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Abstract

Complex life-cycles – that is, organismal development that unfolds across ecological
niches – are pervasive in nature. In this work we set out to investigate the effects of
complex life-cycles on the potential for diversification via evolutionary branching. We
did this by analyzing a mathematical model of a consumer with two life-stages, each of
which is characterized by a specific feeding efficiency trait that undergoes evolutionary
change in response to ecological conditions such as resource competition. We find (i)
that life-cycle complexity can favor diversification when compared to simple life-cycles,
as there is a larger potential for evolutionary branching in the trait of the life-stage
that has a higher population density; (ii) that evolution favors character displacement to
minimize intra-stage resource competition; and (iii) that under certain parameters more
than one evolutionary branching event can occur.
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Introduction

The potential effects of complex life-cycles on evolutionary branching have not yet been
investigated with mathematical models. We thus have no theoretical literature to inform
predictions against which to compare data. Herein, we propose to investigate the poten-
tial effects of complex life-cycles on biological diversification via evolutionary branching
by constructing and analyzing a multi-variate evolutionary model of a population of
consumers that undergo development in two distinct life-history stages (i.e. juveniles
and adults).

We know from the theoretical literature that negative frequency-dependent disrup-
tive selection, which can arise due to the interplay between organisms of a population
and their environment, is an important element driving phenotypic diversification. Such
selection regime can result from frequency- and density-dependent interactions between
the organisms and their environment, so that the fitness landscape itself changes as the
population evolves. This can lead to the population reaching a fitness minimum. Fit-
ness minima that are attractors of the evolutionary dynamics are known as evolutionary
branching points (Geritz et al., 1998), where a population experiences disruptive selec-
tion. Under this regime, more divergent phenotypes are then favored over intermediate
ones (Rueffler et al., 2006b), which in turn leads to phenotypic diversification (Dieck-
mann and Doebeli, 1999; Dieckmann et al., 2004; Bolnick, 2006; Doebeli et al., 2007;
Pennings et al., 2008; Ripa, 2009). Branching points occur in many models in which fit-
ness is derived from ecological scenarios that account for resource and mate competition,
predation, pathogens, etc.

The phenomenon of evolutionary branching is well understood, under a variety of
different ecological scenarios, for simple cases where interactions are mediated by a
single quantitative trait in an unstructured life-cycle (Kisdi and Geritz, 1999; Doebeli
and Dieckmann, 2000; van Doorn and Weissing, 2002; Rueffler et al., 2006a; Ma and
Levin, 2006; Pennings et al., 2008; Zu et al., 2011). More recently, advances have been
made in expanding our knowledge under what conditions we can expect evolutionary
branching to occur when considering suites of co-evolving traits that interact in their
effects on fitness (Doebeli and Ispolatov, 2010; Débarre et al., 2014; Svardal et al., 2014;
Geritz et al., 2016; Vasconcelos and Rueffler, 2020). But this too is under the assumption
of an organism with a single life-history stage.

However, the developmental trajectories through which organisms move from em-
bryos to adulthood are spectacularly diverse. More than half of the earths biodiversity
have a life-cycle which can be classified as complex – that is, one in which individuals
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undergo some type of ontogenetic niche shift (Hall and Wake, 1999; Wilbur, 1980; Werner
and Gilliam, 1984; Werner and Hall, 1988), making this the most widely used life-history
strategy among animals (Truman and Riddiford, 1999). For instance, arthropods and
fish – two of the groups that include most organisms with this form of complex life-
cycle – account for more than 85% of all animal biomass (Bar-On et al., 2018). Myriad
organisms – among them insects, fishes, amphibians, mollusks, crustaceans, cnidarians,
echinoderms – undergo metamorphosis, the most dramatic of life-cycles. Metamorpho-
sis is an ancestral trait in amphibians, but in insects it is a derived state. It evolved only
once from forms that underwent more direct development(Truman and Riddiford, 1999;
Truman, 2019), and, in insects, metamorphosis seems to be an irreversible trait, with
no known cases of reversions to ametabolous or hemimetabolous development (Yang,
2001). Metamorphosis is radical in that it entails the appearance of different body parts,
remodelling of organs and restructuring of body plan between larval and adult forms,
who can inhabit environments as disparate as aquatic and terrestrial.

The radically different morphologies in larval and adult stages of metamorphosing
animals amount to specific feeding, locomotive, physiological, and behavioral adapta-
tions, which means they occupy distinct ecological niches and interact with different
sets of prey and predators. This implies that each life-stage is under discrepant selective
pressures, and the empirical evidence points to a sharp decoupling of traits and their
evolutionary trajectories across the life-cycle (Wollenberg Valero et al., 2017; Sherratt
et al., 2017).

But complex life-cycles can encompass more than the extreme case of metamorphosis.
Hemimetabolous insects and some fish (McMenamin and Parichy, 2013), while retaining
their body plans throughout life-stages, undergo morphological changes to their feeding
apparatuses related to dietary intake. For instance, the nymphs of dragonflies possess a
prognathous head with prominent labial hooks adapted for catching aquatic prey. But
the adults are flying predators who catch their prey mid-air with their front legs, which
are located below their heads. This requires a different adaptation, and their heads
develop into a hypognathous orientation so they can bring food up into their mouths
(Popham and Bevans, 1979).

Such ubiquity begs for an explanation, which, in evolutionary biology tends to be
adaptive. It is widely thought that complex life-cycles, by facilitating trait decoupling
among life-stages (Moran, 1994; ten Brink et al., 2019), accrues some important poten-
tial benefits: complex life-cycles can (i) reduce resource competition between juveniles
and adults (Ebenman, 1987; Truman and Riddiford, 1999); (ii) facilitate colonization of
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seasonally available (Istock, 1967; Slade and Wassersug, 1975) or newly arisen niches
(Rainford et al., 2014) by the different life-stages; and (iii) foster a life-cycle ”division of
labor” between juveniles focused on growth, and adults focused on dispersal and re-
production, allowing each to optimise their function independent of the other life-stage
(Bryant, 1969; Ebenman, 1992; Rolff et al., 2019). These benefits are clearly illustrated for
the case of metamorphosis.

As seen in the above exposition, the role of ecology features prominently in some hy-
potheses about the evolution of complex life-cycles. And due to eco-evolutionary feed-
backs, we can wonder: what are the effects of complex life-cycles in ecosystems? The
more recent theoretical literature has furnished us with knowledge of the highly complex
population dynamical behavior of systems in which an ontogenetic niche shift occurs.
Schreiber and Rudolf (2008) give us one of the first detailed explorations of this phe-
nomenon, where they show that, when each life-stage of an organisms with a complex
life-cycle uses a different ecological niche for resource acquisition, they effectively couple
these ecosystems in complicated ways that defy intuition. For example, by increasing
juvenile habitat productivity, juveniles have more energy to invest in maturation, which
causes a dramatic increase in the adult population. This, in turn, increases intra-stage
competition among adults, who now fail to acquire enough resources to invest in repro-
duction, leading to a dramatic decrease in juveniles. By increasing or decreasing model
parameters such as consumer feeding efficiency, mortality, and resource carrying capac-
ities, alternative stable states appear, where the distribution of the consumer population
at equilibrium can abruptly shift from being dominated by juveniles to being dominated
by adults, or vice-versa. This occurs because of a positive feedback loop such as the one
described above (Nakazawa, 2011, 2015) .

Given how widespread complex developmental programs are among most animals,
their intricate effects on population and community structures, it is crucial to ask how do
these sharp phenotypic and ecological differences between the life-history stages affect
macroevolutionary patterns such as phenotypic diversification – and, further along the
evolutionary timescale, speciation? As we have mentioned, the interactions between or-
ganisms that undergo metamorphosis and their environment are mediated by separate
sets of traits in the different life-stages (Wells, 2007), so it is easy to see that ecolog-
ical opportunity can present itself either to the larval stage, the adult stage, or both
simultaneously. Therefore, disruptive selection can, in principle, emerge at each of these
life-stages independently.

This begs the question: is the potential for evolutionary branching in such organisms
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more likely to be driven by interactions at either one of the life-stages, or at both equally?
Evolutionary branching could potentially occur in traits that are manifested in strictly
distinct stages of the life-history cycle, whereby the following evolutionary outcomes are
logically possible: (i) diversification occurring in only one of the life-stages such that
the population becomes polymorphic at either the juvenile or the adult stage while all
lineages share the same trait at the other life-stage (e.g., different species use different
resources during their larval stage but not during their adult stage), (ii) diversification
into two lineages occurring simultaneously at both life-stages, such that individuals of
one lineage use different resources at both life-stages compared to individuals of the
other lineage, (iii) diversification occurring in both life-stages such that no two lineages
share the same resources at both life-stages.

So, we ask, what are the potential evolutionary outcomes of disruptive selection in
organisms with complex life-cycles and how are they affected by these intricate inter-
actions across trophic levels? We look at the case that disruptive selection is driven by
competition where each life-stage competes for two stage-specific resources, under the
assumption that there is a trade-off in performance for feeding on each resource. We
investigate these questions under the framework of Adaptive Dynamics (Geritz et al.,
1998), in which the fitness function of phenotypes is derived from explicit ecological sce-
narios, taking into account frequency dependent interactions. The juveniles and adults
in this model can be thought of as different modules in the sense of holometabolous
insects who do not share resources at all, and thus have no inherent genetic or develop-
mental constraints in how they can evolve independently. We hypothesize that complex
life-cycles have the potential to lead to evolutionary branching occurring in juveniles and
adults independently, which translates to higher diversification rates.

