

1 **Rab8-, Rab11-, and Rab35-dependent mechanisms coordinating lumen and cilia
2 formation during Left-Right Organizer development**

3

4 Abrar A. Aljiboury^{1, 2, 3}, Eric Ingram^{1, 2, 3, 4}, Nikhila Krishnan^{1, 2, 3, 5}, Favour Ononiwu^{1, 2, 3},
5 Debadrita Pal^{1, 2, 3}, Julie Manikas^{2, 6}, Christopher Taveras², Nicole A. Hall^{2, 6}, Jonah Da
6 Silva², Judy Freshour^{2, 3} and Heidi Hehnly^{2, 3, *}

7

8 ¹ Authors contributed equally to this work and are listed in alphabetical order.

9 ² Biology Department, Syracuse University, NY, USA

10 ³ BioInspired Institute, Syracuse University, NY, USA

11 ⁴ Current address, Thermo Fisher, Madison, WI, USA

12 ⁵ Current address, Department of Biology, Brandeis University, MA, USA

13 ⁶ Current address, Department of Cell Biology, NYU Grossman School of Medicine, NY,
14 USA

15

16

17 *Lead contact, correspondence: hhehnly@syr.edu, Twitter: @LovelessRadio

1 **ABSTRACT**

2

3 An essential process for cilia formation during epithelialization is the movement of the
4 centrosome to dock with the cell's nascent apical membrane. Our study examined
5 centrosome positioning during the development of *Danio rerio*'s left-right organizer
6 (Kupffer's Vesicle, KV). We found that when KV mesenchymal-like cells transition into
7 epithelial cells that are organizing into a rosette-like structure, KV cells move their
8 centrosomes from random intracellular positions to the forming apical membrane in a
9 Rab11 and Rab35 dependent manner. During this process, centrosomes construct cilia
10 intracellularly that associated with Myo-Va while the centrosomes repositioned towards
11 the rosette center. Once the centrosomes with associated cilia reach the rosette center,
12 the intracellular cilia recruit Arl13b until they extend into the forming lumen. This process
13 begins when the lumen reaches an area of approximately 300 μm^2 . Using optogenetic
14 and depletion strategies, we identified that the small GTPases, Rab11 and Rab35,
15 regulate not only cilia formation, but lumenogenesis, whereas Rab8 was primarily
16 involved in regulating cilia length. These studies substantiate both conserved and unique
17 roles for Rab11, Rab35, and Rab8 function in cilia formation during lumenogenesis.

18

1 INTRODUCTION

2

3 A fundamental question in cell biology is how a cilium is made during tissue
4 formation. A primary or motile cilium is a microtubule-based structure that extends from
5 the surface of a cell and can sense extracellular cues to transmit to the cell body. Defects
6 in cilia formation can lead to numerous disease states collectively known as ciliopathies
7 (Vertii *et al.*, 2015; Hall and Hehnly, 2021). Foundational studies identified two distinct
8 pathways for ciliogenesis *in vivo* using tissues from chicks and rats (Sorokin, 1962). One
9 mechanism for ciliogenesis which we refer to as extracellular, was found in lung cells
10 where the centrosome first docks to the plasma membrane followed by growth of the
11 ciliary axoneme into the extracellular space (Sorokin, 1968). The second mechanism,
12 which we refer to as intracellular, was identified in smooth muscle cells and fibroblasts
13 where the centrosome forms a cilia first within a ciliary vesicle in the cell cytosol before
14 docking to the plasma membrane (Sorokin, 1962). These studies raise the possibility that
15 different ciliated tissues construct their cilia differentially due to the nature of how a tissue
16 develops. This presents an important hypothesis that variations in cilia formation
17 mechanisms may occur *in vivo* during specific types of tissue morphogenesis. In our
18 studies herein we will examine how cilia are assembled during Mesenchymal to Epithelial
19 Transition (MET) in a vertebrate model, *Danio rerio* (zebrafish).

20 MET is an evolutionarily conserved process that occurs during the creation of
21 ciliated tissues (Pei *et al.*, 2019). An excellent example of this is with the vertebrate organ
22 of asymmetry. An organ of asymmetry is required to place visceral and abdominal organs
23 with respect to the two main body axes of the animal (Grimes and Burdine, 2017).
24 Zebrafish is a genetically tractable model to examine how cilia form during organ of
25 asymmetry development due to the embryo's transparency and external development. In
26 zebrafish, the organ of asymmetry is known as the Kupffer's Vesicle (KV). KV
27 development is easily monitored using fluorescent markers to note KV mesenchymal-like
28 precursor cells congregating together and self-organizing into a rosette-like structure
29 where they establish apical-basal polarity at the rosette center (Amack and Yost, 2004;
30 L. I. Rathbun *et al.*, 2020). The rosette center is the site where a fluid-filled lumen forms
31 and KV cells will then extend their cilia into (Navis *et al.*, 2013). Once KV cilia are formed

1 they beat in a leftward motion to direct fluid flow essential for the establishment of the
2 embryo's left-right axis (Nonaka *et al.*, 1998). While much is known about KV post-lumen
3 formation (Amack, 2021; Grimes and Burdine, 2017; Matsui *et al.*, 2015; Matsui and
4 Bessho, 2012; Okabe *et al.*, 2008), little is known about the spatial and temporal
5 mechanisms that regulate cilia formation during KV development.

6 KV formation is known to arise from a sub-population of endoderm cells. The
7 endoderm is induced by high levels of Nodal signaling during early development that
8 contributes to the formation of the liver, pancreas, intestine, stomach, pharynx, and swim
9 bladder (Warga and Nüsslein-Volhard, 1999). A subset of the endoderm, called dorsal
10 forerunner cells (DFCs) are precursors of the KV (Melby *et al.*, 1996; Essner *et al.*, 2005;
11 Oteíza *et al.*, 2008). The number of DFCs range from 10-50 cells per embryo that can
12 expand into >150 cells that make up the fully functional KV (Gokey *et al.*, 2016; Moreno-
13 Ayala *et al.*, 2021). Early studies reported that these DFCs present as mesenchymal-like
14 and are migratory. They lack clear apical/basal polarity (lack of aPKC distribution) until
15 KV cells establish into rosette-like structures (Essner *et al.*, 2005). Apical polarity
16 establishment of aPKC, at least in part, coincides with cystic fibrosis transmembrane
17 conductance regulator (CFTR) accumulation at apical sites, which is a requirement for
18 ultimate lumen expansion (Essner *et al.*, 2005; Navis *et al.*, 2013). KV cell rosette-like
19 structures can either form as multiple cells congressing to make a single rosette or cells
20 assembling multiple rosettes which then transition to a single rosette-like structure. The
21 single rosette transitions into a cyst of ciliated cells surrounding a fluid-filled lumen
22 (Essner *et al.*, 2005; Compagnon *et al.*, 2014).

23 One essential structure for cilia formation is the centrosome. The centrosome is
24 commonly known as the main microtubule organizing center of the cell with two barrel
25 shaped microtubule structures called centrioles enclosed in a network of proteins called
26 the pericentriolar matrix (Vertii *et al.*, 2016). The position of the centrosome within the cell
27 can be integral in generating specific cues that facilitate cellular processes such as where
28 the apical membrane and cilium will form. In *C. elegans* intestinal cells, the placement of
29 the centrosome during epithelialization at the apical membrane is necessary for apical
30 membrane establishment (Feldman and Priess, 2012), but in these cells the centrosome
31 is not destined to ever form a primary cilium. One question that arises is what molecular

1 and cellular mechanisms dictate when the centrosome should move to the apical
2 membrane? Our studies herein have identified some potential mechanisms for
3 centrosome positioning. We find that KV centrosomes reposition towards the forming
4 apical membrane with an associated cilium in a Rab11-, but not Rab8-, dependent
5 manner suggesting a connection between the centrosome and Rab11-endosomes that is
6 likely important in both centrosome positioning and its ability to form a primary cilium.

7 While select Rab GTPases have been extensively studied, most of them have not
8 been assigned to a detailed function or localization pattern throughout early embryonic
9 vertebrate development. Rab GTPases comprise approximately 60 genes in vertebrates,
10 with each Rab localizing to specific intracellular membrane compartments in their GTP-
11 bound (active) form. These active Rabs then bind to effector proteins to aid in various
12 steps in membrane trafficking some of which can facilitate cilia, polarity, and/or lumen
13 formation (Borchers *et al.*, 2021; Homma *et al.*, 2021). *In vitro* assays have been used to
14 screen the Rab GTPase family to identify which Rabs are used in lumen establishment
15 or ciliogenesis. These screens involve the use of mammalian cell culture systems that
16 are either depleted or genetically null for Rab GTPase family members (Yoshimura *et al.*,
17 2007; Oguchi *et al.*, 2020; Homma *et al.*, 2021). Some Rab GTPases identified were
18 involved in either cilia or lumen formation, and a subset of those were involved in both
19 such as Rab11, Rab8, and Rab35 (Bryant *et al.*, 2010; Knödler *et al.*, 2010; Westlake *et*
20 *al.*, 2011; Klinkert *et al.*, 2016; Kuhns *et al.*, 2019; Naslavsky and Caplan, 2020; Belicova
21 *et al.*, 2021). Here we investigated these three Rab GTPases in KV development. Using
22 a combination of depletion and optogenetic clustering approaches we have identified a
23 role for Rab11 and Rab35 in KV lumen and cilia formation, but Rab8 is only necessary in
24 regulating cilia length. While much is known about Rab8, Rab11, and Rab35, in
25 ciliogenesis and/or lumen formation in the context of mammalian cell culture conditions,
26 our findings were surprising in that Rab8 did not seem to affect lumen or cilia formation
27 where it does in mammalian cell culture (Bryant *et al.*, 2010; Knödler *et al.*, 2010;
28 Westlake *et al.*, 2011; Naslavsky and Caplan, 2020). In this context, Rab8 and Rab11
29 work together in a GTPase cascade that is required for both cilia and lumen formation.
30 However, in KV Rab8 is dispensable for lumen formation suggesting that specific cell
31 types during potentially different developmental processes may have different

1 dependencies on Rab GTPases that can be identified using developmental model
2 systems such as zebrafish.

3

4 **RESULTS**

5

6 *KV cilia form prior to KV lumen formation.*

7 To test when KV cells start to make cilia during KV morphogenesis, Sox17:GFP-
8 CAAX transgenic embryos were employed to mark KV cells and fixed at different stages
9 of KV development, pre-rosette (8-9 hours post fertilization, hpf), rosette (10 hpf), and
10 lumen (12 hpf, Figure 1A). The pre-rosette stage is where KV cells are more
11 mesenchymal-like and have yet to organize into a rosette, whereas in the rosette stage
12 KV cells are organized into a rosette-like structure with their newly forming apical
13 membranes pointed towards the rosette center (Amack and Yost, 2004; Amack *et al.*,
14 2007). The lumen stage is where ciliated KV cells surround a fluid filled lumen (Figure
15 1A). After fixing embryos at each of these stages, embryos were immunostained for
16 centrosomes and cilia using antibodies against γ - and acetylated-tubulin (Figure 1B). A
17 significant population of KV cells started to form cilia at the centrosome in the cell body
18 at both the pre-rosette and rosette stage of KV development (Figure 1B-C). During the
19 pre-rosette stage, $33.25 \pm 3.33\%$ of KV cells had cilia; that increased to $48.06 \pm 5.94\%$ at
20 the rosette stage and averaged at $64.82 \pm 5.27\%$ early on during lumen development (12
21 hpf, Figure 1C). These studies suggested that KV cells were forming cilia before they had
22 an extracellular space (KV Lumen) to position into and that KV lumen formation correlated
23 with a significant increase in KV cells having cilia.

24 Our findings in Figure 1B-C suggest a cellular mechanism where cilia are formed
25 at random locales in KV cells, with cilia and associated centrosomes needing to move
26 inside the cell towards where an apical membrane is being constructed at the rosette
27 center. At this locale, the cilia would be positioned perfectly to extend into the lumen. To
28 test this idea, volumetric projections of surface rendered KV cells were performed at the
29 pre-rosette, rosette, and luminal stages. KV cell outlines were noted using GFP-CAAX
30 and cilia were immunostained using acetylated tubulin (Figure S1A). Surface rendering
31 using IMARIS software allowed for the spatial positioning of cilia in KV cells across KV

1 developmental stages to be assessed (Figure S1A, Video S1). The boundaries of the cell
2 (GFP-CAAX) and cilia (acetylated tubulin) were highlighted to create a three-dimensional
3 space filling model of both cell and cilia. We identified that as KV develops from pre-
4 rosette to rosette, to luminal stage, intracellular cilia approach the apical membrane.
5 Once a lumen is formed, the cilia extend into the developing KV lumen (Figure S1A). To
6 identify if KV cell cilia were positioning towards the center of the KV cellular mass over
7 the course of its development, we calculated the relative distance of cilia from the cell
8 boundary closest to the KV center from the embryos shown in Figure 1B (modeled in
9 Figure S1B; calculations in Figure 1D). When values approach 0, cilia are approaching
10 the cell boundary closest to the KV center. This occurs significantly as KV cells
11 transitioned from a pre-rosette organization to luminal stages (Figure 1D), suggesting
12 that KV cell cilia are constructed intracellularly, then positioned to the cell boundary
13 closest to KV center where they are primed to extend their cilia into the forming lumen.

14 We next characterized cilia length during this process. Cilia length was measured
15 in KV cells before lumen formation (lumen area of 0 μm^2) and at increments of lumen
16 expansion (up to a lumen area of $5*10^3 \mu\text{m}^2$). Cilia in KVs with no lumen had an average
17 length of 2.25 μm . Once a lumen starts to form, a significant increase in cilia length occurs
18 where cilia have an average length of 4.5 μm (Figure 1E). This increase in cilia length
19 starts when the KV lumen approaches an area of approximately $300 \mu\text{m}^2$ and remains
20 consistent out to $5*10^3 \mu\text{m}^2$ (Figure 1E). These studies suggest that cilia first form inside
21 the cell, then position towards the rosette center where they then can extend and elongate
22 into the KV lumen.

