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 2 

Abstract 20 

Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment 21 

(TME) which influences glioma growth. Major efforts have been undertaken to describe the 22 

TME on a single-cell level. However, human data on regional differences within the TME re-23 

main scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on 24 

paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary 25 

GBM patients. Through analysis of > 45’000 cells, we revealed a regionally distinct transcrip-26 

tion profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired 27 

activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-in-28 

filtrating CD8+ T cells with circulating cells identified CX3CR1high and CX3CR1int CD8+ T cells 29 

with effector and memory phenotype, respectively, enriched in blood but absent in the TME. 30 

Tumor CD8+ T cells displayed a tissue-resident memory phenotype with dysfunctional features. 31 

Our analysis provides a large-scale dissection of GBM-associated leukocytes, serving as a ref-32 

erence map of human GBM-TME.  33 
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 3 

Introduction 34 

Glioblastoma (GBM) is a fatal disease without effective long-term treatment options. 35 

The current standard of care consists of tumor resection followed by adjuvant chemoradiother-36 

apy resulting in a median overall survival of only 14 months [1]. One of the hallmarks in GBM 37 

progression is the high rate of neovascularization. The GBM-induced aberrant vessels not only 38 

nourish glioma cells, but also provide a specialized niche for tumor-associated stromal and im-39 

mune cells such as monocyte-derived macrophages (MdMs), yolk sac-derived microglia (MG) 40 

(together termed glioma-associated macrophages/microglia, GAMs), and peripheral adaptive 41 

immune cells. This immune tumor microenvironment (iTME) paradoxically acts in an immu-42 

nosuppressive manner and promotes tumor progression [2]. For example, clinical trials of sys-43 

temic T cell checkpoint blockade showed only disappointing results [3, 4], which was attributed 44 

in part to the immunosuppressive components of the GBM iTME. The origin of GAMs, infil-45 

tration of peripherally derived macrophages across the blood-brain-barrier (BBB) or recruit-46 

ment of tissue-resident MG to the tumor site, as well as their contribution to gliomagenesis are 47 

studied intensively [2, 5-7]. Hence, major efforts have been undertaken to describe the GBM 48 

iTME on a single cell level [5, 6, 8]. However, human data on the composition of the iTME in 49 

different tumor regions (contrast enhancing tumor center versus peripheral infiltration zone) 50 

remain scarce [9, 10]. 51 

To study the region-dependent cellular diversity within individual GBMs, we performed 52 

single-cell RNA sequencing (scRNA-seq) on patient-matched biopsies from the tumor center 53 

and the peripheral infiltration zone of five primary GBM patients. Additionally, peripheral 54 

blood mononuclear cells (PBMC) of the same patients were included to explore the transcrip-55 

tional changes occurring during tumor infiltration of circulating immune cells. 56 

Our analysis revealed a regionally distinct transcription profile of MG and MdMs and 57 

an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Compar-58 

ing tumor-infiltrating CD8+ T cells with PBMC-derived, identified CX3CR1high and CX3CR1int 59 

CD8+ T cells with effector and memory phenotype, respectively, enriched in blood but absent 60 

in the iTME. Tumor CD8+ T cells displayed features of tissue-resident memory T cells and 61 

were characterized by an exhaustion phenotype. This work provides a large-scale dissection of 62 

glioma-associated cell types complemented by patient-matched PBMCs, revealing an abun-63 

dance of information about the composition and molecular diversity of the iTME in GBM.  64 
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 4 

Results 65 

 66 
Fig. 1 Single-cell RNA-seq of cells from tumor center, periphery and blood. a Experimental 67 

workflow for single-cell analysis of cells isolated from tumor center, periphery and peripheral 68 

blood mononuclear cells (PBMC), including fluorescent-activated cell sorting and 3’-scRNA-69 

seq. b Axial T1 with contrast (left) and T2 (right) MRI brain in a patient with a left temporal 70 

GBM. Fresh tumor biopsies were taken according to neuronavigation (green cross). The tumor 71 

center was defined as contrast enhancing, whereas the tumor periphery was defined as T2 hy-72 

perintense. c Nuclear DAPI staining of resected tissue specimens. 40x magnification (scale bar 73 

= 20 µm). n = 3 patients, 4 field of view (FOV) per patient. Statistics: ***p < 0.001, two-tailed 74 

Mann Whitney U test. 75 

 76 

scRNA-seq analysis of paired tumor center, periphery and PBMC samples. 77 

Fresh, neurosurgically resected tissue from five GBM patients were harvested (Supple-78 

mentary Table 1). According to the 2021 WHO Classification of Tumors of the Central Nervous 79 

System [11], in which the term glioblastoma designates only IDH-wildtype grade 4 tumors, we 80 

will hence use the term grade 4 glioma, as we included as well IDH-mutant grade 4 tumors 81 

(Supplementary Table 1). The tumor center was defined as contrast enhancing, whereas the 82 

tumor periphery was defined as T2 hyperintense by magnetic resonance imaging (MRI)-guided, 83 

navigated surgical resection (Fig. 1b). Increased cellular density of the center vs. periphery 84 

samples was confirmed by nuclear DAPI staining on matched histological micrographs of the 85 

resected tissue specimens used for scRNA-seq (Fig. 1c). As outlined in Fig. 1a, we separately 86 

processed patient tumor and blood samples and enriched them for immune cells by fluores-87 

cence-activated cell sorting (FACS) (Supplementary Fig. 1a and 1b). The three samples per 88 
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patient (center, periphery and PBMC) were loaded on different wells of a 10x Genomics Chro-89 

mium system for a targeted recovery of 10,000 cells. Due to technical issues cells from the 90 

center sample of patient BTB 609 could not be collected. 91 

In total we analyzed 45,466 cells that passed initial quality control and filtering, com-92 

prising 8,254 cells from tumor center, 5,954 cells from tumor periphery and 31,258 PBMCs, 93 

with 6,354 to 10,957 cells per patient (Supplementary Table 2; Supplementary Fig. 1c-1f). All 94 

cells were projected onto a two dimensions t-distributed stochastic neighbor embedding (tSNE) 95 

[12]. As we observed a good overlap of cells across patients, we chose not to perform any 96 

correction for patient-specific effects (Supplementary Fig. 1g). Using hierarchical clustering, 97 

the cells were partitioned into clusters (Supplementary Fig. 3a) which were then annotated into 98 

eight distinct cell types for the immune subset and five cell types for the CD45 negative subset 99 

(Fig. 2a; Supplementary Fig. 3b, g-h; Supplementary Table 2). Notably: the annotation of most 100 

of the immune cell types was performed by whole-transcriptome comparison of our cells to a 101 

reference dataset of bulk RNA-seq samples of sorted immune cell types from human PBMC 102 

(Supplementary Fig. 3c) [13]; the annotation of MdMs and microglia was performed by whole-103 

transcriptome comparison to a dataset of bulk RNA-seq samples of sorted immune cell types 104 

from the tumor microenvironment of human gliomas (Supplementary Fig. 3d) [5] and using 105 

signature scores defined from scRNA-seq of GAMs (Supplementary Fig. 3e-f) [7]; finally, 106 

