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ABSTRACT The emergence of a polybasic cleavage motif for the protease furin in the SARS-CoV-2 spike 

protein has been established as a major factor for enhanced viral transmission in humans. The peptide region 

N-terminal to that motif is extensively mutated in major variants of concern including Alpha, Delta and 

Omicron. Besides furin, spike proteins from these variants appear to rely on other proteases for maturation, 

including TMPRSS2 that may share the same cleavage motif. Glycans found near the cleavage site have 

raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, with 

a suite of chemical tools, we establish O-linked glycosylation as a major determinant of SARS-CoV-2 spike 

cleavage by the host proteases furin and TMPRSS2, and as a likely driving force for the emergence of 

common mutations in variants of concern. We provide direct evidence that the glycosyltransferase GalNAc-

T1 primes glycosylation at Thr678 in the living cell, and this glycosylation event is suppressed by many, but 
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not all variant mutations. A novel strategy for rapid bioorthogonal modification of Thr678-containing 

glycopeptides revealed that introduction of a negative charge completely abrogates furin activity. In a panel 

of synthetic glycopeptides containing elaborated O-glycans, we found that the sole incorporation of N-

acetylgalactosamine did not substantially impact furin activity, but the presence of sialic acid in elaborated 

O-glycans reduced furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a 

negative impact on spike cleavage by TMPRSS2. With a chemistry-centered approach, we firmly establish 

O-glycosylation as a major determinant of spike maturation and propose that a disruption of O-GalNAc 

glycosylation is a substantial driving force for the evolution of variants of concern.  
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MAIN 

The viral surface spike protein has been the subject of intense scientific efforts to understand and curb 

SARS-CoV-2 transmission.1–14 Spike is a trimeric, multidomain glycoprotein (Figure 1a), with a dense glycan 

coat that plays crucial structural, immunological and functional roles.15–28 An evolutionarily novel arginine-rich 

peptide sequence in SARS-CoV-2 spike has been identified as the cleavage site for the Golgi-localised 

convertase furin. This furin cleavage site (FCS) is crucial for SARS-CoV-2 transmission, as cleavage 

enhances receptor binding and likely the fusion activity of spike.3,29–31 On a molecular level, furin hydrolyses 

the peptide bond between Arg685 and Ser686, converting full-length spike (termed FL-S) into the fragments 

S1 and S2 in the mature protein.7,32–39 Another host protease, TMPRSS2, has been proposed to act 

synergistically with furin, potentially also targeting the FCS with preference to cleave before arginine.40,41 

 

Circulating variants of concern (VOCs) display increased proteolytic processing of spike into S1/S2.37,42–44 

This increase has been associated with a remarkable polymorphism in the peptide stretch preceding the FCS 

between residues Gln675 and Pro681. Most VOCs and many minor circulating variants carry at least one 

mutation in that peptide region: Alpha (B.1.1.7) and Delta (B.1.617.2) display mutations at Pro681 to His and 

Arg, respectively, whereas all Omicron sub-lineages including BA.1, BA.2 and BA.5 combine P681H with the 

mutation N679K. Mutations in this region appear to have arisen more than once independently: Delta 

(P681R), Alpha (P681H) and Omicron lineages (P681H) are on different arms of the evolutionary tree with 

common ancestors that do not contain mutations around the FCS, indicating that some selection pressure 

on this sequence must have been present during their evolution.45,46 Lower-prominence variants have 

featured substitutions at Gln675 and Gln677,47–51 usually to amino acids with basic functionalities (Figure 
1a). In line with the cleavage enhancing effect of these mutations, preparations of VOC spike from eukaryotic 

expression systems contain less FL-S than WT (Wuhan/WH04/2020) spike preparations.52 While it is 

tempting to suggest that an increase in basic amino acids enhances furin activity simply due to electrostatic 

extension of the polybasic cleavage site,53,54 this amino acid-centric notion neglects the impact of post-

translational modifications. In line with this notion, Whittaker and colleagues observed that the P681H 

mutation alone does not increase furin cleavage of synthetic peptides.55 Due to the importance of spike in 

the viral infectious cycle, the key determinants of processing offer essential insights into the cell biology of 

viral maturation. 

