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Abstract1

Machine learning classification of disease based on the gut microbiome often relies on clustering 16S rRNA2

gene sequences into operational taxonomic units (OTUs) to quantify microbial composition. The abundance3

of each OTU is then used to train a classification model. The standard de novo approach to clustering4

sequences into OTUs leverages the similarity of the sequences to each other rather than to a reference5

database. However, such an approach depends on the sequences in the dataset and therefore OTU6

assignments can change if new data are added. This lack of stability complicates classification because7

in order to use the model to classify additional samples, the new sequences must be reclustered with8

the old data and the model must be retrained with the new OTU assignments. The new reference-based9

clustering algorithm, OptiFit, addresses this issue by fitting new sequences into existing OTUs. While10

OptiFit can produce high quality OTU clusters, it is unclear whether this method for fitting new sequence11

data into existing OTUs will impact the performance of classification models. We used OptiFit to cluster12

additional data into existing OTU clusters and then evaluated model performance in classifying a dataset13

containing samples from patients with and without colonic screen relevant neoplasia (SRN). We compared14

the performance of this model to the standard procedure of de novo clustering all the data together. We15

found that both approaches performed equally well in classifying SRNs. Moving forward, when OTUs are16

used in classification problems, OptiFit can streamline the process of classifying new samples by avoiding17

the need to retrain models using reclustered sequences.18

Importance19

There is great potential for using microbiome data to non-invasively diagnose people. One of the challenges20

with using classification models based on the relative abundance of operational taxonomic units (OTUs) is21

that 16S rRNA gene sequences are assigned to OTUs based on their similarity to other sequences in a22

dataset. If data are generated from new patients seeking a diagnosis, then a standard approach requires23

reassigning sequences to OTUs and retraining the classification model. Yet there is a desire to have a24

single, validated model that can be widely deployed. To overcome this obstacle, we applied the OptiFit25

clustering algorithm which fits new sequence data to existing OTUs and allows for the reuse of models.26

A random forest machine learning model implemented using OptiFit performed as well as the traditional27

reassignment and retrain approach. This result indicates that there is potential for developing and applying28

machine learning models based on OTU relative abundance data that do not require retraining.29
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Gut community composition is useful as a resource for machine learning classification of diseases, such as30

colorectal cancer (1, 2). Taxonomic composition of microbial communities can be assessed using amplicon31

sequencing of the 16S rRNA gene, which is the input to classification models. Analysis of 16S rRNA32

gene sequence data generally relies on similarity-based clustering of sequences into operational taxonomic33

units (OTUs). The process of OTU clustering can either be reference-based or de novo. The quality of34

OTUs generated with reference-based clustering is generally poor compared to those generated with de35

novo clustering (3). While de novo clustering produces high-quality OTU clusters where sequences are36

accurately grouped based on similarity thresholds, the resulting OTU clusters depend on the sequences37

within the dataset and the addition of new data has the potential to redefine OTU cluster composition.38

The unstable nature of de novo OTU clustering complicates deployment of machine learning models since39

integration of additional data requires reclustering all the data and retraining the model. The ability to40

integrate new data into a validated model without reclustering and retraining could allow for the application of41

a single model that can continually classify new data. Recently, Sovacool et al. introduced OptiFit, a method42

for fitting new sequence data into existing OTUs (4). While OptiFit can effectively fit new sequence data to43

existing OTU clusters, it is unknown if the use of OptiFit will have an impact on classification performance.44

Here, we tested the ability of OptiFit to cluster new sequence data into existing OTU clusters for the purpose45

of classifying disease based on gut microbiome composition.46

We compared two approaches, one using all the data to generate OTU clusters, and the other generating47

de novo OTU clusters with a portion of the data and then fitting the remaining sequence data to the existing48

OTUs using OptiFit. In the first approach, all the 16S rRNA sequence data was clustered into OTUs with the49

OptiClust algorithm in mothur (5). The resulting abundance data was then split into training and testing sets,50

where the training set was used to tune hyperparameters and ultimately train and select the model. The51

model was applied to the testing set and performance evaluated (Figure 1A). However, this methodology52

requires one to regenerate the OTU clusters and retrain the model to classify additional samples. The53

OptiFit algorithm (4) addresses this problem by enabling new sequences to be clustered into existing OTUs.54

The OptiFit workflow is similar to the OptiClust workflow, where the data was clustered into OTUs and used55

to tune hyperparameters and ultimately train the model. Then, we used OptiFit to fit sequence data of56

samples not part of the original dataset into the existing OTUs, and used the same model to classify the57

samples (Figure 1B). To test how the model performance compared between these two approaches, we58

used a publicly available dataset of 16S rRNA gene sequences from stool samples of healthy subjects (n59