23 To confirm that cilia were forming through a potential intracellular pathway versus
24 an extracellular pathway (modeled in Figure 1F), we immunostained for Myosin Va (Myo-
25 Va). Class V myosins are actin-based motor proteins that have been implicated in
26 organelle transport and tethering. Myo-Va specifically is associated with Rab11 positive
27 membranes that move to the cell periphery and is a potential Rab11-effector protein
28 (Lindsay *et al.*, 2013). Myo-Va has been reported to be required for the recruitment of
29 pre-ciliary vesicles to the distal appendages of the mother centriole and can positively
30 mark the ciliary vesicle/cap (Wu *et al.*, 2018; Ganga *et al.*, 2021). Here we used Myo-Va
31 as a marker for the pre-ciliary vesicle and as a potential marker to denote if KV cells are

1 using an intracellular mechanism for cilia assembly. A space filling model for the KV cell
2 membrane, cilia, and Myo-Va was employed to visualize cilia inside versus outside the
3 cell (Figure 1G). Myo-Va surrounds the cilium in KV cells at a rosette stage with cilia
4 inside the cell (Figure 1G). This finding was like that reported for *in vitro* cultured cell lines,
5 Retinal Pigment Epithelial (RPE) and a mouse fibroblast line (NIH3T3) (Wu *et al.*, 2018).
6 Once the cilium extended out into the lumen, Myo-Va remained at the cilium's base
7 (Figure 1G). These studies suggest a mechanism where KV cell cilia are forming through
8 an intracellular pathway that recruits pre-ciliary vesicles positive for Myo-Va. These Myo-
9 Va vesicles then form a ciliary cap for the cilia to grow within. The cilia with associated
10 cap can then fuse with the plasma membrane and KV cilia can extend into the lumen
11 (summarized in Figure 1F).

12

13 *Live embryo characterization of Rab8, Rab11, Rab35 and actin localization during KV*
14 *cilia and lumen formation*

15 Previous work in mammalian culture systems and with preliminary morpholino
16 studies in zebrafish KV have implicated Rab8, Rab11, and Rab35 in cilia and/or lumen
17 establishment (Bryant *et al.*, 2010; Knödler *et al.*, 2010; Westlake *et al.*, 2011; Klinkert *et*
18 *al.*, 2016; Kuhns *et al.*, 2019; Naslavsky and Caplan, 2020; Belicova *et al.*, 2021).
19 However, their cellular distribution during KV development has not been investigated, nor
20 has it been positioned in relation to KV cilia formation or to actin recruitment to the apical
21 membrane. Foundational studies have demonstrated that at least one of the paralogs of
22 Rab8, Rab11, and Rab35 is broadly expressed throughout zebrafish development,
23 including KV (Demir *et al.*, 2013; Kuhns *et al.*, 2019; Zhang *et al.*, 2019; Willoughby *et al.*,
24 2021). In consideration of these findings, we expressed fluorescently tagged Rab8a,
25 Rab11a, and Rab35 by mRNA injection and assessed their distribution in the zebrafish
26 KV marked by the plasma membrane marker GFP-CAAX (Figure 2A, 2C, 2D, S2, Video
27 S2). In addition, we used an endogenously GFP tagged transgenic line of Rab11 (Figure
28 2B, (Levic *et al.*, 2021)). We identified that Rab8 was broadly recruited to the apical
29 membrane during rosette formation and remained there during lumen opening (Figure
30 2A). This distribution was comparable to ectopically expressed Rab11 at the rosette stage
31 (Figure S2A), where both Rab8 and Rab11 are recruited to the forming apical membrane

1 (Figure 2A, S2A). Rab11 distribution was confirmed using the endogenously tagged GFP-
2 Rab11 line (Figure 2B). Once the lumen starts to open, Rab11 segregates towards cell-
3 cell junctions (Figure 2B) similar to the distribution pattern of actin (labeled using Lifeact-
4 mRuby, Figure 2C, Video S2). Expression of mRuby-Rab35 presented with localization
5 to cell boundaries and some punctate cytosolic distribution (Figure 2D). To assess
6 segregation of GTPases to cell-cell junctional sites noted with Rab11 and actin, the
7 fluorescent intensity was measured between cell-cell junctional sites and the apical
8 membrane. A ratio was calculated as junctional intensity over apical intensity (Figure 2F).
9 We found that Rab11, Rab8, Rab35, and actin all became recruited to the apical
10 membrane, with Rab11 and actin segregating to cell-cell junctional locales once the
11 lumen opened when compared to Rab8 and Rab35 (Figure 2F). These findings suggest
12 that Rab11 and actin remodeling are occurring at the apical membrane with similar timing
13 as when the cilia should be extending into the lumen.

14 We next tested when KV cilia extend into the forming KV lumen. To do this we
15 employed two strategies. We first imaged in live embryos cilia extending into the lumen
16 using Sox17:GFP-CAAX embryos to denote the KV cells that ectopically expressed the
17 cilia marker Arl13b-mCardinal (Figure 2E). With the second strategy we fixed GFP-CAAX
18 embryos at various lumen sizes ranging from 0 to $5*10^3 \mu\text{m}^2$ and measured the
19 percentage of KV cells that had luminal cilia (Figure 2G). These approaches both
20 demonstrated that cilia dock at the apical membrane during early lumen formation and
21 then extend into the lumen (Figure 2E) once the lumen area approaches approximately
22 $300 \mu\text{m}^2$ (Figure 2G). When comparing these studies to when cilia start to elongate in
23 length (Figure 1E), it suggests that cilia, when inside a KV cell, can reach a length of 2.5
24 μm , but once a lumen is formed ($300 \mu\text{m}^2$ in area), the cilia can extend into the lumen and
25 grow to their final length of 4 μm . This suggests a cellular model where the intracellular
26 KV cilia first dock at the plasma membrane, after actin and Rab11 redistribute to cell-cell
27 junctions, and then extend into the lumen once the lumen expands to the appropriate
28 size.

29

1 *Rab11 and Rab35 modulate KV lumen formation.*

2 Previous studies in 3D cultures of Madin-Darby canine kidney (MDCK) cells (cysts)
3 (Bryant *et al.*, 2010) implicated that the small GTPase Rab11 acts upstream of Rab8 in a
4 GTPase cascade needed for appropriate lumen formation. Interestingly, an additional
5 Rab GTPase, Rab35, was also implicated in lumen opening using this same 3D culture
6 system (Klinkert *et al.*, 2016). Here we tested the requirement of Rab11, Rab8, and Rab35
7 on KV lumen establishment using two strategies, morpholino (MO) transcript depletion
8 using MOs that have been previously characterized ((Omori *et al.*, 2008; Westlake *et al.*,
9 2011; Kuhns *et al.*, 2019), Figure S3A) and an acute optogenetic clustering strategy
10 (Figure 3A). The optogenetic strategy causes an acute inhibition of Rab11-, Rab8-, and
11 Rab35-associated membranes through a hetero-interaction between cytochrome2
12 (CRY2) and CIB1 upon exposure to blue light during specific KV developmental stages
13 (Figure 3A, (Nguyen *et al.*, 2016; Rathbun *et al.*, 2020b; Krishnan *et al.*, 2022)). With
14 acute optogenetic clustering of Rab11- and Rab35-associated membranes and with
15 depletion of Rab11 and Rab35 transcripts using MOs, we found severe defects in lumen
16 formation (Figure 3B-D, S3B-F) when comparing to control conditions (CRY2, Figure
17 S3C; control MO, S3D-E). This was measured both by following lumen formation live
18 using an automated fluorescent stereoscope set up for a set time frame (Figure 3B, S3C)
19 and at a fixed developmental endpoint (6 SS, 12 hpf, Figure 3D, S3D-F). Sox17:GFP-
20 CAAX marked KV cells were used to assess lumen formation. Zebrafish embryos were
21 imaged just past 75% epiboly for over 4 hours, during this time, the Rab35 and Rab11
22 clustered embryos that were imaged were not able to form a lumen when compared to
23 control (CRY2, Figure 3B-D, S3C, Video S3). To characterize KV developmental defects
24 with acute clustering of Rab8, Rab11, and Rab35, KV morphologies were characterized
25 at a fixed developmental endpoint (6SS, 12 hpf). We found that Rab11 and Rab35
26 clustered embryos presented with defects in forming a rosette (42.5% of embryos for
27 Rab11, 28.1% for Rab35) or transitioning from a multiple rosette state to a single rosette
28 state (37.5% of embryos for Rab11, 18.5% for Rab35, Figure 3D, Video S3 and Figure
29 3B for Rab35 clustering) compared to CRY2 embryos or Rab8 clustered embryos (100%
30 form lumen, Figure 3D, Video S3). Interestingly, Rab35-clustered embryos were able to
31 form separate rosettes that were not in the same cellular KV mass and in some cases

1 one of the rosettes could transition to a small KV structure with a lumen (refer to Figure
2 S3F, counts in Figure 3D). While a Rab11-Rab8 GTPase cascade during lumen formation
3 has been proposed in the context of mammalian cell culture conditions (Bryant *et al.*,
4 2010), our findings were surprising in that acute Rab8 clustering conditions or Rab8
5 depletion conditions by MO does not affect lumen formation during KV development, but
6 instead Rab11 and Rab35 play a predominant role. The comparison of *in vivo* to *in vitro*
7 systems suggested to us that specific cell types during potentially different developmental
8 processes may have different dependencies on the Rab GTPase family.
9

10 *Optogenetic clustering of Rab8, Rab11, and Rab35 present unique roles in regulating*
11 *actin and CFTR cellular distribution.*

12 Since both Rab11 and Rab35 optogenetic clustering, but not Rab8, resulted in
13 lumen formation defects we wanted to examine whether they disrupted two pathways that
14 have both been implicated in regulating KV lumen formation: CFTR recruitment to the
15 apical membrane (Navis *et al.*, 2013) and actin dynamics (Wang *et al.*, 2011;
16 Saydmohammed *et al.*, 2018). CFTR is a master regulator of fluid secretion into luminal
17 spaces. CFTR is transported through the secretory pathway to the apical membrane
18 where it mediates chloride ion transport from inside the cell to outside the cell. Loss of
19 CFTR-mediated fluid secretion impairs KV lumen expansion leading to laterality defects
20 (Navis *et al.*, 2013). Actin based molecular motors, Myosin1D (Saydmohammed *et al.*,
21 2018) and Myosin II (Wang *et al.*, 2011), and a known actin regulator, Rho associated
22 coiled-coil containing protein kinase 2 (ROCK2, (Wang *et al.*, 2011)), have been
23 implicated in establishing LR asymmetry. In our studies we found that Rab11 optogenetic
24 clustering causes a severe defect in the delivery of CFTR to the apical membrane where
25 CFTR-GFP becomes trapped in Rab11-clustered membrane compartments (Figure 4A,
26 4C). Rab35 optogenetic clusters also partially contain CFTR (Figure 4A, 4C), but not to
27 the same extent as Rab11-clustered membranes. With both Rab11 and Rab35 clustering,
28 there was significantly less CFTR that was able to be delivered to forming apical
29 membranes. This is consistent with defects in KV rosette and lumen formation observed
30 with Rab35 and Rab11 clustered embryos (Figure 3D). Interesting, some Rab35 clustered
31 embryos demonstrate multiple rosettes that form in a KV, with one rosette being

1 competent for lumen formation but defective in expansion (Figure 4A). When this occurs,
2 we find that the rosette that is competent in opening has CFTR localized to the apical
3 membrane (Figure 4A), as opposed to the secondary rosette that cannot open (Figure
4 4A, inset). No defect in CFTR delivery to the apical membrane was noted with Rab8
5 optogenetic clustering (Figure 4A, 4C), consistent with the lack of observed defects in
6 lumen formation with both optogenetic clustering (Figure 3D) and depletion of Rab8 using
7 morpholinos (Figure S3D-E).

8 Actin organization was significantly disrupted in embryos with optogenetically
9 clustered Rab11 (Figure 4B, 4D), but not in Rab8 or Rab35 optogenetic conditions. Under
10 control conditions (Figure 2), we found that Rab11 and actin distributed from broad apical
11 membrane localization during the rosette stage of KV development to cell-cell junctions
12 during lumen formation and expansion (Figure 2B, 2C), whereas Rab35 and Rab8 had
13 more even distribution at cell boundaries and across the apical membrane respectively
14 (Figure 2A, 2D, 2F). When Rab11 membranes were optogenetically clustered, a robust
15 recruitment of actin was associated with these membranes compared to Rab8 or Rab35
16 clustered membranes (Figure 4B, 4D). Together these studies suggest that Rab11 and
17 Rab35 may be working together for CFTR delivery to the apical membrane to initiate
18 lumen expansion, but that Rab11 has a likely role in actin remodeling independent of
19 Rab35.

20 Some GTPases are known to work together on the same membrane compartment.
21 For instance, Rab11 and Rab8 were reported to function together in a GTPase cascade
22 in cellular events such as lumen formation and ciliogenesis. In this situation, Rab11 acts
23 upstream of Rab8 by recruiting the Guanine Exchange Factor (GEF) for Rab8, Rabin8
24 (Bryant *et al.*, 2010; Knödler *et al.*, 2010; Westlake *et al.*, 2011). Based on our findings
25 that both Rab11 and Rab35 cause defects in lumen formation (Figure 2) and CFTR
26 trafficking (Figure 4A, 4C), we asked if Rab11, Rab35, and/or Rab8 could act on the same
27 membrane compartment. To test this, we performed optogenetic clustering of Rab35 or
28 Rab11 and determined whether clustering one recruited Rab11, Rab35, or Rab8.
29 Optogenetic clustering of Rab11 resulted in the recruitment of Rab8 but not Rab35
30 (Figure 4E, 4F). This is consistent with the idea that a Rab11 cascade may still exist
31 between Rab11 and Rab8, but that this cascade may not be needed for CFTR transport

1 or KV lumen formation. It also suggests that Rab11 is not acting upstream of Rab35.
2 Interestingly, upon optogenetic clustering Rab35 membranes, Rab11 becomes
3 significantly co-localized (Figure 4E, 4F) suggesting that Rab35 may act upstream of
4 Rab11. In summary, we find that Rab35 and Rab11 may work together to ensure
5 appropriate lumen formation through managing CFTR trafficking to the forming apical
6 membrane (Figure 3, 4).