CD45 negative cells were annotated by whole-transcriptome comparison to a scRNA-seq da-107 

taset of IDH1wt GBM (Supplementary Fig. 3i) [14]. The expression of known marker genes 108 

across cell types is shown in Fig. 2b, and genes whose expression is most specific to each cell 109 

type are shown in Supplementary Fig. 2. 110 

In line with previous work [5, 6, 10], we noted that GAMs accounted for the most fre-111 

quent cell type in the center iTME (on average 44.5% among leukocytes in center vs. 24.7% 112 

among leukocytes in periphery), while the T cell compartment accounted for the most abundant 113 

immune population in the tumor periphery (Fig. 2d). When comparing phagocytic cell types, 114 

we found that MdMs decreased substantially in the glioma periphery, while MG did not exhibit 115 

a differential distribution between tumor center and periphery (Fig. 2e).  116 
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 117 
Fig. 2 Single-cell RNA-seq analysis identifies main immune cell populations. a Dimension-118 

ally reduced tSNE projection of the scRNAseq data showing the identified main cell clusters. 119 

b Heatmap displaying averaged and normalized expression values of characteristic cell-type 120 
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specific genes used to annotate clusters in (a). Columns are ordered by site and cell type, and 121 

rows show centered and scaled expression values, hierarchically clustered. c Principal compo-122 

nent (PC) biplot of pseudo-bulk scRNAseq samples aggregated by patient and cell type. Sym-123 

bols represent individual patients and cell lineage is displayed by different colors. d, e Relative 124 

frequencies of immune populations among leukocytes between tumor center and periphery. 125 

Symbols represent individual patients and paired samples are indicated by connecting lines. 126 

Statistics: *FDR<5%, diffcyt-DA-voom method.  127 
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MG and MdMs display regionally distinct transcription profiles. 128 

To perform a differential expression analysis between tumor sites, we stratified the anal-129 

ysis by annotated cell type and aggregated cells from each patient (see Supplementary Meth-130 

ods). A principal component analysis (PCA) on the aggregated transcriptome data confirmed 131 

that the major source of variation was the cell type lineage (Fig. 2c), with notable differences 132 

between lymphoid, MG/myeloid cells, and CD45- cells (PCs 1 and 2). Interestingly there was 133 

no clear association between patient IDH1 status and these or deeper components, suggesting 134 

that the iTME seemed independent of IDH1 status in grade 4 glioma. Moreover, immune cell 135 

type differential abundance analysis revealed an equal distribution among IDH variants, further 136 

supporting this observation (Fig. 2d, e). 137 

Differential expression analysis between MG from tumor center and periphery revealed 138 

a highly significant downregulation of inflammatory genes in the peripheral MG. This included 139 

scavenger receptors (CD36 and MARCO), chemokines (CXCL3 and CCL20) and immune re-140 

ceptors (IL7R [15] and CD109, a negative regulator of TGF-b signaling [16]) as well as genes 141 

involved in cell growth (CSRP1) and cell metabolism (SMPDL3A [17] and SDS) (Fig. 3a and 142 

Supplementary Table 3). The latter transcribes for the serine dehydratase, an enzyme catalyzing 143 

the dehydration of L-serine/L-threonine to yield pyruvate/ketobutyrate [18]. The downregula-144 

tion of SDS in the peripheral MG with reduced metabolization of L-serine to pyruvate could 145 

potentially lead to a reduced oxidative phosphorylation in peripheral MG, a metabolic feature 146 

described for dysfunctional MG in Alzheimer’s disease models [19]. Concomitantly, increased 147 

L-serine levels have been associated with the induction of alternative, M2-like microglial po-148 

larization and inhibited secretion of inflammatory factors (TNF-a and IL-1b) [20]. 149 

Interestingly, we found upregulation of Inhibitor of DNA-Binding 1, also known as In-150 

hibitor of Differentiation 1 (ID1) in the peripheral MG, which is well described in GBM pro-151 

gression, treatment resistance and glioma stem cell biology [21]. Recently, new evidence has 152 

emerged, linking ID1 to suppression of the anti-tumor immune response in the myeloid com-153 

partment and promoting tumor progression [22]. 154 

To further explore the underlying biological processes differing between MG in the two 155 

compartments, we conducted a gene set enrichment analysis (GSEA) on the results of the dif-156 

ferential expression analysis using Gene Ontology (GO) database (Biological Processes). This 157 

revealed overall a significant downregulation of GO categories involved in antigen processing 158 

and presentation via MHC-I and MHC-II in the peripheral MG relative to the center MG, as 159 

well as downregulation of amino acid metabolism and TNF-a signaling pathway (Fig. 3b), 160 
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 9 

which further supported our observation of a strong immunosuppressive phenotype in periph-161 

eral MG. 162 

When comparing the transcriptional profile of MdMs from the peripheral front to the 163 

tumor center, we observed upregulation of proinflammatory genes MEFV encoding pyrin [23] 164 

and APOBEC3A, a cytidine deaminase involved in RNA editing during macrophage M1 polar-165 

ization and response to interferons (IFN) [24]. Moreover, upregulation of KCNJ2, a voltage-166 

dependent potassium channel has been shown to regulate macrophage proliferation [25] 167 

whereas GPR132 serves as lactate sensor in the acidic TME and could potentially facilitate 168 

MdM migration to the tumor site [26]. MIR22HG, a long non-coding RNA (lncRNA) has been 169 

associated with tumor suppressive properties in hepatocellular carcinoma, where it has been 170 

linked to chemokine signaling pathways and phagosome activation [27] (Fig. 3c). 171 

Along with this, we observed downregulation of anti-inflammatory genes in the periph-172 

eral MdMs. This included RNASE1, a signature gene of macrophages enriched in immune 173 

checkpoint inhibitor (ICI) non-responding melanoma patients [28], PLTP, a negative regulator 174 

of NF-kB activation [29], NRP1, a key gene required for macrophage attraction towards hy-175 

poxic tumor niches and thereby retaining their pro-tumorigenic features [30], and IL4I1, a novel 176 

metabolic immune checkpoint in the tryptophan/aryl hydrocarbon receptor (AHR) pathway 177 

[31] (Fig. 3c). Hence, MdMs might display a proinflammatory phenotype in the glioma periph-178 

ery, however, are less abundant there (Fig. 2e). 179 

We observed a marked downregulation of SDS in the peripheral MdMs, similar to the 180 

peripheral MG population, leading to a presumptive accumulation of L-serine in the peripheral 181 

MdMs. In contrast to MG, serine metabolism has been shown to indeed support proinflamma-182 

tory IL-1b cytokine production in macrophages [32]. Together with the reduced tryptophan 183 

metabolism through IL4I1 and downregulated SLC39A8, a transmembrane zinc importer whose 184 

reduction has been linked to increased IL-6/IL-1b secretion and increased NF-kB signaling in 185 

innate immunity [33], these data shed new light on regional differences in the innate im-186 

munometabolism in the iTME of grade 4 glioma.  187 
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 188 
Fig. 3 MG and MdMs display distinct regional transcription profiles. a Microglia cluster 189 

highlighted on tSNE map and scatterplots showing differentially expressed genes (FDR<5%, 190 

indicated by blue and yellow) in Microglia (MG) cells from tumor periphery versus center. 191 

Volcano plot showing p value versus fold-change (left) and MA plot showing fold-change ver-192 

sus mean expression (right). b Heatmap representation of Gene set enrichment analysis (GSEA) 193 

results between peripheral and center microglia using Gene Ontology (GO) collection (Biolog-194 

ical Processes). The fraction of overlap between gene sets is calculated as Jaccard coefficient 195 
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 11 

of overlap between the gene sets. c Monocyte-derived macrophages (MdMs) cluster highlighted 196 

on tSNE map and volcano plot showing statistical significance (FDR<5%, indicated by blue 197 

and yellow) versus fold-change of differentially expressed genes in MdMs from tumor periph-198 

ery versus tumor center. d Unsupervised hierarchical sub-clustering of the MG population re-199 

vealed two transcriptionally distinct subsets of MG, termed MG_1 and MG_2, displayed on the 200 

tSNE map. e Heatmap displaying the cluster-specific genes identifying MG_1 and MG_2 sub-201 

clusters. Columns are ordered by site and cell type, and rows show centered and scaled expres-202 

sion values, hierarchically clustered. f Heatmap representation of GSEA between MG_1 and 203 