Model

We first describe a population dynamical model of a consumer species with two life-
stages that feeds on two different resources at each of these stages. We then continue by
adding mutant consumers to this community and describe how – based on the invasion
success of such mutants – the long-term evolutionary dynamics of juvenile and adult
resource feeding traits can be inferred.
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Population dynamics

To investigate the set of questions posed above, we consider an extension of the model by
Schreiber and Rudolf (2008) in which consumer species undergo an ontogenetic niche
shift, meaning the juvenile and adult stages each live in different habitats where they
acquire non-overlapping resources. The juveniles, denoted by J, feed on two juvenile
specific resources, R1,J and R2,J ; and the adults, denoted by A, feed on two adult spe-
cific resources, R1,A and R2,A. In the absence of consumers, the resource species on
which juvenile and adult consumer feed grow logistically with intrinsic growth rates rk,J

and rk,A to carrying capacities Kk,J and Kk,A (k ∈ {1, 2}). Both juvenile and adult con-
sumers deplete resources according to a linear functional response with resource and
life-stage specific feeding efficiencies ak,J and ak,A. Juvenile individuals mature at a rate
proportional to the amount of resources consumed by juveniles where the constant of
proportionality is given by the resource specific juvenile conversion efficiencies ck,J . Sim-
ilarly, adults give birth at a rate proportional to the amount of resources consumed by
adult individuals where the constant of proportionality is given by the resource specific
adult conversion efficiencies ck,A. Finally, adult and juvenile consumer species die at
death rate dJ and dA, respectively. The dynamics of this system is given by

dR1,J

dt
= R1,Jr1,J

(
1−

R1,J

K1,J

)
− JR1,Ja1,J (1a)

dR2,J

dt
= R2,Jr2,J

(
1−

R2,J

K2,J

)
− JR2,Ja2,J (1b)

dR1,A

dt
= R1,Ar1,A

(
1− R1,A

K1,A

)
− AR1,Aa1,A (1c)

dR2,A

dt
= R2,Ar2,A

(
1− R2,A

K2,A

)
− AR2,Aa2,A (1d)

dJ
dt

= A(c1,Aa1,AR1,A + c2,Aa2,AR2,A)− J(c1,Ja1,J R1,J + c2,Ja2,J R2,J)− JdJ (1e)

dA
dt

= J(c1,Ja1,J R1,J + c2,Ja2,J R2,J)− AdA. (1f)

To simplify the population dynamical model we follow previous authors (MacArthur,
1984; Ackermann and Doebeli, 2004) and assume that the dynamics of the resources
occur at a faster time-scale than that of the consumers, such that resource densities are
always at a quasi-equilibrium determined by the abundance of consumers. This allows
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us to re-write the dynamics of the consumer species as dJ
dt
dA
dt

 =

(
−m− dJ b

m −dA

)(
J
A

)
, (2)

where

m = c1,Ja1,J R̂1,J(t) + c2,Ja2,J R̂2,J(t), (3a)

b = c1,Aa1,AR̂1,A(t) + c2,Aa2,AR̂2,A(t) (3b)

are the maturation and birth rate, respectively. Here, the R̂(t)’s denote the value of
the resource quasi-equilibria at time t, which are functions of the densities and feeding
efficiencies of all consumer species. See Appendix S1 for a full derivation.

Schreiber and Rudolf (2008) showed that this model can exhibit complex population
dynamics including limit cycles and alternative stable states. We here restrict ourselves
to parameter combinations that result in unique, strictly positive, and stable fixed point
equilibria. Depending on model parameters, the population at equilibrium can be dom-
inated by juvenile individuals, adult individuals or the number in the two stages can be
equal. We analyze each of these scenarios separately as they qualitatively impinge on
our results.

Evolutionary dynamics

We assume that juveniles and adults can evolve in their feeding efficiencies ai,J and ai,A,
and that there are stage-specific trade-offs such that performing better at one resource
in one life-stage comes at the expense of performing worse at the other resource during
the same life-stage. That is, there is a trade-off between the ability to feed on juvenile
resource 1 and 2, and another trade-off between the ability to feed on adult resource 1
and 2, but no trade-off between an ability to feed as a juvenile and as an adult. Many
organisms with complex life cycles undergo significant changes in their bauplan, and
we assume that juvenile and adult traits are coded by independent sets of genes with no
pleiotropic effect on the foraging trait at the other life-stage.

The boundary of the set of feasible phenotypes can be described by a trade-off curve.
We assume that evolution has reached this constraint and from now on moves along
this boundary, which we parametrize as a trade-off curve as shown in Figure 1. Its
curvature determines the strength of such trade-off, meaning whether for each unit of
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gain in performance for one resource there is a small or large loss in performance for
the other. This curvature is determined by the parameters zJ and zA for the juvenile
and adult trade-off, respectively. The linear trade-off separates the set of concave trade-
off curves, determined by zJ > 0 and zA > 0, respectively (weak trade-offs) from the
set of convex trade-off curves, determined by zJ < 0 and zA < 0, respectively (strong
trade-offs). We parametrize the trade-off curves in a specialization coefficient, denoted
θJ for juveniles and θA for adults, and collect them in the two dimensional trait vector
θ = (θJ , θA). The parametrization of the trade-off curves is such that θJ = 0 corresponds
to a specialist for juvenile resource 1, θJ = 1 to a specialist for juvenile resource 2,
and θJ = 0.5 to the generalist that is equally specialized for both juvenile resources,
and the same applies to the adult trait θA and adult resources. We consider these two
specialization coefficients as the evolving traits in each life-stage, so that a1,J and a2,J are
functions of θJ , and a1,A and a2,A are functions of θA. In contrast to many other studies
using trade-off curves (e.g. Levins, 1962; Rueffler et al., 2006a; Vasconcelos and Rueffler,
2020) we parametrize the trade-off curve such that feeding efficiency for the generalist
is independent of the trade-off curvature (all curves in Figure 1 pass through the same
point). The reason is that for our purpose it is useful to be able to vary the curvature
of the trade-off curve without affecting the values of the population dynamic equilibria
of a generalist consumer species. For the formula used to parametrize the trade-offs we
refer to Appendix S2.

We study the evolutionary trajectories of the traits θJ and θA using the framework of
adaptive dynamics (Metz et al., 1996; Geritz et al., 1998), which is based on the technical
assumptions rare mutations occurring in very large population. The former assumption
implies that resident populations reach their demographic attractor before a new mutant
appears, while the latter assumption allows us to ignore the possibility that deleterious
mutations increase in frequency due to drift. For simplicity, we assume clonal organ-
isms, an assumption that does not affect the course of the monomorphic evolutionary
dynamics. Individual based simulations have shown that the conclusions derived from
this framework are usually robust to violations of its assumptions (Champagnat et al.,
2006; van Doorn et al., 2009; Svardal et al., 2014; Vasconcelos and Rueffler, 2020). We
denote the resident’s trait values θr

J and θr
A, and the mutant’s θm

J and θm
A .

The population dynamics of a mutant sub-population when rare is given by dJm

dt
dAm

dt

 =

(
−m(θm

J , θr)− dJ b(θm
A , θr)

m(θm
J , θr) −dA

)(
Jm

Am

)
, (4)
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Feeding efficiency (a)

0.001 0.002 0.0030

0.001

0.002

0.003
(θ)

z  = -2z  = -1 z = 0z  = 1
z  = 2

= 0.5θ
= 0θ

= 1θ

a2

a1(θ)

Figure 1: Trade-off curves for the two resource specific feeding efficiencies as determined by
equation (S8). The same trade-off parametrization is used for both the two juvenile and the two
adult feeding efficiencies and the subscripts J or A are omitted here for brevity. Trade-off curves
are parametrized such that θ = 0 corresponds to a specialist for resource 1 (triangle), θ = 1 to
a specialist for resource 2 (square), and θ = 0.5 to the generalist that is equally specialized for
both resources 1 and 2 (circle). The parameter z gives the strength of the trade-off, where z < 0
corresponds to a strong trade-off and z > 0 corresponds to a weak trade-off. The generalist
strategy is fixed at agen = 0.001 regardless of trade-off curvature, which allows us to investigate
the effects of varying the trade-off geometry without concern for unwanted effects on population
composition and dynamical stability.
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where

m(θm
J , θr) = c1,Ja1,J(θ

m
J )R̂1,J(θ

r) + c2,Ja2,J(θ
m
J )R̂2,J(θ

r), (5a)

b(θm
A , θr) = c1,Aa1,A(θ

m
A )R̂1,A(θ

r) + c2,Aa2,A(θ
m
J )R̂2,A(θ

r) (5b)

are the maturation and birth rate, respectively. Here, R̂i,J(θ
r) and R̂i,A(θ

r) denote the
densities of the resources at equilibrium of equation (1) for a resident species with trait
vector θr = (θr

J , θr
A). Note that the functions m and b depend on the traits of both

mutant and resident, because the resource densities at equilibrium are determined by
the resident phenotype, while the mutant’s phenotype determines its ability to perform
in the environment set by such resident.

