
 1 

MetaTiME: Meta-components of the Tumor Immune Microenvironment  1 

 2 

Yi Zhang1,2, Guanjue Xiang1,2, Alva Yijia Jiang1, Allen Lynch1,2, Zexian Zeng1,2, Chenfei Wang1,2, 3 

Wubing Zhang1,2, Jingyu Fan1,2, Jiajinlong Kang1, Shengqing Stan Gu4, Changxin Wan1,2, 4 

Boning Zhang1,2, X. Shirley Liu1,2,3*, Myles Brown3,4*, Clifford A Meyer1,2,3* 5 

1. Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA 6 
2. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215 USA. 7 
3. Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA 8 
4. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 9 
*Corresponding author. Email: cliff_meyer@ds.dfci.harvard.edu 10 
*Co-corresponding author. Email: myles_brown@dfci.harvard.edu    11 
*Co-corresponding author. Email: xsliu.res@gmail.com  12 

 13 

Abstract 14 

Recent advances in single-cell RNA sequencing have revealed heterogeneous cell types and 15 

gene expression states in the non-cancerous cells in tumors. The integration of multiple scRNA-16 

seq datasets across tumors can reveal common cell types and states in the tumor 17 

microenvironment (TME). We developed a data driven framework, MetaTiME, to overcome the 18 

limitations in resolution and consistency that result from manual labelling using known gene 19 

markers. Using millions of TME single cells, MetaTiME learns meta-components that encode 20 

independent components of gene expression observed across cancer types. The meta-21 

components are biologically interpretable as cell types, cell states, and signaling activities. By 22 

projecting onto the MetaTiME space, we provide a tool to annotate cell states and signature 23 

continuums for TME scRNA-seq data. Leveraging epigenetics data, MetaTiME reveals critical 24 

transcriptional regulators for the cell states. Overall, MetaTiME learns data-driven meta-25 

components that depict cellular states and gene regulators for tumor immunity and cancer 26 

immunotherapy. 27 
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 32 

Introduction 33 

Recent advances in cancer research have revealed the integral role of the tumor 34 

microenvironment (TME) in tumor progression and therapy responses1–6. Understanding 35 

interactions between cancer cells and the non-cancer compartments, including immune cells, 36 

fibroblasts, and endothelial cells, has revealed potential targets for cancer immunotherapy. 37 

Specifically, single-cell RNA-sequencing (scRNA-Seq) applied on multiple patient tumors has 38 

enabled the high-resolution identification of TME constituents that interfere with the elimination 39 

of cancer cells. For example, exhausted tumor-infiltrating lymphocytes (TILs)4,7,8, and certain 40 

tumor-associated macrophages subtypes9–11, have been associated with tumor development. 41 

However, the definition of cell types and cell states in tumor scRNA analyses still relies on 42 

manual labeling by experts using known exclusive biomarkers following unsupervised 43 

clustering12,13, which lacks consistency and varies between different cohorts.  44 

 45 

As single-cell data accumulate, integrating a large collection of cells from multiple cohorts can 46 

help unify the definition of cell types and states to facilitate the automatic annotation of new 47 

scRNA-seq data14,15. One approach to cell annotation is to use predefined biomarker lists. 48 

However, these biomarkers might not cover domain-specific cellular states, for example, well-49 

defined immune cell markers derived from blood immune cells may not fully cover the TME 50 

disease context14.  Moreover, although cell type definitions in reference databases such as 51 

CIBERSORT, Azimuth, and Human Primary Cell Atlas16–18 can be useful, the granularity of 52 
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these definitions varies between databases. Several efforts integrating pan-cancer scRNA data 53 

have revealed subtypes in the TME through the manual annotation of clusters using a shortlist 54 

of exclusive gene markers13,19,20.  55 

 56 

Another approach is use structure inferred from the data to map cell states from unannotated 57 

datasets onto annotated ones. Methods to obtain such representations include canonical 58 

correlation analysis (CCA)21, adjusted principal components (Harmony)22, or generative deep 59 

learning models using variational autoencoders (scVI)23. These methods use dimension 60 

reduction onto a common latent space to align cells with similar states between datasets, 61 

without ascribing meaning to the latent space representations. An alternative data driven 62 

approach is to identify low dimensional latent space representations in which a biological 63 

meaning can be ascribed to each latent dimension. Several matrix factorization algorithms have 64 

been developed to represent high dimensional data in a low-dimensional space with 65 

interpretable components, including non-negative matrix factorization (NMF)24 and independent 66 

component analysis (ICA)25,26.  67 

 68 

In this study, we developed a computational framework for mapping millions of single cells from 69 

multiple cohorts onto a comprehensive and interpretable latent space, learnt from the data. The 70 

framework, MetaTiME (Meta-components of the Tumor immune MicroEnvironment), identifies 71 

reproducible low-dimensional meta-components that reflect independent components of gene 72 

expression variation across cohorts and cancer types. MetaTiME adopted ICA for dimensional 73 

reduction to maximize the mutual independence among components. We used MetaTiME to 74 

obtain meta-components (MeCs) from 1.7 million single cells across 79 tumor datasets. These 75 

MeCs represent the TME landscape along 75 data-driven transcriptional directions mirroring 76 

lineage-specific cell states and signaling activities. Furthermore, we developed a MetaTiME 77 

toolkit for using the MeCs to annotate cellular states and signature continuums in tumor scRNA 78 
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datasets, and to reveal differential signatures across immunotherapy responses. Finally, by 79 

incorporating transcription factor binding data, MetaTiME revealed and prioritized putative 80 

transcriptional regulators that may modulate tumor immunity.  81 

 82 

Results 83 

MetaTiME as a general framework to discover consensus transcriptomic programs 84 

The MetaTiME framework consists of three stages: meta-component (MeC) discovery, 85 

interpretation of MeCs, and application of cell state annotations (Fig.1a). The MeC discovery 86 

stage detects repeatable sources of variation from multiple single-cell measurements sharing 87 

similar cellular properties. The MeC interpretation step involves a one-time curation effort using 88 

biomarker databases, pathway information and Cistrome DB chromatin profiling data27. In the 89 

third step, users map MeCs onto their new tumor scRNA-seq datasets using MetaTiME 90 

application tools, to obtain annotated cell states and signature continuums.  91 

 92 

To train MeCs for the TME context, we collected and curated 2,157,387 cells from 76 studies 93 

ranging across 27 cancer types, using publicly available tumor scRNA-Seq data mostly from 94 

