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Abstract

Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment
(TME) which influences glioma growth. Major efforts have been undertaken to describe the
TME on a single-cell level. However, human data on regional differences within the TME re-
main scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on
paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary
GBM patients. Through analysis of > 45’000 cells, we revealed a regionally distinct transcrip-
tion profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired
activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-in-
filtrating CD8" T cells with circulating cells identified CX3CR1Mghand CX3CR1™CD8" T cells
with effector and memory phenotype, respectively, enriched in blood but absent in the TME.
Tumor CD8" T cells displayed a tissue-resident memory phenotype with dysfunctional features.
Our analysis provides a large-scale dissection of GBM-associated leukocytes, serving as a ref-

erence map of human GBM-TME.


https://doi.org/10.1101/2022.06.17.496574
http://creativecommons.org/licenses/by/4.0/

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496574; this version posted June 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

Introduction

Glioblastoma (GBM) is a fatal disease without effective long-term treatment options.
The current standard of care consists of tumor resection followed by adjuvant chemoradiother-
apy resulting in a median overall survival of only 14 months [1]. One of the hallmarks in GBM
progression is the high rate of neovascularization. The GBM-induced aberrant vessels not only
nourish glioma cells, but also provide a specialized niche for tumor-associated stromal and im-
mune cells such as monocyte-derived macrophages (MdMs), yolk sac-derived microglia (MG)
(together termed glioma-associated macrophages/microglia, GAMs), and peripheral adaptive
immune cells. This immune tumor microenvironment (iTME) paradoxically acts in an immu-
nosuppressive manner and promotes tumor progression [2]. For example, clinical trials of sys-
temic T cell checkpoint blockade showed only disappointing results [3, 4], which was attributed
in part to the immunosuppressive components of the GBM iTME. The origin of GAMs, infil-
tration of peripherally derived macrophages across the blood-brain-barrier (BBB) or recruit-
ment of tissue-resident MG to the tumor site, as well as their contribution to gliomagenesis are
studied intensively [2, 5-7]. Hence, major efforts have been undertaken to describe the GBM
iTME on a single cell level [5, 6, 8]. However, human data on the composition of the iTME in
different tumor regions (contrast enhancing tumor center versus peripheral infiltration zone)
remain scarce [9, 10].

To study the region-dependent cellular diversity within individual GBMs, we performed
single-cell RNA sequencing (scRNA-seq) on patient-matched biopsies from the tumor center
and the peripheral infiltration zone of five primary GBM patients. Additionally, peripheral
blood mononuclear cells (PBMC) of the same patients were included to explore the transcrip-
tional changes occurring during tumor infiltration of circulating immune cells.

Our analysis revealed a regionally distinct transcription profile of MG and MdMs and
an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Compar-
ing tumor-infiltrating CD8" T cells with PBMC-derived, identified CX3CR1"¢"and CX3CR1™
CD8" T cells with effector and memory phenotype, respectively, enriched in blood but absent
in the iTME. Tumor CD8" T cells displayed features of tissue-resident memory T cells and
were characterized by an exhaustion phenotype. This work provides a large-scale dissection of
glioma-associated cell types complemented by patient-matched PBMCs, revealing an abun-

dance of information about the composition and molecular diversity of the iTME in GBM.
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Fig. 1 Single-cell RNA-seq of cells from tumor center, periphery and blood. a Experimental
workflow for single-cell analysis of cells isolated from tumor center, periphery and peripheral
blood mononuclear cells (PBMC), including fluorescent-activated cell sorting and 3’-scRNA-
seq. b Axial T1 with contrast (left) and T2 (right) MRI brain in a patient with a left temporal
GBM. Fresh tumor biopsies were taken according to neuronavigation (green cross). The tumor
center was defined as contrast enhancing, whereas the tumor periphery was defined as T2 hy-
perintense. ¢ Nuclear DAPI staining of resected tissue specimens. 40x magnification (scale bar
=20 um). n = 3 patients, 4 field of view (FOV) per patient. Statistics: ***p < 0.001, two-tailed
Mann Whitney U test.

ScRNA-seq analysis of paired tumor center, periphery and PBMC samples.

Fresh, neurosurgically resected tissue from five GBM patients were harvested (Supple-
mentary Table 1). According to the 2021 WHO Classification of Tumors of the Central Nervous
System [11], in which the term glioblastoma designates only IDH-wildtype grade 4 tumors, we
will hence use the term grade 4 glioma, as we included as well IDH-mutant grade 4 tumors
(Supplementary Table 1). The tumor center was defined as contrast enhancing, whereas the
tumor periphery was defined as T2 hyperintense by magnetic resonance imaging (MRI)-guided,
navigated surgical resection (Fig. 1b). Increased cellular density of the center vs. periphery
samples was confirmed by nuclear DAPI staining on matched histological micrographs of the
resected tissue specimens used for scRNA-seq (Fig. 1c). As outlined in Fig. 1a, we separately
processed patient tumor and blood samples and enriched them for immune cells by fluores-

cence-activated cell sorting (FACS) (Supplementary Fig. 1a and 1b). The three samples per
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89  patient (center, periphery and PBMC) were loaded on different wells of a 10x Genomics Chro-
90 mium system for a targeted recovery of 10,000 cells. Due to technical issues cells from the
91  center sample of patient BTB 609 could not be collected.
92 In total we analyzed 45,466 cells that passed initial quality control and filtering, com-
93  prising 8,254 cells from tumor center, 5,954 cells from tumor periphery and 31,258 PBMCs,
94  with 6,354 to 10,957 cells per patient (Supplementary Table 2; Supplementary Fig. 1c-1f). All
95  cells were projected onto a two dimensions #-distributed stochastic neighbor embedding (tSNE)
96 [12]. As we observed a good overlap of cells across patients, we chose not to perform any
97  correction for patient-specific effects (Supplementary Fig. 1g). Using hierarchical clustering,
98 the cells were partitioned into clusters (Supplementary Fig. 3a) which were then annotated into
99  eight distinct cell types for the immune subset and five cell types for the CD45 negative subset
100  (Fig. 2a; Supplementary Fig. 3b, g-h; Supplementary Table 2). Notably: the annotation of most
101  of the immune cell types was performed by whole-transcriptome comparison of our cells to a
102 reference dataset of bulk RNA-seq samples of sorted immune cell types from human PBMC
103 (Supplementary Fig. 3¢) [13]; the annotation of MdMs and microglia was performed by whole-
104  transcriptome comparison to a dataset of bulk RNA-seq samples of sorted immune cell types
105  from the tumor microenvironment of human gliomas (Supplementary Fig. 3d) [5] and using
106  signature scores defined from scRNA-seq of GAMs (Supplementary Fig. 3e-f) [7]; finally,
107  CD4S5 negative cells were annotated by whole-transcriptome comparison to a scRNA-seq da-
108  taset of IDHI" GBM (Supplementary Fig. 3i) [14]. The expression of known marker genes
109  across cell types is shown in Fig. 2b, and genes whose expression is most specific to each cell
110 type are shown in Supplementary Fig. 2.
111 In line with previous work [5, 6, 10], we noted that GAMs accounted for the most fre-
112 quent cell type in the center iTME (on average 44.5% among leukocytes in center vs. 24.7%
113 among leukocytes in periphery), while the T cell compartment accounted for the most abundant
114  immune population in the tumor periphery (Fig. 2d). When comparing phagocytic cell types,
115  we found that MdMs decreased substantially in the glioma periphery, while MG did not exhibit
116  adifferential distribution between tumor center and periphery (Fig. 2e).
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Fig. 2 Single-cell RNA-seq analysis identifies main immune cell populations. a Dimension-

ally reduced tSNE projection of the scRNAseq data showing the identified main cell clusters.

b Heatmap displaying averaged and normalized expression values of characteristic cell-type
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121 specific genes used to annotate clusters in (a). Columns are ordered by site and cell type, and
122 rows show centered and scaled expression values, hierarchically clustered. ¢ Principal compo-
123 nent (PC) biplot of pseudo-bulk scRNAseq samples aggregated by patient and cell type. Sym-
124 bols represent individual patients and cell lineage is displayed by different colors. d, e Relative
125  frequencies of immune populations among leukocytes between tumor center and periphery.
126  Symbols represent individual patients and paired samples are indicated by connecting lines.

