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Incorporating cell hierarchy to decipher the
functional diversity of single cells
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Cells possess functional diversity hierarchically. However, most
single-cell analyses neglect the nested structures while detecting
and visualizing the functional diversity. Here, we incorporate
cell hierarchy to study functional diversity at subpopulation,
club (i.e., sub-subpopulation), and cell layers. Accordingly, we
implement a package, SEAT, to construct cell hierarchies uti-
lizing structure entropy by minimizing the global uncertainty
in cell-cell graphs. With cell hierarchies, SEAT deciphers func-
tional diversity in 36 datasets covering scRNA, scDNA, scATAC,
and scRNA-scATAC multiome. First, SEAT finds optimal cell
subpopulations with high clustering accuracy. It identifies cell
types or fates from omics profiles and boosts accuracy from (.34
to 1. Second, SEAT detects insightful functional diversity among
cell clubs. The hierarchy of breast cancer cells reveals that the
specific tumor cell club drives AREG-EGFT signaling. We iden-
tify a dense co-accessibility network of cis-regulatory elements
specified by one cell club in GM12878. Third, the cell order
from the hierarchy infers periodic pseudo-time of cells, improv-
ing accuracy from 0.79 to 0.89. Moreover, we incorporate cell
hierarchy layers as prior knowledge to refine nonlinear dimen-
sion reduction, enabling us to visualize hierarchical cell layouts
in low-dimensional space.

Introduction

Cells in the biological system own functional diversity hier-
archically, which signifies cell types or states during devel-
opment, disease, and evolution, up to the biosystem (1, 2).
The heterogeneity of the cell is observed with nested struc-
tures (3). In the tumor microenvironment, infiltrated lym-
phocytes include B cells and T cells. Furthermore, T cells
can be classified into helper T cells and cytotoxic T cells (4).
Specific expression of the marker genes CD4 and CD8 will
strengthen intra-similarity within helper and cytotoxic T
cells, respectively, resulting in nested cell structures. The
cellular heterogeneity raised by tumor evolution presents an-
other instance (5, 6). The copy number gain, neutral, and loss
classify tumor cells into aneuploid, diploid, and hypodiploid
groups, respectively. Fluctuations of copy numbers in focal
genome regions further categorize tumor cells into amplifica-
tion or deletion subtypes. The cell cycle is a rudimentary bio-
logical process for cell replications (7). Human cells undergo
acycle GI - S - G2/M - G1 over a 24-hour period, thus the
cycling cells have three flat phase labels (G1, S, and G2/M).
In addition, the cycling cells have an order that records the
pseudo time course in the G1, S, and G2/M phases. The or-
ders and phase labels reflect a hierarchical structure.

The recent maturation of single-cell sequencing technolo-
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gies offers opportunities to profile large-scale single cells
for their transcriptomics (8), genomics (5), epigenomics (9),
etc. These technologies have blossomed revolutionary in-
sights into cellular functional diversity under the aegis of
assigning cells with similar molecular characteristics to the
same group (1, 2). However, most existing clustering tools
generate flat cell group (10-14). Moreover, the periodic
pseudo-time inference tools neglect the hierarchical struc-
ture of cycling cells (15-18). Neglection of the underlying
nested structures of cells prevents full-scale detection of cel-
lular functional diversity.

To address the issue, we incorporate cell hierarchy to illus-
trate the nested structure of cellular functional diversity. Cell
hierarchy is a tree-like structure with multiple layers that cap-
ture cellular heterogeneity. From the root to the tips, the cel-
lular heterogeneity decays. This study focuses on four main
layers: global, subpopulation, club, and cell. The global layer
is the root that exemplifies the whole cell population, e.g.,
immune cells. In contrast, the cell groups in the second and
third main layers resemble cell subpopulations and cell clubs,
respectively. The cell subpopulation is a broad category of
cells, such as B cells and T cells (4). Cell clubs within one
cell subpopulation catalog the cellular heterogeneity in a finer
resolution; that is, the cells share high functional similarity
within a single cell club. For example, T cell subpopula-
tion owns helper and cytotoxic T cell clubs (4). The tip layer
holds individual cells carrying cell orders, which signify the
dynamic nuance of cell changes within a cell club, e.g., cellu-
lar heterogeneity varies along a periodic time course for cells
undergoing a cycling process (7).

The actual cell hierarchy is difficult to determine; here,
we develop SEAT, Structure Entropy hierArchy deTection,
to build a pseudo cell hierarchy leveraging structure en-
tropy to characterize the nested structures in cell-cell graphs.
Structural entropy has been proposed in structural informa-
tion theory to measure the dynamic global uncertainty of
complex networks (19), and has benefited several biologi-
cal fields (20-24). SEAT constructs cell hierarchies using a
full-dimensional or dimensionally reduced single-cell molec-
ular profile as input, and delivers the global-subpopulation-
club-cell layers from the hierarchies. We apply SEAT to
36 datasets that cover single-cell RNA (scRNA), single-cell
DNA (scDNA), single-cell assay for transposase-accessible
chromatin (scATAC), and ScCRNA-scATAC multiome. SEAT
detects the functional diversity of these single-cell omics data
with cell hierarchy from three perspectives: cell subpopula-

Chen etal. | October 23,2022 | 1-16
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tion detection, cell club investigation, and periodic cell cycle 14
pseudo-time inference. 147
Visualizing the functional diversity of single cells is essential 14s
since visual inspection is the most direct approach to studying e
the structure and pattern of cells. Nonlinear dimension reduc- s
tion is a trending visualization method for high-dimensional
biological data (25). Nevertheless, state-of-the-art single-cell ,
visualization tools neglect the nested structure of cells by
merely capturing at most two levels (global or local) of cell .
patterns (26-28). To tackle the issue, SEAT provides a com- s
ponent to embed the cells into a low-dimensional space by .
incorporating the multiple layers from the cell hierarchy as o
prior knowledge. Experiments demonstrate that SEAT con- -
sistently visualizes the hierarchical layout of these cells in the .
two-dimensional space for the above single-cell datasets.

Method

Problem formulation.

Constructing cell-cell similarity graph.For a single-cell
molecular data tabulated in a matrix, columns and rows re-
fer to cells and their molecular features. For instance, the
feature can be a gene or genome region. An entry in the ma-
trix measures the value of the corresponding cell-feature pair,
e.g., gene expression, copy number variation, or chromatin
accessibility. o
We reduce the dimensionality of the single-cell molecu- ,
lar matrix to a low-dimensional matrix X to mitigate the
curse of dimensionality. We construct a dense cell-cell

similarity graph G = (V,E) with Gaussian kernel e,, =

||a’u—wv”2

exp(—+—*5""~) with o as standard deviation of X. Edge
weight e, stands for the similarity between cells v and v in
graph G.

160

Hierarchical coding tree. A coding tree 1" of a cell-cell graph
G = (V, E) is a hierarchical multi-nary partitioning of the cell
set V, preserving the nested information in G. For clarity, we
use v and v to represent the cells and ;4 and v to represent
tree nodes. Each tree node i € T codes a cell subset U C V.
Denote the cell set coded by a node p € T as V(). The e
root node r codes V and node 1 codes U, i.e., V(r) =V and
V(u) = U. Denote the children of 1 as C'(u). The children (g
nodes C'(u) of the tree node p € T partition the cells repre- ¢
sented by pu; that is, V() = ULg({L)I Viei(p)),V(ei(p)) Nies
Viej(p) = 0,1 <i,j < |C(p)l],i # j, where c;(u) signi-
fies the i-th child node of x and |- | denotes cardinality. A te°
leaf node ¢ codes one or multiple cells with a specific order 7
7(t) € NIVl For each cell u € V there is a unique leaf 7
node ¢ € T such that {u} C V(¢). 172

173
Coding tree represents the hierarchy of subpopulations, 174
clubs, and cells. Given a pool of cells V' which own k cell 175
subpopulations, an ideal coding tree 7" holds & disjoint sub- 17
trees rooted at nodes A = {\1,...,A\x} which encode k cell s
sets P = {V(A1),...,V(A\)} that match the cell subpopula- 17
tions. Denote the subtree T &€ T rooted at A as subpopu- 17
lation tree. Suppose Ty has £y leaves {tx 1,...,tx ¢, }, they o

encode £ cell sets {V(tx1),...,V(tx,¢, )} that represent cell
clubs inside cell subpopulation V' (\) in a finer resolution;
that is, the cells share high similarity inside one cell sub-
population. In coding tree T, the total ¢ leaves signify the
£ cell clubs C = {V(tkhl)v"'7V(t>\klxk)}~ Moreover, as

cells in each cell club ¢ has a specific order 7(t) € NIV (®)I,
the ideal coding tree 7" also presents an overall cell order
T = [71'(?3\1,1),...,7T(t)\k7g)\k)] e NIVI according to the order
of leaves from left to right.