7

8 *Rab11 and Rab35 associated membranes are needed for KV cilia formation and*
9 *extension into the lumen, whereas Rab8 is needed for cilia length regulation.*

10 Our initial studies demonstrated that KV cilia extend into the lumen once the lumen
11 reaches an area $300 \mu\text{m}^2$ (Figure 2G). Then KV cilia can reach their maximum length of
12 approximately $4 \mu\text{m}$ (Figure 1E). These findings suggested that mechanisms regulating
13 lumen formation involving the GTPases Rab11 and Rab35, may also play an important
14 role in coordinating cilia formation. To explore this idea, we examined the localization of
15 Rab11 and Rab35, along with Rab8, in relation to KV cilia (Figure 5A). We used the
16 endogenously tagged GFP-Rab11 zebrafish line and ectopically expressed mRuby-
17 Rab35 (Figure 5A, S4A-B). Embryos were fixed at the KV rosette stage (Figure 5A, top)
18 and lumen stage (Figure 5A, bottom), and cilia were immunostained for acetylated tubulin.
19 When imaging the KV rosette stage, we found that cilia were organized intracellularly
20 surrounded by Rab11 membranes that were organized at the center of the rosette, while
21 Rab8 was organized at the base of the cilia where the centrosome resides (Figure 5A).
22 As the KV develops to a lumen stage, Rab11 reorganizes to the base with Rab8 (Figure
23 5A). Throughout the developmental stages Rab35 organized to cell boundaries (Figure
24 2D, S4B) with no specific localization to the cilia itself (Figure S4B). To test the
25 requirement of Rab11, Rab8, and Rab35 on KV cell cilia formation and/or centrosome
26 positioning we employed two strategies, MO transcript depletion (Figure S3A, S4C) and
27 the acute Rab GTPase optogenetic clustering assay (modeled in Figure 3A). Our studies
28 found that optogenetically clustering Rab11- or Rab35-membranes during early KV
29 development caused a significant decrease in the percentage of KV cells that could form
30 cilia (Figure 5B, 5D). When comparing Rab11, Rab8, and Rab35 clustered embryos to
31 control (CRY2 injected), we identified that only $35.81 \pm 8.79\%$ of Rab11 and $49.72 \pm 5.50\%$

1 of Rab35 clustered KV cells were able to make a cilium compared to Rab8 clustered
2 (64.43±3.85%) and CRY2 controls (78.03±3.86%, Figure 5B, 5D). These findings were
3 surprising in that it suggested that Rab11- and Rab35-associated membranes, but not
4 Rab8, were required for KV cilia formation. However, clustering Rab11 and Rab35 also
5 produced more severe defects in KV lumen formation (Figure 3), suggesting that their
6 role may be to coordinate both lumen and cilia formation to occur at the appropriate time
7 during KV development.

8 We next wanted to test in the cells that could make cilia, whether the cilia were
9 abnormal in length. In addition, we examined in the KVs that formed lumen whether cilia
10 could extend into it. Rab11, Rab8, and Rab35-clustered cells that made cilia
11 demonstrated significantly decreased cilia length (2.92±0.14 μm for Rab11, 3.15±0.08
12 μm for Rab8, and 2.02±0.05 for Rab35) compared to control CRY2 conditions (4.13±0.06
13 μm , Figure 5E). This significant decrease in cilia length with Rab11, Rab8, and Rab35
14 clustering, is consistent with Rab11, Rab8, or Rab35 depletion using morpholinos (Figure
15 S4C, (Westlake *et al.*, 2011; Lu *et al.*, 2015; Klinkert *et al.*, 2016)). Interestingly, Rab8
16 clustering did cause a significant decrease in cilia length (Figure 5E), but not in the
17 formation of cilia or lumen (Figure 3B-D, 5C). This suggests that Rab8 may have a more
18 direct role in cilia function and not in lumen formation. We next examined if the cilia that
19 were made were stuck in the cell volume. In Rab11 (20.59±5.34%) and Rab35 clustered
20 KV cells (26.02±5.25%) had cilia stuck within the cell volume compared to Rab8 clustered
21 cells (2.32±1.45%) or CRY2 controls (5.44±1.69%, Figure 5F). These findings suggest
22 that centrosomes that construct a cilium under Rab11- and Rab35-clustering conditions
23 are unable to extend the cilium into the lumen and that this could be the underlying reason
24 for cilia being significantly shorter in length. One possibility for cilia being stuck within the
25 cell volume is that KV lumens are not able to expand beyond 300 μm^2 in area under
26 conditions of Rab11- and Rab35- clustering (Figure 3B-D), but an additional possibility is
27 that the centrosome and the forming cilium are unable to relocate towards the center of
28 the KV cell mass where the rosette center and subsequent lumen will form. To test the
29 role of Rab35-, Rab11- and Rab8-membranes in centrosome positioning during KV
30 development, centrosome distances from the plasma membrane closest to KV center
31 were measured under clustered conditions and compared to control conditions (CRY2,

1 modeled in Figure S1B). If centrosomes are positioning towards the KV center, then the
2 number should approach 0. Rab11- and Rab35-clustered embryos measurements
3 averaged around 0.70 ± 0.10 and 0.75 ± 0.11 respectively, whereas with Rab8 clustered
4 and control conditions the centrosome distance approached 0 with a value of 0.23 ± 0.06
5 and 0.30 ± 0.03 (Figure 5G). These studies suggest that Rab11 and Rab35 coordinate
6 lumen formation and centrosome positioning during cilia formation.

7
8 *Acute optogenetic disruption of Rab8, Rab11, and Rab35 membranes during KV*
9 *development results in left-right asymmetry defects.*

10 The consequences associated with KV lumen expansion and cilia formation can
11 have downstream developmental defects that include defects in the left-right development
12 of the brain, heart, and gut (Grimes and Burdine, 2017). Based on this, we wanted to
13 examine the developmental defects associated with acute optogenetic clustering of Rab8-
14 , Rab11-, or Rab35-associated membranes during KV development (Figure 6A). Embryos
15 expressing CIB1-Rab8, -Rab11, or -Rab35 with CRY2 were exposed to blue light to
16 induce clustering at 75% epiboly when KV precursor (Dorsal Forerunner) cells are first
17 visualized until 6 SS (12 hpf) when KV lumen is opening. At 6 SS blue light was removed
18 and the embryos were left to develop to high pec (42 hpf). Gross phenotypes observed
19 with animals having Rab8-, Rab11-, or Rab35-optogenetically clustered membranes
20 included a significant increase in animals with curved tails. Rab35 clustering specifically
21 resulted in a significant increase of animals displaying no tails and/or a one-eye
22 phenotype when compared to control conditions (CRY2, Figure 6B-C). We specifically
23 examined heart development since the heart is the first organ that is formed during
24 zebrafish development and its laterality can be easily assessed in live embryos (Figure
25 6D). Using a cmlc2:GFP transgenic line to label zebrafish heart cells specifically, we
26 assessed the process of heart looping. Abnormal heart looping includes reversed looping,
27 no loop, or bilateral heart looping (Figure 6D-E, Video S4). Over 70% of animals
28 presented with abnormal heart looping when Rab8-, Rab11-, or Rab35- was acutely
29 clustered during KV developmental stages compared to control animals expressing CRY2
30 ($13.55 \pm 1.59\%$). While this was not surprising for Rab11 and Rab35 optogenetic clustering
31 during KV development due to embryos presenting with severe lumen and cilia formation

1 defects (Figure 3, 5), this was surprising for Rab8 optogenetic clustering conditions where
2 embryos formed normal lumens but had shorter cilia (Figure 5E). This suggests that even
3 subtle defects in cilia length and potential function during KV development may result in
4 significant developmental defects. Taken together, these studies propose that Rab8-,
5 Rab11-, and Rab35-mediated membrane trafficking is necessary for forming a functional
6 KV during development.

7

8 **DISCUSSION**

9 Our studies focused on the Rab GTPases— Rab8, Rab11, and Rab35—that have
10 been linked to lumen and cilia formation in mammalian cell culture models (Bryant *et al.*,
11 2010; Knödler *et al.*, 2010; Westlake *et al.*, 2011; Klinkert *et al.*, 2016). We identified that
12 during the KV pre-rosette stage, cells start to assemble a cilium inside the cell at random
13 locales that is positive for the ciliary vesicle marker Myo-Va (Figure 1B, 1G). The cilium
14 and associated centrosome are repositioned inside the cell towards the center of the KV
15 cell mass at a similar time KV cells are rearranging into a rosette like structure that then
16 transitions into a group of cells surrounding a fluid-filled lumen (Figure 1B, 1D). Once the
17 lumen reaches a set area ($300 \mu\text{m}^2$), the KV cell cilia extend into the lumen from a location
18 marked by Rab8 and Rab11, but not Rab35 (Figure 5A, S4A-B). We identified that
19 Rab11- and Rab35-associated membranes are both required to mediate KV cells
20 transition into a rosette cellular arrangement and then into a cyst of cells organized around
21 a central lumen (Figure 3). Rab11 likely does this through mediating both actin dynamics
22 and CFTR transport to the apical membrane (Figure 4A-D), where Rab35 may act
23 upstream of Rab11 membranes (Figure 4E-F).

24 Interestingly, the only significant defect we identified with acute disruption of Rab8
25 was cilia length (Figure 5E), whereas with Rab11 and Rab35 we found defects in KV
26 development that included rosette formation and transition to forming a lumen, along with
27 a loss of cilia formation. This was surprising due to previous reports identifying a GTPase
28 cascade between Rab11 and Rab8 that was needed for lumen formation and for cilia
29 formation in mammalian tissue culture (Bryant *et al.*, 2010; Knödler *et al.*, 2010; Westlake
30 *et al.*, 2011; Lu *et al.*, 2015; Cuenca *et al.*, 2019). While we argue that this cascade may
31 not be required for lumen or cilia formation in KV cells, it may still be intact in regulation

1 of cilia length (Figure 5E). Our findings demonstrate that both conserved and divergent
2 mechanisms are likely involved in cilia formation dependent on the developmental
3 requirements of the tissue being formed. For instance, there may be a possible
4 connection between Rab35 and Rab11, where both Rab35 and Rab11 clustered
5 membranes result in the sequestration of CFTR, and that Rab35 clustering results in the
6 partial recruitment of Rab11. Our findings suggest a possible connection between Rab35
7 and Rab11 that is coordinated during cilia and lumen formation. Interestingly, there is no
8 colocalization with Rab35 and cilia, unlike Rab11. One potential unique mechanistic
9 possibility is that Rab35 and Rab11 work together in coordinating lumen formation
10 through CFTR transport. In this scenario, Rab11 or Rab35 clustering may prevent CFTR
11 from accumulating appropriately at the apical membrane, resulting in incomplete lumen
12 formation and cilia assembly. An additional more conserved mechanism for Rab11,
13 similar to what is reported in mammalian cell culture, is a direct role at the cilium where
14 Rab11 localizes to (Figure 5A). In this scenario, Rab11 can regulate cilia formation and
15 potential elongation in a cascade with Rab8. Our findings suggest potential conserved
16 but also unique mechanistic contributions of Rab GTPases in coordinating lumen
17 formation and ciliation for tissues *in vivo*, leaving ample opportunity for further
18 investigation.

19

1 **ACKNOWLEDGEMENTS**

2 We thank the Michel Bagnat lab at Duke University School of Medicine for sharing their
3 eGFP-Rab11 transgenic zebrafish lines. This work was supported by National Institutes
4 of Health grants R01GM127621 (H.H.) and R01GM130874 (H.H.). This work was
5 supported by the U.S Army Medical Research Acquisition Activity through the FY16
6 Prostate Cancer Research Programs under Award no. W81XWH-20-1-0585 (H.H.).
7 Opinions, interpretations, conclusions, and recommendations are those of the authors
8 and not necessarily endorsed by the Department of Defense.

9

10 **AUTHOR CONTRIBUTIONS**

11 A.A., D.P., J.S., H.H., N.K., J.M., C.T., E.I., N.A.H and F.O. designed, performed, and
12 analyzed experiments; H.H. wrote manuscript; J.F. provided molecular reagents and
13 zebrafish husbandry. All authors provided edits. H.H. oversaw project.

14

15 **DECLARATION OF INTERESTS**

16 The authors declare no competing interests.

17

1 **FIGURE LEGENDS**

2

3 **Figure 1.** *KV cilia form prior to KV lumen formation using an intracellular pathway.*

4 (A) Model depicting KV developmental stages: pre-rosette, rosette and lumen. Number
5 of hours post fertilization (hpf) shown. (B) Confocal micrographs of KV developmental
6 stages with cilia (acetylated-tubulin, cyan), centrosome (γ -tubulin, magenta), and actin
7 (phalloidin, gray). Scale bar, 10 μ m. (b') Magnified insets from (B) depicting centrosome
8 and cilia positioning in KV cells at different KV developmental stages. Bar, 7 μ m. (C)
9 Percentage of ciliated KV cells at the different KV developmental stages. (D) Relative
10 distance of cilia from cell border closest to KV center. (C-D) Shown as a violin plot with
11 median (yellow line). One way ANOVA across KV developmental stages, $n>7$ embryos,
12 ** $p<0.01$. (E) Scatter plot depicting average cilia length within KV cells per embryo
13 across $n=29$ embryos in relation to lumen area. Error bars, \pm SEM. (F) Model
14 demonstrating intracellular versus extracellular pathways for cilia formation. (G) 3D
15 surface rendering of representative KV cells with cilia (acetylated-tubulin, cyan) inside
16 versus outside of KV plasma membranes (KV membranes, Sox17:GFP-CAAX, gray),
17 Myo-Va (magenta). Bar, 5 μ m. Please refer to Table S1 for additional statistical
18 information.

19

20 **Figure S1.** *KV cilia form prior to KV lumen formation using an intracellular pathway.*

21 (A) 3D surface rendering of a representative KV cell during pre-rosette, rosette, and
22 lumen KV developmental stages with cilia (acetylated-tubulin, cyan) and KV plasma
23 membranes (KV membranes, Sox17:GFP-CAAX, gray) rendered. Refer to Video S1.
24 Bar, 5 μ m. (B) Model depicting quantification of relative distance of the cilium from the
25 cell border closest to KV center. Cilia, cyan. Nucleus, gray. Center of KV cells, yellow.
26 Pink dashed line is distance of cilium from cell membrane. Black dashed line is distance
27 of cell center to cell membrane.

28

29 **Video S1.** *KV cilia form prior to KV lumen formation using an intracellular pathway.* 3D
30 surface rendering from Figure S1A of a single KV cell at the KV pre-rosette, rosette, or

1 lumen stage rotated 360 degrees around the X-axis. Bar, 5 μ m. Inset shows full KV with
2 cilia (cyan) and KV plasma membrane (Sox17:GFP-CAAX). Refer to Figure S1A.

3

4 **Figure 2.** *Live embryo characterization of Rab8, Rab11, Rab35 and actin localization*
5 *during KV cilia and lumen formation.* (A-D) Live confocal videos of mRuby-Rab8 (cyan,
6 A), GFP-Rab11 (gray, B), actin (lifeact-mRuby, magenta, C), and mRuby-Rab35 (gray,
7 D) localization in KV cells during lumen formation. Refer to Video S2. Scale bar, 10 μ m.
8 (E) KV cell building and extending a cilium (Arl13b-mCardinal) into the lumen of the KV.
9 KV plasma membranes (Sox17:GFP-CAAX) shown (inverted gray, A,C; cyan, E). Bar, 5
10 μ m. (F) Ratio of junctional to apical Rab8 (cyan), Rab11 (blue), actin (magenta) and
11 Rab35 (purple) at the rosette, early lumen, and late lumen stages of KV development.
12 Error bars represent \pm SEM for n>4 cells. (G) Scatter plot demonstrating the percentage
13 of KV cells with luminal cilia per embryo in relation to KV lumen area. n=29 embryos.
14 Goodness of fit R²= 0.8577. Please refer to Table S1 for additional statistical
15 information.

