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ABSTRACT The emergence of a polybasic cleavage motif for the protease furin in the SARS-CoV-2 spike
protein has been established as a major factor for enhanced viral transmission in humans. The peptide region
N-terminal to that motif is extensively mutated in major variants of concern including Alpha, Delta and
Omicron. Besides furin, spike proteins from these variants appear to rely on other proteases for maturation,
including TMPRSS2 that may share the same cleavage motif. Glycans found near the cleavage site have
raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, with
a suite of chemical tools, we establish O-linked glycosylation as a major determinant of SARS-CoV-2 spike
cleavage by the host proteases furin and TMPRSS2, and as a likely driving force for the emergence of
common mutations in variants of concern. We provide direct evidence that the glycosyltransferase GalNAc-

T1 primes glycosylation at Thr678 in the living cell, and this glycosylation event is suppressed by many, but
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not all variant mutations. A novel strategy for rapid bioorthogonal modification of Thr678-containing
glycopeptides revealed that introduction of a negative charge completely abrogates furin activity. In a panel
of synthetic glycopeptides containing elaborated O-glycans, we found that the sole incorporation of N-
acetylgalactosamine did not substantially impact furin activity, but the presence of sialic acid in elaborated
O-glycans reduced furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a
negative impact on spike cleavage by TMPRSS2. With a chemistry-centered approach, we firmly establish
O-glycosylation as a major determinant of spike maturation and propose that a disruption of O-GalNAc

glycosylation is a substantial driving force for the evolution of variants of concern.
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MAIN

The viral surface spike protein has been the subject of intense scientific efforts to understand and curb
SARS-CoV-2 transmission."'* Spike is a trimeric, multidomain glycoprotein (Figure 1a), with a dense glycan
coat that plays crucial structural, immunological and functional roles.'>? An evolutionarily novel arginine-rich
peptide sequence in SARS-CoV-2 spike has been identified as the cleavage site for the Golgi-localised
convertase furin. This furin cleavage site (FCS) is crucial for SARS-CoV-2 transmission, as cleavage
enhances receptor binding and likely the fusion activity of spike.>?°=*' On a molecular level, furin hydrolyses
the peptide bond between Arg685 and Ser686, converting full-length spike (termed FL-S) into the fragments
S1 and S2 in the mature protein.”*?® Another host protease, TMPRSS2, has been proposed to act

synergistically with furin, potentially also targeting the FCS with preference to cleave before arginine.*%*'

Circulating variants of concern (VOCs) display increased proteolytic processing of spike into S1/82.3742-44
This increase has been associated with a remarkable polymorphism in the peptide stretch preceding the FCS
between residues GIn675 and Pro681. Most VOCs and many minor circulating variants carry at least one
mutation in that peptide region: Alpha (B.1.1.7) and Delta (B.1.617.2) display mutations at Pro681 to His and
Arg, respectively, whereas all Omicron sub-lineages including BA.1, BA.2 and BA.5 combine P681H with the
mutation N679K. Mutations in this region appear to have arisen more than once independently: Delta
(P681R), Alpha (P681H) and Omicron lineages (P681H) are on different arms of the evolutionary tree with
common ancestors that do not contain mutations around the FCS, indicating that some selection pressure
on this sequence must have been present during their evolution.*>#® Lower-prominence variants have
featured substitutions at GIn675 and GIn677,*"~>" usually to amino acids with basic functionalities (Figure
1a). In line with the cleavage enhancing effect of these mutations, preparations of VOC spike from eukaryotic
expression systems contain less FL-S than WT (Wuhan/WH04/2020) spike preparations.’? While it is
tempting to suggest that an increase in basic amino acids enhances furin activity simply due to electrostatic
extension of the polybasic cleavage site,>*** this amino acid-centric notion neglects the impact of post-
translational modifications. In line with this notion, Whittaker and colleagues observed that the P681H
mutation alone does not increase furin cleavage of synthetic peptides.>® Due to the importance of spike in
the viral infectious cycle, the key determinants of processing offer essential insights into the cell biology of

viral maturation.