127  Statistics: *FDR<5%, diffcyt-DA-voom method.
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128 MG and MdMs display regionally distinct transcription profiles.

129 To perform a differential expression analysis between tumor sites, we stratified the anal-
130  ysis by annotated cell type and aggregated cells from each patient (see Supplementary Meth-
131  ods). A principal component analysis (PCA) on the aggregated transcriptome data confirmed
132 that the major source of variation was the cell type lineage (Fig. 2¢), with notable differences
133 between lymphoid, MG/myeloid cells, and CD45" cells (PCs 1 and 2). Interestingly there was
134 no clear association between patient /DH ] status and these or deeper components, suggesting
135  that the iTME seemed independent of /DH] status in grade 4 glioma. Moreover, immune cell
136  type differential abundance analysis revealed an equal distribution among /DH variants, further
137  supporting this observation (Fig. 2d, e).

138 Differential expression analysis between MG from tumor center and periphery revealed
139  ahighly significant downregulation of inflammatory genes in the peripheral MG. This included
140  scavenger receptors (CD36 and MARCO), chemokines (CXCL3 and CCL20) and immune re-
141  ceptors (IL7R [15] and CD109, a negative regulator of TGF-f signaling [16]) as well as genes
142 involved in cell growth (CSRP1) and cell metabolism (SMPDL3A4 [17] and SDS) (Fig. 3a and
143 Supplementary Table 3). The latter transcribes for the serine dehydratase, an enzyme catalyzing
144 the dehydration of L-serine/L-threonine to yield pyruvate/ketobutyrate [18]. The downregula-
145  tion of SDS in the peripheral MG with reduced metabolization of L-serine to pyruvate could
146  potentially lead to a reduced oxidative phosphorylation in peripheral MG, a metabolic feature
147  described for dysfunctional MG in Alzheimer’s disease models [19]. Concomitantly, increased
148  L-serine levels have been associated with the induction of alternative, M2-like microglial po-
149  larization and inhibited secretion of inflammatory factors (TNF-a and IL-1p3) [20].

150 Interestingly, we found upregulation of Inhibitor of DNA-Binding 1, also known as In-
151  hibitor of Differentiation 1 (/D) in the peripheral MG, which is well described in GBM pro-
152  gression, treatment resistance and glioma stem cell biology [21]. Recently, new evidence has
153 emerged, linking /D1 to suppression of the anti-tumor immune response in the myeloid com-
154  partment and promoting tumor progression [22].

155 To further explore the underlying biological processes differing between MG in the two
156  compartments, we conducted a gene set enrichment analysis (GSEA) on the results of the dif-
157  ferential expression analysis using Gene Ontology (GO) database (Biological Processes). This
158  revealed overall a significant downregulation of GO categories involved in antigen processing
159  and presentation via MHC-I and MHC-II in the peripheral MG relative to the center MG, as

160  well as downregulation of amino acid metabolism and TNF-a signaling pathway (Fig. 3b),
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161  which further supported our observation of a strong immunosuppressive phenotype in periph-
162 eral MG.

163 When comparing the transcriptional profile of MdMs from the peripheral front to the
164  tumor center, we observed upregulation of proinflammatory genes MEFV encoding pyrin [23]
165 and APOBEC34, a cytidine deaminase involved in RNA editing during macrophage M1 polar-
166  ization and response to interferons (IFN) [24]. Moreover, upregulation of KCNJ2, a voltage-
167  dependent potassium channel has been shown to regulate macrophage proliferation [25]
168  whereas GPRI32 serves as lactate sensor in the acidic TME and could potentially facilitate
169  MdM migration to the tumor site [26]. MIR22HG, a long non-coding RNA (IncRNA) has been
170  associated with tumor suppressive properties in hepatocellular carcinoma, where it has been
171  linked to chemokine signaling pathways and phagosome activation [27] (Fig. 3c).

172 Along with this, we observed downregulation of anti-inflammatory genes in the periph-
173 eral MdMs. This included RNASE1, a signature gene of macrophages enriched in immune
174 checkpoint inhibitor (ICI) non-responding melanoma patients [28], PLTP, a negative regulator
175  of NF-kB activation [29], NRPI, a key gene required for macrophage attraction towards hy-
176  poxic tumor niches and thereby retaining their pro-tumorigenic features [30], and /L4/1, a novel
177  metabolic immune checkpoint in the tryptophan/aryl hydrocarbon receptor (AHR) pathway
178  [31] (Fig. 3¢). Hence, MdMs might display a proinflammatory phenotype in the glioma periph-
179  ery, however, are less abundant there (Fig. 2e).

180 We observed a marked downregulation of SDS in the peripheral MdMs, similar to the
181  peripheral MG population, leading to a presumptive accumulation of L-serine in the peripheral
182  MdMs. In contrast to MG, serine metabolism has been shown to indeed support proinflamma-
183  tory IL-1P cytokine production in macrophages [32]. Together with the reduced tryptophan
184  metabolism through /L4/1 and downregulated SLC3948, a transmembrane zinc importer whose
185  reduction has been linked to increased IL-6/IL-1p secretion and increased NF-«kB signaling in
186  innate immunity [33], these data shed new light on regional differences in the innate im-

187  munometabolism in the iTME of grade 4 glioma.
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189  Fig. 3 MG and MdMs display distinct regional transcription profiles. a Microglia cluster
190  highlighted on tSNE map and scatterplots showing differentially expressed genes (FDR<5%,
191 indicated by blue and yellow) in Microglia (MG) cells from tumor periphery versus center.
192 Volcano plot showing p value versus fold-change (left) and MA plot showing fold-change ver-
193 sus mean expression (right). b Heatmap representation of Gene set enrichment analysis (GSEA)
194  results between peripheral and center microglia using Gene Ontology (GO) collection (Biolog-

195  ical Processes). The fraction of overlap between gene sets is calculated as Jaccard coefficient
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196  of overlap between the gene sets. ¢ Monocyte-derived macrophages (MdMs) cluster highlighted
197  on tSNE map and volcano plot showing statistical significance (FDR<5%, indicated by blue
198  and yellow) versus fold-change of differentially expressed genes in MdMs from tumor periph-
199  ery versus tumor center. d Unsupervised hierarchical sub-clustering of the MG population re-
200  vealed two transcriptionally distinct subsets of MG, termed MG 1 and MG 2, displayed on the
201  tSNE map. e Heatmap displaying the cluster-specific genes identifying MG 1 and MG_2 sub-
202 clusters. Columns are ordered by site and cell type, and rows show centered and scaled expres-
203  sion values, hierarchically clustered. f Heatmap representation of GSEA between MG 1 and
204 MG _2 subclusters using Hallmark collection of major biological categories. g Heatmap dis-
205  playing previously described reactivity markers of MG. Columns are ordered by site and cell
206  type, and rows show centered and scaled expression values, hierarchically clustered. h Violin
207  plot showing expression levels of selected reactivity markers among mononuclear phagocyte

208  populations.
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209  The iTME of grade 4 glioma harbors two transcriptionally distinct MG subpopulations.

