
Incorporating cell hierarchy to decipher the
functional diversity of single cells
Lingxi Chen1 and Shuai Cheng Li1,*

1Department of Computer Science, City University of Hong Kong, Hong Kong, China
*Corresponding: shuaicli@cityu.edu.hk

Cells possess functional diversity hierarchically. However, most1

single-cell analyses neglect the nested structures while detecting2

and visualizing the functional diversity. Here, we incorporate3

cell hierarchy to study functional diversity at subpopulation,4

club (i.e., sub-subpopulation), and cell layers. Accordingly, we5

implement a package, SEAT, to construct cell hierarchies uti-6

lizing structure entropy by minimizing the global uncertainty7

in cell-cell graphs. With cell hierarchies, SEAT deciphers func-8

tional diversity in 36 datasets covering scRNA, scDNA, scATAC,9

and scRNA-scATAC multiome. First, SEAT finds optimal cell10

subpopulations with high clustering accuracy. It identifies cell11

types or fates from omics profiles and boosts accuracy from 0.3412

to 1. Second, SEAT detects insightful functional diversity among13

cell clubs. The hierarchy of breast cancer cells reveals that the14

specific tumor cell club drives AREG-EGFT signaling. We iden-15

tify a dense co-accessibility network of cis-regulatory elements16

specified by one cell club in GM12878. Third, the cell order17

from the hierarchy infers periodic pseudo-time of cells, improv-18

ing accuracy from 0.79 to 0.89. Moreover, we incorporate cell19

hierarchy layers as prior knowledge to refine nonlinear dimen-20

sion reduction, enabling us to visualize hierarchical cell layouts21

in low-dimensional space.22

Introduction23

Cells in the biological system own functional diversity hier-24

archically, which signifies cell types or states during devel-25

opment, disease, and evolution, up to the biosystem (1, 2).26

The heterogeneity of the cell is observed with nested struc-27

tures (3). In the tumor microenvironment, infiltrated lym-28

phocytes include B cells and T cells. Furthermore, T cells29

can be classified into helper T cells and cytotoxic T cells (4).30

Specific expression of the marker genes CD4 and CD8 will31

strengthen intra-similarity within helper and cytotoxic T32

cells, respectively, resulting in nested cell structures. The33

cellular heterogeneity raised by tumor evolution presents an-34

other instance (5, 6). The copy number gain, neutral, and loss35

classify tumor cells into aneuploid, diploid, and hypodiploid36

groups, respectively. Fluctuations of copy numbers in focal37

genome regions further categorize tumor cells into amplifica-38

tion or deletion subtypes. The cell cycle is a rudimentary bio-39

logical process for cell replications (7). Human cells undergo40

a cycle G1 - S - G2/M - G1 over a 24-hour period, thus the41

cycling cells have three flat phase labels (G1, S, and G2/M).42

In addition, the cycling cells have an order that records the43

pseudo time course in the G1, S, and G2/M phases. The or-44

ders and phase labels reflect a hierarchical structure.45

The recent maturation of single-cell sequencing technolo-46

gies offers opportunities to profile large-scale single cells47

for their transcriptomics (8), genomics (5), epigenomics (9),48

etc. These technologies have blossomed revolutionary in-49

sights into cellular functional diversity under the aegis of50

assigning cells with similar molecular characteristics to the51

same group (1, 2). However, most existing clustering tools52

generate flat cell group (10–14). Moreover, the periodic53

pseudo-time inference tools neglect the hierarchical struc-54

ture of cycling cells (15–18). Neglection of the underlying55

nested structures of cells prevents full-scale detection of cel-56

lular functional diversity.57

To address the issue, we incorporate cell hierarchy to illus-58

trate the nested structure of cellular functional diversity. Cell59

hierarchy is a tree-like structure with multiple layers that cap-60

ture cellular heterogeneity. From the root to the tips, the cel-61

lular heterogeneity decays. This study focuses on four main62

layers: global, subpopulation, club, and cell. The global layer63

is the root that exemplifies the whole cell population, e.g.,64

immune cells. In contrast, the cell groups in the second and65

third main layers resemble cell subpopulations and cell clubs,66

respectively. The cell subpopulation is a broad category of67

cells, such as B cells and T cells (4). Cell clubs within one68

cell subpopulation catalog the cellular heterogeneity in a finer69

resolution; that is, the cells share high functional similarity70

within a single cell club. For example, T cell subpopula-71

tion owns helper and cytotoxic T cell clubs (4). The tip layer72

holds individual cells carrying cell orders, which signify the73

dynamic nuance of cell changes within a cell club, e.g., cellu-74

lar heterogeneity varies along a periodic time course for cells75

undergoing a cycling process (7).76

The actual cell hierarchy is difficult to determine; here,77

we develop SEAT, Structure Entropy hierArchy deTection,78

to build a pseudo cell hierarchy leveraging structure en-79

tropy to characterize the nested structures in cell-cell graphs.80

Structural entropy has been proposed in structural informa-81

tion theory to measure the dynamic global uncertainty of82

complex networks (19), and has benefited several biologi-83

cal fields (20–24). SEAT constructs cell hierarchies using a84

full-dimensional or dimensionally reduced single-cell molec-85

ular profile as input, and delivers the global-subpopulation-86

club-cell layers from the hierarchies. We apply SEAT to87

36 datasets that cover single-cell RNA (scRNA), single-cell88

DNA (scDNA), single-cell assay for transposase-accessible89

chromatin (scATAC), and scRNA-scATAC multiome. SEAT90

detects the functional diversity of these single-cell omics data91

with cell hierarchy from three perspectives: cell subpopula-92
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tion detection, cell club investigation, and periodic cell cycle93

pseudo-time inference.94

Visualizing the functional diversity of single cells is essential95

since visual inspection is the most direct approach to studying96

the structure and pattern of cells. Nonlinear dimension reduc-97

tion is a trending visualization method for high-dimensional98

biological data (25). Nevertheless, state-of-the-art single-cell99

visualization tools neglect the nested structure of cells by100

merely capturing at most two levels (global or local) of cell101

patterns (26–28). To tackle the issue, SEAT provides a com-102

ponent to embed the cells into a low-dimensional space by103

incorporating the multiple layers from the cell hierarchy as104

prior knowledge. Experiments demonstrate that SEAT con-105

sistently visualizes the hierarchical layout of these cells in the106

two-dimensional space for the above single-cell datasets.107

Method108

Problem formulation.109

Constructing cell-cell similarity graph. For a single-cell110

molecular data tabulated in a matrix, columns and rows re-111

fer to cells and their molecular features. For instance, the112

feature can be a gene or genome region. An entry in the ma-113

trix measures the value of the corresponding cell-feature pair,114

e.g., gene expression, copy number variation, or chromatin115

accessibility.116

We reduce the dimensionality of the single-cell molecu-117

lar matrix to a low-dimensional matrix X to mitigate the118

curse of dimensionality. We construct a dense cell-cell119

similarity graph G = (V,E) with Gaussian kernel euv =120

exp(− ||xu−xv||2
2σ2 ) with σ as standard deviation of X . Edge121

weight euv stands for the similarity between cells u and v in122

graph G.123

Hierarchical coding tree. A coding tree T of a cell-cell graph124

G = (V,E) is a hierarchical multi-nary partitioning of the cell125

set V , preserving the nested information in G. For clarity, we126

use u and v to represent the cells and µ and ν to represent127

tree nodes. Each tree node µ ∈ T codes a cell subset U ⊂ V .128

Denote the cell set coded by a node µ ∈ T as V (µ). The129

root node r codes V and node µ codes U , i.e., V (r) = V and130

V (µ) = U . Denote the children of µ as C(µ). The children131

nodes C(µ) of the tree node µ ∈ T partition the cells repre-132

sented by µ; that is, V (µ) =
⋃|C(µ)|

i=1 V (ci(µ)),V (ci(µ)) ∩133

V (cj(µ)) = ∅,1 ≤ i, j ≤ |C(µ)|, i ̸= j, where ci(µ) signi-134

fies the i-th child node of µ and | · | denotes cardinality. A135

leaf node t codes one or multiple cells with a specific order136

π(t) ∈ N|V (t)|. For each cell u ∈ V there is a unique leaf137

node t ∈ T such that {u} ⊆ V (t).138

Coding tree represents the hierarchy of subpopulations,139

clubs, and cells. Given a pool of cells V which own k cell140

subpopulations, an ideal coding tree T holds k disjoint sub-141

trees rooted at nodes Λ = {λ1, ...,λk} which encode k cell142

sets P = {V (λ1), ...,V (λk)} that match the cell subpopula-143

tions. Denote the subtree Tλ ⋐ T rooted at λ as subpopu-144

lation tree. Suppose Tλ has ℓλ leaves {tλ,1, ..., tλ,ℓλ
}, they145

encode ℓλ cell sets {V (tλ,1), ...,V (tλ,ℓλ
)} that represent cell146

clubs inside cell subpopulation V (λ) in a finer resolution;147

that is, the cells share high similarity inside one cell sub-148

population. In coding tree T , the total ℓ leaves signify the149

ℓ cell clubs C = {V (tλ1,1), ...,V (tλk,ℓλk
)}. Moreover, as150

cells in each cell club t has a specific order π(t) ∈ N|V (t)|,151

the ideal coding tree T also presents an overall cell order152

π = [π(tλ1,1), ...,π(tλk,ℓλk
)] ∈ N|V | according to the order153

of leaves from left to right.154

Determining the hierarchy of subpopulations, clubs, and cells155

is now a hierarchical coding tree construction problem - par-156

titioning the graph G hierarchically to optimize a metric. In157

this work, the metric is the global dynamical complexity of158

the graph measured by structure entropy (19–24).159

Measuring coding tree with structure entropy. Recall euv

is the edge weight between cells u and v for G. Term
the volume of µ ∈ T as the sum of degrees of all cells in
V (µ), vol(µ) =

