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ABSTRACT

The drug development process consumes 9-12 years and approximately one billion US dollars
in terms of costs. Due to high finances and time costs required by the traditional drug discovery
paradigm, repurposing the old drugs to treat cancer and rare diseases is becoming popular.
Computational approaches are mainly data-driven and involve a systematic analysis of
different data types leading to the formulation of repurposing hypotheses. This study presents
a novel scoring algorithm based on chemical and genomic data types to repurpose vast
collection of compounds for 674 cancer types and other diseases. The data types used to design
the scoring algorithm are chemical structures, drug-target interactions (DTI), pathways, and
disease-gene associations. The repurpose scoring algorithm is strengthened by integrating the
most comprehensive manually curated datasets for each data type. More than 100 of our
repurposed compounds can be matched with ongoing studies at clinical trials

(https://clinicaltrials.gov/). Our analysis is supported by a web tool available at:

http://drugrepo.org/.
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The average cost of developing a new drug is billions of dollars, and it takes about 9—-12 years
to bring a new drug to the market ™. Finding new uses for approved drugs has become a primary
alternative strategy for the pharmaceutical industry. This practice, usually referred to as drug
repositioning or drug repurposing, is highly attractive because of its potential to speed up the
process of drug development, reduce costs, and provide treatments for unmet medical needs [,
In this regard, compounds that have passed through phases I or 11 in the drug discovery pipeline
but never made it to the market due to efficacy issues carry great potential for drug
repositioning. Traditionally, drug repurposing success stories have mainly resulted from
largely opportunistic and serendipitous findings Bl For example, sildenafil citrate was
originally developed as an antihypertensive drug but later repurposed by Pfizer and marketed
as Viagra to treat erectile dysfunction based on retrospective clinical experience, leading to
massive worldwide sales. Other examples of such drug repositioning include cancer drugs:
crizotinib, sorafenib, azacitidine and decitabine, all of which failed to reach the markets in their

initial indications yet now are essential tools in the treatment of various types of cancers I,

Over the recent years, various computational resources are developed to support systematic
drug repurposing. Popular information sources for in-silico drug repurposing include, for
instance, electronic health records, genome-wide association analyses or gene expression
response profiles, pathway mappings, compound structures, target binding assays and other
phenotypic profiling data Bl. Several systematic review articles on the use of computational
repurposing approaches are available that cover machine learning (ML) algorithms BIEI,
Several databases directly support in-silico drug repurposing, including Drug Repurposing Hub
€1 repoDB P! and RepurposeDB %, On the other hand, hundreds of databases can indirectly
support drug repurposing [ However, these databases provide experimentally tested
indications only for a limited number of investigational or approved compounds and ignore the
massive number of preclinical compounds that could be potential candidates for drug
repurposing. Drug target profiles for approximately two million such preclinical compounds
are available at ChEMBL" and other databases.

Drug-target interactions (DTI), meaning the target molecules each compound binds to and the
relative binding strength and impact on cellular functions, lie at the heart of drug discovery and
repositioning. Several artificial intelligence (Al) methods for drug repurposing are based on
DTIs as well as chemical structural similarities 1141251 However, these methods are applied

only to a selected set of compounds resulting in limited prediction outcomes 23, Computational
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approaches are primarily data-driven and involve a systematic analysis of several components
(or data types) before suggesting a repurposed indication. These components may include
chemical structures, adverse event profiles, compound-target interactions, pathways, disease-
gene associations, genomic, proteomic, and transcriptomic information. The drug repurposing

methods can be developed based on the individual or combination of these components.

