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ABSTRACT 

The drug development process consumes 9-12 years and approximately one billion US dollars 

in terms of costs. Due to high finances and time costs required by the traditional drug discovery 

paradigm, repurposing the old drugs to treat cancer and rare diseases is becoming popular. 

Computational approaches are mainly data-driven and involve a systematic analysis of 

different data types leading to the formulation of repurposing hypotheses. This study presents 

a novel scoring algorithm based on chemical and genomic data types to repurpose vast 

collection of compounds for 674 cancer types and other diseases. The data types used to design 

the scoring algorithm are chemical structures, drug-target interactions (DTI), pathways, and 

disease-gene associations. The repurpose scoring algorithm is strengthened by integrating the 

most comprehensive manually curated datasets for each data type. More than 100 of our 

repurposed compounds can be matched with ongoing studies at clinical trials 

(https://clinicaltrials.gov/). Our analysis is supported by a web tool available at: 

http://drugrepo.org/. 
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1. INTRODUCTION 
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The average cost of developing a new drug is billions of dollars, and it takes about 9–12 years 

to bring a new drug to the market [1]. Finding new uses for approved drugs has become a primary 

alternative strategy for the pharmaceutical industry. This practice, usually referred to as drug 

repositioning or drug repurposing, is highly attractive because of its potential to speed up the 

process of drug development, reduce costs, and provide treatments for unmet medical needs [2]. 

In this regard, compounds that have passed through phases I or II in the drug discovery pipeline 

but never made it to the market due to efficacy issues carry great potential for drug 

repositioning. Traditionally, drug repurposing success stories have mainly resulted from 

largely opportunistic and serendipitous findings [3]. For example, sildenafil citrate was 

originally developed as an antihypertensive drug but later repurposed by Pfizer and marketed 

as Viagra to treat erectile dysfunction based on retrospective clinical experience, leading to 

massive worldwide sales. Other examples of such drug repositioning include cancer drugs: 

crizotinib, sorafenib, azacitidine and decitabine, all of which failed to reach the markets in their 

initial indications yet now are essential tools in the treatment of various types of cancers [4].  

Over the recent years, various computational resources are developed to support systematic 

drug repurposing. Popular information sources for in-silico drug repurposing include, for 

instance, electronic health records, genome-wide association analyses or gene expression 

response profiles, pathway mappings, compound structures, target binding assays and other 

phenotypic profiling data [3]. Several systematic review articles on the use of computational 

repurposing approaches are available that cover machine learning (ML) algorithms [5][6][7]. 

Several databases directly support in-silico drug repurposing, including Drug Repurposing Hub 

[8], repoDB [9] and RepurposeDB [10]. On the other hand, hundreds of databases can indirectly 

support drug repurposing [7][11]. However, these databases provide experimentally tested 

indications only for a limited number of investigational or approved compounds and ignore the 

massive number of preclinical compounds that could be potential candidates for drug 

repurposing. Drug target profiles for approximately two million such preclinical compounds 

are available at ChEMBL[12] and other databases.  

Drug-target interactions (DTI), meaning the target molecules each compound binds to and the 

relative binding strength and impact on cellular functions, lie at the heart of drug discovery and 

repositioning. Several artificial intelligence (AI) methods for drug repurposing are based on 

DTIs as well as chemical structural similarities [13][14][15]. However, these methods are applied 

only to a selected set of compounds resulting in limited prediction outcomes [13]. Computational 
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approaches are primarily data-driven and involve a systematic analysis of several components 

(or data types) before suggesting a repurposed indication. These components may include 

chemical structures, adverse event profiles, compound-target interactions, pathways, disease-

gene associations, genomic, proteomic, and transcriptomic information. The drug repurposing 

methods can be developed based on the individual or combination of these components. 