 

Like most surface proteins on animal viruses, SARS-CoV-2 spike is extensively coated with glycans that 

impact the mature virus’ infectivity and immunogenicity.15–28 Among these, Asn (N)-linked glycosylation is 

straightforward to predict due to the existence of a peptide consensus sequence (N-X-S/T; where X = any 

amino acid except Pro). In contrast, the prediction of Ser/Thr-linked N-acetylgalactosamine (O-GalNAc) 

glycosylation, which also greatly impacts viral biology,25,56–60 is an analytical challenge due to greater 

biosynthetic complexity and the lack of a peptide consensus sequence.61–71 Notably, the peptide region 

between Gln675 and Pro681 of SARS-CoV-2 spike harbours multiple Ser/Thr residues that may carry O-

GalNAc glycans.19,26,27 Despite the analytical difficulties in understanding O-glycan biology, emerging data 
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suggests that O-GalNAc glycosylation impacts furin-mediated spike cleavage.72 Due to the relevance of furin 

cleavage for viral infectivity, understanding the role of glycosylation in this process is essential. 

 

The biosynthesis of O-GalNAc glycans is initiated by the introduction of the sugar N-acetylgalactosamine 

(GalNAc) from activated substrate uridine diphosphate (UDP)-GalNAc on to Ser/Thr side chains by a family 

of 20 GalNAc transferase (GalNAc-T1…T20) isoenzymes. GalNAc-Ts are often associated with isoenzyme-

specific, decisive roles in physiological processes that are beginning to be unraveled.73–82 Understanding the 

substrate profiles of individual GalNAc-T isoenzymes yields insight into the regulation of such processes and 

can be the basis for the development of tools, diagnostics and therapeutics. However, assigning glycosylation 

sites to individual GalNAc-Ts is challenging due to their complex and often overlapping interplay in the 

secretory pathway.83 Additionally, the initial GalNAc residue is often further elaborated, generating mature 

glycans containing galactose (Gal), N-acetylglucosamine (GlcNAc), and the acidic monosaccharide N-

acetylneuraminic acid (Neu5Ac) as a capping structure, further complicating the analytical profiling of O-

GalNAc glycoproteins by mass spectrometry (MS) glycoproteomics. Indirect methods are thus often 

necessary to establish links between GalNAc-T isoenzymes and the glycosylation sites they modify to yield 

insights into O-glycan biology.73,84–87 Through co-expression of the individual human GalNAc-Ts with spike in 

insect cells and lectin staining, Ten Hagen and colleagues identified seven isoenzymes capable of 

introducing GalNAc into recombinant spike.72 Furthermore, co-expression of spike with GalNAc-T1 

decreased furin cleavage, suggesting that glycosylation may modulate furin cleavage and, by implication, 

viral infectivity. This is in line with earlier findings that furin cleavage of other secreted proteins can be 

impacted by O-glycosylation.88–92 However, the biosynthetic complexity and technical challenges associated 

with O-glycoproteome analysis have thus far hindered closer investigation. Specifically, we currently lack 

knowledge on glycan abundance, precise attachment site(s), structural influence on proteolysis, and the roles 

of VOC mutations on O-GalNAc glycosylation. 

 

By enabling a more direct view into the details of glycan biosynthesis, chemical tools have provided an insight 

into glycobiology that is orthogonal to classical methods of molecular biology. For example, by using a tactic 

termed “bump-and-hole engineering”, we have developed a chemical reporter strategy for the activities of 

individual GalNAc-T isoenzymes in the living cell (Figure 1b).93,94 Through structure-based design, the active 

site of a GalNAc-T isoenzyme was expanded by mutagenesis to contain a “hole”, which is complementary to 

a “bump” in a chemically modified analogue of the substrate UDP-GalNAc.94 The bumped substrate “UDP-

GalN6yne” contained an alkyne tag that enabled the bioorthogonal ligation of fluorophores or biotin after 

transfer to a glycoprotein, allowing the profiling of the substrates of individual GalNAc-Ts.94–96 Recently, we 

introduced a clickable, positively charged imidazolium tag (termed ITag) that enhances MS-based analysis 

by increasing the charge state and improving the fragmentation-based sequencing of glycopeptides.97 

Importantly, UDP-GalN6yne can be biosynthesized in the living cell through the introduction of an artificial 

metabolic pathway and feeding with a membrane-permeable peracetylated GalN6yne precursor 

(Ac4GalN6yne), allowing for the installation of a fully functional GalNAc-T bump-and-hole system.94,98 Building 
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on the power of our chemical tools to dissect the role of O-GalNAc glycosylation, we sought to map the 

molecular details of glycan-mediated modulation of spike processing. 