MG_2 subclusters using Hallmark collection of major biological categories. g Heatmap dis-204 

playing previously described reactivity markers of MG. Columns are ordered by site and cell 205 

type, and rows show centered and scaled expression values, hierarchically clustered. h Violin 206 

plot showing expression levels of selected reactivity markers among mononuclear phagocyte 207 

populations.  208 
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The iTME of grade 4 glioma harbors two transcriptionally distinct MG subpopulations. 209 

Unsupervised hierarchical sub-clustering of the MG population revealed two transcrip-210 

tionally distinct iTME MG subsets, which we termed MG_1 and MG_2, respectively (Fig. 3d 211 

and 3e). The MG_1 cluster was highly enriched for the activator protein-1 (AP-1) family of 212 

transcription factors including FOS, FOSB, JUN, JUNB, MAF and MAFB (Fig. 3e and Supple-213 

mentary Table 4), which convey a surveilling phenotype to adult MG, but are also involved in 214 

numerous processes including cell growth, differentiation and immune activation [34]. Specif-215 

ically, FOSB gene products have been implicated in the excitotoxic MG activation by regulating 216 

complement C5a receptor expression [35]. Yet, concomitant upregulation of anti-inflammatory 217 

Krüppel-like factor 2 (KLF2) [36] and Dual Specificity Protein Phosphatase 1 (DUSP1), an 218 

inhibitor of innate inflammation by negatively regulating the mitogen-activated protein kinase 219 

(MAPK) pathway [37], together with increased expression of anti-proliferative genes like 220 

RHOB, BTG1 and BTG2 paint a more complex picture of these cells. Particularly, BTG1 has 221 

been identified as an activation-induced apoptotic sensitizer in MG after exposure to inflam-222 

matory stimuli [38], serving as an autoregulatory mechanism and possibly hinting towards an 223 

exhausted state in these MG_1 cells. GSEA for differences between MG_1 and MG_2 clusters 224 

using the MSigDB Hallmark collection of major biological pathways [39] revealed downregu-225 

lation of many MG effector functions in the MG_1 population including (1) inflammation 226 

(“Complement”, “Inflammatory Response”, “Allograft Rejection”, “Reactive Oxygen Species 227 

Pathway”), (2) immune cell activation (“IFN-a Response”, “IFN-g Response”, “IL6 JAK 228 

STAT3 Signaling”, “IL2 STAT5 Signaling”) and (3) immunometabolism (“Fatty Acid Metab-229 

olism”, Oxidative Phosphorylation”, “Glycolysis”) (Fig. 3f). As we examined the expression 230 

of previously described reactivity markers of MG including C1QA, Ferritin (FTH1), FCGR1A, 231 

HLA-DRA, CD14 and TREM2 [40-43], and established MG homeostatic genes like CX3CR1, 232 

HEXB and SPI1 (PU.1), we noted a marked downregulation of these genes in the MG_1 cluster, 233 

while the anti-inflammatory transcription factors NR4A2 [44] and NR4A1 [45] were highly up-234 

regulated (Fig. 3g, 3h, Supplementary Fig. 4a and Supplementary Table 4). Additionally, while 235 

total MG didn’t show differences in abundance between tumor sites (Figure 2e), changes could 236 

be observed when stratifying for MG subclusters. We noted in 3 of 4 (75%) paired center-237 

periphery samples an increased abundance of MG_1 cells in the tumor periphery. And, the 238 

presumably more reactive MG_2 cells concomitantly decreased significantly in frequency in 239 

the tumor periphery (Supplementary Fig. 4b). Collectively, these data argue for the non-reac-240 

tive/exhausted phenotype of MG_1.  241 
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The tumor peripheral cytotoxic cell compartment exhibits an impaired activation signature. 242 

Next, we investigated the regional differences in the lymphoid compartment composed 243 

of CD4+ and CD8+ T cells and natural killer (NK) cells. We observed only very few significant 244 

changes in the transcriptomic profiles of CD4+ T cells between tumor center and periphery 245 

(Supplementary Fig. 4c and Supplementary Table 3). Yet, comparing peripheral CD8+ T cells 246 

with CD8+ T cells from tumor center revealed 110 differentially expressed genes (43 genes 247 

upregulated and 67 genes downregulated) (Fig. 4a and Supplementary Table 3). Many down-248 

regulated genes in the peripheral CD8+ T cells associated with canonical IFN responses (IFI6, 249 

IFI27, MX1, STAT1, EPSTI1 PARP9, ISG15) [46] cell proliferation (STMN1, CENPF, HELLS, 250 

NUSAP1 and DNPH1) and T cell co-stimulation (CD28, TMIGD2 (CD28H), TNFRSF4 251 

(OX40), CD27 and TNFRSF18 (GITR)) (Fig. 4a). Contrary to our expectations, we saw upreg-252 

ulation of CTLA4 in the center CD8+ T cells which acts as a negative costimulatory molecule. 253 

However, unlike other costimulatory receptors, such as CD27 and CD28, CTLA-4 is not con-254 

stitutively expressed on T lymphocytes [47]. but only induced following T cell activation, along 255 

with positive costimulatory molecules such as OX40 and GITR. In addition, upregulation of 256 

CTLA-4 requires entry into the cell cycle [47]. In line with that, we detected an upregulation 257 

of proliferative genes in center CD8+ T cells. In summary, CTLA-4 induction in center CD8+ T 258 

cells rather suggested T cell activation than exhaustion, especially since other inhibitory recep-259 

tors like PDCD1 (PD-1), LAG3 and HAVCR2 (TIM-3) were not differentially expressed be-260 

tween sites. Moreover, we did not observe differential expression of genes involved in CD8+ T 261 

cell effector functions like cytotoxicity (e.g., GZMK, GZMB, KLRG1, PRF1) or cytokines (e.g., 262 

CCL5, XCL1, XCL2, IL10). Yet, we noted upregulation of inhibitory genes (TGFB1 and FCRL6 263 

[48]) in the peripheral CD8+ T cells, suggesting that a pool of activated, proliferating and IFN-264 

responsive CD8+ T cells is present in the tumor center, but fails to populate the infiltrative tumor 265 

periphery. 266 

Similar trends were observed for the peripheral NK cell population with peripherally 267 

reduced IFN response (MX1 and IFI44L), and proliferative genes (STMN1, HELLS, CENPF, 268 

PTTG1 and DNPH1), downregulated stimulatory receptors (TMIGD2 (CD28H) and 269 

TNFRSF18 (GITR)), and reduced NF-kB signaling (NFKB1 and RELB) (Fig. 4b and Supple-270 

mentary Table 3). Although, we observed upregulation of key genes associated with NK cell 271 

effector function in the periphery (e.g., FCGR3A (CD16), FGFBP2, ITGB2, GZMH and 272 