TISCH28. After removing the TISCH annotated malignant cells using MAESTRO17, 102,703 95 

stromal cells and 1,617,110 immune cells were retained for downstream training (Fig.S1). The 96 

76 studies were further partitioned according to cancer type, resulting in 93 datasets, including 7 97 

datasets with immune checkpoint blockade (ICB) treatment and 3 10x Genomics provided 98 

datasets representing peripheral blood mononuclear cells (PBMC) sampled from healthy 99 

donors.  100 

 101 

In the MeC discovery stage, MetaTiME first decomposes the log-transformed expression matrix 102 

of each single dataset using Independent Component Analysis (ICA)25. We adopted ICA to 103 

maximize mutual independence among gene expression components. In simulations ICA 104 
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performed slightly better than Non-negative Matrix Factorization (NMF) in simulated single-cell 105 

data with pre-embedded transcriptional signatures (Fig.S2). The feature weight distribution of 106 

each Independent Component (IC) also enables normalization of the gene contribution scores 107 

for measuring similarity among components. MetaTiME then applies two transformations to the 108 

IC vectors, z-weight normalization and skewness alignment, to ensure the scales of gene 109 

representation scores are comparable among components (Methods). Next, MetaTiME filters 110 

ICs to retain ones that are reproducible across multiple cohorts. These are passed to a graph 111 

clustering algorithm to merge IC groups into MeCs (Methods). Lastly, MetaTiME computes 112 

averaged profiles of gene z-weights within each IC cluster, yielding 86 MeCs trained for the 113 

TME (Fig.1a, Fig.2a). The number of MeCs was automatically determined by simultaneously 114 

optimizing granularity and independence in IC clustering (Fig.S3). Importantly, the MeC 115 

clustering does not depend on cohort source (Fig.S4). This integration after decomposition 116 

approach overcomes batch effects, which are often a challenge in single cell RNA-seq data 117 

analysis. 118 

 119 

MetaTiME defines interpretable meta-components  120 

In principle, each MeC represents one independent source of transcriptional variation commonly 121 

present in the TME. We investigated top ranked genes in MeCs and found MeCs are highly 122 

interpretable, reflecting common biological processes in the TME. For instance, the MeC 123 

derived from the largest IC cluster is highly enriched in interferon response genes, such as 124 

ISG15, IFI6, LY6E, and MX1, indicating that the underlying interferon response is among the 125 

most common source of transcriptional variation shared across tumor samples and cohorts 126 

(Fig.2a, b). Intriguingly, top genes of each MeC are enriched in known biomarkers or regulators. 127 

For example, several T cell-related MeCs identify different gene modules co-expressed in T 128 

cells reflecting activation of different T-cell related processes (Fig.2c, Fig.S5). The “T cell co-129 

signaling” MeC features T cell receptors in co-stimulatory and co-inhibitory pathways29,30, such 130 
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as TNFRSF4 (OX40), TNFRSF18 (GITR) TNFRSF9 (4-1BB), and ICOS (Fig.2c, left). The 131 

“CXCL13, exhausted CD8 T cell" MeC features receptors characterizing the exhausted CD8 T 132 

cell state8, including HAVCR2 (TIM3), LAG3, TIGIT, and PDCD1 (PD1) (Fig.S5), each being 133 

potential ICB targets31.  In addition, this MeC is characterized by a high level of CXCL13 134 

(Fig.2c, second panel), a cytokine mediating immune cell trafficking to tertiary lymphoid 135 

structures32. In contrast, a related MeC representing T cell co-signaling receptors in regulatory 136 

CD4T cells (Treg) has a different ranking, including TNFRSF18, TNFRSF4, TIGIT, TNFRSF1B, 137 

CTLA4, CD27 among the top 20 genes, along with the regulatory T cell-specific marker FOXP3 138 

(Fig.2c, right). Though ICB has been an extremely successful therapy for some patients, it has 139 

not yet had an impact on the majority of patients33. Investigating the top members in the MeCs 140 

involving T cell receptor pathways may help identify new ICB targets.  141 

 142 

MetaTiME depicts the functional landscape of transcriptomic variation and cell states in 143 

the tumor microenvironment  144 

We provided functional annotations of all MeCs by examining top z-weight genes and compared 145 

these with functional gene sets, such as immune cell type markers15,18 and gene ontology 146 

databases34. We found that 75 MeCs clearly mirror gene expression patterns corresponding to 147 

cell types, cell states and signaling pathway activities, depicting a landscape of non-cancer cell 148 

states in the TME (Fig.2, Table S1: MeC annotation). The top genes of the cell type MeCs  149 

match well-known lineage-specific markers15,18. Examples include CD74, CD79A, MS4A1 for B 150 

cells (“B cell" MeC), CD3D, CD8A, CD8B for T cells (“CD3 - CD8 T cell” MeC), and LYZ, VCAN, 151 

S100A9 for CD14+ Monocytes (“CD14 monocyte” MeC) (Fig.2b, Fig.2d). The majority of MeCs 152 

define high resolution lineage-specific cell states (Fig.2b, Fig.S4b). Taking the B cell lineage as 153 

an example, multiple MeCs harbor genes specific to B cell developmental stages35, ranging 154 

from a progenitor B cell state (CD69 and PAX5 in the “PAX5 B cell"), to a mature B cell state 155 

(CD79A in the “B cell" MeC), an antibody-secreting plasma cell state (XBP1 in the “plasma B 156 
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cell" MeC, and JCHAIN in the “alternate plasma B cell” MeC (“Bplasma_1”), and 157 

immunoglobulin secretion states (IGK and IGH in the “immunoglobin kappa B cell"  MeC, IGL 158 

and IGH in the “immunoglobin lambda B cell” MeC) (Fig.2b). Lastly, like the interferon 159 

responsive MeC mentioned above, we found a subset of MeCs that are more accurately 160 

interpreted as signaling pathways because their top genes are more related to pathways or 161 

molecular functions than to cell identities. 162 

 163 

We organized the 75 annotated MeCs into six cell lineage-focused categories and one signaling 164 

pathway-focused category (Fig.2a,b and Table S1: MeC annotation, MeC enrichment). Among 165 

these, there are 6 B lineage-related MeCs for B cells; 19 T cell lineage MeCs covering CD8 T 166 

cells, CD4 T cells, and natural killer (NK) cells; 4 dendritic cell (DC) lineage MeCs; 12 monocyte 167 

and macrophage-related MeCs; 3 platelet, erythrocyte, and mast cell MeCs; 6 stromal cell-168 

related MeCs for fibroblasts, myofibroblasts and endothelial cells; and 25 MeCs in the signaling 169 

category (Fig.2b). We demonstrated that the MeCs are of high specificity, visualizing the z-170 

weights of known cell subtype markers and pathway biomarkers (Fig.2d). Correlating MeCs 171 

with the comprehensive immune cell type database Azimuth15 validated the lineage-specificity of 172 

several MeCs, while most MeCs reflect cell states that appear specific to the tumor context 173 

