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Abstract

Recent advances in single-cell RNA sequencing have revealed heterogeneous cell types and
gene expression states in the non-cancerous cells in tumors. The integration of multiple scRNA-
seq datasets across tumors can reveal common cell types and states in the tumor
microenvironment (TME). We developed a data driven framework, MetaTiME, to overcome the
limitations in resolution and consistency that result from manual labelling using known gene
markers. Using millions of TME single cells, MetaTiME learns meta-components that encode
independent components of gene expression observed across cancer types. The meta-
components are biologically interpretable as cell types, cell states, and signaling activities. By
projecting onto the MetaTiME space, we provide a tool to annotate cell states and signature
continuums for TME scRNA-seq data. Leveraging epigenetics data, MetaTiME reveals critical
transcriptional regulators for the cell states. Overall, MetaTiME learns data-driven meta-
components that depict cellular states and gene regulators for tumor immunity and cancer

immunotherapy.


https://doi.org/10.1101/2022.08.05.502989
http://creativecommons.org/licenses/by-nc-nd/4.0/

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.05.502989; this version posted August 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Keywords
Tumor microenvironment, cancer immunity, single-cell RNA sequencing, transcriptional

regulators, gene expression cell state, cell state representation.

Introduction

Recent advances in cancer research have revealed the integral role of the tumor
microenvironment (TME) in tumor progression and therapy responses’~. Understanding
interactions between cancer cells and the non-cancer compartments, including immune cells,
fibroblasts, and endothelial cells, has revealed potential targets for cancer immunotherapy.
Specifically, single-cell RNA-sequencing (scRNA-Seq) applied on multiple patient tumors has
enabled the high-resolution identification of TME constituents that interfere with the elimination
of cancer cells. For example, exhausted tumor-infiltrating lymphocytes (TILs)*"#, and certain
tumor-associated macrophages subtypes®'", have been associated with tumor development.
However, the definition of cell types and cell states in tumor scRNA analyses still relies on
manual labeling by experts using known exclusive biomarkers following unsupervised

clustering'"®

, Which lacks consistency and varies between different cohorts.

As single-cell data accumulate, integrating a large collection of cells from multiple cohorts can
help unify the definition of cell types and states to facilitate the automatic annotation of new
scRNA-seq data'*'®. One approach to cell annotation is to use predefined biomarker lists.
However, these biomarkers might not cover domain-specific cellular states, for example, well-
defined immune cell markers derived from blood immune cells may not fully cover the TME
disease context'. Moreover, although cell type definitions in reference databases such as

CIBERSORT, Azimuth, and Human Primary Cell Atlas'®"® can be useful, the granularity of
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these definitions varies between databases. Several efforts integrating pan-cancer scRNA data
have revealed subtypes in the TME through the manual annotation of clusters using a shortlist

of exclusive gene markers' 1920,

Another approach is use structure inferred from the data to map cell states from unannotated
datasets onto annotated ones. Methods to obtain such representations include canonical
correlation analysis (CCA)*', adjusted principal components (Harmony)?, or generative deep
learning models using variational autoencoders (scVI)?. These methods use dimension
reduction onto a common latent space to align cells with similar states between datasets,
without ascribing meaning to the latent space representations. An alternative data driven
approach is to identify low dimensional latent space representations in which a biological
meaning can be ascribed to each latent dimension. Several matrix factorization algorithms have
been developed to represent high dimensional data in a low-dimensional space with

)24

interpretable components, including non-negative matrix factorization (NMF)~* and independent

component analysis (ICA)?*2°.

In this study, we developed a computational framework for mapping millions of single cells from
multiple cohorts onto a comprehensive and interpretable latent space, learnt from the data. The
framework, MetaTiME (Meta-components of the Tumor immune MicroEnvironment), identifies
reproducible low-dimensional meta-components that reflect independent components of gene
expression variation across cohorts and cancer types. MetaTiME adopted ICA for dimensional
reduction to maximize the mutual independence among components. We used MetaTiME to
obtain meta-components (MeCs) from 1.7 million single cells across 79 tumor datasets. These
MeCs represent the TME landscape along 75 data-driven transcriptional directions mirroring
lineage-specific cell states and signaling activities. Furthermore, we developed a MetaTiME

toolkit for using the MeCs to annotate cellular states and signature continuums in tumor scRNA
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79  datasets, and to reveal differential signatures across immunotherapy responses. Finally, by
80 incorporating transcription factor binding data, MetaTiME revealed and prioritized putative
81  transcriptional regulators that may modulate tumor immunity.
82
83 Results
84  MetaTiME as a general framework to discover consensus transcriptomic programs
85  The MetaTiME framework consists of three stages: meta-component (MeC) discovery,
86 interpretation of MeCs, and application of cell state annotations (Fig.1a). The MeC discovery
87  stage detects repeatable sources of variation from multiple single-cell measurements sharing
88  similar cellular properties. The MeC interpretation step involves a one-time curation effort using
89  biomarker databases, pathway information and Cistrome DB chromatin profiling data®’. In the
90 third step, users map MeCs onto their new tumor scRNA-seq datasets using MetaTiME
91  application tools, to obtain annotated cell states and signature continuums.
92
93 To train MeCs for the TME context, we collected and curated 2,157,387 cells from 76 studies
94  ranging across 27 cancer types, using publicly available tumor scRNA-Seq data mostly from
95  TISCH?. After removing the TISCH annotated malignant cells using MAESTRO", 102,703
96  stromal cells and 1,617,110 immune cells were retained for downstream training (Fig.S1). The
97 76 studies were further partitioned according to cancer type, resulting in 93 datasets, including 7
98 datasets with immune checkpoint blockade (ICB) treatment and 3 10x Genomics provided
99 datasets representing peripheral blood mononuclear cells (PBMC) sampled from healthy
100  donors.
101
102 In the MeC discovery stage, MetaTiME first decomposes the log-transformed expression matrix
103  of each single dataset using Independent Component Analysis (ICA)*°. We adopted ICA to