KIR2DS4), increased expression of inhibitory receptors like LILRB1 and KLRG1, the latter es-273 

pecially in co-expression with chemokine receptor CX3CR1, identified the peripheral NK cells 274 

rather to be terminally differentiated with impaired cytotoxic capabilities [49]. This was in line 275 
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with the observed abrogated cytokine activity profile in the peripheral NK cells with reduced 276 

expression of key factors like XCL1, XCL2, LTB and CKLF. In summary, our data revealed an 277 

impaired activation signature in the peripheral cytotoxic cell compartment. 278 

 279 

 280 
Fig. 4 The peripheral cytotoxic cell compartment exhibits an impaired activation signa-281 

ture. a, b Volcano plots showing differentially expressed genes (FDR corrected p value < 0.05, 282 

indicated by blue and yellow) in CD8+ T cells (a) and NK cells (b) from tumor periphery versus 283 

tumor center. Colored rings mark genes belonging to selected GSEA Hallmark or Gene Ontol-284 

ogy (GO) pathways as indicated.  285 
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CX3CR1 labels a specific CD8+ T cell population in the circulation of grade 4 glioma patients. 286 

Next, we investigated the relationships between circulating CD8+ T cells and those from 287 

the tumor milieu and, more specifically, the peripheral, infiltration zone characterized by an 288 

abrogated CD8+ T-cell IFN response and activation signature. Strikingly, there were large tran-289 

scriptomic differences between PBMC and periphery CD8+ T cells (Fig. 5a), with 1,417 differ-290 

entially expressed genes (864 genes upregulated in the tumor periphery and 553 genes upregu-291 

lated in PBMC) (Fig. 5b, Supplementary Table 5). 292 

Interestingly, one of the key genes upregulated in PBMC CD8+ T cells was the chemo-293 

kine receptor CX3CR1, whose expression labelled a specific population among these cells (Fig. 294 

5c). Flow cytometry of an additional matched glioma grade 4 patient cohort confirmed an in-295 

creased abundance of CX3CR1+ CD8+ T cells in PBMC compared to almost absent CX3CR1+ 296 

CD8+ T cells in tumor periphery (Fig. 5d, Supplementary Table 1). 297 

Recently, expression of CX3CR1 was demonstrated to distinguish memory CD8+ T cells 298 

with cytotoxic effector function [50]. Further characterization of classical central memory (Tcm) 299 

and effector memory (Tem) populations by varying surface expression levels of CX3CR1 iden-300 

tified a novel CX3CR1int subpopulation, termed peripheral memory (Tpm). Tpm cells underwent 301 

frequent homeostatic divisions, re-acquired CD62L, homed to lymph nodes, and predominantly 302 

surveyed peripheral tissues compared to Tcm and Tem [51]. In our dataset, the circulating 303 

CX3CR1+ CD8+ T cells indeed displayed a core signature of memory CD8+ T cells with effector 304 

function, comprising expression of LFA-1 (IGAL- ITGB2), EOMES, SELL (CD62L), CCR7low, 305 

CD27low, TBX21high (Tbet), IL7R, TCF7, FAS and ITGB1, separating them from circulating 306 

CX3CR1- CD28high, CD27high and IL7Rhigh naive CD8+ T cells (Fig. 5e and Supplementary Fig. 307 

5b). The observed high expression of cytolytic molecules GZMB (Granzyme B) and PRF1 (Per-308 

forin 1) in the CX3CR1+ cells advocated for their cytotoxic effector phenotype (Fig. 5n). Flow 309 

cytometric analysis confirmed Teff to be CX3CR1high, with negligible expression levels in the 310 

naive CD8+ T cells, whereas the identified memory CD8+ T cells (Tem and Tpm) were CX3CR1int 311 

(Fig. 5f, 5g). Collectively, surface expression analysis of CX3CR1 identified a subset of 312 

CX3CR1high Teff and CX3CR1int memory (Tem, Tpm) CD8+ T cells in the circulation of grade 4 313 

glioma patients with potentially elevated tissue surveilling properties in the case of Tpm, which 314 

are, however, largely absent in the tumor microenvironment.  315 
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 316 
Fig. 5 CD8+ T cells in grade 4 glioma show distinct memory phenotypes depending on site. 317 

a CD8+ T cell cluster highlighted on tSNE map (left). CD8+ T cell cluster colored by site of 318 

origin (right). b Volcano plot showing differentially expressed genes (FDR corrected p value < 319 
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0.05, indicated by blue and green) in CD8+ T cells from tumor-periphery versus PBMC. c Ex-320 

pression of CX3CR1 overlaid on tSNE CD8+ T cell cluster. d Frequency of CX3CR1+ CD8+ T 321 

cells among all CD8+ T cells in flow cytometry data. e Expression of genes associated with 322 

memory (upper row) and effector memory (lower row) phenotype overlaid on tSNE CD8+ T 323 

cell cluster. f Gating procedure applied to identify CD3+ CD8+ naive, T effector cells (Teff), 324 

effector memory (Tem), peripheral memory (Tpm) and central memory (Tcm), eluted from 325 

PBMCs. g Expression of CX3CR1 in CD8+ T cell subpopulations identified in (f). h Repre-326 

sentative dot plot of tumor-periphery CD8+ T cells stained for CD45RA and CD45RO. i Quan-327 

tification of tumor-periphery CD8+ T cells expressing CD45RA or CD45RO. j Expression of 328 

genes associated with tissue-resident memory (Trm) phenotype overlaid on tSNE CD8+ T cell 329 

cluster. k Average expression levels of selected Trm markers between CD8+ T cells from PBMC 330 

versus tumor-periphery. l Representative dot plots of CD69 and CD103 co-expression in CD8+ 331 

T cells from PBMC and tumor-periphery. m Quantification of CD69 and CD103 co-expression 332 

revealed CD69- CD103- in PBMC and CD69+ CD103- and CD69+ CD103+ in tumor-periphery 333 

as the dominant phenotypes. n Expression of selected markers associated with T cell exhaus-334 

tion/dysfunction, shown as boxplots between CD8+ T cell from PBMC and tumor-periphery 335 

and overlaid on tSNE CD8+ T cell cluster. n = 6 donors (d, i, m), n = 11 donors (g). Statistics: 336 

Wilcoxon matched-pairs signed rank test (d, i); repeated measures one-way ANOVA with post-337 

hoc Šidák’s correction for multiple comparisons (g, m). For detailed statistical analysis of 338 

scRNA-seq expression data, please refer to supplementary methods section. *p ≤ 0.05, **p ≤ 339 

0.01, ***p ≤ 0.001, ****p ≤ 0.0001, no brackets indicate no significant difference.  340 
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CD8+ T cells in the tumor periphery share features with tissue-resident memory T cells (Trm) 341 

We next examined the differing transcriptional and surface-specific features between 342 

tumor infiltrating and circulating CD8+ T cells. Surface staining for CD45RA and CD45RO, 343 

discriminating naive/effector from memory T cells, attributed a predominant CD45RO+ 344 

memory phenotype to the tumor infiltrating CD8+ T cells (Fig. 5h, 5i). Interrogation of the tran-345 

scriptomic profile of these cells revealed a key marker expression signature consistent with 346 

tissue-resident memory T cells (Trm): Expression of cellular adhesion molecules (integrins) 347 

ITGA1 (CD49a) and ITGAE (CD103), tissue retention marker CD69, chemokine receptors im-348 

plicated in tissue-homing CXCR3, CXCR6 and CCR5 [52] and transcription factors, ZNF683 349 