= 261) as well as subjects with SRN consisting of advanced adenoma and carcinoma (n = 229) (1). The60

dataset was randomly split into an 80% train set and 20% test set. For the standard OptiClust workflow,61
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the training and test sets were de novo clustered together into OTUs, then the resulting abundance table62

was split into the training and testing set. For the OptiFit workflow, the train set was clustered de novo into63

OTUs, and the remaining test set was fit to the OTU clusters using the OptiFit algorithm. For both workflows,64

the abundance table of the train set was used to tune hyperparameters and train a random forest model to65

classify SRN. The test set was classified as either control or SRN using the trained models. To account for66

variation, the dataset was randomly split 100 times and the process repeated for each of the 100 data splits.67

By comparing the model performance of classifying the samples in the test dataset between the OptiFit and68

OptiClust algorithms, we quantified the impact of using OptiFit on model classification performance.69

We first examined the quality of the resulting OTU clusters from the two algorithms using the Matthews70

correlation coefficient (MCC). The MCC score was quantified by examining all pairs of sequences and71

assessing whether they belonged together in an OTU based on their similarity (5). MCC scores range72

between negative one and one. A score of negative one means none of the sequences in an OTU are within73

the similarity threshold and any sequences within the similarity threshold are not in an OTU together. An74

MCC score of zero means the sequences are randomly clustered. An MCC score of 1 means all sequences75

in an OTU are within the similarity threshold and all sequence pairs within the similarity threshold are in the76

same OTU. To ensure that OptiFit is appropriately integrating new sequence data into the existing OTUs,77

we expected the MCC scores produced by the OptiClust and OptiFit workflows to be similar. Since the data78

was only clustered once in the OptiClust workflow there was only one MCC score (MCC = 0.884) while79

the OptiFit workflow produced an MCC score for the OTU clusters from each data split (average MCC =80

0.879, standard deviation = 0.002). As expected, the MCC scores were similar between the two workflows.81

Another metric we examined for the OptiFit workflow was the fraction of sequences from the test set that82

mapped to the reference OTUs. Any sequences that did not map to reference OTUs were eliminated83

therefore, if a high percentage of reads did not map we might expect this loss of data to negatively impact84

classification performance. We found that loss of data was not an issue since on average 99.9% (standard85

deviation = 0.004) of sequences in the test set mapped to the reference OTUs. These results indicate that86

OptiFit performed as well as OptiClust when integrating new sequences into the existing OTUs.87

After verifying that the quality of the OTUs was consistent between OptiClust and OptiFit, we examined the88

model performance for classifying samples in the held out test dataset. To evaluate model performance,89

we used the OTU relative abundances from the training data from the OptiClust and OptiFit workflows90

to train a model to predict SRNs. Using the predicted and actual diagnosis classification, we calculated91

the area under the receiver operating characteristic curve (AUROC) for each data split to quantify model92

performance. During cross-validation (CV) training, the model performance was equivalent between the93
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OptiClust and OptiFit approaches (p-value = 0.13; Figure 2A). The trained model was then applied to the94

test data classifying samples as either control or SRN. The performance on the test data was equivalent95

between the OptiClust and OptiFit approaches (p-value = 0.38; Figures 2B and 2C) indicating that new data96

could be fit to existing OTU clusters using OptiFit without impacting model performance.97

We tested the ability of OptiFit to integrate new data into existing OTUs for the purpose of machine learning98

classification using OTU relative abundance. A potential problem with using OptiFit is that any sequences99

from the new samples that do not map to the existing OTU clusters will be discarded, resulting in a possible100

loss of information. However, we demonstrated OptiFit can be used to fit new sequence data into existing101

OTU clusters and performs equally well in predicting SRN compared to de novo clustering all the sequence102

data together. The ability to integrate data from new samples into existing OTUs enables the implementation103

of a single machine learning model. This is important for model implementation because not all of the data104

needs to be available or known at the time of model generation. Since results may depend on the amount of105

data in the training set, further analysis is needed to determine the number of samples that are necessary106

in training to build a robust model capable of classifying diverse samples. A robust machine learning model107

could be implemented as part of a non-invasive and low-cost aid in diagnosing SRN and other diseases.108

Materials and Methods109

Dataset. Raw 16S rRNA gene sequence data isolated from human stool samples was downloaded from110