Determining the hierarchy of subpopulations, clubs, and cells
is now a hierarchical coding tree construction problem - par-
titioning the graph G hierarchically to optimize a metric. In
this work, the metric is the global dynamical complexity of
the graph measured by structure entropy (19-24).

Measuring coding tree with structure entropy.Recall e,
is the edge weight between cells v and v for G. Term
the volume of 1 € T' as the sum of degrees of all cells in
V(). vol() = > uev (u),wev Cuv- Define g(u) as the total
weights of edges from cells in V(i) to V —V (), g(pn) =
D oueV (u) weV —V () Cuv- If 7 7, its structure entropy is

vol (1)
2 Dol (p(11))

where p(y) is the parent node of i, vol(G) = 3", ¢y €uw i
the sum of all the edges in the graph, thus vol(G) = vol(r)
signifies the volume of the whole graph or the root . The
root r has structure entropy 0; that is, ST (G;7) = 0.

Denote ¢(u) as the leaf node where cell u belongs to, the
structure entropy of cell u in T' is

oy 9w
§1(Giw) =  00l(G)

@

vol(u)
©82 vol (t(u))’

ST(G;U) - _ g(u)

vol(QG) @

The structure entropy of graph G coded by tree T is the sum
of the structure entropy of all tree nodes and all cells,

ST(G) =Y _8T(Giw+ > ST (Giu).

pneT ueV

3)

An ideal coding tree 1" captures the optimal hierarchy of sub-
populations, clubs, and cells. Finding the optimal coding tree
T for the graph G is to find the minimum structure entropy
ST(@G) which diminishes the global variance at the random
walk of G to a minimum.

Algorithm of SEAT. In previous work, we have proven that
for a graph G, there exists a binary hierarchy of minimum
structure entropy (23). Thus, SEAT searches the ideal cod-
ing tree T' from the binary hierarchies (Fig. 1A). We first
construct a sparse graph G from dense graph G, then form
cell club hierarchies with minimal structure entropy ST (G')
from sparse graph G5 with agglomerative and divisive heuris-
tics. Then, we search the cell subpopulations by optimizing
the structure entropy of the dense graph G constrained by the
heuristic hierarchies. Finally, we embed the graph G into a
low-dimensional space by adding the global-subpopulation-
club layer constraints from cell hierarchy 7.

Chen et al.
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A Input Workflow of SEAT D Cell hierarchy deciphers functional diversity
ottt T 150
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| A2 } } } I Cell club investigation I
L ¥ N 1
i H% } i } i 19 scRNA sets i
I | DY P L1 #ofcells 30-3,918 N w
i | D2 - L . !
1 1 D3 I ! I #of cell types 3-10 A !
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Single-cell
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i i P I
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1l 1 2 ° I
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i & cellof A2 | i Cell Cell club Structure | ! # of cells 765-10,032 !
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I | I
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| % cellofHT | - . 1
} cell of H2 } } Global Periodic pseudo-time inference }
| cell of H3 | }S boooulati 6 cell cycle scRNA sets i
I | 1 Subpopulation )

| @ celtypeD ! @ # of cells 23-361 N |
! cell of D1 I Club g o i of oull s L !
| cell of D2 | Cel Holok of cell type \ i
i cell of D3 | i > Intermediate node cell label gold !

Agglomerative
building

\ Select two sister nodes
! with maximal SE shift

®G2M ®S GO/G1

Divisive
building

Maximal bipartition
SE shift (+/-)

Agglomerative Divisive

P P, P
Optimal contracted tree
(k=3)

SE of contracted trees

2345678910

P W
fg:ﬁ***#hﬁh**ﬁﬁh

Divisive hierarchy

Contracting tree to find k subpopulations with minimal SE by DP

The final cell hierarchy is agglomerative hierarchy
with optimal subpopulations Py, P,, Ps.

Finding optimal k with minimal SE

Fig. 1. The schematic overview of SEAT. A The workflow of SEAT. B The algorithm of agglomerative and divisive hierarchy building. C The algorithm of finding the final cell

hierarchy carrying optimal subpopulations. D The summary of experimental settings.

Graph sparsification. We sparsify the dense graph G with k- 1ss
nearest neighbors (kNNs), resulting in a sparse graph G5 = 1e7
(V, Es) with a binary edge weight. If cell u is the k-nearest 1ss
neighbor of cell v or cell v is the k-nearest neighbor of cell
in original graph G, ey, = 1; otherwise e,,, = 0.

Chen et al.

Building cell club hierarchy. With the sparse graph G, we
form cell club hierarchies with minimal structure entropy
ST(G,) with agglomerative and divisive heuristics (Fig. 1B).
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Agglomerative hierarchy building The agglomerative hier- 25
archy building consists of three steps: initialization, forming 24
clubs, and building club hierarchy. 247
We initialize the tree of height one, the root node r has |V| 2
immediate children, where each child node ¢ is a leaf node 24
that covers a single cell of u, V'(t) = {u}. The initialized tree 20
is multi-nary. 251
We merge the leaf nodes repeatedly to form cell clubs. A leaf 252
has one of the two possible statuses at each iteration, indi- 253
vidual or merged. Initially, all the leaves are labeled as indi- 25+
vidual. Two tree nodes p and v are referred to connected if
there are inter-node edges between V' (1) and V' (v) in sparse
graph G5. We merge an individual leaf y with its connected
sister v by extracting 1 and v from 7' and creating a new
node 1/ which codes all cells in V(u) and V(v). The new
node p/ is a child of root and a leaf labeled as merged. The -
pair (p,v) is chosen by the largest merging structure entropy »so
change A7¢(u,v) (Supplementary Methods). This merging
operation repeats until i) there is no more individual leaf con-
nected to other sister leaves; or ii) there is no pair (i, v/) yields -
a non-negative structure entropy difference. Then, all leaves
are labeled individual, triggering subsequent iterations of the _
merging procedure until no non-negative structure entropy
shift is possible. The above will lead to a multi-nary coding
tree T of a height of one and ¢ leaves. We assume each leaf
presents a cell club, and the cell order is the merging order.

To form the binary hierarchy of clubs, we iteratively combine
sister node pair (u,v) of the root by inserting a new node w
as a child of the root and parent of x and v. The selection
of (u,v) is guided by connectivity and the largest combining ,,
structure entropy change A€, (w, u,v) (Supplementary Meth- 4,
ods). The combining operation repeats until the hierarchy is ,;
a binary coding tree. 066

Divisive hierarchy building The second approach is to_ “
build the club hierarchy divisively. We initialize the tree with

the root node r that codes all cells. The initialized tree has
a zero height, with one node as both root and leaf. To form e
the hierarchy, we repeatedly split the leaf node ¢ € T" into two !
children guided by maximizing the bipartition structure en- 72
tropy change AZ_(t). The solution of leaf split is the Flelder o
vector of the normahzed graph Laplacian if the sparse graph

G is regular (Supplementary Methods). Thus, we heuristi- ,,,
cally obtain the bipartition according to the sign of values in ,,,
Fielder vector (29), the cells with smaller Fielder vectors are ,,,
placed on the left. The split stops if leaf node contains only
two cells or A3, < 0, we set cutoff 6 = 0.05. We assume that ,,,
each leaf presents a cell club, and the value of Fielder vec- .,
tor reflects the cell order. Finally, we end up with a binary ,,
hierarchy 7" with ¢ clubs. 282
Finding cell subpopulations.Recall that an ideal coding *
tree T holds k disjoint subpopulation trees rooted at zs
nodes A = {)\1,...,\x} which encode k cell sets P =z
{V(A1),...,V(Ag)} that match the cell subpopulations. To zss
find the k subpopulations, we contract the heuristic club hi- 257
erarchy 7' into a multi-nary tree 7 with a height of one zss
(Fig. 1C). The contracted tree 7 has a root node r holding zss

k leaf children. Each leaf node ¢y € 7 maps to a subpopula-
tion tree T € T rooted at A, thus ¢ codes the cells from T},
p(ta) =mV(tx) = V(A).

Given the heuristic club hierarchy 7', contracting is opti-
mized by minimizing the structure entropy ST(G) from
dense graph G. The structure entropy associated with con-
tracted tree 7 with k leaves focuses on measuring the global
variance at the random walk of a dense graph GG among k
subpopulations, other than the variance in a finer cell-club
resolution,

ST(@) =Y |8T(Gita) + @)

AEA

> ST(Giuw)

ueV(ty)

To minimize S7(G), we adopt a recursive objective
J(G;w, k) alongside the club agglomerative or divisive hier-
archy T'. Assume tree node w in 7 has left and right children
w and v, respectively. Finding k optimal subpopulation trees
inside subtree T;, € T rooted at w with minimum J (G;w, k)
is equivalent to finding &” and k — k’ subpopulation trees in-
side subtrees T}, € T' and T,, € T  rooted at p and v such that
sum of structure entropy in the contracted tree 7 is minimal,

ST( )+ ZuEV(w) S (G U’) 17
ming </ < { T (G 1, k') + T (G, k= k) },
)]

J(G;w,k){

where k£ = 1 means w is the root node of one subpopulation
tree, which maps to one leaf node of the contracted tree 7.
We solve the contracting objective using dynamic program-
ming. We record the minimal structure entropy J (G;w, k)
for finding k optimal subpopulations in a bottom-up way; that
is, calculating from leaves to root. We trace back recursively
to obtain the optimal cut-off &’ for each node starting from
the root. If kA;L — 1 for one left child or k/, = k — 1 for a cer-
tain right child at that state, one subpopulation V' (u) or V' (v)
is found (Supplementary Methods). In this way, we obtain
the contracted tree 7 with k leaves representing & cell sub-
populations.