210 Unsupervised hierarchical sub-clustering of the MG population revealed two transcrip-
211  tionally distinct iTME MG subsets, which we termed MG 1 and MG 2, respectively (Fig. 3d
212 and 3e). The MG 1 cluster was highly enriched for the activator protein-1 (AP-1) family of
213 transcription factors including FOS, FOSB, JUN, JUNB, MAF and MAFB (Fig. 3e and Supple-
214  mentary Table 4), which convey a surveilling phenotype to adult MG, but are also involved in
215  numerous processes including cell growth, differentiation and immune activation [34]. Specif-
216  ically, FOSB gene products have been implicated in the excitotoxic MG activation by regulating
217  complement C5a receptor expression [35]. Yet, concomitant upregulation of anti-inflammatory
218  Kiriippel-like factor 2 (KLF?2) [36] and Dual Specificity Protein Phosphatase 1 (DUSPI), an
219  inhibitor of innate inflammation by negatively regulating the mitogen-activated protein kinase
220 (MAPK) pathway [37], together with increased expression of anti-proliferative genes like
221  RHOB, BTGI and BTG2 paint a more complex picture of these cells. Particularly, BTG/ has
222 been identified as an activation-induced apoptotic sensitizer in MG after exposure to inflam-
223 matory stimuli [38], serving as an autoregulatory mechanism and possibly hinting towards an
224  exhausted state in these MG _1 cells. GSEA for differences between MG 1 and MG _2 clusters
225  using the MSigDB Hallmark collection of major biological pathways [39] revealed downregu-
226  lation of many MG effector functions in the MG 1 population including (1) inflammation
227  (“Complement”, “Inflammatory Response”, “Allograft Rejection”, “Reactive Oxygen Species
228  Pathway”), (2) immune cell activation (“IFN-o Response”, “IFN-y Response”, “IL6 JAK
229  STAT3 Signaling”, “IL2 STATS Signaling”) and (3) immunometabolism (“Fatty Acid Metab-
230  olism”, Oxidative Phosphorylation”, “Glycolysis”) (Fig. 3f). As we examined the expression
231  of previously described reactivity markers of MG including C1QA4, Ferritin (FTHI), FCGRIA,
232 HLA-DRA, CDI14 and TREM? [40-43], and established MG homeostatic genes like CX3CR]I,
233 HEXB and SPII (PU.1), we noted a marked downregulation of these genes in the MG _1 cluster,
234  while the anti-inflammatory transcription factors NR4A42 [44] and NR4A1 [45] were highly up-
235  regulated (Fig. 3g, 3h, Supplementary Fig. 4a and Supplementary Table 4). Additionally, while
236  total MG didn’t show differences in abundance between tumor sites (Figure 2e), changes could
237  be observed when stratifying for MG subclusters. We noted in 3 of 4 (75%) paired center-
238  periphery samples an increased abundance of MG 1 cells in the tumor periphery. And, the
239  presumably more reactive MG 2 cells concomitantly decreased significantly in frequency in
240  the tumor periphery (Supplementary Fig. 4b). Collectively, these data argue for the non-reac-
241  tive/exhausted phenotype of MG 1.
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242 The tumor peripheral cytotoxic cell compartment exhibits an impaired activation signature.
243 Next, we investigated the regional differences in the lymphoid compartment composed
244  of CD4" and CDS8" T cells and natural killer (NK) cells. We observed only very few significant
245  changes in the transcriptomic profiles of CD4" T cells between tumor center and periphery
246  (Supplementary Fig. 4c and Supplementary Table 3). Yet, comparing peripheral CD8* T cells
247  with CD8" T cells from tumor center revealed 110 differentially expressed genes (43 genes
248  upregulated and 67 genes downregulated) (Fig. 4a and Supplementary Table 3). Many down-
249  regulated genes in the peripheral CD8" T cells associated with canonical IFN responses (/F16,
250  IFI27, MX1, STATI, EPSTII PARPY, ISG15) [46] cell proliferation (STMNI, CENPF, HELLS,
251  NUSAPI and DNPHI) and T cell co-stimulation (CD28, TMIGD2 (CD28H), TNFRSF4
252 (0X40), CD27 and TNFRSF18 (GITR)) (Fig. 4a). Contrary to our expectations, we saw upreg-
253  ulation of CTLA4 in the center CD8" T cells which acts as a negative costimulatory molecule.
254  However, unlike other costimulatory receptors, such as CD27 and CD28, CTLA-4 is not con-
255  stitutively expressed on T lymphocytes [47]. but only induced following T cell activation, along
256  with positive costimulatory molecules such as OX40 and GITR. In addition, upregulation of
257  CTLA-4 requires entry into the cell cycle [47]. In line with that, we detected an upregulation
258  of proliferative genes in center CD8" T cells. In summary, CTLA-4 induction in center CD8* T
259  cells rather suggested T cell activation than exhaustion, especially since other inhibitory recep-
260  tors like PDCDI (PD-1), LAG3 and HAVCR?2 (TIM-3) were not differentially expressed be-
261  tween sites. Moreover, we did not observe differential expression of genes involved in CD8" T
262  cell effector functions like cytotoxicity (e.g., GZMK, GZMB, KLRGI1, PRF1) or cytokines (e.g.,
263  CCL5, XCLI, XCL2, IL10). Yet, we noted upregulation of inhibitory genes (TGFBI and FCRL6
264  [48]) in the peripheral CD8" T cells, suggesting that a pool of activated, proliferating and IFN-
265  responsive CD8" T cells is present in the tumor center, but fails to populate the infiltrative tumor
266  periphery.

267 Similar trends were observed for the peripheral NK cell population with peripherally
268  reduced IFN response (MX! and [FI44L), and proliferative genes (STMNI, HELLS, CENPF,
269 PITGI and DNPHI), downregulated stimulatory receptors (7MIGD2 (CD28H) and
270  TNFRSF18 (GITR)), and reduced NF-«B signaling (NVFKBI and RELB) (Fig. 4b and Supple-
271  mentary Table 3). Although, we observed upregulation of key genes associated with NK cell
272  effector function in the periphery (e.g., FCGR3A (CD16), FGFBP2, ITGB2, GZMH and
273 KIR2DS4), increased expression of inhibitory receptors like LILRBI and KLRG1, the latter es-
274  pecially in co-expression with chemokine receptor CX3CR 1, identified the peripheral NK cells

275  rather to be terminally differentiated with impaired cytotoxic capabilities [49]. This was in line
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276  with the observed abrogated cytokine activity profile in the peripheral NK cells with reduced
277  expression of key factors like XCL1, XCL2, LTB and CKLF. In summary, our data revealed an

278  impaired activation signature in the peripheral cytotoxic cell compartment.
279
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281  Fig. 4 The peripheral cytotoxic cell compartment exhibits an impaired activation signa-
282  ture. a, b Volcano plots showing differentially expressed genes (FDR corrected p value <0.05,
283  indicated by blue and yellow) in CD8" T cells (a) and NK cells (b) from tumor periphery versus

284  tumor center. Colored rings mark genes belonging to selected GSEA Hallmark or Gene Ontol-
285  ogy (GO) pathways as indicated.
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286  CX3CRI labels a specific CD8* T cell population in the circulation of grade 4 glioma patients.
287 Next, we investigated the relationships between circulating CD8" T cells and those from
288  the tumor milieu and, more specifically, the peripheral, infiltration zone characterized by an
289  abrogated CD8" T-cell IFN response and activation signature. Strikingly, there were large tran-
290  scriptomic differences between PBMC and periphery CD8" T cells (Fig. 5a), with 1,417 differ-
291  entially expressed genes (864 genes upregulated in the tumor periphery and 553 genes upregu-
292 lated in PBMC) (Fig. 5b, Supplementary Table 5).