 

Here, with aid from this repertoire of chemical biology tools, we establish O-linked glycosylation as a major 

determinant of SARS-CoV-2 spike cleavage by the host proteases furin and TMPRSS2. We provide direct 

evidence by MS-glycoproteomics that identifies GalNAc-T1 as the glycosyltransferase initiating Thr678 

glycosylation in the living cell. We demonstrate that the presence of elaborated glycans on Thr678 reduce 

proteolytic cleavage by TMPRSS2 and that a negative charge (via sialic acid) on Thr678-containing 

glycopeptides completely abrogates furin activity. We further confirm that mutations on Pro681 (present in 

major VOCs Alpha, Delta and Omicron) impair glycosylation of Thr678 and may therefore promote proteolytic 

processing of spike. We firmly establish O-glycosylation as a major determinant of SARS-CoV-2 spike 

maturation and propose disruption of O-GalNAc glycosylation as a considerable evolutionary driver for the 

emergence of SARS-CoV-2 VOCs.  

 

Figure 1. Dissecting O-glycosylation on SARS-CoV2 Spike. a) Left: SARS-CoV-2 spike model (6ZGE) and (middle) 

its corresponding cartoon representation with the furin cleavage site (FCS) proximal region highlighted in yellow. The 

blue and bold T corresponds to Thr678 which is a potential glycosylation site within the FCS proximal region. Underlined 

R and S residues correspond to the FCS. The S1 domain (including Thr678) lies N-terminal to the FCS and the S2 

domain is C-terminal to the FCS. Right: peptide alignment for SARS-CoV-2 variants of concern (VOCs) and related 
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coronaviruses showing the emergence of the polybasic motif in the FCS proximal region. Highlighted in yellow is the 

polybasic motif of SARS-CoV-2 spike. Bold and red are amino acid changes in positions 679 and 681 in VOCs. b) 
Bump-and-hole engineering allows for GalNAc-T isoenzyme-specific tagging of glycosylation substrates using the 

clickable substrate UDP-GalN6yne. FCS = furin cleavage site; VOCs = variants of concern. 

RESULTS AND DISCUSSION 

Establishing a protein as a GalNAc-T substrate classically features expression in cells either lacking or 

overexpressing the respective GalNAc-T, followed by detection by GalNAc-recognising lectins.72,73,85–87,99 

While generally powerful, identifying the modified glycosylation sites is often challenging by these methods, 

due to the interplay and ensuing compensatory effects between GalNAc-T isoenzymes. Bump-and-hole 

engineering enables a direct relation to the engineered GalNAc-T isoenzyme by introduction of a GalNAc 

analogue which can be bioorthgonally tagged and detected by various analytical techniques (Figure 2). We 

incubated recombinant SARS-CoV-2 spike WT, P681R or P681H constructs produced in human Expi293F 

cells with recombinant WT- or bump-and-hole engineered GalNAc-T1 (BH = I238A/L295A double mutant) or 

T2 (BH = I253A/L310A double mutant) and the bumped nucleotide sugar UDP-GalN6yne.93 We then tagged 

the glycosylated peptides with biotin picolyl azide by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) 

and visualized glycosylation via streptavidin blot (Figure 2a). An intense, single band corresponding to the 

S1 fragment was observed when WT (Wuhan/WH04/2020) spike was incubated with BH-GalNAc-T1 (Figure 
2b). Negligible signal was observed on preparations incubated with either BH-T2 or the corresponding WT-

GalNAc-Ts. A single substitution of Pro681 to either His or Arg led to near-complete abrogation of 

glycosylation by BH-T1. These data suggest that recombinant WT-S1 contains a dedicated GalNAc-T1 

glycosylation site which is absent in recombinant WT-FL-S and obstructed upon variant-specific mutation of 