104  maximize mutual independence among gene expression components. In simulations ICA
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105 performed slightly better than Non-negative Matrix Factorization (NMF) in simulated single-cell
106  data with pre-embedded transcriptional signatures (Fig.S2). The feature weight distribution of
107  each Independent Component (IC) also enables normalization of the gene contribution scores
108 for measuring similarity among components. MetaTiME then applies two transformations to the
109 IC vectors, z-weight normalization and skewness alignment, to ensure the scales of gene

110  representation scores are comparable among components (Methods). Next, MetaTiME filters
111 ICs to retain ones that are reproducible across multiple cohorts. These are passed to a graph
112 clustering algorithm to merge IC groups into MeCs (Methods). Lastly, MetaTiME computes
113  averaged profiles of gene z-weights within each IC cluster, yielding 86 MeCs trained for the
114  TME (Fig.1a, Fig.2a). The number of MeCs was automatically determined by simultaneously
115  optimizing granularity and independence in IC clustering (Fig.S3). Importantly, the MeC

116  clustering does not depend on cohort source (Fig.S4). This integration after decomposition
117  approach overcomes batch effects, which are often a challenge in single cell RNA-seq data
118  analysis.

119

120  MetaTiME defines interpretable meta-components

121 In principle, each MeC represents one independent source of transcriptional variation commonly
122  presentin the TME. We investigated top ranked genes in MeCs and found MeCs are highly
123  interpretable, reflecting common biological processes in the TME. For instance, the MeC

124  derived from the largest IC cluster is highly enriched in interferon response genes, such as

125 ISG15, IFI6, LY6E, and MX1, indicating that the underlying interferon response is among the
126  most common source of transcriptional variation shared across tumor samples and cohorts
127  (Fig.2a, b). Intriguingly, top genes of each MeC are enriched in known biomarkers or regulators.
128  For example, several T cell-related MeCs identify different gene modules co-expressed in T
129  cells reflecting activation of different T-cell related processes (Fig.2c, Fig.S5). The “T cell co-

29,30

130  signaling” MeC features T cell receptors in co-stimulatory and co-inhibitory pathways~>~", such
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131  as TNFRSF4 (0OX40), TNFRSF18 (GITR) TNFRSF9 (4-1BB), and ICOS (Fig.2c, left). The

132  “CXCL13, exhausted CD8 T cell" MeC features receptors characterizing the exhausted CD8 T
133 cell state®, including HAVCR2 (TIM3), LAG3, TIGIT, and PDCD1 (PD1) (Fig.S5), each being
134  potential ICB targets®'. In addition, this MeC is characterized by a high level of CXCL13

135 (Fig.2c, second panel), a cytokine mediating immune cell trafficking to tertiary lymphoid

136  structures®. In contrast, a related MeC representing T cell co-signaling receptors in regulatory
137  CDAT cells (Treg) has a different ranking, including TNFRSF18, TNFRSF4, TIGIT, TNFRSF1B,
138 CTLA4, CD27 among the top 20 genes, along with the regulatory T cell-specific marker FOXP3
139  (Fig.2c, right). Though ICB has been an extremely successful therapy for some patients, it has
140  not yet had an impact on the majority of patients®®. Investigating the top members in the MeCs
141 involving T cell receptor pathways may help identify new ICB targets.

142

143  MetaTiME depicts the functional landscape of transcriptomic variation and cell states in
144  the tumor microenvironment

145  We provided functional annotations of all MeCs by examining top z-weight genes and compared

146  these with functional gene sets, such as immune cell type markers''®

and gene ontology

147  databases®. We found that 75 MeCs clearly mirror gene expression patterns corresponding to
148  cell types, cell states and signaling pathway activities, depicting a landscape of non-cancer cell
149  states in the TME (Fig.2, Table S1: MeC annotation). The top genes of the cell type MeCs

150  match well-known lineage-specific markers'>'®. Examples include CD74, CD79A, MS4A1 for B
151  cells (“B cell" MeC), CD3D, CD8A, CD8B for T cells (“CD3 - CD8 T cell” MeC), and LYZ, VCAN,
152  S100A9 for CD14+ Monocytes (“CD14 monocyte” MeC) (Fig.2b, Fig.2d). The majority of MeCs
153  define high resolution lineage-specific cell states (Fig.2b, Fig.S4b). Taking the B cell lineage as
154  an example, multiple MeCs harbor genes specific to B cell developmental stages®, ranging

155  from a progenitor B cell state (CD69 and PAX5 in the “PAX5 B cell"), to a mature B cell state

156  (CD79A in the “B cell" MeC), an antibody-secreting plasma cell state (XBP1 in the “plasma B
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157  cell" MeC, and JCHAIN in the “alternate plasma B cell” MeC (“Bplasma_1"), and

158  immunoglobulin secretion states (IGK and IGH in the “immunoglobin kappa B cell" MeC, IGL
159  and IGH in the “immunoglobin lambda B cell” MeC) (Fig.2b). Lastly, like the interferon

160 responsive MeC mentioned above, we found a subset of MeCs that are more accurately

161 interpreted as signaling pathways because their top genes are more related to pathways or

162  molecular functions than to cell identities.