Like most surface proteins on animal viruses, SARS-CoV-2 spike is extensively coated with glycans that
impact the mature virus’ infectivity and immunogenicity.’®2® Among these, Asn (N)-linked glycosylation is
straightforward to predict due to the existence of a peptide consensus sequence (N-X-S/T; where X = any
amino acid except Pro). In contrast, the prediction of Ser/Thr-linked N-acetylgalactosamine (O-GalNAc)

glycosylation, which also greatly impacts viral biology,?°¢-%

is an analytical challenge due to greater
biosynthetic complexity and the lack of a peptide consensus sequence.®’"" Notably, the peptide region
between GIn675 and Pro681 of SARS-CoV-2 spike harbours multiple Ser/Thr residues that may carry O-

GalNAc glycans.'®?5?" Despite the analytical difficulties in understanding O-glycan biology, emerging data
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suggests that O-GalNAc glycosylation impacts furin-mediated spike cleavage.’ Due to the relevance of furin

cleavage for viral infectivity, understanding the role of glycosylation in this process is essential.

The biosynthesis of O-GalNAc glycans is initiated by the introduction of the sugar N-acetylgalactosamine
(GalNAc) from activated substrate uridine diphosphate (UDP)-GalNAc on to Ser/Thr side chains by a family
of 20 GalNAc transferase (GalNAc-T1...T20) isoenzymes. GalNAc-Ts are often associated with isoenzyme-
specific, decisive roles in physiological processes that are beginning to be unraveled.”®? Understanding the
substrate profiles of individual GalNAc-T isoenzymes yields insight into the regulation of such processes and
can be the basis for the development of tools, diagnostics and therapeutics. However, assigning glycosylation
sites to individual GalNAc-Ts is challenging due to their complex and often overlapping interplay in the
secretory pathway.®® Additionally, the initial GalNAc residue is often further elaborated, generating mature
glycans containing galactose (Gal), N-acetylglucosamine (GIcNAc), and the acidic monosaccharide N-
acetylneuraminic acid (Neu5Ac) as a capping structure, further complicating the analytical profiling of O-
GalNAc glycoproteins by mass spectrometry (MS) glycoproteomics. Indirect methods are thus often
necessary to establish links between GalNAc-T isoenzymes and the glycosylation sites they modify to yield
insights into O-glycan biology.”*#-% Through co-expression of the individual human GalNAc-Ts with spike in
insect cells and lectin staining, Ten Hagen and colleagues identified seven isoenzymes capable of
introducing GalNAc into recombinant spike.”? Furthermore, co-expression of spike with GalNAc-T1
decreased furin cleavage, suggesting that glycosylation may modulate furin cleavage and, by implication,
viral infectivity. This is in line with earlier findings that furin cleavage of other secreted proteins can be
impacted by O-glycosylation.?8°2 However, the biosynthetic complexity and technical challenges associated
with O-glycoproteome analysis have thus far hindered closer investigation. Specifically, we currently lack
knowledge on glycan abundance, precise attachment site(s), structural influence on proteolysis, and the roles

of VOC mutations on O-GalNAc glycosylation.

By enabling a more direct view into the details of glycan biosynthesis, chemical tools have provided an insight
into glycobiology that is orthogonal to classical methods of molecular biology. For example, by using a tactic
termed “bump-and-hole engineering”, we have developed a chemical reporter strategy for the activities of
individual GalNAc-T isoenzymes in the living cell (Figure 1b).%*** Through structure-based design, the active
site of a GalNAc-T isoenzyme was expanded by mutagenesis to contain a “hole”, which is complementary to
a “bump” in a chemically modified analogue of the substrate UDP-GalNAc.** The bumped substrate “UDP-
GalN6yne” contained an alkyne tag that enabled the bioorthogonal ligation of fluorophores or biotin after
transfer to a glycoprotein, allowing the profiling of the substrates of individual GalNAc-Ts.**% Recently, we
introduced a clickable, positively charged imidazolium tag (termed ITag) that enhances MS-based analysis
by increasing the charge state and improving the fragmentation-based sequencing of glycopeptides.®’
Importantly, UDP-GalN6yne can be biosynthesized in the living cell through the introduction of an artificial
metabolic pathway and feeding with a membrane-permeable peracetylated GalN6yne precursor

(AcsGalN6yne), allowing for the installation of a fully functional GalNAc-T bump-and-hole system.®*% Building
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on the power of our chemical tools to dissect the role of O-GalNAc glycosylation, we sought to map the

molecular details of glycan-mediated modulation of spike processing.