16

17 **Figure S2.** *Live embryo characterization of Rab8, Rab11, Rab35 and actin localization*
18 *during KV cilia and lumen formation.* Live confocal videos of mCherry-Rab11 (cyan)
19 localization in KV cells during lumen formation. KV plasma membrane noted with GFP-
20 CAAX (inverted gray). Scale bar, 10 μ m. Refer to Figure 2A-D.

21

22 **Video S2.** *Live embryo characterization of Rab8, Rab11, Rab35 and actin localization*
23 *during KV lumen formation.* Live confocal videos of actin (lifeact-mRuby, magenta),
24 mRuby-Rab8 (cyan), GFP-Rab11 (gray), and mRuby-Rab35 (gray) localization in KV
25 cells during lumen formation. KV plasma membranes (Sox17:GFP-CAAX) shown with
26 actin and Rab8 (inverted gray). Bar, 10 μ m. Refer to Figure 2A-D.

27

28 **Figure 3.** *Rab11 and Rab35 modulate KV lumen formation.* (A) A model depicting the
29 use of optogenetics to acutely block Rab-associated trafficking events during KV
30 developmental stages. (B) Optogenetic clustering of Rab11 and Rab35 blocks KV
31 lumen formation compared to Rab8. Imaged on an automated fluorescent stereoscope.

1 Bar, 50 μ m. KV marked with Sox17:GFP-CAAX, lumens highlighted in orange, clusters
2 shown in cyan. Refer to Video S3. (C) KV lumen area over time (\pm SEM for n=3 embryos
3 per condition). (D) KV morphologies measured from optogenetically-clustered then fixed
4 embryos at 12 SS (12 hpf). n>27 embryos measured across n>3 clutches per condition.
5 Please refer to Table S1 for additional statistical information.

6
7 **Figure S3. Rab11 and Rab35 modulate KV lumen formation.** (A) Agarose gel
8 demonstrating RT-PCR of Rab8, Rab11, and Rab35 MO treatment compared to control
9 MO conditions. Amplification of Rab8, Rab11, and Rab35 shown. NC, negative control.
10 (B) Violin plot depicting lumen area from Rab8, Rab11, and Rab35 clustering conditions
11 normalized to uninjected control values. Dots represent individual KV values. Median
12 denoted by line. One-way ANOVA with Dunnett's multiple comparison test, compared to
13 CRY2. n>9 embryos, ****p<0.0001. (C) Control CRY2 conditions from Figure 3B.
14 Imaged on an automated fluorescent stereoscope. Bar, 50 μ m. KV marked with
15 Sox17:GFP-CAAX, lumens highlighted in orange, clusters shown in cyan. (D)
16 Representative 3D rendering of KV under Rab8, Rab11, and Rab35 MO treatment.
17 Lumen trace (orange), cell membrane (GFP-CAAX), inverted LUT), and actin (magenta)
18 shown. Bar, 100 μ m. (E) Violin plot depicting lumen area normalized to uninjected
19 control values. Dots represent individual KV values. Median denoted by line. One-way
20 ANOVA with Dunnett's multiple comparison test, compared to CRY2. n>12 embryos,
21 ****p<0.0001. (F) Representative image of optogenetic clustering of Rab35 (cyan) in KV
22 cells corresponding with Figure 3D. CFTR-GFP (grey) shown. Bar, 100 μ m. Statistical
23 results detailed in Table S1.

24
25 **Video S3. Rab11 and Rab35 modulate KV lumen formation.** Optogenetic clustering of
26 Rab11 and Rab35 blocks KV lumen formation compared to Rab8. Embryos imaged on
27 automated fluorescent stereoscope every 10 min. Bar, 100 μ m. KV marked with
28 Sox17:GFP-CAAX. Refer to Figure 3B.

29
30 **Figure 4. Optogenetic clustering of Rab8, Rab11, and Rab35 present unique roles in**
31 **regulating actin and CFTR cellular distribution.** (A-B) Optogenetic clustering of Rab11,

1 Rab8, and Rab35 (cyan) in KV cells. Localization with CFTR-GFP (magenta, **A**) or actin
2 (phalloidin, magenta, **B**) demonstrated in magnified insets. Bar, 7 μ m. (**C-D**) Percent of
3 optogenetic clusters that colocalize with CFTR (**C**) or actin (**D**). n>9 embryos, **p<0.01,
4 ****p<0.0001. (**E**) Optogenetic clustering of Rab11 and Rab35 (cyan) in KV cells.
5 Rab11 clusters localization with Flag-Rab8 (magenta) or mRuby-Rab35 shown, along
6 with Rab35 clusters with GFP-Rab11. Bar, 7 μ m. (**F**) Percent of optogenetic clusters
7 that colocalize with Rab8, Rab35, or Rab11 was calculated. n>9 embryos,
8 ****p<0.0001. (**C, D, F**) Statistical results detailed in Table S1.
9

10 **Figure 5.** *Rab11 and Rab35 associated membranes are needed for KV cilia formation*
11 *and extension into the lumen, whereas Rab8 is needed for cilia length regulation. (A)*
12 Confocal micrographs of KV developmental rosette stage (top) and lumen stage
13 (bottom) with cilia (acetylated-tubulin, gray), GFP-Rab11 (cyan), and mRuby-Rab8
14 (magenta) shown. Bar, 10 μ m. (**B-C**) Confocal micrographs of cilia (acetylated tubulin,
15 cyan) in CRY2 (control), Rab8-, Rab11-, and Rab35-clustered Sox17:GFP-CAAX
16 embryos (gray). Centrosomes denoted by γ -tubulin (magenta, **C**). Clusters not shown.
17 (**B**) Lumen outline is orange dashed lines. Bar, 10 μ m. (**C**) Yellow dashed lines, KV cell
18 membranes. Orange arrow, centrosome. Bar, 2 μ m. (**D-G**) Violin plots of percentage of
19 KV cells with cilia (**D**), cilia length (**E**), percentage of KV cilia in cell volume (**F**), and the
20 relative distance of cilia from the cell boarder closest to KV center (**G**). One way ANOVA
21 with Dunnett's multiple comparison to CRY2 (control) was performed. n>4 embryos.
22 **p<0.01, ***p<0.001, ****p<0.0001. Statistical results detailed in Table S1.
23

24 **Figure S4.** *Rab11 and Rab35 associated membranes are needed for KV cilia formation*
25 *and extension into the lumen, whereas Rab8 is needed for cilia length regulation. (A-B)*
26 Confocal micrographs of KV lumen stage with cilia (acetylated-tubulin, cyan), GFP-Rab11
27 (magenta, **A**), mRuby-Rab8 (yellow, **A**), mRuby-Rab35 (magenta, **B**), and actin (yellow,
28 **B**). Bar, 2 μ m. (**C**) Violin plot of cilia length following morpholino depletion. One way
29 ANOVA with Dunnett's multiple comparison to control was performed. n>3 embryos.
30 ****p<0.0001.
31

1 **Figure 6. Acute optogenetic disruption of Rab8, Rab11, and Rab35 membranes during**
2 **KV development results in left-right asymmetry defects. (A)** A model depicting the use
3 of optogenetics to acutely block Rab-associated trafficking events during KV
4 developmental stages and assessment of downstream developmental consequences at
5 42 hpf. **(B)** Images demonstrate characterized developmental phenotypes observed that
6 include curved tail, no tail, and single eye. Yellow arrows point to abnormalities. Bar,
7 100 μ m. **(C)** Violin plot displaying percentage of embryos displaying a no tail, curved
8 tail, or single eye phenotype (shown in **(B)**) over $n > 3$ clutches across the optogenetic
9 clustering conditions compared to control. * $p < 0.05$, and ** $p < 0.01$. **(D)** Images
10 demonstrate characterized abnormal heart looping in clustered embryos compared to
11 normal leftward heart looping in control CRY2 embryos. Refer to Video S4. Bar, 100
12 μ m. **(E)** Violin plot displaying percentage of embryos with abnormal heart looping
13 (shown in **(D)**) $n > 3$ clutches across the optogenetic clustering conditions compared to
14 control. *** $p < 0.001$ and **** $p < 0.0001$. **(C, E)** Statistical results detailed in Table S1.

15

16 **Video S4. Acute optogenetic disruption of Rab8, Rab11, and Rab35 membranes during**
17 **KV development results in left-right asymmetry defects.** Stereo microscope video
18 showing ventral view of a 48 hpf cmlc2:GFP (green) fish marking the heart. In CRY2
19 control, heart tube loops to the left. Rab8-, Rab11-, and Rab35- optogenetic clustered
20 zebrafish reveal defective heart loop phenotype from Figure 6D. Size bar, 100 μ m.
21 0.25s time interval.

22

23

24

25

26

27

1 **EXPERIMENTAL PROCEDURES**

2

3 **Resource Availability**

4

5 *Lead contact:* For further information or to request resources/reagents, contact Lead
6 Contact, Dr. Heidi Hehnly (hhehnly@syr.edu)

7

8 *Materials availability:* New materials generated for this study are available for
9 distribution.

10

11 *Data and code availability:* All data sets analyzed for this study are displayed.

12

13 **Experimental model and subject details**

14

15 **Fish Lines**

16 Zebrafish lines were maintained using standard procedures approved by Syracuse
17 University IACUC (Institutional Animal Care Committee) (Protocol #18-006). Embryos
18 were raised at 28.5°C and staged (as described in (Kimmel *et al.*, 1995)). Wildtype
19 and/or transgenic zebrafish lines used for live imaging and immunohistochemistry are
20 listed in key resource table (Table S2).

21

22 **Method Details**

23

24 **Antibodies**

25 Antibody catalog information used in mammalian cell culture and zebrafish embryos are
26 detailed in key resource table (Table S2).

27

28 **Plasmids and mRNA**

29 Plasmids were generated using Gibson cloning methods (NEBuilder HiFi DNA
30 assembly Cloning Kit) and maxi-prepped before injection and/or transfection. mRNA

1 was made using mMESSAGE mMACHINE™SP6 transcription kit. See key resource
2 table for a list of plasmid constructs and mRNA used.

3

4 **Morpholinos**

5 Morpholinos (MO) were ordered from Gene Tools. Previously characterized Rab8,
6 Rab11, and Rab35 MO sequences were used from (Westlake *et al.*, 2011; Lu *et al.*,
7 2015; Kuhns *et al.*, 2019). See Supplementary key resource table in Table S2 for a list
8 of morpholinos used.

9

10 **RNA extraction and RT-PCR**

11 Total RNA was extracted from either an isolated embryo or several embryos injected
12 with control, Rab8, Rab11 or Rab35 morpholinos using TRIzol reagent. The RT-PCR
13 was performed on each sample using OneTaq One-Step RT-PCR Kit (see key resource
14 table) with the forward primers “tcagtatggcgaagacctacgat”, “gttagcatggctactgcctaattcac”,
15 “gtaatgagcgactgactgctgac” and reverse primers “tcttcacagtagcacacagcga”,
16 “catgtcattgtctcgccggc”, “gtgcaaggagaaaaataagatcaagtttagagaatca” for Rab8, Rab11
17 and Rab35 consecutively. RT-PCR reaction was run using the following cycling
18 conditions: 48 °C for 30 min, 94 °C for 1min followed by 40 cycles of 94 °C for 15 sec,
19 54 °C (Rab8 and Rab11) or 53 °C (Rab35) for 30 sec, 68 °C for 2 minutes with final
20 extension at 68 °C for 5 min.

21

22 **Immunofluorescence**

23 Fluorescent transgenic and/or mRNA injected embryos (refer to strains and mRNAs in
24 key resource table, and for injection protocols refer to (Rathbun *et al.*, 2020a; Aljiboury
25 *et al.*, 2021)) were staged at Kupffer's Vesicle (KV) developmental stages as described
26 in (Amack *et al.*, 2007; Rathbun *et al.*, 2020b) and fixed using 4% paraformaldehyde
27 with 0.1% triton-100. Standard immunofluorescent protocols were carried out (refer to
28 (Aljiboury *et al.*, 2021)). Embryos were then embedded in low-melting 2% agarose (see
29 key resource table) with the KV positioned at the bottom of a #1.5 glass bottom MatTek
30 plate (see key resource table) and imaged using the spinning disk confocal microscope
31 or LSCM (see details below).

1

2 **Imaging**

3 Zebrafish embryos were imaged using Leica DMi8 (Leica, Bannockburn, IL) equipped
4 with a X-light V2 Confocal unit spinning disk equipped with a Visitron VisiFRAP-DC
5 photokinetics unit, a Leica SP8 (Leica, Bannockburn, IL) laser scanner confocal
6 microscope (LSCM) and/or a Zeiss LSM 980 (Carl Zeiss, Germany) with Airyscan 2
7 confocal microscope. The Leica DMi8 is equipped with a Lumencore SPECTRA X
8 (Lumencore, Beaverton, OR), Photometrics Prime-95B sCMOS Camera, and 89 North-
9 LDi laser launch. VisiView software was used to acquire images. Optics used with this
10 unit are HC PL APO x40/1.10W CORR CS2 0.65 water immersion objective, HC PL
11 APO x40/0.95 NA CORR dry and HCX PL APO x63/1.40-0.06 NA oil objective. The
12 SP8 laser scanning confocal microscope is equipped with HC PL APO 20x/0.75 IMM
13 CORR CS2 objective, HC PL APO 40x/1.10 W CORR CS2 0.65 water objective and HC
14 PL APO x63/1.3 Glyc CORR CS2 glycerol objective. LAS-X software was used to
15 acquire images. The Zeiss LSM 980 is equipped with a T-PMT, GaASP detector, MA-
16 PMT, Airyscan 2 multiplex with 4Y and 8Y. Optics used with this unit are PL APO
17 x63/1.4 NA oil DIC. Zeiss Zen 3.2 was used to acquire the images. A Leica M165 FC
18 stereomicroscope equipped with DFC 9000 GT sCMOS camera was used for staging
19 and phenotypic analysis of zebrafish embryos.