In this study, we propose DrugRepo (http://drugrepo.org/); a novel scoring algorithm that can 

effectively repurpose hundreds of thousands of compounds based on three components, 1) 

overlapping compound-targets score (OCTS), 2) structure similarity score based on Tanimoto 

coefficient (TC), and 3) compound-disease score (CDS). The DrugRepo score is computed 

between the approved drug (for a particular disease) and candidate compound and is the 

average of the three component scores. Approved indications for 674 diseases and 1,092 

compounds are collected from https://clinicaltrials.gov/. To explore the translational impact of 

DrugRepo, we cross-referenced candidate compounds with completed clinical trials at  

https://clinicaltrials.gov/. We observed that 186 compounds are explored in different clinical 

studies across nine cancer types. We also compared our candidate compounds with the 

predicted compound disease relationships at the Comparative Toxicogenomic Database (CTD) 

[16] and found a statistically significant overlap. These promising findings demonstrate the 

versatility of DrugRepo. Our new tool provides a quick and effective scoring method for drug 

repurposing. 

2. MATERIALS 

Several types of data are integrated into this analysis, e.g., approved drug indications, 

compound-target profiles, disease-gene associations, and protein-protein interaction (PPI) 

networks. These datasets are consequently explained in the following subsections. 

2.1. Approved drug indications 

Approved drug indications are extracted from the clinical trials database 

(https://clinicaltrials.gov/), as it is the most up to date repository for drug indications and 

clinical phases for the compounds. However, the data provided by clinical trials is not well 

structured and doesn’t provide standard naming conventions or identifiers for the compounds 

and diseases. We, therefore, utilized a semi-automated approach to extract drug-disease 

indications, assigned UML-CUI and standard InChIKey identifiers for drugs and diseases, 

respectively. The standard InChIKey mapping is performed using the PubChem python client 
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(https://pubchempy.readthedocs.io/en/latest/), whereas UML-CUIs are assigned to the diseases 

using disease annotations provided by DisGeNET [17]. Finally, we extracted data for 674 

diseases, 1,092 drugs, and 3,868 approved drug indications, as shown in Supplementary file 1. 

2.2. Compound-target profiles 

Non-overlapping compound-target profiles are extracted from the five most comprehensive 

(and manually curated) databases namely, ChEMBL [18], BindingDB [19], GtopDB [20], 

DrugBank [21] and DGiDB [22]. The compound identifiers in these databases are mapped into 

standard InChIKeys and SMILES using UniChem [23] and PubChem [24], respectively, whereas 

identifiers for target proteins are mapped to UniProt identifiers [25]. The combined non-

overlapping compounds from the five databases exceed 2M with approximately 15,000 targets. 

These comprehensive datasets are extracted using application programmable interfaces (APIs), 

standalone text files, and SQL dumps. The first three databases, ChEMBL, BindingDB and 

GtopDB, provide quantitative bioactivity data, such as measurements in terms of IC50, Kd, and 

Ki, whereas DrugBank and DGiDB contain unary but experimentally verified compound-target 

interactions. In addition to active or potent compound-target profiles in ChEMBL, BindingDB 

and GtopDB, there exists a big proportion of in-active compound-target profiles (concentration 

> 10,000 nM). These in-active compound-target profiles could jeopardize the analysis in the 

proposed research. Therefore, in this analysis, we considered only potent compound-target 

profiles (concentration is <=1000 nM) [26]. Hence, we left with 788,078 compounds and 8,754 

protein targets. Potent target profiles for these ~0.8M compounds are already integrated and 

publicly available in MICHA (https://micha-protocol.org/) [27]. 

2.3. Disease-gene associations and PPI networks 

To support the large-scale drug repurposing, we integrated manually curated disease-gene 

associations from DisGeNET [17]. There are 9,703 genes, 11,181 diseases and 84,038 

associations. These curated disease-gene associations are provided in Supplementary file 2. 

Protein-protein interactions (PPI) networks were extracted from a manually curated human 

interactome, including 16,677 proteins and 243,603 PPIs [28]. 

3. METHODS 
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There are 788,078 compounds for which there exists at least one potent target (concentration 

is ≤1000 nM) in any of the five DTI databases. We call these agents candidate compounds to 

be repurposed. For each candidate compound, the DrugRepo score is calculated as the average 

of three component scores, OCTS, TC, and CDS, which are derived by comparing each 

candidate compound to 1,092 approved drugs (Figure 1). Because the number of calculated 

scores (788,078 x 1092) is too big for the web portal to handle smoothly, we considered only 

those cases where the structural similarity between the approved drug and candidate compound 

is ≥ 0.2. This way, we were left with 2,207,367 scores.  