(Fig.S4b). 174 

 175 

MetaTiME annotates cell states and signature continuums when applied to the tumor 176 

microenvironment single-cell data 177 

As MetaTiME MeCs provides a highly interpretable basis for the TME in single cells, we 178 

provided a toolkit to reveal MeC signature continuums and enriched cell states in scRNA-seq 179 

TME data (code deposited in https://github.com/yi-zhang/MetaTiME). The MetaTiME annotation 180 

toolkit takes as input the scRNA-seq expression matrix after depth normalization and log 181 

transformation, maps each single cell onto the pre-trained MeC space, and annotates the most 182 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.502989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

highly enriched cell states for pre-defined cell clusters. The cell clusters are by default 183 

calculated using graph clustering with high resolution after an optional batch effect correction 184 

with Harmony22. We demonstrate usage of MetaTiME on basal cell carcinoma (BCC) single-185 

cells from Yost et al.8, with enriched cell states annotations (Fig.3a) highlighting gradients of 186 

exhausted CD8 T cells and follicular helper T cells (Tfh) (Fig.3c). The most enriched cell states 187 

consistently match the manual labelling from the original study with improved resolution 188 

(Fig.3b). In addition, compared to the Seurat’s14 automated CIBERSORT marker-based 189 

annotations, MetaTiME provides higher resolution (Fig.S6a). A few other automatic annotation 190 

gene panels were also tested, including the human primary cell atlas (HPCA) panel and 191 

Blueprint-ENCODE panel used in SingleR16, where macrophages and plasma cells appear to be 192 

mislabeled as subclusters within T cell clusters (Fig.S6b, c). Interestingly, the MetaTiME 193 

annotation not only indicates the CD8 T cell and CD4 T cell subtypes, but also splits cells further 194 

into cell states with polarized expression in proliferation, cytotoxicity, exhausted level, heat 195 

stress, co-signaling pathways, etc. (Fig.3a, Fig.S6a). The B cell group is further partitioned into 196 

distinct B cell developmental states including a B cell cluster with cell cycle and MYC activities 197 

(Fig.3a,b, Fig.S6), which possibly represent germinal center (GC) B cells undergoing active 198 

expansion and maturation36.  199 

 200 

We thus re-annotated all tumor scRNA cohorts using MetaTiME and investigated the distribution 201 

of cell state compositions across cancer cohorts. As shown in Fig. 3e and Fig.S7, tumors are 202 

highly heterogenous and the TME cellular composition is only partially determined by cancer 203 

type. For example, Cholangiocarcinoma (CHOL) is highly enriched in stromal cells including 204 

collagen-secreting fibroblast, as expected37, while other samples including ovarian cancer (OV), 205 

pancreatic adenocarcinoma (PAAD), and multiple myeloma (MM) are also stromal-rich. 206 

Furthermore, tumors with high infiltration of the “GZMK+ CCL5+ CD8 T cell” state include 207 
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multiple tumor types including colon cancer, breast cancer, and skin cancer, suggesting that 208 

immune infiltration is sample-dependent and that cancer treatments should be personalized38. 209 

 210 

Differential MetaTiME analysis detects alterations of transcriptional programs in 211 

immunotherapy.    212 

Single-cell data derived from ICB trials is invaluable for identifying cell types associated with ICB 213 

treatment or response8. However, the detection of differential cell types abundances in ICB 214 

cohorts has been challenging due to the heterogeneity of cell type proportions and to the limited 215 

numbers of patients in each cohort39. We compared differences in MeC signatures instead of 216 

cell count proportions, to understand immune response during ICB. We analyzed two ICB 217 

cohorts, a basal cell carcinoma (BCC) cohort with samples from pre- or post-ICB treatment8, 218 

and a bladder cancer (BLCA) cohort with samples from ICB responders and non-responders40. 219 

We applied MetaTiME for per-cluster cell state annotation and per-cell MeC signature 220 

evaluation. For each cell state cluster, we tested all MeC signatures passing significance 221 

(average z-weight>2) between conditions using the Wilcoxon rank-sum test. We plotted cluster-222 

wise signatures in the significance – effect size scatterplot to highlight the most significant 223 

differential MeCs (Methods). In a comparison of pre- and post-ICB treatment, we observed 224 

higher expression of cytotoxic T cell and B cell MeCs in the post-ICB samples. Moreover, 225 

several monocyte and macrophage states are also suppressed after ICB treatment (Fig.4a). 226 

Notably, the IL1B-positive macrophage signature is also found to be elevated in non-responders 227 

compared to responders in the BLCA ICB cohort (Fig.4b). Since activation of the IL1B pathway 228 

is a known regulator of inflammatory processes41, we sought to investigate whether the IL1B-229 

positive macrophage signature is associated with tumor survival prognosis in bulk RNA-seq 230 

data from The Cancer Genome Atlas Program (TCGA). We evaluated TCGA tumors using the 231 

averaged expression of the top 20 genes from the “Macrophage IL1-NFkB” MeC which ranks 232 

first in elevated MeCs in non-responders (Fig.4a). We found that higher expression of the IL1B 233 
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signature is associated with lower survival rate in multiple cancer types, especially in Low Grade 234 

Glioma (LGG) and in Kidney renal cell carcinoma (KIRC) (Fig.S8). This suggests the 235 

macrophage state with IL1B pathway activation is associated with poor prognosis and lower ICB 236 

efficacy. 237 

 238 

MetaTiME delineates myeloid cells in different metabolic states  239 

As specific myeloid cell states have been associated with cancer survival and treatment 240 

response, we sought to systematically characterize MeCs related to monocytes and 241 

macrophages. Although the canonical definition of M1 and M2 macrophages is derived from 242 

cytokine polarized macrophages in vitro42, MetaTiME’s myeloid-related MeCs represent a more 243 

complex framework for understanding tumor-infiltrating macrophages. MetaTiME’s 12 monocyte 244 

and macrophages related MeCs can be summarized into six central monocyte or macrophage 245 

states for the TME, after merging similar states such as “Macrophage IL1-NFkB” and 246 