20

21 **Optogenetic experiments in zebrafish embryos**

22 Tg(sox17:GFP-CAAX), TgBAC(cftr-GFP), Tg(sox17:GFP), Tg(sox17:DsRed) and
23 TgKleGFP-Rab11a zebrafish embryos were injected with 50-100 pg of CRY2 and/or
24 CIB1-mCherry-Rab11, CIB1-mCherry-Rab8 or CIB1-mRuby-Rab35 at the one cell to 4
25 cell stage. Embryos were allowed to develop in the dark until uninjected embryos
26 reached the 75% epiboly stage where we can screen embryos for KV cells and expose
27 them to 488nm light using the NIGHTSEA fluorescence system until the six-somite
28 stage (Rathbun *et al.*, 2020b). Embryos were then fixed and immunostained (refer to
29 (Aljiboury *et al.*, 2021)).

30

1 **Analysis of Zebrafish developmental defects and heart looping defects following
2 acute optogenetic clustering**

3 Zebrafish embryos injected with optogenetic constructs were exposed to 488nm light
4 from 8 hpf-12 hpf as described in Rathbun et al., 2020. Embryos were incubated at 28.5°C
5 until 42 hpf. Zebrafish were manually dechorionated using forceps and mounted in 2%
6 agarose before imaging. Heart loop assessment and imaging were carried out on Leica
7 M165 FC stereomicroscope equipped with DFC 9000 GT sCMOS29camera. A Plan
8 Apochromat 1X objective and GFP excitation emission filter was used. Images were
9 acquired using LAS-X software and post-image processing was done using thunder
10 imaging system from Leica. Lateral view and ventral view of zebrafish were obtained from
11 bright field imaging. Time lapse video of heart looping was performed at 0.25 seconds
12 interval. Heart looping was characterized by leftward, rightward and severely defective
13 looping. Gross embryo phenotypes were categorized into no tail, curved tail, and single
14 eye phenotypes. Categorization was performed over 787 embryos over n>3 clutches with
15 at least 88-274 embryos per condition.

16

17 **Image and data analysis**

18 Images were processed using FIJI/ImageJ. Graphs and statistical analysis were
19 produced using Prism 9 software. Surface rendering (refer to (Rathbun et al., 2020b))
20 and analysis of KV cells were performed using Bitplane IMARIS software. Videos were
21 created using FIJI/ImageJ or IMARIS. Cilia length was measured as the distance from
22 the base of the cilia to the tip using line function in IMARIS. For percentage of ciliated
23 KV cells, the number of cells with cilia was counted and represented as a percentage
24 over the total number of cells in the cyst forming tissue.

25

26 *Relative cilia distance from cell border closest to KV center:* the distance from cilia to
27 the cell membrane closest to KV center (l2) was measured and divided by the distance
28 of the center of the cell (nucleus) to the cell's membrane closes to KV center(l1); $d=l2/l1$.
29 This was done for KV cells with positive cilia staining at each developmental KV stage.

30

1 *Ratio of junctional to apical localization:* Using imageJ/FIJI a box was drawn on the cell-
2 cell junction and the mean intensity for the required channel was obtained. The same
3 sized box was drawn on the apical membrane and the mean intensity was obtained.
4 The ratio between the junctional and apical mean intensities were then obtained for four
5 cells within the acquired timelapse movie for an embryo across developmental KV time
6 points that included the rosette, early lumen, and late lumen stages.

7

8 *Calculating colocalization of actin, CFTR, and Rab GTPases with select optogenetic*
9 *clusters:* From fixed embryos the total number of Rab GTPase clusters were counted for
10 each KV. The number of Rab clusters that had CFTR, actin, or Rab GTPase being
11 tested overlapping with the Rab GTPase cluster was counted and presented as a
12 percentage.

13

14 **Statistical Analysis**

15 Unpaired two-tailed t-tests and one way ANOVA were performed using PRISM9
16 software. **** denotes a p-value<0.0001, *** p-value<0.001, **p-value<0.01, *p-
17 value<0.05, n.s. not significant. For further information on detailed statistical analysis
18 see supplemental table 1.

19

20

21

1 **REFERENCES CITED**

2

3 Aljiboury, AA, Mujcic, A, Cammerino, T, Rathbun, LI, and Hehnly, H (2021). Imaging the
4 early zebrafish embryo centrosomes following injection of small-molecule inhibitors to
5 understand spindle formation. *STAR Protoc* 2, 100293.

6 Amack, JD, Wang, X, and Yost, HJ (2007). Two T-box genes play independent and
7 cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish.
8 *Dev Biol* 310, 196–210.

9 Amack, JD, and Yost, HJ (2004). The T box transcription factor no tail in ciliated cells
10 controls zebrafish left-right asymmetry. *Curr Biol* 14, 685–690.

11 Belicova, L, Repnik, U, Delpierre, J, Gralinska, E, Seifert, S, Valenzuela, JI, Morales-
12 Navarrete, HA, Franke, C, Räägel, H, Shcherbinina, E, et al. (2021). Anisotropic
13 expansion of hepatocyte lumina enforced by apical bulkheads. *J Cell Biol* 220.

14 Borchers, AC, Langemeyer, L, and Ungermaier, C (2021). Who's in control? Principles
15 of Rab GTPase activation in endolysosomal membrane trafficking and beyond. *J Cell*
16 *Biol* 220.

17 Bryant, DM, Datta, A, Rodríguez-Fraticelli, AE, PeräCurrency Signnen, J, Martín-
18 Belmonte, F, and Mostov, KE (2010). A molecular network for de novo generation of the
19 apical surface and lumen. *Nat Cell Biol* 12, 1035–1045.

20 Compagnon, J, Barone, V, Rajshekhar, S, Kottmeier, R, Pranjic-Ferscha, K, Behrndt, M,
21 and Heisenberg, CP (2014). The notochord breaks bilateral symmetry by controlling cell
22 shapes in the zebrafish laterality organ. *Dev Cell* 31, 774–783.

23 Cuenca, A, Insinna, C, Zhao, H, John, P, Weiss, MA, Lu, Q, Walia, V, Specht, S,
24 Manivannan, S, Stauffer, J, et al. (2019). The C7orf43/TRAPPC14 component links the
25 TRAPPII complex to Rabin8 for preciliary vesicle tethering at the mother centriole during
26 ciliogenesis. *J Biol Chem* 294, 15418–15434.

27 Demir, K, Kirsch, N, Beretta, CA, Erdmann, G, Ingelfinger, D, Moro, E, Argenton, F,
28 Carl, M, Niehrs, C, and Boutros, M (2013). RAB8B Is Required for Activity and Caveolar
29 Endocytosis of LRP6. *Cell Rep* 4, 1224–1234.

30 Essner, JJ, Amack, JD, Nyholm, MK, Harris, EB, and Yost, HJ (2005). Kupffer's vesicle
31 is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right
32 development of the brain, heart and gut. *Development* 132, 1247–1260.

33 Feldman, JL, and Priess, JR (2012). A role for the centrosome and PAR-3 in the hand-
34 off of MTOC function during epithelial polarization. *Curr Biol* 22, 575–582.

35 Ganga, AK, Kennedy, MC, Oguchi, ME, Gray, S, Oliver, KE, Knight, TA, De La Cruz,
36 EM, Homma, Y, Fukuda, M, and Breslow, DK (2021). Rab34 GTPase mediates ciliary
37 membrane formation in the intracellular ciliogenesis pathway. *Curr Biol* 31, 2895–
38 2905.e7.

39 Gokey, JJ, Ji, Y, Tay, HG, Litts, B, and Amack, JD (2016). Kupffer's vesicle size
40 threshold for robust left-right patterning of the zebrafish embryo. *Dev Dyn* 245, 22–33.

1 Grimes, DT, and Burdine, RD (2017). Left–Right Patterning: Breaking Symmetry to
2 Asymmetric Morphogenesis. *Trends Genet* 33, 616–628.

3 Hall, NA, and Hehnly, H (2021). A centriole’s subdistal appendages: contributions to cell
4 division, ciliogenesis and differentiation. *Open Biol* 11, 200399.

5 Homma, Y, Hiragi, S, and Fukuda, M (2021). Rab family of small GTPases: an updated
6 view on their regulation and functions. *FEBS J* 288, 36–55.

7 Kimmel, CB, Ballard, WW, Kimmel, SR, Ullmann, B, and Schilling, TF (1995). Stages of
8 embryonic development of the zebrafish. *Dev Dyn* 203, 253–310.

9 Klinkert, K, Rocancourt, M, Houdusse, A, and Echard, A (2016). Rab35 GTPase
10 couples cell division with initiation of epithelial apico-basal polarity and lumen opening.
11 *Nat Commun* 7.

12 Knödler, A, Feng, S, Zhang, J, Zhang, X, Das, A, Peränen, J, and Guo, W (2010).
13 Coordination of Rab8 and Rab11 in primary ciliogenesis. *Proc Natl Acad Sci U S A* 107,
14 6346–6351.

15 Krishnan, N, Swoger, M, Rathbun, LI, Fioramonti, PJ, Freshour, J, Bates, M, Patteson,
16 AE, and Hehnly, H (2022). Rab11 endosomes and Pericentrin coordinate centrosome
17 movement during pre-abscission in vivo. *Life Sci Alliance* 5, 1–15.

18 Kuhns, S, Seixas, C, Pestana, S, Tavares, B, Nogueira, R, Jacinto, R, Ramalho, JS,
19 Simpson, JC, Andersen, JS, Echard, A, et al. (2019). Rab35 controls cilium length,
20 function and membrane composition. *EMBO Rep* 20.

21 Levic, DS, Yamaguchi, N, Wang, S, Knaut, H, and Bagnat, M (2021). Knock-in tagging
22 in zebrafish facilitated by insertion into non-coding regions. 148, 2021.07.08.451679.

23 Lindsay, AJ, Jollivet, F, Horgan, CP, Khan, AR, Raposo, G, McCaffrey, MW, and Goud,
24 B (2013). Identification and characterization of multiple novel Rab-myosin Va
25 interactions. *Mol Biol Cell* 24, 3420–3434.

26 Lu, Q, Insinna, C, Ott, C, Stauffer, J, Pintado, PA, Rahajeng, J, Baxa, U, Walia, V,
27 Cuenca, A, Hwang, YS, et al. (2015). Early steps in primary cilium assembly require
28 EHD1/EHD3-dependent ciliary vesicle formation. *Nat Cell Biol* 17, 228–240.

29 Melby, AE, Warga, RM, and Kimmel, CB (1996). Specification of cell fates at the dorsal
30 margin of the zebrafish gastrula. *Development* 122, 2225–2237.

31 Moreno-Ayala, R, Olivares-Chauvet, P, Schäfer, R, and Junker, JP (2021). Variability of
32 an Early Developmental Cell Population Underlies Stochastic Laterality Defects. *Cell
33 Rep* 34.

34 Naslavsky, N, and Caplan, S (2020). Endocytic membrane trafficking in the control of
35 centrosome function.

36 Navis, A, Marjoram, L, and Bagnat, M (2013). Cftr controls lumen expansion and
37 function of Kupffer’s vesicle in zebrafish. *Development* 140, 1703–1712.

38 Nguyen, MK, Kim, CY, Kim, JM, Park, BO, Lee, S, Park, H, and Heo, W Do (2016).
39 Optogenetic oligomerization of Rab GTPases regulates intracellular membrane
40 trafficking. *Nat Chem Biol* 12, 431–436.

1 Oguchi, ME, Okuyama, K, Homma, Y, and Fukuda, M (2020). A comprehensive
2 analysis of Rab GTPases reveals a role for Rab34 in serum starvation-induced primary
3 ciliogenesis. *J Biol Chem* 295, 12674.

4 Omori, Y, Zhao, C, Saras, A, Mukhopadhyay, S, Kim, W, Furukawa, T, Sengupta, P,
5 Veraksa, A, and Malicki, J (2008). Elipsa is an early determinant of ciliogenesis that
6 links the IFT particle to membrane-associated small GTPase Rab8. *Nat Cell Biol* 10,
7 437–444.

8 Oteíza, P, Köppen, M, Concha, ML, and Heisenberg, CP (2008). Origin and shaping of
9 the laterality organ in zebrafish. *Development* 135, 2807–2813.

10 Rathbun, LI, Aljiboury, AA, Bai, X, Hall, NA, Manikas, J, Amack, JD, Bembeneck, JN, and
11 Hehnly, H (2020a). PLK1- and PLK4-Mediated Asymmetric Mitotic Centrosome Size
12 and Positioning in the Early Zebrafish Embryo. *Curr Biol* 30, 4519–4527.e3.

13 Rathbun, LI, Colicino, EG, Manikas, J, O'Connell, J, Krishnan, N, Reilly, NS, Coyne, S,
14 Erdemci-Tandogan, G, Garrastegui, AM, Freshour, J, et al. (2020b). Cytokinetic bridge
15 triggers de novo lumen formation in vivo. *Nat Commun* 11, 1–12.

16 Saydmohammed, M, Yagi, H, Calderon, M, Clark, MJ, Feinstein, T, Sun, M, Stolz, DB,
17 Watkins, SC, Amack, JD, Lo, CW, et al. (2018). Vertebrate myosin 1d regulates left–
18 right organizer morphogenesis and laterality. *Nat Commun* 9.