∑
u∈V (µ),v∈V euv . Define g(µ) as the total

weights of edges from cells in V (µ) to V − V (µ), g(µ) =∑
u∈V (µ),v∈V −V (µ) euv . If µ ̸= r, its structure entropy is

ST (G;µ) = − g(µ)
vol(G) log2

vol(µ)
vol(p(µ)) , (1)

where p(µ) is the parent node of µ, vol(G) =
∑

u,v∈V euv is160

the sum of all the edges in the graph, thus vol(G) = vol(r)161

signifies the volume of the whole graph or the root r. The162

root r has structure entropy 0; that is, ST (G;r) = 0.163

Denote t(u) as the leaf node where cell u belongs to, the
structure entropy of cell u in T is

ST (G;u) = − g(u)
vol(G) log2

vol(u)
vol(t(u)) . (2)

The structure entropy of graph G coded by tree T is the sum
of the structure entropy of all tree nodes and all cells,

ST (G) =
∑
µ∈T

ST (G;µ)+
∑
u∈V

ST (G;u). (3)

An ideal coding tree T captures the optimal hierarchy of sub-164

populations, clubs, and cells. Finding the optimal coding tree165

T for the graph G is to find the minimum structure entropy166

ST (G) which diminishes the global variance at the random167

walk of G to a minimum.168

Algorithm of SEAT. In previous work, we have proven that169

for a graph G, there exists a binary hierarchy of minimum170

structure entropy (23). Thus, SEAT searches the ideal cod-171

ing tree T from the binary hierarchies (Fig. 1A). We first172

construct a sparse graph Gs from dense graph G, then form173

cell club hierarchies with minimal structure entropy ST (Gs)174

from sparse graph Gs with agglomerative and divisive heuris-175

tics. Then, we search the cell subpopulations by optimizing176

the structure entropy of the dense graph G constrained by the177

heuristic hierarchies. Finally, we embed the graph G into a178

low-dimensional space by adding the global-subpopulation-179

club layer constraints from cell hierarchy T .180
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Graph sparsification. We sparsify the dense graph G with k-181

nearest neighbors (kNNs), resulting in a sparse graph Gs =182

(V,Es) with a binary edge weight. If cell u is the k-nearest183

neighbor of cell v or cell v is the k-nearest neighbor of cell u184

in original graph G, euv = 1; otherwise euv = 0.185

Building cell club hierarchy. With the sparse graph Gs, we186

form cell club hierarchies with minimal structure entropy187

ST (Gs) with agglomerative and divisive heuristics (Fig. 1B).188
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Agglomerative hierarchy building The agglomerative hier-189

archy building consists of three steps: initialization, forming190

clubs, and building club hierarchy.191

We initialize the tree of height one, the root node r has |V |192

immediate children, where each child node t is a leaf node193

that covers a single cell of u, V (t) = {u}. The initialized tree194

is multi-nary.195

We merge the leaf nodes repeatedly to form cell clubs. A leaf196

has one of the two possible statuses at each iteration, indi-197

vidual or merged. Initially, all the leaves are labeled as indi-198

vidual. Two tree nodes µ and ν are referred to connected if199

there are inter-node edges between V (µ) and V (ν) in sparse200

graph Gs. We merge an individual leaf µ with its connected201

sister ν by extracting µ and ν from T and creating a new202

node µ′ which codes all cells in V (µ) and V (ν). The new203

node µ′ is a child of root and a leaf labeled as merged. The204

pair (µ,ν) is chosen by the largest merging structure entropy205

change ∆m
se(µ,ν) (Supplementary Methods). This merging206

operation repeats until i) there is no more individual leaf con-207

nected to other sister leaves; or ii) there is no pair (µ,ν) yields208

a non-negative structure entropy difference. Then, all leaves209

are labeled individual, triggering subsequent iterations of the210

merging procedure until no non-negative structure entropy211

shift is possible. The above will lead to a multi-nary coding212

tree T of a height of one and ℓ leaves. We assume each leaf213

presents a cell club, and the cell order is the merging order.214

To form the binary hierarchy of clubs, we iteratively combine215

sister node pair (µ,ν) of the root by inserting a new node ω216

as a child of the root and parent of µ and ν. The selection217

of (µ,ν) is guided by connectivity and the largest combining218

structure entropy change ∆c
se(ω,µ,ν) (Supplementary Meth-219

ods). The combining operation repeats until the hierarchy is220

a binary coding tree.221

Divisive hierarchy building The second approach is to222

build the club hierarchy divisively. We initialize the tree with223

the root node r that codes all cells. The initialized tree has224

a zero height, with one node as both root and leaf. To form225

the hierarchy, we repeatedly split the leaf node t ∈ T into two226

children guided by maximizing the bipartition structure en-227

tropy change ∆s
se(t). The solution of leaf split is the Fielder228

vector of the normalized graph Laplacian if the sparse graph229

Gs is regular (Supplementary Methods). Thus, we heuristi-230

cally obtain the bipartition according to the sign of values in231

Fielder vector (29), the cells with smaller Fielder vectors are232

placed on the left. The split stops if leaf node contains only233

two cells or ∆s
se < δ, we set cutoff δ = 0.05. We assume that234

each leaf presents a cell club, and the value of Fielder vec-235

tor reflects the cell order. Finally, we end up with a binary236

hierarchy T with ℓ clubs.237

Finding cell subpopulations. Recall that an ideal coding238

tree T holds k disjoint subpopulation trees rooted at239

nodes Λ = {λ1, ...,λk} which encode k cell sets P =240

{V (λ1), ...,V (λk)} that match the cell subpopulations. To241

find the k subpopulations, we contract the heuristic club hi-242

erarchy T into a multi-nary tree T with a height of one243

(Fig. 1C). The contracted tree T has a root node r holding244

k leaf children. Each leaf node tλ ∈ T maps to a subpopula-245

tion tree Tλ ⋐ T rooted at λ, thus tλ codes the cells from Tλ,246

p(tλ) = r,V (tλ) = V (λ).247

Given the heuristic club hierarchy T , contracting is opti-248

mized by minimizing the structure entropy ST (G) from249

dense graph G. The structure entropy associated with con-250

tracted tree T with k leaves focuses on measuring the global251

variance at the random walk of a dense graph G among k252

subpopulations, other than the variance in a finer cell-club253

resolution,254

ST (G) =
∑
λ∈Λ

ST (G; tλ)+
∑

u∈V (tλ)
ST (G;u)

 . (4)