The dominant eigenvalue of the matrix on the right-hand side of equation (4), de-
noted by w(θm, θr), describes the mutant’s expected per capita growth rate while rare in
a resident population at equilibrium. Its expression is given by equation (S13) in Ap-
pendix S3. This growth rate is called invasion fitness (Metz et al., 1992). If w(θm, θr) < 0,
then the mutant will certainly go extinct. More interestingly, the mutant has a positive
probability of invading the resident population if w(θm, θr) > 0. Furthermore, if the
mutant’s trait vector θm is sufficiently close to the resident’s trait vector θr, then success-
ful invasion implies that the mutant will ultimately replace the resident (Dercole and
Rinaldi, 2008), resulting in a trait substitution.

Adaptive dynamics (Metz et al., 1996; Dieckmann and Law, 1996; Geritz et al., 1998)
is a method to study the dynamics of such trait substitution sequences. The direction of
evolutionary change depends both on the mutations occurring in a population and on
the direction in trait space showing the steepest increase of the fitness landscape, given
by the selection gradient S(θr) = (SJ(θ

r), SA(θ
r))T with components

Sl(θ
r) =

∂w(θm, θr)

∂θm
l

∣∣∣∣
θm=θr

, (6a)

where l stands for J and A. Trait vectors θ∗ = (θ∗J , θ∗A) that make both components
of S(θr) zero simultaneously are referred to as singular points and we denote them
with an asterisk superscript. In multidimensional trait spaces a full classification of the
possible evolutionary dynamics in the neighborhood of singular points is in general
complex due to the dual dependence on the mutational input and the fitness landscape
(Leimar, 2009; Geritz et al., 2016; Vasconcelos and Rueffler, 2020). However, for our
model this classification is in fact straightforward since, as our analysis shows, it is not
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affected by the details of the mutational input (see Appendix S3 for details). Biologically
speaking, the reason is that the effect on fitness of mutations changing the juvenile trait
are independent of mutations changing the adult trait. At singular points these traits
show no pleiotropic interactions in the sense of Débarre et al. (2014).

In our model, singular points θ∗ are of one of three types. First, if θ∗ is an attractor
of the evolutionary dynamics (also called convergence stable) and no nearby mutant
can invade a resident population characterized by the singular strategy, then θ∗ is an
endpoint of the evolutionary dynamics. Second, if θ∗ is convergence stable but invadable
by some nearby mutants, then θ∗ is called an evolutionary branching point. This is the
case we are most interested in. At such points, mutants do not replace the residents with
the singular trait value, but can coexist with them, and the population changes from
monomorphic to dimorphic. Each lineage then experiences selection in an opposing
direction, resulting in increased phenotypic divergence. Third, a singular point can be
a repellor of the evolutionary dynamics in which case it is never reached by gradual
evolution.

We analyze the evolutionary dynamics of the traits θJ and θA in two steps. First,
we investigate the evolutionary dynamics of these traits independent of each other by
keeping one of the traits fixed and determine the location and evolutionary properties of
the singular points for the other trait. This analysis, which is based on the analytical and
numerical calculations described in the Appendices S3 and S4, allows us to compare the
conditions for evolutionary diversification in the two life-stages.

In the second analysis, we study the co-evolutionary dynamics of θJ and θA. The
focus is to investigate the final phenotypic composition of evolved communities. This
analysis is based on stochastic computer simulations (whose algorithm is described in
Appendix S5) that take into account that the direction and speed of evolution of differ-
ent lineages is affected by demographic stochasticity during the establishment of new
mutants.

For simplicity, we focus on symmetric parameter values such that c1,J = cJ = c2,J ,
c1,A = cA = c2,A, r1,J = rJ = r2,J , r1,A = rA = r2,A, K1,J = KJ = K2,J , and K1,A =

KA = K2,A. We do, however, also investigate a case in which allow for asymmetry in the
resource growth rates.

Full symmetry enforces that the trait vector θ∗ = (θ∗J , θ∗A) = (0.5, 0.5), for which
the consumer population is a perfect generalist for both resources at both life-stages, is
a singular point. We investigate the evolutionary dynamics at this singular point for
three different sets of parameters, resulting in a consumer population (i) dominated
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Table 1: Parameter values used to produce Figures 2-5.

Juvenile Adult Equal
cJ 0.25 0.5 0.25
cA 0.5 0.5 0.5
dJ 0.6 1 1
dA 1 1 1
KJ 1500 3000 3000
KA 3000 3000 3000
rJ 6 6 6

r1,J 4 4 4
r2,J 8 8 8
rA 6 6 6

r1,A 4 4 4
r2,A 8 8 8

by juvenile individuals, (ii) dominated by adult individuals, and (ii) consisting of an
equal number of juvenile and adult individuals. We use the parameters in Table 1 to
obtain the different population dynamical regimes, resulting in a ratio of juvenile to
adult individuals at equilibrium at the generalist singular point equal to 2.4 and 0.43 for
the juvenile and adult dominated case, respectively.

Results

One-dimensional evolutionary dynamics – The symmetric case

In this section, we analyze the evolutionary dynamics of each trait under the thought
experiment that the other trait is fixed at the generalist trait value θ = 0.5. Figure 2
shows bifurcation diagrams for the singular points of each trait as a function of the
corresponding trade-off curvature. The evolutionary dynamics when restricted to one
trait at a time are largely in agreement with the results of comparable earlier studies
investigating single trait evolution (Ma and Levin, 2006; Rueffler et al., 2006a; Zu et al.,
2011; Vasconcelos and Rueffler, 2020).

First, due to symmetry the generalist trait value is always a singular point, but more
than one singular point can exist for strong trade-offs (z < 0). Second, the generalist
singular point is always an evolutionary endpoint for weak trade-offs (z > 0). Third,
singular points for strong trade-offs are always invadable. Fourth, the generalist singular
point changes from an evolutionary endpoint to an evolutionary branching point where
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trade-offs change from weak to strong (at z = 0). When evolutionary branching occurs
the two emerging lineages evolve to become perfect specialists for the two different
resources. Fifth, the generalist singular point can change from an evolutionary branching
point to an evolutionary repellor for very strong trade-offs (z << 0).
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Figure 2: Bifurcation diagrams for the case that only the juvenile or only the adult trait evolves
while the non-evolving trait is fixed at the generalist strategy. Parameters (see Table 1) are
symmetric within each life-stage and give rise to a juvenile dominated population in panel (a)
and (b), to an adult dominated population in panel (c) and (d) and to equal population sizes for
juveniles and adults in panel (e) and (f). The x-axis gives the curvature parameter zJ in panels
(a), (c) and (e), and the curvature parameter zA in panels (b), (d), and (f). (continues on next page)
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Figure 2: (continuation from previous page) The y-axis gives the trait space of the evolving trait θJ

in panels (a), (c) and (e), and the trait space of the evolving trait θA in panels (b), (d) and (f).
The location of singular points is shown by colored lines, where black corresponds to a repelling
singular point, orange corresponds to an evolutionary branching point, and green corresponds to
an uninvadable attracting singular point. Arrows indicate the direction of the selection gradient.

Importantly, when comparing the bifurcation diagrams for our different demographic
scenarios, we find that the interval for which the generalist singular point is an evolution-
ary branching point is larger for the trait corresponding to the more abundant life-stage
(compare figure 2a&b with c&d).

Indeed, in Appendix S4 we prove that the interval of trade-off curvatures for which
the generalist singular point is an evolutionary branching point is larger for the adult
trait than for the juvenile trait if the ratio of adult to juvenile equilibrium population
size is larger than the ratio of adult to juvenile resource growth rate, Â/ Ĵ > rA/rJ , and
smaller if the opposite inequality holds true (note that we assume rJ = rA in Table 1).
As a corollary, when both juvenile and adult population densities are identical, evolu-
tionary branching occurs for identical intervals of trade-off curvatures in the two traits
(figure 2e&f). The fact that the trait of the more abundant life-stage always has a larger
interval of trade-off curvatures that lead to evolutionary branching shows that stronger
competition favors diversification.

We also find patterns that were not known from previous theoretical studies of re-
source specialization for two discrete resources. For some intervals of convex trade-off
curvatures up to five singular points exist simultaneously (figure 2c&e), while for other
intervals a repelling generalist singular point is flanked on each side by a branching point
(figure 2b,c&e). In the latter case, populations evolve away from the generalist strategy
and become dimorphic at a singular point that corresponds to incomplete specialization
for one of the resources.

Two-dimensional evolutionary dynamics – The symmetric case

Figure 3 shows the simulated evolutionary dynamics for the co-evolving juvenile and
adult trait values under different population dynamical regimes for different trade-off
curvatures and symmetric parameter values as shown in Table 1. The focus of this
analysis is to study the pattern of evolved communities after evolutionary branching.
Under symmetric parameter values, we find that at most one branching event takes
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place resulting in two coexisting phenotypes. It is easy to show that on an ecological
time scale three phenotypes can coexist, but results by Saltini et al. (2022) show that such
communities are not attainable through gradual evolution and other processes such as
immigration have to be invoked.

For certain combinations of trade-off curvatures we can infer the outcome of the
co-evolutionary dynamics of the juvenile and adult trait from the analysis of the inde-
pendently evolving trait presented in the previous section. First, if both trade-offs are
weak (zJ , zA > 0), then θ∗ = (θ∗J , θ∗A) = (0.5, 0.5) is a unique singular point. This sin-
gular point is both convergence stable and uninvadable, and therefore the population
is expected to eventually consist of a single species that is a perfect generalist at both
the juvenile and adult stages. This outcome is evident from the fact that evolution of
each trait in isolation is predicted to evolve to the generalist trait value (green lines in
Figure 2) and that the two traits do not interact in their effect on fitness (as shown in
Appendix S3). This is in contrast to results by Vasconcelos and Rueffler (2020, Chapter
1) who report that a co-evolutionary singular point can be a branching point even if both
traits in isolation evolve to an uninvadable singular point (compare their Figure 4 and
5e).

