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Abstract

Discriminating distinct objects and concepts from sensory stimuli is essential for survival.
Our brains accomplish this feat by forming disentangled internal representations in deep sen-
sory networks shaped through experience-dependent synaptic plasticity. To elucidate the
principles that underlie sensory representation learning, we derive a local plasticity model
that shapes latent representations to predict future activity. This Latent Predictive Learn-
ing (LPL) rule conceptually extends Bienenstock-Cooper-Munro (BCM) theory by unifying
Hebbian plasticity with predictive learning. We show that deep neural networks equipped
with LPL develop disentangled object representations without supervision. The same rule
accurately captures neuronal selectivity changes observed in the primate inferotemporal cor-
tex in response to altered visual experience. Finally, our model generalizes to spiking neural
networks and naturally accounts for several experimentally observed properties of synaptic
plasticity, including metaplasticity and spike-timing-dependent plasticity (STDP). We thus
provide a plausible normative theory of representation learning in the brain while making
concrete testable predictions.

Introduction

Recognizing objects and concepts from sensory inputs is crucial for perception. To that end,
brains must effectively distinguish between highly entangled stimuli. For instance, the activity
patterns that the retinal ganglion cells in our eyes send to the brain in response to viewing a cat
or a dog may, in some cases, be more similar than two different views of the same dog (Fig. 1a).
Yet, we have no problem distinguishing cats from dogs because our brains are able to internally
represent them as separate objects or categories that remain invariant to different views and
their context. What processing enables such invariant object recognition?

Visual stimuli evoke distinct activity patterns in individual sensory neurons that correspond
to points in a high-dimensional space spanned by the neuronal activity levels. All possible stim-
uli of one category, for instance images of dogs, lie within a subregion of this space, a manifold,
whereas other categories lie on different manifolds. However, for many stimuli, the correspond-
ing manifolds are entangled like crumpled-up sheets of paper, which makes it impossible for
downstream neurons to decode the underlying stimulus category through simple linear combi-
nations of their inputs. Disentangling behaviorally relevant categories therefore requires deep
sensory networks that can extract invariant linearly separable category representations, such
as those found in the visual system (Fig. 1b; [3]). Crucially, successful disentangling requires
specific network connectivity, which is thought to be shaped through experience-dependent
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Figure 1: Disentangling sensory stimuli with plastic neural networks. (a) Schematic of neuronal
responses at the sensory input level. The neuronal response patterns of different stimuli correspond to
points in a high dimensional space. The response patterns from different stimulus classes, e.g., cats and
dogs, form a low-dimensional manifold in the space of all possible response patterns. Generally, different
class manifolds are entangled, which means that the stimulus identity cannot be readily decoded from a
linear combination of the neuronal activities. (b) Sketch of a deep neural network (left) that transforms
inputs into disentangled internal representations that are linearly separable (right). (c¢) Schematic of
how predictive learning influences latent representations (left). Learning tries to “pull” together rep-
resentations that frequently co-occur close in time (bottom). However, without opposing forces, such
learning dynamics lead to “representational collapse” whereby all inputs are mapped to the same out-
put and thereby become indistinguishable (right). (d) Self-supervised learning (SSL) avoids collapse
by adding a repelling force that acts on temporally distant representations that are often semantically
unrelated. (e) Plot of postsynaptic neuronal activity z over time (bottom) and the Bienenstock-Cooper-
Munro (BCM) learning rule (top; [1, 2]) which characterizes the sign and magnitude of synaptic weight
change Aw as a function of postsynaptic activity z. Notably, the sign of plasticity depends on whether
the evoked responses are above or below the plasticity threshold 6. Using the example of Neuron 1 in
panel (b), the BCM rule potentiates synapses that are active when a “Cat” stimulus is shown, whereas
“Dog” stimuli induce long-term depression (LTD). This effectively pushes the evoked neuronal activ-
ity levels corresponding to both stimuli away from one another, and thereby prevents representational
collapse.

plasticity [4]. However, current data-driven plasticity models are unable to account for the
emergence of disentangled representations in deep biological neural networks.

In contrast, artificial deep neural networks (DNNs) used in machine learning do yield highly
disentangled representations by dint of supervised training algorithms. These algorithms grad-
ually transform the output of a neural network model to match a set of targets or “labels”
associated with given input data. Over the last decade, the combination of supervised learning
with rich datasets and larger network models has created powerful machine learning systems
that achieve human-level performance on a diversity of tasks [5, 6]. However, what is most
striking from a neuroscience perspective is that DNNs also reproduce essential aspects of the
representational geometry of biological neural networks, even when they are not explicitly opti-
mized to do so [7-9]. This similarity suggests that DNNs are valuable tools to elucidate neural
information processing in the brain [10, 11]. Yet, two central issues remain concerning their
interpretation as models of biological learning. First, the training algorithms used in deep
learning are typically end-to-end, i.e., the algorithms optimize network connections across the
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hierarchy with the goal of minimizing errors at the network’s output. Doing so requires solving
the “credit assignment problem,” whereby targeted information must be sent to neurons in the
network’s hidden layers about their respective contributions to the output errors. It remains
unclear how neurobiology solves the credit assignment problem [12].

Second, supervised learning requires input data with specific semantic “labels” that are not
conceivably available to animals and humans. Here, self-supervised learning (SSL), a family
of unsupervised machine learning algorithms, may offer a remedy as they do not need labeled
data but instead require that internal network representations belonging to related inputs be
predictive of one another [13, 14]. Hence, network representations themselves act as targets
for similar inputs. For example, a network has to predict visual features across different parts
of an image or predict future representations of sensory inputs from those in the past. It has
been proposed that biological neural networks may similarly rely on prediction as a learning
principle [15-18], for instance, by extracting slowly varying features from their sensory inputs
as done in slow feature analysis (SFA) [19, 20]. In other words, predictive learning posits that
biological networks change their connections with the goal of “pulling” together related internal
representations, and therefore form similar representations for stimuli that frequently occur
close in time (Fig. 1c).