“Macrophage IL1- JUN” due to similarity among top genes (Fig.4c). Monocytes are classified as 247 

two categories, CD14+ and CD16+. For macrophages, four MeCs define common states of 248 

intra-tumor macrophages: C1Q+, SPP1+, lipid-rich, and IL1B+ macrophages, and two MeCs, 249 

representing interferon and MHC-II signaling pathways, are less frequently observed among 250 

macrophages (Fig.2b, Fig.4c). In comparison, previous studies defined different TAMs in terms 251 

of manually selected representative genes after clustering myeloid cells. For example, Cheng et 252 

al.10 defined several TAM types including ISG15+, SPP1+, INHBA+, VCAN+, NLRP3+, and 253 

FN1+ TAMs, while Bi et al.43 defined CXCL10-high, GPNMB-high, FOLR2-high, VSIR-high, and 254 

cycling TAMs for advanced renal cell carcinoma (ccRCC). We find that the MetaTiME-defined 255 

myeloid MeCs reflect co-expression relationships with the selected marker genes. For example, 256 

TAM markers from Bi et al. rank high in several myeloid MeCs (Fig.S9), and the expression 257 

pattern of the marker genes picked by Bi et al. (CXCL10, GPNMB, VSIR, FOLR2, Cycling 258 

marker MKI67) correspond to several MeCs (“interferon responsive”, “PPARG+ lipid-rich”, 259 
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“MHCII-high”, and “RNASE1+,C1Q+” MeCs) (Fig.S9). However, MetaTiME reveals additional 260 

distinct components such as the “SPP1+” and “C1Q+” MeCs, which were detected as separate 261 

myeloid types in the Cheng et al. multi-cohort study (Fig.S10). While the manual reconciliation 262 

of cell types from multi-cohort scRNA data shows many marker genes to be consistent with the 263 

top genes in the MetaTiME MeCs, the myeloid cell population is not neatly partitioned into cell 264 

clusters and might be better represented in terms of expression signature continuums. For 265 

example, when mapping myeloid MeCs onto the kidney myeloid cells, the “IL1B+” MeC 266 

signature is distributed across the “Macro_IL1B” cluster as well as the CD14 monocyte cluster 267 

(Fig.S10).  268 

 269 

To investigate functional differences among the different macrophage states, we applied gene 270 

set enrichment (GSEA)34 analysis using the top MeC genes. Interestingly, the different 271 

macrophage states have different metabolic preferences (Fig.4d). Glucose metabolism and the 272 

glycosylation pathway are highly active in SPP1+ macrophages, while lysosome and 273 

phagosome activity are the most highly enriched in C1Q+ macrophages. Lysosome and 274 

cholesterol metabolism, including PPARG signaling, are enriched in the lipid-rich state. The 275 

inflammatory IL1B and NFkB pathways are highly active in IL1B+ macrophages. Several 276 

macrophage states are related to cell signaling. SPP1 for example, encodes Osteopontin, which 277 

has been found to foster an environment that promotes cancer metastasis44. The C1Q+ MeC 278 

features C1QA, C1QB, and C1QC, members of the family of complement molecules that could 279 

play dual roles in chronic inflammation45. The IL1B+ meta-components features cytokines co-280 

expressed with IL1B, including CXCL8, CXCL2, and CXCL3, all of which can interact with other 281 

cells in the TME by binding to cytokine receptors46 (Fig.2b).  282 

 283 

Incorporation of epigenetic data prioritizes transcriptional regulators of tumor immunity 284 
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We next investigated the transcription factors (TFs) that regulate the MeCs, hypothesizing that 285 

the co-expression of genes in a subset of MeCs is determined through TF regulatory events. 286 

Our group previously developed the Cistrome Data Browser and Lisa to predict transcriptional 287 

regulators of gene sets based on chromatin immunoprecipitation with sequencing (ChIP-seq) 288 

data27,47. Thus, we used Lisa to predict the TFs that regulate the top genes of each MeC, and 289 

compared these Lisa regulatory prediction scores with the MeC z-weights across TFs. We found 290 

that, for many MeCs, the same TFs were predicted to be both regulators of the MeC and were 291 

highly expressed in the MeC itself, indicating an autoregulatory control scheme. Often, however, 292 

TFs that were predicted by Lisa to be MeC regulators were not represented by high MeC z-293 

weights, and TFs with high MeC z-weight were not always found to have high Lisa scores 294 

(Fig.5, Table S1: MeC regulators). TFs predicted by Lisa but not represented by high MeC z-295 

weight could be the result of TF activities being regulated through non-transcriptional 296 

mechanisms48 or multiple TFs in a family having similar binding patterns but only a subset being 297 

the regulators49. TFs that have high MeC z-weights but low Lisa scores are most likely not well 298 

represented in the relevant cell types in available ChIP-seq data. In the “interferon response” 299 

MeC, STAT1 is highly represented in the MeC z-weight and Lisa ranks STAT1 as the top 300 

regulator, consistent with STAT1 being known as the master regulator of the interferon 301 

response (Fig.5a). Several lineage-defining TFs display the autoregulatory pattern, including 302 

TCF4 in plasmacytoid dendritic cells (pDC) (Fig.5b) and XBP1 in B plasma cells (Table S1: 303 

MeC regulators). The macrophage related MeCs are regulated by myeloid lineage TFs like 304 

CEBPB, and TFs related to immune stimulus responses, including NFkB complex TFs. In the 305 

"lipid-rich macrophage" MeC, although PPARG ranks among the top Lisa-predicted regulators 306 

(Fig.5c), PPARG expression is not highly represented as a MeC z-weight.  In this MeC, the top 307 

co-expressed genes are indeed enriched in the PPARG signaling pathway (Fig.4d); this result 308 

can be accounted for by PPARG being regulated through its ligands, which include a variety of 309 

lipophilic acids48.  310 
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   311 

We found glucocorticoid receptor (GR) signaling to be implicated in the regulation of the 312 

“CXCL13+ Tfh” MeC, with GR being most highly ranked TF in both MeC and Lisa scores 313 

(Fig.5d). Top genes in the “CXCL13+ Tfh” MeC include several direct target genes of GR, 314 

including SRGN and FKBP5 (Fig.S11b). We investigated whether the CXCL13 cytokine itself 315 

could be a direct target of GR in CXCL13 secreting Tfh cells. Since GR ChIP-seq data is not 316 

available for the exact Tfh cell state, we collected GR ChIP-seq data from several other cell 317 

types. Direct binding of GR is observed at the CXCL13 gene promoter and nearby the gene 318 

locus at putative enhancers, which are conserved across multiple cell lines (Fig.S11a), including 319 

the B cell line Nalm6, the monocyte cell line THP1, and cancer cell lines.  Moreover, in another 320 