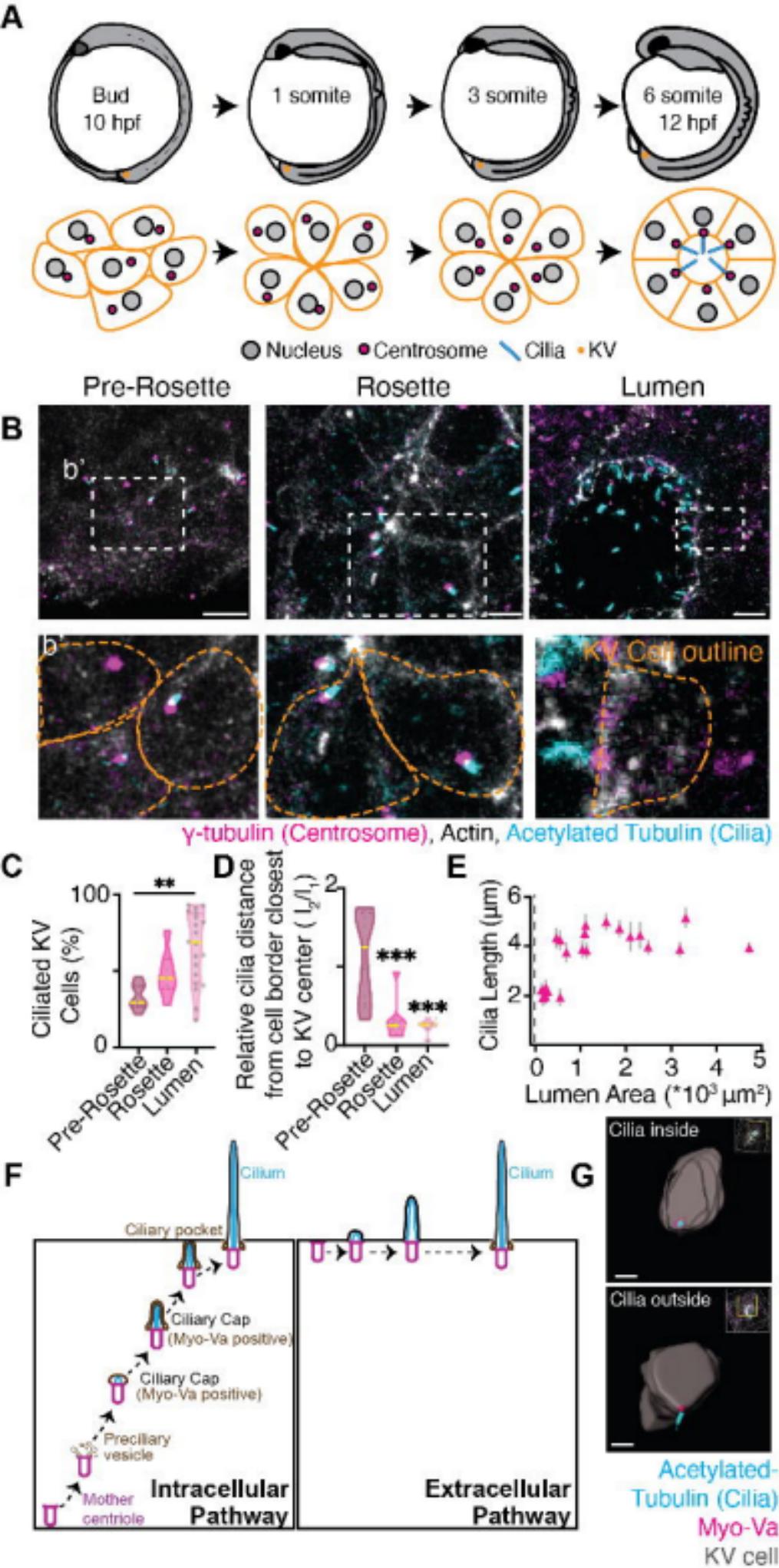
19 SOROKIN, S (1962). Centrioles and the formation of rudimentary cilia by fibroblasts and
20 smooth muscle cells. *J Cell Biol* 15, 363–377.

21 Sorokin, SP (1968). Reconstructions of centriole formation and ciliogenesis in
22 mammalian lungs. *J Cell Sci* 3, 207–230.

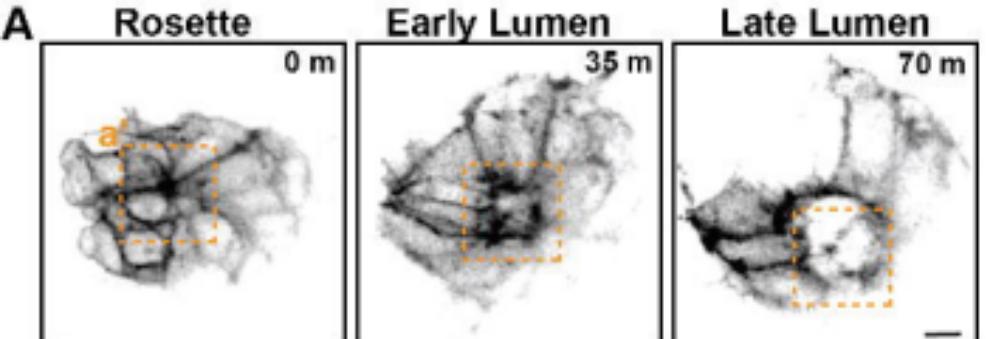
23 Vertii, A, Bright, A, Delaval, B, Hehnly, H, and Doxsey, S (2015). New frontiers:
24 discovering cilia-independent functions of cilia proteins. *EMBO Rep* 16, 1275–1287.

25 Vertii, A, Hehnly, H, and Doxsey, S (2016). The centrosome, a multitalented
26 renaissance organelle. *Cold Spring Harb Perspect Biol* 8.

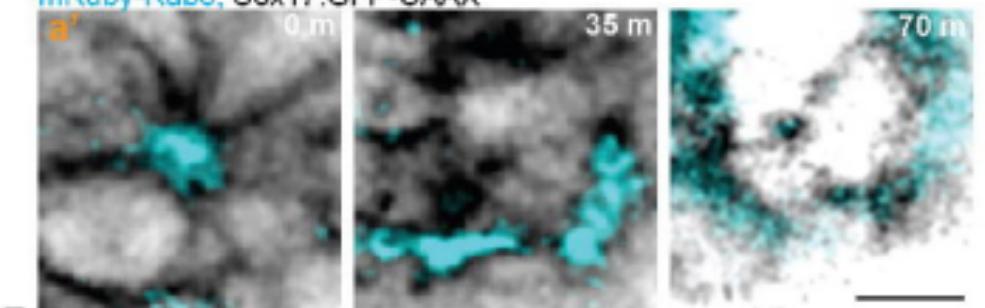
27 Wang, G, Cadwallader, AB, Jang, DS, Tsang, M, Yost, HJ, and Amack, JD (2011). The
28 Rho kinase rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's
29 vesicle in zebrafish. *Development* 138, 45–54.

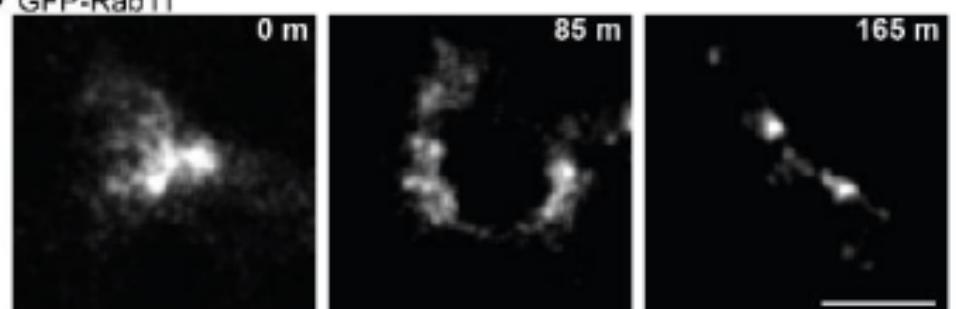

30 Warga, RM, and Nüsslein-Volhard, C (1999). Origin and development of the zebrafish
31 endoderm. *Development* 126, 827–838.

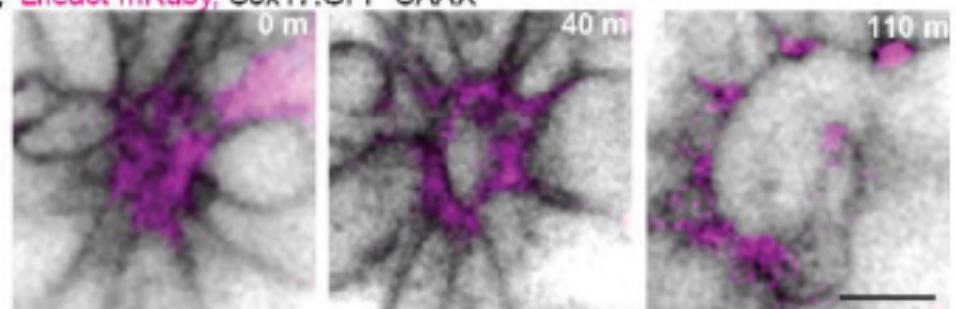
32 Westlake, CJ, Baye, LM, Nachury, M V., Wright, KJ, Ervin, KE, Phu, L, Chalouni, C,
33 Beck, JS, Kirkpatrick, DS, Slusarski, DC, et al. (2011). Primary cilia membrane
34 assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-
35 dependent trafficking of Rabin8 to the centrosome. *Proc Natl Acad Sci U S A* 108,
36 2759–2764.

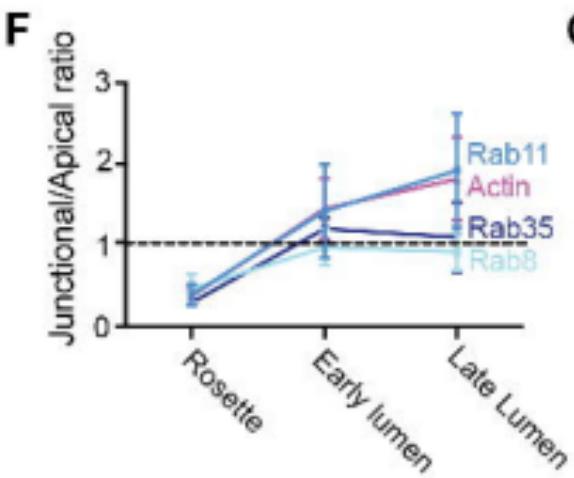
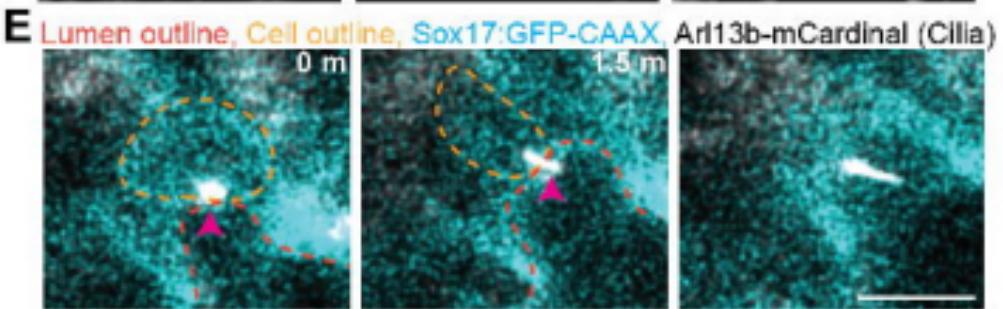
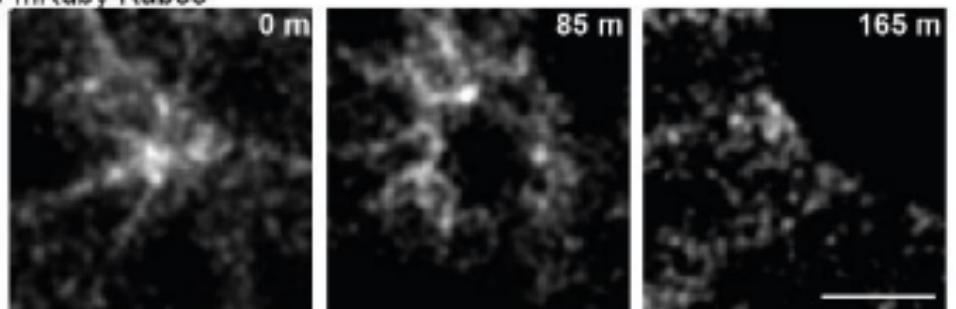

37 Willoughby, PM, Allen, M, Yu, J, Korytnikov, R, Chen, T, Liu, Y, So, I, Macpherson, N,
38 Mitchell, JA, Fernandez-Gonzalez, R, et al. (2021). The recycling endosome protein
39 Rab25 coordinates collective cell movements in the zebrafish surface epithelium. *Elife*
40 10.

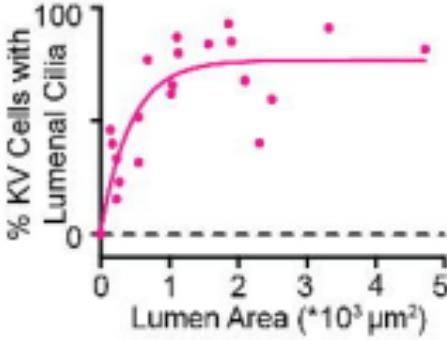
- 1 Wu, C-T, Chen, H-Y, and Tang, TK (2018). Myosin-Va is required for preciliary vesicle
- 2 transportation to the mother centriole during ciliogenesis. *Nat Cell Biol* 20, 175–185.
- 3 Yoshimura, SI, Egerer, J, Fuchs, E, Haas, AK, and Barr, FA (2007). Functional
- 4 dissection of Rab GTPases involved in primary cilium formation. *178*, 363–369.
- 5 Zhang, H, Gao, Y, Qian, P, Dong, Z, Hao, W, Liu, D, and Duan, X (2019). Expression
- 6 analysis of Rab11 during zebrafish embryonic development. *BMC Dev Biol* 19, 1–8.

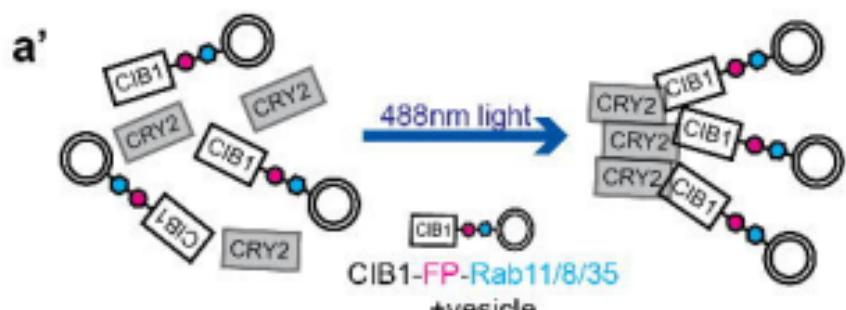
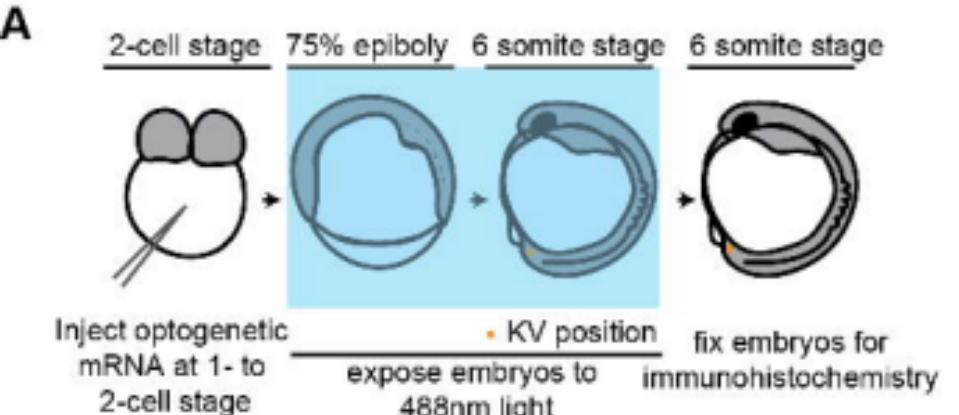

7

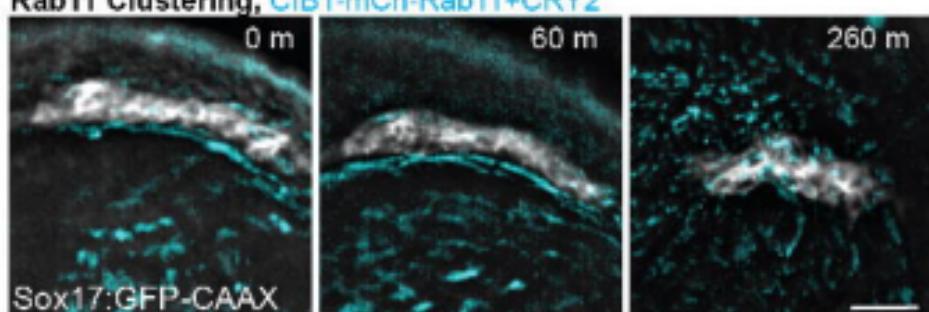

Figure 1.