 

Figure 1: The schematic figure for drug repurposing in DrugRepo. The DrugRepo pipeline starts with the user 
selecting a particular disease. There are 0.8M candidate compounds in DrugRepo that can be repurposed for 674 
diseases. At first, the pipeline finds approved drug(s) for the selected disease and searches for structurally similar 
compounds. In this step, the Tanimoto coefficient (TC) describes the structural similarity between molecular 
fingerprints (ECFP4) of approved and candidate compounds. A threshold is used to favor similar molecular 
structures. The second step is to compute DTI profiles for candidate compounds and approved drugs. The OCTS 
is the score based on overlapping DTIs between approved and candidate compounds. In case of multiple approved 
drugs for a disease, we took average of OCTS and TC scores. The third step is to compute the compound-disease 
score (CDS). The CDS is the average of the minimum distances in the PPI networks between target molecules 
and molecules associated with the selected disease. The average distance is normalized to 0-1. Finally, the 
DrugRepo score is calculated as the average of the three component scores. The higher the DrugRepo score 
between the approved drug and the candidate compound, the higher the possibility of repurposing the compound 
for a particular disease. Finally, we developed the DrugRepo’s GUI to provide a user-friendly service for 
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repurposing drugs with our pipeline. The OCTS between approved and candidate compounds are computed using 
equation 1. The OCTS ranges from 0 to 1 and represents the proportion of targets shared between an approved 
drug and the candidate compounds. Candidate compounds sharing more targets with the approved drugs will have 
higher OCTS values.  

𝑂𝐶𝑇𝑆 =
𝐷𝑟𝑢𝑔𝑇   ∩  Compound𝑇

min(|𝐷𝑟𝑢𝑔𝑇| ,|Compound𝑇|)
       (1) 

Where 𝐷𝑟𝑢𝑔𝑇 𝑎𝑛𝑑 Compound𝑇 are the sets of potent targets for a pair of approved drugs and 

candidate compounds, respectively. Similarly,  |𝐷𝑟𝑢𝑔𝑇|  𝑎𝑛𝑑 |Compound𝑇|  are the total 

number of targets associated with approved drug and the candidate compound respectively.  

Compound-target profiles are extracted from five databases. The number of overlapping 

compounds and targets in these five databases are shown in Figure 2A and Figure 2B, 

respectively. As evident from Figure 2A, ChEMBL features the most comprehensive 

collection of compounds, whereas DrugBank covers more significant number of targets 

(Figure 2B). There are 483 compounds and 776 targets that are common in all five databases. 

Drug repurposing is challenging because of shortcomings in data coverage. The diseases 

associated with significant number of approved drugs may have better chances of correctly 

repurposing the compounds as the number of candidate compounds will also be larger. 

However, only very few diseases are associated bigger number of approved drugs. HIV is 

associated with the highest number of approved drugs (n = 103), but as shown in Figure 2C, 

more than 70% of diseases have less than five approved drugs.  On the other hand, the lack of 

drug-target interactions is also a hurdle as it limits matching of compounds by the putative 

mechanism of action. Indeed, most approved drugs have less than 30 targets (Figure 2D). To 

compensate for the shortage of approved drugs and drug-target-interactions, we incorporated 

two additional components in the DrugRepo pipeline: the Tanimoto coefficient (TC), which is 

a structural similarity score, and the compound-disease score (CDS), which ranks new 

compounds based on how closely their target spaces match with the target proteins that are 

associated with the disease. 

The Tanimoto coefficient (TC) is measures structural similarities between molecular ECFP4 

fingerprints of approved and candidate compound for a particular disease. The fingerprints are 

the bit strings denoting the presence or the absence of chemical substructures and are calculated 

using RDKit package [29]. 

TC =
𝑁𝐴𝐶

𝑁𝐴 + 𝑁𝐶 − 𝑁𝐴𝐶
        (2) 
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Where 𝑁𝐴 𝑎𝑛𝑑  𝑁𝐶  are the number of sub-structures present in the approved drug and 

candidate compound, respectively, and 𝑁𝐴𝐶 are number of common sub-structures found in 

both approved drug and the candidate compound. The value of TC is between range 0-1 and 

constitutes the second component of DrugRepo. 