CXCL13 secreting cell state, the “CXCL13 exhausted CD8 T cell” MeC, GR is also highly 321 

ranked in both Lisa and MeC scores (Fig.5d). Thus, we hypothesize that GR is likely to be a 322 

transcriptional driver of the CXCL13-secreting cell states in exhausted CD8 T cells50 as well as 323 

in CD4 T follicular helper T cells. Thus, the GR pathway could be a candidate target in tumor 324 

immunity modulation. 325 

 326 

Discussion  327 

We developed the MetaTiME (Meta-components of the tumor immune Microenvironment) 328 

framework and performed a large-scale and pan-cancer integration of tumor single cell datasets 329 

using ICA to optimize information independence among components51.  We identified 75 330 

interpretable meta-components (MeCs) that describe common aspects of TME gene expression 331 

variation across multiple tumors.  332 

 333 

The MetaTiME MeCs serve as comprehensive transcriptional signatures that depict a functional 334 

landscape of TME transcriptional programs and cell states. For monocytes and macrophages, 335 
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the related MeCs revealed heterogeneity and plasticity of tumor-associated macrophages 336 

(TAMs). We thus propose that TAMs, especially for solid tumors, should be classified based on 337 

the major states with different metabolic preferences instead of the canonical M1 and M2 338 

classification42. Similar states that do not fit well into the M1 versus M2 classification scheme 339 

were also observed in previous studies analyzing myeloid cells in the TME, where single cells 340 

were clustered and labeled using differential markers10,12,43. Cheng et al.10 defined several TAM 341 

types by clustering myeloid cells separately for each study and naming the TAMs with manually 342 

selected top marker, chosen based on consistency across cohorts. Similarly, Bi et al.43 defined 343 

TAM types by harmonizing patients and naming the TAMs with top genes in each cluster for an 344 

advanced renal cell carcinoma (ccRCC) cohort. Cell type definitions in the previous studies 345 

were based on representative genes, which were chosen differently in the respective studies. 346 

We propose that the MetaTiME derived monocyte and macrophage MeCs could be used to 347 

define macrophage states and functional co-expressed gene modules more consistently for the 348 

TME. Reexamining the marker genes from the previous studies: NLRP3 is highly ranked in the 349 

“IL1B+” MeC; in fact, the NLRP3 inflammasome mediates interleukin-1β production. GPNMB is 350 

weighted among the top 20 genes in both the “C1Q+ macrophage” and “SPP1+ macrophage” 351 

MeCs; it encodes a membrane glycoprotein which is typically highly expressed in macrophages. 352 

FOLR2 is ranked 29th in the “C1Q+ macrophage” MeC, indicating this macrophage state also 353 

encodes a high folate-activated pathway. Finally, the “SPP1/C1Q macrophage” MeC features 354 

an intermediate state with both SPP1 and C1QA, indicating the plasticity and mixed nature of 355 

pathways activated in TAMs that could not be defined using exclusive markers. Thus, the 356 

myeloid MeCs may provide a consistent definition of TAM states corresponding to different 357 

metabolic processes.  358 

 359 

MetaTiME provides a toolkit for analyzing independent TME scRNA-seq datasets by mapping 360 

gene expression onto the MeC space. The outputs include signature continuums and the most 361 
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highly enriched cell states. Recent useful single-cell dataset integration algorithms such as 362 

Harmony22 and scArches52 infer a joint low-dimensional representation among data. In these 363 

approaches the shared space is re-computed every time a new dataset is incorporated. The 364 

MetaTiME strategy builds upon previous approaches that transfer latent representations from 365 

large datasets, but provides a stable and interpretable representation specialized for the TME.  366 

 367 

By leveraging ChIP-seq data, MetaTiME reveals critical transcriptional regulators in tumor 368 

immunity. In many cases, we found the joint consideration of MeC-specific co-expression 369 

patterns and TF binding enrichments reveals the roles of TFs in defining cellular states and 370 

gene expression programs. MetaTiME captured multiple known TFs critical to tumor immunity 371 

and could serve as immune modulation targets; this includes TOX in the “CXCL13-secreting 372 

exhausted CD8 T cell” MeC, a recently discovered regulator of T cell exhaustion53 (Table S1). 373 

The MeCs further implicated the glucocorticoid receptor pathway in the regulation of several T 374 

cell states. Glucocorticoids are a class of steroid hormones essential to the modulation of 375 

multiple biological processes, including immune related ones54, although the role of the GR 376 

pathway in different immune cell types is not fully understood. Since GR is broadly expressed in 377 

many cell types, and is regulated through ligand binding, differential analysis of GR expression 378 

is unlikely to fully capture GR regulation in single-cell data analysis. Though GR ChIP-seq is not 379 

available in the contexts of the relevant T cell states, GR ChIP-seq in other cell lines 380 

demonstrate robust binding nearby the top gene CXCL13. CXCL13 is crucial to T follicular 381 

helper cell communication with germinal center B cells, through interaction with its receptor 382 

CXCR555,56.  383 

 384 

Overall, MetaTiME depicts the functional landscape of transcriptomic variation and cell states in 385 

the tumor microenvironment. It provides a computational framework to facilitate the elucidation 386 
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of the identity and function of cells in the TME in future studies and will facilitate the 387 

identification of potential new therapeutic targets for immune modulation.  388 

 389 

 390 

Methods 391 

 392 

Tumor single-cell RNA-seq data collection and processing 393 

For an extensive collection of single cells from tumor microenvironment, we utilized the public 394 

tumor scRNA-seq collection from TISCH28. The TISCH collection uniformly processed each 395 

dataset with MAESTRO17 and isolated non-malignant environmental cells from malignant cells. 396 

Overall, we collected 2,157,387 cells from 76 studies ranging 27 cancer types. The MAESTRO 397 

annotation was labeled using CIBERSORT gene panels18 followed by curation, enabling 398 

selection of 1,719,813 environmental cells, including 1,617,110 immune cells and 102,703 399 

stromal cells, were retained for integrative analysis in this study. For studies with data measured 400 

from multiple cancer types, cells different cancer types were split into independent datasets, 401 

resulting in 93 datasets; it includes 3 PBMC datasets from healthy donors from 10X Genomics 402 

as baseline and 7 datasets with ICB treatment.  403 

 404 

For an unsupervised component analysis, each dataset was re-analyzed. For datasets with raw 405 

count matrices available, gene expression was normalized towards per-cell read depth 10,000 406 

followed by log transformation. For datasets with only TPM or FPKM values available, including 407 