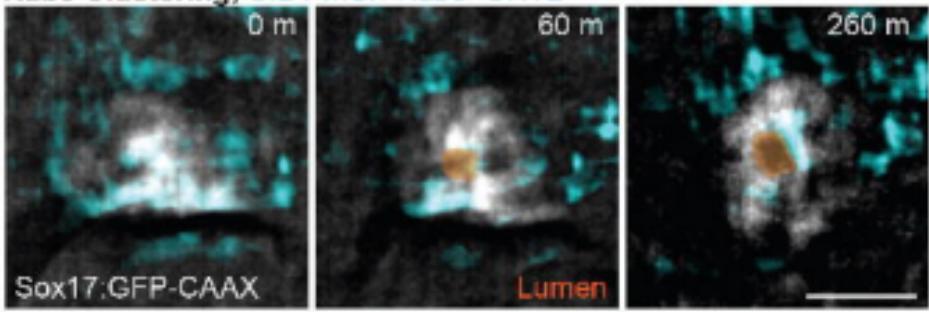

mRuby-Rab8, Sox17:GFP-CAAX

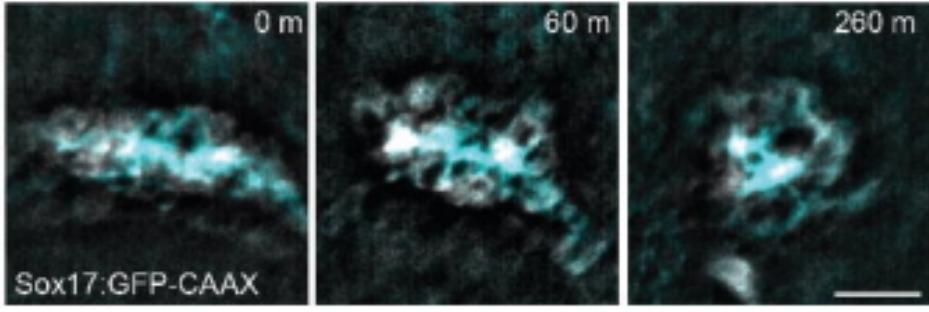



B GFP-Rab11

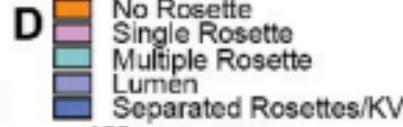
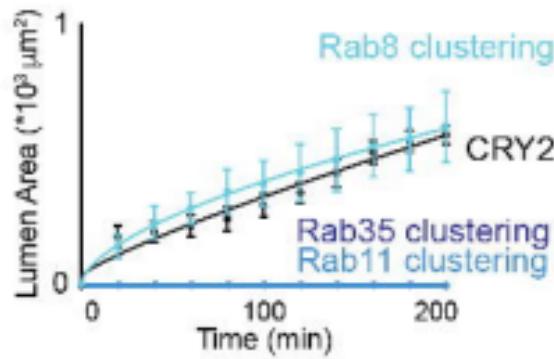

C Lifeact-mRuby, Sox17:GFP-CAAX

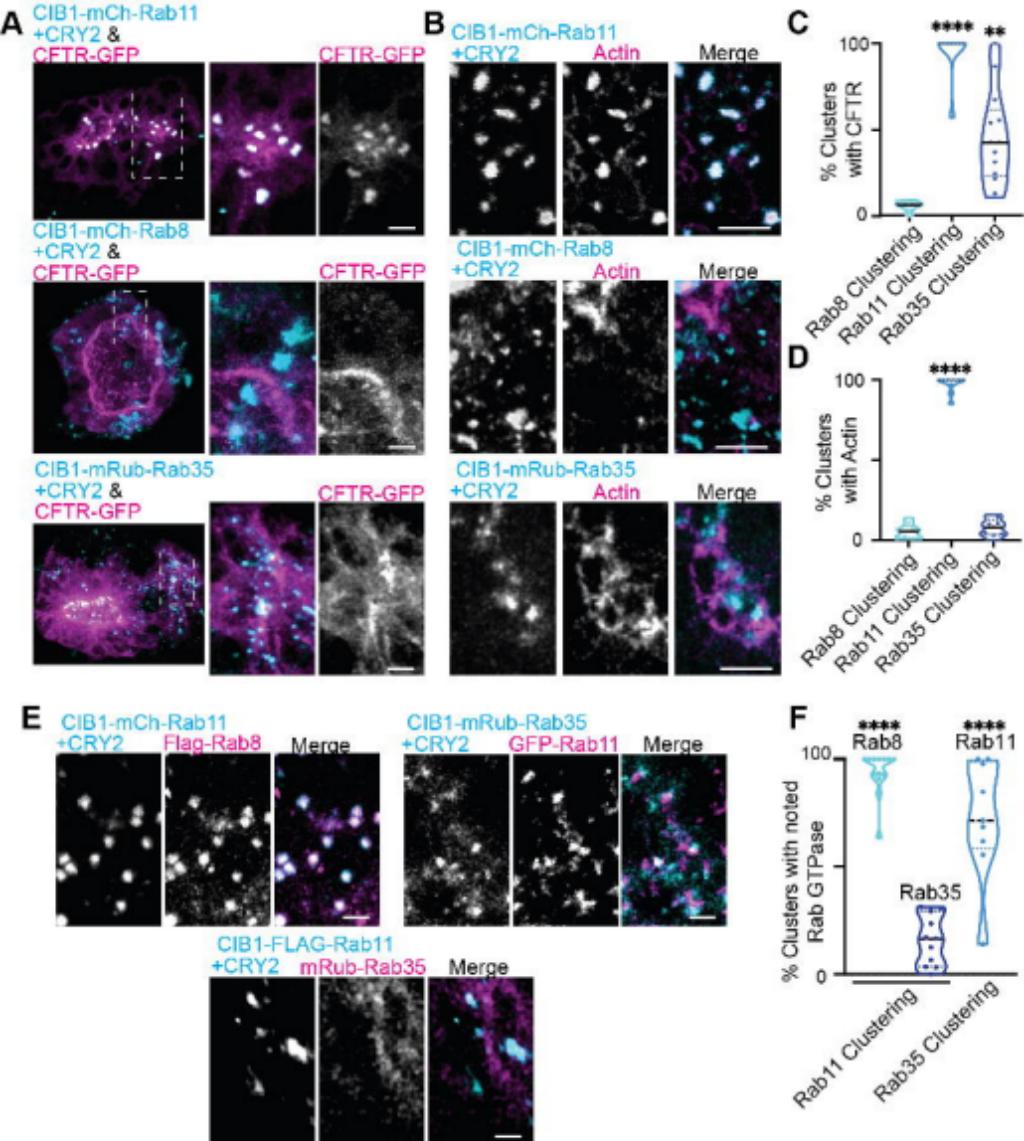


D mRuby-Rab35

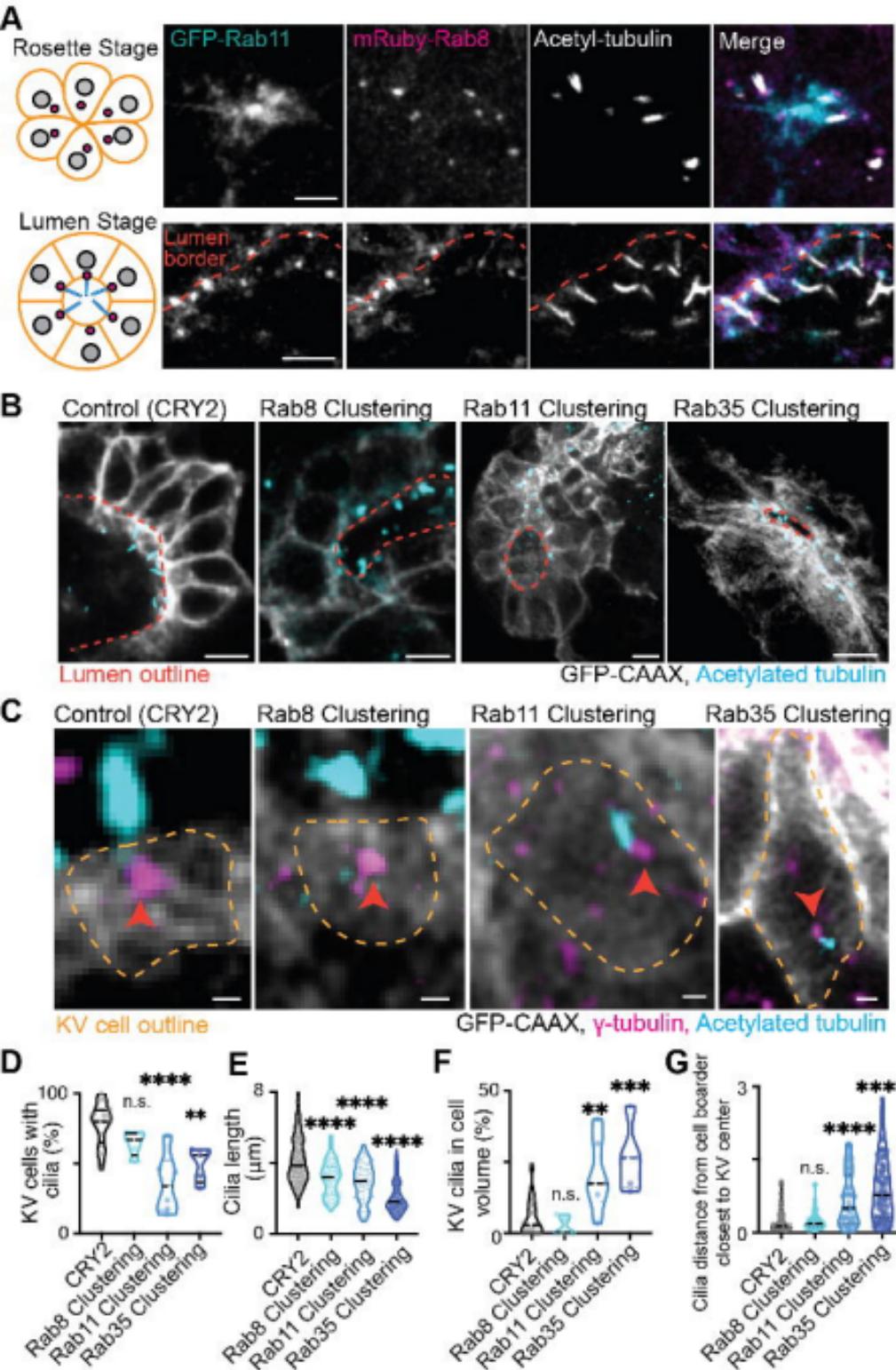

G

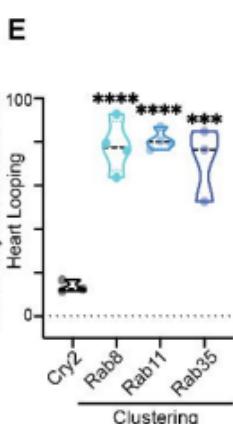
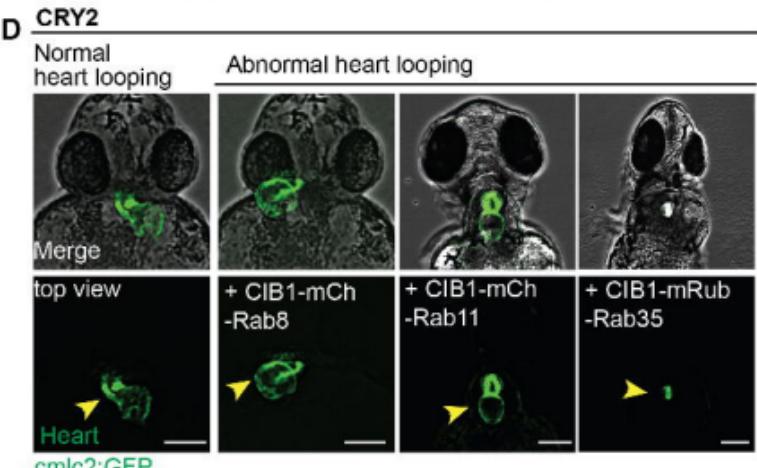
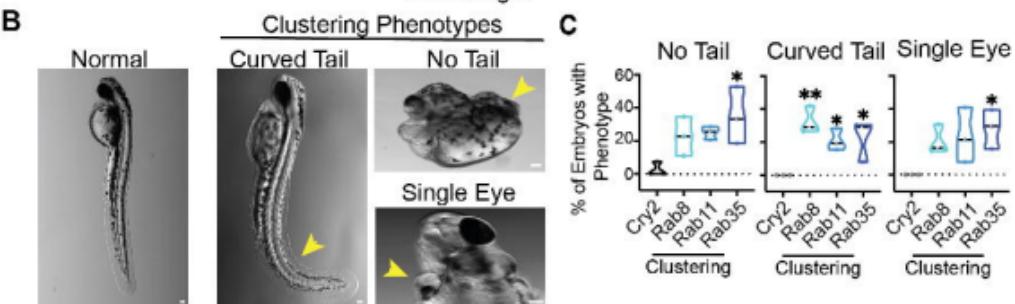
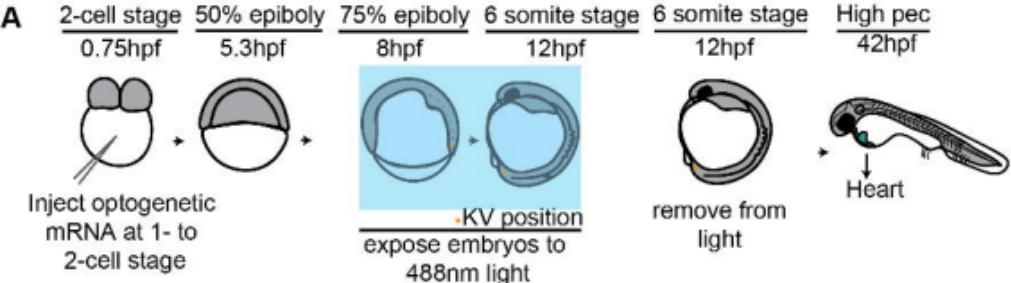

Figure 2.