293 Interestingly, one of the key genes upregulated in PBMC CD8" T cells was the chemo-
294  kine receptor CX3CRI, whose expression labelled a specific population among these cells (Fig.
295  5c). Flow cytometry of an additional matched glioma grade 4 patient cohort confirmed an in-
296  creased abundance of CX3CR1"CD8" T cells in PBMC compared to almost absent CX3CRI1*
297  CDS8" T cells in tumor periphery (Fig. 5d, Supplementary Table 1).

298 Recently, expression of CX3CR1 was demonstrated to distinguish memory CD8* T cells
299  with cytotoxic effector function [50]. Further characterization of classical central memory (Tcm)
300 and effector memory (Tem) populations by varying surface expression levels of CX3CR1 iden-
301 tified a novel CX3CR1™ subpopulation, termed peripheral memory (Tpm). Tpm cells underwent
302 frequent homeostatic divisions, re-acquired CD62L, homed to lymph nodes, and predominantly
303  surveyed peripheral tissues compared to Tem and Tem [S1]. In our dataset, the circulating
304 CX3CRI1*CDS8'T cells indeed displayed a core signature of memory CD8* T cells with effector
305 function, comprising expression of LFA-1 (IGAL- ITGB2), EOMES, SELL (CD62L), CCR7"",
306 CD27%%, TBX21"s" (Tbet), IL7R, TCF7, FAS and ITGBI, separating them from circulating
307 CX3CRI- CD28"g" CD27"¢" and IL7R"¢" naive CD8" T cells (Fig. 5¢ and Supplementary Fig.
308  5b). The observed high expression of cytolytic molecules GZMB (Granzyme B) and PRF'I (Per-
309  forin 1) in the CX3CRI" cells advocated for their cytotoxic effector phenotype (Fig. 5n). Flow
310  cytometric analysis confirmed Terrto be CX3CRI1Meh with negligible expression levels in the
311  naive CD8" T cells, whereas the identified memory CD8" T cells (Tem and Tpm) were CX3CR1™
312 (Fig. 5f, 5g). Collectively, surface expression analysis of CX3CR1 identified a subset of
313 CX3CRI1Meh Terr and CX3CR1™ memory (Tem, Tpm) CD8" T cells in the circulation of grade 4
314  glioma patients with potentially elevated tissue surveilling properties in the case of Tpm, which

315 are, however, largely absent in the tumor microenvironment.
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Fig. 5 CD8" T cells in grade 4 glioma show distinct memory phenotypes depending on site.

a CD8" T cell cluster highlighted on tSNE map (left). CD8* T cell cluster colored by site of

origin (right). b Volcano plot showing differentially expressed genes (FDR corrected p value <
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320  0.05, indicated by blue and green) in CD8" T cells from tumor-periphery versus PBMC. ¢ Ex-
321  pression of CX3CRI overlaid on tSNE CD8" T cell cluster. d Frequency of CX3CR1"CD8* T
322 cells among all CD8" T cells in flow cytometry data. e Expression of genes associated with
323  memory (upper row) and effector memory (lower row) phenotype overlaid on tSNE CD8" T
324  cell cluster. f Gating procedure applied to identify CD3" CD8" naive, T effector cells (Ter),
325  effector memory (Tem), peripheral memory (Tpm) and central memory (Tcm), eluted from
326 PBMCs. g Expression of CX3CR1 in CD8" T cell subpopulations identified in (f). h Repre-
327  sentative dot plot of tumor-periphery CD8" T cells stained for CD45RA and CD45RO. i Quan-
328 tification of tumor-periphery CD8* T cells expressing CD45RA or CD45RO. j Expression of
329  genes associated with tissue-resident memory (Trm) phenotype overlaid on tSNE CD8" T cell
330  cluster. k Average expression levels of selected Trm markers between CD8" T cells from PBMC
331  versus tumor-periphery. 1 Representative dot plots of CD69 and CD103 co-expression in CD8*
332 T cells from PBMC and tumor-periphery. m Quantification of CD69 and CD103 co-expression
333 revealed CD69 CD103 in PBMC and CD69" CD103" and CD69* CD103" in tumor-periphery
334  as the dominant phenotypes. n Expression of selected markers associated with T cell exhaus-
335  tion/dysfunction, shown as boxplots between CD8" T cell from PBMC and tumor-periphery
336  and overlaid on tSNE CD8" T cell cluster. n = 6 donors (d, i, m), n = 11 donors (g). Statistics:
337  Wilcoxon matched-pairs signed rank test (d, i); repeated measures one-way ANOV A with post-
338  hoc Sidak’s correction for multiple comparisons (g, m). For detailed statistical analysis of
339  scRNA-seq expression data, please refer to supplementary methods section. *p < 0.05, **p <

340  0.01, ***p <0.001, ****p <0.0001, no brackets indicate no significant difference.

17


https://doi.org/10.1101/2022.06.17.496574
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496574; this version posted June 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

341  CDS8" T cells in the tumor periphery share features with tissue-resident memory T cells (Tym)
342 We next examined the differing transcriptional and surface-specific features between
343  tumor infiltrating and circulating CD8" T cells. Surface staining for CD45RA and CD45RO,
344  discriminating naive/effector from memory T cells, attributed a predominant CD45RO*
345  memory phenotype to the tumor infiltrating CD8" T cells (Fig. 5h, 5i). Interrogation of the tran-
346  scriptomic profile of these cells revealed a key marker expression signature consistent with
347  tissue-resident memory T cells (Tmm): Expression of cellular adhesion molecules (integrins)
348 ITGAI (CD49a) and ITGAE (CD103), tissue retention marker CD69, chemokine receptors im-
349  plicated in tissue-homing CXCR3, CXCR6 and CCRS5 [52] and transcription factors, ZNF683
350  (Hobit) and PRDM1 (Blimp1) as well as reduced expression of 7TBX21 (Tbet) and EOMES [53],
351  strongly suggested a Tim phenotype for these cells (Fig. 5j, Sk and Supplementary Fig. 5b). Co-
352 expression analysis of paired PBMC and tumor periphery samples using flow cytometry
353  showed that CD69" CD103 and CD69" CD103" cells are the dominant CD8" T cell populations
354  inthe tumor periphery (Fig. 51 and 5m). Combined, these data strongly suggest a Tim phenotype
355  for the CD8' T cells in the tumor periphery.