Finding final cell hierarchy carrying optimal subpopulations.
For 1 < k < K where K is constant number, the optimal k
associated with the minimal structure entropy is the optimal
cut-off &’ for root node, k = arg ming << g {J(G;r,k)}.
The agglomerative and divisive hierarchies might have differ-
ent hierarchical structures. The optimal subpopulations are
subpopulations with less structure entropy (Fig. 1C and Sup-
plementary Methods). We choose the cell hierarchy carrying
optimal subpopulations as the final cell hierarchy.

Obtaining and visualizing cell order. We find the cell hier-
archy 7' by minimizing the structure entropy of the sparse
cell-cell graph. Given the cell hierarchy 7', we obtain the
cell order 7w € RIVI with an in-order traversal and visualize
the cell order periodically with an oval shape (Supplementary
Methods).

Chen et al.
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Hierarchical visualization. To convert the cell-cell similarity s
graph G into d-dimensional latent space Y € R™*? for vi- s
sualization, state-of-the-art tool UMAP (26) adopts a cross- s
entropy (CE) objective, 335

336

(6) 337

338

1 — Puv

]-* uv

CE@) = Y puvlog?™ +(1—pyo)log
u,vEG Quv

339
Here, p,,, and ¢, signifies the similarity of cells u and v in 4,
original graph G and the latent space, respectively. ¢y 1S a4
smoothly approximated by ¢y, = (1+a(||y, — Yp!|2)?) ™, s
where a and b are constrained by a hyper-parameter min-dist, 45
the effective minimum distance between cells in latent space. 4,
In this study, we adjust the above embedding strategy by in- 4
corporating the final cell hierarchy. Recall that the cell parti- 44
tion and P and C correspond to the & and ¢ cell subpopula- ,,;
tions and clubs, respectively. Assume cell partition Z = {V'} 4
contains the one global cell population. Based on the cell 54
partition H € {Z,P,C}, we assign the inter-connections be- 4
tween different cell groups to zero, resulting in a graph G s
that focuses on the cell-cell similarity inside one cell group. g
We minimize the disparity of cell-cell similarity between the s,

embedding space and G'; with the objective 354
355

356

J@G)= Y CE(Gy)xby, ..

He{Z,P,C} 358

where hyper-parameters 6, are the training weights of dif- 359
ferent cell partition resolutions obtained from cell hierarchy. 0
We initialize the low-dimensional embedding Y with graph !
Laplacian (30) of Gp, make min-dist equals 0.1, set 67 =1, e
0p =1, ¢ = 1, and minimize J(G) to convergence with z:j

Adam gradient descent.
365

Outlier detection. Cellular abnormalities may distort the en- **®

tire cell hierarchy, thus affecting the efficacy of cell subpop-
ulation and club detection, cell cycle pseudo-time inference,
and hierarchical visualization. Thus, we have implemented
the average kNN outlier detection. We calculate the mean e
distance d € R™ given the single-cell molecular representa- e
tion of n cells. d; is the mean distance of i-th cell to its o
k-nearest neighbors. By default, we consider the cell with o
an average kNN distance d exceeding a distance cutoff 0.5 o
as the outlier. We also provide a distance percentile cutoff o
strategy, we regard the cell with an average kNN distance d e
surpassing a distance percentile cutoff (e.g. 95th percentile) e
as an outlier. The detected outliers will be assigned to label 7
-1 and excluded from the cell hierarchy building. e

367

368

379

Time complexity of SEAT. Under the graph G with n cells, *°
the time complexity of SEAT is O(nlogn) (Supplementary *'
Methods). 382

383

Experiment Setting. 384

385
ScRNA data. We collect nineteen scRNA datasets with gold ss
standard cell type labels (31-43), the description of the s
datasets and the download links are in Supplementary Table ass

Chen et al.

S1 and Supplementary Method. For these scRNA datasets,
the dimension reduction transformer is UMAP (26). We
adopt Seurat “FindAllMarkers” function (44) for differential
expression analysis. The log2 fold change, log2(FC), of the
average expression between two groups is measured. The
fold change significance p-value is evaluated by the Wilcoxon
Rank Sum test, and the adjusted p-value is calculated with
Bonferroni correction. The filtering criteria are log2(FC) >
0.25, p-value < 0.05, and adjusted p-value < 0.05. Cell-
cell communication analysis is conducted with CellChat (45)
with default database and parameters. Any ligand-receptor
interaction with less than ten supporting cells is filtered.

We also collect six scRNA datasets with gold standard cell
cycle labels (Supplementary Table S2). Dataset HI-hESC
has 247 human embryonic stem cells (hESCs) in G0/Gl1,
S, or G2/M phases identified by fluorescent ubiquitination-
based cell cycle indicators (46). The count expression pro-
file and cell cycle labels are obtained with accession code
GSE64016. Datasets mESC-Quartz and mESC-SMARTer
have 23 and 288 mouse embryonic stem cells (mESCs) se-
quenced by Quartz-seq and SMARTer, respectively (47, 48).
Their GO/G1, S, and G2/M phases are labeled by Hoechst
staining. The count expression profiles and cell cycle la-
bels are obtained with accession codes GSE42268 and E-
MTAB-2805. Datasets 3Line-qPCR_H9, 3Line-qPCR_MB,
and 3Line-qPCR_PC3 own 227 H9 cells, 342 MB cells, and
361 PC3 cells, respectively. The cell cycle stages GO/G1, S,
and G2/M are marked by Hoechst staining (32). The raw
log2 count expression profiles and cell labels are from the
paper’s dataset S2. The imputation and dimension reduction
are conducted by SMURF (49) and UMAP (26). We adopt
Seurat (44) for differential expression analysis as described
above. Cell-cell communication analysis is conducted with
CellChat (45) with default database and parameters. Any
ligand-receptor interaction with less than ten supporting cells
is filtered. Gene Ontology (GO) is performed with ShinyGO
0.76 (50).

scDNA data. We collect seven scDNA datasets (Supplemen-
tary Table S1). Navin_T10 contains 100 cells from a ge-
netically heterogeneous (polygenetic) triple-negative breast
cancer primary lesion T10, including five cell subpopula-
tions: diploid (D), hypodiploid (H), aneuploid 1 (A1), ane-
uploid 2 (A2), and pseudo-diploid (P) (51). Navin_T16
holds 52 cells from genetically homogeneous (monogenetic)
breast cancer primary lesion T16P and 48 cells from its liver
metastasis T16M, including four cell subpopulations: diploid
(D), primary aneuploid (PA), metastasis aneuploid (MA), and
pseudo-diploid (P) (51). The Ginkgo copy number varia-
tion (CNV) profiles of Navin_T10 and Navin_T16 are down-
loaded from http://gb.cshl.edu/ginkgo (52). The
silver standard array comparative genomic hybridization
(aCGH) data of Navin_T10 and Navin_T16 are downloaded
with GEO accession code GSE16607 (53).