Pro681. 
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Figure 2. GalNAc-T isoenzyme-specific in vitro glycosylation of recombinant SARS-CoV2 spike preparations. 
a) Overview of chemoenzymatic experiments comparing WT and BH-GalNAc-T1/T2 glycosylation (and click-

biotinylation) of WT and P681 mutant (P681H and P681R) spike preparations. b) Streptavidin blot of the 

chemoenzymatically tagged (glycosylated and biotin picolyl azide CuAAC-ligated) recombinant SARS-CoV-2 spike WT 

and P681 mutants. Visualised via IRDye 800CW-streptavidin fluorescence. FL-S: Full-length SARS-CoV-2 spike; S1: 

Cleaved SARS-CoV-2 spike S1 domain; S2: Cleaved SARS-CoV-2 spike S2 domain; Fc-NbA5: Fc-conjugated SARS-

CoV-2 RBD spike-specific nanobody. 

We then used a panel of synthetic peptides to study the effect of spike mutations on GalNAc-T1-mediated 

glycosylation. The peptide panel included variant-related mutations at the major hotspots: Gln675, Gln677, 

Asn679 and Pro681 (Figure 3a). GalNAc-T1 generated both mono- and di-glycopeptides from a WT (Wuhan) 

substrate peptide (Figure 3b). Consistent with the work by Ten Hagen and colleagues,72 notable reductions 

in glycosylation were observed for P681H and P681R peptides with approx. 80% and 90% of starting material 

remaining in the reaction mixture, respectively. These results validated the importance of a Pro in position 

+3 for GalNAc-T1 glycosylation.100 Single mutations at positions 675, 677, and 679, including N679K found 

in Omicron, reduced the amount of di-glycosylation but largely retained mono-glycosylation with almost 

complete consumption of the starting material. In contrast, the combination of two mutations at positions 675 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2022. ; https://doi.org/10.1101/2022.09.15.508093doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508093
http://creativecommons.org/licenses/by/4.0/


 

and 677 showed a critical reduction of glycosylation. This was evidenced by reactions with the double mutant 

peptides Q675H+Q677H and Q675H+Q677R resulting in 9.7% and 5.7% conversion, respectively. These 

data confirmed the dependence of GalNAc-T1 on Pro681 but indicate that only certain VOC mutations impact 

O-GalNAc glycosylation. Mass spectrometry with electron-transfer dissociation (ETD) fragmentation revealed 

that mono-glycopeptides are exclusively GalNAc-modified on Thr678 while di-glycopeptides are modified at 

Thr676 and Thr678, indicating a hierarchy of sites where Thr678 is glycosylated first (Figure 3c and 
Supporting Figure 1). When BH-engineered GalNAc-T1 and UDP-GalN6yne were used in the in vitro assay 

with WT spike-derived peptides, we observed the same trends, confirming that BH-T1 recapitulates the 

substrate specificity of WT-T1 (Figure 3c and Supporting Figure 1).  

 

Having established a link between VOC mutations and glycosylation, we sought to rule out an immunological 

implication of the corresponding (glyco-)peptides that might impact any mechanistic deductions. Peptides 

WT, P681H and WT-GalNAc (Figure 3a; “WT-GalNAc” corresponds to the glycosylation product of the WT 

peptide carrying an O-GalNAc on Thr678), were evaluated in peripheral blood mononuclear cells (PBMC) 

from n=48 SARS-CoV-2 vaccinated individuals for T cell interferon-gamma (IFN-g) secretion using an 

Enzyme-linked immunosorbent spot (ELISpot) assay.101 As shown in Supporting Figure 2, the median [IQR] 

response to the spike protein was 33.5 [16.7-69] spot forming cells (SFC) per million PBMC and to the 

combined pool of M and N proteins was 10 [0-29] SFC/million PBMC. The median [IQR] response to the 

peptide WT-GalNAc was 0 [0-3.7] in n=44 individuals, compared to the peptide P681H 0 [0-3.5] in n=21, and 

WT 10 [0-27] in n=3 individuals. These results indicate that neither (glyco-)peptide is a T cell target in 

vaccinated individuals. 
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Figure 3. Evaluation of GalNAc-T1-mediated glycosylation on synthetic peptides. a) Peptide panel of the FCS 
proximal region in SARS-CoV-2 spike including WT and 9 mutant peptides. b) In vitro glycosylation results with 

recombinant WT-GalNAc-T1 and UDP-GalNAc assessed by LC-MS. Data are means ± SD from three independent 

replicates. c) Tandem MS (ETD) spectra for WT (top) and BH- (bottom) GalNAc-T1 glycosylation of the WT peptide H-