In this study, we propose DrugRepo (http://drugrepo.org/); a novel scoring algorithm that can

effectively repurpose hundreds of thousands of compounds based on three components, 1)
overlapping compound-targets score (OCTS), 2) structure similarity score based on Tanimoto
coefficient (TC), and 3) compound-disease score (CDS). The DrugRepo score is computed
between the approved drug (for a particular disease) and candidate compound and is the
average of the three component scores. Approved indications for 674 diseases and 1,092

compounds are collected from https://clinicaltrials.gov/. To explore the translational impact of

DrugRepo, we cross-referenced candidate compounds with completed clinical trials at

https://clinicaltrials.gov/. We observed that 186 compounds are explored in different clinical

studies across nine cancer types. We also compared our candidate compounds with the
predicted compound disease relationships at the Comparative Toxicogenomic Database (CTD)
(61 and found a statistically significant overlap. These promising findings demonstrate the
versatility of DrugRepo. Our new tool provides a quick and effective scoring method for drug

repurposing.
2. MATERIALS

Several types of data are integrated into this analysis, e.g., approved drug indications,
compound-target profiles, disease-gene associations, and protein-protein interaction (PPI)

networks. These datasets are consequently explained in the following subsections.
2.1. Approved drug indications

Approved drug indications are extracted from the clinical trials database

(https://clinicaltrials.gov/), as it is the most up to date repository for drug indications and

clinical phases for the compounds. However, the data provided by clinical trials is not well
structured and doesn’t provide standard naming conventions or identifiers for the compounds
and diseases. We, therefore, utilized a semi-automated approach to extract drug-disease
indications, assigned UML-CUI and standard InChlKey identifiers for drugs and diseases,

respectively. The standard InChlKey mapping is performed using the PubChem python client
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(https://pubchempy.readthedocs.io/en/latest/), whereas UML-CUIs are assigned to the diseases

using disease annotations provided by DisGeNET [l Finally, we extracted data for 674

diseases, 1,092 drugs, and 3,868 approved drug indications, as shown in Supplementary file 1.
2.2. Compound-target profiles

Non-overlapping compound-target profiles are extracted from the five most comprehensive
(and manually curated) databases namely, ChEMBL [¢, BindingDB ©° GtopDB [,
DrugBank Y and DGIDB . The compound identifiers in these databases are mapped into
standard InChiKeys and SMILES using UniChem 21 and PubChem 4, respectively, whereas
identifiers for target proteins are mapped to UniProt identifiers 2°. The combined non-
overlapping compounds from the five databases exceed 2M with approximately 15,000 targets.
These comprehensive datasets are extracted using application programmable interfaces (APIs),
standalone text files, and SQL dumps. The first three databases, ChEMBL, BindingDB and
GtopDB, provide quantitative bioactivity data, such as measurements in terms of 1Cso, Kg, and
Ki, whereas DrugBank and DGiDB contain unary but experimentally verified compound-target
interactions. In addition to active or potent compound-target profiles in ChEMBL, BindingDB
and GtopDB, there exists a big proportion of in-active compound-target profiles (concentration
> 10,000 nM). These in-active compound-target profiles could jeopardize the analysis in the
proposed research. Therefore, in this analysis, we considered only potent compound-target
profiles (concentration is <=1000 nM) 261, Hence, we left with 788,078 compounds and 8,754
protein targets. Potent target profiles for these ~0.8M compounds are already integrated and
publicly available in MICHA (https://micha-protocol.org/) 27,

2.3. Disease-gene associations and PPl networks

To support the large-scale drug repurposing, we integrated manually curated disease-gene
associations from DisGeNET [, There are 9,703 genes, 11,181 diseases and 84,038

associations. These curated disease-gene associations are provided in Supplementary file 2.

Protein-protein interactions (PPI) networks were extracted from a manually curated human
interactome, including 16,677 proteins and 243,603 PPIs 28],

3. METHODS
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There are 788,078 compounds for which there exists at least one potent target (concentration
is <1000 nM) in any of the five DTI databases. We call these agents candidate compounds to
be repurposed. For each candidate compound, the DrugRepo score is calculated as the average
of three component scores, OCTS, TC, and CDS, which are derived by comparing each
candidate compound to 1,092 approved drugs (Figure 1). Because the number of calculated
scores (788,078 x 1092) is too big for the web portal to handle smoothly, we considered only
those cases where the structural similarity between the approved drug and candidate compound