Second, when a weak trade-off in one trait is combined with a strong trade-off in
the other trait, such that the trait with the strong trade-off approaches a branching point
when evolving in isolation (for instance, Figure 2a&b for zJ < 0 and zA > 0), then
evolutionary branching occurs in one life-stage while individuals in the other life-stage
all adopt the generalist trait value. Thus, the population becomes polymorphic at only
one of the two life-stages (Fig 3a). This outcome is evident because convergence stability
and uninvadability at the generalist of the trait corresponding to the weak trade-off is
unaffected by the evolutionary dynamics at the other trait (equations S18 and S20 in
Appendix S3).

Third, when a weak trade-off in one trait is combined with a strong trade-off in the
other trait such that the trait with the strong trade-off has a single repelling singular
point (for instance, Figure 2a&b for zJ > 0 and zA < 0.6), then evolution results in a
single species that is a specialist for one resource at one life-stage and a generalist at the
other life-stage (Figure 3b). The reasoning for this outcome is identical to the one given
for the previous case.

Fourth, when two strong trade-offs are combined such that one trait evolves toward
a branching point while the other trait has only a single repelling singular point (for
instance, Figure 2a&b for zJ < 0 and zA < 0.6), then the outcome can depend on the
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specifics of the case. In principle, the evolutionary dynamics of one trait can affect
whether a singular point for the other trait is an evolutionary branching point or repel-
lor. This can happen since the trait value at one stage affects the other, and evolutionary
branching requires strong high population densities resulting in strong competition. Fig-
ure 3(c) shows a case where the evolutionary dynamics results in two species, both of
which are a specialized for the same resource at one life-stage and specialized for alter-
native resources at the other life-stage.

The single case that we have not analyzed so far is that of two strong trade-offs such
that both traits in isolation evolve toward a branching point. Under this scenario, we
always find that a single branching event takes place resulting in two resource specialists
for mutually exclusive sets of resources, and therefore always occupy either the diagonal
or anti-diagonal corners of the trait plane. In the following we highlight three such
cases. Figure 3(d) shows the case for a juvenile dominated population with zJ = −1.5
and zA = −0.4. Thus, when evolving in isolation both traits have a branching point
at the generalist strategy (horizontal orange lines in Figure 2a&b). We observe that
the population first evolves to the vicinity of the co-evolutionary singular point θ∗ =

(0.5, 0.5) and then branches in a diagonal direction. Inspecting many simulation runs,
we find that branching results equally often in a diagonal and an anti-diagonal trait
distribution, determined by the stochasticity inherent in our simulation algorithm at the
stage of the establishment of the next successful mutant.

Figure 3(e) shows the case for an adult dominated population with zJ = −1.5 and
zA = −0.5. For these trade-off curvatures, when evolving in isolation, the juvenile trait
evolves to one of the branching points that flank the repelling generalist trait value while
the adult trait value evolves toward the branching point at the generalist trait value (Fig-
ure 2c&d). Since our starting trait vector equals (θJ , θA) = (0.4, 0.4), the juvenile trait
value initially decreases while the adult trait value initially increases. Once the popula-
tion has evolved a trait vector approximately equal to (θJ , θA) = (0.7, 0.5), diversification
occurs first in the direction of the adult trait and later also in the juvenile trait value.

Finally, Figure 3(e) shows the case for a population consisting of an equal number of
juveniles and adults. The trade-off curvatures are zJ = −0.5 = zA. In this case, both
traits in isolation evolve to a branching point at the generalist trait value (horizontal
orange lines in Figure 2e&f). Repeating simulations results in an equal proportion of
runs with a diagonal and an anti-diagonal trait distribution.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2022. ; https://doi.org/10.1101/2022.08.31.506002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506002
http://creativecommons.org/licenses/by-nc-nd/4.0/


b) c)a)

t=0

t=350

t=500

d) e) f )

Figure 3: Evolution in the (θJ , θA) phase-plane under different population dynamical regimes
and for different trade-off curvatures. All parameters are symmetric as specified in Table 1. a)
Juvenile dominated population with zJ = −1 and zA = 0.5. b) Juvenile dominated population
with zJ = 0.5 and zA = −1.5. c) Juvenile dominated population with zJ = −1 and zA = −1.5. (d)
Juvenile dominated population with zJ = −1.5 and zA = −0.4. (e) Adult dominated population
with zJ = −1.5 and zA = −0.5. (f) Population consisting of an equal number of juveniles
and adults with zJ = −0.5 and zA = −0.5. Gray arrows indicated the direction of selection
for a monomorphic population as given by equation (S15) and colored lines show simulated
evolutionary trajectories starting from a population with trait vector (θJ , θA) = (0.4, 0.4). Each
circle represents a population in time after a successful mutation event, and colors indicate the
passage of time counted as successful mutations where dark blue is t = 0 and dark red is t = 500.

One-dimensional evolutionary dynamics – The asymmetric case

We introduce asymmetry into our model by assuming differences in the resource growth
rates such that r1,J < r2,J and r1,A < r2,A (see Table 1). This asymmetry breaks the
symmetry of the bifurcation diagrams (compare Figure 2 and 4) without qualitatively
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changing the results. The attracting generalist singular trait value of the symmetric
case is shifted towards the faster growing resource, resulting in partial specialization for
resource 2. Furthermore, the repelling generalist singular trait value is shifted towards
the slower growing resource. Taken together, this results in a larger basin of attraction
for the evolution of specialists for the faster growing resource 2.

Two-dimensional evolutionary dynamics – The asymmetric case

The co-evolutionary dynamics of the juvenile and adult trait under asymmetric parame-
ter values can result in qualitatively different evolutionary outcomes not observed under
symmetry. When both trade-offs are strong such that each trait in isolation evolves to-
ward an evolutionary branching point, then two branching events resulting in a final
community consisting of three species can occur. These species are complete specialists
and thus occupy three of the four corners of the phase plane. Under parameters for
which such trimorphic communities evolve, they do so in up to half of all simulation
runs.
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Figure 4: Bifurcation diagrams analogous to Figure 2 but now with asymmetry in the resource
growth rates (r1,J < r2,J and r1,A < r2,A).

Figure 5 shows three simulations that all result in three coexisting species. The
used parameters correspond to (a) a juvenile dominated population with zJ = −0.8
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and zA = −0.2, (b) an adult dominated population with zJ = −0.5 and zA = −0.5,
and (c) a population consisting of an equal number of juvenile and adults individuals
(given a resident population with (θJ , θA) = (0.5, 0.5)) with zJ = −0.5 and zA = −0.5.
The grey arrows describing the gradient under monomorphic evolution show that in all
three cases a single singular trait vector (θ∗J , θ∗A) exists, and that this singular point is
convergence stable (gray arrows point toward it). The position of these singular points
correspond well to those of the analysis for a single evolving trait (that is, the position
of the orange line in Figure 4 in the corresponding panel and for the corresponding
trade-off curvature). In all three simulations, the evolutionary trajectories start at the
trait vector (θJ , θA) = (0.4, 0.4) and move in the direction of the singular point. In the
juvenile dominated and equal population size case, the monomorphic evolutionary dy-
namics reaches the vicinity of the singular point where the population branches into
two lineages. The situation is different for the adult dominated case (Figure 5b). Here,
evolutionary branching occurs in the adult trait once the population has reached the
value of the adult singular trait value (θ∗A ≈ 0.3) but at a time when the juvenile trait
still experiences directional selection toward the juvenile singular trait value (θ∗J ≈ 0.95).
The initial direction of diversification is well predicted by the population composition,
that is, in the juvenile trait in the juvenile dominated case, in the adult trait in the adult
dominated case, and in a compound direction in the equal population size case.

In all three simulations, the lineage that first reaches the boundary of the trait space
undergoes a second branching event and the two lineages resulting from this event
undergo character displacement along that boundary. The final outcome is a community
consisting of three species. Due to the asymmetry inherent in this model, the final
composition of three-species communities is not affected by stochasticity and consistent
across simulation runs. This final community composition can be understood as follows.
Recall that r1,J < r2,J and r1,A < r2,A. Thus, the species located in the top right corner
of the phase plane is specialized for the faster growing resource at both life-stages while
the other two species are specialized for the faster growing resource in one life-stage and
for the slower growing resource at the other life-stage. The latter two species can coexist
with the specialist in the top right corner since each of them has one life-stage in which
it uses a resource exploited by no other species. The unoccupied corner corresponds to a
hypothetical species being specialized at the slower growing resource at both life-stages.
Such a species would not be able to exist in this community since both resources are
already used by species that have the advantage of utilizing a faster growing resource at
their other life-stage.
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Figure 5: Evolution in the (θJ , θA) phase-plane under different population dynamical regimes
and for different trade-off curvatures. Within stage resource growth rates are asymmetric as
specified in Table 1. (a) Juvenile dominated population with zJ = −0.8 and zA = −0.2. (b)
Adult dominated population with zJ = −0.5 and zA = −0.5. (c) Population consisting of an
equal number of juveniles and adults with zJ = −0.5 and zA = −0.5. Gray arrows indicated the
direction of selection for a monomorphic population as given by equation (S15) and colored lines
show simulated evolutionary trajectories starting from a population with trait vector (θJ , θA) =

(0.4, 0.4). Each circle represents a population in time after a successful mutation event, and colors
indicate the passage of time counted as successful mutations where dark blue is t = 0 and dark
red is t = 700.
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Discussion

In this paper we investigated the effects of complex life-cycles – defined as ”a life history
that includes an abrupt ontogenetic change in an individual’s morphology, physiology,
and behavior, usually associated with a change in habitat” (Wilbur, 1980) – on the poten-
tial for biological diversification via gradual evolution and evolutionary branching. We
found that life-cycle complexity is able to foster biological diversification via evolution-
ary branching due to the fact that the life-stage with higher population density is often
under a regime of disruptive selection, leading to divergent phenotypic changes related
to resource specialization.