However, a major issue with this strategy is that without any forces opposing this represen-
tational pull, such learning inevitably leads to “representational collapse,” whereby all inputs
are mapped to the same internal activity pattern which precludes linear separability (Fig. 1c).
One typical solution to this issue is to add forces that “push” representations corresponding to
different unrelated stimuli away from one another (Fig. 1d). This is usually done by invoking
so-called “negative samples,” which are inputs that do not frequently occur together in time.
This approach has been linked to biologically plausible three-factor learning rules [21-23], but
it requires constant switching of the sign of the plasticity rule depending on whether two suc-
cessive inputs are related to each other or not. Yet, it is unknown whether and how such a
rapid sign switch is implemented in the brain.

Another possible solution for avoiding representational collapse without negative samples is
to prevent neuronal activity from becoming constant over time, for instance, by maximizing the
variance of the activity [24]. Interestingly, variance maximization is a known signature of Heb-
bian plasticity [25, 26], which has been found ubiquitously in the brain [27-29]. While Hebbian
learning is usually thought of as the primary plasticity mechanism rather than playing a sup-
porting role, Hebbian plasticity alone has had limited success at disentangling representations
in deep hierarchical neural network models [10, 30, 31].

In this article, we introduce Latent Predictive Learning (LPL), a conceptual learning frame-
work that overcomes this limitation and reconciles SSL with Hebbian plasticity. Specifically,
the learning rules derived within our framework combine a BCM-like plasticity threshold [1, 2]
as observed in experiments (Fig. le; [27, 32-34]), with a predictive component inspired by SFA
[19, 20] that renders single neurons selective to temporally contiguous features in their inputs.
When applied to the layers of deep hierarchical networks, LPL yields disentangled representa-
tions of objects present in natural images while neither requiring labels nor negative samples.
Crucially, LPL effectively disentangles representations despite being a purely local learning rule,
i.e., without requiring explicit spatial credit assignment mechanisms. We demonstrate that LPL
captures central findings of unsupervised visual learning experiments in monkeys. Finally, the
corresponding spiking LPL rule learns predictive representations in spiking neural networks and
naturally yields classic spike-timing-dependent plasticity (STDP) windows and a characteris-
tic firing-rate dependence observed in neurobiology. In light of these findings, we argue that
LPL constitutes a plausible plasticity mechanism that may underlie representation learning in
biological sensory networks.
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Results

To study the interplay of Hebbian and predictive plasticity in sensory representation learning,
we derived a plasticity model from an SSL objective function that is reminiscent of and extends
the classic BCM learning rule [1, 2] (Methods; Supplementary Note S1). According to our
learning rule, the temporal dynamics of a synaptic weight W} are given by

dzj (t) = n; () f(a(t)) —dZ(f) " aZ(At)Q (2(t) = 2(¢)) @
predictive Hebbian

where 7 is a small positive learning rate, x;(t) denotes the activity of the presynaptic neuron j,
z(t) = f(a(t)) is the neuronal activity with the activation function f (Fig. 2a), and the net input
current a(t) = >, Wiay(t). We call the first term in parentheses the predictive term because
it promotes learning of slow features [19, 20] by effectively “pulling together” postsynaptic
responses to temporally consecutive input stimuli. Importantly, it cancels when the neural
activity does not change and, therefore, accurately predicts future activity. In the absence of
any additional constraints, the predictive term leads to collapsing neuronal activity levels [19].
In our model, collapse is prevented by the Hebbian term in which Z(¢), the running average of
the neuronal activity appears, which is reminiscent of BCM-theory [1, 2]. Its strength further
depends on an online estimate of the postsynaptic variance of neuronal activity o2(¢). This
modification posits an additional metaplasticity mechanism controlling the balance between
predictive and Hebbian plasticity depending on the postsynaptic neuron’s past activity.
To make the link to BCM explicit, we rearrange the terms in Eq. (1) to give:

de T4 "(a _ (o 2 dz
20 = OO ) — (5 + 40 2)

Sliding threshold O(¢)

where O(t) corresponds to a time-dependent sliding plasticity threshold (Fig. 2b). While the
precise shape of the learning rule depends on the choice of neuronal activation function, its
qualitative behavior remains unchanged as long as the function is monotonic (Supplementary
Fig. S1). Despite the commonalities, however, there are three essential differences to the BCM
model. First, in our model, the threshold depends only linearly on z(¢) (Fig. 2b), whereas in
BCM, the threshold is typically a supralinear function of the moving average z(t). Second, the
added dependence on the predictive term —% constitutes a separate mechanism that modulates
the plasticity threshold depending on the rate-of-change of the postsynaptic activity (Fig. 2c,d).
Third, our model adds a variance-dependence that has diverse effects on the sliding threshold
when the neuronal output does not accurately predict future activity and, thus, changes rapidly
(Fig. 2c,d). We will see that these modifications are crucial to representation learning from
the temporal structure in sensory inputs. Because the predictive term encourages neurons to
predict future activity at their output, and thus in latent space rather than the input space, we

refer to Eq. (1) as the Latent Predictive Learning (LPL) rule.

LPL finds contiguous features in temporal data

To investigate the functional advantages of LPL over BCM and other classic Hebbian learning
rules (Supplementary Note S2) in a well-controlled setting, we first designed a synthetic two-
dimensional learning task in which we parametrically controlled the proportion of predictable
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Figure 2: LPL extends BCM theory by adding a variance- and rate-of-change dependence.
(a) Example of a typical neuronal input-output function with postsynaptic activity z. (b) Weight change
induced by the LPL rule for co-varying input and the postsynaptic activity z for different values of the
plasticity threshold ©, with 02 = 1. The functional shift of the threshold is reminiscent of the BCM rule.
(c) Same as (b) but for different values of the variance of the postsynaptic activity with zero prediction
error ¢ = ( and fixed mean activity Z = 30. (c) Same as (c) but with a positive prediction error

dt
4z — 110. (e) Ilustration of the two-dimensional synthetic data generating process. Consecutive data