To minimize ST (G), we adopt a recursive objective255

J (G;ω,k) alongside the club agglomerative or divisive hier-256

archy T . Assume tree node ω in T has left and right children257

µ and ν, respectively. Finding k optimal subpopulation trees258

inside subtree Tω ⋐ T rooted at ω with minimum J (G;ω,k)259

is equivalent to finding k′ and k − k′ subpopulation trees in-260

side subtrees Tµ ⋐ T and Tν ⋐ T rooted at µ and ν such that261

sum of structure entropy in the contracted tree T is minimal,262

J (G;ω,k) =
{

ST (G;ω)+
∑

u∈V (ω) ST (G;u),k = 1,

min1≤k′<k{J (G;µ,k′)+J (G;ν,k −k′)},

(5)

where k = 1 means ω is the root node of one subpopulation263

tree, which maps to one leaf node of the contracted tree T .264

We solve the contracting objective using dynamic program-265

ming. We record the minimal structure entropy J (G;ω,k)266

for finding k optimal subpopulations in a bottom-up way; that267

is, calculating from leaves to root. We trace back recursively268

to obtain the optimal cut-off k′ for each node starting from269

the root. If k̂′
µ = 1 for one left child or k̂′

ν = k − 1 for a cer-270

tain right child at that state, one subpopulation V (µ) or V (ν)271

is found (Supplementary Methods). In this way, we obtain272

the contracted tree T with k leaves representing k cell sub-273

populations.274

Finding final cell hierarchy carrying optimal subpopulations.275

For 1 ≤ k ≤ K where K is constant number, the optimal k̂276

associated with the minimal structure entropy is the optimal277

cut-off k′ for root node, k̂ = argmin1<k≤K{J (G;r,k)}.278

The agglomerative and divisive hierarchies might have differ-279

ent hierarchical structures. The optimal subpopulations are280

subpopulations with less structure entropy (Fig. 1C and Sup-281

plementary Methods). We choose the cell hierarchy carrying282

optimal subpopulations as the final cell hierarchy.283

Obtaining and visualizing cell order. We find the cell hier-284

archy T by minimizing the structure entropy of the sparse285

cell-cell graph. Given the cell hierarchy T , we obtain the286

cell order π ∈ R|V | with an in-order traversal and visualize287

the cell order periodically with an oval shape (Supplementary288

Methods).289
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Hierarchical visualization. To convert the cell-cell similarity
graph G into d-dimensional latent space Y ∈ Rn×d for vi-
sualization, state-of-the-art tool UMAP (26) adopts a cross-
entropy (CE) objective,

CE(G) =
∑

u,v∈G

puv log puv

quv
+(1−puv) log 1−puv

1− quv
. (6)

Here, puv and quv signifies the similarity of cells u and v in290

original graph G and the latent space, respectively. quv is291

smoothly approximated by quv = (1+a(||yu −yv||22)b))−1,292

where a and b are constrained by a hyper-parameter min-dist,293

the effective minimum distance between cells in latent space.294

In this study, we adjust the above embedding strategy by in-295

corporating the final cell hierarchy. Recall that the cell parti-296

tion and P and C correspond to the k and ℓ cell subpopula-297

tions and clubs, respectively. Assume cell partition I = {V }298

contains the one global cell population. Based on the cell299

partition H ∈ {I,P,C}, we assign the inter-connections be-300

tween different cell groups to zero, resulting in a graph GH301

that focuses on the cell-cell similarity inside one cell group.302

We minimize the disparity of cell-cell similarity between the303

embedding space and GH with the objective304

J (G) =
∑

H∈{I,P,C}

CE(GH)×θH, (7)

where hyper-parameters θH are the training weights of dif-305

ferent cell partition resolutions obtained from cell hierarchy.306

We initialize the low-dimensional embedding Y with graph307

Laplacian (30) of GP , make min-dist equals 0.1, set θI = 1,308

θP = 1, θC = 1, and minimize J (G) to convergence with309

Adam gradient descent.310

Outlier detection. Cellular abnormalities may distort the en-311

tire cell hierarchy, thus affecting the efficacy of cell subpop-312

ulation and club detection, cell cycle pseudo-time inference,313

and hierarchical visualization. Thus, we have implemented314

the average kNN outlier detection. We calculate the mean315

distance d ∈ Rn given the single-cell molecular representa-316

tion of n cells. di is the mean distance of i-th cell to its317

k-nearest neighbors. By default, we consider the cell with318

an average kNN distance d exceeding a distance cutoff 0.5319

as the outlier. We also provide a distance percentile cutoff320

strategy, we regard the cell with an average kNN distance d321

surpassing a distance percentile cutoff (e.g. 95th percentile)322

as an outlier. The detected outliers will be assigned to label323

-1 and excluded from the cell hierarchy building.324

Time complexity of SEAT. Under the graph G with n cells,325

the time complexity of SEAT is O(n logn) (Supplementary326

Methods).327

Experiment Setting.328

scRNA data. We collect nineteen scRNA datasets with gold329

standard cell type labels (31–43), the description of the330

datasets and the download links are in Supplementary Table331

S1 and Supplementary Method. For these scRNA datasets,332

the dimension reduction transformer is UMAP (26). We333

adopt Seurat “FindAllMarkers” function (44) for differential334

expression analysis. The log2 fold change, log2(FC), of the335

average expression between two groups is measured. The336

fold change significance p-value is evaluated by the Wilcoxon337

Rank Sum test, and the adjusted p-value is calculated with338

Bonferroni correction. The filtering criteria are log2(FC) ≥339

0.25, p-value < 0.05, and adjusted p-value < 0.05. Cell-340

cell communication analysis is conducted with CellChat (45)341

with default database and parameters. Any ligand-receptor342

interaction with less than ten supporting cells is filtered.343

We also collect six scRNA datasets with gold standard cell344

cycle labels (Supplementary Table S2). Dataset H1-hESC345

has 247 human embryonic stem cells (hESCs) in G0/G1,346

S, or G2/M phases identified by fluorescent ubiquitination-347

based cell cycle indicators (46). The count expression pro-348

file and cell cycle labels are obtained with accession code349

GSE64016. Datasets mESC-Quartz and mESC-SMARTer350

have 23 and 288 mouse embryonic stem cells (mESCs) se-351

quenced by Quartz-seq and SMARTer, respectively (47, 48).352

Their G0/G1, S, and G2/M phases are labeled by Hoechst353

staining. The count expression profiles and cell cycle la-354

bels are obtained with accession codes GSE42268 and E-355

MTAB-2805. Datasets 3Line-qPCR_H9, 3Line-qPCR_MB,356

and 3Line-qPCR_PC3 own 227 H9 cells, 342 MB cells, and357

361 PC3 cells, respectively. The cell cycle stages G0/G1, S,358

and G2/M are marked by Hoechst staining (32). The raw359

log2 count expression profiles and cell labels are from the360

paper’s dataset S2. The imputation and dimension reduction361

are conducted by SMURF (49) and UMAP (26). We adopt362

Seurat (44) for differential expression analysis as described363

above. Cell-cell communication analysis is conducted with364

CellChat (45) with default database and parameters. Any365

ligand-receptor interaction with less than ten supporting cells366

is filtered. Gene Ontology (GO) is performed with ShinyGO367

0.76 (50).368

scDNA data. We collect seven scDNA datasets (Supplemen-369

tary Table S1). Navin_T10 contains 100 cells from a ge-370

netically heterogeneous (polygenetic) triple-negative breast371

cancer primary lesion T10, including five cell subpopula-372

tions: diploid (D), hypodiploid (H), aneuploid 1 (A1), ane-373

uploid 2 (A2), and pseudo-diploid (P) (51). Navin_T16374

holds 52 cells from genetically homogeneous (monogenetic)375

breast cancer primary lesion T16P and 48 cells from its liver376

metastasis T16M, including four cell subpopulations: diploid377

(D), primary aneuploid (PA), metastasis aneuploid (MA), and378

pseudo-diploid (P) (51). The Ginkgo copy number varia-379

tion (CNV) profiles of Navin_T10 and Navin_T16 are down-380

loaded from http://qb.cshl.edu/ginkgo (52). The381

silver standard array comparative genomic hybridization382

(aCGH) data of Navin_T10 and Navin_T16 are downloaded383

with GEO accession code GSE16607 (53).384

Dataset 10x_breast_S0 is a large-scale 10x scDNA-seq set385

without known cell population labels, where 10,202 cells386

from five adjacent tumor dissections (A, B, C, D, and E)387

of triple-negative breast cancer are sequenced. The Bam388
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files are downloaded from 10x official site https://www.389