 

Figure 2: (A) Number of overlapping compounds across five databases. (B) Number of overlapping targets 
between five databases. (C) Distribution of diseases across 1092 approved drugs. (D)Target coverage across 1092 
approved drugs. 

The compound-disease score (CDS) is measured by averaging the minimum distances in PPI 

networks between potent targets of the candidate compound and genes associated with the 

disease, as shown in equation 3. Curated disease-gene associations were extracted from 

DisGeNET for the 674 diseases used in this analysis. There are 22,399 non-zero CDS values. 

𝐶𝐷𝑆( 𝐶𝐺, 𝐷𝐺) =
1

|𝐷𝐺| + |𝐶𝐺|
∑ 𝑚𝑖𝑛 𝑑(𝑔𝑖 , 𝑔𝑗

′ )

𝑖,𝑗

      (3) 

Where 𝐶𝐺 = (𝑔1,𝑔2,. . . )  is the set of gene targets for candidate compounds and 𝐷𝐺 =

(g1
′ , g2

′  . . . )  are the genes associated with a particular disease (acquired from DisGeNET). The 

average of minimum distances between 𝐶𝐺 𝑎𝑛𝑑 𝐷𝐺  are computed in PPI networks. The average 

distance is further normalized to 0-1 using min-max normalization. Finally, the DrugRepo 

score is the mean of the three compound scores and ranges from 0 to 1.  The higher the 

DrugRepo score between an approved drug (for a particular disease) and a candidate 

compound, the greater the repurposing potential of the candidate compound for that disease. 

4. RESULTS AND DISCUSSIONS 
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To explore the translational impact of DrugRepo, we evaluated our repurposed compounds 

using two methods, i.e. 1) cross-referenced thousands of the repurposed compounds using 

disease-compound associations in CTD [16], 2) matched 186 compounds across nine cancer 

types for which either Phase I or Phase II trials have been completed or Phase III trials is 

ongoing. 

4.1.Matching repurposed compounds with disease-compound associations in CTD 

The Comparative Toxicogenomic Database (CTD) contains manually curated and inferred 

compound-disease relationships [16]. CTD associates thousands of compounds with diseases 

based on drug-target and disease-gene relationships. Our scoring method and the datasets are 

different from CTD, but the output types in DrugRepo and CTD are the same. We, therefore, 

assessed the accuracy of DrugRepo by comparing the repurposed compounds with compound-

disease relationships in CTD. We downloaded disease-compound relationships from CTD at: 

http://ctdbase.org/downloads/;jsessionid=5DA98FA00707F8A41A59335C1CC36C47#cd. In 

CTD, compounds are represented by CAS identifiers or compound names; and diseases are 

represented using Mesh ids. To make the comparison possible, we mapped compound names 

from the CTD dataset into standard InChIKeys using PubChempy. Diseases are mapped from 

MESH ids into UML-CUI. There are 1,048,548 compound-disease associations in CTD, 

including 3,941 compounds and 6,119 diseases. Many of these compounds and diseases are 

unable to map into standard InChIKeys and UML-CUI identifiers. We, therefore, skipped those 

cases and left with only 168,471 compound-disease associations (605 diseases and 2,598 

compounds), as shown in Supplementary file 3.  These associations are used to match 

repurposing candidate compounds by DrugRepo. The significance of matching results for 

overlapping compounds (for a particular disease) between DrugRepo and CTD is computed 

using the following equations: 

𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = | 𝐶𝑑 ∩  𝐶𝑟| 

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  = |𝐶𝑑| ∗ |𝐶𝑟|/|𝐶𝑎𝑙𝑙| 

𝑆𝑖𝑔𝑑 = 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 − 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

Where 𝐶𝑎𝑙𝑙 is the set of all candidate compounds (~0.8M) in DrugRepo, 𝐶𝑑 is set of compounds 

associated to disease ‘d’ in CTD, 𝐶𝑟 is the set of repurposed compounds by DrugRepo for the 

same disease ‘d’ , 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝  is the number of overlapping compounds between CTD and 
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DrugRepo, 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  is the expected number of compounds overlapping with  𝐶𝑑  if we 

randomly choose the same number of compounds  ( |𝐶𝑟|)  from 𝐶𝑎𝑙𝑙 , and 𝑆𝑖𝑔𝑑  is the 

significance of matched compounds. If the significance is greater than 0, it means our 

repurposing is not random.  