Sf)ints stay within the same cluster separated along the z-direction and are drawn independently from the
corresponding normal distribution centered in that cluster (left). These data are fed into a linear neuron
that learns via LPL (right). (f) Cluster selectivity of the features learned by LPL with and without
the predictive term, by the BCM rule and by Oja’s rule for different values of o,. By varying o,, we
obtain a family of transition sequences with differing amplitudes of within-cluster transitions (top). LPL
selects temporally contiguous features and therefore ensures that the neuron always becomes selective
to cluster identity. Oja’s rule finds PC1, the direction of highest variance, which switches to the noise
direction at o, = 1. BCM and the LPL rule without the predictive component show the same behavior,
although in case of BCM, the change was more gradual. Selectivity values were averaged over ten random
seeds with the shaded area corresponding to the standard deviation. (g) Mean output activity of the
neuron over training time for o, = 1 under different versions of LPL. LPL initially increases its response
and saturates at some activity level, even when the predictive term is disabled. However, without the

Hebbian term, the activity collapses to zero.
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changes between subsequent observations (Fig. 2e; Methods). Specifically, the data sequence
consisted of noisy inputs distributed over two clusters separated along the z-axis. Consecutive
inputs had a high probability of staying within the same cluster, thus making cluster identity
a temporally contiguous feature. By varying the noise amplitude oy, in the y-direction, we
effectively controlled the amount of unpredictable changes in the input sequences. We exposed
a single rate neuron model to different datasets with varying values of oy, while the two input
connections were plastic and evolved according to the LPL rule (Eq. (1)) until convergence.
We then measured the selectivity of the neuron to cluster identity, defined as the normalized
difference between the neuron’s average response to inputs from the two clusters (Methods).

We found that LPL rendered the neuron selective to the cluster identity for a large range of o,
values (Fig. 2f). However, without the predictive term, the neuron’s selectivity to cluster identity
was lost for large o, values. This behaviour was expected because omitting the predictive
term renders the learning rule purely Hebbian, which biases selectivity toward directions of
highest variance. To illustrate this point, we repeated the same simulated learning experiments
with Oja’s rule, a classic Hebbian rule that finds the principal component in the input, and
found similar qualitative behaviour, except the change was more abrupt at o, ~ 1. Thus
LPL’s predictive term changes the learning rule’s behavior substantially by selecting predictable
features in the input instead of directions of high variance.

Next, we sought to confirm that the Hebbian term is essential for LPL to prevent repre-
sentational collapse. To that end, we simulated learning with o, = 1 under LPL without the
Hebbian term (cf. Eq. (1)) and measured the mean output activity of the neuron in response
to random inputs in the sequence. We observed that without the Hebbian term, the neuron’s
activity collapses to zero as expected (Fig. 2g). Conversely, learning with the Hebbian term
without the predictive term did not result in collapse. Therefore, LPL’s Hebbian component is
essential to prevent activity collapse.

Moreover, Hebbian plasticity needs to be dynamically regulated to prevent run-away activity.
In LPL this regulation is achieved by inversely scaling the Hebbian term by a moving estimate
of the variance of the postsynaptic activity o2(t). Without this variance-modulation, neural
activity either collapsed or succumbed to runaway activity depending on whether the predictive
term or the Hebbian term was dominant (Supplementary Note S3). Either case precluded the
neuron from acquiring cluster selectivity. We verified that these findings generalized to higher-
dimensional tasks with more complex co-variance structure (Supplementary Note S4). Hence,
the combination of the predictive with variance-modulated Hebbian plasticity in LPL is needed
to learn invariant predictive features independently of the co-variance structure in the data.

LPL disentangles representations in deep hierarchical networks

As we view a scene, we often move through it which causes us to see the objects in the scene
from different angles. Similarly, the objects, animals, or people in the scene themselves may
move. Finally, our gaze constantly shifts due to saccadic eye movement (Fig. 3a; [35]). All of
these influences result in different visual projections of the same objects within a scene onto our
retina. Therefore, the objects themselves constitute temporally contiguous features in normal
vision.

We thus wondered whether training an artificial neural network with LPL on sequences of
images in which object identity is preserved results in disentangled object representations at
the network’s output. To that end, we built a convolutional DNN model in which we “stacked”
layers whose synaptic connections evolved according to the LPL rule. Additionally we included
a decorrelation term to prevent neurons within a given layer from becoming correlated. In
biological neural networks with separate excitatory and inhibitory neuron types this role can be
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readily achieved through plasticity at inhibitory synapses [36-39]. The whole learning rule was
implemented in a “layer-local” manner, meaning that there were no error signals backpropagated
through layers (Methods).

To simulate temporal sequences of related visual inputs, we generated pairs of images by
applying different randomized transformations to images sampled from STL-10, a large object-
recognition dataset from computer vision (Supplementary Fig. S2; Methods). We exposed our
network model to these visual data until learning converged and evaluated the linear decodability
of object categories from the learned representations using a separately trained linear classifier.

We found that in networks trained with LPL, object categories could be linearly decoded
at the output with an accuracy of (63.2+0.3)% (Fig. 3b; Table 1), suggesting that the network
has formed partially disentangled representations (Supplementary Fig. S3). To elucidate the
contributions of the different learning rule components to disentangling, we conducted several
ablation experiments. First, we repeated the same simulation but now excluding the predictive
term. This modification resulted in an accuracy of (27.0 £0.2)%, which is lower than the linear
readout accuracy of a classifier trained directly on the pixels of the input images (see Table 1),
indicating that the network did not learn disentangled representations of object identity. This
finding is consistent with previous studies that suggested that purely Hebbian plasticity without
a predictive component fails to learn disentangled representations in deep networks [10, 30,
31]. We measured a similar drop in accuracy when we disabled either the Hebbian or the
decorrelation component during learning (Fig. 3b).

Convolutional DNNs trained through supervised learning use depth to progressively separate
representations as activity propagates through their layers [5, 6]. We sought to understand
whether networks trained with LPL similarly leverage depth. To answer this question, we
measured the linear readout accuracy of the internal representations at every intermediate layer
in the network. Crucially, we found that in the LPL-trained networks, the readout accuracy
increased with the number of layers until it gradually saturated (Fig. 3c), whereas this was not
the case when any of the components of LPL was disabled. Together, these results suggest that
each of the three terms of LPL is crucial for learning disentangled representations in hierarchical
DNNs.