Dataset 10x_breast_SO is a large-scale 10x scDNA-seq set
without known cell population labels, where 10,202 cells
from five adjacent tumor dissections (A, B, C, D, and E)
of triple-negative breast cancer are sequenced. The Bam
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files are downloaded from 10x official site https://www. as
l10xgenomics.com/resources/datasets. We in- e
ferred the total CNV profile utilizing Chisel (54). 447
Ni_CTC sequenced 29 circulating tumor cells (CTCs) across s
seven lung cancer patients (55). McConnel_neuron profiles ss
110 cells from human frontal cortex neurons, with an exten- 4so
sive level of mosaic CNV gains and losses (56). Lu_sperm ss:
sequenced 99 sperm cells with chrX-bearing, chrY-bearing, ss2
and aneuploid groups (57). Wang_sperm performed single- «ss
cell sequencing on 31 sperm cells with CNV gains and losses s4
(58). The Ginkgo CNV profiles of these datasets are down- ss
loaded from http://gb.cshl.edu/ginkgo (52). 456

457

SCATAC and scRNA-scATAC multiome data. We collect three
public scATAC-seq data as benchmarking sets with gold stan-
dard cell type labels (Supplementary Table S1). scatac_6cl is ,,,
a mixture of six cell lines (BJ, GM12878, H1-ESC, HL60,

K562, and TF1) with 1224 cells (59). Hematopoiesis owns ae1
2210 single-cell chromatin accessibility profiles from eight 4.
human hematopoiesis cell subpopulations (CLP, CMP, GMP, 4
HSC, LMPP, MEP, MPP, and pDC) (60). T-cell composes scs
of four T-cell subtypes (Jurkat_T_cell, Naive_T_cell, Mem- s
ory_T_cell, and Th17_T_cell) with a total of 765 cells (61). 4ss
We collect a multiome of scRNA and scATAC dataset PBMC 7
(human peripheral blood mononuclear cells) with 10,032 s
cells across fourteen cell types. 469
We downloaded the scOpen (62) processed accessibility 47
profiles and cell labels from https://github.com/ 4
Costalab/scopen—-reproducibility. UMAP (26) s
embedded data are used to construct the KNN graphs for each «7
dataset. We adopt Cicero (63) to explore the dynamically ac- 474
cessible element status in different scatac_6¢cl GM 12878 cell 475
clubs. 476

477
Evaluating cell subpopulation detection. To detect cell sub- .,

populations, some clustering methods require the number of
clusters prespecified, while others can determine the number ,
of clusters automatically. The SEAT package supports both.
Our package requires no prespecified number of clusters by
default, that is, SEAT(sub). If the number of clusters required
is k, we denote the method as SEAT(k). When the context is s
clear, we refer to them as predefined-k and auto-k modes, re- .
spectively.

In the predefined-k mode, we access the clustering accu- .
racy of SEAT agglomerative hierarchy and divisive hierarchy g,
with predefined cluster number £k given by the actual num-
ber of ground truth cell types, namely Agglo(k) and Divi-
sive(k). We regard the clustering result with a lower struc- ,,
ture entropy from agglomerative and divisive hierarchies as ,q
SEAT(k). Baselines are hierarchical clustering (HC) with
four linkage strategies (ward, complete, average, and sin- «s
gle) (12), K-means (11), and spectral clustering (10). We run «s
them with default parameters. As the leading tool for single- 49
cell clustering, Louvain (13) and Leiden (14) automatically ass
detect how many communities are inside the cell-cell simi- s
larity graph. They obtain different numbers of communities o7
at various resolutions. To benchmark Leiden and Louvain in 4es
the predefined-k setting, namely Leiden(k) and Louvain(k), 49

85

we heuristically adjusted the resolution 20 times to see if the
number of communities was the same as the predefined clus-
ter number k.

As the predefined k£ is undetermined in most real-world sce-
narios, we evaluate the auto-k clustering efficacy of SEAT
cell hierarchy, agglomeration hierarchy, and divisive hier-
archy, namely SEAT(sub), Agglo(sub), and Divisive(club).
The baselines are Leiden and Louvain with default parame-
ters. We also assess the clustering obtained from agglomer-
ative and divisive hierarchy clubs, namely Agglo(club) and
Divisive(club).

Adjusted Rand index (ARI) (64) and adjusted mutual in-
formation (AMI) (65) are adopted as clustering accuracy.
They measure the concordance between clustering results
and ground truth cell types. Perfect clustering has a value
of 1, while random clustering has a value less than or near 0.

Evaluating cell cycle pseudo-time inference. SEAT cell hier-
archy, agglomerative hierarchy, and divisive hierarchy gen-
erate cell orders representing the cell cycle pseudo-time for
scRNA data, namely, SEAT(order), Agglo(order), and Divi-
sive(order). We access the pseudo-time inference accuracy
of SEAT given by the actual order of ground truth cell cy-
cle phases. Benchmark methods are hierarchical clustering
(HC) with four linkage strategies (ward, complete, average,
and single) (12), since an in-order traversal of HC hierarchies
also generates cell orders. Furthermore, we benchmark our
method with four state-of-the-art tools predicting the cell cy-
cle pseudo-time, CYCLOPS (15), Cyclum (16), reCAT (17),
and CCPE (18). We run them with default parameters. CCPE
fails the tasks when we follow its GitHub instruction, so we
exclude CCPE for final comparison.

The change index (CI) is used to quantitatively assess the ac-
curacy of cell pseudo-time order against known cell cycle
phase labels (17). An ideal cell order changes label k£ —1
times, where k& = 3 is the ground truth cell cycle phase num-
ber. The change index is defined as 1 — % where ¢
counts the frequency of label alters between two adjacent
cells, and n is the number of cells. A value of 0 suggests
the cell order is utterly wrong with ¢ = n — 1, while 1 indi-
cates a complete match between cell order and ground truth
cell cycle phase with ¢ =k — 1.

Evaluating hierarchical visualization. We evaluate the effi-
cacy of SEAT hierarchical visualization, SEAT(viz), with
state-of-the-art visualization tools UMAP (26), TSNE (27),
and PHATE (28). The dense cell-cell similarity graph G is
used as input, UMAP, TSNE, and PHATE are run with de-
fault parameters.

Evaluating cell outlier detection. We simulate the gene ex-
pression profiles of 500 cells with five subpopulations using
Splatter (66). We randomly produce 20 cell outliers with
gene expression disparting from all five subpopulations. We
evaluate SEAT cell subpopulation detection 1) with and with-
out the average kNN outlier detection; ii) with different com-
binations of parameters (nearest neighbor number, distance
cutoff, and distance percentile cutoff). The outliers are con-

Chen et al.
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sidered as a distinct group, thus the ARI and AMI are used to sss
measure the clustering accuracy. 556

557

Results 556

559
Overview of SEAT. SEAT builds a cell hierarchy annotated
with global-subpopulation-club-cell layers computationally
from single-cell data (Fig. 1). First, SEAT constructs a pair
of dense and sparse cell-cell similarity graphs with a full-
dimensiona or dimensionally reduced single-cell molecular .,
profile as input (Fig. 1 A). Second, we detect cell clubs, de-
termine the order of cells within each cell club, and build the
pseudo club hierarchies by minimizing the structure entropy ,,,
of the sparse graph with agglomerative (Agglo) and divisive
(Divisive) heuristics (Fig. 1B, Methods). We term the cell
clubs and orders derived from agglomerative and divisive hi-
erarchies as Agglo(club), Agglo(order), Divisive(club), and *”°
Divisive(order). Next, we use dynamic programming to find *"
optimal subpopulations from agglomerative and divisive hi- **
erarchies, namely, Agglo(sub) and Divisive(sub). We choose °
the hierarchy carrying the lower subpopulation structure en-*’
tropy as the final cell hierarchy (Fig. 1C, Methods). Hence, ¥
SEAT outputs the final cell hierarchy carrying with subpop- *
ulations, clubs, and orders, namely, SEAT(sub), SEAT(club), *”’
and SEAT(order) (Fig. 1A). Furthermore, by incorporating *"°
hierarchical cell partition layers, SEAT provides a compo-*"
nent, SEAT(viz), to embed cells into a low-dimensional space 8
while preserving their nested structures for improved visual- *
ization and interpretation (Fig. 1A). oo

2

8

569

73
4
5

6

0

583

Cell hierarchy catalogs functional diversity at the sub-**
population and club level from scRNA data. We have *®
applied SEAT to nineteen scRNA datasets carrying gold **
standard cell type labels. The first nine sets are cell line **
mixtures, including p3cl (31), 3Line-gPCR (32), sc_10x,**
sc_celseq2, sc_dropseq, sc_10x_5cl, sc_celseq2_5cl_pl, %9
sc_celseq2_5cl_p2, and sc_celseq2_5cl_p3 (33). We have *
four datasets Yan (34), Deng (35), Baise (36), and™"
Goolam (37) which sequence single cells from human or **
mouse embryos at different stages of development (zygote, **
2-cell, early 2-cell, mid 2-cell, late 2-cell, 4-cell, 8-cell, 16-**
cell, 32-cell, early blast, mid blast, and late blast). The last *®
six datasets are Koh (38), Kumar (39), Trapnell (40), Blake- **
ley (41), Kolodziejczyk (42), and Xin (43), which profile dif- **
ferent cell types in single-cell resolution. To access the ef-**
ficacy of SEAT in cell subpopulations detection, we utilize *
the adjusted rand index (ARI) (64) and adjusted mutual in- *
formation (AMI) (65) as clustering accuracy and benchmark *'
SEAT with state-of-the-art clustering tools (spectral cluster- *
ing (10), K-means (11), hierarchical clustering (12), Lou-
vain (13), and Leiden (14)) with predefined-k and auto-k **
modes (Methods, Supplementary Fig. S1-S3). In predefined- **
k mode, SEAT(k) demonstrates comparable or higher cluster- **
ing accuracy compared to other clustering baselines on most *”
datasets (Fig. 2A). Notably, Louvain(k) and Leiden(k) are eos
unable to generate a clustering that exactly matches the num- sos
ber of ground truth labels after 20 different resolution trials st
for the Goolam and Kolodziejczyk (Fig. 2A and Supplemen- 611

0

3

9

0

2

3
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tary Fig. S2). Under the auto-k mode, SEAT(sub) outper-
forms Louvain and Leiden on all nineteen sets. The clus-
tering accuracies of SEAT(sub) are comparable to or better
than the best clustering results with predefined-k clustering
tools with the ground truth cluster number provided. This
is attributed to the fact that SEAT(sub) finds a cluster number
close to the ground truth (Fig. 2 B). Louvain and Leiden have
the lowest clustering accuracy because they prefer more clus-
ters. The two-dimensional data embedded by UMAP from
full-dimensional single-cell expression profiles are inputs of
all clustering tools; and the visualizations of them show that
the ground truth labels are mixed for the majority of datasets
(Supplementary Fig. S4-S5), explaining the low clustering
accuracy of both predefined-k and auto-k clustering tools.