163

164  We organized the 75 annotated MeCs into six cell lineage-focused categories and one signaling
165  pathway-focused category (Fig.2a,b and Table S1: MeC annotation, MeC enrichment). Among
166 these, there are 6 B lineage-related MeCs for B cells; 19 T cell lineage MeCs covering CD8 T
167  cells, CD4 T cells, and natural killer (NK) cells; 4 dendritic cell (DC) lineage MeCs; 12 monocyte
168 and macrophage-related MeCs; 3 platelet, erythrocyte, and mast cell MeCs; 6 stromal cell-

169 related MeCs for fibroblasts, myofibroblasts and endothelial cells; and 25 MeCs in the signaling
170  category (Fig.2b). We demonstrated that the MeCs are of high specificity, visualizing the z-

171 weights of known cell subtype markers and pathway biomarkers (Fig.2d). Correlating MeCs
172 with the comprehensive immune cell type database Azimuth'® validated the lineage-specificity of
173  several MeCs, while most MeCs reflect cell states that appear specific to the tumor context

174  (Fig.S4b).

175

176  MetaTiME annotates cell states and signature continuums when applied to the tumor
177  microenvironment single-cell data

178 As MetaTiME MeCs provides a highly interpretable basis for the TME in single cells, we

179  provided a toolkit to reveal MeC signature continuums and enriched cell states in scRNA-seq
180 TME data (code deposited in https://github.com/yi-zhang/MetaTiME). The MetaTiME annotation
181 toolkit takes as input the scRNA-seq expression matrix after depth normalization and log

182  transformation, maps each single cell onto the pre-trained MeC space, and annotates the most
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183  highly enriched cell states for pre-defined cell clusters. The cell clusters are by default

184  calculated using graph clustering with high resolution after an optional batch effect correction
185  with Harmony?2. We demonstrate usage of MetaTiME on basal cell carcinoma (BCC) single-
186  cells from Yost et al.?, with enriched cell states annotations (Fig.3a) highlighting gradients of
187  exhausted CD8 T cells and follicular helper T cells (Tfh) (Fig.3c). The most enriched cell states
188  consistently match the manual labelling from the original study with improved resolution

189  (Fig.3b). In addition, compared to the Seurat’s' automated CIBERSORT marker-based

190 annotations, MetaTiME provides higher resolution (Fig.S6a). A few other automatic annotation
191  gene panels were also tested, including the human primary cell atlas (HPCA) panel and

192  Blueprint-ENCODE panel used in SingleR'®, where macrophages and plasma cells appear to be
193  mislabeled as subclusters within T cell clusters (Fig.S6b, c). Interestingly, the MetaTiME

194  annotation not only indicates the CD8 T cell and CD4 T cell subtypes, but also splits cells further
195 into cell states with polarized expression in proliferation, cytotoxicity, exhausted level, heat

196  stress, co-signaling pathways, etc. (Fig.3a, Fig.S6a). The B cell group is further partitioned into
197  distinct B cell developmental states including a B cell cluster with cell cycle and MYC activities
198 (Fig.3a,b, Fig.S6), which possibly represent germinal center (GC) B cells undergoing active

199  expansion and maturation®®.

200

201  We thus re-annotated all tumor scRNA cohorts using MetaTiME and investigated the distribution
202  of cell state compositions across cancer cohorts. As shown in Fig. 3e and Fig.S7, tumors are
203  highly heterogenous and the TME cellular composition is only partially determined by cancer
204  type. For example, Cholangiocarcinoma (CHOL) is highly enriched in stromal cells including
205 collagen-secreting fibroblast, as expected®’, while other samples including ovarian cancer (OV),
206  pancreatic adenocarcinoma (PAAD), and multiple myeloma (MM) are also stromal-rich.

207 Furthermore, tumors with high infiltration of the “GZMK+ CCL5+ CD8 T cell” state include
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208  multiple tumor types including colon cancer, breast cancer, and skin cancer, suggesting that
209 immune infiltration is sample-dependent and that cancer treatments should be personalized®.
210

211 Differential MetaTiME analysis detects alterations of transcriptional programs in

212  immunotherapy.

213  Single-cell data derived from ICB trials is invaluable for identifying cell types associated with ICB
214  treatment or response®. However, the detection of differential cell types abundances in ICB

215  cohorts has been challenging due to the heterogeneity of cell type proportions and to the limited
216 numbers of patients in each cohort®. We compared differences in MeC signatures instead of
217  cell count proportions, to understand immune response during ICB. We analyzed two ICB

218  cohorts, a basal cell carcinoma (BCC) cohort with samples from pre- or post-ICB treatment®,
219  and a bladder cancer (BLCA) cohort with samples from ICB responders and non-responders*’.
220  We applied MetaTiME for per-cluster cell state annotation and per-cell MeC signature

221  evaluation. For each cell state cluster, we tested all MeC signatures passing significance

222  (average z-weight>2) between conditions using the Wilcoxon rank-sum test. We plotted cluster-
223  wise signatures in the significance — effect size scatterplot to highlight the most significant

224  differential MeCs (Methods). In a comparison of pre- and post-ICB treatment, we observed

225  higher expression of cytotoxic T cell and B cell MeCs in the post-ICB samples. Moreover,

226  several monocyte and macrophage states are also suppressed after ICB treatment (Fig.4a).
227  Notably, the IL1B-positive macrophage signature is also found to be elevated in non-responders
228 compared to responders in the BLCA ICB cohort (Fig.4b). Since activation of the IL1B pathway
229 is a known regulator of inflammatory processes*', we sought to investigate whether the IL1B-
230  positive macrophage signature is associated with tumor survival prognosis in bulk RNA-seq

231  data from The Cancer Genome Atlas Program (TCGA). We evaluated TCGA tumors using the
232  averaged expression of the top 20 genes from the “Macrophage IL1-NFkB” MeC which ranks

233 firstin elevated MeCs in non-responders (Fig.4a). We found that higher expression of the IL1B
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234  signature is associated with lower survival rate in multiple cancer types, especially in Low Grade
235 Glioma (LGG) and in Kidney renal cell carcinoma (KIRC) (Fig.S8). This suggests the

236  macrophage state with /L 1B pathway activation is associated with poor prognosis and lower ICB
237  efficacy.