1s > 0.2. This way, we were left with 2,207,367 scores.
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Figure 1: The schematic figure for drug repurposing in DrugRepo. The DrugRepo pipeline starts with the user
selecting a particular disease. There are 0.8M candidate compounds in DrugRepo that can be repurposed for 674
diseases. At first, the pipeline finds approved drug(s) for the selected disease and searches for structurally similar
compounds. In this step, the Tanimoto coefficient (TC) describes the structural similarity between molecular
fingerprints (ECFP4) of approved and candidate compounds. A threshold is used to favor similar molecular
structures. The second step is to compute DTI profiles for candidate compounds and approved drugs. The OCTS
is the score based on overlapping DTIs between approved and candidate compounds. In case of multiple approved
drugs for a disease, we took average of OCTS and TC scores. The third step is to compute the compound-disease
score (CDS). The CDS is the average of the minimum distances in the PPl networks between target molecules
and molecules associated with the selected disease. The average distance is normalized to 0-1. Finally, the
DrugRepo score is calculated as the average of the three component scores. The higher the DrugRepo score
between the approved drug and the candidate compound, the higher the possibility of repurposing the compound
for a particular disease. Finally, we developed the DrugRepo’s GUI to provide a user-friendly service for
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repurposing drugs with our pipeline. The OCTS between approved and candidate compounds are computed using
equation 1. The OCTS ranges from 0 to 1 and represents the proportion of targets shared between an approved
drug and the candidate compounds. Candidate compounds sharing more targets with the approved drugs will have
higher OCTS values.

OCTS = Drugr N Compoundr (1)

min(|Drugr|,|Compoundr|)

Where Drugr and Compound are the sets of potent targets for a pair of approved drugs and
candidate compounds, respectively. Similarly, |Drug;| and |Compound;| are the total

number of targets associated with approved drug and the candidate compound respectively.

Compound-target profiles are extracted from five databases. The number of overlapping
compounds and targets in these five databases are shown in Figure 2A and Figure 2B,
respectively. As evident from Figure 2A, ChEMBL features the most comprehensive
collection of compounds, whereas DrugBank covers more significant number of targets
(Figure 2B). There are 483 compounds and 776 targets that are common in all five databases.

Drug repurposing is challenging because of shortcomings in data coverage. The diseases
associated with significant number of approved drugs may have better chances of correctly
repurposing the compounds as the number of candidate compounds will also be larger.
However, only very few diseases are associated bigger number of approved drugs. HIV is
associated with the highest number of approved drugs (n = 103), but as shown in Figure 2C,
more than 70% of diseases have less than five approved drugs. On the other hand, the lack of
drug-target interactions is also a hurdle as it limits matching of compounds by the putative
mechanism of action. Indeed, most approved drugs have less than 30 targets (Figure 2D). To
compensate for the shortage of approved drugs and drug-target-interactions, we incorporated
two additional components in the DrugRepo pipeline: the Tanimoto coefficient (TC), which is
a structural similarity score, and the compound-disease score (CDS), which ranks new
compounds based on how closely their target spaces match with the target proteins that are

associated with the disease.

The Tanimoto coefficient (TC) is measures structural similarities between molecular ECFP4
fingerprints of approved and candidate compound for a particular disease. The fingerprints are
the bit strings denoting the presence or the absence of chemical substructures and are calculated
using RDK:it package [29].

TC = — Nac )

" Na+Nc-Ngc
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Where Nyand N, are the number of sub-structures present in the approved drug and
candidate compound, respectively, and N, are number of common sub-structures found in
both approved drug and the candidate compound. The value of TC is between range 0-1 and

constitutes the second component of DrugRepo.
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Figure 2: (A) Number of overlapping compounds across five databases. (B) Number of overlapping targets
between five databases. (C) Distribution of diseases across 1092 approved drugs. (D)Target coverage across 1092
approved drugs.

The compound-disease score (CDS) is measured by averaging the minimum distances in PPI
networks between potent targets of the candidate compound and genes associated with the
disease, as shown in equation 3. Curated disease-gene associations were extracted from
DisGeNET for the 674 diseases used in this analysis. There are 22,399 non-zero CDS values.