Smart-seq data or studies with only normalized matrix available, gene expression underwent log 408 

transformation. Cells were filtered based on minimum library size 1000, gene number 500, and 409 

maximum mitochondrial read proportion 5%.  410 

 411 

Decomposing individual studies and denoising low-dimensional components.   412 
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We then decomposed the expression matrix of each scRNA-seq dataset using fastICA51 into an 413 

independent component (IC) vector matrix and a projection weight matrix. We tested different 414 

values for the number of components (k) and chosen k to be 100 uniformly for each dataset, 415 

given it could cover more variations than the number of cell types in the TME, which is around 416 

twenty. We applied two denoising approaches to deal with sparsity and the potential noise of 417 

ICs. First, we performed a z-normalization of the gene loadings in the component, scaling all 418 

gene loading values by the standard deviation of each IC. The gene loadings indicate the 419 

degree of contribution to the component as a “metagene” from each gene, and we observed 420 

that most genes contribute neutrally to the metagene. Thus, genes with significant contributions 421 

are selected using the two-standard deviation threshold from either the positive or negative side. 422 

Second, we aligned the positive skewness of components since the sign of an independent 423 

component is randomly assigned in fastICA optimization. We observed that asymmetrically 424 

extreme gene loading values highlight genes representative of the component's function; thus, 425 

we computed each component's skewness statistics and flipped the sign of component loadings 426 

if the skewness is negative. We excluded genes with a low contribution (gene weight not 427 

passing two standard deviations) to any reproducible components and kept 6623 genes with 428 

potentials in driving the reproducible components. The post-decomposition steps ensured the 429 

attitude and sign of gene weights are comparable across cohorts, depicting degree of 430 

contribution from each gene in the genome-wide background.  431 

 432 

Meta-components calling and functional annotation 433 

We then aim to discover reproducible patterns from all components from each dataset. We 434 

evaluated similarity between pairs of components using cosine distance and retained a set of 435 

1043 candidate reproducible components from 69 datasets, each with a minimum Pearson 436 

correlation coefficient 0.3 with at least one different IC. We then clustered ICs using Louvain 437 
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clustering, a graph-based community detection algorithm where the resolution parameter 438 

controls segmentation granularity. Clusters with at least five ICs were retained as reproducible 439 

IC clusters. The number of clusters is determined by optimizing both Silhouette’s score for 440 

optimal within-cluster similarity compared to inter-cluster similarity and number of reproducible 441 

clusters. The final resolution parameter was chosen to be 1.25 resulting in 86 clusters for meta-442 

component (MeC) calling. The consensus gene z-weights in each MeC were then calculated by 443 

averaging ICs in each cluster. Genes of outlier z-weights passing two standard deviations were 444 

highlighted as significant, and the ones with positive largest z-weights were considered 445 

representative of the MeC.  446 

 447 

MetaTiME MeCs were assigned curated annotation by matching top z-weighted genes to 448 

functional biological information including cell type markers, pathway databases from GSEA, 449 

cell types expressing top MeC genes, and high-rank transcription factors. In details, GSEA 450 

enrichment analyses utilized top 100 highest z-weighted genes and TF database was obtained 451 

from AnimalTFDB49. The 86 MeCs were first ordered by MeC cluster size, and then organized 452 

into seven functional categories and one undefined category. The 11 MeCs in the undefined 453 

category are of smaller size, and harbor top genes that are related to cell stress. The remaining 454 

75 functional MeCs were assigned six lineage-related categories and one signaling category.  455 

 456 

Simulating multi-cohort single-cell RNA data with expression programs 457 

To benchmark dimensional reduction methods, we built upon previous effort from Kotliar et al.57 458 

to use the scsim package to simulate multiple count matrices with built-in transcriptional 459 

programs. In principle, the built-in gene expression programs (GEP) were sampled as random 460 

scaling factors on a subset of genes mimicking overexpression or suppression of a pathway. 461 

For testing whether a higher number of cohorts facilitate GEP recovery, we simulated 20 single-462 
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cell datasets and tested usage of 5 cohorts, 10 cohorts, and 20 cohorts. Each dataset was 463 

embedded with a subset of 14 pre-defined GEPs, since the real tumor scRNA data may not 464 

cover every possible cell types or gene programs in every dataset. The 14 GEPs contain 13 cell 465 

type-specific programs with distinct cell type-specific genes, and one signaling gene expression 466 

program that is randomly active in multiple cell types. Two low-dimensional reduction method 467 

are benchmarked using simulated scRNA data: independent component analysis (ICA) and 468 

non-negative matrix factorization (NMF). Decomposition was performed on each single cohort 469 

separately, and meta-component calling was done as similar in MetaTiME: components are 470 

filtered, clustered into meta-components, followed by averaging gene z-weights per cluster as 471 

predicted gene expression programs (GEP). The predicted GEPs were compared with pre-472 

defined True GEPs using Pearson correlation. Overall, both ICA and NMF can recover GEPs, 473 

while the ICA-based GEPs are more mutually independent and performs slightly better. Since 474 

the GEP recovered in the 20 cohorts case matched true GEP better than 5 cohorts and 10 475 

cohorts, the increased number of cohorts also improves GEP recovery. Thus, we chose ICA for 476 

component integration and use all available datasets for GEP discovery for tumor 477 

microenvironmental cells. 478 

 479 

The MetaTiME annotator for analyzing new tumor scRNA-seq data. 480 

MetaTiME provides an analytical toolkit for annotating cell states and signature activities for 481 

tumor scRNA-seq data (https://github.com/yi-zhang/MetaTiME). The scRNA-seq data is first 482 

processed following standard procedure, which includes cell depth normalization, log-483 

transformation, batch effect removal using Harmony22, neighboring graph construction, graph 484 

clustering, and UMAP embedding for visualization. Specifically, the clustering step uses an 485 

over-clustering strategy, which sets a high-resolution parameter (default 8) that generates a 486 

larger number of clusters and help reveal fine structures among the cells. Then, the MetaTiME 487 

annotator tool takes as input a single log-transformed expression matrix for TME cells from the 488 
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dataset. The outputs include both per-cell MetaTiME MeC signature scores and per-cluster 489 

enriched MeC state. For the per-cell score, MetaTiME projects each cell onto the MeC space by 490 

calculating dot product between the expression vector and the z-weight vector of each MeC, 491 

using genes passing significant z-weight criterion (z-weight >2). The projection matrix is then 492 

scaled across all cells to ensure normally distributed scores within each MeC, outputting the 493 

cell-by-MeC score matrix. Meanwhile, the UMAP view of the projection score shows the 494 

signature gradient across the cells positioned by similarity. Lastly, the cluster-wise MeC 495 

enrichment results are also generated. The per-cluster MeC enrichment score is calculated by 496 

averaging profile of cells along each MeC; MeCs with mean score passing the significant cutoff 497 