SEAT offers hierarchical structures of cells to study cellular
functional diversity. We leverage differential gene expres-
sions to investigate the biological interpretations of these hi-
erarchies. In Supplementary Fig. S6-S7, differentially ex-
pressed genes (p < 0.05) between cell hierarchy clubs re-
veal distinct patterns that match ground truth cell subpop-
ulations. Furthermore, visible marker gene patterns reveal
the functional diversity among cell clubs within one cell sub-
population. We focus on the top five differentially expressed
genes for each dataset (Supplementary Fig. S8-S11). As
the subpopulation detection accuracy of agglomerative hier-
archy is 1 for p3cl dataset, we investigate the functional di-
versity revealed from the agglomerative hierarchy other than
the divisive hierarchy. The agglomerative hierarchy revealed
three cell subpopulations for p3cl, which correspond to the
three ground truth cell types, basal (KRT81), luminal (TFF1),
and fibroblast (COLIA2 and VIM) (Fig. 2D). We observe
that each of the basal, luminal, and fibroblast has two major
subclasses, controlled by the expression of cell cycle genes
(HISTI1H4C, CDC20, CCNB1, and PTTGI). Cell-cell com-
munication analysis finds a total of 109 significant (p < 0.05)
ligand-receptor (LR) pair interactions among seven agglom-
erative hierarchy clubs for breast cancer basal-like epithelial
cell line in p3cl. The LR interactions belong to nine signaling
pathways AGRN, CD99, CDH, EGF, JAM, LAMININ, MK,
NECTIN, and NOTCH (Fig. 2D and Supplementary Fig.
S12). In particular, there is a distinct breast cancer cell club
(basal-club0) that drives AREG -EGFR, an oncogenic signal-
ing (67) in breast cancer, to all basal cells, resulting in a high
level of AREG activated EGFR expression (Fig. 2E). The two
cell clubs from the luminal subpopulation have six significant
(p < 0.05) LR interactions involving MK, SEMA3, and CDH
signaling pathways (Supplementary Fig. S13). The fibrob-
last has three significant (p < 0.05) LR interactions, includ-
ing two signaling pathways FN1 and ncWNT (Supplemen-
tary Fig. S13). The cell club fibro-club10 release WNT5SB
and then bind FZD?7 from fibro-club9, consistent with the ob-
servation that ncWNT is the predominant signaling pathway
in skin fibroblasts (45).

Visualizations of two-dimensional data by UMAP from full-
dimensional single-cell expression profiles reveal a dense
layout (Supplementary Fig. S4-S5). The ground truth
cell subpopulations are indistinctly separated in some high
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Fig. 2. Applying SEAT on nineteen scRNA datasets. A. The adjusted rand index (ARI) and adjusted mutual information (AMI) of predefined-k and auto-k clustering tools.
The best scores are colored red for each dataset in predefined and auto clustering benchmarking separately. If SEAT gets second place, we color the score orange.
Spectral: spectral clustering. HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single, average, complete, and ward linkage. Louvain(k)
and Leiden(k): Louvain and Leiden in predefined-k mode. Divisive(k) and Agglo(k): the cell subpopulations from divisive and agglomerative hierarchy in predefined-k mode.
SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode. Divisive(club) and Agglo(club): the cell clubs from the divisive and agglomerative hierarchy.
Divisive(sub) and Agglo(sub): the cell subpopulations from divisive and agglomerative hierarchy in auto-k mode. SEAT(sub): the optimal subpopulations from SEAT cell
hierarchy in auto-k mode. B. The number of subpopulations detected for auto-k clustering tools. C. The top five differentially expressed genes in agglomerative hierarchy
clubs for p3cl. D. The cell-cell communications among seven agglomerative hierarchy clubs for breast cancer basal-like epithelial cell line in p3cl. LR: ligand-receptor. E-F
SEAT(viz), UMAP, TSNE, and PHATE plots for p3cl and sc_10x_5cl. The cells are colored with subpopulations, clubs, and ground truth. The gray and black circles in the
SEAT(viz) plot indicate the subpopulation and club boundaries, respectively. In UMAP, TSNE, and PHATE plots, the red circles mark the unclearly segregated cell clubs.
SEAT(viz): the hierarchical visualization from SEAT cell hierarchy.
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clustering accuracy datasets, and the cell clubs are densely s«  whether SEAT hierarchical visualization eliminates the dense
arranged in each subpopulation clump. Here, we checkes layout of clubs. We use the cell-cell graph constructed by
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SEAT as input and execute SEAT(viz), UMAP, TSNE, and 7
PHATE, independently. In Fig. 2E-F and Supplementary Fig. ¢7
S14-S18, SEAT(viz), UMAP, TSNE, and PHATE separate &7
the ground truth cell type for most datasets. It should be noted 7
that the patterns from SEAT (viz), UMAP, TSNE, and PHATE ¢
also correspond to the subpopulation layer annotations, vali- e7s
dating SEAT subpopulation finding efficacy. At the cell club e7s
level, SEAT(viz) show a clear layout of cell clumps that cor- eso
respond to the cell hierarchy; each cell club owns a distinct ess
clump, and the distance between clubs belonging to the same es2
subpopulation is within proximity. Although UMAP, TSNE, e
and PHATE capture the local structures of the clubs, the cell ssa
clubs marked with red circles are unclearly segregated. 685

686
Cell hierarchy deciphers periodic cell cycle pseudo- .

time from single-cell data. We collect six scRNA cell
cycle datasets, HI-hESC (46), mESC-Quartz (47), mESC-
SMARTer (48), 3Line-qPCR_H9, 3Line-qPCR_MB, and
3Line-qPCR_PC3 (32) with gold standard GO/G1, S, or,
G2/M stages and build the cell hierarchies (Supplementary .,
Fig. S19). In predefined-k and auto-k clustering benchmark- ..,
ing (Supplementary Fig. S20), SEAT illustrates higher or,
comparable clustering accuracy in the six datasets. SEAT
predicts the optimal number of clusters closest to ground .,
truth three, while Leiden and Louvain generally predict more .,
clusters than SEAT. Further investigation shows that ground
truth labels are mixed or not distinctly separated in two- .,
dimensional data derived by UMAP for all datasets (Sup-,,
plementary Fig. S21), explaining the poor performance of
3Line-qPCR data. Likewise, hierarchical visualization plots
depict nested layouts corresponding to the cell hierarchies ,,
in visualization refinement experiments (Supplementary Fig. .,
S22). 05
If we order the cells in cycling progress, cells from the same ,,
phase should be lined up adjacently as they share higher sim- ,
ilarity. Thus, the cell order obtained from an ideal hierarchy .,
could present a periodic pseudo-time order for cell cycle data.

We visualize the cell order periodically with an oval plot, the 7
placements of the cells in the oval represent their pseudo- 7o
time in the cell cycle (Fig. 3A and Supplementary Fig. S23). 711
We access the cell ordering accuracy with the change index 7+
(CI) (17), which computes how frequently the gold standard 713
cell cycle phase labels switch along the cell order. The bench- 714
mark methods are four conventional HC strategies (12) that 71
offer a cell order. We also recruit state-of-the-art tools dedi- 716
cating to predict the cell cycle pseudo-time, CYCLOPS (15), 717
Cyclum (16), reCAT (17), and CCPE (18). SEAT demon- 71
strates the highest ordering accuracy for all datasets, except 71
for 3Line-qPCR_PC3, where SEAT wins the top two (Fig. 72
3B). We exclude CCPE as it fails the tasks. In all, this sug- 7:
gests that cell hierarchy obtained from SEAT facilitates the 72
cell cycle pseudo-time order inference. 723
SEAT orders cells in HI-hESC, mESC-Quartz, and mESC- 72
SMARTer alongside the oval that closely matches the GO/G1- 725
S-G2/M cycle (Fig. 3A). Differential expression analysis 72
among ground truth phases reveals distinct cell cycle phase 7
markers (Supplementary Fig. S24). These visible cell cy- 7
cle marker patterns remain consistent when rearranging with 7z
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SEAT cell order (Supplementary Fig. S25). The top 20 dif-
ferential expression genes (p < 0.05) for hESC and mESC
cells include well-known cell cycle markers UBE2C, TOP2A,
CDK1, and CCNBI (Supplementary Fig. S26). Their expres-
sions rise progressively with SEAT recovered pseudo-time
order and are peaked with significant fold changes at the M
phase (Fig. 3C).