Here, with aid from this repertoire of chemical biology tools, we establish O-linked glycosylation as a major
determinant of SARS-CoV-2 spike cleavage by the host proteases furin and TMPRSS2. We provide direct
evidence by MS-glycoproteomics that identifies GalNAc-T1 as the glycosyltransferase initiating Thr678
glycosylation in the living cell. We demonstrate that the presence of elaborated glycans on Thr678 reduce
proteolytic cleavage by TMPRSS2 and that a negative charge (via sialic acid) on Thr678-containing
glycopeptides completely abrogates furin activity. We further confirm that mutations on Pro681 (present in
major VOCs Alpha, Delta and Omicron) impair glycosylation of Thr678 and may therefore promote proteolytic
processing of spike. We firmly establish O-glycosylation as a major determinant of SARS-CoV-2 spike
maturation and propose disruption of O-GalNAc glycosylation as a considerable evolutionary driver for the
emergence of SARS-CoV-2 VOCs.
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Figure 1. Dissecting O-glycosylation on SARS-CoV2 Spike. a) Left: SARS-CoV-2 spike model (6ZGE) and (middle)
its corresponding cartoon representation with the furin cleavage site (FCS) proximal region highlighted in yellow. The
blue and bold T corresponds to Thr678 which is a potential glycosylation site within the FCS proximal region. Underlined
R and S residues correspond to the FCS. The S1 domain (including Thr678) lies N-terminal to the FCS and the S2
domain is C-terminal to the FCS. Right: peptide alignment for SARS-CoV-2 variants of concern (VOCs) and related
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coronaviruses showing the emergence of the polybasic motif in the FCS proximal region. Highlighted in yellow is the
polybasic motif of SARS-CoV-2 spike. Bold and red are amino acid changes in positions 679 and 681 in VOCs. b)
Bump-and-hole engineering allows for GalNAc-T isoenzyme-specific tagging of glycosylation substrates using the
clickable substrate UDP-GalN6yne. FCS = furin cleavage site; VOCs = variants of concern.

RESULTS AND DISCUSSION

Establishing a protein as a GalNAc-T substrate classically features expression in cells either lacking or
overexpressing the respective GalNAc-T, followed by detection by GalNAc-recognising lectins.’27385-87.9
While generally powerful, identifying the modified glycosylation sites is often challenging by these methods,
due to the interplay and ensuing compensatory effects between GalNAc-T isoenzymes. Bump-and-hole
engineering enables a direct relation to the engineered GalNAc-T isoenzyme by introduction of a GalNAc
analogue which can be bioorthgonally tagged and detected by various analytical techniques (Figure 2). We
incubated recombinant SARS-CoV-2 spike WT, P681R or P681H constructs produced in human Expi293F
cells with recombinant WT- or bump-and-hole engineered GalNAc-T1 (BH = 1238A/L295A double mutant) or
T2 (BH = 1253A/L310A double mutant) and the bumped nucleotide sugar UDP-GalN6yne.*® We then tagged
the glycosylated peptides with biotin picolyl azide by Cu(l)-catalyzed azide-alkyne cycloaddition (CuAAC)
and visualized glycosylation via streptavidin blot (Figure 2a). An intense, single band corresponding to the
S1 fragment was observed when WT (Wuhan/WHO04/2020) spike was incubated with BH-GalNAc-T1 (Figure
2b). Negligible signal was observed on preparations incubated with either BH-T2 or the corresponding WT-
GalNAc-Ts. A single substitution of Pro681 to either His or Arg led to near-complete abrogation of
glycosylation by BH-T1. These data suggest that recombinant WT-S1 contains a dedicated GalNAc-T1
glycosylation site which is absent in recombinant WT-FL-S and obstructed upon variant-specific mutation of
Pro681.
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Figure 2. GalNAc-T isoenzyme-specific in vitro glycosylation of recombinant SARS-CoV2 spike preparations.

a) Overview of chemoenzymatic experiments comparing WT and BH-GalNAc-T1/T2 glycosylation (and click-
biotinylation) of WT and P681 mutant (P681H and P681R) spike preparations. b) Streptavidin blot of the
chemoenzymatically tagged (glycosylated and biotin picolyl azide CuAAC-ligated) recombinant SARS-CoV-2 spike WT
and P681 mutants. Visualised via IRDye 800CW-streptavidin fluorescence. FL-S: Full-length SARS-CoV-2 spike; S1:
Cleaved SARS-CoV-2 spike S1 domain; S2: Cleaved SARS-CoV-2 spike S2 domain; Fc-NbA5: Fc-conjugated SARS-
CoV-2 RBD spike-specific nanobody.