(2 in the z-weight scale) are called as the set of enriched MeCs. Each cluster may enrich 498 

multiple number of MeCs, and the top enriched MeC with highest score is used in UMAP 499 

visualization.  500 

 501 

Differential MeC signature analysis 502 

For tumor scRNA-seq data with different conditions, a differential signature analysis can be 503 

carried out following MetaTiME annotation, which provides enriched MeCs for each cluster and 504 

names each cluster with the top enriched MeC. Thus, for each cell cluster, the MeC signature 505 

strength can be compared across conditions, for all enriched MeC in the current cluster. In 506 

details, a simple Wilcoxon rank-sum test is adopted to compare MeC scores of cells in one 507 

condition with another. The log-fold change of MeC scores were calculated by the ratio between 508 

cell means from the two conditions in comparison. To plot the cluster-specific differential 509 

signature plot, the signatures are marked using “EnrichedMeC@ClusterName”, where the 510 

“ClusterName” is the top first enriched MeC used as cell state as current cluster. Thus, when 511 

the enriched MeC signature is the same with the cluster name, the differential signature is 512 

named as “ClusterName” on the Significance-Effect size plot. 513 

 514 
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Incorporation of epigenetic data using Lisa  515 

Our group previously developed Lisa (Landscape In-Silico deletion Analysis) that predict 516 

influence of TFs on a set of genes. Lisa models public chromatin accessibility and TF binding 517 

profiles to score TFs in gene regulation from an epigenetic perspective. We developed Lisa2 518 

that improves on running speed and pipeline integration, which is applied on each MeC to score 519 

TFs in regulation potential on top 100 high z-weighted genes. The impact scores of TFs are thus 520 

from two sources: MeC z-weights for expression representation, and Lisa scores for binding 521 

potential. The TFs are grouped into three classes, TFs highly ranked based on both MeC gene 522 

weights and Lisa significance, TFs representative only in MeC, and TFs based on binding 523 

information only. In TableS1, we marked TFs from different classes in different colored columns. 524 

Significant TFs based on both MeC and Lisa (MeC z-weight >=2, Lisa score -log p-value >=2) 525 

are marked as orange color; furthermore, the TFs ranking among top 40 (aggregated rank of 526 

MeC and Lisa) compared to all genes are further marked red. TFs ranking among top 10 only in 527 

MeC z-weight are colored green, and TFs ranking among top 10 only in Lisa score are colored 528 

blue. 529 

 530 
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Figures 546 

Fig.1.  547 

 548 

 549 

Fig.1. Overview of MetaTiME. MetaTiME integrates 1.7 million single cells to learn common 550 

transcriptional programs in the tumor microenvironment (TME). (a) Steps for Meta-components 551 

(MeCs) discovery. For each scRNA dataset, the expression matrix of TME cells is decomposed 552 

into a loading matrix (red) and an independent component (IC) matrix through independent 553 

component analysis (ICA). The ICs represent mutually independent sources of transcriptional 554 

variation. ICs from each dataset are concatenated and clustered into groups of ICs with high 555 

similarity, representing transcriptional programs shared across TME. MeCs are then calculated 556 

as averaged profiles of ICs from each cluster. Each MeC is interpretable representing gene 557 

signatures of cell type, cell states, or signaling pathway activities. (b) Left: MetaTiME provides 558 

75 functionally annotated MeCs that depict the TME transcriptional landscape. They are 559 

grouped into six lineage-related categories and one category reflecting signaling activities. 560 

Middle: the MetaTiME annotation tool facilitates automatic annotation of cell states for new 561 
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tumor scRNA data. Right: candidate regulators of each MeC are prioritized by combining MeC 562 

gene weights with epigenetics data. MeC: meta-components, TME: tumor microenvironment, 563 

ICA: independent component analysis, MeC: meta-component, TF: transcription factor. 564 

  565 
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Fig. 2.  566 

 567 
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Fig.2. MetaTiME meta-components are biologically interpretable with top genes. (a) 568 

Heatmap of top ten most recurrent clusters of MeCs showing normalized gene weights. (b) 569 

Biological characterization of each MeC with top genes. To facilitate biological interpretation, 570 

MeCs are categorized into six lineage-associated (B cells, T cells for CD4T, CD8T and NK cells, 571 

dendritic cells, monocyte and macrophages, other myeloid cell types, and stroma cells) and one 572 

signaling pathway-associated class. (c) Examples of T cell related MeCs with top 20 genes with 573 

largest weights. (d) Gene contribution of known lineage-related biomarkers for each MeC, and 574 

correlation with known immune markers from Azimuth. In the top dot plot, size and color 575 

represents MeC z-weights of each gene in each MeC. In the bottom dot plot, size and color 576 

represents the maximum correlation coefficient between MeC and Azimuth defined marker 577 

genes per cell type. MeC: meta-component, DC: dendritic cell, Mono/Mac: monocytes and 578 