In H9, MB, and PC3 cell lines, the cell orders in the S and
G2/M phases are partially arranged compared to the exact
time course (Fig. 3A). The differential expression makers of
ground truth phases show that there are sub-patterns within
the S and G2/M phases. Moreover, there are similar patterns
shared between the S and G2/M phases (Supplementary Fig.
S24), suggesting the cause of poor performance in pseudo-
time ordering. Interestingly, after rearranging the marker ex-
pression heatmap with SEAT cell hierarchy, we observe dis-
tinct marker gene patterns among SEAT discovered cell sub-
populations (Supplementary Fig. S25). For the H9 cell line,
SEAT detected four cell subpopulations (Fig. 3D), GO/G1
phase corresponds to sub2. Cell cycle S and G2/M phases to-
gether have three cell subpopulations, sub0, subl, and sub3.
The top 20 differential expression genes (p < 0.05) exhibits
two groups (Fig. 3D). The genes from the first group are en-
riched in GO cell cycle signaling pathways. The genes from
the second group are enriched in GO chemokine-mediated
signaling and immune response pathways with CXC and IL
gene families, respectively (Supplementary Fig. S27). We
demonstrate the top 20 differential expression genes for MB
and PC3 cell lines in Supplementary Fig. S26-S27. Finally,
we verify the cellular interactions among cell subpopulations
with cell-cell communication analysis. We find a total of 124,
87, and 77 significant (p < 0.05) LR pair interactions among
cell subpopulations for H9, MB, and PC3 cell lines, respec-
tively. All datasets exhibit CXCL, CCL, COMPLEMENT,
and CD40 signaling interactions among cell subpopulations
(Fig. 3E).

Cell hierarchy detects rare subclones on scDNA data.
SEAT catalogs the clonal subpopulations of solid tumors and
circulating tumor cells in four scDNA datasets. SEAT also
identifies the CN'V substructures of neuron and gamete cells
in three scDNA datasets. Owning to the unique character-
istics of CNV profiles, we only adopt SEAT agglomerative
hierarchy to investigate the functional diversity of CNV sub-
structures.

Navin et al. have profiled 100 cells from a genetically hetero-
geneous (polygenetic) triple-negative breast cancer primary
lesion Navin_T10 (51). Fluorescence-activated cell sorting
(FACS) analysis has confirmed that Navin_T10 carried four
main cell subpopulations: diploid (D), hypodiploid (H), ane-
uploid A (A1), and aneuploid B (A2). Furthermore, Navin ef
al. have reported pseudo-diploid cells (P) with varying de-
grees of chromosome gains and losses from diploids. They
are unrelated to the three tumor cell subgroups (H, Al, and
A2) (51). Therefore, given whole-genome single-cell CNV
profiles as input, we verify whether SEAT and the state-of-
the-art clustering tools identify the four major cell groups and
the rare pseudo-diploid cell group (Fig.4A). In predefined-
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Fig. 3. Applying SEAT on six scRNA cell cycle datasets. A. The oval visualization of cell pseudo-time. From left to right are H1-hESC, mESC-Quartz, mESC-SMARTer, 3Line-
qPCR_H9, 3Line-gPCR_MB, and 3Line-gPCR_PC3. From top to bottom are cell orders obtained from agglomerative hierarchy, divisive hierarchy, and SEAT cell hierarchy;
namely, Agglo(order), Divisive(order), and SEAT (order). B. The accuracy of cell pseudo-time order is measured by change index (Cl) for baseline tools. The best scores are
colored red for each dataset. If SEAT gets second place, we color the score orange. HC(single)(order), HC(average)(order), HC(complete)(order), and HC(ward)(order): the
cell orders from hierarchical clustering with single, average, complete, and ward linkage. C. The normalized expression of M phase marker genes alongside the SEAT cell
order. D. The top 20 differentially expressed genes in G0/G1, S, and G2/M ground truth phases for p3cl, arranged with SEAT cell hierarchy. SEAT(club): the cell clubs from
SEAT cell hierarchy. SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in
auto-k mode. E. The cell-cell communications among SEAT cell subpopulations for H9, MB, and PC3 cell lines.

k mode, SEAT agglomerative hierarchy successfully recog- 74
nizes five cell subpopulations consistent with the patterns of 7
CNV profiles. From top to bottom, the ranks are cancer nor- 7+
mal cell group (D), pseudo-diploid cell subgroups (P), sub- 7s
groups H, and two tumor aneuploid groups, Al and A2 (Fig. 74
4A). Leiden(k) and Louvain(k) fail at this task after 20 dif- s
ferent resolution trials. Four HC strategies and K-means fail 7s1
to distinguish the four pseudo-diploid cells as in the Navin 7
et al.’s HC trial (51). Spectral clustering performs poorly by 7s
mixing tumor and normal cells.
ing algorithms, agglomerative hierarchy identifies five con- 7ss
cordant subpopulations as predefined-k mode. Leiden and 7
Louvain fail with the same sparse cell-cell similarity graph 7
as input. Then, we leverage CNV density signals detected 7ss
by aCGH from FACS identified D, H, Al, and A2 dissec- 75

Regarding auto-k cluster- 75

tions of T10 (53) as silver standard to validate the cluster-
ing result. We calculate the pairwise Spearman correlation
and Euclidean distance (L2-norm) between scaled single-cell
CNV profiles and aCGH CNV signals. As a proof of concept,
the single-cell CNV profiles of three bottom clusters sepa-
rately own higher correlation and lower distance to aCGH
profiles of H, Al, and A2 sections. The cells in the up-
permost subpopulation detected by SEAT have almost zero
correlation and the lowest distance with aCGH D sections,
suggesting that they are diploid cells. Pseudo-diploid cells
illustrate a low correlation with all aCGH sections, validat-
ing their unique CNV profiles. Navin et al. have sequenced
100 cells from a monogenic triple-negative breast cancer tu-
mor and its seeded liver metastasis (Navin_T16) (51). SEAT
clusters the 100 samples into four distinct subpopulations

Chen et al.


https://doi.org/10.1101/2022.08.17.504240
http://creativecommons.org/licenses/by-nc/4.0/

760

761

762

763

764

765

766

767

768

769

770

77

772

773

774

775

776

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.17.504240; this version posted October 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A Agglomerative hierarchy ~ Predefined k Auto k CNV Profile
¥ " |
N 1
1N
i
|
Cluster
2 N c0
[] cl
S c2
s} cg
* o
B c6
c
Section
C 2 2.01 2 2 2
c5 2.98 3.25 3.32 SLEL 3.43 .
5 4 363 353 358 36 36 Plowdy
2 < 392 [JEEEE 43 409 394 8
O 3.54 3.54 3.55 3.56 3
c1 3.6 3.55 3.57
c0 3.6 3.59 3.59 3.58 3.6
A B c D E
Section

Spearman Correlation L2-Norm

Spearman
Correlation

1.00
]

0.50

W -0.26

L2-Norm
320

310
300
290

[N

758!
S

s 7
- 7]

cil

c2 D2

3I i [ BRI ) B DI | D
c!

A4 ON
c4 c4

c5 C5

Fig. 4. Applying SEAT on scDNA datasets. A. The analysis result of Navin_T10. From left to right is the SEAT agglomerative hierarchy, subpopulation detecting results
for predefined-k (kK = 5) and auto-k clustering tools, the whole genome single-cell CNV heatmap of T10, the Spearman correlation, and Euclidean distance (L2-Norm)
between scaled copy number profiled by scDNA and copy number density profiled by aCGH. Spectral: spectral clustering. HC(single), HC(average), HC(complete), and
HC(ward): hierarchical clustering with single, average, complete, and ward linkage. Louvain(k) and Leiden(k): Louvain and Leiden in predefined-k mode. Agglo(k): the cell
subpopulations from agglomerative hierarchy in predefined-k mode. Agglo(club): the cell clubs from the agglomerative hierarchy. Agglo(sub): the cell subpopulations from
agglomerative hierarchy in auto-k mode. B. The stacked area plot illustrates the SEAT subpopulations across 10x_breast_SO0 tumor sections. Cluster c6 (blue) signifies the
diploid cells. C. The mean ploidy of SEAT subpopulations across 10x_breast_S0 tumor sections. D. The whole-genome single-cell CNV heatmap of SEAT subpopulations
across 10x_breast_SO0 tumor sections. The black boxes highlight the mutually exclusive amplification events on chr3 and ch4 across subclones.