356 Previous reports of Tim populating the brain in the aftermath of central or peripheral
357 infections concluded that brain T, cells surveil the brain tissue and mediate protection by rapid
358 activation and enhanced cytokine production [52]. Indeed, CD8" T cells in the tumor periphery
359 showed increased expression of genes belonging to costimulatory pathways, including /COS,
360 TNFRSF4 (0X40) and TNFRSF9 (4-1BB) (Supplementary Fig. 5c, Supplementary Table 5),
361  albeit accompanied by high levels of inhibitory receptors PDCDI (PD-1), LAG3, HAVCR2
362 (TIM-3) and CTLA4 (Fig. 5n). Moreover, expression of genes coding for cytotoxic molecules,
363  including Granzyme B and Perforin 1 were decreased in the peripheral CD8" T cells, suggesting
364  acompromised killing capacity of these cells. And lastly, CD8" T cells in the tumor periphery
365  exhibited a transcription factor profile of exhausted T cells with high expression of NR4A1,
366 ~MAF and IRF4 (Fig. 5n and Supplementary Fig. 5d), which have been implicated in T cell
367  dysfunction and exhaustion [54, 55]. Collectively, these data indicate that CD8" T cells in the
368  glioma periphery share features with Ty cells. However, inhibitory receptor expression, func-
369  tional molecules and transcriptional signature ascribe an exhausted phenotype to these cells.
370 Noteworthy, we observed high upregulation of similar genes in the comparison tumor
371  periphery vs. PBMC for CD4" T cells as for CD8" T cells (Fig. 5b and Supplementary Fig. 5¢).
372 These included transcription factor family NRA41-3, identified as key mediator of T cell dys-
373  function [55], Dual Specificity Protein Phosphatase 2/4 (DUSP2, DUSP4) described as nega-

374  tive regulators of mitogen-activated protein (MAP) kinase superfamily and associated with
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375  impaired T cell effector activity [56] and T cell senescence [57], and transcription factor CREM
376  which has been implicated in IL-2 suppression [58]. These genes could potentially identify pan
377 T cell dysfunction markers within the GBM iTME [59].

378

379  Interrogation of cell-cell interactions revealed critical role of SPPI-mediated crosstalk be-
380  tween MG and lymphocytes in the tumor periphery

381 We next investigated cell-cell interactions based on ligand-receptor expression levels
382  using the CellChat platform [60]. Considering MG being on average the main innate immune
383  population in the tumor periphery (Fig. 2¢), and lymphocytes displaying an impaired activation
384  signature, we focused our analysis on the tumor-peripheral crosstalk between MG and lympho-
385  cytes (Fig. 6a). This revealed SPP1 (Osteopontin) as a leading potential cell-cell interaction
386  mediator between MG and lymphocytes (Fig. 6a and 6b). MG SPP1-mediated signaling was as
387  well among the most significant interactions, when investigating cell-cell communication
388  across all cell types and both sites (Supplementary Fig. 6a and 6b). Further, we found that SPP/
389  is mainly expressed by MG rather than glioma cells, contrary to previous reports [61] (Fig. 6c,
390  Supplementary Fig.6c and 6d). MG SPP1 conveys different interactions, depending on the re-
391  cipient cell binding receptor expression profile. NK cells could interact with SPP1 mainly via
392  the integrin complex ITGA4-ITGB1 (CD49d-CD29) (Fig. 6¢), mediating NK cell adhesion and
393  migration [62]. This might facilitate interaction of inhibitory NK receptors KLRBI and
394  CD94/NKG2A with MG C-type lectin-related ligands and HLA-E, respectively, which could
395  explain the observed impaired activation state of peripheral NK cells.

396 CD4" and CD8" T cells exhibited strong interactions with MG SPPI as well (Fig. 6b).
397  However, cell-cell communication between MG and T lymphocytes could be mainly mediated
398  via SPP1/CD44 interaction (Fig. 6a and 6c¢), a ligand-receptor axis recently described to sup-
399  press T cell activation and proliferation [63]. Altogether, cell-cell interaction analysis pointed
400  towards an impaired activation signature in the peripheral glioma-associated immune cells and

401  revealed potentially involved signaling pathways.
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413 Discussion

414 In this study, we combined single-cell RNA sequencing and flow cytometry-based pro-
415  teome analysis to interrogate the regional leukocyte activation signature in patient-matched bi-
416  opsies from contrast-enhancing tumor center, infiltrative peripheral rim, and blood PBMCs of
417  grade 4 glioma patients. Our analyses revealed a distinct, regionally dependent transcriptional
418  profile for most of the investigated cell populations. While peripheral MG and cytotoxic cells
419  predominantly displayed an impaired activation signature, MdMs showed pro-inflammatory
420  traits in the tumor periphery, however, were less abundant there compared to the tumor center,
421  which was reported by others as well [9, 10]. Supplemented with transcriptional and surface
422  proteome analysis of paired PBMC samples, we provide an in-depth characterization of the
423 three main immunological compartments of grade 4 glioma.

424 Previous studies focused on the description of the TME of grade 4 glioma, which also
425  considered regional differences, yet they focused primarily at neoplastic cells rather than the
426  immune compartment [9]. Others investigated the differences in the iTME composition be-
427  tween primary and metastatic brain tumors [5, 6]. Interestingly, the two latter ones reported
428  differences in the iTME composition between /DH 1" and IDHI™" glioma, which we did not
429  observe in our transcriptional data. Of note, both authors included low-grade and even pre-
430 treated recurrent glioma patients into the /DH 1™ group, representing a quite heterogenous pa-
431  tient cohort. In this study, we aimed at providing a representative selection of primary, treat-
432 ment-naive grade 4 glioma patients including /[DH " and IDH1™". Surprisingly, we only found
433 negligible transcriptional iTME differences among these two groups.

434 We identified a transcriptionally distinct MG subcluster, MG _1, which displayed an
435  anti-inflammatory/non-reactive phenotype. A similar MG subpopulation expressing a compa-
436  rable gene signature has been recently described to be enriched in Alzheimer’s disease patients
437  [64]. Additionally, the peripheral cytotoxic cell compartment exhibited an impaired activation
438  state, including a downregulated IFN response signature in CD8" T cells. Induction of an IFN
439  response state has been described as a consequence of T cell receptor-mediated IFN-y produc-
440  tion, likely serving as an autocrine response and inducing the proliferative program [46]. Hence,
441  the reduced autocrine IFN-responsive state in the tumor peripheral CD8" T cells, together with
442  downregulated proliferative and co-stimulatory genes emphasized their impaired activation in
443  the peripheral infiltration zone.

444 By exploring the transcriptional trajectory of CD8" T cells from the blood circulation
445  into the immunosuppressive TME of the tumor periphery, we uncovered CX3CR1"e" and
446  CX3CRI™™effector and memory CD8" T cells, respectively, to be highly enriched in the PBMC,
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447  but absent in the iTME. Recently, adoptive transfer studies of CX3CR1"CD8" T cells in a mel-
448  anoma mouse model significantly suppressed tumor growth [65]. Others identified increased
449  frequencies of CX3CR1* CD8" T cells in non-small cell lung and melanoma patients who re-
450  sponded to anti-PD-1 therapy, where these cells exhibited migratory capabilities into the tumor
451  site followed by potent tumor rejection [65, 66]. Thus, the authors proposed T cell CX3CR1
452  expression as a predictor of response to ICI therapy. Therefore, the absence of ICI therapy-
453  responsive CD8"' T cells in the glioma TME could additionally explain the disappointing out-
454  comes of clinical trials using ICI in glioma patients.