(Hobit) and PRDM1 (Blimp1) as well as reduced expression of TBX21 (Tbet) and EOMES [53], 350 

strongly suggested a Trm phenotype for these cells (Fig. 5j, 5k and Supplementary Fig. 5b). Co-351 

expression analysis of paired PBMC and tumor periphery samples using flow cytometry 352 

showed that CD69+ CD103- and CD69+ CD103+ cells are the dominant CD8+ T cell populations 353 

in the tumor periphery (Fig. 5l and 5m). Combined, these data strongly suggest a Trm phenotype 354 

for the CD8+ T cells in the tumor periphery. 355 

Previous reports of Trm populating the brain in the aftermath of central or peripheral 356 

infections concluded that brain Trm cells surveil the brain tissue and mediate protection by rapid 357 

activation and enhanced cytokine production [52]. Indeed, CD8+ T cells in the tumor periphery 358 

showed increased expression of genes belonging to costimulatory pathways, including ICOS, 359 

TNFRSF4 (OX40) and TNFRSF9 (4-1BB) (Supplementary Fig. 5c, Supplementary Table 5), 360 

albeit accompanied by high levels of inhibitory receptors PDCD1 (PD-1), LAG3, HAVCR2 361 

(TIM-3) and CTLA4 (Fig. 5n). Moreover, expression of genes coding for cytotoxic molecules, 362 

including Granzyme B and Perforin 1 were decreased in the peripheral CD8+ T cells, suggesting 363 

a compromised killing capacity of these cells. And lastly, CD8+ T cells in the tumor periphery 364 

exhibited a transcription factor profile of exhausted T cells with high expression of NR4A1, 365 

MAF and IRF4 (Fig. 5n and Supplementary Fig. 5d), which have been implicated in T cell 366 

dysfunction and exhaustion [54, 55]. Collectively, these data indicate that CD8+ T cells in the 367 

glioma periphery share features with Trm cells. However, inhibitory receptor expression, func-368 

tional molecules and transcriptional signature ascribe an exhausted phenotype to these cells. 369 

Noteworthy, we observed high upregulation of similar genes in the comparison tumor 370 

periphery vs. PBMC for CD4+ T cells as for CD8+ T cells (Fig. 5b and Supplementary Fig. 5e). 371 

These included transcription factor family NRA41-3, identified as key mediator of T cell dys-372 

function [55], Dual Specificity Protein Phosphatase 2/4 (DUSP2, DUSP4) described as nega-373 

tive regulators of mitogen-activated protein (MAP) kinase superfamily and associated with 374 
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impaired T cell effector activity [56] and T cell senescence [57], and transcription factor CREM 375 

which has been implicated in IL-2 suppression [58]. These genes could potentially identify pan 376 

T cell dysfunction markers within the GBM iTME [59]. 377 

 378 

Interrogation of cell-cell interactions revealed critical role of SPP1-mediated crosstalk be-379 

tween MG and lymphocytes in the tumor periphery 380 

We next investigated cell-cell interactions based on ligand-receptor expression levels 381 

using the CellChat platform [60]. Considering MG being on average the main innate immune 382 

population in the tumor periphery (Fig. 2e), and lymphocytes displaying an impaired activation 383 

signature, we focused our analysis on the tumor-peripheral crosstalk between MG and lympho-384 

cytes (Fig. 6a). This revealed SPP1 (Osteopontin) as a leading potential cell-cell interaction 385 

mediator between MG and lymphocytes (Fig. 6a and 6b). MG SPP1-mediated signaling was as 386 

well among the most significant interactions, when investigating cell-cell communication 387 

across all cell types and both sites (Supplementary Fig. 6a and 6b). Further, we found that SPP1 388 

is mainly expressed by MG rather than glioma cells, contrary to previous reports [61] (Fig. 6c, 389 

Supplementary Fig.6c and 6d). MG SPP1 conveys different interactions, depending on the re-390 

cipient cell binding receptor expression profile. NK cells could interact with SPP1 mainly via 391 

the integrin complex ITGA4-ITGB1 (CD49d-CD29) (Fig. 6c), mediating NK cell adhesion and 392 

migration [62]. This might facilitate interaction of inhibitory NK receptors KLRB1 and 393 

CD94/NKG2A with MG C-type lectin-related ligands and HLA-E, respectively, which could 394 

explain the observed impaired activation state of peripheral NK cells. 395 

CD4+ and CD8+ T cells exhibited strong interactions with MG SPP1 as well (Fig. 6b). 396 

However, cell-cell communication between MG and T lymphocytes could be mainly mediated 397 

via SPP1/CD44 interaction (Fig. 6a and 6c), a ligand-receptor axis recently described to sup-398 

press T cell activation and proliferation [63]. Altogether, cell-cell interaction analysis pointed 399 

towards an impaired activation signature in the peripheral glioma-associated immune cells and 400 

revealed potentially involved signaling pathways.  401 
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 402 
Fig. 6 Cell-cell communication analysis using CellChat reveals critical role for SPP1-me-403 

diated crosstalk in tumor periphery. a Chord diagram showing significant interactions from 404 

microglia to lymphocyte cell clusters. The inner bar colors represent the targets that receive 405 

signal from the corresponding outer bar. The inner bar size is proportional to the signal strength 406 

received by the targets. Chords indicate ligand-receptor pairs mediating interaction between 407 

two cell clusters, size of chords is proportional to signal strength of the given ligand-receptor 408 

pair. b Comparison of incoming and outgoing interaction strength allows identification of main 409 

senders and receivers. c Violin plots showing the expression distribution of signaling genes 410 

involved in the inferred SPP1 signaling network. 411 

  412 
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Discussion 413 

In this study, we combined single-cell RNA sequencing and flow cytometry-based pro-414 

teome analysis to interrogate the regional leukocyte activation signature in patient-matched bi-415 

opsies from contrast-enhancing tumor center, infiltrative peripheral rim, and blood PBMCs of 416 

grade 4 glioma patients. Our analyses revealed a distinct, regionally dependent transcriptional 417 

profile for most of the investigated cell populations. While peripheral MG and cytotoxic cells 418 

predominantly displayed an impaired activation signature, MdMs showed pro-inflammatory 419 

traits in the tumor periphery, however, were less abundant there compared to the tumor center, 420 

which was reported by others as well [9, 10]. Supplemented with transcriptional and surface 421 

proteome analysis of paired PBMC samples, we provide an in-depth characterization of the 422 

three main immunological compartments of grade 4 glioma. 423 

Previous studies focused on the description of the TME of grade 4 glioma, which also 424 

considered regional differences, yet they focused primarily at neoplastic cells rather than the 425 

immune compartment [9]. Others investigated the differences in the iTME composition be-426 

tween primary and metastatic brain tumors [5, 6]. Interestingly, the two latter ones reported 427 

differences in the iTME composition between IDH1wt and IDH1mut glioma, which we did not 428 

observe in our transcriptional data. Of note, both authors included low-grade and even pre-429 

treated recurrent glioma patients into the IDH1mut group, representing a quite heterogenous pa-430 

tient cohort. In this study, we aimed at providing a representative selection of primary, treat-431 

ment-naive grade 4 glioma patients including IDH1wt and IDH1mut. Surprisingly, we only found 432 

negligible transcriptional iTME differences among these two groups. 433 

We identified a transcriptionally distinct MG subcluster, MG_1, which displayed an 434 

anti-inflammatory/non-reactive phenotype. A similar MG subpopulation expressing a compa-435 

rable gene signature has been recently described to be enriched in Alzheimer’s disease patients 436 

[64]. Additionally, the peripheral cytotoxic cell compartment exhibited an impaired activation 437 

state, including a downregulated IFN response signature in CD8+ T cells. Induction of an IFN 438 

response state has been described as a consequence of T cell receptor-mediated IFN-g produc-439 

tion, likely serving as an autocrine response and inducing the proliferative program [46]. Hence, 440 

the reduced autocrine IFN-responsive state in the tumor peripheral CD8+ T cells, together with 441 

downregulated proliferative and co-stimulatory genes emphasized their impaired activation in 442 

the peripheral infiltration zone. 443 

By exploring the transcriptional trajectory of CD8+ T cells from the blood circulation 444 

into the immunosuppressive TME of the tumor periphery, we uncovered CX3CR1high and 445 