We made an additional observation worth noting. When learning occurs without the pre-
dictive term, linear readout accuracy in the early layers up to Layer 3 was improved before
decreasing below the pixel-level baseline accuracy with increasing depth (Fig. 3c). We observed
the same effect for the full LPL rule when we exposed the network to temporally inconsistent
image sequences by showing random consecutive pairs of images. These observations suggest
that learning in early layers may not critically depend on predictive plasticity, but that it plays
an increasingly important role in deeper layers. This finding is reminiscent of experimental
work in the rat visual cortex showing that temporally inconsistent visual experience in early life
leads to impaired complex cell development while simple cells remain largely unaffected [40].

STL-10 CIFAR-10
Layer-local (%) | End-to-end (%) || Layer-local (%) | End-to-end (%)
DNN with LPL 632403 |  725+0.1 59.4£0.4 [ 70.4+0.2
Raw pixel values 31.6 35.9

Table 1: Linear classification accuracy on the STL-10 and CIFAR-10 datasets for LPL and for a linear
decoder trained on the raw pixel values (Methods). Error values correspond to SEM over four simulations
with different random seeds.

In DNNs exposed to normal visual experience in which object identity changes slowly, the
two most common causes for failure to form disentangled representations are representational
collapse and dimensional collapse (Supplementary Fig. S4), which results from excessively high
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Figure 3: LPL disentangles representations in DNNs. (a) Schematic of the DNN trained using
LPL. We distinguish two learning strategies: Layer-local and end-to-end learning. In layer-local LPL,
each layer’s learning objective (£;) is to predict representations within the same layer, whereas end-
to-end training takes into account the output layer representations only (Loyut), and updates hidden
layer weights using backpropagation. (b) Linear readout accuracy of object categories decoded from
representations at the network output after training it on natural image data (STL-10; see Methods for
details) with different learning rules in layer-local (dark) as well as the end-to-end configuration (light).
“Pred. off” corresponds to LPL but without the predictive term in the learning rule (cf. Eq. 7). “Hebb
off” refers to the configuration without the BCM-like Hebbian term. Finally, “Decorr. off” is the same
as the single neuron learning rule (Eq. (1)) without the decorrelation term. LPL yields features with high
linear readout accuracy. In contrast, when any component of LPL is disabled, linear readout accuracy
drops below the pixel-decoding accuracy of ~32% (dashed line). Error bars indicate standard error of
the mean (SEM) over four trials. (c) Linear readout accuracy of the internal representations at different
layers of the DNN after layer-local training. LPL’s representations improve up to six layers and then settle
at a high level. In contrast, readout accuracy is close to chance level without the Hebbian component,
and similarly remains at low levels when the decorrelating mechanism is switched off. Interestingly, when
the predictive term is off, the readout accuracy initially increases in early layers, but then ultimately
decreases back below the pixel-level accuracy with further increasing depth. Finally, the full LPL learning
rule applied to inputs in which temporal contingency is destroyed (LPL shuffled) behaves qualitatively
similar to the purely Hebbian rule. (d) Dimensionality of the internal representations for the different
learning rule configurations shown in (b). When either the Hebbian or decorrelation term are disabled,
the dimensionality of the representations collapses to one. (e) Mean neuronal activity at different layers
of the DNN after training with the different learning rule variants shown in (c). Excluding the Hebbian
term (dotted line) leads to collapsed representations in all layers.


https://doi.org/10.1101/2022.03.17.484712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.17.484712; this version posted July 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

correlations between neurons [41, 42]. To disambiguate between these two possibilities in our
model, we computed the dimensionality of the representations and the mean neuronal activity
at every layer (Methods). We found that disabling either the Hebbian or the decorrelation
component led to a dimensionality of approximately one, whereas the LPL rule and the learning
rule without the predictive term resulted in high-dimensional representations of dimensionality
~ 15 or =~ 50 respectively (Fig. 3d). When we disabled the Hebbian term, this resulted in zero
activity across all layers (Fig. 3e), which suggests that representational collapse underlies the
network’s inability to disentangle its input. In contrast, disabling the decorrelation term did
not lead to zero activity levels indicating that the reason for poor linear readout accuracy is
dimensional collapse (Fig. 3e). Finally, we verified that excluding the predictive component of
LPL did not cause collapse either in activity levels or in dimensionality. This suggests that the
decreasing linear readout accuracy with depth is due to the network’s inability to learn good
internal representations. Taken together, these results show that the predictive term is crucial
for disentangling object representations in DNNs (Fig. 3) whereas the other terms are essential
to prevent different forms of collapse.

In all of the above we assumed layer-local learning, meaning that no learning signals were
backpropagated along the hierarchy. Such learning could conceivably be implemented by local
learning rules, but it is markedly different from typical DNN training which is end-to-end,
namely, training optimizes an objective at the network’s output layer. End-to-end training is
typically achieved with backpropagation, an algorithm that assigns credit or blame for output
errors to neurons in intermediate layers, thereby allowing them to update their weights in a
direction that is conducive to reducing the overall error at the network level. It is an ongoing
debate whether and how neurobiology achieves credit assignment [10, 12, 43, 44]. In any case, we
wanted to know how coordinating learning across layers might influence representation learning
with LPL. To answer this question, we repeated our simulations with end-to-end learning
using the LPL objective at the network’s output (Methods) and found that it reproduced all
our key findings of layer-local learning albeit with an improved overall linear readout accuracy
(Fig.3b; Table 1). These findings show that LPL disentangles representations irrespective of
whether a layer-local objective or end-to-end optimization are used, but its overall performance
improves when the underlying learning rules comprise elements of end-to-end optimization. End-
to-end optimization in the brain presumably requires dedicated neural circuitry for solving the
credit assignment problem, which may be implemented through neuromodulators and dedicated
neuronal circuit elements [44-46].