We have ~0.8M candidate compounds and 1,092 approved drugs. This could result in a vast 

matrix (~800M). Therefore, we considered only those candidate compounds that at least have 

50% structural similarity with any of the approved drugs (TC >= 0.5). If 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝  for a 

particular disease is greater than  𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,  𝑆𝑖𝑔𝑑  will be positive, meaning that repurposed 

compounds by DrugRepo are matched with CTD. Diseases with the significance scores > 0 are 

shown in Figure 3A (𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  is shown with blue and 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝  with red bars). As shown in 

Figure 3A, the blue bar represents the expected number of compounds, and the red bar 

indicates the actual number of matched compounds. Most blue bars have significance scores 

less than 1, suggesting that if chosen randomly, there should be less than one candidate 

compound that can match for most of the diseases. We matched more than one correctly 

repurposed compound for 118 diseases (Figure 3A). In other words, DrugRepo shows good 

repurposing ability in 118 out of the 605 diseases in CTD, suggesting that our novel pipeline 

effectively repurposes compounds for several diseases. For example, DrugRepo returns 4,921 

candidate compounds and 401 compounds by CTD for myocardial infarction. If the selection 

of the 4,921 compounds (from the 788,078 total candidate compounds) had been random, we 

would have expected an average of 2.51 matched compounds. However, we matched 15 

compounds with CTD (6 folds bigger than the expected number), suggesting that the DrugRepo 

pipeline extracts biologically relevant candidate compounds. 

To investigate the effect of structural similarity on drug repurposing, we evaluated the matched 

repurposed compounds on five different thresholds (TC: 0.5, 0.6, 0.7, 0.8, 0.9). As shown in 

Figure 3B, the number of matched repurposed compounds tends to decrease with strict TC 

filtration on repurposed compounds, as expected. However, the significance scores are also 

reduced, especially after TC ≥ 0.9, suggesting that high structure similarity is not a determining 

factor for drug repurposing. Many of the matched repurposed compounds are located at TC >= 

0.5. On the other hand, the number of matched compounds and significance scores is relatively 

stable between 0.6 ≤ TC ≤ 0.7. Therefore, TC values between 0.6 to 0.7 might be optimal for 

drug repurposing. 
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Figure 3: (A) The circular bar shows drug repurposing results matched with CTD. All the matched diseases were 
distributed as pie in the circle. The blue bars represent (N_expected ) the expected number of compounds, if 
chosen randomly while the red bar represents the actual overlap (Noverlap) between compounds in CTD and 
DrugRepo. (B) The Significance scores at different TC thresholds (with y-axis as thresholds and x-axis as a disease 
whose true positive is not 0). The significance score is represented by dot size, and the colour from red to blue 
represents number of overlapping compounds. 

We also analysed whether diseases associated with a more significant number of approved 

drugs can affect the DrugRepo scoring. As shown in Figure 4A, if a specific disease is 
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associated with a considerable number of approved drugs, then more repurposed compounds 

can be matched (correlation = 0.7). Similarly, the number of matched repurposed compounds 

(Noverlap) is also closely associated with the significance score (Figure 4B). Conversely, 

DrugRepo performance remains poor for the diseases associated with fewer approved drugs.  

 

Figure 4: The impact of significance score on number of: (A) approved drugs associated with a disease, (B) 
matched repurposed compounds. 

4.2.Matching DrugRepo candidate compounds with drugs in clinical trials  

To establish if the DrugRepo pipeline enriches for compounds already tested in patients, we 

chose nine commonly studied cancer types to match repurposed compounds in DrugRepo with 

completed Phase I or Phase II or ongoing Phase III clinical trials. First, using the clinical trial 

API (https://clinicaltrials.gov/api/), we obtained the names of all compounds matching these 

criteria. Using PubChem's API, we then tried to map the compound names with standard 

InChIKeys. However, the naming convention for compounds is not yet standardized, and 

several compounds were not mapped and therefore omitted from the subsequent steps. 