238

239 MetaTiME delineates myeloid cells in different metabolic states

240  As specific myeloid cell states have been associated with cancer survival and treatment

241 response, we sought to systematically characterize MeCs related to monocytes and

242  macrophages. Although the canonical definition of M1 and M2 macrophages is derived from
243  cytokine polarized macrophages in vitro*?, MetaTIME’s myeloid-related MeCs represent a more
244  complex framework for understanding tumor-infiltrating macrophages. MetaTiME’s 12 monocyte
245  and macrophages related MeCs can be summarized into six central monocyte or macrophage
246  states for the TME, after merging similar states such as “Macrophage IL1-NFkB” and

247  “Macrophage IL1- JUN” due to similarity among top genes (Fig.4c). Monocytes are classified as
248  two categories, CD14+ and CD16+. For macrophages, four MeCs define common states of

249 intra-tumor macrophages: C1Q+, SPP1+, lipid-rich, and IL1B+ macrophages, and two MeCs,
250 representing interferon and MHC-II signaling pathways, are less frequently observed among
251  macrophages (Fig.2b, Fig.4c). In comparison, previous studies defined different TAMs in terms
252  of manually selected representative genes after clustering myeloid cells. For example, Cheng et
253  al.'® defined several TAM types including ISG15+, SPP1+, INHBA+, VCAN+, NLRP3+, and

254  FN1+ TAMs, while Bi et al.*® defined CXCL10-high, GPNMB-high, FOLR2-high, VSIR-high, and
255  cycling TAMs for advanced renal cell carcinoma (ccRCC). We find that the MetaTiME-defined
256  myeloid MeCs reflect co-expression relationships with the selected marker genes. For example,
257  TAM markers from Bi et al. rank high in several myeloid MeCs (Fig.S9), and the expression
258  pattern of the marker genes picked by Bi et al. (CXCL10, GPNMB, VSIR, FOLR2, Cycling

259  marker MKI67) correspond to several MeCs (“interferon responsive”, “PPARG+ lipid-rich”,

10
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260  “MHCII-high”, and “RNASE1+,C1Q+” MeCs) (Fig.S9). However, MetaTiME reveals additional
261  distinct components such as the “SPP1+” and “C1Q+” MeCs, which were detected as separate
262 myeloid types in the Cheng et al. multi-cohort study (Fig.S10). While the manual reconciliation
263  of cell types from multi-cohort scRNA data shows many marker genes to be consistent with the
264  top genes in the MetaTiME MeCs, the myeloid cell population is not neatly partitioned into cell
265 clusters and might be better represented in terms of expression signature continuums. For

266  example, when mapping myeloid MeCs onto the kidney myeloid cells, the “IL1B+” MeC

267  signature is distributed across the “Macro_IL1B” cluster as well as the CD14 monocyte cluster
268 (Fig.S10).

269

270 To investigate functional differences among the different macrophage states, we applied gene
271  set enrichment (GSEA)* analysis using the top MeC genes. Interestingly, the different

272  macrophage states have different metabolic preferences (Fig.4d). Glucose metabolism and the
273  glycosylation pathway are highly active in SPP1+ macrophages, while lysosome and

274  phagosome activity are the most highly enriched in C1Q+ macrophages. Lysosome and

275  cholesterol metabolism, including PPARG signaling, are enriched in the lipid-rich state. The
276  inflammatory IL1B and NFkB pathways are highly active in IL1B+ macrophages. Several

277  macrophage states are related to cell signaling. SPP1 for example, encodes Osteopontin, which
278  has been found to foster an environment that promotes cancer metastasis**. The C1Q+ MeC
279 features C1QA, C1QB, and C1QC, members of the family of complement molecules that could
280  play dual roles in chronic inflammation*®. The IL1B+ meta-components features cytokines co-
281  expressed with IL1B, including CXCL8, CXCL2, and CXCLS3, all of which can interact with other
282  cells in the TME by binding to cytokine receptors*® (Fig.2b).

283

284 Incorporation of epigenetic data prioritizes transcriptional regulators of tumor immunity

11
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285  We next investigated the transcription factors (TFs) that regulate the MeCs, hypothesizing that
286  the co-expression of genes in a subset of MeCs is determined through TF regulatory events.
287  Our group previously developed the Cistrome Data Browser and Lisa to predict transcriptional
288  regulators of gene sets based on chromatin immunoprecipitation with sequencing (ChIP-seq)
289  data®*’. Thus, we used Lisa to predict the TFs that regulate the top genes of each MeC, and
290 compared these Lisa regulatory prediction scores with the MeC z-weights across TFs. We found
291  that, for many MeCs, the same TFs were predicted to be both regulators of the MeC and were
292  highly expressed in the MeC itself, indicating an autoregulatory control scheme. Often, however,
293 TFs that were predicted by Lisa to be MeC regulators were not represented by high MeC z-

294  weights, and TFs with high MeC z-weight were not always found to have high Lisa scores