CX3CR1int effector and memory CD8+ T cells, respectively, to be highly enriched in the PBMC, 446 
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but absent in the iTME. Recently, adoptive transfer studies of CX3CR1+ CD8+ T cells in a mel-447 

anoma mouse model significantly suppressed tumor growth [65]. Others identified increased 448 

frequencies of CX3CR1+ CD8+ T cells in non-small cell lung and melanoma patients who re-449 

sponded to anti-PD-1 therapy, where these cells exhibited migratory capabilities into the tumor 450 

site followed by potent tumor rejection [65, 66]. Thus, the authors proposed T cell CX3CR1 451 

expression as a predictor of response to ICI therapy. Therefore, the absence of ICI therapy-452 

responsive CD8+ T cells in the glioma TME could additionally explain the disappointing out-453 

comes of clinical trials using ICI in glioma patients. 454 

The observed Trm exhaustion phenotype of the glioma residing CD8+ T cells was re-455 

cently reported as well for tumor-infiltrating PD-1high CD8+ T cells in hepatocellular carcinoma 456 

[54]. Whether these glioma-associated CD8+ T cells really possess tumor-specificity requires 457 

further study. Particularly in the light of a recent study by Smolders and colleagues who re-458 

ported a consistent brain-resident CD8+ T cell population in a miscellaneous autopsy cohort of 459 

patients with neurological disorders excluding brain malignancies (Alzheimer’s disease, Par-460 

kinson’s disease, dementia, depression, multiple sclerosis), as well as patients with no known 461 

brain disease. These brain-resident CD8+ T cells displayed a remarkably consistent Trm pheno-462 

type [67]. The authors further showed high expression of inhibitory receptors CTLA-4 and PD-463 

1 on the brain-resident CD8+ Trm cells, which is in line with the core phenotypic signature of 464 

Trm cells from other tissues [68, 69]. Yet, the brain CD8+ Trm cells showed a preserved inflam-465 

matory potential with substantial production of IFN-g and TNF-a upon ex vivo stimulation. 466 

They concluded that extensive immune activation with release of highly neurotoxic lytic en-467 

zymes, such as perforin and granzyme B, harmfully impacts the brain parenchyma and should 468 

be tightly controlled, whilst maintaining the capability to elicit a fast inflammatory response 469 

when a neurotropic virus threatens the CNS [67]. Therefore, inhibitory receptors like PD-1 and 470 

CTLA-4 on brain CD8+ Trm cells may support CNS homeostasis by preventing uncontrolled T 471 

cell reactivity, and the availability of the receptor ligands may determine their inhibitory effect. 472 

While this may represent a well-balanced equilibrium under healthy conditions, the tumor set-473 

ting leads to its disruption with upregulation of inhibitory ligands like PD-L1 on glioma cells 474 

and CD86 on GAMs, leading to the dysfunctional state seen in the glioma-residing CD8+ Trm 475 

cells. 476 

Another study comprehensively showed, that peripheral infections generate antigen-477 

specific CD8+ Trm cells in the brain, mediating protection against CNS infections [52]. These 478 

data could implicate that the glioma-associated CD8+ T cells are devoid of tumor-specific reac-479 

tivity, but rather represent a pre-existing T cell population generated after peripheral infections, 480 
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which acquired a dysfunctional state upon glioma formation. To test this hypothesis, further 481 

characterization of these cells is required, including analysis of T cell receptor clonality and 482 

tumor-specificity by patient-matched T cell/glioma-sphere co-culture assays. 483 

Lastly, our cell-cell interaction analysis revealed signaling pathways between peripheral 484 

MG and lymphocytes potentially inducing the observed impaired activation signature. In fact, 485 

interaction of NK cell receptor KLRB1 (CD161) with its C-type lectin-related ligand has been 486 

identified lately as a candidate inhibitory receptor on glioma-infiltrating T cells [70] and 487 

SPP1/CD44 interaction has been described to suppress T cell activation and proliferation [63]. 488 

Limitations of the study include the limited patient number, thereby our study was nei-489 

ther designed nor powered to explore differences in neoplastic cells, given the high inter- and 490 

intra-patient variability in glioma cells [9]. Importantly, our dataset establishes a starting point 491 

for further interrogation and provides an in-depth analysis of the transcriptional landscape of 492 

the major immune populations in grade 4 glioma within three important regional compartments. 493 

Further, we confirmed the observed phenotype of CD8+ T cells in the blood and tumor periphery 494 

by flow cytometry in a cohort of ten additional patients, addressing possible generalization 495 

concerns. Together, we provide a novel reference map of leukocyte activation in the TME and 496 

blood circulation from grade 4 glioma patients, helping the research community to uncover 497 

novel therapeutic strategies to combat this fatal disease.  498 
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Methods 499 

Ethics statement 500 

Human adult GBM tissue samples were obtained at the Neurosurgical Clinic of the Uni-501 

versity Hospital of Basel, Switzerland in accordance with the Swiss Human Research Act and 502 

institutional ethics commission (EKNZ 02019-02358). All patients gave written informed con-503 

sent for tumor biopsy collection and signed a declaration permitting the use of their biopsy 504 

specimens in scientific research, including storage in our brain tumor biobank (Req-2019-505 

00553). All patient identifying information was removed and tissue was coded for identifica-506 

tion. 507 

 508 

Glioma tissue dissociation 509 

Resected glioma tissue samples were immediately placed on ice and transferred to the 510 

laboratory for single cell dissociation within 2-3 h after resection. Human brain tissue was man-511 

ually minced using razor blades and enzymatically dissociated at 37°C for 30 minutes with 1 512 

mg/ml collagenase-4 (#LS004188, Worthington Biochemical Corporation, USA) and 250 U/ml 513 

DNAse1 (#10104159001, Roche, Switzerland) in a buffer containing Hank’s Balanced Salt 514 

Solution (HBSS) with Ca2+/Mg2+, 1% MEM non-essential amino acids (Gibco, USA), 1 mM 515 

sodium pyruvate (Gibco), 44 mM sodium bi-carbonate (Gibco), 25 mM HEPES (Gibco), 1% 516 

GlutaMAX (Gibco) and 1% antibiotic-antimycotic (Sigma-Aldrich, USA). Cells were filtered 517 

and separated from dead cells, debris and myelin by a 0.9 M sucrose (#84100, Simga Aldrich) 518 

density gradient centrifugation. Upon ACK-lysis for removal of erythrocytes (#A1049201, 519 

Gibco) the now generated single-cell suspension (SCS) was washed, counted and frozen in 520 

Bambanker (#BB01, Nippon Genetics, Germany) in liquid nitrogen until use. 521 

 522 

PBMCs (Peripheral blood mononuclear cells) preparation 523 

Patient blood samples were directly placed on ice and transferred to the laboratory for 524 

PBMC isolation. Blood samples were centrifuged to separate buffy coat from plasma and eryth-525 

rocytes, followed by standard density gradient centrifugation protocol (#17144002, Ficoll-526 

Paque PLUS, Cytiva, USA) to isolate PBMCs. PBMCs were frozen in Bambanker (#BB01, 527 