We then used a panel of synthetic peptides to study the effect of spike mutations on GalNAc-T1-mediated
glycosylation. The peptide panel included variant-related mutations at the major hotspots: GIn675, GIn677,
Asn679 and Pro681 (Figure 3a). GalNAc-T1 generated both mono- and di-glycopeptides from a WT (Wuhan)
substrate peptide (Figure 3b). Consistent with the work by Ten Hagen and colleagues,’? notable reductions
in glycosylation were observed for P681H and P681R peptides with approx. 80% and 90% of starting material
remaining in the reaction mixture, respectively. These results validated the importance of a Pro in position
+3 for GalNAc-T1 glycosylation.'® Single mutations at positions 675, 677, and 679, including N679K found
in Omicron, reduced the amount of di-glycosylation but largely retained mono-glycosylation with almost

complete consumption of the starting material. In contrast, the combination of two mutations at positions 675
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and 677 showed a critical reduction of glycosylation. This was evidenced by reactions with the double mutant
peptides Q675H+Q677H and Q675H+Q677R resulting in 9.7% and 5.7% conversion, respectively. These
data confirmed the dependence of GalNAc-T1 on Pro681 but indicate that only certain VOC mutations impact
O-GalNAc glycosylation. Mass spectrometry with electron-transfer dissociation (ETD) fragmentation revealed
that mono-glycopeptides are exclusively GalNAc-modified on Thr678 while di-glycopeptides are modified at
Thr676 and Thr678, indicating a hierarchy of sites where Thr678 is glycosylated first (Figure 3¢ and
Supporting Figure 1). When BH-engineered GalNAc-T1 and UDP-GalNGyne were used in the in vitro assay
with WT spike-derived peptides, we observed the same trends, confirming that BH-T1 recapitulates the

substrate specificity of WT-T1 (Figure 3c and Supporting Figure 1).

Having established a link between VOC mutations and glycosylation, we sought to rule out an immunological
implication of the corresponding (glyco-)peptides that might impact any mechanistic deductions. Peptides
WT, P681H and WT-GalNAc (Figure 3a; “WT-GalNAc” corresponds to the glycosylation product of the WT
peptide carrying an O-GalNAc on Thr678), were evaluated in peripheral blood mononuclear cells (PBMC)
from n=48 SARS-CoV-2 vaccinated individuals for T cell interferon-gamma (IFN-y) secretion using an
Enzyme-linked immunosorbent spot (ELISpot) assay.'?" As shown in Supporting Figure 2, the median [IQR]
response to the spike protein was 33.5 [16.7-69] spot forming cells (SFC) per million PBMC and to the
combined pool of M and N proteins was 10 [0-29] SFC/million PBMC. The median [IQR] response to the
peptide WT-GalNAc was 0 [0-3.7] in n=44 individuals, compared to the peptide P681H 0 [0-3.5] in n=21, and
WT 10 [0-27] in n=3 individuals. These results indicate that neither (glyco-)peptide is a T cell target in

vaccinated individuals.
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Figure 3. Evaluation of GalNAc-T1-mediated glycosylation on synthetic peptides. a) Peptide panel of the FCS
proximal region in SARS-CoV-2 spike including WT and 9 mutant peptides. b) In vitro glycosylation results with
recombinant WT-GaINAc-T1 and UDP-GalNAc assessed by LC-MS. Data are means = SD from three independent
replicates. ¢) Tandem MS (ETD) spectra for WT (top) and BH- (bottom) GalNAc-T1 glycosylation of the WT peptide H-
ASYQTQTNSPRRARS-NH: in vitro. Synthetic peptides were run on an Orbitrap Eclipse (Thermo) and subjected to
ETD, followed by manual validation and hand curation. Legend: ¢ ions are indicated in blue and z ions in pink. Yellow
square = GalNAc. Brown alkyne = GaIN6yne. WT-T1 = WT-GalNAc-T1. BH-T1 = BH-GalNAc-T1.
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GalNAc-T selective MS-glycoproteomics analysis allows O-glycosite and glycan composition