Our model can be used as a framework to understand the diversification patterns
of organisms with complete metamorphosis, such as amphibians and holometabolous
insects, since we assume that the traits of juveniles and adults are determined by inde-
pendent and non-overlapping genetic mechanisms. This assumption is plausible when
referring to organisms that undergo metamorphosis. For example, Johansson et al. (2010)
found that while morphology and performance were correlated within larval and adult
stages of the frog Rana temporaria, performances were completely uncorrelated between
larvae and adults. This is supported by later findings of Wollenberg Valero et al. (2017),
who observed that genes related to the development of different morphological struc-
tures in the frog species Xenopus laevis and Mantidactylus betsileanus are expressed in
a highly phase-specific pattern, pointing to an uncoupling of phenotypic evolution be-
tween tadpoles and adults. Even more striking, Sherratt et al. (2017) found that many
species of Australian adult frogs and their tadpoles are, as they put it, ”evolving inde-
pendently”, indicating that they are under the influence of different selection regimes.
The tadpole and frog morphologies display contrasting evolutionary trajectories, with
the first showing highly convergent evolution and low levels of phylogenetic signal, in
opposition to the latter, where one can clearly discern clades.

Our initial hypothesis that complex life-cycles lead to higher diversification compared
to simple life cycles was partly confirmed. We found that, in the fully symmetric case,
there can only be one evolutionary branching event, such that gradual evolution cannot
lead to more than two coexisting specialist phenotypes. Saltini et al. (2022) found some-
thing similar in their explorations of community assembly. They found that many more
species can in principle coexist in trait space, but such communities are not attainable
through gradual evolution due to the fact that fitness peaks in the dynamic fitness land-
scape appear in distant locations. Two morphs competing for, e.g., the same juvenile
resource, will produce fewer adults through maturation than if each used a different
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juvenile resource. The same argument holds true for the adult stage, that is, two morphs
competing for the same adult resource will produce fewer progeny than if each used a
different adult resource. Thus, evolution favors minimizing intra-stage resource compe-
tition, thereby leading to configurations in the trait plane where specialists do not share
resources within a life-stage. The final combination of specialists (whether arranged di-
agonally or anti-diagonally in trait space) is stochastically determined by the sequence
of mutation steps. The aforementioned gives evidence that evolution favors character
displacement as a way to minimize overlap in resource sharing.

In the asymmetric case, however, due to differences in resource growth rates, we find
that gradual evolution can lead to two separate evolutionary branching events, resulting
in three coexisting specialist phenotypes. With the introduced asymmetry in within-
stage resource growth, a type that feeds on, e.g., a juvenile resource with lower growth
rate can make up for that by, as an adult, feeding on a resource with higher growth rate,
thus mitigating the effects of intra-stage competition at another stage. Since complete
symmetry in all relevant parameters is an artificial situation, we can expect that three
coexisting species occur much more often. The unoccupied lower left corner of the trait
plane corresponds to the specialist whose juvenile and adult resources have the lowest
combination of intrinsic growth. This means that this specialist cannot compete with the
two other specialists with whom it would share juvenile resource 1 or adult resource 1,
as it cannot make up for feeding on a worse resource at one stage by feeding on a better
resource at another stage. This is the reason why evolutionary branching via gradual
evolution does not lead to a four coexisting species – although these four specialist
phenotypes can coexist ecologically, meaning that a community of four specialists can
be assembled by a process of migration (Saltini et al., 2022).

Regardless of whether evolution in organisms with complex life-cycles leads to more
than one evolutionary branching event, the fact that the dominant life-stage has much
larger potential for branching seems indeed confirmatory that trait modularity favors
diversification. Without trait modularity resulting from complex life-cycles, only a small
subset of moderately strong trade-offs leads to evolutionary branching (Rueffler et al.,
2006a; Vasconcelos and Rueffler, 2020), the remaining trade-off strengths lead to either
one specialist or one generalist. But with complex life-cycles, the life-stage that domi-
nates the population will undergo evolutionary branching under any strong trade-off,
leading to two specialist phenotypes. And, with asymmetries in resource growth, there
can be a second branching event, leading to three phenotypes. Therefore, it is reasonable
to infer that the occurrence of double evolutionary branching events is fairly common.
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That strong trade-offs in resource use lead to divergent natural selection has been
documented in the empirical literature and, importantly, in organisms which undergo
ontogenetic niche shifts. For instance, Westneat (1994) documented a trade-off between
speed and force in labrid fishes feeding on either evasive fish prey or hard-shelled
mollusk prey, which translated to morphological and functional differences of the jaw.
Svanbäck and Eklöv (2003) also found trade-offs in feeding performance of perch which
relates their body size and shape to the prey type (benthic vs pelagic) that they feed on.
And Konuma and Chiba (2007) found strong trade-offs in feeding efficiency of the mala-
cophagous beetle Damaster blaptoides, who have two distinct morphotypes – one with an
elongated small head specialized in eating snails with thick shells and wide apertures,
and another with a stout large head specialized in crushing snails with soft shells and
small apertures.

Consistent with our model, there is also empirical evidence pointing to a positive
relationship between trait decoupling among life-stages – what some authors refer to as
modularity – and diversification. Such trait decoupling is accomplished with utmost effi-
ciency in metamorphosis, such that modularity is used as a proxy for life-cycle complex-
ity. Yang (2001) made a forceful case that modularity facilitates evolvability and adaptive
radiations. By comparing, according to four conceptually precise criteria, the historical
evolutionary patterns between the sister clades Eu- and Holometabola, he found that
the Holometabola had significantly higher rates of diversification than the less modular
Eumetabola (a group within the paraphyletic Hemimetabola). His hypothesis also pre-
dicted that higher modularity entails higher trait variation, for which some supporting
evidence is the presence, in the Holometabola, of much more diverse mouthpart types
compared to all of the Hemimetabola (Labandeira, 1997). And Rainford et al. (2014),
analyzing phylogenies of hexapod families, found that indeed an increase in the rate
of diversification was associated with the arising of complete metamorphosis, further
strengthening this hypothesis. In addition, they also showed that radiations within this
group are linked to the emergence and radiation of the angiosperms. Their findings
support the causal roles of both (i) metamorphosis as a key developmental innovation,
and (ii) evolutionary responses to newly arisen ecological opportunities as critical ingre-
dients driving adaptive diversification within the Hexapoda. And, despite coming to a
different conclusion, Condamine et al. (2016) did a joint analysis of fossil and molecular
data where they found a notable increase in diversification rates of insects which clearly
postdates the origin of complete metamorphosis, where most of these shifts were found
within the holometabolous clades containing the richest orders.
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To the best of our knowledge, this is one of the few theoretical explorations of the role
of complex life-cycles on biological diversification – but see Saltini et al. (2022, Chapter 4)
and ten Brink and Seehausen (2022). The importance of understanding this phenomenon
cannot be overstated, as the majority of life on Earth undergoes developmental programs
that encompass niche shifts throughout their life-spans. We found that the life-stage that
dominates the population dynamical regime experiences disruptive selection whenever
trade-offs are strong, which means this life-stage has a much higher chance of undergo-
ing evolutionary branching. We also found that asymmetries in model parameters are
able to foster the appearance of another evolutionary branching event, leading to three
coexisting phenotypes. Therefore, we can conclude that life-cycle complexity, in general,
favors biological diversification.
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Appendix

S1 Population dynamics

Equation (1) describes the population dynamics of a single consumer species with a
structured life cycle consisting of juveniles and adults and where individuals in each
stage forage on two different resources. This population dynamical model can be gener-
alized to include n consumer species and then reads

dR1,J

dt
= R1,Jr1,J

(
1−

R1,J

K1,J

)
− R1,J

n

∑
i=1

ai
1,J Ji (S1a)

dR2,J

dt
= R2,Jr2,J

(
1−

R2,J

K2,J

)
− R2,J

n

∑
i=1

ai
2,J Ji (S1b)

dR1,A

dt
= R1,Ar1,A

(
1− R1,A

K1,A

)
− R1,A

n

∑
i=1

ai
1,A Ai (S1c)

dR2,A

dt
= R2,Ar2,A

(
1− R2,A

K2,A

)
− R2,A

n

∑
i=1

ai
2,A Ai (S1d)

dJi

dt
= Ai(c1,Aai

1,AR1,A + c2,Aai
2,AR2,A)− Ji(c1,Jai

1,J R1,J + c2,Jai
2,J R2,J)− dJ Ji (S1e)

dAi

dt
= Ji(c1,Jai

1,J R1,J + c2,Jai
2,J R2,J)− dA Ai, (S1f)

where ai
k,l denotes the feeding efficiency of a consumer individual of species i ∈ {1, . . . , n})

being is in life-stage l ∈ {J, A}) for resource species k ∈ {1, 2} available at that life-stage.
After assuming a time-scale separation between fast resource and slow consumer

dynamics the dynamics of the ith consumer species can be written in matrix notation as dJi

dt
dAi

dt

 =

(
−mi − dJ bi

mi −dA

)(
Ji

Ai

)
, (S2)

where

mi = c1,Jai
1,J R̂1,J(t) + c2,Jai

2,J R̂2,J(t), (S3a)

bi = c1,Aai
1,AR̂1,A(t) + c2,Aai

2,AR̂2,A(t) (S3b)
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are the maturation and birth rate, respectively, and

R̂k,J(t) =
(rk,J −∑n

i=1 Ji(t)ai
k,J)Kk,J

rk,J
, (S4a)

R̂k,A(t) =
(rk,A −∑n

i=1 Ai(t)ai
k,A)Kk,A

rk,A
(S4b)

denote the quasi-equilibria for kth resource consumed by juveniles and adults, respec-
tively, at time t. Note that these quasi equilibria are functions of the densities and feeding
efficiencies of all consumer species.