Nippon Genetics, Germany) in liquid nitrogen until use. 528 

 529 

FACS sorting for single cell RNA sequencing (scRNA-seq) 530 

Cryopreserved tumor digests from glioma samples (center and periphery), as well as 531 

autologous PBMCs were thawed and washed with excess ice-cold 1xPBS and spun down at 532 
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350xg for 5 min. Subsequently, the cells were stained with Live/Dead (APC-Cy7 (Near IR), # 533 

L34976, Thermo Fischer) and a cocktail of fluorescently-conjugated antibodies CD11b (FITC, 534 

clone M1/70, #101206, BioLegend) and CD45 (FITC, clone 2D1, #368508, BioLegend), and 535 

large debris were removed with a 40-μm strainer. All samples were acquired on the BD FACS 536 

ARIA Fusion III (Becton Dickinson GmbH, Germany). For single-cell RNA-seq experiments, 537 

live and single gated cells were sorted into non-immune cell (CD45-CD11b-) and immune cell 538 

(CD45+CD11b+) populations. Both populations were directly sorted into Eppendorf tubes with 539 

1xPBS supplemented with 1% BSA for single cell RNA sequencing. 540 

 541 

Single cell RNA sequencing (scRNA-seq) – Library preparation and sequencing 542 

Single-cell RNA-seq was performed using Chromium Single Cell 3’ GEM, Library & 543 

Gel Bead Kit v3 (#CG000183, 10x Genomics, Pleasanton, CA, USA) following the manufac-544 

turer’s protocol. Briefly, non-immune cells and immune cells were mixed at a defined ratio of 545 

1:4. Roughly 8000-10000 cells per sample, diluted at a density of 100–800 cells/μL in PBS plus 546 

1% BSA determined by Cellometer Auto 2000 Cell Viability Counter (Nexelom Bioscience, 547 

Lawrence, MA USA), and were loaded onto the chip. The quality and concentration of both 548 

cDNA and libraries were assessed using an Agilent BioAnalyzer with High Sensitivity kit 549 

(#5067-4626, Agilent, Santa Clara, CA USA) and Qubit Fluorometer with dsDNA HS assay 550 

kit (#Q33230, Thermo Fischer Scientific, Waltham, MA USA) according to the manufacturer’s 551 

recommendation. For sequencing, samples were mixed in equimolar fashion and sequenced on 552 

an Illumina HiSeq 4000 with a targeted read depth of 50,000 reads/cell and sequencing param-553 

eters were set for Read1 (28 cycles), Index1 (8 cycles), and Read2 (91 cycles). 554 

 555 

Single cell RNA sequencing (scRNA-seq) - Computational analysis 556 

The dataset was analyzed by the Bioinformatics Core Facility, Department of Biomed-557 

icine, University of Basel. Read quality was controlled with the FastQC tool (version 0.11.5). 558 

Sequencing files were processed using the Salmon Alevin tool (v 1.3.0) [71] to perform quality 559 

control, sample demultiplexing, cell barcode processing, pseudo-alignment of cDNA reads to 560 

the human Gencode v35 reference and counting of UMIs. Parameters --keepCBFraction 1 and 561 

--maxNumBarcodes 100000 were used. 562 

Processing of the UMI counts matrix was performed using the Bioconductor packages 563 

DropletUtils (version 1.8.0) [72, 73], scran (version 1.16.0) [74, 75] and scater (version 1.16.2) 564 

[76], following mostly the steps illustrated in the OSCA book (http://bioconduc-565 

tor.org/books/release/OSCA/) [75, 77]. Filtering for high-quality cells was done based on 566 
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library size (at least 2,000 UMI counts per cell), the number of detected genes (at least 700 567 

genes detected) and the percentage of reads mapping to mitochondrial genes (larger than 0% 568 

and lower than 15%), based on the distribution observed across cells. Low-abundance genes 569 

with average counts per cell lower than 0.006 were filtered out. The presence of doublet cells 570 

was investigated with the scDblFinder package (version 1.2.0), and suspicious cells were fil-571 

tered out (score > 0.6). After quality filtering, the resulting dataset consisted of UMI counts for 572 

15,523 genes and 45,466 cells, ranging from 803 to 9,121 per sample.  573 

UMI counts were normalized with size factors estimated from pools of cells created 574 

with the scran package quickCluster() function [74, 78]. To distinguish between genuine bio-575 

logical variability and technical noise we modeled the variance of the log-expression across 576 

genes using a Poisson-based mean-variance trend. The scran package denoisePCA() function 577 

was used denoise log-expression data by removing principal components corresponding to tech-578 

nical noise. A t-stochastic neighbor embedding (t-SNE) was built with a perplexity of 50 using 579 

the top most variable genes (141 genes with estimated biological variance > 0.3, excluding 580 

genes with highest proportion of reads in the ambient RNA pool estimated from empty drop-581 

lets), and the denoised principal components as input (5 top PCs). Clustering of cells was per-582 

formed with hierarchical clustering on the Euclidean distances between cells (with Ward’s cri-583 

terion to minimize the total variance within each cluster [79]; package cluster version 2.1.0). 584 

The number of clusters used for following analyses was identified by applying a dynamic tree 585 

cut (package dynamicTreeCut, version 1.63-1) [80], resulting in 10, or 22 clusters with argu-586 

ment deepSplit set to 2. 587 

The Bioconductor package SingleR (version 1.2.4) was used for cell-type annotation of 588 

the cells [81] using as references (i) a public bulk RNA-seq dataset of sorted immune cell types 589 

from human PBMC samples [13], available through the celldex Bioconductor package; (ii) a 590 

bulk RNA-seq dataset of sorted immune cell types from the tumor microenvironment of human 591 

gliomas [5] (UMI count matrix and annotation downloaded from 592 

https://joycelab.shinyapps.io/braintime/); (iii) a Smartseq2 scRNA-seq dataset of IDH-wild-593 

type glioblastoma tumors [14] (downloaded from GEO accession GSE131928). A microglia 594 

and a macrophage signature scores were defined by averaging the center and scaled expression 595 

levels of gene lists obtained in [7]. An endothelial score was defined by averaging the center 596 

and scaled expression levels of the genes CDH5, VWF, CD34 and PECAM1. The SingleR high-597 

quality assignments (pruned scores) and the signature scores were used to manually derive a 598 

consensus cell type annotation for each cluster. 599 
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The findMarkers function of the scran package was used to find the best markers across 600 

annotated cell types (parameters direction=“up” and pval.type=“any”). The top 10 markers 601 

for each cell type were extracted and pooled to from a list of 68 markers. 602 

Differential abundance analysis of identified cell types between tumor sites was per-603 

formed using diffcyt-DA-voom method [82]. Differential abundance of cell types was consid-604 

ered to be significant at a false discovery rate (FDR) lower than 5 %. 605 

Differential expression between tumor sites, or between PBMC cells and tumor periph-606 

ery cells, stratified by annotated cell type, was performed using a pseudo-bulk approach, sum-607 

ming the UMI counts of cells from each cell type in each sample when at least 20 cells could 608 

be aggregated. The aggregated samples were then treated as bulk RNA-seq samples [83] and 609 

for each pairwise comparison genes were filtered to keep genes detected in at least 5% of the 610 

cells aggregated. The package edgeR (version 3.30.3) [84] was used to perform TMM normal-611 

ization [85] and to test for differential expression with the Generalized Linear Model (GLM) 612 

framework, using a model accounting for patient-specific effects. Genes with a FDR lower than 613 

5 % were considered differentially expressed. Gene set enrichment analysis was performed with 614 

the function camera [86] on gene sets from the Molecular Signature Database (MSigDB, ver-615 

sion 7.4) [39, 87]. We retained only sets containing more than 5 genes, and gene sets with a 616 