investigation in vitro and in engineered cells

Assigning the activity of GalNAc-T isoenzymes to specific glycosylation sites is complicated by the
redundant nature of GalNAc-Ts and the complex dynamics of the secretory pathway, neither of which can be
accurately replicated with in vitro assays using synthetic peptides. Furthermore, the FCS-adjacent region
lacks cleavage sites of the proteases most commonly used in MS sample preparation, resulting in large
glycopeptides further hampering analysis. The use of specialized chemical tools can address these
shortcomings and report on GalNAc-T activity in the secretory pathway of living cells while offering a
bioorthogonal handle to aid MS analysis. We stably transfected Expi293F cells with constructs for both SARS-
CoV-2 spike (Wuhan) and either WT- or BH-versions of GalNAc-T1 or T2, along with the biosynthetic
machinery to generate UDP-GalN6yne in the cell from a membrane permeable precursor (AcsGalN6yne) that
was introduced via cell feeding (Figure 4a).*® Spike samples were isolated and derivatized by CUAAC with
an azide-functionalized imidazolium group containing a permanent positive charge (ITag-azide).*”'%2-1% This
treatment introduced GalN6yne in an isoenzyme-specific fashion while endowing glycopeptides with an
additional positive charge that facilitates MS-analysis.®” The separated FL-S and S1/S2 fractions were
subjected to in-gel digestion and analyzed by tandem MS. We used high intensity collision-induced
dissociation (HCD) to obtain naked peptide sequences and glycan compositions, and then used the ITag-
containing GalN6yne diagnostic ion to trigger ETD fragmentation of the peptide backbone (Figure
4b).”"971051%6 Through both computational (Byonic, ProteinMetrics) and manual validation, we found that
Thr678 carried ITag-modified GalN6yne in both FL-S and S1 samples exclusively in cells expressing BH-T1,
but not BH-T2 or any WT-GalNAc-Ts (Figure 4c and Supplementary Data 1). The additional positive charge
of the ligated ITag permitted straightforward ETD fragmentation of a 21-amino acid glycopeptide. In contrast,
the corresponding glycopeptide in samples expressing WT-T1 could not be unambiguously sequenced,
highlighting the ability of chemical tools to help advance site-specific O-glycoproteomics. We further found
that both BH-T1 and BH-T2 glycosylated Thr323, a previously detected glycosylation site that had thus far
not been associated with any GalNAc-T isoenzyme (Figure 4c and Supporting Figure 3). These results
were also recapitulated in vitro through glycosylation of recombinantly expressed spike with recombinantly
expressed soluble constructs of BH-GalNAc-T1 and BH-GalNAc-T2, followed by CuAAC ligation of ITag-
azide and MS-glycoproteomics analysis (S| and Supporting Figure 4). Our data directly proved that GalNAc-
T1 glycosylates Thr678 in the living cell.
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Figure 4. Uncovering the relationship between GalNAc-T1 and Thr678 by chemical tools. a) GalNAc salvage
pathway and UDP-GalN6yne biosynthesis. Expression of the kinase NahK and the pyrophosphorylase AGX1738%
permits biosynthesis of UDP-GalN6yne in engineered cells. b) Graphical representation of the MS-glycoproteomics
methodology for engineered cells: SARS-CoV-2 spike was recombinantly expressed in Expi293F cells co-expressing
NahK, AGX1F3®3A and either BH-GalNAc-T1 or T2. Following isolation and de-N-glycosylation, ITag-azide was
introduced by CuAAC and the protein preparation subjected to in-gel digestion and MS by HCD-triggered ETD. c)
Annotated tandem MS (ETD) spectra of the major hits tagged by BH-GalNAc-T1 (leff) and BH-GalNAc-T2 (right). ¢ ions
are indicated in green, z ions in orange and y ions in pink. Yellow square = GalNAc. Brown alkyne = GalN6yne.
AcsGalN6yne precursor = membrane permeable peracetylated GalN6yne. BH-T1 cells = Expi293F cells co-transfected
with WT SARS-CoV-2 spike and BH-GalNAc-T1. BH-T2 cells = Expi293F cells co-transfected with WT SARS-CoV-2

spike and BH-GalNAc-T2.