Solving equation (S2) to obtain the consumer equilibrium densities Ĵi and Âi is pos-
sible only for monomorphic consumer populations (n = 1). That system has, depending
on parameters, either one or three positive solutions ( Ĵ > 0 and Â > 0), the expressions
of which are prohibitively long and we do not present them here. Schreiber and Rudolf
(2008) present an analysis of this monomorphic model, showing that it can exhibit a rich
dynamics including limit cycles and bistability. For our analysis, however, we restrict
ourselves to parameters resulting in a single positive, asymptotically stable point equi-
librium. Whenever we need to compute the equilibrium of equation (S2) for more than
one consumer species we resort to numerical integration.

S2 Traits and the trade-off curve

In this study, we analyze the evolutionary dynamic of a trait affecting the two feeding
efficiencies of juvenile individuals and another trait affecting the two feeding efficien-
cies of adult individuals. These traits are assumed to be quantitative morphological or
physiological traits that can vary continuously. Each species i can then be characterized
by a two-dimensional trait vector θi = (θi

J , θi
A), whose entries are the trait values of ju-

venile and adult individuals, respectively. Here, we describe the functions ai
k,J = ak,J(θ

i
J)

and ai
k,A = ak,J(θ

i
A) that map stage-specific trait values to the two stage-specific feeding

efficiencies.
Our mapping is based on the assumption that the feeding efficiencies at each life-

stage are coupled by a trade-off such that a change in the value of a trait resulting in
an increase in feeding efficiency for one resource at the corresponding life-stage comes
at the expense of performing worse at the other resource at the same life-stage. This
can be implemented by assuming that evolution moves along a trade-off curve. As a
parametrization of such a trade-off curve we use a formula by Nurmi and Parvinen
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(2013), which we adapt for our purpose. In the following we omit the subscript indicat-
ing species identity and, since we use the identical trade-off parametrization for both the
juvenile and adult traits, also skip the subscript for the life-stage.

The parametrization by Nurmi and Parvinen (2013) is given by

a1(θ) =amax
1− exp(−z(1− θ))

1− exp(−z)
, (S5a)

a2(θ) =amax
1− exp(−zθ)

1− exp(−z)
, (S5b)

where amax is the maximum feeding efficiency of a resource specialist, here assumed
to be identical for resource 1 and 2. With this parametrization, the points where the
trade-off curve connects to the x- and y-axis are constant while the feeding efficiencies
a1(θ = 0.5) and a2(θ = 0.5) of a generalist consumer change as the curvature of the
trade-off curve is varied (see figure 1 in Vasconcelos and Rueffler, 2020).

For our purpose, it is advantageous to be able to vary the curvature of the trade-off
without changing the values of the feeding efficiencies of a generalist consumer popula-
tion (see figure 1) and thereby keep the values of its population dynamical equilibrium
constant. This can be achieved by making the parameter amax a function of the trade-off
curvature z. To find this function, we use a1(0.5) = agen = a2(0.5) and solve

agen = amax
1− exp(−z/2)

1− exp(−z)
(S6)

for amax, resulting in
amax = agen(1 + exp(−z/2)). (S7)

Substituting amax in equation (S5) with the right-hand side of equation (S7) gives

a1(θ) =agen
exp(z/2)(1− exp(z(θ − 1))

exp(z/2)− 1
, (S8a)

a2(θ) =agen
exp(z/2− zθ)(exp(zθ)− 1)

exp(z/2)− 1
. (S8b)

This is the trade-off parametrization for the four consumer traits a1,J , a2,J , a1,A, and a2,A

as depicted in figure 1 and it is used in all numerical calculations. We use agen = 0.001
throughout.
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S3 Invasion analysis

The evolutionary dynamics of the consumer traits in a population consisting of a single
species - a monomorphic consumer population – can be studied using adaptive dynam-
ics (Metz et al., 1992, 1996; Geritz et al., 1998). The starting point is to investigate the fate
of a mutation θm occurring in a resident population whose individuals are characterized
by θr. Let us assume that mutations occur rarely such that the consumer population has
reached its population dynamical equilibrium. At this equilibrium, the densities of the
four resources are determined by the consumer’s feeding efficiencies and therefore its
traits. We make this explicit in the notation by writing R̂k,J(θ

r) and R̂k,A(θ
r). As long as

the mutant sup-population is so small that it has a negligible effect on the densities of
the four resources, its dynamics can be approximated by dJm

dt
dAm

dt

 =

(
−m(θm

J , θr)− dJ b(θm
A , θr)

m(θm
J , θr) −dA

)(
Jm

Am

)
, (S9)

where

m(θm
J , θr) = c1,Ja1,J(θ

m
J )R̂1,J(θ

r) + c2,Ja2,J(θ
m
J )R̂2,J(θ

r), (S10a)

b(θm
A , θr) = c1,Aa1,A(θ

m
A )R̂1,A(θ

r) + c2,Aa2,A(θ
m
J )R̂2,A(θ

r) (S10b)

are the maturation and birth rate, respectively, of mutant individuals in an environment
where the resource densities are set by the resident’s trait vector. Correspondingly,

R̂k,J(θ
r) =

(
rk,J − Ĵ(θr)ak(θ

r
J)
)

Kk,J

rk,J
, (S11a)

R̂k,A(θ
r) =

(
rk,A − Â(θr)ak(θ

r
A)
)

Kk,A

rk,A
(S11b)

are the equilibrium densities of the four resource species where Ĵ(θr) and Â(θr) denote
the equilibrium densities for juveniles and adults, respectively, of the resident popula-
tion.

In the general case of a mutation appearing in a population consisting of n resident
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species the maturation and birth rate in equation (S9) read

m(θm
J , Θr) = c1,Ja1,J(θ

m
J )R̂1,J(Θ

r) + c2,Ja2,J(θ
m
J )R̂2,J(Θ

r), (S12a)

b(θm
A , Θr) = c1,Aa1,A(θ

m
A )R̂1,A(Θ

r) + c2,Aa2,A(θ
m
J )R̂2,A(Θ

r), (S12b)

where Θr = (θ1, . . . , θn) is the vector collecting the trait vectors of all n resident species.
The expressions for the resource equilibria are obtained by replacing Ĵ(θr)ak(θ

r
J) and

Â(θr)ak(θ
r
A) in equation (S11) with ∑n

i=1 Ĵ(θi)ak(θ
i
J) and ∑n

i=1 Â(θi)ak(θ
i
A), respectively,

analogously to equation (S4).
The mutant sub-population has a positive probability to increase if the dominant

eigenvalue of the matrix on the right-hand side of equation (S9), given by

w(θm, θr) =
1
2
(−dA − dJ −m(θm

J , θr)+√
(dJ + dA + m(θm

J , θr))2 − 4(dJdA + dAm(θm
J , θr)−m(θm

J , θr)b(θm
A , θr)), (S13)

is positive and is doomed to extinction otherwise. We refer to w(θm, θr) as invasion fit-
ness. If w(θm, θr) > 0 and the mutant trait vector θm is sufficiently close to the resident
trait vector θr, then a successfully invading mutant will ultimately replace the resident
type (Dercole and Rinaldi, 2008), resulting in a trait substitution. Importantly, positive
invasion fitness does not guarantee successful invasion since even a beneficial muta-
tion can disappear due to demographic stochasticity as long as it is rare. This will be
accounted for in our simulation algorithm (described in Appendix S5), where we incor-
porate a formula for the probability of successful invasion due to Saltini et al. (2022).