FDR lower than 5% were considered as significant. 617 

 618 

Cell chat analysis 619 

The R package CellChat (1.1.3) [60] was used to analyze cell-cell interactions in our 620 

dataset (with previously annotated 9 cell types). We followed the recommended workflow to 621 

infer the cell state-specific communications (using identifyOverExpressedGenes, identifyOver-622 

ExpressedInteractions and projectData with the default parameters). We performed 3 separate 623 

analyses, on the center and the periphery subsets and a comparison analysis as described in the 624 

official workflow. We visualized the significant interactions for the microglia cluster using 625 

netVisual_chord_gene and used plotGeneExpression to display of the expression of all genes 626 

involved SPP1 signaling pathway in the cell populations. Finally, netAnalysis_signalin-627 

gRole_scatter was used to calculate and visualize incoming and outgoing signaling strength. 628 

 629 

Flow cytometry analysis of paired PBMC and periphery samples 630 

Cryopreserved samples were thawed and washed with excess ice-cold 1xPBS and spun 631 

down at 350xg for 5 min. Cells were resuspended in FACS buffer (PBS plus 2% FBS) and 632 

blocked with monoclonal antibody to CD16/32 (Human TruStain FcX, #422302, Biolegend) 633 
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for 10 min at 4°C before staining with surface antibodies: CD45RA (PE, clone HI100, 634 

#304108), CD45RO (APC, clone UCHL1, #304210), CD3e (BV650, clone UCHT1, #300468), 635 

CD8a (BV421, clone RPA-T8, #301036), CCR7 (FITC, clone G043H7, #353216), CD62L 636 

(AF700, clone DREG-56, #304820), CD69 (APC-Cy7, clone FN50, #310914), CD103 637 

(PerCP/Cy5.5, clone Ber-ACT8, #350226) and CX3CR1 (PE/Cy7, clone 2A9-1, #341612). All 638 

antibodies were purchased from BioLegend, USA. Cells were stained for 30 min at 4°C, and 639 

subsequently washed with FACS buffer. To exclude dead cells Zombie Aqua Fixable Viability 640 

Kit (#423102, 1:100, BioLegend) was added. Acquisition was performed on a CytoFLEX 641 

(Beckman). Data was analyzed using FlowJo software, version 10.8.1 (TreeStar). Gates were 642 

drawn by using Fluorescent Minus One (FMO) controls. 643 

 644 

Statistical analysis of flow cytometry data 645 

Data analysis and graph generation was performed using GraphPad Prism 9 (GraphPad 646 

Prism Software Inc.). Paired comparisons between two groups were performed using Wilcoxon 647 

matched-pairs signed rank test. Differences of more than two paired groups were assessed using 648 

repeated measures one-way ANOVA test, followed by post-hoc Šidák’s multiple comparisons 649 

correction. A p value < 0.05 was considered statistically significant. *p ≤ 0.05, **p ≤ 0.01, ***p 650 

≤ 0.001, ****p ≤ 0.0001.  651 
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Data availability 652 

The UMI count matrix and cell metadata from the scRNA-seq dataset are available on 653 

GEO under accession number GSE197543. The remaining data are available within the Article 654 

and Supplementary Information.  655 
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Figure S1. CD45+ CD11b+ immune cells gating strategy and quality control of scRNA-seq 

data, related to Figures 1 and 2. 

(A and B) Gating strategy for paired tumor-derived (A) and PBMCs (B); after debris, doublet and 

dead cell removal, immune cells were assessed as CD45+ and/or CD11b+. 

(C-E) Percentage of mitochondrial (MT) reads (C) number of detected genes (D) and cell-cycle 

phase (E) overlaid on tSNE representation. 

(F and G) tSNE map stratified according to site (F) and patient (G). 
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Figure S2. Cell type specific gene expression, related to Figure 2.  

Heatmap displaying genes whose expression is most specific to each cell type. Columns are 

ordered by site and cell type, and rows show centered and scaled expression values, hierarchically 

clustered. 
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Figure S3. Cross-referencing scRNA-seq data with published datasets, related to Figure 2. 

(A, B, G and H) Using hierarchical clustering, identified cell clusters (A) which were then annotated 

into eight distinct cell types for the immune subset (B) and five cell types for the CD45neg subset 

(G and H). Grey panel in (G) zooms in on CD45neg subset and is shown in (H).  

(C-F) Immune cell types were annotated by referencing to a dataset of bulk RNA-seq samples of 

sorted immune cell types from human PBMC (C) [1]; MdMs and microglia were annotated by 

comparing to a dataset of bulk RNA-seq samples of sorted immune cell types from the tumor 

microenvironment of human gliomas (D) [2] and by using signature scores defined from scRNA-

seq of glioma TAMs (E and F) [3]. Clusters are highlighted which were annotated using each 

respective reference dataset.  

(I) CD45neg cells were annotated by whole-transcriptome comparison to a scRNA-seq dataset of 

IDH1wt GBM [4].  

(J) Endothelial score was defined by averaging the center and scaled expression levels of the 

genes CDH5, VWF, CD34 and PECAM1.  
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Figure S4. Differential abundance of MG subclusters and differential expression between 

center and peripheral CD4+ T cells, related to Figures 3 and 4. 

(A) Violin plot showing average expression levels of selected reactivity markers among 

mononuclear phagocyte populations.  

(B) Frequencies of MG_1 and MG_2 subpopulations among total microglia between center and 

periphery. Symbols represent individual patients and paired samples are indicated by connecting 

lines. 3 of 4 (75%) paired samples showed an increased abundance of MG_1 cells in the tumor 

periphery and decreased frequency of MG_2 cells. Statistical significance was assessed by diffcyt-

DA-voom method, *FDR corrected p value < 0.05.  

(C) Volcano plot showing differentially expressed genes (FDR corrected p value < 0.05, indicated 

by blue and yellow) in CD4+ T cells from tumor periphery versus tumor center. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.06.17.496574doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496574
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.06.17.496574doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496574
http://creativecommons.org/licenses/by/4.0/


 

Figure S5. CD8+ T cell phenotype is site-specific, related to Figure 5. 

(A) Gating strategy for paired tumor-periphery and PBMC cells; after debris, doublet and dead cell 

removal, CD8+ T cells were identified as CD3+ CD8+ events.  

(B-D) Single-cell expression of markers associated with naive/memory (CD28, IL7R, CD27, FAS, 

CD29, TCF, FOXO1) and tissue-resident memory (ITGAE, AHR, PRDM1) (B) T cell co-stimulation 

(C) and T cell exhaustion/dysfunction (D) overlaid on tSNE CD8+ T cell cluster. 

(E) Volcano plot showing differentially expressed genes (FDR corrected p value < 0.05, indicated 

by blue and green) in CD4+ T cells from tumor-periphery versus PBMC. 
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Figure S6. Cell-cell communication analysis using CellChat, related to Figure 6. 

(A and B) Chord diagram showing significant interactions from microglia to all cell clusters in center 

(A) and periphery (B). The inner bar colors represent the targets that receive signal from the 

corresponding outer bar. The inner bar size is proportional to the signal strength received by the 

targets. Chords indicate ligand-receptor pairs mediating interaction between two cell clusters, size 

of chords is proportional to signal strength of the given ligand-receptor pair.  

(C and D) Violin plots showing the expression distribution of signaling genes involved in the 

inferred SPP1 signaling network in center (C) and periphery (D). 
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Figure S7. Graphical abstract. Proposed schematic of grade 4 glioma-associated im-

mune cells in the three regional compartments. Created with BioRender.com. 
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