Figures 5A and 5B showed that we found 186 and 51 candidate compounds using structural 

similarity thresholds of TC >= 0.2 and TC >= 0.5, respectively. The names and identifiers of 

these matched compounds and other statistics are provided in Supplementary file 4.   
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All these matched indications have either successfully passed phase I or phase II. There could 

be some candidate repurposing compounds having high DrugRepo scores but unable to match 

with compounds at clinical trials. This could be either due to the lack of mapping for some 

compounds (at clinical trials) or because only limited compounds are being tested at clinical 

trials. However, by looking at the matched candidate compounds, we may find a suitable 

threshold on the DrugRepo score to identify repurposing compounds. 

Lowering the structural similarity threshold increased the chances of matching more 

repurposed compounds. Figures 5A and 5B shows the number of matched compounds across 

the nine cancer types for TC >= 0.2 and TC >= 0.5, respectively. Figures 5C and 5D shows 

the distribution of DrugRepo scores using TC >= 0.2 and TC >= 0.5. Most of the matched 

candidate compounds have a median DrugRepo score higher than 0.4. Hence, we suggest the 

users use at least DrugRepo >= 0.4 to get maximum repurposing compounds.  

 

Figure 5: (A) The number of matched candidate compounds across nine cancer types using structural similarity 
(TC) >=0.2, (B) Number of matched candidate compounds using structural similarity (TC) >=0.5, (C) Distribution of 
DrugRepo scores for matched compounds for structural similarity (TC) >=0.2, (D) Distribution of DrugRepo scores 
for matched compounds for structural similarity (TC) >=0.5. (E) Distribution of compound-disease score for 
repurposed compounds TC >=0.2, (F) Distribution of compound-disease score for repurposed compounds TC 
>=0.5, (G) Distribution overlapping target profile scores between approved and repurposed compounds TC >=0.2, 
(H) Distribution overlapping target profile scores between approved and repurposed compounds TC >=0.5. 

Furthermore, we explored the effect of structural similarity on OCTS and CDS. Figures 5E 

and 5F show that structural similarity slightly affects the OCTS thresholds but has no 
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significant impact on compound-disease scores (CDS). However, TC values affect the final 

DrugRepo score (higher structural similarity corresponds to higher DrugRepo scores), as 

shown in Figures 5C and 5D. Matched compounds for most cancer types have median CDS 

>=0.7, showing the importance of CDS in defining DrugRepo (Figure 5E and 5F). The median 

of OCTS for different cancer types is lower (0.1-0.5) than CDS because complete target 

profiles (across the entire druggable genome) for most of the compounds are not experimentally 

tested. The average number of targets for the candidate and approved compounds for each of 

the five databases is less than 7 [27]. However, with the availability of additional high throughput 

DTI studies, the distribution of OCTS in DrugRepo score may also increase. 

Setting a lower threshold on DrugRepo scores may result in more false positives (compounds 

not in clinical trials). So, we also analysed the proportion of hits across ten thresholds on 

DrugRepo scores. As shown in Figure 6, the increase in DrugRepo threshold reduces the risk 

of getting false positives. Especially hit percentage >=5% (for all cancers) at DrugRepo score 

>=0.4. However, having miss-hits with clinical trials does not necessarily mean false positives, 

as clinical trials contain limited number of studies/compounds.   

 

Figure 6: Hit ratio at different thresholds on different DrugRepo scores. The X-axis shows thresholds on 

DrugRepo scores, and Y-axis shows the percentage of hits while matching with repurposed compounds at 
https://clinicaltrials.gov/  

Based on these successful matching, we can claim that a DrugRepo score >= 0.4 might 

guarantee the repurposing of a candidate compound with less chances of false positives. Not 

many compounds have been tested in clinical trials; therefore, we suggest top-scoring 

compounds be tested in-vitro to evaluate the significance of DrugRepo scores. 
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4.3.Using the DrugRepo’s GUI to repurpose drugs for CML 

We provide a case study on Chronic Myeloid Leukaemia (CML) using the web interface at 

http://drugrepo.org/. DrugRepo has three approved drugs (imatinib, nilotinib, and bosutinib) 

for CML. Users may check one or more of these approved drugs and customize the structural 

similarity and DrugRepo thresholds, as shown in Figure 7A. The figure’s section on DrugRepo 

displays the results for the selected disease and associated approved compounds. Three figures 

can be selected from the figures dropdown list, i.e., 1) Statistics, 2) Repurposing scores, and 3) 