ASYQTQTNSPRRARS-NH2 in vitro. Synthetic peptides were run on an Orbitrap Eclipse (Thermo) and subjected to 

ETD, followed by manual validation and hand curation. Legend: c ions are indicated in blue and z ions in pink. Yellow 
square = GalNAc. Brown alkyne = GalN6yne. WT-T1 = WT-GalNAc-T1. BH-T1 = BH-GalNAc-T1. 
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GalNAc-T selective MS-glycoproteomics analysis allows O-glycosite and glycan composition 
investigation in vitro and in engineered cells 

Assigning the activity of GalNAc-T isoenzymes to specific glycosylation sites is complicated by the 

redundant nature of GalNAc-Ts and the complex dynamics of the secretory pathway, neither of which can be 

accurately replicated with in vitro assays using synthetic peptides. Furthermore, the FCS-adjacent region 

lacks cleavage sites of the proteases most commonly used in MS sample preparation, resulting in large 

glycopeptides further hampering analysis. The use of specialized chemical tools can address these 

shortcomings and report on GalNAc-T activity in the secretory pathway of living cells while offering a 

bioorthogonal handle to aid MS analysis. We stably transfected Expi293F cells with constructs for both SARS-

CoV-2 spike (Wuhan) and either WT- or BH-versions of GalNAc-T1 or T2, along with the biosynthetic 

machinery to generate UDP-GalN6yne in the cell from a membrane permeable precursor (Ac4GalN6yne) that 

was introduced via cell feeding (Figure 4a).98 Spike samples were isolated and derivatized by CuAAC with 

an azide-functionalized imidazolium group containing a permanent positive charge (ITag-azide).97,102–104 This 

treatment introduced GalN6yne in an isoenzyme-specific fashion while endowing glycopeptides with an 

additional positive charge that facilitates MS-analysis.97 The separated FL-S and S1/S2 fractions were 

subjected to in-gel digestion and analyzed by tandem MS. We used high intensity collision-induced 

dissociation (HCD) to obtain naked peptide sequences and glycan compositions, and then used the ITag-

containing GalN6yne diagnostic ion to trigger ETD fragmentation of the peptide backbone (Figure 
4b).71,97,105,106 Through both computational (Byonic, ProteinMetrics) and manual validation, we found that 

Thr678 carried ITag-modified GalN6yne in both FL-S and S1 samples exclusively in cells expressing BH-T1, 

but not BH-T2 or any WT-GalNAc-Ts (Figure 4c and Supplementary Data 1). The additional positive charge 

of the ligated ITag permitted straightforward ETD fragmentation of a 21-amino acid glycopeptide. In contrast, 

the corresponding glycopeptide in samples expressing WT-T1 could not be unambiguously sequenced, 

highlighting the ability of chemical tools to help advance site-specific O-glycoproteomics. We further found 

that both BH-T1 and BH-T2 glycosylated Thr323, a previously detected glycosylation site that had thus far 

not been associated with any GalNAc-T isoenzyme (Figure 4c and Supporting Figure 3). These results 

were also recapitulated in vitro through glycosylation of recombinantly expressed spike with recombinantly 

expressed soluble constructs of BH-GalNAc-T1 and BH-GalNAc-T2, followed by CuAAC ligation of ITag-

azide and MS-glycoproteomics analysis (SI and Supporting Figure 4). Our data directly proved that GalNAc-

T1 glycosylates Thr678 in the living cell. 
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Figure 4. Uncovering the relationship between GalNAc-T1 and Thr678 by chemical tools. a) GalNAc salvage 
pathway and UDP-GalN6yne biosynthesis. Expression of the kinase NahK and the pyrophosphorylase AGX1F383A 

permits biosynthesis of UDP-GalN6yne in engineered cells. b) Graphical representation of the MS-glycoproteomics 

methodology for engineered cells: SARS-CoV-2 spike was recombinantly expressed in Expi293F cells co-expressing 