Repeated successful invasion of mutants and replacement of residents results in a
trait substitution sequence. In the limit of rare mutations of very small effect occurring
in very large resident populations this trait substitution sequence can be approximated
by

dθr

dt
= c(θr)M(θr)S(θr) (S14)

(Dieckmann and Law, 1996; Durinx et al., 2008). Here, c(θr) is a real-valued function
describing variation in the rate of mutations (e.g., due to variation in population size) and
M(θr) is the mutational variance-covariance matrix describing a symmetric distribution
of mutations around the resident strategy. Finally, S(θr) denotes the fitness gradient –
a column vector whose entries SJ(θ

r) and SA(θ
r) are the partial derivatives of invasion

fitness with respect to the mutant’s juvenile and adult trait values and evaluated at the
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resident trait vector, as per equations (6). These entries can be calculated as

SJ(θ
r) =

(
b(θm

A , θr)− dA
)
m(1,0)(θm

J , θr)

dJ + dA + m(θm
J , θr)

∣∣∣∣
θm=θr

(S15a)

SA(θ
r) =

m(θm
J , θr)b(1,0)(θm

A , θr)

dJ + dA + m(θm
J , θr)

∣∣∣∣
θm=θr

. (S15b)

Here, the superscript (1, 0) denotes the partial derivative with respect to the first argu-
ment. Note that b(θr

A, θr)− dA > 0 is a requirement for a consumer population not to go
extinct. In the calculation of the fitness gradient we made use of the equality

dJ + dA +m(θr
J , θr) =

√
(dJ + dA + m(θr

J , θr))2 − 4(dJdA + dAm(θr
J , θr)−m(θr

J , θr)b(θm
A , θr)),
(S16)

which follows from equation (S13) and noting that, by definition, w(θr, θr) = 0. This
equality is used throughout in the following analysis as it allows us to significantly
simplify the expressions. The position of the singular points as shown in figure 2 and
4 are obtained by setting the corresponding component of the fitness gradient equal to
zero and numerically solving for the trait value.

Equation (S14) describes an evolutionary dynamics that moves uphill on an ever
changing fitness landscape. This dynamics comes to halt at trait vectors θ∗ for which
the fitness gradient equals zero, S(θ∗) = 0. Such points are referred to as evolutionarily
singular points. The classification of singular points in multi-dimensional trait spaces
is in general complex (Leimar, 2009; Geritz et al., 2016; Vasconcelos and Rueffler, 2020).
For our model, however, this task is straightforward as we show in the following. A
singular point θ∗ is an attractor of the evolutionary dynamics, also called convergence
stable, if it is an asymptotically stable fixed point of the evolutionary dynamics described
by equation (S14) (Leimar, 2009). Convergence stability depends on the Jacobian matrix
J of the fitness gradient with entries

jij =

(
∂2w(θm, θr)

∂θm
i ∂θm

j
+

∂2w(θm, θr)

∂θm
i ∂θr

j

)∣∣∣∣∣
θm=θr=θ∗

(S17)

where i, j ∈ {J, A}. In particular, if the the symmetric part of J is negative definite, then
a singular point θ∗ is an attractor of the canonical equation regardless of the mutational
variance-covariance M (referred to as strong convergence stability; Leimar, 2009). Here,
we show that for our model J is in fact a diagonal matrix such that negative definiteness
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amounts to both diagonal entries being negative. To see this, note that from the fitness
gradient, given by equation (S15), it is clear that at a singular point m(1,0)(θm

J , θr) = 0
and b(1,0)(θm

A , θr) = 0 must hold. The two double-derivatives on the right-hand side of
equation (S17) arise from differentiating the fitness gradient for a mutant and resident
trait value, respectively. It is easy to see that the mixed derivatives (where we differenti-
ate with respect to both a juvenile and an adult trait) contain either the derivative of the
birth or maturation rate as a factor and that therefore jJA = 0 and jAJ = 0 must hold.
Biologically, this means that the juvenile and adult traits are independent in their effect
on fitness. For the diagonal entries of the Jacobian matrix we obtain

jJ J =

(
b(θm

A , θr)− dA
)(

m(1,1)(θm
J , θr) + m(2,0)(θm

J , θr)
)

dJ + dA + m(θm
J , θr)

∣∣∣∣
θm=θr=θ∗

, (S18a)

jAA =
m(θm

J , θr)
(
b(1,1)(θm

A , θr) + b(2,0)(θm
A , θr)

)
dJ + dA + m(θm

J , θr)

∣∣∣∣
θm=θr=θ∗

(S18b)

where m(1,1)(θm
J , θr) = ∂2m(θm

J , θr))/∂θm
J ∂θr

J and b(1,1)(θm
A , θr) = ∂2m(θm

A , θr))/∂θm
A ∂θr

A.
Furthermore, the superscript (2, 0) denotes the second partial derivative with respect to
the first argument. Thus, θ∗ is an attractor of the evolutionary dynamics independent of
the mutational process if the diagonal entries of J are both negative, jJ J < 0 and jAA < 0.
If at least one of the diagonal entries is positive, then θ∗ is an evolutionary repellor.

Inspecting the right-hand side of equations (S18a) and (S18b) allows for the follow-
ing conclusion. Assuming that the abundance of a resource decreases the more special-
ized the consumer population becomes for that resource (R̂(1,0)

1,J (θr) > 0, R̂(1,0)
2,J (θr) < 0,

R̂(0,1)
1,A (θr) > 0, R̂(0,1)

2,A (θr) < 0), both m(1,1)(θm
J , θr) and b(1,1)(θm

A , θr) are negative. Since
m(2,0)(θm

J , θr) and b(2,0)(θm
A , θr) are negative for weak trade-offs and positive for strong

trade-offs, it follows that the two diagonal entries of the Jacobian matrix are negative
for weak trade-offs. In the next Appendix, we show that for fully symmetric parameter
values the sign of jJ J and jAA at θ∗J = 0.5 and θ∗A = 0.5 changes from positive to negative
at some threshold value z̃J < 0 and z̃A < 0, respectively.

Whether a singular point is invadable by nearby mutants is determined by the Hes-
sian matrix H of invasion fitness which describes the local curvature of the fitness land-
scape around a singular point. The entries of H are

hij =
∂2w(θm, θr)

∂θm
i ∂θm

j

∣∣∣∣∣
θm=θr=θ∗

(S19)
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where i, j ∈ {J, A}. Using the same argument as for the off-diagonal entries of the
Jacobian matrix, it is clear that hJA = 0 = hAJ . For the diagonal entries we obtain

hJ J =

(
b(θm

A , θr)− dA
)
m(2,0)(θm

J , θr)

dJ + dA + m(θm
J , θr)

∣∣∣∣
θm=θr=θ∗

(S20a)

hAA =
m(θm

J , θr)b(2,0)(θm
A , θr)

dJ + dA + m(θm
J , θr)

∣∣∣∣
θm=θr=θ∗

. (S20b)

The sign of hJ J is determined by the sign of m(2,0)(θm
J , θr), and the sign of hAA is deter-

mined by the sign of b(2,0)(θm
A , θr). Since the second derivative of the feeding efficiencies

a1,J(θ) and a2,J(θ) are positive for zJ < 0 and negative for zJ > 0, it follows that hJ J is
negative if the trade-off is weak and positive if the trade-off is strong. The same argu-
ment holds for hAA. Thus, a singular point θ∗ is uninvadable if both trade-offs are weak
and invadable if at least one of the trade-offs is strong. The evolutionary properties of
the singular points shown in figure 2 and 4 are obtained by numerically evaluating the
corresponding diagonal entry of the Jacobian and Hessian matrix.

S4 Population size and evolutionary branching

The results in this appendix are derived under the symmetry assumptions that c1,J =

cJ = c2,J , c1,A = cA = c2,A, r1,J = rJ = r2,J , r1,A = rA = r2,A, K1,J = KJ = K2,J , and
K1,A = KA = K2,A. Due to this symmetry, and the symmetry that is inherent in the trade-
off parametrization presented in Appendix S2, the trait vector θ∗ = (θ∗J , θ∗A) = (0.5, 0.5)
has to be singular point. The fact that a consumer population at this singular point is a
perfect generalist for both resources at both life-stages induces further symmetry, which

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2022. ; https://doi.org/10.1101/2022.08.31.506002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506002
http://creativecommons.org/licenses/by-nc-nd/4.0/


allows us to make the following definitions:

aJ(θ
∗
J ) := a1,J(θ

∗
J ) = a2,J(θ

∗
J ) (S21a)

aA(θ
∗
A) := a1,A(θ

∗
A) = a2,A(θ

∗
A) (S21b)

a′J(θ
∗
J ) := a′1,J(θ

∗
J ) = −a′2,J(θ

∗
J ) < 0 (S21c)

a′A(θ
∗
A) := a′1,A(θ

∗
A) = −a′2,A(θ

∗
A) < 0 (S21d)

a′′J (θ
∗
J ) := a′′1,J(θ

∗
J ) = a′′2,J(θ

∗
J ) (S21e)

a′′A(θ
∗
A) := a′′1,A(θ

∗
A) = a′′2,A(θ

∗
A) (S21f)

RJ(θ
∗) := R1,J(θ

∗) = R2,J(θ
∗) (S21g)

RA(θ
∗) := R1,A(θ

∗) = R2,A(θ
∗) (S21h)

R̂′J(θ
∗) := R̂(1,0)

1,J (θ∗) = −R̂(1,0)
2,J (θ∗) > 0 (S21i)

R̂′A(θ
∗) := R̂(0,1)

1,A (θ∗) = −R̂(0,1)
2,A (θ∗) > 0 (S21j)

where ′ and ′′ denote the first and second derivative, respectively, evaluated at θ∗. The
results concerning the trait values follow from the symmetry that is inherent in the
trade-off parametrization while the results concerning the resource equilibria follow
from the symmetry assumptions affecting equation (S11). The definitions in (S21) are
used throughout this appendix.