NCBI Sequence Read Archive (accession no. SRP062005) (1, 6). This dataset contains stool samples111

from a total of 490 subjects. For this analysis, samples from subjects identified in the metadata as normal,112

high risk normal, or adenoma were categorized as “normal”, while samples from subjects identified as113

advanced adenoma or carcinoma were categorized as “screen relevant neoplasia” (SRN). The resulting114

dataset consisted of 261 normal samples and 229 SRN samples.115

Data Processing. The full dataset was preprocessed with mothur (v1.47) (7) to join forward and reverse116

reads, merge duplicate reads, align to the SILVA reference database (v132) (8), precluster, remove chimeras117

with UCHIME (6), assign taxonomy, and remove non-bacterial reads following the Schloss Lab MiSeq118

standard operating procedure described on the mothur website (https://mothur.org/wiki/miseq_sop/). 100119

splits of the 490 samples were generated where 80% of the samples (392 samples) were randomly assigned120

to the training set and the remaining 20% (98 samples) were assigned to the test set. Using 100 splits of121

the data accounts for the variation that may be observed depending on the samples that are in the training122

or test sets. Each sample was in the training set an average of 80 times (standard deviation = 4.1) and the123
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test set an average of 20 times (standard deviation = 4.1).124

The data was processed through two workflows. In the control workflow, all the data was clustered together125

with OptiClust (5) to generate OTUs and the resulting abundance tables were split into the training and126

testing sets. In the experimental workflow, the preprocessed data was split into the training and testing127

sets. The training set was clustered into OTUs using OptiClust, then the test set was fit to the OTUs of the128

training set using the OptiFit algorithm (4). The OptiFit algorithm was run with method open so that any129

sequences that did not map to the existing OTU clusters would form new OTUs. For both pathways, the130

shared files were sub-sampled to 10,000 reads per sample.131

Machine Learning. A random forest model was trained with the R package mikrompl (v 1.2.0) (9) to predict132

the diagnosis (SRN or normal) for the samples in the test set for each data split. The training set was133

preprocessed to normalize OTU counts (scale and center), collapse correlated OTUs, and remove OTUs134

with zero variance. The preprocessing from the training set was then applied to the test set. Any OTUs in135

the test set that were not in the training set were removed. P values comparing model performance were136

calculated as previously described (10). The averaged ROC curves were plotted by taking the average and137

standard deviation of the sensitivity at each specificity value.138

Code Availability. The analysis workflow was implemented in Snakemake (11) . Scripts for analysis139

were written in R (12) and GNU bash (13). The software used includes mothur v1.47.0 (7), RStudio140

(14), the Tidyverse metapackage (15), R Markdown (16), the SRA toolkit (17), and conda (18). The141

complete workflow and supporting files required to reproduce this study are available at: https://github.142

com/SchlossLab/Armour_OptiFitGLNE_XXXX_2021143
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Figure 1: Workflows. A) OptiClust workflow: The full dataset was clustered into OTUs using the OptiClust186

algorithm in mothur. The data was then split into two sets where 80% of the samples were assigned to the187

training set and 20% to the testing set. The training set was preprocessed with mikropml to normalize values188

(scale and center), collapse correlated features, and remove features with zero variance. Using mikropml,189
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the training set was split into train and validate sets to compare results using different hyperparameter190

settings. The highest performing hyperparameter setting was then used to train the model with the full191

training set. The preprocessing scale from the training set was applied to the test dataset, then the192

trained model was used to classify the samples in the test set. Based on the actual classification and193

predicted classification, the area under the receiver operating characteristic curve (AUROC) was calculated194

to summarize model performance. The entire process was repeated 100 times to account for variability195

depending on the split of the data resulting in a total of 100 AUROC values summarizing the performance196

of the standard OptiClust workflow. B) OptiFit workflow: The dataset was first split into two sets where197

80% of the samples were assigned to the training set and 20% to the testing set. The training set was198

then clustered into OTUs using the OptiClust algorithm in mothur. The resulting abundance data was199

preprocessed with mikropml to normalize values (scale/center), collapse correlated features, and remove200

features with zero-variance. Using mikropml, the training set was split into train and validate sets to compare201

results using different hyperparameter settings. The highest performing hyperparameter setting was then202

used to train the model with the full training set. The OptiFit algorithm in mothur was used to cluster the203

held out testing dataset using the OTUs of the training set as a reference. The preprocessing scale from the204

training set was applied to the test dataset, then the trained model was used to classify the samples in the205

test set. Based on the actual classification and predicted classification, the area under the receiver operating206

characteristic curve (AUROC) was calculated to summarize model performance. The entire process was207

repeated 100 times to account for variability depending on the split of the data resulting in a total of 100208

AUROC values summarizing the performance of the new OptiFit workflow.209
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210

Figure 2: Model Performance. A) Area under the receiver operating characteristic (AUROC) curve during211

cross-validation for the OptiClust and OptiFit workflows. Mean and standard deviation of the AUROC is212

represented by the black dot and whiskers. Mean AUROC is printed to the right of the points. B) AUROC213

on the test data for the OptiClust and OptiFit workflows. Mean and standard deviation of the AUROC is214

represented by the black dot and whiskers. The mean AUROC is printed to the right of the points. C)215

Averaged receiver operating characteristic (ROC) curves.216
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