295 (Fig.5, Table S1: MeC regulators). TFs predicted by Lisa but not represented by high MeC z-
296  weight could be the result of TF activities being regulated through non-transcriptional

297  mechanisms*® or multiple TFs in a family having similar binding patterns but only a subset being
298 the regulators®. TFs that have high MeC z-weights but low Lisa scores are most likely not well
299 represented in the relevant cell types in available ChiP-seq data. In the “interferon response”
300 MeC, STATT1 is highly represented in the MeC z-weight and Lisa ranks STAT1 as the top

301 regulator, consistent with STAT1 being known as the master regulator of the interferon

302 response (Fig.5a). Several lineage-defining TFs display the autoregulatory pattern, including
303 TCF4 in plasmacytoid dendritic cells (pDC) (Fig.5b) and XBP1 in B plasma cells (Table S1:
304  MeC regulators). The macrophage related MeCs are regulated by myeloid lineage TFs like

305 CEBPB, and TFs related to immune stimulus responses, including NFKB complex TFs. In the
306  "lipid-rich macrophage" MeC, although PPARG ranks among the top Lisa-predicted regulators
307 (Fig.5¢c), PPARG expression is not highly represented as a MeC z-weight. In this MeC, the top
308 co-expressed genes are indeed enriched in the PPARG signaling pathway (Fig.4d); this result
309 can be accounted for by PPARG being regulated through its ligands, which include a variety of

310 lipophilic acids*®.
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311

312  We found glucocorticoid receptor (GR) signaling to be implicated in the regulation of the

313  “CXCL13+ Tfh” MeC, with GR being most highly ranked TF in both MeC and Lisa scores

314  (Fig.5d). Top genes in the “CXCL13+ Tfh” MeC include several direct target genes of GR,

315  including SRGN and FKBP5 (Fig.S11b). We investigated whether the CXCL 13 cytokine itself
316  could be a direct target of GR in CXCL 13 secreting Tfh cells. Since GR ChlIP-seq data is not
317  available for the exact Tth cell state, we collected GR ChlIP-seq data from several other cell

318  types. Direct binding of GR is observed at the CXCL13 gene promoter and nearby the gene
319 locus at putative enhancers, which are conserved across multiple cell lines (Fig.S11a), including
320 the B cell line Nalm6, the monocyte cell line THP1, and cancer cell lines. Moreover, in another
321  CXCL13 secreting cell state, the “CXCL13 exhausted CD8 T cell” MeC, GR is also highly

322  ranked in both Lisa and MeC scores (Fig.5d). Thus, we hypothesize that GR is likely to be a
323 transcriptional driver of the CXCL13-secreting cell states in exhausted CD8 T cells® as well as
324  in CD4 T follicular helper T cells. Thus, the GR pathway could be a candidate target in tumor
325  immunity modulation.

326

327  Discussion

328 We developed the MetaTiME (Meta-components of the tumor immune Microenvironment)

329 framework and performed a large-scale and pan-cancer integration of tumor single cell datasets
330 using ICA to optimize information independence among components®'. We identified 75

331 interpretable meta-components (MeCs) that describe common aspects of TME gene expression
332  variation across multiple tumors.

333

334 The MetaTiME MeCs serve as comprehensive transcriptional signatures that depict a functional

335 landscape of TME transcriptional programs and cell states. For monocytes and macrophages,

13
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336 the related MeCs revealed heterogeneity and plasticity of tumor-associated macrophages

337  (TAMs). We thus propose that TAMs, especially for solid tumors, should be classified based on
338 the major states with different metabolic preferences instead of the canonical M1 and M2

339 classification*?. Similar states that do not fit well into the M1 versus M2 classification scheme
340  were also observed in previous studies analyzing myeloid cells in the TME, where single cells
341  were clustered and labeled using differential markers'®'?4®. Cheng et al.'® defined several TAM
342  types by clustering myeloid cells separately for each study and naming the TAMs with manually
343  selected top marker, chosen based on consistency across cohorts. Similarly, Bi et al.** defined
344  TAM types by harmonizing patients and naming the TAMs with top genes in each cluster for an
345  advanced renal cell carcinoma (ccRCC) cohort. Cell type definitions in the previous studies
346  were based on representative genes, which were chosen differently in the respective studies.
347  We propose that the MetaTiME derived monocyte and macrophage MeCs could be used to
348  define macrophage states and functional co-expressed gene modules more consistently for the
349 TME. Reexamining the marker genes from the previous studies: NLRP3 is highly ranked in the
350 “IL1B+” MeC; in fact, the NLRP3 inflammasome mediates interleukin-13 production. GPNMB is
351  weighted among the top 20 genes in both the “C1Q+ macrophage” and “SPP1+ macrophage”
352  MeCs; it encodes a membrane glycoprotein which is typically highly expressed in macrophages.
353  FOLRZ2is ranked 29th in the “C1Q+ macrophage” MeC, indicating this macrophage state also
354  encodes a high folate-activated pathway. Finally, the “SPP1/C1Q macrophage” MeC features
355 anintermediate state with both SPP1 and C1QA, indicating the plasticity and mixed nature of
356  pathways activated in TAMs that could not be defined using exclusive markers. Thus, the

357 myeloid MeCs may provide a consistent definition of TAM states corresponding to different

358 metabolic processes.