10xgenomics.com/resources/datasets. We in-390

ferred the total CNV profile utilizing Chisel (54).391

Ni_CTC sequenced 29 circulating tumor cells (CTCs) across392

seven lung cancer patients (55). McConnel_neuron profiles393

110 cells from human frontal cortex neurons, with an exten-394

sive level of mosaic CNV gains and losses (56). Lu_sperm395

sequenced 99 sperm cells with chrX-bearing, chrY-bearing,396

and aneuploid groups (57). Wang_sperm performed single-397

cell sequencing on 31 sperm cells with CNV gains and losses398

(58). The Ginkgo CNV profiles of these datasets are down-399

loaded from http://qb.cshl.edu/ginkgo (52).400

scATAC and scRNA-scATAC multiome data. We collect three401

public scATAC-seq data as benchmarking sets with gold stan-402

dard cell type labels (Supplementary Table S1). scatac_6cl is403

a mixture of six cell lines (BJ, GM12878, H1-ESC, HL60,404

K562, and TF1) with 1224 cells (59). Hematopoiesis owns405

2210 single-cell chromatin accessibility profiles from eight406

human hematopoiesis cell subpopulations (CLP, CMP, GMP,407

HSC, LMPP, MEP, MPP, and pDC) (60). T-cell composes408

of four T-cell subtypes (Jurkat_T_cell, Naive_T_cell, Mem-409

ory_T_cell, and Th17_T_cell) with a total of 765 cells (61).410

We collect a multiome of scRNA and scATAC dataset PBMC411

(human peripheral blood mononuclear cells) with 10,032412

cells across fourteen cell types.413

We downloaded the scOpen (62) processed accessibility414

profiles and cell labels from https://github.com/415

CostaLab/scopen-reproducibility. UMAP (26)416

embedded data are used to construct the kNN graphs for each417

dataset. We adopt Cicero (63) to explore the dynamically ac-418

cessible element status in different scatac_6cl GM12878 cell419

clubs.420

Evaluating cell subpopulation detection. To detect cell sub-421

populations, some clustering methods require the number of422

clusters prespecified, while others can determine the number423

of clusters automatically. The SEAT package supports both.424

Our package requires no prespecified number of clusters by425

default, that is, SEAT(sub). If the number of clusters required426

is k, we denote the method as SEAT(k). When the context is427

clear, we refer to them as predefined-k and auto-k modes, re-428

spectively.429

In the predefined-k mode, we access the clustering accu-430

racy of SEAT agglomerative hierarchy and divisive hierarchy431

with predefined cluster number k given by the actual num-432

ber of ground truth cell types, namely Agglo(k) and Divi-433

sive(k). We regard the clustering result with a lower struc-434

ture entropy from agglomerative and divisive hierarchies as435

SEAT(k). Baselines are hierarchical clustering (HC) with436

four linkage strategies (ward, complete, average, and sin-437

gle) (12), K-means (11), and spectral clustering (10). We run438

them with default parameters. As the leading tool for single-439

cell clustering, Louvain (13) and Leiden (14) automatically440

detect how many communities are inside the cell-cell simi-441

larity graph. They obtain different numbers of communities442

at various resolutions. To benchmark Leiden and Louvain in443

the predefined-k setting, namely Leiden(k) and Louvain(k),444

we heuristically adjusted the resolution 20 times to see if the445

number of communities was the same as the predefined clus-446

ter number k.447

As the predefined k is undetermined in most real-world sce-448

narios, we evaluate the auto-k clustering efficacy of SEAT449

cell hierarchy, agglomeration hierarchy, and divisive hier-450

archy, namely SEAT(sub), Agglo(sub), and Divisive(club).451

The baselines are Leiden and Louvain with default parame-452

ters. We also assess the clustering obtained from agglomer-453

ative and divisive hierarchy clubs, namely Agglo(club) and454

Divisive(club).455

Adjusted Rand index (ARI) (64) and adjusted mutual in-456

formation (AMI) (65) are adopted as clustering accuracy.457

They measure the concordance between clustering results458

and ground truth cell types. Perfect clustering has a value459

of 1, while random clustering has a value less than or near 0.460

Evaluating cell cycle pseudo-time inference. SEAT cell hier-461

archy, agglomerative hierarchy, and divisive hierarchy gen-462

erate cell orders representing the cell cycle pseudo-time for463

scRNA data, namely, SEAT(order), Agglo(order), and Divi-464

sive(order). We access the pseudo-time inference accuracy465

of SEAT given by the actual order of ground truth cell cy-466

cle phases. Benchmark methods are hierarchical clustering467

(HC) with four linkage strategies (ward, complete, average,468

and single) (12), since an in-order traversal of HC hierarchies469

also generates cell orders. Furthermore, we benchmark our470

method with four state-of-the-art tools predicting the cell cy-471

cle pseudo-time, CYCLOPS (15), Cyclum (16), reCAT (17),472

and CCPE (18). We run them with default parameters. CCPE473

fails the tasks when we follow its GitHub instruction, so we474

exclude CCPE for final comparison.475

The change index (CI) is used to quantitatively assess the ac-476

curacy of cell pseudo-time order against known cell cycle477

phase labels (17). An ideal cell order changes label k − 1478

times, where k = 3 is the ground truth cell cycle phase num-479

ber. The change index is defined as 1 − c−(k−1)
n−k , where c480

counts the frequency of label alters between two adjacent481

cells, and n is the number of cells. A value of 0 suggests482

the cell order is utterly wrong with c = n − 1, while 1 indi-483

cates a complete match between cell order and ground truth484

cell cycle phase with c = k −1.485

Evaluating hierarchical visualization. We evaluate the effi-486

cacy of SEAT hierarchical visualization, SEAT(viz), with487

state-of-the-art visualization tools UMAP (26), TSNE (27),488

and PHATE (28). The dense cell-cell similarity graph G is489

used as input, UMAP, TSNE, and PHATE are run with de-490

fault parameters.491

Evaluating cell outlier detection. We simulate the gene ex-492

pression profiles of 500 cells with five subpopulations using493

Splatter (66). We randomly produce 20 cell outliers with494

gene expression disparting from all five subpopulations. We495

evaluate SEAT cell subpopulation detection i) with and with-496

out the average kNN outlier detection; ii) with different com-497

binations of parameters (nearest neighbor number, distance498

cutoff, and distance percentile cutoff). The outliers are con-499
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sidered as a distinct group, thus the ARI and AMI are used to500