NahK, AGX1F383A and either BH-GalNAc-T1 or T2. Following isolation and de-N-glycosylation, ITag-azide was 

introduced by CuAAC and the protein preparation subjected to in-gel digestion and MS by HCD-triggered ETD. c) 
Annotated tandem MS (ETD) spectra of the major hits tagged by BH-GalNAc-T1 (left) and BH-GalNAc-T2 (right). c ions 

are indicated in green, z ions in orange and y ions in pink. Yellow square = GalNAc. Brown alkyne = GalN6yne. 
Ac4GalN6yne precursor = membrane permeable peracetylated GalN6yne. BH-T1 cells = Expi293F cells co-transfected 

with WT SARS-CoV-2 spike and BH-GalNAc-T1. BH-T2 cells = Expi293F cells co-transfected with WT SARS-CoV-2 

spike and BH-GalNAc-T2. 

Elaborated O-linked sialoglycans on Thr678 confer proteolytic resistance to SARS-CoV-2 spike 

Glycosylation has the potential to modulate the proteolytic processing of a peptide depending on the 

distance to the cleavage site and glycan composition.88,91,92 We used a direct method to investigate whether 

O-GalNAc glycans on Thr678 modulate cleavage by furin. To this end, we designed synthetic Förster 

Resonance Energy Transfer (FRET)-active substrate peptides to assess proteolytic activity. Peptides 

spanning residues 672 to 689 contained N-terminal 2-aminobenzoyl (Abz) and C-terminal 3-nitrotyrosine (3-

NO2Tyr) as fluorescence donor and quencher moieties, respectively. An increase in fluorescence intensity 

indicated proteolytic cleavage (Figure 5a).107 We first compared non-glycosylated substrates corresponding 

to either WT (FRET-1) and P681H mutant spike (FRET-2). The P681H mutation had no discernable effect 

on the rate of furin-mediated cleavage, confirming the data by Whittaker and colleagues that the addition of 
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a basic amino acid is not by itself a defining characteristic of spike furin cleavage enhancement in existing 

VOCs.55 

We hypothesized that an increase of furin processing in mutant spike may not stem directly from recognition 

of the bare peptide sequence, but rather a decreased capacity of GalNAc-T1 to introduce O-GalNAc glycans 

to peptides with mutations proximal to the recognition site. We thus tested whether glycosylation of furin 

substrate peptides impacts proteolytic cleavage. FRET reporter peptides carrying GalNAc (FRET-3) or 

alkyne-containing GalN6yne (FRET-4) were synthesized by chemoenzymatic glycosylation with WT- and BH-

GalNAc-T1, respectively. Glycosylation with the single monosaccharides alone did not substantially impact 

the furin cleavage rate compared to the WT peptide FRET-1 (Figure 5c and Supporting Figure 5). We 

speculated that elaboration of GalNAc to larger or charged glycans might introduce additional structural 

constraints on furin recognition. The alkyne tag present on GalN6yne gave an opportunity to modify the 

biophysical properties of glycopeptides in a straightforward fashion, enabling synthetic efforts to furnish 

glycopeptides with specific additional groups or functionalities. We reacted glycopeptide FRET-4 with two 

organic azides under CuAAC conditions: 6-azido-6-deoxy-glucose yielded the pseudodisaccharide FRET-5, 

while 3-azido-propionic acid introduced an additional acidic functionality to investigate the impact of a 

negative charge on furin cleavage in glycopeptide FRET-6. Both click-elaborated glycopeptides displayed a 

significant reduction in furin cleavage (Figure 5c and Supporting Figure 5). FRET-5 exhibited an 80% 

decrease in the rate of furin cleavage with respect to FRET-1, which is attributable to the relative steric 

expansion. Strikingly, FRET-6 which carried a smaller, negatively charged modification, resulted in a 93% 

rate reduction, almost completely abrogating furin activity. We concluded that the elaboration of O-glycans 

on Thr678, especially with negatively charged modifications, severely impedes the activity of furin. 

Sialic acid, a common capping monosaccharide of O-glycans, is negatively charged under physiological pH. 