455 The observed T exhaustion phenotype of the glioma residing CD8* T cells was re-
456  cently reported as well for tumor-infiltrating PD-1"¢" CD8" T cells in hepatocellular carcinoma
457  [54]. Whether these glioma-associated CD8" T cells really possess tumor-specificity requires
458  further study. Particularly in the light of a recent study by Smolders and colleagues who re-
459  ported a consistent brain-resident CD8" T cell population in a miscellaneous autopsy cohort of
460  patients with neurological disorders excluding brain malignancies (Alzheimer’s disease, Par-
461  kinson’s disease, dementia, depression, multiple sclerosis), as well as patients with no known
462  brain disease. These brain-resident CD8" T cells displayed a remarkably consistent Trm pheno-
463  type [67]. The authors further showed high expression of inhibitory receptors CTLA-4 and PD-
464 1 on the brain-resident CD8" Ty cells, which is in line with the core phenotypic signature of
465  Tm cells from other tissues [68, 69]. Yet, the brain CD8" Ty, cells showed a preserved inflam-
466  matory potential with substantial production of IFN-y and TNF-a upon ex vivo stimulation.
467  They concluded that extensive immune activation with release of highly neurotoxic lytic en-
468  zymes, such as perforin and granzyme B, harmfully impacts the brain parenchyma and should
469  be tightly controlled, whilst maintaining the capability to elicit a fast inflammatory response
470  when a neurotropic virus threatens the CNS [67]. Therefore, inhibitory receptors like PD-1 and
471  CTLA-4 on brain CD8" T cells may support CNS homeostasis by preventing uncontrolled T
472  cell reactivity, and the availability of the receptor ligands may determine their inhibitory effect.
473 While this may represent a well-balanced equilibrium under healthy conditions, the tumor set-
474  ting leads to its disruption with upregulation of inhibitory ligands like PD-L1 on glioma cells
475  and CD86 on GAMs, leading to the dysfunctional state seen in the glioma-residing CD8" T
476  cells.

477 Another study comprehensively showed, that peripheral infections generate antigen-
478  specific CD8" T cells in the brain, mediating protection against CNS infections [52]. These
479  data could implicate that the glioma-associated CD8" T cells are devoid of tumor-specific reac-

480  tivity, but rather represent a pre-existing T cell population generated after peripheral infections,
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481  which acquired a dysfunctional state upon glioma formation. To test this hypothesis, further
482  characterization of these cells is required, including analysis of T cell receptor clonality and
483  tumor-specificity by patient-matched T cell/glioma-sphere co-culture assays.

484 Lastly, our cell-cell interaction analysis revealed signaling pathways between peripheral
485 MG and lymphocytes potentially inducing the observed impaired activation signature. In fact,
486 interaction of NK cell receptor KLRBI (CD161) with its C-type lectin-related ligand has been
487  identified lately as a candidate inhibitory receptor on glioma-infiltrating T cells [70] and
488  SPP1/CD44 interaction has been described to suppress T cell activation and proliferation [63].
489 Limitations of the study include the limited patient number, thereby our study was nei-
490  ther designed nor powered to explore differences in neoplastic cells, given the high inter- and
491  intra-patient variability in glioma cells [9]. Importantly, our dataset establishes a starting point
492  for further interrogation and provides an in-depth analysis of the transcriptional landscape of
493  the major immune populations in grade 4 glioma within three important regional compartments.
494 Further, we confirmed the observed phenotype of CD8" T cells in the blood and tumor periphery
495 by flow cytometry in a cohort of ten additional patients, addressing possible generalization
496  concerns. Together, we provide a novel reference map of leukocyte activation in the TME and
497  blood circulation from grade 4 glioma patients, helping the research community to uncover

498  novel therapeutic strategies to combat this fatal disease.
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499 Methods

500  Ethics statement

501 Human adult GBM tissue samples were obtained at the Neurosurgical Clinic of the Uni-
502  versity Hospital of Basel, Switzerland in accordance with the Swiss Human Research Act and
503  institutional ethics commission (EKNZ 02019-02358). All patients gave written informed con-
504  sent for tumor biopsy collection and signed a declaration permitting the use of their biopsy
505  specimens in scientific research, including storage in our brain tumor biobank (Req-2019-
506  00553). All patient identifying information was removed and tissue was coded for identifica-
507  tion.

508

509  Glioma tissue dissociation

510 Resected glioma tissue samples were immediately placed on ice and transferred to the
511  laboratory for single cell dissociation within 2-3 h after resection. Human brain tissue was man-
512 ually minced using razor blades and enzymatically dissociated at 37°C for 30 minutes with 1
513  mg/ml collagenase-4 (#L.S004188, Worthington Biochemical Corporation, USA) and 250 U/ml
514 DNAsel (#10104159001, Roche, Switzerland) in a buffer containing Hank’s Balanced Salt
515  Solution (HBSS) with Ca**/Mg?*, 1% MEM non-essential amino acids (Gibco, USA), | mM
516  sodium pyruvate (Gibco), 44 mM sodium bi-carbonate (Gibco), 25 mM HEPES (Gibco), 1%
517  GlutaMAX (Gibco) and 1% antibiotic-antimycotic (Sigma-Aldrich, USA). Cells were filtered
518  and separated from dead cells, debris and myelin by a 0.9 M sucrose (#84100, Simga Aldrich)
519  density gradient centrifugation. Upon ACK-lysis for removal of erythrocytes (#A1049201,
520  Gibco) the now generated single-cell suspension (SCS) was washed, counted and frozen in
521  Bambanker (#BB01, Nippon Genetics, Germany) in liquid nitrogen until use.

522

523 PBMCs (Peripheral blood mononuclear cells) preparation

524 Patient blood samples were directly placed on ice and transferred to the laboratory for
525  PBMC isolation. Blood samples were centrifuged to separate buffy coat from plasma and eryth-
526  rocytes, followed by standard density gradient centrifugation protocol (#17144002, Ficoll-
527  Paque PLUS, Cytiva, USA) to isolate PBMCs. PBMCs were frozen in Bambanker (#BB01,
528  Nippon Genetics, Germany) in liquid nitrogen until use.

529

530  FACS sorting for single cell RNA sequencing (scRNA-seq)

531 Cryopreserved tumor digests from glioma samples (center and periphery), as well as

532 autologous PBMCs were thawed and washed with excess ice-cold 1xPBS and spun down at
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533 350xg for 5 min. Subsequently, the cells were stained with Live/Dead (APC-Cy7 (Near IR), #
534 L34976, Thermo Fischer) and a cocktail of fluorescently-conjugated antibodies CD11b (FITC,
535  clone M1/70, #101206, BioLegend) and CD45 (FITC, clone 2D1, #368508, BioLegend), and
536  large debris were removed with a 40-um strainer. All samples were acquired on the BD FACS
537  ARIA Fusion III (Becton Dickinson GmbH, Germany). For single-cell RNA-seq experiments,
538 live and single gated cells were sorted into non-immune cell (CD45°CD11b") and immune cell
539  (CD45'CDI11b") populations. Both populations were directly sorted into Eppendorf tubes with
540  1xPBS supplemented with 1% BSA for single cell RNA sequencing.