Elaborated O-linked sialoglycans on Thr678 confer proteolytic resistance to SARS-CoV-2 spike

Glycosylation has the potential to modulate the proteolytic processing of a peptide depending on the
distance to the cleavage site and glycan composition.®°"°2 We used a direct method to investigate whether
O-GalNAc glycans on Thr678 modulate cleavage by furin. To this end, we designed synthetic Forster
Resonance Energy Transfer (FRET)-active substrate peptides to assess proteolytic activity. Peptides
spanning residues 672 to 689 contained N-terminal 2-aminobenzoyl (Abz) and C-terminal 3-nitrotyrosine (3-
NO2Tyr) as fluorescence donor and quencher moieties, respectively. An increase in fluorescence intensity
indicated proteolytic cleavage (Figure 5a)."” We first compared non-glycosylated substrates corresponding
to either WT (FRET-1) and P681H mutant spike (FRET-2). The P681H mutation had no discernable effect

on the rate of furin-mediated cleavage, confirming the data by Whittaker and colleagues that the addition of
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a basic amino acid is not by itself a defining characteristic of spike furin cleavage enhancement in existing
VOCs.*®

We hypothesized that an increase of furin processing in mutant spike may not stem directly from recognition
of the bare peptide sequence, but rather a decreased capacity of GaINAc-T1 to introduce O-GalNAc glycans
to peptides with mutations proximal to the recognition site. We thus tested whether glycosylation of furin
substrate peptides impacts proteolytic cleavage. FRET reporter peptides carrying GalNAc (FRET-3) or
alkyne-containing GalN6yne (FRET-4) were synthesized by chemoenzymatic glycosylation with WT- and BH-
GalNAc-T1, respectively. Glycosylation with the single monosaccharides alone did not substantially impact
the furin cleavage rate compared to the WT peptide FRET-1 (Figure 5¢ and Supporting Figure 5). We
speculated that elaboration of GalNAc to larger or charged glycans might introduce additional structural
constraints on furin recognition. The alkyne tag present on GalN6yne gave an opportunity to modify the
biophysical properties of glycopeptides in a straightforward fashion, enabling synthetic efforts to furnish
glycopeptides with specific additional groups or functionalities. We reacted glycopeptide FRET-4 with two
organic azides under CUAAC conditions: 6-azido-6-deoxy-glucose yielded the pseudodisaccharide FRET-5,
while 3-azido-propionic acid introduced an additional acidic functionality to investigate the impact of a
negative charge on furin cleavage in glycopeptide FRET-6. Both click-elaborated glycopeptides displayed a
significant reduction in furin cleavage (Figure 5¢ and Supporting Figure 5). FRET-5 exhibited an 80%
decrease in the rate of furin cleavage with respect to FRET-1, which is attributable to the relative steric
expansion. Strikingly, FRET-6 which carried a smaller, negatively charged modification, resulted in a 93%
rate reduction, almost completely abrogating furin activity. We concluded that the elaboration of O-glycans

on Thr678, especially with negatively charged modifications, severely impedes the activity of furin.

Sialic acid, a common capping monosaccharide of O-glycans, is negatively charged under physiological pH.
We reasoned that the presence of sialic acid might modulate furin cleavage, and hence chemoenzymatically
synthesized a set of novel, spike-derived glycopeptides to test on our cleavage assay. First, Drosophila
melanogaster C1GALT1 was used to extend FRET-3 with B3-linked galactose to give FRET-7.'% 02,6-Linked
sialic acid was introduced into FRET-3 and FRET-7 using the enzymes ST6GALNAC1 and ST6GALNAC2,

respectively, to yield the sialoglycopeptides FRET-8 and FRET-9 (Figure 5d).'"

While the uncharged
disaccharide in FRET-7 only had a marginal (3.5% decrease) effect on furin rate compared to the parental
peptide FRET-1, the presence of a sialic acid led to a striking 45% reduction of furin rate in glycopeptide
FRET-8 and a 65% reduction in glycopeptide FRET-9 (Figure 5e). We concluded that the elaboration of O-

glycans on Thr678 with negatively charged sialic acid residues severely hampers furin activity.