We reasoned that the presence of sialic acid might modulate furin cleavage, and hence chemoenzymatically 

synthesized a set of novel, spike-derived glycopeptides to test on our cleavage assay. First, Drosophila 

melanogaster C1GALT1 was used to extend FRET-3 with b3-linked galactose to give FRET-7.108 a2,6-Linked 

sialic acid was introduced into FRET-3 and FRET-7 using the enzymes ST6GALNAC1 and ST6GALNAC2, 

respectively, to yield the sialoglycopeptides FRET-8 and FRET-9 (Figure 5d).109 While the uncharged 

disaccharide in FRET-7 only had a marginal (3.5% decrease) effect on furin rate compared to the parental 

peptide FRET-1, the presence of a sialic acid led to a striking 45% reduction of furin rate in glycopeptide 

FRET-8 and a 65% reduction in glycopeptide FRET-9 (Figure 5e). We concluded that the elaboration of O-

glycans on Thr678 with negatively charged sialic acid residues severely hampers furin activity.  

To our knowledge, in contrast to furin,88 TMPRSS2 has not been comprehensively probed for cleavage of 

glycopeptide substrates. We sought to establish whether O-GalNAc glycans could modulate TMPRSS2 

activity in a similar fashion to furin. Recombinant TMPRSS2 was subjected to our selection of (glyco-)peptide 

FRET substrates FRET-1, FRET-3 and FRET-7 to FRET-9 (Figure 5e). While all glycans somewhat impacted 

TMPRSS2 activity with respect to the non-glycosylated peptide FRET-1, the trisaccharide-containing 

sialoglycopeptide FRET-9 (70% rate reduction) impacted cleavage more drastically than all other (glyco-

)peptides. 
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Figure 5. Chemical elaboration of O-glycosylation to assess proteolytic cleavage of glycopeptides. a) 
Experimental design and comparison of furin cleavage between WT and P681H peptide substrates. Peptides containing 

N-terminal 2-aminobenzoate (Abz) as a FRET donor, and C-terminal 3-nitrotyrosine (3-NO2Tyr) as a FRET quencher 

that was removed upon proteolytic cleavage. b) Chemical modifications of synthetic (glyco-)peptides FRET-3 through 

FRET-6, generated via in vitro glycosylation and CuAAC. c) Left: Time course of fluorescence increase upon furin 

cleavage reactions of 20 µM FRET-1 and FRET-3 to FRET-6 with 0.8 U/mL furin. Linear fluorescence increase is shown 

and normalised to the corresponding control run without furin. Right: Rates of furin cleavage of glycopeptides FRET-1 

and FRET-3 to FRET-6 obtained through linear regression and normalisation to control runs without furin. Data are 

means ± SD of four independent experiments. d) Chemoenzymatic synthesis of glycopeptides FRET-7 through FRET-
9: i. ST6GalNAc-1 (150 µg/mL), CMP-Neu5Ac (1.5 eq.), pH 7.5, 37°C for 16 hours, 46% yield; ii. DmC1GalT1 (1 µM), 

UDP-Gal (1.5 eq.), pH 7.5, 37°C for 16 hours, 50% yield; iii. ST6GALNAC-2 (10 µg/mL), CMP-Neu5Ac (1.5 eq.), pH 

7.5, 37°C for 48 hours, 30% yield. Bold and orange T denotes Thr678 in the glycopeptides. e) Rates of furin (left) and 

TMPRSS (right) cleavage of (glyco-)peptides FRET-1 to FRET-3 and FRET-7 to FRET-9 obtained through linear 

regression and normalization to control runs without furin. Data are means ± SD of three independent experiments. 
Group comparison was performed via one-way ANOVA with Tukey’s multiple comparisons test and asterisks annotate 

P values: *P < 0.0332 ; **P < 0.0021; ***P < 0.0002; ****P < 0.0001, compared to the non-modified peptide (FRET-1). 
CMP = cytidine monophosphate; CIAP = Calf intestinal alkaline phosphatase. Neu5Ac = N-acetylneuraminic acid. 