541

542  Single cell RNA sequencing (scRNA-seq) — Library preparation and sequencing

543 Single-cell RNA-seq was performed using Chromium Single Cell 3° GEM, Library &
544 Gel Bead Kit v3 (#CG000183, 10x Genomics, Pleasanton, CA, USA) following the manufac-
545  turer’s protocol. Briefly, non-immune cells and immune cells were mixed at a defined ratio of
546  1:4. Roughly 8000-10000 cells per sample, diluted at a density of 100—800 cells/uL in PBS plus
547 1% BSA determined by Cellometer Auto 2000 Cell Viability Counter (Nexelom Bioscience,
548  Lawrence, MA USA), and were loaded onto the chip. The quality and concentration of both
549  cDNA and libraries were assessed using an Agilent BioAnalyzer with High Sensitivity kit
550  (#5067-4626, Agilent, Santa Clara, CA USA) and Qubit Fluorometer with dsDNA HS assay
551 kit (#Q33230, Thermo Fischer Scientific, Waltham, MA USA) according to the manufacturer’s
552 recommendation. For sequencing, samples were mixed in equimolar fashion and sequenced on
553  an Illumina HiSeq 4000 with a targeted read depth of 50,000 reads/cell and sequencing param-
554  eters were set for Readl (28 cycles), Index1 (8 cycles), and Read2 (91 cycles).

555

556  Single cell RNA sequencing (scRNA-seq) - Computational analysis

557 The dataset was analyzed by the Bioinformatics Core Facility, Department of Biomed-
558 icine, University of Basel. Read quality was controlled with the FastQC tool (version 0.11.5).
559  Sequencing files were processed using the Salmon Alevin tool (v 1.3.0) [71] to perform quality
560  control, sample demultiplexing, cell barcode processing, pseudo-alignment of cDNA reads to
561  the human Gencode v35 reference and counting of UMIs. Parameters --keepCBFraction I and
562  --maxNumBarcodes 100000 were used.

563 Processing of the UMI counts matrix was performed using the Bioconductor packages
564  DropletUtils (version 1.8.0) [72, 73], scran (version 1.16.0) [74, 75] and scater (version 1.16.2)
565 [76], following mostly the steps illustrated in the OSCA book (http://bioconduc-
566  tor.org/books/release/OSCA/) [75, 77]. Filtering for high-quality cells was done based on
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567 library size (at least 2,000 UMI counts per cell), the number of detected genes (at least 700
568  genes detected) and the percentage of reads mapping to mitochondrial genes (larger than 0%
569 and lower than 15%), based on the distribution observed across cells. Low-abundance genes
570  with average counts per cell lower than 0.006 were filtered out. The presence of doublet cells
571  was investigated with the scDblFinder package (version 1.2.0), and suspicious cells were fil-
572  tered out (score > 0.6). After quality filtering, the resulting dataset consisted of UMI counts for
573 15,523 genes and 45,466 cells, ranging from 803 to 9,121 per sample.

574 UMI counts were normalized with size factors estimated from pools of cells created
575  with the scran package quickCluster() function [74, 78]. To distinguish between genuine bio-
576  logical variability and technical noise we modeled the variance of the log-expression across
577  genes using a Poisson-based mean-variance trend. The scran package denoisePCA() function
578  was used denoise log-expression data by removing principal components corresponding to tech-
579  nical noise. A t-stochastic neighbor embedding (t-SNE) was built with a perplexity of 50 using
580  the top most variable genes (141 genes with estimated biological variance > 0.3, excluding
581  genes with highest proportion of reads in the ambient RNA pool estimated from empty drop-
582  lets), and the denoised principal components as input (5 top PCs). Clustering of cells was per-
583  formed with hierarchical clustering on the Euclidean distances between cells (with Ward’s cri-
584  terion to minimize the total variance within each cluster [79]; package cluster version 2.1.0).
585  The number of clusters used for following analyses was identified by applying a dynamic tree
586  cut (package dynamicTreeCut, version 1.63-1) [80], resulting in 10, or 22 clusters with argu-
587  ment deepSplit set to 2.

588 The Bioconductor package SingleR (version 1.2.4) was used for cell-type annotation of
589  the cells [81] using as references (i) a public bulk RNA-seq dataset of sorted immune cell types
590  from human PBMC samples [13], available through the celldex Bioconductor package; (ii) a
591  bulk RNA-seq dataset of sorted immune cell types from the tumor microenvironment of human
592  gliomas [5] (UMI  count matrix and  annotation  downloaded  from

593  https://joycelab.shinyapps.io/braintime/); (iii) a Smartseq2 scRNA-seq dataset of IDH-wild-

594  type glioblastoma tumors [14] (downloaded from GEO accession GSE131928). A microglia
595  and a macrophage signature scores were defined by averaging the center and scaled expression
596 levels of gene lists obtained in [7]. An endothelial score was defined by averaging the center
597  andscaled expression levels of the genes CDHS, VWF, CD34 and PECAM]I. The SingleR high-
598  quality assignments (pruned scores) and the signature scores were used to manually derive a

599  consensus cell type annotation for each cluster.
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600 The findMarkers function of the scran package was used to find the best markers across
601  annotated cell types (parameters direction="up” and pval.type="any”’). The top 10 markers
602  for each cell type were extracted and pooled to from a list of 68 markers.

603 Differential abundance analysis of identified cell types between tumor sites was per-
604  formed using diffcyt-DA-voom method [82]. Differential abundance of cell types was consid-
605  ered to be significant at a false discovery rate (FDR) lower than 5 %.

606 Differential expression between tumor sites, or between PBMC cells and tumor periph-
607 ery cells, stratified by annotated cell type, was performed using a pseudo-bulk approach, sum-
608  ming the UMI counts of cells from each cell type in each sample when at least 20 cells could
609  be aggregated. The aggregated samples were then treated as bulk RNA-seq samples [83] and
610 for each pairwise comparison genes were filtered to keep genes detected in at least 5% of the
611  cells aggregated. The package edgeR (version 3.30.3) [84] was used to perform TMM normal-
612  ization [85] and to test for differential expression with the Generalized Linear Model (GLM)
613  framework, using a model accounting for patient-specific effects. Genes with a FDR lower than
614 5% were considered differentially expressed. Gene set enrichment analysis was performed with
615  the function camera [86] on gene sets from the Molecular Signature Database (MSigDB, ver-
616  sion 7.4) [39, 87]. We retained only sets containing more than 5 genes, and gene sets with a
617  FDR lower than 5% were considered as significant.