1 Z
C S( CG' G) |DG| + |CG| - min d(gllg]) (3)

Where C; = (91,92.-..) is the set of gene targets for candidate compounds and D; =
(g1,85...) arethe genes associated with a particular disease (acquired from DisGeNET). The
average of minimum distances between C,; and D, are computed in PPI networks. The average
distance is further normalized to 0-1 using min-max normalization. Finally, the DrugRepo
score is the mean of the three compound scores and ranges from 0 to 1. The higher the
DrugRepo score between an approved drug (for a particular disease) and a candidate

compound, the greater the repurposing potential of the candidate compound for that disease.

4. RESULTS AND DISCUSSIONS
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To explore the translational impact of DrugRepo, we evaluated our repurposed compounds
using two methods, i.e. 1) cross-referenced thousands of the repurposed compounds using
disease-compound associations in CTD [, 2) matched 186 compounds across nine cancer
types for which either Phase | or Phase Il trials have been completed or Phase Il trials is

ongoing.
4.1.Matching repurposed compounds with disease-compound associations in CTD

The Comparative Toxicogenomic Database (CTD) contains manually curated and inferred
compound-disease relationships 1, CTD associates thousands of compounds with diseases
based on drug-target and disease-gene relationships. Our scoring method and the datasets are
different from CTD, but the output types in DrugRepo and CTD are the same. We, therefore,
assessed the accuracy of DrugRepo by comparing the repurposed compounds with compound-
disease relationships in CTD. We downloaded disease-compound relationships from CTD at:
http://ctdbase.org/downloads/;jsessionid=5DA98FA00707F8A41A59335C1CC36C47#cd. In
CTD, compounds are represented by CAS identifiers or compound names; and diseases are

represented using Mesh ids. To make the comparison possible, we mapped compound names
from the CTD dataset into standard InChlKeys using PubChempy. Diseases are mapped from
MESH ids into UML-CUI. There are 1,048,548 compound-disease associations in CTD,
including 3,941 compounds and 6,119 diseases. Many of these compounds and diseases are
unable to map into standard InChlKeys and UML-CUI identifiers. We, therefore, skipped those
cases and left with only 168,471 compound-disease associations (605 diseases and 2,598
compounds), as shown in Supplementary file 3. These associations are used to match
repurposing candidate compounds by DrugRepo. The significance of matching results for
overlapping compounds (for a particular disease) between DrugRepo and CTD is computed

using the following equations:
Noverlap =|Cq N G
Nexpected = |Cql * |G-/ |Caul

Sigq = Noverlap - Nexpected

Where C,;; is the set of all candidate compounds (~0.8M) in DrugRepo, C is set of compounds
associated to disease ‘d” in CTD, C, is the set of repurposed compounds by DrugRepo for the

same disease ‘d’, Npyeriqp IS the number of overlapping compounds between CTD and
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DrugRepo, Neypecrea 1S the expected number of compounds overlapping with C, if we
randomly choose the same number of compounds (|C,|) from C,;,and Sig,; is the
significance of matched compounds. If the significance is greater than 0O, it means our

repurposing is not random.

We have ~0.8M candidate compounds and 1,092 approved drugs. This could result in a vast
matrix (~800M). Therefore, we considered only those candidate compounds that at least have
50% structural similarity with any of the approved drugs (TC >= 0.5). If Njyepqp for a
particular disease is greater than Neypecreqar Siga Will be positive, meaning that repurposed
compounds by DrugRepo are matched with CTD. Diseases with the significance scores > 0 are
shown in Figure 3A (Nexpectea 1S Shown with blue and Njy,ep14, With red bars). As shown in
Figure 3A, the blue bar represents the expected number of compounds, and the red bar
indicates the actual number of matched compounds. Most blue bars have significance scores
less than 1, suggesting that if chosen randomly, there should be less than one candidate
compound that can match for most of the diseases. We matched more than one correctly
repurposed compound for 118 diseases (Figure 3A). In other words, DrugRepo shows good
repurposing ability in 118 out of the 605 diseases in CTD, suggesting that our novel pipeline
effectively repurposes compounds for several diseases. For example, DrugRepo returns 4,921
candidate compounds and 401 compounds by CTD for myocardial infarction. If the selection
of the 4,921 compounds (from the 788,078 total candidate compounds) had been random, we
would have expected an average of 2.51 matched compounds. However, we matched 15
compounds with CTD (6 folds bigger than the expected number), suggesting that the DrugRepo
pipeline extracts biologically relevant candidate compounds.