Our in vitro glycosylation experiments suggested that S1 is the only available GalNAc-T1 substrate on WT 

spike after secretion from human cell culture (Figure 2b). Such behaviour could be explained by the presence 

of elaborated, sialylated O-glycans on recombinant FL-S, which would both prevent furin cleavage and block 

access by GalNAc-T1 in vitro. This would suggest an enrichment of sialylated O-glycans on FL-S relative to 

processed S1. To explore this notion, we subjected the FL-S and S1/S2 gel bands from a recombinant WT-
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spike preparation to MS-glycoproteomics analysis, searching for both simple and elaborated O-GalNAc 

glycans. By calculating the intact masses of various expected O-glycopeptides in recombinant spike and then 

obtaining the associated extracted ion chromatograms (XICs), we found that over 5-fold higher glycopeptide 

signal is present in FL-S when compared to cleaved S1/S2 fractions (Figure 6 and Supplementary Data 2). 

Furthermore, when accounting for sialic acid-containing glycopeptides only, an ~8-fold higher abundance 

was observed for FL-S relative to S1/S2 (Supplementary Data 2). 

 
Figure 6. Extracted ion abundance for O-glycopeptides from FL-S or S1/S2 recombinant spike fractions. Mass 

areas were normalised against their corresponding base peaks and multiplied by a factor of 10,000. All data analysis 

was performed in Thermo XCalibur software and hand-curated. Highlighted T corresponds to Thr678 which was found 

to be modified by diverse O-glycans. 

DISCUSSION 
Our data strongly indicate that elaborated, negatively charged O-GalNAc glycans on Thr678 of SARS-CoV-

2 spike have a negative effect on proteolytic cleavage. Such glycans are produced on lung epithelial cells 

which express GalNAc-T1,72 suggesting that glycosylation is a physiologically relevant modification that could 

restrict the maturation (by proteolysis) of spike in WT SARS-CoV-2.110 The propensity of SARS-CoV-2 

variants of concern to outcompete each other has been linked to both increased infectivity and immune 

escape. Within the evolutionary trajectory from the Alpha to Delta and Omicron variants, notable changes in 

the amino acid sequence proximal to the FCS indicated that proteolytic cleavage is gradually enhanced, 

congruent with their increased infectivity. Mutations of Pro681 have been detected in early variants such as 

Alpha (P681H). We found that this mutation did not increase the rate of cleavage by both furin and TMPRSS2, 

further implicating glycosylation as a restricting factor for spike processing. Notably, the analogous mutation 

found on the more transmissible Delta variant (P681R) has been linked to an increase in furin cleavage by 

Whittaker and colleagues,43 suggesting an evolutionary trajectory that places suppression of O-glycosylation 

before increasing intrinsic furin recognition. This is further underlined by the mutations found in Omicron, 

which features both the P681H with the N679K mutations: in contrast to P681H and consistent with mapped 

amino acid preferences of GalNAc-T1,111 the N679K mutation does not substantially impact glycosylation, 

but it leads to enhanced furin cleavage of synthetic peptides.43 These FCS-adjacent mutations therefore act 

synergistically and have likely evolved to both suppress glycosylation and intrinsically enhance furin 

cleavage. Since the closest relatives to SARS-CoV-2, the strains RaTG13 Bat-CoV and GD Pangolin-CoV, 
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share the exact same peptide sequence without harbouring an FCS (Figure 1), we speculate that O-

glycosylation might have been a remnant of ancestral strains that has been subsequently lost through the 

process of viral evolution. 

 

The presence of O-GalNAc glycans adjacent to proteolytic cleavage sites has been found to impact 

processing of secreted proteins.88–92 The glycosylation site at Thr678 of spike is not in direct proximity of the 

FCS, potentially explaining why a single GalNAc residue is not sufficient to modulate furin activity and only 

minimally impacts TMPRSS2 activity. The necessity for the glycan to be elaborated or sialylated to reveal the 

negative effect upon the rates of cleavage further highlights the need for accurate glycan tracing 

techniques.112 Tuning the chemical properties of glycopeptides in a straightforward fashion by CuAAC was 

pivotal in enabling an initial understanding of the substrate-activity relationship of proteases. This strategy 

informed the targeted synthesis of elaborated O-glycopeptide substrates, providing a convenient method to 

fine-tune substrate scope in a time- and resource-efficient manner to address specific hypotheses. Chemical 

tools thus provided insights into glycosyltransferase specificity, improved the efficacy of detection by 

detectability by MS, and allowed the exploration of protease substrate specificity, showcasing the power of 

such tools in biomedical discovery. 
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