359

360 MetaTiME provides a toolkit for analyzing independent TME scRNA-seq datasets by mapping

361 gene expression onto the MeC space. The outputs include signature continuums and the most

14
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362  highly enriched cell states. Recent useful single-cell dataset integration algorithms such as

363  Harmony? and scArches®? infer a joint low-dimensional representation among data. In these
364  approaches the shared space is re-computed every time a new dataset is incorporated. The
365 MetaTiME strategy builds upon previous approaches that transfer latent representations from
366 large datasets, but provides a stable and interpretable representation specialized for the TME.
367

368 By leveraging ChlP-seq data, MetaTiME reveals critical transcriptional regulators in tumor

369  immunity. In many cases, we found the joint consideration of MeC-specific co-expression

370 patterns and TF binding enrichments reveals the roles of TFs in defining cellular states and

371 gene expression programs. MetaTiME captured multiple known TFs critical to tumor immunity
372  and could serve as immune modulation targets; this includes TOX in the “CXCL13-secreting
373 exhausted CD8 T cell” MeC, a recently discovered regulator of T cell exhaustion® (Table S1).
374  The MeCs further implicated the glucocorticoid receptor pathway in the regulation of several T
375  cell states. Glucocorticoids are a class of steroid hormones essential to the modulation of

376  multiple biological processes, including immune related ones®, although the role of the GR
377  pathway in different immune cell types is not fully understood. Since GR is broadly expressed in
378 many cell types, and is regulated through ligand binding, differential analysis of GR expression
379  is unlikely to fully capture GR regulation in single-cell data analysis. Though GR ChIP-seq is not
380 available in the contexts of the relevant T cell states, GR ChIP-seq in other cell lines

381  demonstrate robust binding nearby the top gene CXCL13. CXCL13 is crucial to T follicular

382  helper cell communication with germinal center B cells, through interaction with its receptor
383 CXCR5°*¢,

384

385  Overall, MetaTiME depicts the functional landscape of transcriptomic variation and cell states in

386  the tumor microenvironment. It provides a computational framework to facilitate the elucidation
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387  of the identity and function of cells in the TME in future studies and will facilitate the

388 identification of potential new therapeutic targets for immune modulation.

389

390

391 Methods

392

393 Tumor single-cell RNA-seq data collection and processing

394  For an extensive collection of single cells from tumor microenvironment, we utilized the public
395  tumor scRNA-seq collection from TISCH?®. The TISCH collection uniformly processed each
396  dataset with MAESTRO'’ and isolated non-malignant environmental cells from malignant cells.
397  Overall, we collected 2,157,387 cells from 76 studies ranging 27 cancer types. The MAESTRO
398  annotation was labeled using CIBERSORT gene panels'® followed by curation, enabling

399  selection of 1,719,813 environmental cells, including 1,617,110 immune cells and 102,703

400 stromal cells, were retained for integrative analysis in this study. For studies with data measured
401  from multiple cancer types, cells different cancer types were split into independent datasets,
402 resulting in 93 datasets; it includes 3 PBMC datasets from healthy donors from 10X Genomics
403 as baseline and 7 datasets with ICB treatment.

404

405  For an unsupervised component analysis, each dataset was re-analyzed. For datasets with raw
406  count matrices available, gene expression was normalized towards per-cell read depth 10,000
407  followed by log transformation. For datasets with only TPM or FPKM values available, including
408 Smart-seq data or studies with only normalized matrix available, gene expression underwent log
409 transformation. Cells were filtered based on minimum library size 1000, gene number 500, and
410  maximum mitochondrial read proportion 5%.

411

412 Decomposing individual studies and denoising low-dimensional components.
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413  We then decomposed the expression matrix of each scRNA-seq dataset using fastiCA®" into an
414  independent component (IC) vector matrix and a projection weight matrix. We tested different
415  values for the number of components (k) and chosen k to be 100 uniformly for each dataset,
416  given it could cover more variations than the number of cell types in the TME, which is around
417  twenty. We applied two denoising approaches to deal with sparsity and the potential noise of
418  ICs. First, we performed a z-normalization of the gene loadings in the component, scaling all
419  gene loading values by the standard deviation of each IC. The gene loadings indicate the

420  degree of contribution to the component as a “metagene” from each gene, and we observed
421 that most genes contribute neutrally to the metagene. Thus, genes with significant contributions
422  are selected using the two-standard deviation threshold from either the positive or negative side.
423  Second, we aligned the positive skewness of components since the sign of an independent

424  component is randomly assigned in fastlICA optimization. We observed that asymmetrically

425  extreme gene loading values highlight genes representative of the component's function; thus,
426  we computed each component's skewness statistics and flipped the sign of component loadings
427  if the skewness is negative. We excluded genes with a low contribution (gene weight not

428  passing two standard deviations) to any reproducible components and kept 6623 genes with
429  potentials in driving the reproducible components. The post-decomposition steps ensured the
430 attitude and sign of gene weights are comparable across cohorts, depicting degree of

431  contribution from each gene in the genome-wide background.
432

433 Meta-components calling and functional annotation

434  We then aim to discover reproducible patterns from all components from each dataset. We
435 evaluated similarity between pairs of components using cosine distance and retained a set of
436 1043 candidate reproducible components from 69 datasets, each with a minimum Pearson

437  correlation coefficient 0.3 with at least one different IC. We then clustered ICs using Louvain
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438  clustering, a graph-based community detection algorithm where the resolution parameter

439  controls segmentation granularity. Clusters with at least five ICs were retained as reproducible
440 IC clusters. The number of clusters is determined by optimizing both Silhouette’s score for

441  optimal within-cluster similarity compared to inter-cluster similarity and number of reproducible
442  clusters. The final resolution parameter was chosen to be 1.25 resulting in 86 clusters for meta-
443  component (MeC) calling. The consensus gene z-weights in each MeC were then calculated by
444  averaging ICs in each cluster. Genes of outlier z-weights passing two standard deviations were
445  highlighted as significant, and the ones with positive largest z-weights were considered