To investigate the effect of structural similarity on drug repurposing, we evaluated the matched
repurposed compounds on five different thresholds (TC: 0.5, 0.6, 0.7, 0.8, 0.9). As shown in
Figure 3B, the number of matched repurposed compounds tends to decrease with strict TC
filtration on repurposed compounds, as expected. However, the significance scores are also
reduced, especially after TC > 0.9, suggesting that high structure similarity is not a determining
factor for drug repurposing. Many of the matched repurposed compounds are located at TC >=
0.5. On the other hand, the number of matched compounds and significance scores is relatively
stable between 0.6 < TC < 0.7. Therefore, TC values between 0.6 to 0.7 might be optimal for

drug repurposing.
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Figure 3: (A) The circular bar shows drug repurposing results matched with CTD. All the matched diseases were
distributed as pie in the circle. The blue bars represent (N_expected ) the expected number of compounds, if
chosen randomly while the red bar represents the actual overlap (Noverlap) between compounds in CTD and
DrugRepo. (B) The Significance scores at different TC thresholds (with y-axis as thresholds and x-axis as a disease
whose true positive is not 0). The significance score is represented by dot size, and the colour from red to blue
represents number of overlapping compounds.

We also analysed whether diseases associated with a more significant number of approved

drugs can affect the DrugRepo scoring. As shown in Figure 4A, if a specific disease is

10
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associated with a considerable number of approved drugs, then more repurposed compounds
can be matched (correlation = 0.7). Similarly, the number of matched repurposed compounds
(Noveriap) is also closely associated with the significance score (Figure 4B). Conversely,

DrugRepo performance remains poor for the diseases associated with fewer approved drugs.

Correlation = 0.70

Significance score

10 20 30 0 50 60 70 80
Number of approved drugs

Correlation = 0.99

Significance score
(=]

0 2 4 6 8 10 12 14
Number of matched repurposed compound

Figure 4: The impact of significance score on number of: (A) approved drugs associated with a disease, (B)
matched repurposed compounds.

4.2.Matching DrugRepo candidate compounds with drugs in clinical trials

To establish if the DrugRepo pipeline enriches for compounds already tested in patients, we
chose nine commonly studied cancer types to match repurposed compounds in DrugRepo with
completed Phase | or Phase Il or ongoing Phase Il clinical trials. First, using the clinical trial

API (https://clinicaltrials.gov/api/), we obtained the names of all compounds matching these

criteria. Using PubChem's API, we then tried to map the compound names with standard
InChlKeys. However, the naming convention for compounds is not yet standardized, and

several compounds were not mapped and therefore omitted from the subsequent steps.

Figures 5A and 5B showed that we found 186 and 51 candidate compounds using structural
similarity thresholds of TC >= 0.2 and TC >= 0.5, respectively. The names and identifiers of

these matched compounds and other statistics are provided in Supplementary file 4.

11


https://clinicaltrials.gov/api/
https://doi.org/10.1101/2022.04.21.488995
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.21.488995; this version posted June 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

All these matched indications have either successfully passed phase I or phase II. There could
be some candidate repurposing compounds having high DrugRepo scores but unable to match
with compounds at clinical trials. This could be either due to the lack of mapping for some
compounds (at clinical trials) or because only limited compounds are being tested at clinical
trials. However, by looking at the matched candidate compounds, we may find a suitable

threshold on the DrugRepo score to identify repurposing compounds.

