly selected images of 8 objects, see Subject recruitment and data
collection). We computed the sample mean of those activations, and set this as the new
origin of the encoding stage (i.e. the centering parameter). Then, we took the 99th
quantile of the activation norms (over those same images) to calculate the approximate
radius of the representation, and set this as our scaling parameter (i.e. dividing all
activations by this number). Any activations with a norm greater than this radius were
scaled to have a norm of 1.

Other kinds of feature standardization schemes are possible: for instance, one could
center and scale the sensory representations for each subtask separately. However, such
a procedure would expose models to the statistics of subtasks that are meant to be
independent tests of their ability to learn new objects — statistics which we considered
to be predictions of the encoding stage.

0.13.2 Tunable decision stage

Once the encoding stage re-represents an incoming pixel image as a multidimensional
vector & € R?, a tunable decision stage takes that vector as an input, and produces a
choice as an output.

Generating a decision To select a choice, the tunable decision stage first generates
choice preferences for each of the C possible actions, using the dot products w; - Z for
i =1...C. Then, the choice with the highest preference is selected

(¢ = argmax; (W; - Z)). If all choices have the same preference value, a choice is
randomly selected.

Learning from feedback Once a choice is selected, the environment may convey
some scalar-valued feedback (e.g. reward or punish signals). The model may use this
feedback to change its future behavior (i.e., to learn). For all models considered here,
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this may be accomplished (only) by changing its weight vectors wy, ...wWe. Thus, learning
on each trial can be summarized by the changes to each weight vector by some §; € R%:

There are many possible choices on how each (i may be computed from feedback;
here, we focused on a set of seven rules based on the stochastic gradient descent
algorithm for training a binary classifier or regression function. In all cases except one,
the underlying strategy of each decision stage can be understood as predicting the
reward following the selection of each possible choice, and using these predictions to
select the choice it believes will lead to the highest reward.

Specifically, we tested the plasticity rules induced by the gradient descent update on
the perceptron, cross-entropy, exponential, square, hinge, and mean absolute error loss
functions (shown in Fig 2D), as well as the REINFORCE plasticity rule. They are
summarized in Table 0.13.2.

Each of these plasticity rules has a single free parameter — a learning rate. For each
plasticity rule, there is a predefined range of learning rates that guarantees the
non-divergence of the decision stage, based on the smoothness or Lipschitz constant of
each of the plasticity rule’s associated loss function [62]. We did not investigate different
learning rates in this study; instead, we simply selected the highest learning rate
possible (such that divergence would not occur) for each plasticity rule.

9

Supporting information

S1 Table. Summary of plasticity rules. Each plasticity rule can be understood by
the update 5; it generates for each weight vector w; + w; + 5;, based on the current
input # € R?, the selected choice ¢ € {0,1,...C}, and the subsequent environmental
reward r € [—1, 1]. Each plasticity rule is parameterized by a learning rate «, between 0
and 1. These equations assume that the input & has a bounded norm of ||Z|| < 1.

S1 Appendix. Effect of model choices on human behavioral similarity. As
described in Section 0.13, each model in this study was defined by two components (the
encoding stage and the plasticity rule). We wished to evaluate the effect of each of these
components in driving the similarity of the model to human behavior. For example, it
was possible that all models with the same encoding stage had the same learning score,
regardless of which plasticity rule they used (or vice versa).

To test for these possibilities, we performed a two-way ANOVA over all observed
model scores (in MSE,,) computed in this study, using the encoding stage and plasticity
rule as the two factors, and MSE,, as the dependent variable. By doing so, we were able
to estimate the amount of variation in model scores that could be explained by each
individual component, and thereby gauge their relative importance. We briefly describe
the procedure for this analysis below. First, we wrote the MSE,, score of each model as
a combination of four variables:

MSE, (encoding stage ¢,rule j) = pu+ e; + 175 + 7ij

Where p is the average MSE,, score, over all models. The variables e; and r; encode

the value of the average difference from p given encoding stage ¢ and rule j, respectively.

9The REINFORCE plasticity rule is a "policy gradient” rule that optimizes parameters directly
against the rate of reward; it does not aim to predict reward.
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Plasticity rule | Weight update for selected choice (5_;)
~{ahf if 7 (0, - %) < 0

Perceptron | 6, =
P ¢ 0 else

= ¢ ifr(d.-2) <1
Hinge | 5, = ard if r (W, - T)
0 else
MAE &:{afﬁiﬂﬁrﬁ<r
—aZ else
Square | 6, = a(r — @ - 7) T
Exponential | 8, = ar exp (=, - &) &
Cross-entropy | 0. = ar (m) z

I

REINFORCE | 6. = ar (1 — exp (u_}c - —log (Z;’;l exp (W - f)))) z

dite = —arexp (wi - ¥ —log (ch:l exp (W; - f))) T

Except for REINFORCE;, each rule above only changes the weight vector for the selected
choice ¢; the other weight vector(s) are left unchanged (5;-# = 0). Additionally, the
Exponential plasticity rule performs a weight normalization step (not shown): if the
norm of the weights exceed a certain threshold (||w;|| > B) , the weights are projected to
the closest weight vector w; = argmin, |, =p (|lu — w;l|) with [[w;|| = B. In this study,
we chose B = 10.

Any remaining residual is assigned to +;; (i.e. corresponding to any interaction between
rule and encoding stage). The importance of each model component could be assessed
by calculating the proportion of variation in model scores that could be explained by
the selection of component alone.