(Supplementary Fig. S28). Two are primary and metastasis 777
aneuploid cells, corresponding to the published population 77s
structure. Notably, SEAT catalogs diploid cells and pseudo- 77
diploid cells while baseline tools failed. 780
781
We collect a large-scale 10x scDNA-seq dataset s
(10x_breast_S0) without known subclone labels, where 7;
10,202 cells from five adjacent tumor dissections (A, B, C, 7
D, and E) of triple-negative breast cancer are sequenced. zgs
We check whether SEAT seizes the substantial intra-tumor g
heterogeneity. In Fig. 4B-D, SEAT automatically detects

seven subpopulations, and the proportions of the cell subpop- 77
ulations vary across the five lesions. The blue subpopulation 7ss
c6 gathers normal cells, with the mean cellular ploidy being 7ss
diploid across all sections. The number of normal cells 750
gradually decreases from sections A to E. SEAT identifies o1
six clonal subpopulations (c0-c5), where c3 manifests the 7e
highest average ploidy. The mutually exclusive amplification 7ss

Chen et al.

events (marked with black boxes in Fig. 4D) on chr3 and
chr4 of subclones c0, cl, c2, and c4, indicate an early
branching evolution which is consistent with the findings of
Wang et al. (68); that is, originated from normal cell group
c6, the earliest subclone could be c¢5, with CN=3 on ch3 and
ch4. Subclone c¢5 derived to subclone cO with amplification
on chr3 (CN=4). Moreover, subclone c5 derived to an
intermediate subclone with amplification on chr4 (CN=4).
Then, the intermediate subclone derived to subclone cl, c2,
and c4 with CN gains on other chromosomes.

Furthermore, SEAT distinguishes cells with CNV gains and
losses in circulating tumor cells of seven lung cancer pa-
tients (55) and in human cortical neurons (56) (Supplemen-
tary Fig. S28). SEAT also detects the loss of hetero-
geneity event, it successfully classifies chrX-bearing, chrY-
bearing, and aneuploid sperm cells (57, 58) (Supplementary
Fig. S28).
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Cell hierarchy dissects the chromatin accessibility ss:
heterogeneity of single-cell data. SEAT dissects chro-

matin accessibility heterogeneity of single cells. We uti-
lize three public scATAC-seq data as benchmarking sets with

gold standard cell type labels. scatac_6cl is a mixture of ®°
six cell lines (BJ, GM12878, H1-ESC, HL60, K562, and ®*
TF1) (59). Hematopoiesis consists of eight types of hu-®®
man hematopoiesis cells (CLP, CMP, GMP, HSC, LMPP, &*
MEP, MPP, and pDC) (60). T-cell composes of four T-cell #7
subtypes (Jurkat_T_cell, Naive_T_cell, Memory_T_cell, and
Th17_T_cell) (61). We collect a multiome of scRNA and #?°
scATAC dataset, PBMC, for peripheral blood mononuclear #°
cells (PBMCs) with 14 cell types. 861

The order of the cells in the agglomerative and divisive hi- .
erarchy is consistent with their ground truth cell types (Sup- .
plementary Fig. S29). The clustering accuracies of SEAT o
against its baselines are in Fig. 5A. In predefined-k mode, .
SEAT(k) demonstrates the highest clustering accuracies on e
scatac_6cl and T-cell sets. For auto-k clustering, SEAT(sub) %7
beats Louvain and Leiden on all four sets. For scatac_6cl”
and T-cell, the optimal number of clusters obtained by SEAT e
matches the ground truth, thus yielding the comparable ARI o
against predefined-k clustering algorithms. Leiden and Lou- o
vain have lower performance due to predicting more clusters o
than ground truth (Supplementary Fig. S29). o

52

874
We check whether SEAT reveals the functional diversity of

single-cell chromatin accessibility. We select cells from
scatac_6cl GM12878 cell line, then conduct cis-regulatory
DNA interaction analysis on chr22 for SEAT cell clubl and
club2. Fig. 5B-C depict the cis-regulatory map on chr22
of clubl and club2 cells, respectively. The co-accessibility .,
correlations among peaks of club2 cells are significantly
higher (p < 0.05) than clubl cells (Fig. 5D). Meanwhile, we ,,,
identify 29 and 179 cis-co-accessibility networks (CCANSs) ..
from GM12878-clubl and GM12878-club2, respectively ,,,
(Fig. 5E). The CCANs detected in GM12878-clubl and
GM12878-club2 are heterogeneous. Fig. 5F illustrates
a GM128780-clubl specified CCAN at chr22:20,827,398- a7
21,441,482, The cis-regulatory elements surrounding gene .
SNAP29 are co-accessible only in GM128780-clubl. More- .
over, we found dense pairwise connections among peaks at
chr22:39,778,355-40,451,820 in GM12878-club2 (Fig. 5G),
harboring genes TABI, MGAT3, MIEFI, CACNAII, EN- ,
THD1, GRAP2, FAMS3F, TNRC6B, etc.

Similar to the scRNA visualization refinement experiments, ses
the SEAT(viz) reveals a clear pattern of cells corresponding sss
to ground truth; and the nested layouts of subpopulations and sss
clubs are clearly illustrated with gray and black circles (Fig. ss7
5H-I and Supplementary Fig. S30). However, UMAP visual- sss
izations derived from high-dimensional data mix ground truth sss
cell subpopulations in one clump (Supplementary Fig. S29). o0
Furthermore, UMAP, TSNE, and PHATE visualizations de- s
rived from cell-cell similarity graphs fail to place cells from s
K562 (light green) and TF1 (yellow) within the vicinity in s
scatac_6cl; and they fail to place all effector CD8 T cells (ma- sos
genta) together in PBMC (Fig. SH-I). Likewise, the cell clubs sos
marked with red circles are unclearly segregated in UMAP, s

893

TNSE, and PHATE plots.

Discussion

Detecting and visualizing cellular functional diversity is es-
sential in single-cell analysis. Neglection of the underlying
cellular nested structures prevents the capture of full-scale
cellular functional diversity. To address the challenge, we in-
corporate cell hierarchy to investigate the functional diversity
of cellular systems at the subpopulation, club, and cell layers,
hierarchically. The cell subpopulations and clubs catalog the
functional diversity of cells in broad and fine resolution, re-
spectively. In the cell layer, the order of cells further records
the slight dynamics among cells locally. Accordingly, we
establish SEAT to construct cell hierarchies utilizing struc-
ture entropy by diminishing the global uncertainty of cell-
cell graphs. In addition, SEAT offers an interface to embed
cells into low-dimensional space while preserving the global-
subpopulation-club hierarchical layout in cell hierarchy.
Currently, state-of-the-art clustering tools for cell subpopula-
tion or club investigation neglect the underlying nested struc-
tures of cells. Flatten clustering tools, such as spectral clus-
tering (10) and K-means (11), do not support the cell hier-
archy. Although conventional hierarchical clustering (12),
Louvain (13) and Leiden (14) derive cell hierarchy layer by
layer via optimizing merging or splitting metrics, computing
these metrics merely uses single-layer information. When
constructing subsequent layers, they have not incorporated
the built-in cell hierarchy in the previous layers. Structure en-
tropy is a metric that encompasses the previously constructed
internal cell hierarchy. Experiments validate that SEAT de-
livers robust cell-type clustering results and forms insightful
hierarchical structures of cells.

SEAT is good at finding the optimal subpopulation number
with high accuracy. We have collected scRNA, scDNA, and
scATAC profiles with the number of cell types ranging from
2 to 14. SEAT consistently predicts the optimal cluster num-
ber closest to the gold or silver standards, while Louvain and
Leiden predict too many clusters. Especially for scRNA set
Kumar, SEAT boosts the accuracy from 0.34 to 1 compared
to Louvain and Leiden (Fig. 2A). Auto-k clustering mode
of SEAT is comparable to or better than the best clustering
results of predefined-k clustering methods for most datasets.
SEAT specializes in hierarchically deciphering cellular func-
tional diversity at subpopulation and club levels. We ob-
serve visible marker gene patterns that match cell clubs
within one cell subpopulation. For the p3cl set, the basal,
luminal, and fibroblast cell subpopulations have their own
cell clubs, determined by differentially expressed cell cy-
cle genes (HISTIH4C, CDC20, CCNBI, and PTTG]I) (Fig.
2C). Looking at the seven agglomerative clubs for the basal
subpopulation, we find a distinct breast cancer cell club
that drives oncogenic AREG-EGFR signaling in all basal
cells (Fig. 2D), suggesting a promoting role in tumorigen-
esis (67). Cell hierarchy obtained from copy number profiles
of 10x_breast_SO demonstrates a mutually exclusive sub-
clones layout (Fig. 4D), indicating an early branch evolu-
tion (68). Furthermore, we find that there is a club-specified