To our knowledge, in contrast to furin,® TMPRSS2 has not been comprehensively probed for cleavage of
glycopeptide substrates. We sought to establish whether O-GalNAc glycans could modulate TMPRSS2
activity in a similar fashion to furin. Recombinant TMPRSS2 was subjected to our selection of (glyco-)peptide
FRET substrates FRET-1, FRET-3 and FRET-7 to FRET-9 (Figure 5e). While all glycans somewhat impacted
TMPRSS2 activity with respect to the non-glycosylated peptide FRET-1, the trisaccharide-containing
sialoglycopeptide FRET-9 (70% rate reduction) impacted cleavage more drastically than all other (glyco-

Jpeptides.
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Figure 5. Chemical elaboration of O-glycosylation to assess proteolytic cleavage of glycopeptides. a)
Experimental design and comparison of furin cleavage between WT and P681H peptide substrates. Peptides containing
N-terminal 2-aminobenzoate (Abz) as a FRET donor, and C-terminal 3-nitrotyrosine (3-NO2Tyr) as a FRET quencher
that was removed upon proteolytic cleavage. b) Chemical modifications of synthetic (glyco-)peptides FRET-3 through
FRET-6, generated via in vitro glycosylation and CuAAC. c) Left: Time course of fluorescence increase upon furin
cleavage reactions of 20 uM FRET-1 and FRET-3 to FRET-6 with 0.8 U/mL furin. Linear fluorescence increase is shown
and normalised to the corresponding control run without furin. Right: Rates of furin cleavage of glycopeptides FRET-1
and FRET-3 to FRET-6 obtained through linear regression and normalisation to control runs without furin. Data are
means x SD of four independent experiments. d) Chemoenzymatic synthesis of glycopeptides FRET-7 through FRET-
9: i. ST6GalNAc-1 (150 pg/mL), CMP-Neu5Ac (1.5 eq.), pH 7.5, 37°C for 16 hours, 46% yield; ii. DmC1GalT1 (1 uM),
UDP-Gal (1.5 eq.), pH 7.5, 37°C for 16 hours, 50% yield; iii. ST6GALNAC-2 (10 pyg/mL), CMP-Neu5Ac (1.5 eq.), pH
7.5, 37°C for 48 hours, 30% vyield. Bold and orange T denotes Thr678 in the glycopeptides. e) Rates of furin (left) and
TMPRSS (right) cleavage of (glyco-)peptides FRET-1 to FRET-3 and FRET-7 to FRET-9 obtained through linear
regression and normalization to control runs without furin. Data are means + SD of three independent experiments.
Group comparison was performed via one-way ANOVA with Tukey’s multiple comparisons test and asterisks annotate
P values: *P < 0.0332 ; **P < 0.0021; ***P < 0.0002; ****P < 0.0001, compared to the non-modified peptide (FRET-1).

CMP = cytidine monophosphate; CIAP = Calf intestinal alkaline phosphatase. Neu5Ac = N-acetylneuraminic acid.

Our in vitro glycosylation experiments suggested that S1 is the only available GalNAc-T1 substrate on WT
spike after secretion from human cell culture (Figure 2b). Such behaviour could be explained by the presence
of elaborated, sialylated O-glycans on recombinant FL-S, which would both prevent furin cleavage and block
access by GalNAc-T1 in vitro. This would suggest an enrichment of sialylated O-glycans on FL-S relative to

processed S1. To explore this notion, we subjected the FL-S and S1/S2 gel bands from a recombinant WT-
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spike preparation to MS-glycoproteomics analysis, searching for both simple and elaborated O-GalNAc
glycans. By calculating the intact masses of various expected O-glycopeptides in recombinant spike and then
obtaining the associated extracted ion chromatograms (XICs), we found that over 5-fold higher glycopeptide
signal is present in FL-S when compared to cleaved S1/S2 fractions (Figure 6 and Supplementary Data 2).
Furthermore, when accounting for sialic acid-containing glycopeptides only, an ~8-fold higher abundance

was observed for FL-S relative to S1/S2 (Supplementary Data 2).