TSNE. The ‘Statistics’ displays the top targets (for approved drugs) and a list of repurposing 

compounds (Figure 7B). We used standard InChIKey identifiers for the repurposing 

compounds instead of names because many preclinical and investigational compounds aren’t 

assigned with proper names. For targets, we used UniProt IDs. The ‘Repurposing scores’ 

provide a 3D scatterplot with the x-axis as TC, y-axis as OCTS and z-axis as CDS scores. Each 

point is a pair of approved drug and repurposed compounds. Repurposing compounds are 

assigned with the colors similar to the most associated approved drug (Figure 7C). More 

details about diseases, approved drugs, repurposing compounds, and the three scores will show 

if users click on the scatter points. T-distributed stochastic neighbour embedding (TSNE) is 

used to visualize the 2D similarity between approved drugs (purple) and repurposing 

compounds (red) as shown in Figure 7D. The 2D similarity was computed based on ECFP4 

fingerprints.  

Down to the Figures, there is a Tables section containing four tables as shown in the ‘Tables’ 

dropdown list, 1) Drug repurposing table, 2) Approved drugs for the disease, 3) Disease-gene 

associations, and 4) Drug target profiles for drug and compounds.  The ‘Drug Repurposing’ 

table provides four scores (TC, OCTS, CDS and DrugRepo) between approved and 

repurposing drugs. The ‘Approved drugs for the disease’ table displays UML-CUIs for the 

selected disease and standard InChIKeys of the approved drugs. The ‘Disease-gene 

associations’ table displays the genes associated with the selected disease. Finally, the ‘Drug 

target profiles for drug and compounds’ table provides a list of drug targets associated with the 

approved drugs and repurposing compounds. Users can take advantage of filter and sort options 

to customize the results and download data for further analysis.  
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Figure 7: Using the DrugRepo GUI to repurpose drugs for CML. (A) Select disease interface, users can uncheck 
any of the approved drugs, modify TC, and DrugRepo thresholds, (B) Top targets for approved drugs and top 
repurposing compounds, (C) Drug repurposing plot, each point is based on three scores for an approved drug 
and repurposing compound, (D) The 2D visualization for structural similarities between approved drugs and 

repurposing compounds.  

 

Conclusion 

DrugRepo provides a platform for repurposing a massive number of compounds using 

chemical and genomic features. We evaluated our methods by leveraging the datasets available 

at clinical trials and CTD. DrugRepo is based on three components, i.e., structural similarity 

(TC), overlapping compound-target score (OCTS), and compound-disease scores (CDS). CDS 

(median ≥ 0.75 in nine cancer types) is based on PPI networks and is more effective than OCTS 

(median ≥ 0.3) for matching repurposed compounds (as shown in Figures 5G & 5H). By 

matching repurposed compounds, we suggest a DrugRepo score >=0.4 as the threshold to 

repurpose compounds for a selected disease as it has lower chances of having false positives 

(Figure 6). Computational analysis is further supported by a web application 

(http://drugrepo.org/), where users can select a particular disease and obtain repurposed 

compounds along with other parameters. Using DrugRepo GUI, users can select a particular 

disease, check the approved drugs, targets associated with approved drugs or candidate 

compounds, and finally download the compounds that can be repurposed for the selected 
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disease. Users can adjust thresholds for structural similarity (TC) and DrugRepo scores (TC), 

as shown in Figure 7A. We also provide user-friendly visualization by which users can apply 

different filters to obtain specific results and finally download results for further analysis. The 

web application can help design new drug repurposing applications and use existing 

information for predictive analysis. 

However, our method has some limitations. For instance, the proposed approach is dependent 

on OCTS between approved drugs and candidate compounds. Missing data in DTI profiles for 

an approved drug or candidate compound may cause failure in capturing some of the important 

repurposing candidates. Although we integrated DTI profiles from the five most 

comprehensive databases, the average number of targets for approved drugs is around seven, 

which is much less than expected (as druggable targets are around 1000). However, new 

releases of DTI databases (such as ChEMBL, DrugBank or BindingDB) may bring additional 

curated DTIs, resulting in better repurposing applications. We will keep updates with the newly 

curated datasets to make DrugRepo more effective. Presently DrugRepo is based only on three 

components. However, with more components (such as gene expression data), results can be 

further improved. We will therefore incorporate these improvements in the next version of 

DrugRepo. 