measure the clustering accuracy.501

Results502

Overview of SEAT. SEAT builds a cell hierarchy annotated503

with global-subpopulation-club-cell layers computationally504

from single-cell data (Fig. 1). First, SEAT constructs a pair505

of dense and sparse cell-cell similarity graphs with a full-506

dimensiona or dimensionally reduced single-cell molecular507

profile as input (Fig. 1 A). Second, we detect cell clubs, de-508

termine the order of cells within each cell club, and build the509

pseudo club hierarchies by minimizing the structure entropy510

of the sparse graph with agglomerative (Agglo) and divisive511

(Divisive) heuristics (Fig. 1B, Methods). We term the cell512

clubs and orders derived from agglomerative and divisive hi-513

erarchies as Agglo(club), Agglo(order), Divisive(club), and514

Divisive(order). Next, we use dynamic programming to find515

optimal subpopulations from agglomerative and divisive hi-516

erarchies, namely, Agglo(sub) and Divisive(sub). We choose517

the hierarchy carrying the lower subpopulation structure en-518

tropy as the final cell hierarchy (Fig. 1C, Methods). Hence,519

SEAT outputs the final cell hierarchy carrying with subpop-520

ulations, clubs, and orders, namely, SEAT(sub), SEAT(club),521

and SEAT(order) (Fig. 1A). Furthermore, by incorporating522

hierarchical cell partition layers, SEAT provides a compo-523

nent, SEAT(viz), to embed cells into a low-dimensional space524

while preserving their nested structures for improved visual-525

ization and interpretation (Fig. 1A).526

Cell hierarchy catalogs functional diversity at the sub-527

population and club level from scRNA data. We have528

applied SEAT to nineteen scRNA datasets carrying gold529

standard cell type labels. The first nine sets are cell line530

mixtures, including p3cl (31), 3Line-qPCR (32), sc_10x,531

sc_celseq2, sc_dropseq, sc_10x_5cl, sc_celseq2_5cl_p1,532

sc_celseq2_5cl_p2, and sc_celseq2_5cl_p3 (33). We have533

four datasets Yan (34), Deng (35), Baise (36), and534

Goolam (37) which sequence single cells from human or535

mouse embryos at different stages of development (zygote,536

2-cell, early 2-cell, mid 2-cell, late 2-cell, 4-cell, 8-cell, 16-537

cell, 32-cell, early blast, mid blast, and late blast). The last538

six datasets are Koh (38), Kumar (39), Trapnell (40), Blake-539

ley (41), Kolodziejczyk (42), and Xin (43), which profile dif-540

ferent cell types in single-cell resolution. To access the ef-541

ficacy of SEAT in cell subpopulations detection, we utilize542

the adjusted rand index (ARI) (64) and adjusted mutual in-543

formation (AMI) (65) as clustering accuracy and benchmark544

SEAT with state-of-the-art clustering tools (spectral cluster-545

ing (10), K-means (11), hierarchical clustering (12), Lou-546

vain (13), and Leiden (14)) with predefined-k and auto-k547

modes (Methods, Supplementary Fig. S1-S3). In predefined-548

k mode, SEAT(k) demonstrates comparable or higher cluster-549

ing accuracy compared to other clustering baselines on most550

datasets (Fig. 2A). Notably, Louvain(k) and Leiden(k) are551

unable to generate a clustering that exactly matches the num-552

ber of ground truth labels after 20 different resolution trials553

for the Goolam and Kolodziejczyk (Fig. 2A and Supplemen-554

tary Fig. S2). Under the auto-k mode, SEAT(sub) outper-555

forms Louvain and Leiden on all nineteen sets. The clus-556

tering accuracies of SEAT(sub) are comparable to or better557

than the best clustering results with predefined-k clustering558

tools with the ground truth cluster number provided. This559

is attributed to the fact that SEAT(sub) finds a cluster number560

close to the ground truth (Fig. 2 B). Louvain and Leiden have561

the lowest clustering accuracy because they prefer more clus-562

ters. The two-dimensional data embedded by UMAP from563

full-dimensional single-cell expression profiles are inputs of564

all clustering tools; and the visualizations of them show that565

the ground truth labels are mixed for the majority of datasets566

(Supplementary Fig. S4-S5), explaining the low clustering567

accuracy of both predefined-k and auto-k clustering tools.568

SEAT offers hierarchical structures of cells to study cellular569

functional diversity. We leverage differential gene expres-570

sions to investigate the biological interpretations of these hi-571

erarchies. In Supplementary Fig. S6-S7, differentially ex-572

pressed genes (p < 0.05) between cell hierarchy clubs re-573

veal distinct patterns that match ground truth cell subpop-574

ulations. Furthermore, visible marker gene patterns reveal575

the functional diversity among cell clubs within one cell sub-576

population. We focus on the top five differentially expressed577

genes for each dataset (Supplementary Fig. S8-S11). As578

the subpopulation detection accuracy of agglomerative hier-579

archy is 1 for p3cl dataset, we investigate the functional di-580

versity revealed from the agglomerative hierarchy other than581

the divisive hierarchy. The agglomerative hierarchy revealed582

three cell subpopulations for p3cl, which correspond to the583

three ground truth cell types, basal (KRT81), luminal (TFF1),584

and fibroblast (COL1A2 and VIM) (Fig. 2D). We observe585

that each of the basal, luminal, and fibroblast has two major586

subclasses, controlled by the expression of cell cycle genes587

(HIST1H4C, CDC20, CCNB1, and PTTG1). Cell-cell com-588

munication analysis finds a total of 109 significant (p < 0.05)589

ligand-receptor (LR) pair interactions among seven agglom-590

erative hierarchy clubs for breast cancer basal-like epithelial591

cell line in p3cl. The LR interactions belong to nine signaling592

pathways AGRN, CD99, CDH, EGF, JAM, LAMININ, MK,593

NECTIN, and NOTCH (Fig. 2D and Supplementary Fig.594

S12). In particular, there is a distinct breast cancer cell club595

(basal-club0) that drives AREG -EGFR, an oncogenic signal-596

ing (67) in breast cancer, to all basal cells, resulting in a high597

level of AREG activated EGFR expression (Fig. 2E). The two598

cell clubs from the luminal subpopulation have six significant599

(p < 0.05) LR interactions involving MK, SEMA3, and CDH600

signaling pathways (Supplementary Fig. S13). The fibrob-601

last has three significant (p < 0.05) LR interactions, includ-602

ing two signaling pathways FN1 and ncWNT (Supplemen-603

tary Fig. S13). The cell club fibro-club10 release WNT5B604

and then bind FZD7 from fibro-club9, consistent with the ob-605

servation that ncWNT is the predominant signaling pathway606

in skin fibroblasts (45).607

Visualizations of two-dimensional data by UMAP from full-608

dimensional single-cell expression profiles reveal a dense609

layout (Supplementary Fig. S4-S5). The ground truth610

cell subpopulations are indistinctly separated in some high611
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Fig. 2. Applying SEAT on nineteen scRNA datasets. A. The adjusted rand index (ARI) and adjusted mutual information (AMI) of predefined-k and auto-k clustering tools.
The best scores are colored red for each dataset in predefined and auto clustering benchmarking separately. If SEAT gets second place, we color the score orange.
Spectral: spectral clustering. HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single, average, complete, and ward linkage. Louvain(k)
and Leiden(k): Louvain and Leiden in predefined-k mode. Divisive(k) and Agglo(k): the cell subpopulations from divisive and agglomerative hierarchy in predefined-k mode.
SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode. Divisive(club) and Agglo(club): the cell clubs from the divisive and agglomerative hierarchy.
Divisive(sub) and Agglo(sub): the cell subpopulations from divisive and agglomerative hierarchy in auto-k mode. SEAT(sub): the optimal subpopulations from SEAT cell
hierarchy in auto-k mode. B. The number of subpopulations detected for auto-k clustering tools. C. The top five differentially expressed genes in agglomerative hierarchy
clubs for p3cl. D. The cell-cell communications among seven agglomerative hierarchy clubs for breast cancer basal-like epithelial cell line in p3cl. LR: ligand-receptor. E-F
SEAT(viz), UMAP, TSNE, and PHATE plots for p3cl and sc_10x_5cl. The cells are colored with subpopulations, clubs, and ground truth. The gray and black circles in the
SEAT(viz) plot indicate the subpopulation and club boundaries, respectively. In UMAP, TSNE, and PHATE plots, the red circles mark the unclearly segregated cell clubs.
SEAT(viz): the hierarchical visualization from SEAT cell hierarchy.

clustering accuracy datasets, and the cell clubs are densely612

arranged in each subpopulation clump. Here, we check613

whether SEAT hierarchical visualization eliminates the dense614

layout of clubs. We use the cell-cell graph constructed by615
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SEAT as input and execute SEAT(viz), UMAP, TSNE, and616