618

619  Cell chat analysis

620 The R package CellChat (1.1.3) [60] was used to analyze cell-cell interactions in our
621  dataset (with previously annotated 9 cell types). We followed the recommended workflow to
622  infer the cell state-specific communications (using identifyOverExpressedGenes, identifyOver-
623 ExpressedInteractions and projectData with the default parameters). We performed 3 separate
624  analyses, on the center and the periphery subsets and a comparison analysis as described in the
625  official workflow. We visualized the significant interactions for the microglia cluster using
626  netVisual chord gene and used plotGeneExpression to display of the expression of all genes
627 involved SPP1 signaling pathway in the cell populations. Finally, netdnalysis signalin-
628  gRole scatter was used to calculate and visualize incoming and outgoing signaling strength.
629

630  Flow cytometry analysis of paired PBMC and periphery samples

631 Cryopreserved samples were thawed and washed with excess ice-cold 1xPBS and spun
632  down at 350xg for 5 min. Cells were resuspended in FACS buffer (PBS plus 2% FBS) and
633  blocked with monoclonal antibody to CD16/32 (Human TruStain FcX, #422302, Biolegend)
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634  for 10 min at 4°C before staining with surface antibodies: CD45RA (PE, clone HI100,
635  #304108), CD45RO (APC, clone UCHLI1, #304210), CD3e (BV650, clone UCHT1, #300468),
636 CDB8a (BV421, clone RPA-T8, #301036), CCR7 (FITC, clone G043H7, #353216), CD62L
637  (AF700, clone DREG-56, #304820), CD69 (APC-Cy7, clone FN50, #310914), CD103
638  (PerCP/Cy5.5, clone Ber-ACTS, #350226) and CX3CR1 (PE/Cy7, clone 2A9-1, #341612). All
639  antibodies were purchased from BioLegend, USA. Cells were stained for 30 min at 4°C, and
640  subsequently washed with FACS buffer. To exclude dead cells Zombie Aqua Fixable Viability
641  Kit (#423102, 1:100, BioLegend) was added. Acquisition was performed on a CytoFLEX
642  (Beckman). Data was analyzed using FlowJo software, version 10.8.1 (TreeStar). Gates were
643  drawn by using Fluorescent Minus One (FMO) controls.

644

645  Statistical analysis of flow cytometry data

646 Data analysis and graph generation was performed using GraphPad Prism 9 (GraphPad
647  Prism Software Inc.). Paired comparisons between two groups were performed using Wilcoxon
648  matched-pairs signed rank test. Differences of more than two paired groups were assessed using
649  repeated measures one-way ANOVA test, followed by post-hoc Sidak’s multiple comparisons
650  correction. A p value <0.05 was considered statistically significant. *p <0.05, **p <0.01, ***p

651  <0.001, ****p <0.0001.
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652 Data availability
653 The UMI count matrix and cell metadata from the scRNA-seq dataset are available on
654  GEO under accession number GSE197543. The remaining data are available within the Article

655  and Supplementary Information.
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Figure S1. CD45* CD11b* immune cells gating strategy and quality control of scRNA-seq

data, related to Figures 1 and 2.

(A and B) Gating strategy for paired tumor-derived (A) and PBMCs (B); after debris, doublet and
dead cell removal, immune cells were assessed as CD45* and/or CD11b".

(C-E) Percentage of mitochondrial (MT) reads (C) number of detected genes (D) and cell-cycle
phase (E) overlaid on tSNE representation.

(F and G) tSNE map stratified according to site (F) and patient (G).
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Figure S2. Cell type specific gene expression, related to Figure 2.
Heatmap displaying genes whose expression is most specific to each cell type. Columns are

ordered by site and cell type, and rows show centered and scaled expression values, hierarchically

clustered.
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Figure S3. Cross-referencing scRNA-seq data with published datasets, related to Figure 2.
(A, B, G and H) Using hierarchical clustering, identified cell clusters (A) which were then annotated
into eight distinct cell types for the immune subset (B) and five cell types for the CD45"9 subset
(G and H). Grey panel in (G) zooms in on CD45"9 subset and is shown in (H).

(C-F) Immune cell types were annotated by referencing to a dataset of bulk RNA-seq samples of
sorted immune cell types from human PBMC (C) [1]; MdMs and microglia were annotated by
comparing to a dataset of bulk RNA-seq samples of sorted immune cell types from the tumor
microenvironment of human gliomas (D) [2] and by using signature scores defined from scRNA-
seq of glioma TAMs (E and F) [3]. Clusters are highlighted which were annotated using each
respective reference dataset.

(I) CD45™° cells were annotated by whole-transcriptome comparison to a scRNA-seq dataset of
IDH1wt GBM [4].

(J) Endothelial score was defined by averaging the center and scaled expression levels of the
genes CDH5, VWF, CD34 and PECAM1.


https://doi.org/10.1101/2022.06.17.496574
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496574; this version posted June 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
rrﬁle available under aCC-BY 4.0 International license,

A

MG_1 MG_2 CD4* T cells Periphery vs.
FCGR 1A NR4A 1 * Patient .
% 100 © BTB 604 6 SNHG32
) Y 0 BTB 609
3 S S AC116533
= v\ ©BTB616 1
T ‘ Ty Cell Type % 75 ABTB617 g 4
[ | [} MG_1 = [
= ) i g | IMG_2 g’ V BTB 622 =
_g | 2 | MdMs £ Q.
@ 17} Monocytes o 50 Si °
8 g = 5 22
g g 2 E=i=3 Center o
w w2 ¥ E === Periphery 0
1 S 25 " Significant (5% FDR)
g 0 A . Ldp in Periphery
w pin
.
g A A/\ g A | o —F -1.0 -0.5 0.0 0.5 1.0

log, fold-change


https://doi.org/10.1101/2022.06.17.496574
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496574; this version posted June 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Figure S4. Differential abundance of MG subclusters and differential expression between
center and peripheral CD4* T cells, related to Figures 3 and 4.

(A) Violin plot showing average expression levels of selected reactivity markers among
mononuclear phagocyte populations.

(B) Frequencies of MG_1 and MG_2 subpopulations among total microglia between center and
periphery. Symbols represent individual patients and paired samples are indicated by connecting
lines. 3 of 4 (75%) paired samples showed an increased abundance of MG_1 cells in the tumor
periphery and decreased frequency of MG_2 cells. Statistical significance was assessed by diffcyt-
DA-voom method, *FDR corrected p value < 0.05.

(C) Volcano plot showing differentially expressed genes (FDR corrected p value < 0.05, indicated

by blue and yellow) in CD4+ T cells from tumor periphery versus tumor center.
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Figure S5. CD8*T cell phenotype is site-specific, related to Figure 5.

(A) Gating strategy for paired tumor-periphery and PBMC cells; after debris, doublet and dead cell
removal, CD8+ T cells were identified as CD3+ CD8+ events.

(B-D) Single-cell expression of markers associated with naive/memory (CD28, IL7R, CD27, FAS,
CD29, TCF, FOXO1) and tissue-resident memory (ITGAE, AHR, PRDM1) (B) T cell co-stimulation
(C) and T cell exhaustion/dysfunction (D) overlaid on tSNE CD8+ T cell cluster.

(E) Volcano plot showing differentially expressed genes (FDR corrected p value < 0.05, indicated

by blue and green) in CD4+ T cells from tumor-periphery versus PBMC.
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Figure S6. Cell-cell communication analysis using CellChat, related to Figure 6.

(A and B) Chord diagram showing significant interactions from microglia to all cell clusters in center
(A) and periphery (B). The inner bar colors represent the targets that receive signal from the
corresponding outer bar. The inner bar size is proportional to the signal strength received by the
targets. Chords indicate ligand-receptor pairs mediating interaction between two cell clusters, size
of chords is proportional to signal strength of the given ligand-receptor pair.

(C and D) Violin plots showing the expression distribution of signaling genes involved in the

inferred SPP1 signaling network in center (C) and periphery (D).
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Figure S7. Graphical abstract. Proposed schematic of grade 4 glioma-associated im-

mune cells in the three regional compartments. Created with BioRender.com.
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