Key points 

• We proposed a novel scoring algorithm for repurposing huge collection of pre-clinical 

compounds. The analysis is supported by web tool available at: http://drugrepo.org/  

•  DrugRepo score is based on three components i.e. molecular structural similarity (TC), 

Overlapping compound-target score (OCTS) and compound-disease score (CDS). 

• DrugRepo GUI helps translational researchers to design new drug repurposing 

applications and to perform predictive analysis 
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Figure 8: The schematic figure for drug repurposing in DrugRepo. The DrugRepo pipeline 

starts with the user selecting a particular disease. There are 0.8M candidate compounds in 

DrugRepo that can be repurposed for 674 diseases. At first, the pipeline finds approved drug(s) 

for the selected disease and searches for structurally similar compounds. In this step, the 

Tanimoto coefficient (TC) describes the structural similarity between molecular fingerprints 

(ECFP4) of approved and candidate compounds. A threshold is used to favor similar molecular 

structures. The second step is to compute DTI profiles for candidate compounds and approved 

drugs. The OCTS is the score based on overlapping DTIs between approved and candidate 

compounds. In case of multiple approved drugs for a disease, we took average of OCTS and 

TC scores. The third step is to compute the compound-disease score (CDS). The CDS is the 

average of the minimum distances in the PPI networks between target molecules and molecules 

associated with the selected disease. The average distance is normalized to 0-1. Finally, the 

DrugRepo score is calculated as the average of the three component scores. The higher the 

DrugRepo score between the approved drug and the candidate compound, the higher the 

possibility of repurposing the compound for a particular disease. Finally, we developed the 

DrugRepo’s GUI to provide a user-friendly service for repurposing drugs with our pipeline. 

Figure 2: (A) Number of overlapping compounds across five databases. (B) Number of 

overlapping targets between five databases. (C) Distribution of diseases across 1092 approved 

drugs. (D)Target coverage across 1092 approved drugs. 

Figure 3: (A) The circular bar shows drug repurposing results matched with CTD. All the 

matched diseases were distributed as pie in the circle. The blue bars represent (𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  ) the 

expected number of compounds, if chosen randomly while the red bar represents the actual 

overlap (Noverlap) between compounds in CTD and DrugRepo. (B) The Significance scores at 

different TC thresholds (with y-axis as thresholds and x-axis as a disease whose true positive 

is not 0). The significance score is represented by dot size, and the colour from red to blue 

represents number of overlapping compounds. 

Figure 4: The impact of significance score on number of: (A) approved drugs associated with 

a disease, (B) matched repurposed compounds. 

Figure 5: (A) The number of matched candidate compounds across nine cancer types using 

structural similarity (TC) >=0.2, (B) Number of matched candidate compounds using 

structural similarity (TC) >=0.5, (C) Distribution of DrugRepo scores for matched 

compounds for structural similarity (TC) >=0.2, (D) Distribution of DrugRepo scores for 
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matched compounds for structural similarity (TC) >=0.5. (E) Distribution of compound-

disease score for repurposed compounds TC >=0.2, (F) Distribution of compound-disease 

score for repurposed compounds TC >=0.5, (G) Distribution overlapping target profile scores 

between approved and repurposed compounds TC >=0.2, (H) Distribution overlapping target 

profile scores between approved and repurposed compounds TC >=0.5. 

Figure 6. Hit ratio at different thresholds on different DrugRepo scores.The X-axis shows 

thresholds on DrugRepo scores, and Y-axis shows the percentage of hits while matching with 

repurposed compounds at https://clinicaltrials.gov/ 

Figure 7: Using the DrugRepo GUI to repurpose drugs for CML. (A) Select disease 

interface, users can uncheck any of the approved drugs, modify TC, and DrugRepo 

thresholds, (B) Top targets for approved drugs and top repurposing compounds, (C) Drug 

repurposing plot, each point is based on three scores for an approved drug and repurposing 

compound, (D) The 2D visualization for structural similarities between approved drugs and 

repurposing compounds 
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