LPL captures invariance learning in the primate inferotemporal cortex

Changing the temporal continuity structure of visual stimuli has been shown to induce neuronal
selectivity changes in primate inferotemporal cortex (IT). This effect has been interpreted
as a consequence of unsupervised temporal slowness learning (UTL) [16], a principle directly
captured by the predictive term in the LPL rule. In Li et al. [16], a macaque freely viewed
a blank screen, with objects appearing in the peripheral visual field at one of two alternative
locations relative to the (tracked) center of its gaze, prompting the macaque to perform a saccade
to this location (Fig. 4a). The experimenters differentiated between normal exposures in which
the object does not change during the saccade and “swap exposures” in which the initially
presented object was consistently swapped out for a different one as the monkey saccaded to
a specific target location Xgwap. Hence, such swap exposures created an “incorrect” temporal
association between one object at position Xgywap and a different one at the animal’s center of
gaze X.. For any particular pair of swap objects, either the location above or below the center
of gaze was chosen as Xgyap, and transitions from the opposite peripheral position Xyongwap to
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the center X, were kept consistent as a control. The authors found that the position tolerance of
object selectivity of individual neurons in the monkey’s I'T was systematically altered by swap
exposures, an effect they attributed to unsupervised learning. Specifically, a neuron initially
selective to an object P over another object N, reduced or even reversed its selectivity at the
swap position Xgwap While preserving its selectivity at the non-swap position Xyonswap (Fig. 4b).

We wanted to know whether LPL can account for these observations. To that end, we
developed a computational model of the experiment conducted by Li et al. [16] based on the
DNN introduced in the previous section. To simulate the prior visual experience that animals
had before entering the experiment, we pretrained our network model with LPL on a large
natural image dataset (Methods). After pretraining, the learned representations were invariant
to where an object was presented on a canvas (Supplementary Fig. S5), a known property of
neural representations in the primate IT [4]. Next, we simulated targeted perturbations in the
model inputs analogous to the original experimental design. Following Li et al. [16], for a given
pair of images from different classes, we switched object identities during transitions from a
specific peripheral position, say Xi, to the central position X., while keeping transitions from
the other peripheral position X5 to the center unmodified. We used X; as the swap position for
half of the image pairs, and Xs for the other half. During exposure to these swapped inputs,
we recorded neuronal responses in the network’s output layer while the weights in the network
model evolved according to the LPL rule.

We observed that the neuronal selectivity between preferred inputs P, as defined by their
initial preference (Methods), in comparison to non-preferred stimuli /V in the model qualitatively
reproduced the evolution of object selectivity reported in the experiments (Fig. 4b). Effectively,
LPL trained the network’s output neurons to reduce their selectivity to their preferred inputs P
at the swap position while preserving their selectivity at the non-swap position. Furthermore,
we observed that object selectivity between pairs of control objects not used during the swap
training protocol showed no changes, consistent with the experiment (Fig. 4b). Further analysis
revealed that the origin of the selectivity changes between P and N stimuli at the swap position
was due to both increases in responses to N and decreases in responses to P, an effect also
observed in the experiments (Fig. 4c). Thus, LPL can account for neuronal selectivity changes
observed in monkey IT during in-vivo unsupervised visual learning experiments.

Spiking neural networks with LPL selectively encode predictive inputs

So far we considered LPL in discrete-time rate-based neuron models without an explicit separa-
tion of excitatory and inhibitory neurons. In contrast, cortical circuits employ spiking neurons
that obey Dale’s law, and learn in continuous time through STDP. Hence, we wanted to
test whether our theory would extend to such biologically plausible plastic spiking neural net-
works (SNNs). To that end, we simulated a recurrent network model consisting of 100 excitatory
and 25 inhibitory neurons with sparse connectivity (Fig. ba; Methods). The circuit received
input from five Poisson populations consisting of 100 neurons each, whose firing rates encoded
temporally varying signals with different temporal properties (Fig. 5b; Methods). Specifically,
input population PO had a constant firing rate, whereas P1’s and P2’s firing rates followed two
independently varying signals. We also defined two control populations Ple; and P2 whose
firing rates were temporally shuffled versions of P1 and P2 using bins of 10ms duration. To
avoid confounding effects due to firing rate differences, we ensured that all populations had the
same mean firing rate of 5Hz. The inputs were connected to the excitatory network neurons
through plastic connections that evolved according to a spiking generalization of the local LPL
rule (cf. (1)) without the decorrelation term. Decorrelation was achieved through plasticity of
inhibitory connections onto excitatory neurons. Specifically, we relied on an inhibitory STDP
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Figure 4: LPL captures invariance learning in the primate inferotemporal cortex (IT).
(a) Schematic of the simulation setup modeled after Li et al. [16]. The inputs to the model consist
of images of objects presented at three different positions X, X., and X5 on a blank canvas. Following
the original experiment, we performed a targeted perturbation in the simulated visual experience that the
model network was exposed to (left and center). Specifically, we switched object identities during tran-
sitions from a specific peripheral position, say X;, to the central position X., while keeping transitions
from the other peripheral position to the center unmodified (right). (b) Evolution of object selectivity
as a function of number of swap exposures in the model (top row) and observed in-vivo (bottom row;
data points extracted and replotted from [16], see Methods for details). We differentiate between pairs
of swapped objects at the Swap (left) and Non-swap positions (center) as well as control objects at the
Swap position (right). LPL qualitatively reproduces the evolution of swap position-specific remapping of
object selectivity as observed in IT. Control objects at the Swap position, i.e., images not used during
the swap training protocol, show no selectivity changes in agreement with the experiment. (c) Average
response to objects P and N as a function of number of swap exposures. The change in object selectivity
between preferred objects P and non-preferred objects N is due to both increased responses to N and
decreased responses to P in both our model (top) and the experimental recordings (bottom).
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rule that actively decorrelates neuronal activity by promoting excitatory-inhibitory balance
([37]; Methods).