Lowering the structural similarity threshold increased the chances of matching more
repurposed compounds. Figures 5A and 5B shows the number of matched compounds across
the nine cancer types for TC >= 0.2 and TC >= 0.5, respectively. Figures 5C and 5D shows
the distribution of DrugRepo scores using TC >= 0.2 and TC >= 0.5. Most of the matched
candidate compounds have a median DrugRepo score higher than 0.4. Hence, we suggest the

users use at least DrugRepo >= 0.4 to get maximum repurposing compounds.
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Figure 5: (A) The number of matched candidate compounds across nine cancer types using structural similarity
(TC) >=0.2, (B) Number of matched candidate compounds using structural similarity (TC) >=0.5, (C) Distribution of
DrugRepo scores for matched compounds for structural similarity (TC) >=0.2, (D) Distribution of DrugRepo scores
for matched compounds for structural similarity (TC) >=0.5. (E) Distribution of compound-disease score for
repurposed compounds TC >=0.2, (F) Distribution of compound-disease score for repurposed compounds TC
>=0.5, (G) Distribution overlapping target profile scores between approved and repurposed compounds TC >=0.2,
(H) Distribution overlapping target profile scores between approved and repurposed compounds TC >=0.5.

Furthermore, we explored the effect of structural similarity on OCTS and CDS. Figures 5E
and 5F show that structural similarity slightly affects the OCTS thresholds but has no
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significant impact on compound-disease scores (CDS). However, TC values affect the final
DrugRepo score (higher structural similarity corresponds to higher DrugRepo scores), as
shown in Figures 5C and 5D. Matched compounds for most cancer types have median CDS
>=0.7, showing the importance of CDS in defining DrugRepo (Figure 5E and 5F). The median
of OCTS for different cancer types is lower (0.1-0.5) than CDS because complete target
profiles (across the entire druggable genome) for most of the compounds are not experimentally
tested. The average number of targets for the candidate and approved compounds for each of
the five databases is less than 7 121, However, with the availability of additional high throughput

DTI studies, the distribution of OCTS in DrugRepo score may also increase.

Setting a lower threshold on DrugRepo scores may result in more false positives (compounds
not in clinical trials). So, we also analysed the proportion of hits across ten thresholds on
DrugRepo scores. As shown in Figure 6, the increase in DrugRepo threshold reduces the risk
of getting false positives. Especially hit percentage >=5% (for all cancers) at DrugRepo score
>=0.4. However, having miss-hits with clinical trials does not necessarily mean false positives,

as clinical trials contain limited number of studies/compounds.

NSCLC
CLL

AML

CML
Melanoma
0.6 Ovarian
—— Pancreatic
Breast
Lung

All cancers

0.8 1

HERN

0.4

Hit percentage
| |

0.2

0.0 1

0.0 0.2 0.4 06 0.8
DrugRepo scores
Figure 6: Hit ratio at different thresholds on different DrugRepo scores. The X-axis shows thresholds on

DrugRepo scores, and Y-axis shows the percentage of hits while matching with repurposed compounds at
https://clinicaltrials.gov/

Based on these successful matching, we can claim that a DrugRepo score >= 0.4 might
guarantee the repurposing of a candidate compound with less chances of false positives. Not
many compounds have been tested in clinical trials; therefore, we suggest top-scoring

compounds be tested in-vitro to evaluate the significance of DrugRepo scores.
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4.3.Using the DrugRepo’s GUI to repurpose drugs for CML