PHATE, independently. In Fig. 2E-F and Supplementary Fig.617

S14-S18, SEAT(viz), UMAP, TSNE, and PHATE separate618

the ground truth cell type for most datasets. It should be noted619

that the patterns from SEAT(viz), UMAP, TSNE, and PHATE620

also correspond to the subpopulation layer annotations, vali-621

dating SEAT subpopulation finding efficacy. At the cell club622

level, SEAT(viz) show a clear layout of cell clumps that cor-623

respond to the cell hierarchy; each cell club owns a distinct624

clump, and the distance between clubs belonging to the same625

subpopulation is within proximity. Although UMAP, TSNE,626

and PHATE capture the local structures of the clubs, the cell627

clubs marked with red circles are unclearly segregated.628

Cell hierarchy deciphers periodic cell cycle pseudo–629

time from single-cell data. We collect six scRNA cell630

cycle datasets, H1-hESC (46), mESC-Quartz (47), mESC-631

SMARTer (48), 3Line-qPCR_H9, 3Line-qPCR_MB, and632

3Line-qPCR_PC3 (32) with gold standard G0/G1, S, or633

G2/M stages and build the cell hierarchies (Supplementary634

Fig. S19). In predefined-k and auto-k clustering benchmark-635

ing (Supplementary Fig. S20), SEAT illustrates higher or636

comparable clustering accuracy in the six datasets. SEAT637

predicts the optimal number of clusters closest to ground638

truth three, while Leiden and Louvain generally predict more639

clusters than SEAT. Further investigation shows that ground640

truth labels are mixed or not distinctly separated in two-641

dimensional data derived by UMAP for all datasets (Sup-642

plementary Fig. S21), explaining the poor performance of643

3Line-qPCR data. Likewise, hierarchical visualization plots644

depict nested layouts corresponding to the cell hierarchies645

in visualization refinement experiments (Supplementary Fig.646

S22).647

If we order the cells in cycling progress, cells from the same648

phase should be lined up adjacently as they share higher sim-649

ilarity. Thus, the cell order obtained from an ideal hierarchy650

could present a periodic pseudo-time order for cell cycle data.651

We visualize the cell order periodically with an oval plot, the652

placements of the cells in the oval represent their pseudo-653

time in the cell cycle (Fig. 3A and Supplementary Fig. S23).654

We access the cell ordering accuracy with the change index655

(CI) (17), which computes how frequently the gold standard656

cell cycle phase labels switch along the cell order. The bench-657

mark methods are four conventional HC strategies (12) that658

offer a cell order. We also recruit state-of-the-art tools dedi-659

cating to predict the cell cycle pseudo-time, CYCLOPS (15),660

Cyclum (16), reCAT (17), and CCPE (18). SEAT demon-661

strates the highest ordering accuracy for all datasets, except662

for 3Line-qPCR_PC3, where SEAT wins the top two (Fig.663

3B). We exclude CCPE as it fails the tasks. In all, this sug-664

gests that cell hierarchy obtained from SEAT facilitates the665

cell cycle pseudo-time order inference.666

SEAT orders cells in H1-hESC, mESC-Quartz, and mESC-667

SMARTer alongside the oval that closely matches the G0/G1-668

S-G2/M cycle (Fig. 3A). Differential expression analysis669

among ground truth phases reveals distinct cell cycle phase670

markers (Supplementary Fig. S24). These visible cell cy-671

cle marker patterns remain consistent when rearranging with672

SEAT cell order (Supplementary Fig. S25). The top 20 dif-673

ferential expression genes (p < 0.05) for hESC and mESC674

cells include well-known cell cycle markers UBE2C, TOP2A,675

CDK1, and CCNB1 (Supplementary Fig. S26). Their expres-676

sions rise progressively with SEAT recovered pseudo-time677

order and are peaked with significant fold changes at the M678

phase (Fig. 3C).679

In H9, MB, and PC3 cell lines, the cell orders in the S and680

G2/M phases are partially arranged compared to the exact681

time course (Fig. 3A). The differential expression makers of682

ground truth phases show that there are sub-patterns within683

the S and G2/M phases. Moreover, there are similar patterns684

shared between the S and G2/M phases (Supplementary Fig.685

S24), suggesting the cause of poor performance in pseudo-686

time ordering. Interestingly, after rearranging the marker ex-687

pression heatmap with SEAT cell hierarchy, we observe dis-688

tinct marker gene patterns among SEAT discovered cell sub-689

populations (Supplementary Fig. S25). For the H9 cell line,690

SEAT detected four cell subpopulations (Fig. 3D), G0/G1691

phase corresponds to sub2. Cell cycle S and G2/M phases to-692

gether have three cell subpopulations, sub0, sub1, and sub3.693

The top 20 differential expression genes (p < 0.05) exhibits694

two groups (Fig. 3D). The genes from the first group are en-695

riched in GO cell cycle signaling pathways. The genes from696

the second group are enriched in GO chemokine-mediated697

signaling and immune response pathways with CXC and IL698

gene families, respectively (Supplementary Fig. S27). We699

demonstrate the top 20 differential expression genes for MB700

and PC3 cell lines in Supplementary Fig. S26-S27. Finally,701

we verify the cellular interactions among cell subpopulations702

with cell-cell communication analysis. We find a total of 124,703

87, and 77 significant (p < 0.05) LR pair interactions among704

cell subpopulations for H9, MB, and PC3 cell lines, respec-705

tively. All datasets exhibit CXCL, CCL, COMPLEMENT,706

and CD40 signaling interactions among cell subpopulations707

(Fig. 3E).708

Cell hierarchy detects rare subclones on scDNA data.709

SEAT catalogs the clonal subpopulations of solid tumors and710

circulating tumor cells in four scDNA datasets. SEAT also711

identifies the CNV substructures of neuron and gamete cells712

in three scDNA datasets. Owning to the unique character-713

istics of CNV profiles, we only adopt SEAT agglomerative714

hierarchy to investigate the functional diversity of CNV sub-715

structures.716

Navin et al. have profiled 100 cells from a genetically hetero-717

geneous (polygenetic) triple-negative breast cancer primary718

lesion Navin_T10 (51). Fluorescence-activated cell sorting719

(FACS) analysis has confirmed that Navin_T10 carried four720

main cell subpopulations: diploid (D), hypodiploid (H), ane-721

uploid A (A1), and aneuploid B (A2). Furthermore, Navin et722

al. have reported pseudo-diploid cells (P) with varying de-723

grees of chromosome gains and losses from diploids. They724

are unrelated to the three tumor cell subgroups (H, A1, and725

A2) (51). Therefore, given whole-genome single-cell CNV726

profiles as input, we verify whether SEAT and the state-of-727

the-art clustering tools identify the four major cell groups and728

the rare pseudo-diploid cell group (Fig.4A). In predefined-729
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Fig. 3. Applying SEAT on six scRNA cell cycle datasets. A. The oval visualization of cell pseudo-time. From left to right are H1-hESC, mESC-Quartz, mESC-SMARTer, 3Line-
qPCR_H9, 3Line-qPCR_MB, and 3Line-qPCR_PC3. From top to bottom are cell orders obtained from agglomerative hierarchy, divisive hierarchy, and SEAT cell hierarchy;
namely, Agglo(order), Divisive(order), and SEAT(order). B. The accuracy of cell pseudo-time order is measured by change index (CI) for baseline tools. The best scores are
colored red for each dataset. If SEAT gets second place, we color the score orange. HC(single)(order), HC(average)(order), HC(complete)(order), and HC(ward)(order): the
cell orders from hierarchical clustering with single, average, complete, and ward linkage. C. The normalized expression of M phase marker genes alongside the SEAT cell
order. D. The top 20 differentially expressed genes in G0/G1, S, and G2/M ground truth phases for p3cl, arranged with SEAT cell hierarchy. SEAT(club): the cell clubs from
SEAT cell hierarchy. SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in
auto-k mode. E. The cell-cell communications among SEAT cell subpopulations for H9, MB, and PC3 cell lines.

k mode, SEAT agglomerative hierarchy successfully recog-730

nizes five cell subpopulations consistent with the patterns of731

CNV profiles. From top to bottom, the ranks are cancer nor-732

mal cell group (D), pseudo-diploid cell subgroups (P), sub-733

groups H, and two tumor aneuploid groups, A1 and A2 (Fig.734

4A). Leiden(k) and Louvain(k) fail at this task after 20 dif-735

ferent resolution trials. Four HC strategies and K-means fail736

to distinguish the four pseudo-diploid cells as in the Navin737

et al.’s HC trial (51). Spectral clustering performs poorly by738

mixing tumor and normal cells. Regarding auto-k cluster-739

ing algorithms, agglomerative hierarchy identifies five con-740

cordant subpopulations as predefined-k mode. Leiden and741

Louvain fail with the same sparse cell-cell similarity graph742

as input. Then, we leverage CNV density signals detected743

by aCGH from FACS identified D, H, A1, and A2 dissec-744

tions of T10 (53) as silver standard to validate the cluster-745

ing result. We calculate the pairwise Spearman correlation746

and Euclidean distance (L2-norm) between scaled single-cell747

CNV profiles and aCGH CNV signals. As a proof of concept,748

the single-cell CNV profiles of three bottom clusters sepa-749

rately own higher correlation and lower distance to aCGH750

profiles of H, A1, and A2 sections. The cells in the up-751

permost subpopulation detected by SEAT have almost zero752

correlation and the lowest distance with aCGH D sections,753

suggesting that they are diploid cells. Pseudo-diploid cells754

illustrate a low correlation with all aCGH sections, validat-755

ing their unique CNV profiles. Navin et al. have sequenced756

100 cells from a monogenic triple-negative breast cancer tu-757

mor and its seeded liver metastasis (Navin_T16) (51). SEAT758

clusters the 100 samples into four distinct subpopulations759
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Fig. 4. Applying SEAT on scDNA datasets. A. The analysis result of Navin_T10. From left to right is the SEAT agglomerative hierarchy, subpopulation detecting results
for predefined-k (k = 5) and auto-k clustering tools, the whole genome single-cell CNV heatmap of T10, the Spearman correlation, and Euclidean distance (L2-Norm)
between scaled copy number profiled by scDNA and copy number density profiled by aCGH. Spectral: spectral clustering. HC(single), HC(average), HC(complete), and
HC(ward): hierarchical clustering with single, average, complete, and ward linkage. Louvain(k) and Leiden(k): Louvain and Leiden in predefined-k mode. Agglo(k): the cell
subpopulations from agglomerative hierarchy in predefined-k mode. Agglo(club): the cell clubs from the agglomerative hierarchy. Agglo(sub): the cell subpopulations from
agglomerative hierarchy in auto-k mode. B. The stacked area plot illustrates the SEAT subpopulations across 10x_breast_S0 tumor sections. Cluster c6 (blue) signifies the
diploid cells. C. The mean ploidy of SEAT subpopulations across 10x_breast_S0 tumor sections. D. The whole-genome single-cell CNV heatmap of SEAT subpopulations
across 10x_breast_S0 tumor sections. The black boxes highlight the mutually exclusive amplification events on chr3 and ch4 across subclones.