full-length S cleaved S1/S2
—\’\ %;; N
R

Peptide Sequence Glycan [M+H]+ Mass Area  Mass Area
662 682
CDIPIGAGICASYQTQTNSPR HexNAc(2)Hex(2)NeuAc(2)  3621.5200 2.8742
CDIPIGAGICASYQTQTNSPR HexNAc(2)Hex(2)NeuAc(1)  3330.4238 4.0709
CDIPIGAGICASYQTQTNSPR HexNAc(1)Hex(1)NeuAc(2)  3256.3870 5.0207 1.0136
CDIPIGAGICASYQTQTNSPR HexNAc(1)Hex(1)NeuAc(1)  2965.2920 3.2551
CDIPIGAGICASYQTQTNSPR HexNAc(2)Hex(2) 3039.3276 4.0210 0.2453
CDIPIGAGICASYQTQTNSPR HexNAc(1)Hex(1) 2674.1958 95092 3.0845
[GalNAc OGal MGINAc @ NeuSAc Total  28.8411 5.6x 5.1656

Figure 6. Extracted ion abundance for O-glycopeptides from FL-S or $1/S2 recombinant spike fractions. Mass
areas were normalised against their corresponding base peaks and multiplied by a factor of 10,000. All data analysis
was performed in Thermo XCalibur software and hand-curated. Highlighted T corresponds to Thr678 which was found

to be modified by diverse O-glycans.

DISCUSSION

Our data strongly indicate that elaborated, negatively charged O-GalNAc glycans on Thr678 of SARS-CoV-
2 spike have a negative effect on proteolytic cleavage. Such glycans are produced on lung epithelial cells
which express GalNAc-T1,2
restrict the maturation (by proteolysis) of spike in WT SARS-CoV-2.""° The propensity of SARS-CoV-2

variants of concern to outcompete each other has been linked to both increased infectivity and immune

suggesting that glycosylation is a physiologically relevant modification that could

escape. Within the evolutionary trajectory from the Alpha to Delta and Omicron variants, notable changes in
the amino acid sequence proximal to the FCS indicated that proteolytic cleavage is gradually enhanced,
congruent with their increased infectivity. Mutations of Pro681 have been detected in early variants such as
Alpha (P681H). We found that this mutation did not increase the rate of cleavage by both furin and TMPRSS2,
further implicating glycosylation as a restricting factor for spike processing. Notably, the analogous mutation
found on the more transmissible Delta variant (P681R) has been linked to an increase in furin cleavage by
Whittaker and colleagues,*® suggesting an evolutionary trajectory that places suppression of O-glycosylation
before increasing intrinsic furin recognition. This is further underlined by the mutations found in Omicron,
which features both the P681H with the N679K mutations: in contrast to P681H and consistent with mapped
amino acid preferences of GalNAc-T1,"" the N679K mutation does not substantially impact glycosylation,
but it leads to enhanced furin cleavage of synthetic peptides.** These FCS-adjacent mutations therefore act
synergistically and have likely evolved to both suppress glycosylation and intrinsically enhance furin
cleavage. Since the closest relatives to SARS-CoV-2, the strains RaTG13 Bat-CoV and GD Pangolin-CoV,
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share the exact same peptide sequence without harbouring an FCS (Figure 1), we speculate that O-
glycosylation might have been a remnant of ancestral strains that has been subsequently lost through the

process of viral evolution.

The presence of O-GalNAc glycans adjacent to proteolytic cleavage sites has been found to impact
processing of secreted proteins.®-92 The glycosylation site at Thr678 of spike is not in direct proximity of the
FCS, potentially explaining why a single GalNAc residue is not sufficient to modulate furin activity and only
minimally impacts TMPRSS2 activity. The necessity for the glycan to be elaborated or sialylated to reveal the
negative effect upon the rates of cleavage further highlights the need for accurate glycan tracing
techniques.’2 Tuning the chemical properties of glycopeptides in a straightforward fashion by CUAAC was
pivotal in enabling an initial understanding of the substrate-activity relationship of proteases. This strategy
informed the targeted synthesis of elaborated O-glycopeptide substrates, providing a convenient method to
fine-tune substrate scope in a time- and resource-efficient manner to address specific hypotheses. Chemical
tools thus provided insights into glycosyltransferase specificity, improved the efficacy of detection by
detectability by MS, and allowed the exploration of protease substrate specificity, showcasing the power of

such tools in biomedical discovery.
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