We ran the SNN model for approximately 28 h of simulated time, at which point the net-
work’s firing dynamics had settled into an asynchronous irregular activity regime from which the
slowly varying input signals could be decoded linearly with high fidelity (Fig. 5b). In contrast,
the rate fluctuations of the shuffled control signals (Ple and P2.;) and the constant firing-rate
input (P0) could not be reconstructed linearly with high accuracy consistent with the idea that
the network preferentially represents the slowly varying inputs in its activity. To directly check
whether the neurons had developed preferential selectivity for the slow input signals, we ana-
lyzed the afferent connectivity matrix and computed the relative difference between the average
afferent weight from each signal in comparison to its associated control pathway. As expected,
we found that neuronal weights were preferentially tuned to the slow input channel instead of
the associated shuffle control inputs (Fig. 5¢,d). However, this selectivity was lost when we
turned either the predictive or the Hebbian term off. The absence of Hebbian plasticity was
further accompanied by activity collapse (Fig. 5e), consistent with our findings in the rate-based
setting.

To investigate the role of inhibition in successful representation learning in the spiking
setting, we repeated the above simulation without the inhibitory population. This manipulation
resulted in excessively high firing rates (Fig. 5e; Supplementary Fig. S6), a notable reduction of
the representational dimensionality (Fig. 5f; Methods), and lower selectivity to the slow signals
(Fig. 5d). The reasons for this reduction can be seen in the distribution of weight vectors. In
the network with plastic inhibition, weights were more decorrelated and exclusively selective to
either P1 or P2 (Fig. 5g). In contrast, removing inhibition resulted in more correlated weights
with few neurons preferentially tuned to one signal or the other (Fig. 5h). Finally, we repeated
the same simulation in a network in which an inhibitory population was present but without
inhibitory plasticity. This manipulation led to comparable representational dimensionality as
for LPL (Fig. 5f), but caused a loss of selectivity relative to the shuffled controls (Fig. 5d).
These results indicate that inhibition is needed to prevent correlated neuronal activity and the
ensuing reduction in representational dimensionality. Further, inhibitory plasticity is required
to ensure that the slow signals are preferentially represented (Supplementary Fig. S6). Together,
these findings illustrate that LPL extends to realistic spiking circuits with separate excitatory
and inhibitory neuronal populations.

LPL qualitatively reproduces experimentally observed rate and spike-timing
dependence of synaptic plasticity

Next, we wanted to examine whether the spike-based LPL rule is consistent with experimental
observations of plasticity induction. Experiments commonly report intertwined rate and spike-
timing dependence presumably mediated through nonlinear voltage- and calcium-dependent
cellular mechanisms [28, 29, 47]. Theoretical work has further established conceptual links
between phenomenological STDP models, SFA, and BCM theory [20, 48-52].

To compare LPL to experiments, we simulated a standard STDP induction protocol. Specif-
ically, we paired 100 pre- and post-synaptic action potentials with varying relative timing At
for a range of different repetition frequencies p. During the entire plasticity induction protocol,
the postsynaptic cell was kept depolarized close to its firing threshold and weights evolved ac-
cording to spike-based LPL. We repeated the simulated induction protocol for different initial
values of the slowly moving averages of the postsynaptic firing rate S;(t) and variance o(t)
(Methods). This was done because these variables do not change much over the course of a
single induction protocol due to their slow dynamics. Their presence, however, makes LPL a
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Figure 5: LPL in a spiking neural network (SNN). (a) Wiring diagram of the SNN with five distinct
input populations. (b) Snapshot of spiking activity over 100 ms after LPL plasticity for the inputs (top
left) and the network (bottom left) separated into excitatory (black) and inhibitory neurons (blue). The
input spikes are organized in five distinct Poisson populations whose firing rates evolve according to five
different temporal input signals (top right). Population activity of two slowly varying signals (P; /5) can
be linearly reconstructed (Methods) with high R? values from the network activity whereas temporally
shuffled control signals (“ctl”; Methods) are heavily suppressed (bottom right). (c) Distribution of
synaptic connection strengths grouped by input population. Input connections from slowly varying
signals are larger than those from the shuffle controls (left), but not when learning with the predictive
term turned off (right). (d) Signal selectivity as relative difference between signal and control pathway
for networks trained with different learning rule variations (Methods). “LPL” refers to learning with the
spiking LPL rule combined with inhibitory plasticity on the inhibitory-to-excitatory connections. “Pred.
oftf” corresponds to learning without the predictive term, and “Hebb oftf” to learning without the Hebbian
term. “Inhib. off” refers to a setting without any inhibitory neurons, whereas “Inhib. fixed” indicates a
setting where the inhibitory-to-excitatory weights are held fixed. The network with LPL and inhibitory
plasticity acquires high selectivity to both signals. Selectivity is lost if the predictive term, the Hebbian
term, or inhibitory plasticity are switched off. When inhibition is removed altogether, selectivity remains
but is significantly reduced. Error bars indicate SEM over all excitatory neurons. (e) Average firing rate
of excitatory neurons in the network for the different configurations in (d). When the Hebbian term is off,
spiking activity collapses to low activity levels in contrast to all other configurations in which it settles
at intermediate activity levels. (f) Dimensionality of the neuronal representations (Methods) for the
different configurations in (d). Inhibition prevents dimensionality collapse, even in cases where inhibition
is not plastic. (g) Averaged weight vectors of all excitatory neurons corresponding to input populations
P1 and P2 (left) and the distribution of relative neuronal selectivities between these populations (right).
Most neurons become selective either to P1 or P2, but few to both signals simultaneously. Color indicates
relative preference of their weight vectors to either signal (Methods). (h) Same as (g), but without an
inhibitory population. Most neurons develop selectivity to P2 or mixed selectivity to both signals, and
their weight vectors are more correlated.
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Figure 6: LPL accounts for STDP and predicts metaplasticity of the STDP window. (a) Rela-
tive weight change due to LPL in response to a standard STDP induction protocol with varying spike tim-
ing At for 100 pairings at a repetition frequency of p = 10 Hz (inset) for an initial value of o?(t = 0) = 0.1.
(b) Same as (a), but with initial value of 02(0) = 1. (c) Same as (a), but with ¢2(0) = 100. (d) Rela-
tive weight change as a function of repetition frequency p for positive and negative relative spike timings
(At = £10ms).

form of metaplasticity, i.e., the strength of plasticity is induction dependent on past neuronal
activity.