macrophages.  579 

  580 
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Fig.3.581 

 582 

*
%
0
B*

6
(
��
��
��

2
9
B*

6
(
��
��
��

%
5
&
$
B6

5
3
��
��
��

%
/&

$
B*

6
(
��
��
��

3$
$
'
B*

6
(
��
��
��

6
.
&
0
B*

6
(
��
��
��

1
%
B*

6
(
��
��
��

*
%
0
B*

6
(
��
��
��

*
%
0
B*

6
(
��
��
��

$
//
B*

6
(
��
��
��

$
(
/B
*
6
(
��
��
��

0
&
&
B*

6
(
��
��
��
BD
3
'
�D
&
7
/$

�
0
&
&
B*

6
(
��
��
��
BD
3
'
/�

*
%
0
B*

6
(
��
��
��
B6

P
DU
WV
HT
�

%
5
&
$
B*

6
(
��
��
��

1
6
&
/&

B*
6
(
��
��
��

*
OLR
P
DB
*
6
(
��
��
��

6
7$

'
B*

6
(
��
��
��

3
5
$
'
B*

6
(
��
��
��

1
(
7
B*

6
(
��
��
��

%
/&

$
B*

6
(
��
��
��

3$
$
'
B&

5
$
��
��
��

%
&
&
B*

6
(
��
��
��

2
9
B*

6
(
��
��
��

+
1
6
&
B*

6
(
��
��
��

1
+
/B
*
6
(
��
��
��

1
+
/B
*
6
(
��
��
��

2
9
B*

6
(
��
��
��

3$
$
'
B*

6
(
��
��
��

0
0
B*

6
(
��
��
��

6
.
&
0
B*

6
(
��
��
�

1
3
&
B*

6
(
��
��
��

&
//
B*

6
(
��
��
��

$
0
/B
*
6
(
��
��
��

%
/&

$
B*

6
(
��
��
��
BD
3
'
�

$
0
/B
*
6
(
��
��
��

&
2
$
'
B*

6
(
��
��
��

&
//
B*

6
(
��
��
��

$
//
B*

6
(
��
��
��

*
%
0
B*

6
(
��
��
��

*
%
0
B*

6
(
��
��
�

*
%
0
B*

6
(
��
��
��

*
%
0
B*

6
(
��
��
��

*
%
0
B*

6
(
��
��
�

*
%
0
B*

6
(
��
��
�

*
%
0
B*

6
(
��
��
��
B�
�;

%
5
&
$
B*

6
(
��
��
��

1
6
&
/&

B*
6
(
��
��
��

1
6
&
/&

B*
6
(
��
��
��

.
,5
&
B*

6
(
��
��
��

6
.
&
0
B*

6
(
��
��
��

/(
&
5
B*

6
(
��
��
��
B1

6
&
/&

6
.
&
0
B*

6
(
��
��
��
BD
3
'
�D
&
7
/$

�
1
6
&
/&

B(
0
7$

%
��
��

6
.
&
0
B*

6
(
��
��
��
BD
3
'
�

6
.
&
0
B*

6
(
��
��
��

1
6
&
/&

B*
6
(
��
��
��

+
1
6
&
B*

6
(
��
��
��

%
&
&
B*

6
(
��
��
��
BD
3
'
�

&
2
$
'
B*

6
(
��
��
��
B6

P
DU
WV
HT
�

%
5
&
$
B*

6
(
��
��
��

&
2
$
'
B*

6
(
��
��
��
B�
�;

/(
&
5
B*

6
(
��
��
��
B.

,5
&

6
&
&
B*

6
(
��
��
��

%
5
&
$
B*

6
(
��
��
��
BL
Q'

UR
S

1
6
&
/&

B*
6
(
��
��
��

1
6
&
/&

B*
6
(
��
��
��

8
9
0
B*

6
(
��
��
��

S3
&
/B
*
6
(
��
��
��

/6
&
&
B*

6
(
��
��
��

6
&
&
B*

6
(
��
��
��

1
6
&
/&

B*
6
(
��
��
�

&
2
$
'
B*

6
(
��
��
��

/,
+
&
B*

6
(
��
��
�

/(
&
5
B*

6
(
��
��
��
B8

&
(
&

%
5
&
$
B*

6
(
��
��
��

6
&
&
B*

6
(
��
��
��
BD
3
'
�

%
5
&
$
B*

6
(
��
��
��
B�
�;

0
%
B*

6
(
��
��
��

&
+
2
/B
*
6
(
��
��
��

�

���

�
YDULDEOH

%

7

'&

0RQR�0DF

K

FRKRUW

YD
OX
H

/RDGLQJ�>0DWK-D[@�H[WHQVLRQV�0DWK0HQX�MV CancerType

B

T

DC

Mono/Mac

Stroma

Signaling

OtherMye

Composition 
Category

a b

c

d

MetaTiME Manual labels-Yost et al.

e

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.502989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Fig.3. MetaTiME annotates cell states with high resolution on tumor microenvironment 583 

single-cell data. (a) MetaTiME cell state annotation of cell clusters in a melanoma scRNA 584 

dataset based on top enriched MeCs. (b) Manual annotation labels by experts from the original 585 

study shown on the same UMAP space. (c) Signature continuum of four MeCs representing 586 

mature dendritic cell state, CXCL13-secreting exhausted T cell state, CXCL13-secreting T 587 

follicular helper cell state, and IL1B pathway-activated macrophage state. (d) Marker gene 588 

expression for each annotated cell cluster as in (a). (e) Bar plot showing cell state composition 589 

of tumor microenvironment for tumor scRNA dataset cell states. The proportion of cell states 590 

from the same MeC category are aggregated.    591 

 592 

 593 

 594 
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Fig.4.596 

597 

Fig.4. Differential signature analysis and delineated macrophage states in TME. (a) 598 

Differential MeC signature testing for enriched cell states comparing pre- and post- 599 

immunotherapy conditions in Basal Cell Carcinoma (BCC). X-axis: Log odds ratio of mean 600 

signature scores between post- and pre-immunotherapy conditions. Y-axis: minus log p-value 601 

from Wilcoxon test. (b) Differential signature testing for enriched cell states comparing non-602 

responders and responders from pre-treatment condition in Bladder Carcinoma (BLCA). (c) 603 

Model of monocytes and macrophage states in tumor and their metabolic differences. (d) Top 604 

pathways enriched in different macrophage MeCs. BCC: Basal Cell Carcinoma, BLCA: Bladder 605 

Carcinoma.   606 
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Fig.5.  607 

 608 

Fig.5. MetaTiME prioritizes tumor immunity transcriptional regulators. For selected MeCs, 609 

TFs are prioritized by their MeC expression representation and Lisa, ChIP-seq based, 610 

regulatory potentials. X-axis: gene z-weight of the TF for the current MeC. Y-axis: Lisa-based 611 

regulatory potential significance for top genes in the current MeC. Red and orange factors: MeC 612 

regulators prioritized based on both MeC gene weights and Lisa regulatory potential 613 

significance. Green factors: TFs highly weighted in MeCs and not in Lisa analysis. Blue factors: 614 

TFs with high Lisa regulatory potential and not highly weighted in MeCs. (a) TFs prioritized for 615 

three MeCs in the signaling category. (b) TFs prioritized for three MeCs in the dendritic cell 616 

category. (c) TFs prioritized for three MeCs representing different macrophage states. (d) TFs 617 

prioritized for three MeCs representing different T cell states. TF: transcription factor, MeC: 618 

meta-component.  619 

 620 
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