We provide a case study on Chronic Myeloid Leukaemia (CML) using the web interface at

http://drugrepo.org/. DrugRepo has three approved drugs (imatinib, nilotinib, and bosutinib)

for CML. Users may check one or more of these approved drugs and customize the structural
similarity and DrugRepo thresholds, as shown in Figure 7A. The figure’s section on DrugRepo
displays the results for the selected disease and associated approved compounds. Three figures
can be selected from the figures dropdown list, i.e., 1) Statistics, 2) Repurposing scores, and 3)
TSNE. The ‘Statistics’ displays the top targets (for approved drugs) and a list of repurposing
compounds (Figure 7B). We used standard InChlKey identifiers for the repurposing
compounds instead of names because many preclinical and investigational compounds aren’t
assigned with proper names. For targets, we used UniProt IDs. The ‘Repurposing scores’
provide a 3D scatterplot with the x-axis as TC, y-axis as OCTS and z-axis as CDS scores. Each
point is a pair of approved drug and repurposed compounds. Repurposing compounds are
assigned with the colors similar to the most associated approved drug (Figure 7C). More
details about diseases, approved drugs, repurposing compounds, and the three scores will show
if users click on the scatter points. T-distributed stochastic neighbour embedding (TSNE) is
used to visualize the 2D similarity between approved drugs (purple) and repurposing
compounds (red) as shown in Figure 7D. The 2D similarity was computed based on ECFP4

fingerprints.

Down to the Figures, there is a Tables section containing four tables as shown in the ‘Tables’
dropdown list, 1) Drug repurposing table, 2) Approved drugs for the disease, 3) Disease-gene
associations, and 4) Drug target profiles for drug and compounds. The ‘Drug Repurposing’
table provides four scores (TC, OCTS, CDS and DrugRepo) between approved and
repurposing drugs. The ‘Approved drugs for the disease’ table displays UML-CUIs for the
selected disease and standard InChlKeys of the approved drugs. The ‘Disease-gene
associations’ table displays the genes associated with the selected disease. Finally, the ‘Drug
target profiles for drug and compounds’ table provides a list of drug targets associated with the
approved drugs and repurposing compounds. Users can take advantage of filter and sort options

to customize the results and download data for further analysis.
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Figure 7: Using the DrugRepo GUI to repurpose drugs for CML. (A) Select disease interface, users can uncheck
any of the approved drugs, modify TC, and DrugRepo thresholds, (B) Top targets for approved drugs and top
repurposing compounds, (C) Drug repurposing plot, each point is based on three scores for an approved drug

and repurposing compound, (D) The 2D visualization for structural similarities between approved drugs and
repurposing compounds.

Conclusion

DrugRepo provides a platform for repurposing a massive number of compounds using
chemical and genomic features. We evaluated our methods by leveraging the datasets available
at clinical trials and CTD. DrugRepo is based on three components, i.e., structural similarity
(TC), overlapping compound-target score (OCTS), and compound-disease scores (CDS). CDS
(median > 0.75 in nine cancer types) is based on PPI networks and is more effective than OCTS
(median > 0.3) for matching repurposed compounds (as shown in Figures 5G & 5H). By
matching repurposed compounds, we suggest a DrugRepo score >=0.4 as the threshold to

repurpose compounds for a selected disease as it has lower chances of having false positives

(Figure 6). Computational analysis is further supported by a web application

(http://drugrepo.org/), where users can select a particular disease and obtain repurposed

compounds along with other parameters. Using DrugRepo GUI, users can select a particular

disease, check the approved drugs, targets associated with approved drugs or candidate

compounds, and finally download the compounds that can be repurposed for the selected
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disease. Users can adjust thresholds for structural similarity (TC) and DrugRepo scores (TC),
as shown in Figure 7A. We also provide user-friendly visualization by which users can apply
different filters to obtain specific results and finally download results for further analysis. The
web application can help design new drug repurposing applications and use existing

information for predictive analysis.

However, our method has some limitations. For instance, the proposed approach is dependent
on OCTS between approved drugs and candidate compounds. Missing data in DTI profiles for
an approved drug or candidate compound may cause failure in capturing some of the important
repurposing candidates. Although we integrated DTI profiles from the five most
comprehensive databases, the average number of targets for approved drugs is around seven,
which is much less than expected (as druggable targets are around 1000). However, new
releases of DTI databases (such as ChEMBL, DrugBank or BindingDB) may bring additional
curated DTIs, resulting in better repurposing applications. We will keep updates with the newly
curated datasets to make DrugRepo more effective. Presently DrugRepo is based only on three
components. However, with more components (such as gene expression data), results can be
further improved. We will therefore incorporate these improvements in the next version of