B Rab11 Clustering, CIB1-mCh-Rab11+CRY2



Rab8 Clustering, CIB1-mCh-Rab8+CRY2


Rab35 Clustering, CIB1-mRuby-Rab35+CRY2


C





Figure 3.

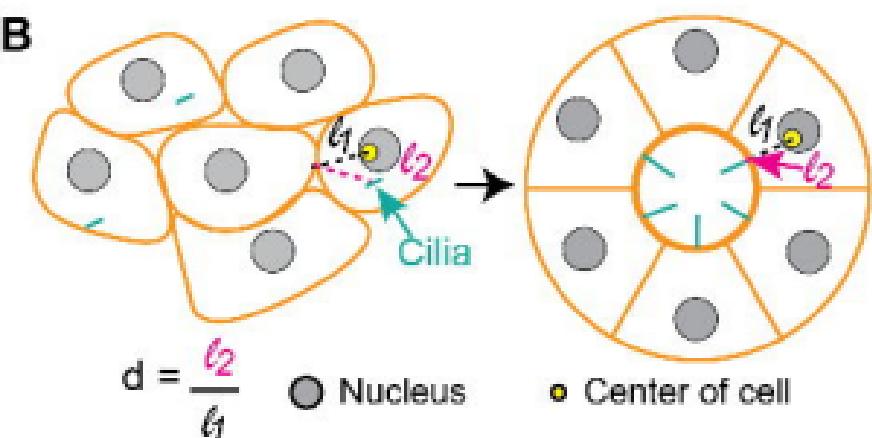
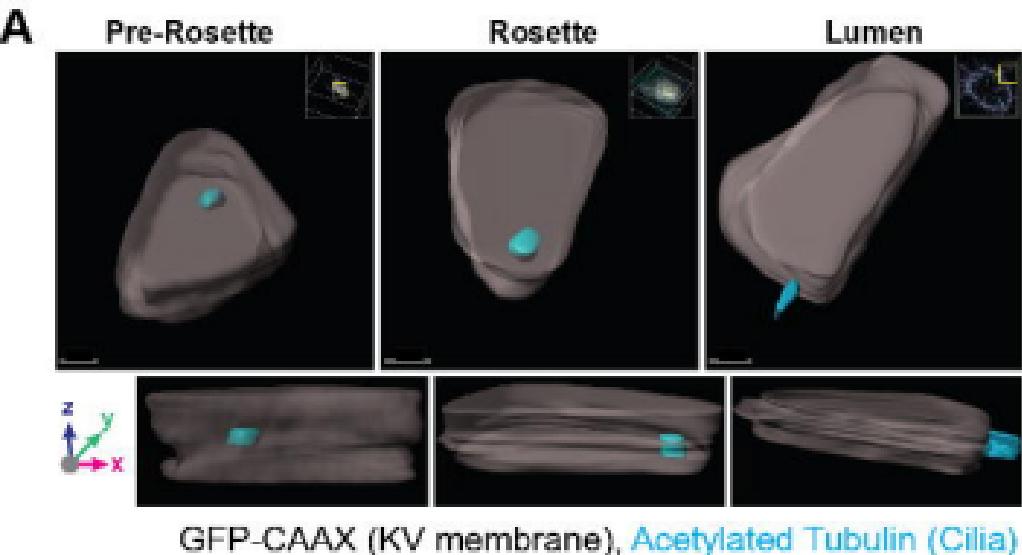


Figure 4.

Figure 5.

Figure 6.

Figure S1.

mCh-Rab11, GFP-CAAX

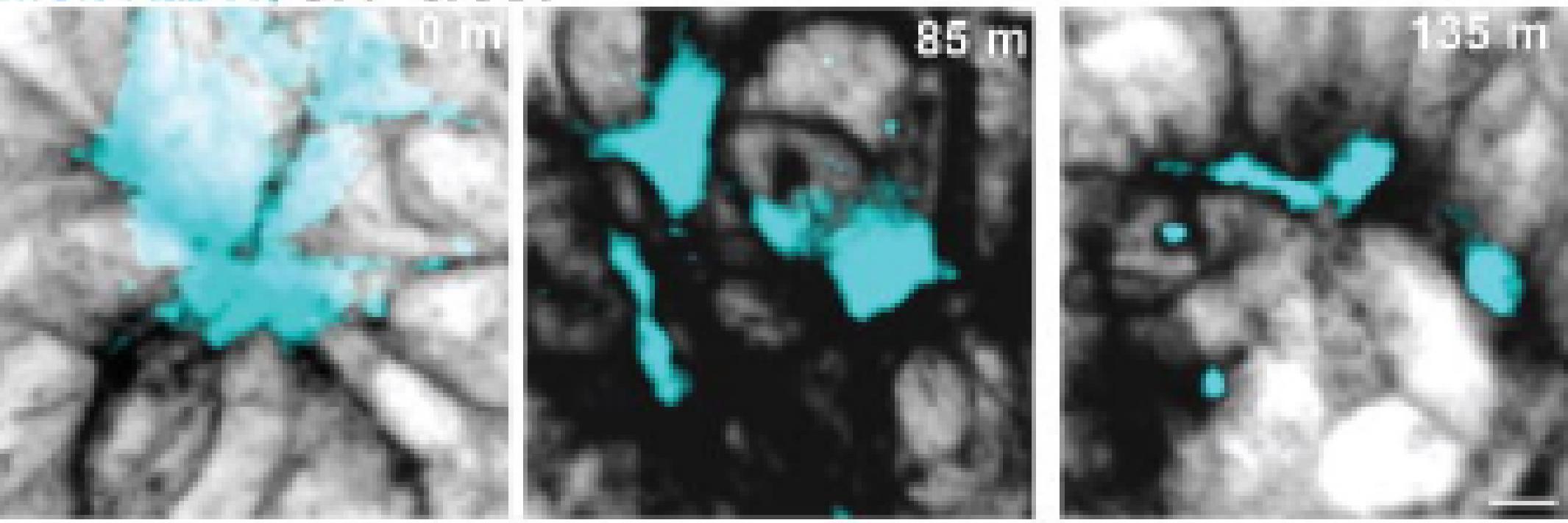
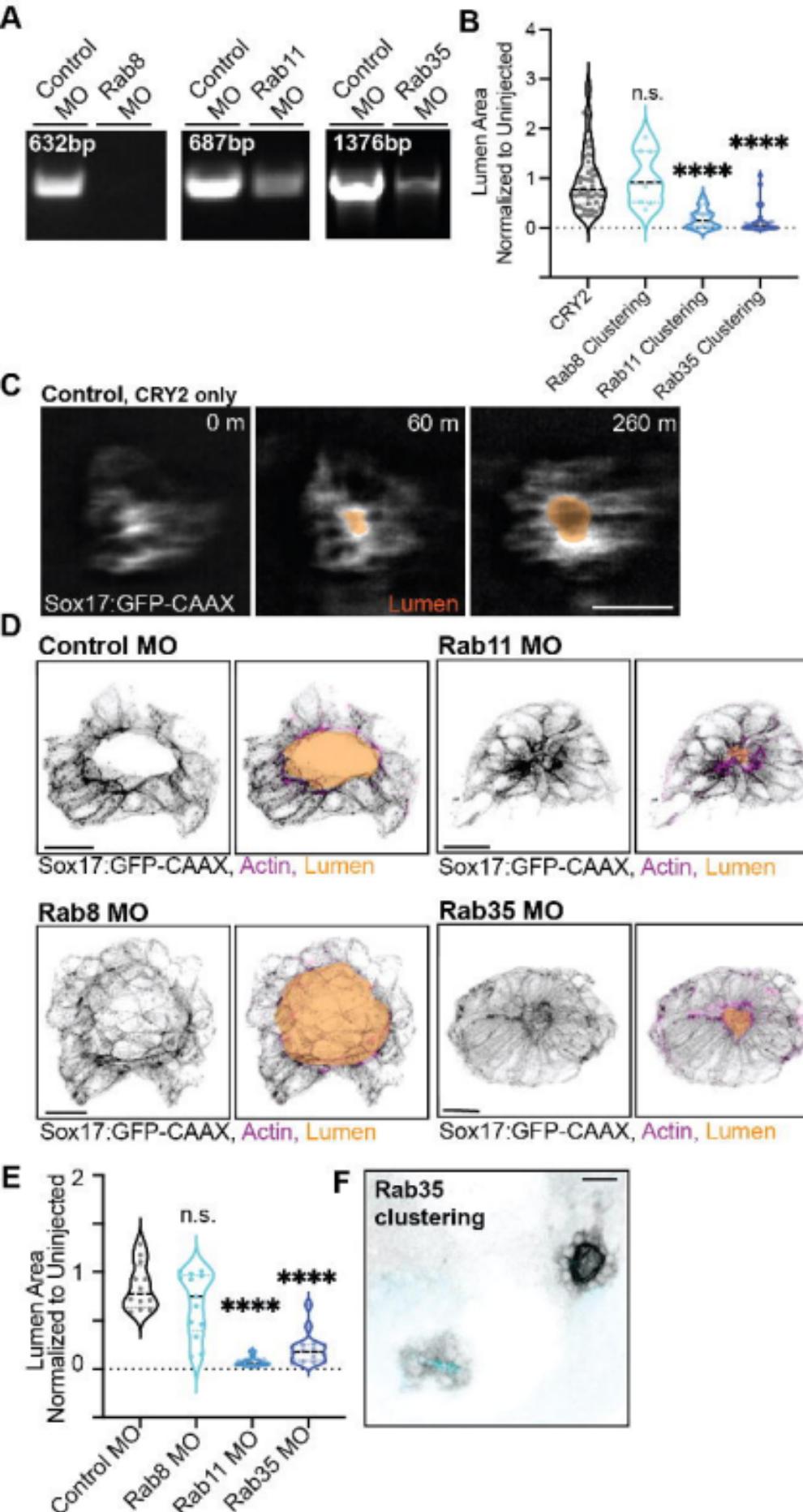
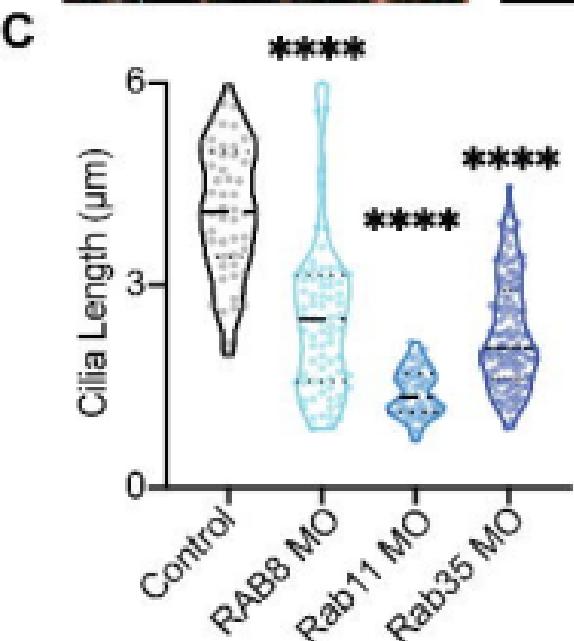
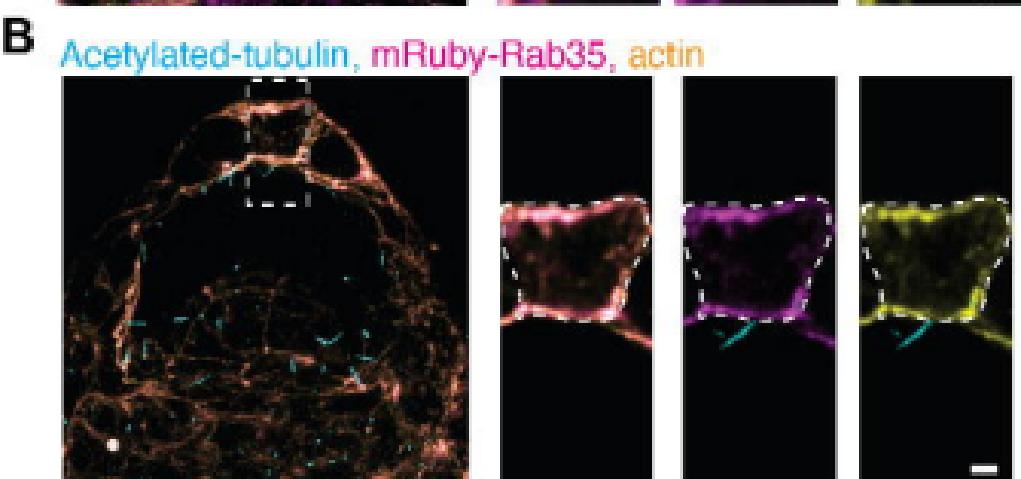
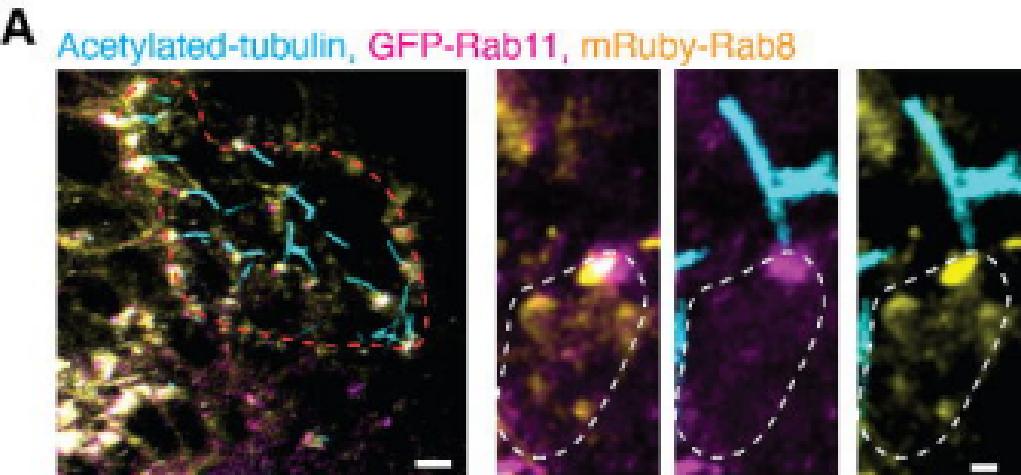






Figure S2.

Figure S3.

Figure S4.