S2 Appendix. Subtask consistency. In our primary benchmark, we measured
human learning over 64 distinct subtasks, each consisting of 100 trials. For each subtask,
the trial-averaged accuracy is a measure of the overall “difficulty” of learning that
subtask, ranging from chance (0.5; no learning occurred over 100 trials) to perfect
one-shot learning (0.995, perfect performance after a single example). For each of the 64
subtasks, one may estimate their trial-averaged performances (obtaining a length 64
“difficulty vector”), and use this as the basis of comparison between two learning systems
(e.g. humans and a specific model).

To do so, we computed Spearman’s rank correlation coefficient (p) between a
model’s difficulty vector and the human’s difficulty vector. The value of p may range
between -1 and 1. If p = 1, the model has the same ranking of difficulty between the
different subtasks (i.e., finds the same subtasks easy and hard). If p = 0, there is no
correlation in the rankings.

In addition to computing p between each model and humans, we estimated the p
that would be expected between two independent repetitions of the experiment we
conducted here (i.e., an estimate of experimental reliability in measuring this difficulty
vector). To do this, we took two independent bootstrap resamples of the experimental
data, calculated their respective difficulty vectors, and computed the p between them.
We repeated this process for B = 1,000 bootstrap iterations, and thereby obtained the
expected distribution of experimental-repeat p.

S3 Appendix. Individual variability in overall learning ability.
In this work, we focused primarily on subject-averaged measurements of human
learning. However, individual subjects may also systematically differ from each other.

June 22, 2023

34/45

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060


https://doi.org/10.1101/2022.12.31.522402
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.31.522402; this version posted June 23, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We aimed to investigate whether any such differences existed in learning behavior for

the subtasks we tested in this study.
Here, we attempted to reject the null hypothesis that all subjects had the same

learning behavior. To do so, we tested whether there were statistically significant

differences in overall learning performance between individuals — that is, whether some
individuals were “better” or

4

‘worse” learners. If this was the case, this implies

individuals differ (at least in terms of overall learning performance), and the null
hypothesis could be rejected.

Permutation test for individual variability in overall learning ability. To test this null

hypothesis, we identified a subset of human subjects who conducted all 64 subtasks in

the primary, high-variation benchmark (n=22 subjects). For each subject, we computed

their “overall learning performance”, which was their empirically observed average
performance over all n=64 subtasks. That is, for subject s, we computed:

Where §;, is the trial-averaged performance on subtask ¢, for subject s. The value of
G is a gross measure of the subject’s ability to learn the objects in this study, ranging
from 0.5 (no learning on all subtasks) to 0.995 (perfect one-shot learning on all subtasks).

) 1 64 )
Gsz 62;925

In total, we computed n=22 estimates of G, (one for each subject in this analysis).
We then computed the sample variance over the various Gj:

S
1 ~ _
~2 _ 2
& _.E?:i[;iiais Q)

Where G is the mean of overall lifetime performances. Intuitively, 62 is high if

individuals differ in their overall learning performance, and is low if all individuals have
the same overall learning performance (as would be the case under the null hypothesis).

We performed a permutation test on 62 to test whether it was significantly higher
than would be expected under the null hypothesis, permuting the assignments of each
Jis to each subject s. For each permutation, we computed the replication test statistic

52 (using the same formulas above, on the permuted data). We performed P = 10,000

permutation replications, then computed the one-sided achieved significance level by

counting the number of replication test statistics greater than the actual, experimentally

observed value &2.
Testing whether specific humans outperform a model. To test whether a specific
human has significantly higher overall learning abilities than a specific model (over the
subtasks tested in this study), we performed Welch’s t-test for unequal variances on the

overall learning performance, G (defined above). That is, for a specific subject s and
model m, we attempted to reject the null hypothesis that Gy < Gy
We adjusted for multiple comparisons using the Bonferroni correction (using the

total number of pairwise comparisons we made between a model m and specific subjects

S1 Fig.

S2 Fig.

In-lab vs. online behavioral measurements.

Eyetracking measurements.
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In-lab vs. online behavioral measurements
A g ] = Online subjects B 1.00
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Overall accuracy Online measurements

Fig S1. Comparison of online learning measurements with in-lab learning
measurements. We took measurements for n=16 randomly selected subtasks from
Experiment 1 in a group of in-lab human subjects (n=4) that used a chinrest and
calibrated monitor setup. In A, we show that the overall accuracy of these in-lab
subjects fell within the empirical support of the subject distribution from our online
experiments. In B, we show that patterns of average accuracy (over subtasks) were
tightly correlated between the in-lab and online populations (Spearman’s p = 0.94; see
S2 Appendix). Errorbars are SEM (simple bootstrap over subjects).

A Gaze position density map B Distribution of gaze distance
from center

0.05 1
0.04 H
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Fig S2. Distribution of gaze locations during learning task. We passively
recorded eye movements from our in-lab subjects using an Eyelink 1000 Plus
(monocular; desktop mounted) as they performed the task. In A is the overall
distribution of the subjects’ gaze position (shown in blue) at the time of onset of
stimulus presentation (i.e. distribution over subjects and trials). In B is the distribution
of gaze distance from stimulus center (logscale) over all subjects and trials; the median
distance from the center of the stimulus was 0.57° £+ 0.13° (mean + standard deviation
over subjects). We found that on ~=95% of trials, the subject’s gaze was located in the
test image region when it appeared on the screen.
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