446  representative of the MeC.
447

448 MetaTiME MeCs were assigned curated annotation by matching top z-weighted genes to

449 functional biological information including cell type markers, pathway databases from GSEA,
450 cell types expressing top MeC genes, and high-rank transcription factors. In details, GSEA

451  enrichment analyses utilized top 100 highest z-weighted genes and TF database was obtained
452  from AnimalTFDB*. The 86 MeCs were first ordered by MeC cluster size, and then organized
453 into seven functional categories and one undefined category. The 11 MeCs in the undefined
454  category are of smaller size, and harbor top genes that are related to cell stress. The remaining

455 75 functional MeCs were assigned six lineage-related categories and one signaling category.
456

457  Simulating multi-cohort single-cell RNA data with expression programs

458  To benchmark dimensional reduction methods, we built upon previous effort from Kotliar et al.®’
459  to use the scsim package to simulate multiple count matrices with built-in transcriptional

460 programs. In principle, the built-in gene expression programs (GEP) were sampled as random

461  scaling factors on a subset of genes mimicking overexpression or suppression of a pathway.

462  For testing whether a higher number of cohorts facilitate GEP recovery, we simulated 20 single-
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463  cell datasets and tested usage of 5 cohorts, 10 cohorts, and 20 cohorts. Each dataset was

464 embedded with a subset of 14 pre-defined GEPs, since the real tumor scRNA data may not
465  cover every possible cell types or gene programs in every dataset. The 14 GEPs contain 13 cell
466 type-specific programs with distinct cell type-specific genes, and one signaling gene expression
467  program that is randomly active in multiple cell types. Two low-dimensional reduction method
468  are benchmarked using simulated scRNA data: independent component analysis (ICA) and
469 non-negative matrix factorization (NMF). Decomposition was performed on each single cohort
470  separately, and meta-component calling was done as similar in MetaTiME: components are
471  filtered, clustered into meta-components, followed by averaging gene z-weights per cluster as
472  predicted gene expression programs (GEP). The predicted GEPs were compared with pre-
473  defined True GEPs using Pearson correlation. Overall, both ICA and NMF can recover GEPs,
474  while the ICA-based GEPs are more mutually independent and performs slightly better. Since
475  the GEP recovered in the 20 cohorts case matched true GEP better than 5 cohorts and 10

476  cohorts, the increased number of cohorts also improves GEP recovery. Thus, we chose ICA for
477  component integration and use all available datasets for GEP discovery for tumor

478  microenvironmental cells.

479

480 The MetaTiME annotator for analyzing new tumor scRNA-seq data.

481 MetaTiME provides an analytical toolkit for annotating cell states and signature activities for
482  tumor scRNA-seq data (https://github.com/yi-zhang/MetaTiME). The scRNA-seq data is first
483  processed following standard procedure, which includes cell depth normalization, log-

484  transformation, batch effect removal using Harmony??, neighboring graph construction, graph
485  clustering, and UMAP embedding for visualization. Specifically, the clustering step uses an

486  over-clustering strategy, which sets a high-resolution parameter (default 8) that generates a
487  larger number of clusters and help reveal fine structures among the cells. Then, the MetaTiIME

488  annotator tool takes as input a single log-transformed expression matrix for TME cells from the
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489  dataset. The outputs include both per-cell MetaTiIME MeC signature scores and per-cluster
490 enriched MeC state. For the per-cell score, MetaTiME projects each cell onto the MeC space by
491 calculating dot product between the expression vector and the z-weight vector of each MeC,
492  using genes passing significant z-weight criterion (z-weight >2). The projection matrix is then
493  scaled across all cells to ensure normally distributed scores within each MeC, outputting the
494  cell-by-MeC score matrix. Meanwhile, the UMAP view of the projection score shows the

495  signature gradient across the cells positioned by similarity. Lastly, the cluster-wise MeC

496  enrichment results are also generated. The per-cluster MeC enrichment score is calculated by
497  averaging profile of cells along each MeC; MeCs with mean score passing the significant cutoff
498 (2 in the z-weight scale) are called as the set of enriched MeCs. Each cluster may enrich

499  multiple number of MeCs, and the top enriched MeC with highest score is used in UMAP

500 visualization.

501

502 Differential MeC signature analysis

503  For tumor scRNA-seq data with different conditions, a differential signature analysis can be
504 carried out following MetaTiME annotation, which provides enriched MeCs for each cluster and
505 names each cluster with the top enriched MeC. Thus, for each cell cluster, the MeC signature
506 strength can be compared across conditions, for all enriched MeC in the current cluster. In

507 details, a simple Wilcoxon rank-sum test is adopted to compare MeC scores of cells in one
508 condition with another. The log-fold change of MeC scores were calculated by the ratio between
509 cell means from the two conditions in comparison. To plot the cluster-specific differential

510 signature plot, the signatures are marked using “EnrichedMeC@ClusterName”, where the

511 “ClusterName” is the top first enriched MeC used as cell state as current cluster. Thus, when
512  the enriched MeC signature is the same with the cluster name, the differential signature is

513 named as “ClusterName” on the Significance-Effect size plot.