DrugRepo.
Key points

e We proposed a novel scoring algorithm for repurposing huge collection of pre-clinical

compounds. The analysis is supported by web tool available at: http://drugrepo.org/

e DrugRepo score is based on three components i.e. molecular structural similarity (TC),
Overlapping compound-target score (OCTS) and compound-disease score (CDS).
e DrugRepo GUI helps translational researchers to design new drug repurposing

applications and to perform predictive analysis
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Figure 8: The schematic figure for drug repurposing in DrugRepo. The DrugRepo pipeline
starts with the user selecting a particular disease. There are 0.8M candidate compounds in
DrugRepo that can be repurposed for 674 diseases. At first, the pipeline finds approved drug(s)
for the selected disease and searches for structurally similar compounds. In this step, the
Tanimoto coefficient (TC) describes the structural similarity between molecular fingerprints
(ECFP4) of approved and candidate compounds. A threshold is used to favor similar molecular
structures. The second step is to compute DTI profiles for candidate compounds and approved
drugs. The OCTS is the score based on overlapping DTIs between approved and candidate
compounds. In case of multiple approved drugs for a disease, we took average of OCTS and
TC scores. The third step is to compute the compound-disease score (CDS). The CDS is the
average of the minimum distances in the PPI networks between target molecules and molecules
associated with the selected disease. The average distance is normalized to 0-1. Finally, the
DrugRepo score is calculated as the average of the three component scores. The higher the
DrugRepo score between the approved drug and the candidate compound, the higher the
possibility of repurposing the compound for a particular disease. Finally, we developed the

DrugRepo’s GUI to provide a user-friendly service for repurposing drugs with our pipeline.

Figure 2: (A) Number of overlapping compounds across five databases. (B) Number of
overlapping targets between five databases. (C) Distribution of diseases across 1092 approved

drugs. (D)Target coverage across 1092 approved drugs.

Figure 3: (A) The circular bar shows drug repurposing results matched with CTD. All the
matched diseases were distributed as pie in the circle. The blue bars represent (Neypecteq ) the
expected number of compounds, if chosen randomly while the red bar represents the actual
overlap (Noveriap) between compounds in CTD and DrugRepo. (B) The Significance scores at
different TC thresholds (with y-axis as thresholds and x-axis as a disease whose true positive
is not 0). The significance score is represented by dot size, and the colour from red to blue

represents number of overlapping compounds.

Figure 4: The impact of significance score on number of: (A) approved drugs associated with

a disease, (B) matched repurposed compounds.

Figure 5: (A) The number of matched candidate compounds across nine cancer types using
structural similarity (TC) >=0.2, (B) Number of matched candidate compounds using
structural similarity (TC) >=0.5, (C) Distribution of DrugRepo scores for matched

compounds for structural similarity (TC) >=0.2, (D) Distribution of DrugRepo scores for
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matched compounds for structural similarity (TC) >=0.5. (E) Distribution of compound-
disease score for repurposed compounds TC >=0.2, (F) Distribution of compound-disease
score for repurposed compounds TC >=0.5, (G) Distribution overlapping target profile scores
between approved and repurposed compounds TC >=0.2, (H) Distribution overlapping target

profile scores between approved and repurposed compounds TC >=0.5.

Figure 6. Hit ratio at different thresholds on different DrugRepo scores.The X-axis shows
thresholds on DrugRepo scores, and Y-axis shows the percentage of hits while matching with

repurposed compounds at https://clinicaltrials.gov/

Figure 7: Using the DrugRepo GUI to repurpose drugs for CML. (A) Select disease
interface, users can uncheck any of the approved drugs, modify TC, and DrugRepo
thresholds, (B) Top targets for approved drugs and top repurposing compounds, (C) Drug
repurposing plot, each point is based on three scores for an approved drug and repurposing
compound, (D) The 2D visualization for structural similarities between approved drugs and

repurposing compounds
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