We found that for small initial values of o2, the induced weight changes followed an antisym-
metric temporal profile consistent with STDP experiments (Fig. 6a). For larger initial values
of 022, the STDP window changed to a more symmetric and then ultimately an antisymmetric
profile while the plasticity amplitude was suppressed as expected due to the variance-dependent
suppression of the Hebbian term in the learning rule (Fig. 6b,c). Next we investigated the ef-
fect of different initial values for S;(t), which acts as a moving threshold reminiscent of BCM.
Specifically, we recorded plastic changes at two fixed spike timing intervals At = +10ms for
o2(t = 0) = 0.1. For intermediate threshold values S;(t = 0) = 20 Hz, causal spike timing in-
duced long-term potentiation (LTP) with a nonlinear frequency dependence (Fig. 6d) whereas
acausal pre-after-post timings showed a characteristic cross-over from LTD to LTP similarly ob-
served in experiments [27]. In contrast, a low initial threshold S;(t = 0) = 0, which would occur
in circuits that have been quiescent for extended periods of time, resulted in LTP induction for
both positive and negative spike timings whereas a high initial value (S;(t = 0) > 50 Hz), corre-
sponding to circuits with excessively high activity levels, led to LTD (Supplementary Fig. S7).
Importantly such slow shifts in activity-dependent plasticity behavior are consistent with the
metaplasticity observed in monocular deprivation experiments [2, 33, 52]. Thus, LPL qualita-
tively captures key phenomena observed in experiments such as STDP, the rate-dependence
of plasticity, and metaplasticity, despite not being optimized to reproduce these phenomena.
Rather our model offers a simple normative explanation for the necessity of different plasticity
patterns that are also observed experimentally [47].

Discussion

In this article, we have introduced LPL, a local plasticity rule that extends BCM theory by
adding a predictive component to Hebbian learning. We demonstrated that LPL disentangles
latent object representations in DNNs through mere exposure to temporal data in which ob-
ject identity is preserved across successive inputs provided neuronal activity is decorrelated.
Crucially, we show that both predictive and Hebbian learning have to work in symphony to
accomplish this. Moreover, we demonstrated that LPL qualitatively captures the representa-
tional changes observed in unsupervised learning experiments in monkey IT [16]. Finally, we
extended LPL to spiking neural networks and found that the resulting learning rule naturally
reproduces STDP and its rate-dependence as observed in experiments, while further predicting
a new form of metaplasticity with distinct variance-dependent changes to the STDP window.
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The idea that sensory networks use temporal prediction as a learning objective to form dis-
entangled internal representations has been studied extensively in both machine learning and
neuroscience. The model introduced in this article combines and extends aspects of biologically
plausible plasticity models closely related to BCM theory with central ideas from SFA and more
recent SSL approaches in machine learning. While SSL has shown great promise in representa-
tion learning without labelled data, it is typically formulated as a contrastive learning problem
requiring negative samples [13, 14] to prevent representional collapse. However, negative sam-
ples explicitly break temporal contiguity during learning and are thus not biologically plausible.
LPL does not require negative samples. Instead, it relies on variance regularization as proposed
in Bardes et al. [24] to prevent collapse. Our model uses virtually the same mechanism while
building a conceptual bridge from variance regularization to BCM theory. However, we used
a logarithmic variance dependence instead of a piece-wise linear dependence (Supplementary
Note S3). LPL’s logarithmic dependence yields a smooth derivative which more clearly exposes
the relationship to Hebbian metaplasticity.

Like most SSL approaches, Bardes et al. [24] used an end-to-end learning approach whereby
the objective function is formulated on the embeddings at the network output. In contrast,
we studied the case of greedy layer-wise learning in which the objective is applied to each
layer individually. Doing so alleviates the need for backpropagation of errors into hidden layers
and, as a result, permitted us to formulate the weight updates as local learning rule. Such
a local learning rule formulation is similar to works combining a contrastive objective with
greedy layer-wise training [30, 53]. Furthermore, recent work by Illing et al. [21] showed that
greedy layer-wise learning is directly linked to local learning rules that rapidly switch between
Hebbian and anti-Hebbian learning through a global third factor. However, all of these models
required implausible negative samples, whereas LPL does neither require end-to-end training
nor negative samples.

LPL shares the shape of the BCM rule, which has been qualitatively confirmed in numer-
ous experimental studies both in-vitro [27, 32, 33] and in-vivo [34]. Furthermore, BCM has
been linked to STDP [29] and informed numerous phenomenological plasticity models [48-51,
54]. However, unequivocal evidence for the predicted supralinear behavior of the firing rate-
dependence of the BCM sliding threshold remains scarce [33] and the fast sliding threshold
required for network stability seems at odds with experiments [52, 55, 56]. In contrast, LPL
resembles the shape of the BCM learning rule, but does not require a fast nonlinear sliding
threshold for stability. Instead, it posits a fast-acting variance-dependence that ensures stabil-
ity by suppressing Hebbian plasticity when the variance of the output activity is too high. This
suppressive effect allows the sliding threshold, which could be implemented by either neuronal
or circuit mechanisms [33, 57, 58|, to catch up slowly, more consistent with experiments. LPL,
therefore, offers a simple explanation that could help close the current gap between theory and
experiment. Validating this theory will require future studies investigating whether and how
neuronal circuits regulate plasticity.

The notion of slowness learning has been studied extensively in the context of the Trace
Rule [59] and SFA [19, 39] which have conceptual ties to STDP [20]. However, the Trace Rule
enforces a hard constraint on the norm of the weight vector to prevent collapse, while SFA
explicitly restricts neuronal variance to one. In contrast, LPL merely enforces a soft variance
constraint [24] through variance dependence of Hebbian plasticity to the same effect. A similar
soft constraint on the variance can be derived from statistical independence arguments [60]
within a mutual information view of SSL [13]. However, these studies used negative samples,
assume rapid global sign switching of the learning rule, and did not connect their work to
biological plasticity mechanisms.