514
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515 Incorporation of epigenetic data using Lisa

516  Our group previously developed Lisa (Landscape In-Silico deletion Analysis) that predict

517 influence of TFs on a set of genes. Lisa models public chromatin accessibility and TF binding
518  profiles to score TFs in gene regulation from an epigenetic perspective. We developed Lisa2
519 that improves on running speed and pipeline integration, which is applied on each MeC to score
520 TFsin regulation potential on top 100 high z-weighted genes. The impact scores of TFs are thus
521  from two sources: MeC z-weights for expression representation, and Lisa scores for binding
522  potential. The TFs are grouped into three classes, TFs highly ranked based on both MeC gene
523  weights and Lisa significance, TFs representative only in MeC, and TFs based on binding

524  information only. In TableS1, we marked TFs from different classes in different colored columns.
525  Significant TFs based on both MeC and Lisa (MeC z-weight >=2, Lisa score -log p-value >=2)
526  are marked as orange color; furthermore, the TFs ranking among top 40 (aggregated rank of
527  MeC and Lisa) compared to all genes are further marked red. TFs ranking among top 10 only in
528 MeC z-weight are colored green, and TFs ranking among top 10 only in Lisa score are colored

529 blue.

530
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549

550 Fig.1. Overview of MetaTiME. MetaTiME integrates 1.7 million single cells to learn common
551  transcriptional programs in the tumor microenvironment (TME). (a) Steps for Meta-components
552  (MeCs) discovery. For each scRNA dataset, the expression matrix of TME cells is decomposed
553 into a loading matrix (red) and an independent component (IC) matrix through independent
554  component analysis (ICA). The ICs represent mutually independent sources of transcriptional
555 variation. ICs from each dataset are concatenated and clustered into groups of ICs with high
556  similarity, representing transcriptional programs shared across TME. MeCs are then calculated
557  as averaged profiles of ICs from each cluster. Each MeC is interpretable representing gene
558  signatures of cell type, cell states, or signaling pathway activities. (b) Left: MetaTiME provides
559 75 functionally annotated MeCs that depict the TME transcriptional landscape. They are

560 grouped into six lineage-related categories and one category reflecting signaling activities.

561 Middle: the MetaTiME annotation tool facilitates automatic annotation of cell states for new
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562  tumor scRNA data. Right: candidate regulators of each MeC are prioritized by combining MeC
563  gene weights with epigenetics data. MeC: meta-components, TME: tumor microenvironment,
564 ICA: independent component analysis, MeC: meta-component, TF: transcription factor.

565
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568 Fig.2. MetaTiME meta-components are biologically interpretable with top genes. (a)

569 Heatmap of top ten most recurrent clusters of MeCs showing normalized gene weights. (b)

570 Biological characterization of each MeC with top genes. To facilitate biological interpretation,
571  MeCs are categorized into six lineage-associated (B cells, T cells for CD4T, CD8T and NK cells,
572  dendritic cells, monocyte and macrophages, other myeloid cell types, and stroma cells) and one
573  signaling pathway-associated class. (¢) Examples of T cell related MeCs with top 20 genes with
574 largest weights. (d) Gene contribution of known lineage-related biomarkers for each MeC, and
575  correlation with known immune markers from Azimuth. In the top dot plot, size and color

576  represents MeC z-weights of each gene in each MeC. In the bottom dot plot, size and color
577  represents the maximum correlation coefficient between MeC and Azimuth defined marker

578 genes per cell type. MeC: meta-component, DC: dendritic cell, Mono/Mac: monocytes and

579  macrophages.
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583 Fig.3. MetaTiME annotates cell states with high resolution on tumor microenvironment
584  single-cell data. (a) MetaTiME cell state annotation of cell clusters in a melanoma scRNA
585  dataset based on top enriched MeCs. (b) Manual annotation labels by experts from the original
586  study shown on the same UMAP space. (c) Signature continuum of four MeCs representing
587  mature dendritic cell state, CXCL13-secreting exhausted T cell state, CXCL13-secreting T
588 follicular helper cell state, and IL1B pathway-activated macrophage state. (d) Marker gene
589  expression for each annotated cell cluster as in (a). (e) Bar plot showing cell state composition
590  of tumor microenvironment for tumor scRNA dataset cell states. The proportion of cell states
591  from the same MeC category are aggregated.

592
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597

598 Fig.4. Differential signature analysis and delineated macrophage states in TME. (a)

599 Differential MeC signature testing for enriched cell states comparing pre- and post-

600 immunotherapy conditions in Basal Cell Carcinoma (BCC). X-axis: Log odds ratio of mean

601  signature scores between post- and pre-immunotherapy conditions. Y-axis: minus log p-value
602 from Wilcoxon test. (b) Differential signature testing for enriched cell states comparing non-
603 responders and responders from pre-treatment condition in Bladder Carcinoma (BLCA). (c)
604  Model of monocytes and macrophage states in tumor and their metabolic differences. (d) Top
605 pathways enriched in different macrophage MeCs. BCC: Basal Cell Carcinoma, BLCA: Bladder

606  Carcinoma.
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Fig.5. MetaTiME prioritizes tumor immunity transcriptional regulators. For selected MeCs,
TFs are prioritized by their MeC expression representation and Lisa, ChlP-seq based,
regulatory potentials. X-axis: gene z-weight of the TF for the current MeC. Y-axis: Lisa-based
regulatory potential significance for top genes in the current MeC. Red and orange factors: MeC
regulators prioritized based on both MeC gene weights and Lisa regulatory potential
significance. Green factors: TFs highly weighted in MeCs and not in Lisa analysis. Blue factors:
TFs with high Lisa regulatory potential and not highly weighted in MeCs. (a) TFs prioritized for
three MeCs in the signaling category. (b) TFs prioritized for three MeCs in the dendritic cell
category. (c) TFs prioritized for three MeCs representing different macrophage states. (d) TFs
prioritized for three MeCs representing different T cell states. TF: transcription factor, MeC:

meta-component.
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