Chen et al.
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Fig. 5. Applying SEAT on three scATAC datasets and one scRNA-scATAC multiome dataset. A. The adjusted rand index (ARI) and adjusted mutual information (AMI) of
predefined-k and auto-k clustering tools. The best scores are colored red for each dataset in predefined and auto clustering benchmarking. Spectral: spectral clustering.
HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single, average, complete, and ward linkage. Louvain(k) and Leiden(k): Louvain and
Leiden in predefined-k mode. Divisive(k) and Agglo(k): the cell subpopulations from divisive and agglomerative hierarchy in predefined-k mode. SEAT(k): the cell sub-
populations from SEAT cell hierarchy in predefined-k mode. Divisive(club) and Agglo(club): the cell clubs from the divisive and agglomerative hierarchy. Divisive(sub) and
Agglo(sub): the cell subpopulations from divisive and agglomerative hierarchy in auto-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in auto-k
mode. B-D. The co-accessibility score among peak pairs at chr22 for cells at SEAT club1 and club 2 from scatac_6cl GM12878 cell line. E. The number of cis-co-accessibility
networks (CCANs) among pair of peaks at chr22 for cells at SEAT club1 and club 2 from scatac_6cl GM12878 cell line. F. The co-accessibility connections among cis-
regulatory elements in chr22:20,827,398-21,441,482. The height of links signifies the degree of the co-accessibility correlation between the pair of peaks. The top panel
illustrates cells in scatac_6cl GM12878-club1, and the bottom shows cells in scatac_6cl GM12878-club2. G. The co-accessibility connections among cis-regulatory elements
in chr22:39,778,355-40,451,820. The height of links signifies the degree of the co-accessibility correlation between the pair of peaks. The top panel illustrates cells in
scatac_6cl GM12878-club1, and the bottom shows cells in scatac_6cl GM12878-club2. H-1 SEAT(viz), UMAP, TSNE, and PHATE plots of scatac_6cl and PBMC. The cells
are colored with subpopulations, clubs, and ground truth. The gray and black circles in the SEAT(viz) plot indicate the subpopulation and club boundaries, respectively. In
UMAP, TSNE, and PHATE plots, the red circles mark the unclearly segregated cell clubs. SEAT(viz): the hierarchical visualization from SEAT cell hierarchy.

dense co-accessible network of cis-regulatory elements atss genes TABI, MGAT3, MIEF1, CACNAII, ENTHDI, GRAP2,
chr22:39,778,355-40,451,820 in GM12878-club2, harboring 90  FAMS83F, TNRCO6B, etc (Fig. 5G).
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o1 Inferring the periodic pseudo-time for the cell cycle data issss When there are cell outliers presented, the original SEAT
o1z crucial as it reveals the functional diversity of cells under-ss will assign each cell outlier to its nearest cell subpopula-
stz going the cell cycle process. Several tools are dedicated tosn tion. Thus, the downstream biological interpretation may be
ata  cell cycle pseudo-time inference. CYCLOPS (15) and Cy-+1 skewed. To tackle the issue, we provide an optional aver-
s clum (16) utilize deep autoencoders to project expressions= age kNN outlier detection step before constructing the cell
ats  profiles into cell pseudo-time in the periodic process, whichss  hierarchy. In Supplementary Results and Supplementary Fig.
7 act as black boxes and lack explainability. reCAT (17) em-s2 S31-S35, we demonstrate the distance cutoff is more stable
s ploys the Gaussian mixture model to group cells into clusters, s7s than the distance percentile cutoff because the latter heav-
oo and constructs a cluster-cluster graph weighted by the Eu-s ily depends on the ratio of outliers in the whole population.
o0 clidean distance between the mean expression profile of eachs77z  Thus, we set distance cutoff as the default outlier detection
o1 cluster, then takes the traveling salesman path of the cluster-s7s  strategy.

o2 cluster graph as the order. Finding a traveling salesman path g,  The structure entropy evaluates the global uncertainty of ran-
s22s is NP-hard, and no polynomial time algorithms are avail-, dom walks through a network with a nested structure (19).
s able (17). CCPE (18) learns a discriminative helix to rep- ¢, The minimum structure entropy interprets a stable nested
o5 resent the periodic process and infer the pseudo-time. How- o, structure in the network. Li ef al. has used structure en-
o6 ever, we fail to run CCPE according to its GitHub instruc- tropy to define tumor subtypes from bulk gene expression
o7 tion. Moreover, CYCLOPS, Cyclum, reCAT, and CCPE by- 4, data (21) and to detect the hierarchical topologically associat-
w28 pass the nested structure of cells when inferring the pseudo- g ing domains from Hi-C data (22). These works utilize greedy
2o time. In this study, we propose that the cell layer of a hi- g, merging and combining operations to build a local optimal
wo erarchy encodes the pseudo-time of cells for cycling data. o, multi-nary hierarchy and cutting hierarchy roughly by keep-
o We build the hierarchy by minimizing the structure entropy ¢, ing the top layers. As we have proven that a binary hierarchy
we  of the kNN cell-cell graph. The built hierarchy carries the o3  of minimum structure entropy exists for a graph (23), Li et
ws nested structure between individual cells and their ancestral .o, /g strategy to search for a multi-nary hierarchy is not opti-
sas  cell partitions. Then, the order of individual cells is acquired oo, mized. Adopted by Louvain and Leiden, modularity is a pop-
ws  With an in-order traversal of the hierarchy. scRNA data ex-o, ylar optimization metric to capture community structure in a
we emplify that SEAT cell orders outperform CYCLOPS, Cy- 4, single-cell network. Agglo(club) is analogous to Louvain’s
o7 clum, reCAT, and CCPE by accurately predicting the pe-, if we switch the merging metric to modularity. Agglo(club)
we riodic pseudo-time of cells in the cell cycle process. Ings achieves better or comparable clustering performance against
we  hESC and mESC cells, the expressions of M phase marker .., [.ouvain in most benchmark sets (Fig. 2A and Fig. 5A),
w genes UBE2C, TOP2A, CDKI, and CCNBI rise progres-o; suggesting the superiority of structure entropy over modu-
o sively alongside the SEAT recovered order and are peaked o, Jarity in measuring the strength of hierarchically partitioning
w2 at the M phase with significant fold changes (Fig. 3C). 00 anetwork into subgroups. We have discussed the differences

s Visualizing the hierarchical functional diversity of cells imoe and advantages of SEAT against the existing structure en-
ws  biological systems is crucial for obtaining insightful bio-ir tropy and modularity approaches at the algorithmic level in
as logical hypotheses. UMAP (26) intends to maintain theo2 the Supplementary Method.

as  global cell structures by minimizing the binary cross entropy.ws SEAT detects the cell hierarchy, assuming that the entropy
a7 TSNE (27) preserves the local cell structures. PHATE (28)004« codes nested structures of cells. There is no assurance that the
ws tackles the general shape and local transition of cells. How-s resultant cell hierarchy will resemble accurate nested struc-
ws  ever, none of them impart the nested structures of cells intowes tures of cells. SEAT finds a pseudo cell hierarchy of cells.
o0 the visualization. We propose a nonlinear dimension reduc-e7  We show that the pseudo cell hierarchy showcases profound
ss1  tion refinement based on UMAP by incorporating cell hier-s  efficacy and biological insights in subpopulation detection,
sz archy as supervised knowledge. We acquire three cell-cellios cell club investigation, and periodic pseudo-time inference
esa  graphs that only store the intra-connections of cells withinweio for single-cell multiomics benchmarking datasets. In future
o« each global, subpopulation, and club partition. Then, wewnn  work, we aim to refine the algorithm to find a more accurate
oss  minimize the weighted binary cross-entropy of the three cell-i2  and insightful pseudo cell hierarchy.

oo cell graphs. This approach guarantees the global structure of,,;, Recall that the cell hierarchy has multiple layers to present
o7 the cells. Moreover, it ensures that cells within one cell club,,,, cellular heterogeneity. In this study, we merely utilize four
s and cell clubs within one subpopulation are closely placed in,,;;  main layers (global, subpopulation, club, and cell) to inter-
oo the visualization. In contrast, cells from different clubs and,.,; pret and visualize the cellular functional diversity. In the fu-
%o subpopulations are kept at a considerable distance. One can,,,, ture, we intend to investigate possible biological insights and
s adjust the cross-entropy weights of global-subpopulation-cell,,,;  visualization layouts derived from more cell hierarchy layers.
sz layers so that the patterns in visualization retain a desired

. . . 1019
% degree of hierarchy. Exp erupents W,lth SC,RNA aqd SCATAszo hierarchy. There is only a partial order among cells bounded
s data demonstrate that SEAT hierarchical visualization consis- by the cell hierarchy. We plan to refine the algorithm to pro-

= tently produces a clear layout of cell clumps corresponding . videa proper non-partial one-dimensional order, which might

=o the cell hierarchy. 123 infer the nuance of pseudo-time or development trajectory
97 Cellular abnormalities may distort the entire cell hierarchy.ce« among cells outside the periodic cell cycle.

9

9

9

@

Moreover, the order of the cell clubs can be flipped in the cell

14 Chen et al.
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