(Supplementary Fig. S28). Two are primary and metastasis760

aneuploid cells, corresponding to the published population761

structure. Notably, SEAT catalogs diploid cells and pseudo-762

diploid cells while baseline tools failed.763

We collect a large-scale 10x scDNA-seq dataset764

(10x_breast_S0) without known subclone labels, where765

10,202 cells from five adjacent tumor dissections (A, B, C,766

D, and E) of triple-negative breast cancer are sequenced.767

We check whether SEAT seizes the substantial intra-tumor768

heterogeneity. In Fig. 4B-D, SEAT automatically detects769

seven subpopulations, and the proportions of the cell subpop-770

ulations vary across the five lesions. The blue subpopulation771

c6 gathers normal cells, with the mean cellular ploidy being772

diploid across all sections. The number of normal cells773

gradually decreases from sections A to E. SEAT identifies774

six clonal subpopulations (c0-c5), where c3 manifests the775

highest average ploidy. The mutually exclusive amplification776

events (marked with black boxes in Fig. 4D) on chr3 and777

chr4 of subclones c0, c1, c2, and c4, indicate an early778

branching evolution which is consistent with the findings of779

Wang et al. (68); that is, originated from normal cell group780

c6, the earliest subclone could be c5, with CN=3 on ch3 and781

ch4. Subclone c5 derived to subclone c0 with amplification782

on chr3 (CN=4). Moreover, subclone c5 derived to an783

intermediate subclone with amplification on chr4 (CN=4).784

Then, the intermediate subclone derived to subclone c1, c2,785

and c4 with CN gains on other chromosomes.786

Furthermore, SEAT distinguishes cells with CNV gains and787

losses in circulating tumor cells of seven lung cancer pa-788

tients (55) and in human cortical neurons (56) (Supplemen-789

tary Fig. S28). SEAT also detects the loss of hetero-790

geneity event, it successfully classifies chrX-bearing, chrY-791

bearing, and aneuploid sperm cells (57, 58) (Supplementary792

Fig. S28).793
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Cell hierarchy dissects the chromatin accessibility794