We here take the perspective that only one of the traits evolves at a time while the
other is fixed at the generalist trait value. This perspective allows us to compare the
properties of the two singular points θ∗J = 0.5 and θ∗A = 0.5. We first show that there
exists a unique trade-off curvature z̃J < 0 such that the entry of the Jacobian matrix jJ J

(equation S18a), evaluated at θ∗J = 0.5, is negative for zJ > z̃J and positive for zJ < z̃J .
Since we have hJ J > 0 for zJ < 0, it follows that the singular point θ∗J = 0.5 changes from
an evolutionary branching point to an evolutionary repellor at z̃J . An analogous results
holds true for the adult singular point θ∗A = 0.5. Second, we show that the interval of
trade-off curvatures for which the generalist singular point is an evolutionary branching
point is larger for the trait corresponding to the more abundant life-stage. In other
words, z̃J < z̃A when Ĵ(θ∗) > Â(θ∗) and z̃J > z̃A when Ĵ(θ∗) < Â(θ∗).

Differentiating jJ J and jAA (equation S18) with respect to zJ and zA, respectively,
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yields

djJ J

dz
=

cJ(b− dA)

dJ + dA + m

(
da′′1,J

dzJ
R1,J +

da′′2,J

dzJ
R2,J −

2KJ Ĵ
rJ

(
a′1,J

da′1,J

dzJ
+ a′2,J

da′2,J

dzJ

))
(S22a)

djAA

dz
=

cAm
dJ + dA + m

(
da′′1,A

dzA
R1,A +

da′′2,A

dzA
R2,A −

2KA Â
rA

(
a′1,A

da′1,A

dzA
+ a′2,A

da′2,A

dzA

))
,

(S22b)

where all functions and derivatives are evaluated at (θ∗J , θ∗A) = (0.5, 0.5). In simplifying
these derivatives we made use of the fact that dai,j/dzj, dR̂i,j/dzj, d Ĵ/dzj and dÂ/dzj

are all equal to zero, where i ∈ {1, 2} and j ∈ {J, A}. This is due to our parametrization
of the trade-off curve in which the value of ai,j(0.5) does not depend on the trade-
off curvature. Furthermore, d Ĵ/dθ∗J = 0 and dÂ/dθ∗A = 0 at the symmetric singular
point. The right-hand side of equations (S22) is negative. This follows from da′′i,j/dzj <

0, da′1,j/dzj < 0 and da′2,j/dzj > 0. Thus, jJ J and jAA increase monotonically with
decreasing values of zJ and zA, respectively. Since jJ J < 0 and jAA < 0 for weak trade-
offs (zJ > 0 and zA > 0), we can conclude that jJ J and jAA change sign at most once and
– if they do – this occurs at a strong trade-off (zJ < 0 and zA < 0).

Next, consider the trade-off curvature z̃J where at the singular point θ∗J we have
jJ J = 0. In other words, z̃J is the bifurcation point where the juvenile trait changes
from convergence stable (jJ J < 0) to evolutionarily repelling (jJ J > 0). We will show
that, for the same trade-off curvature in the adult trait, zA = z̃J , the singular point θ∗A
is evolutionarily repelling if the consumer population is juvenile dominated ( Ĵ(θ∗) >

Â(θ∗)) and convergence stable if the consumer population is adult dominated ( Ĵ(θ∗) <
Â(θ∗)). Since, according to the results from the previous section, these bifurcations occur
for strong trade-offs where singular points are invadable, we obtain that the interval of
trade-off curvatures resulting in an evolutionary branching point is larger in the trait
corresponding to the dominant life-stage.

Given the equalities in (S21), it follows with equation (S18a) that jJ J equals zero if

a′J(θ
∗
J )R̂(1,0)

J (θ∗) + a′′J (θ
∗
J )R̂J(θ

∗) = 0, (S23)

which is equivalent to
R̂J(θ

∗)

R̂(1,0)
J (θ∗)

= −
a′J(θ

∗
J )

a′′J (θ
∗
J )

. (S24)
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Similarly, it follows with equation (S18b) that jAA is negative if

a′A(θ
∗
A)R̂(0,1)

A (θ∗) + a′′A(θ
r
A)R̂A(θ

∗) < 0 (S25)

and positive if the reverse inequality is true. Thus, jAA < 0 is equivalent to

R̂A(θ
∗)

R̂(0,1)
A (θ∗)

< −
a′A(θ

∗
A)

a′′A(θ
∗
A)

(S26)

and if jAA > 0 the reverse inequality is true.
Since we use the same trade-off parameterization in the two life-stages and assume

the same curvature, zJ = zA, we have aJ(θ
∗
J ) = aA(θ

∗
A), a′J(θ

∗
J ) = a′A(θ

∗
A) and a′′J (θ

∗
J ) =

a′′A(θ
∗
A). Thus, we can equate the right-hand side of equation (S24) with the right-hand

side of inequality (S26) to obtain

R̂A(θ
∗)

R̂(0,1)
A (θ∗)

<
R̂J(θ

∗)

R̂(1,0)
J (θ∗)

. (S27)

The interpretation of this inequality is as follows. For a given trade-off curvature z̃J = zA

for which the the juvenile singular point is at the boundary between repelling and con-
vergence stable (jJ J = 0) the adult singular point is convergence stable if inequality (S27)
is true and repelling if the reverse inequality is true.

Next we insert the expressions for R̂J(θ
∗
J ) and R̂A(θ

∗
A) as given by equation (S11) and

calculate the derivatives of these expressions where we can use the fact that Ĵ(1,0)(θ∗) = 0
and Â(0,1)(θ∗) = 0 at the symmetric singular point. Inequality (S27) can then be rewritten
as

Â(θ∗)aA(θ
∗
A)− rA

Â(θ∗)a′A(θ
∗
A)

<
Ĵ(θ∗)aJ(θ

∗
J )− rJ

Ĵ(θ∗)a′J(θ
∗
J )

. (S28)

Using again the fact that we use the identical trade-off parametrizations and that θ∗J =

θ∗ = θ∗A we have aJ(θ
∗
J ) = a(θ∗) = aA(θ

∗
A) and a′J(θ

∗
J ) = a′(θ∗) = a′A(θ

∗
A). With this,

inequality (S28) simplifies to
Â(θ∗)

rA
>

Ĵ(θ∗)
rJ

. (S29)

Thus, if inequality (S29) is true, then the adult singular point is convergence stable
and, if it is reversed, then the adult singular point is evolutionarily repelling. We can
conclude that with equal growth rates of the adult and juvenile resource (rJ = rA) the
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trait corresponding to the more abundant life-stage has a larger interval of trade-off
curvatures where it is convergence stable and, consequently, an evolutionary branching
point.

S5 Simulation algorithm

We use computer simulations performed in MATLAB (2021) to study the evolution-
ary dynamics in the two-dimensional trait space. Our simulations can be viewed as a
stochastic implementation of equation (S14) where we allow for mutational steps of fi-
nite size. Simulations start with a monomorphic founding population consisting of 100
juvenile and 100 adult individuals with trait vector θ = (θJ , θA) = (0.4, 0.4). Then, we
iteratively run the following simulation algorithm:

1. Population dynamical equilibrium: Numerically solve equation (S2) for its popu-
lation dynamical equilibrium using Euler’s forward method with time increment
t = 0.001. We consider the system to have reached equilibrium once the difference
between the density of every species present in the population before and after an
iteration of the population dynamics is less than 10−5.

2. Extinction: Remove any species i whose total population density (Ji + Ai) is less
than the extinction threshold, set to 0.01.

3. Determine the parent species j giving rise to the next mutant: The parent species
producing the next mutant is drawn randomly with probabilities proportional to
the number of offspring produced by each species. The index j ∈ {1, . . . , n} is
given by the lowest integer to satisfy ∑

j
i=1 pi ≥ ρ1p0. Here, pi = Âib(θr

A,i, Θr) with
the function b given by equation (S12b) and resource densities as obtained at the
end of step 1. Thus, pi is the expected number of offspring by adults of species i
at population dynamical equilibrium. Furthermore, ρ1 is a uniformly distributed
random number between 0 and 1, and p0 = ∑n

i=1 Âibi.

4. Determine potential mutant phenotypes: Construct the four trait vectors θm
1 =

(θJ − ε1, θA), θm
2 = (θJ + ε2, θA), θm

3 = (θJ , θA − ε3) and θm
4 = (θJ , θA + ε4), where

ε1, . . . , ε4 are drawn from a Gaussian distribution with the parent trait value as
mean and variance 0.02.

5. Assign mutant establishment probabilities: Each of the four mutants θm
i (i ∈

{1, 2, 3, 4}) determined in the previous step has a certain probability to escape de-
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mographic stochasticity while rare and successfully establish in the population.
The expression for this establishment probability is due to Saltini et al. (2022) and
given by

pest(θ
m, Θr) =

m(θm
J , Θr)

m(θm
J , Θr) + dJ

− dA

b(θm
A , Θr)

(S30)

with the functions m and b given by equation (S12).

6. Determine the next mutant: The next mutant appearing in the population is drawn
from the four candidate mutants with probabilities proportional to their establish-
ment probabilities. The index k is the lowest integer to satisfy ∑k

i=1 pest(θ
m
i , Θr) ≥

ρ2p0. Here, ρ2 is a uniformly distributed random number between 0 and 1, and
p0 = ∑4

i=1 pest(θ
m
i , Θr).

7. Add mutant: Add one juvenile individual with the mutant phenotype vector to the
consumer population.

8. Go back to step 1.

Each simulation of the symmetric case runs for 500 mutation events, and each of the
asymmetric case runs for 700 mutation events.
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