heterogeneity of single-cell data. SEAT dissects chro-795

matin accessibility heterogeneity of single cells. We uti-796

lize three public scATAC-seq data as benchmarking sets with797

gold standard cell type labels. scatac_6cl is a mixture of798

six cell lines (BJ, GM12878, H1-ESC, HL60, K562, and799

TF1) (59). Hematopoiesis consists of eight types of hu-800

man hematopoiesis cells (CLP, CMP, GMP, HSC, LMPP,801

MEP, MPP, and pDC) (60). T-cell composes of four T-cell802

subtypes (Jurkat_T_cell, Naive_T_cell, Memory_T_cell, and803

Th17_T_cell) (61). We collect a multiome of scRNA and804

scATAC dataset, PBMC, for peripheral blood mononuclear805

cells (PBMCs) with 14 cell types.806

The order of the cells in the agglomerative and divisive hi-807

erarchy is consistent with their ground truth cell types (Sup-808

plementary Fig. S29). The clustering accuracies of SEAT809

against its baselines are in Fig. 5A. In predefined-k mode,810

SEAT(k) demonstrates the highest clustering accuracies on811

scatac_6cl and T-cell sets. For auto-k clustering, SEAT(sub)812

beats Louvain and Leiden on all four sets. For scatac_6cl813

and T-cell, the optimal number of clusters obtained by SEAT814

matches the ground truth, thus yielding the comparable ARI815

against predefined-k clustering algorithms. Leiden and Lou-816

vain have lower performance due to predicting more clusters817

than ground truth (Supplementary Fig. S29).818

We check whether SEAT reveals the functional diversity of819

single-cell chromatin accessibility. We select cells from820

scatac_6cl GM12878 cell line, then conduct cis-regulatory821

DNA interaction analysis on chr22 for SEAT cell club1 and822

club2. Fig. 5B-C depict the cis-regulatory map on chr22823

of club1 and club2 cells, respectively. The co-accessibility824

correlations among peaks of club2 cells are significantly825

higher (p < 0.05) than club1 cells (Fig. 5D). Meanwhile, we826

identify 29 and 179 cis-co-accessibility networks (CCANs)827

from GM12878-club1 and GM12878-club2, respectively828

(Fig. 5E). The CCANs detected in GM12878-club1 and829

GM12878-club2 are heterogeneous. Fig. 5F illustrates830

a GM128780-club1 specified CCAN at chr22:20,827,398-831

21,441,482. The cis-regulatory elements surrounding gene832

SNAP29 are co-accessible only in GM128780-club1. More-833

over, we found dense pairwise connections among peaks at834

chr22:39,778,355-40,451,820 in GM12878-club2 (Fig. 5G),835

harboring genes TAB1, MGAT3, MIEF1, CACNA1I, EN-836

THD1, GRAP2, FAM83F, TNRC6B, etc.837

Similar to the scRNA visualization refinement experiments,838

the SEAT(viz) reveals a clear pattern of cells corresponding839

to ground truth; and the nested layouts of subpopulations and840

clubs are clearly illustrated with gray and black circles (Fig.841

5H-I and Supplementary Fig. S30). However, UMAP visual-842

izations derived from high-dimensional data mix ground truth843

cell subpopulations in one clump (Supplementary Fig. S29).844

Furthermore, UMAP, TSNE, and PHATE visualizations de-845

rived from cell-cell similarity graphs fail to place cells from846

K562 (light green) and TF1 (yellow) within the vicinity in847

scatac_6cl; and they fail to place all effector CD8 T cells (ma-848

genta) together in PBMC (Fig. 5H-I). Likewise, the cell clubs849

marked with red circles are unclearly segregated in UMAP,850

TNSE, and PHATE plots.851

Discussion852

Detecting and visualizing cellular functional diversity is es-853

sential in single-cell analysis. Neglection of the underlying854

cellular nested structures prevents the capture of full-scale855

cellular functional diversity. To address the challenge, we in-856

corporate cell hierarchy to investigate the functional diversity857

of cellular systems at the subpopulation, club, and cell layers,858

hierarchically. The cell subpopulations and clubs catalog the859

functional diversity of cells in broad and fine resolution, re-860

spectively. In the cell layer, the order of cells further records861

the slight dynamics among cells locally. Accordingly, we862

establish SEAT to construct cell hierarchies utilizing struc-863

ture entropy by diminishing the global uncertainty of cell-864

cell graphs. In addition, SEAT offers an interface to embed865

cells into low-dimensional space while preserving the global-866

subpopulation-club hierarchical layout in cell hierarchy.867

Currently, state-of-the-art clustering tools for cell subpopula-868

tion or club investigation neglect the underlying nested struc-869

tures of cells. Flatten clustering tools, such as spectral clus-870

tering (10) and K-means (11), do not support the cell hier-871

archy. Although conventional hierarchical clustering (12),872

Louvain (13) and Leiden (14) derive cell hierarchy layer by873

layer via optimizing merging or splitting metrics, computing874

these metrics merely uses single-layer information. When875

constructing subsequent layers, they have not incorporated876

the built-in cell hierarchy in the previous layers. Structure en-877

tropy is a metric that encompasses the previously constructed878

internal cell hierarchy. Experiments validate that SEAT de-879

livers robust cell-type clustering results and forms insightful880

hierarchical structures of cells.881

SEAT is good at finding the optimal subpopulation number882

with high accuracy. We have collected scRNA, scDNA, and883

scATAC profiles with the number of cell types ranging from884

2 to 14. SEAT consistently predicts the optimal cluster num-885

ber closest to the gold or silver standards, while Louvain and886

Leiden predict too many clusters. Especially for scRNA set887

Kumar, SEAT boosts the accuracy from 0.34 to 1 compared888

to Louvain and Leiden (Fig. 2A). Auto-k clustering mode889

of SEAT is comparable to or better than the best clustering890

results of predefined-k clustering methods for most datasets.891

SEAT specializes in hierarchically deciphering cellular func-892

tional diversity at subpopulation and club levels. We ob-893

serve visible marker gene patterns that match cell clubs894

within one cell subpopulation. For the p3cl set, the basal,895

luminal, and fibroblast cell subpopulations have their own896

cell clubs, determined by differentially expressed cell cy-897

cle genes (HIST1H4C, CDC20, CCNB1, and PTTG1) (Fig.898

2C). Looking at the seven agglomerative clubs for the basal899

subpopulation, we find a distinct breast cancer cell club900

that drives oncogenic AREG-EGFR signaling in all basal901

cells (Fig. 2D), suggesting a promoting role in tumorigen-902

esis (67). Cell hierarchy obtained from copy number profiles903

of 10x_breast_S0 demonstrates a mutually exclusive sub-904

clones layout (Fig. 4D), indicating an early branch evolu-905

tion (68). Furthermore, we find that there is a club-specified906
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Fig. 5. Applying SEAT on three scATAC datasets and one scRNA-scATAC multiome dataset. A. The adjusted rand index (ARI) and adjusted mutual information (AMI) of
predefined-k and auto-k clustering tools. The best scores are colored red for each dataset in predefined and auto clustering benchmarking. Spectral: spectral clustering.
HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single, average, complete, and ward linkage. Louvain(k) and Leiden(k): Louvain and
Leiden in predefined-k mode. Divisive(k) and Agglo(k): the cell subpopulations from divisive and agglomerative hierarchy in predefined-k mode. SEAT(k): the cell sub-
populations from SEAT cell hierarchy in predefined-k mode. Divisive(club) and Agglo(club): the cell clubs from the divisive and agglomerative hierarchy. Divisive(sub) and
Agglo(sub): the cell subpopulations from divisive and agglomerative hierarchy in auto-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in auto-k
mode. B-D. The co-accessibility score among peak pairs at chr22 for cells at SEAT club1 and club 2 from scatac_6cl GM12878 cell line. E. The number of cis-co-accessibility
networks (CCANs) among pair of peaks at chr22 for cells at SEAT club1 and club 2 from scatac_6cl GM12878 cell line. F. The co-accessibility connections among cis-
regulatory elements in chr22:20,827,398-21,441,482. The height of links signifies the degree of the co-accessibility correlation between the pair of peaks. The top panel
illustrates cells in scatac_6cl GM12878-club1, and the bottom shows cells in scatac_6cl GM12878-club2. G. The co-accessibility connections among cis-regulatory elements
in chr22:39,778,355-40,451,820. The height of links signifies the degree of the co-accessibility correlation between the pair of peaks. The top panel illustrates cells in
scatac_6cl GM12878-club1, and the bottom shows cells in scatac_6cl GM12878-club2. H-I SEAT(viz), UMAP, TSNE, and PHATE plots of scatac_6cl and PBMC. The cells
are colored with subpopulations, clubs, and ground truth. The gray and black circles in the SEAT(viz) plot indicate the subpopulation and club boundaries, respectively. In
UMAP, TSNE, and PHATE plots, the red circles mark the unclearly segregated cell clubs. SEAT(viz): the hierarchical visualization from SEAT cell hierarchy.

dense co-accessible network of cis-regulatory elements at907

chr22:39,778,355-40,451,820 in GM12878-club2, harboring908

genes TAB1, MGAT3, MIEF1, CACNA1I, ENTHD1, GRAP2,909

FAM83F, TNRC6B, etc (Fig. 5G).910
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Inferring the periodic pseudo-time for the cell cycle data is911

crucial as it reveals the functional diversity of cells under-912

going the cell cycle process. Several tools are dedicated to913

cell cycle pseudo-time inference. CYCLOPS (15) and Cy-914

clum (16) utilize deep autoencoders to project expression915

profiles into cell pseudo-time in the periodic process, which916

act as black boxes and lack explainability. reCAT (17) em-917

ploys the Gaussian mixture model to group cells into clusters,918

and constructs a cluster-cluster graph weighted by the Eu-919

clidean distance between the mean expression profile of each920

cluster, then takes the traveling salesman path of the cluster-921

cluster graph as the order. Finding a traveling salesman path922

is NP-hard, and no polynomial time algorithms are avail-923

able (17). CCPE (18) learns a discriminative helix to rep-924

resent the periodic process and infer the pseudo-time. How-925

ever, we fail to run CCPE according to its GitHub instruc-926

tion. Moreover, CYCLOPS, Cyclum, reCAT, and CCPE by-927

pass the nested structure of cells when inferring the pseudo-928

time. In this study, we propose that the cell layer of a hi-929

erarchy encodes the pseudo-time of cells for cycling data.930

We build the hierarchy by minimizing the structure entropy931

of the kNN cell-cell graph. The built hierarchy carries the932

nested structure between individual cells and their ancestral933

cell partitions. Then, the order of individual cells is acquired934

with an in-order traversal of the hierarchy. scRNA data ex-935

emplify that SEAT cell orders outperform CYCLOPS, Cy-936

clum, reCAT, and CCPE by accurately predicting the pe-937

riodic pseudo-time of cells in the cell cycle process. In938

hESC and mESC cells, the expressions of M phase marker939

genes UBE2C, TOP2A, CDK1, and CCNB1 rise progres-940

sively alongside the SEAT recovered order and are peaked941

at the M phase with significant fold changes (Fig. 3C).942

Visualizing the hierarchical functional diversity of cells in943

biological systems is crucial for obtaining insightful bio-944

logical hypotheses. UMAP (26) intends to maintain the945

global cell structures by minimizing the binary cross entropy.946

TSNE (27) preserves the local cell structures. PHATE (28)947

tackles the general shape and local transition of cells. How-948

ever, none of them impart the nested structures of cells into949

the visualization. We propose a nonlinear dimension reduc-950

tion refinement based on UMAP by incorporating cell hier-951

archy as supervised knowledge. We acquire three cell-cell952

graphs that only store the intra-connections of cells within953

each global, subpopulation, and club partition. Then, we954

minimize the weighted binary cross-entropy of the three cell-955

cell graphs. This approach guarantees the global structure of956

the cells. Moreover, it ensures that cells within one cell club957

and cell clubs within one subpopulation are closely placed in958

the visualization. In contrast, cells from different clubs and959

subpopulations are kept at a considerable distance. One can960

adjust the cross-entropy weights of global-subpopulation-cell961

layers so that the patterns in visualization retain a desired962

degree of hierarchy. Experiments with scRNA and scATAC963

data demonstrate that SEAT hierarchical visualization consis-964

tently produces a clear layout of cell clumps corresponding to965

the cell hierarchy.966

Cellular abnormalities may distort the entire cell hierarchy.967

When there are cell outliers presented, the original SEAT968

will assign each cell outlier to its nearest cell subpopula-969

tion. Thus, the downstream biological interpretation may be970

skewed. To tackle the issue, we provide an optional aver-971

age kNN outlier detection step before constructing the cell972

hierarchy. In Supplementary Results and Supplementary Fig.973

S31-S35, we demonstrate the distance cutoff is more stable974

than the distance percentile cutoff because the latter heav-975

ily depends on the ratio of outliers in the whole population.976

Thus, we set distance cutoff as the default outlier detection977

strategy.978

The structure entropy evaluates the global uncertainty of ran-979

dom walks through a network with a nested structure (19).980

The minimum structure entropy interprets a stable nested981

structure in the network. Li et al. has used structure en-982

tropy to define tumor subtypes from bulk gene expression983

data (21) and to detect the hierarchical topologically associat-984

ing domains from Hi-C data (22). These works utilize greedy985

merging and combining operations to build a local optimal986

multi-nary hierarchy and cutting hierarchy roughly by keep-987

ing the top layers. As we have proven that a binary hierarchy988

of minimum structure entropy exists for a graph (23), Li et989

al.’s strategy to search for a multi-nary hierarchy is not opti-990

mized. Adopted by Louvain and Leiden, modularity is a pop-991

ular optimization metric to capture community structure in a992

single-cell network. Agglo(club) is analogous to Louvain’s993

if we switch the merging metric to modularity. Agglo(club)994

achieves better or comparable clustering performance against995

Louvain in most benchmark sets (Fig. 2A and Fig. 5A),996

suggesting the superiority of structure entropy over modu-997

larity in measuring the strength of hierarchically partitioning998

a network into subgroups. We have discussed the differences999

and advantages of SEAT against the existing structure en-1000

tropy and modularity approaches at the algorithmic level in1001

the Supplementary Method.1002

SEAT detects the cell hierarchy, assuming that the entropy1003

codes nested structures of cells. There is no assurance that the1004

resultant cell hierarchy will resemble accurate nested struc-1005

tures of cells. SEAT finds a pseudo cell hierarchy of cells.1006

We show that the pseudo cell hierarchy showcases profound1007

efficacy and biological insights in subpopulation detection,1008

cell club investigation, and periodic pseudo-time inference1009

for single-cell multiomics benchmarking datasets. In future1010

work, we aim to refine the algorithm to find a more accurate1011

and insightful pseudo cell hierarchy.1012

Recall that the cell hierarchy has multiple layers to present1013

cellular heterogeneity. In this study, we merely utilize four1014

main layers (global, subpopulation, club, and cell) to inter-1015

pret and visualize the cellular functional diversity. In the fu-1016

ture, we intend to investigate possible biological insights and1017

visualization layouts derived from more cell hierarchy layers.1018

Moreover, the order of the cell clubs can be flipped in the cell1019

hierarchy. There is only a partial order among cells bounded1020

by the cell hierarchy. We plan to refine the algorithm to pro-1021

vide a proper non-partial one-dimensional order, which might1022

infer the nuance of pseudo-time or development trajectory1023

among cells outside the periodic cell cycle.1024
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