Our study has several limitations which we aim to address in future work. First, our study
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is limited to visual tasks of core object recognition, whereas other sensory modalities may use
LPL as a mechanism to form disentangled representations of the external world. Moreover, we
restricted ourselves to artificial data augmentation techniques borrowed from SSL to generate
temporally related images, for instance, by randomly cropping two images from an underlying
larger image. We did so for computational efficiency and due to the lack of suitable alterna-
tive datasets. It seems clear that this methodology can only serve as a crude proxy for the
type of successive stimuli that our visual system experiences as we sample an image through
a complex sequence of saccades. Additionally, the image itself may be non-stationary as the
state of the world evolves around us. Finally, there remains a performance gap in classification
performance compared to less plausible fully supervised and contrastive approaches (Supple-
mentary Table S3) showing that there remains room for improvement, possibly by incorporating
biological circuit mechanisms into the model. It is left as future work to show how LPL can
be extended to the circuit level and to more ethologically realistic sensory modalities [61] and
video input while further combining them with plausible models of saccadic eye movement [62].

We have evaluated our model’s ability to disentangle object representations in DNNs and to
reproduce neuronal activity signatures of unsupervised visual learning in experiments performed
in monkey IT [16]. A logical next question is how well our model matches the representational
geometry of other experimental recordings as evaluated previously for contrastive models [7,
63—-65]. An appealing metric for such an evaluation is provided by Brain-Score [66]. However,
it is typically used for much larger network models trained on ImageNet, a rich 1000-class
dataset [7]. In contrast, our networks were smaller and trained on CIFAR-10 and STL-10 with
only ten classes. When we evaluated our model on Brain-Score (Supplementary Fig. S8), we
found that the models trained end-to-end with either LPL or a supervised objective showed the
highest Brain-Score, whereas networks trained with layer-local LPL exhibited a low score. One
possible explanation for this finding is that the brain may indeed rely on elements of end-to-
end optimization implemented through biologically plausible credit assignment mechanisms at
the circuit level. Still, our architecture’s Brain-Scores were lower overall than larger network
models trained on larger datasets. Due to these architectural differences, interpreting these
results is not straightforward. While a more detailed analysis of the origins of these difference
goes beyond the scope of the present article, we intend to study this question in more detail in
the future.

Despite these limitations, our model makes several concrete predictions about synaptic plas-
ticity. As we have shown, modulating the strength of Hebbian plasticity as a function of the
variance of the postsynaptic activity is essential to LPL. A direct prediction of our model is,
therefore, that the predictive contribution to plasticity should be best observable when post-
synaptic activity is highly variable, while it should be barely observable at low variance levels.
While our model does not make quantitative predictions about the time scale on which each
neuron would have to estimate its output variance, one would expect that a neuron that has
been inactive for a long time, as may be the case in slice experiments, would show stronger Heb-
bian learning than neurons participating in in-vivo activity. Moreover, LPL should manifest
in metaplasticity experiments as a transition from an asymmetric Hebbian STDP window, via
a symmetric window to, to ultimately an anti-Hebbian window (cf. Fig. 6) when priming the
postsynaptic neuron with increasing output variance. Specifically, we expect a neuron which
has remained quiescent for a long period of time to display a classic STDP window, whereas a
neuron whose activity has undergone substantial fluctuations in the recent past should show an
inverted STDP window. Such metaplasticity may account for the diversity of different shapes
of STDP windows observed in experiments [47, 67].

To fathom how established data-driven plasticity models are related to theoretically mo-
tivated learning paradigms such as SFA and SSL is essential to understanding the brain. A
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central open question in neuroscience remains: How do the different components of such learn-
ing rules interact with the rich local microcircuitry to yield useful representations at the network
level? In this article, we have only scratched the surface by proposing a local plasticity rule and
illustrating its aptitude for disentangling internal representations. However, a performance gap
remains compared to learning algorithms that can leverage top-down feedback. We expect that
extending predictive learning to the circuit and network level will narrow this gap and generate
deep mechanistic insights into the underlying principles of neural plasticity.

Methods

Plasticity model

The LPL rule is derived from an objective function approach. It consists of three distinct parts,
each stemming from a different additive term in the following combined objective function:

£LPL = Epred + EHebb + £decorr (3)

First, the predictive component L;.q minimizes neuronal output fluctuations for inputs that
occur close in time. Second, a Hebbian component Lyep, maximizes variance and thereby
prevents representational collapse. Finally, Lgecorr 1S @ decorrelation term that we use in all
non-spiking network simulations to prevent excessive correlations between neurons within the
same layer in a network. In SNNs decorrelation is achieved without this term through lateral
inhibition and inhibitory plasticity.

In the following, we consider a network layer with N input units and M output units trained
on batches of B pairs of consecutive stimuli. In all simulations we approximate the temporal
derivative dz/at which appears in Eqn. (1) by finite differences z(t) — z(t— At) assuming a discrete
timestep At while absorbing all constants into the learning rate. In this formulation, the LPL
rule has a time horizon of two time steps in the sense that only one temporal transition enters into
the learning rule directly. We used this insight to efficiently train our models using minibatches
of paired consecutive input stimuli which approximates learning on extended temporal sequences
consisting of many time steps. Let z%(t) € RY be the input to the network at time t, W €
RM*N he the weight matrix to be learned, a’(t) = WaP(t) € RM be the pre-activations, and
28(t) = f(ab(t)) the activity of the ith output neuron at time ¢. Finally, b indexes the training
example within a minibatch of size B.

Predictive component. We define the predictive objective Lprcq as the mean squared dif-
ference between neuronal activity in consecutive time steps.

B M
Lpnealt QMBZHZ ~SGEN (- AN = e S5 (16 - SGG2E - An)) (4)

b=1 i=1

Here SG denotes the Stopgrad function, which signifies that the gradient is not evaluated with
respect to quantities in the past, thereby removing the need for backpropagation through time.

Hebbian component. To avoid representational collapse we rely on the Hebbian plasticity
rule that results from minimizing the negative logarithm of the variance of neuronal activity:

M

Lran(t) = 1 3~ log (o7(1)) (5)

i=1
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where z;(t) = SG(& YF | 2b(t)) and 02(t) = 5 2, (22(£) — 2:(t))? are the current estimates
of the mean and variance of the activity of the ith output neuron. Note that we do not
compute gradients with respect to the mean estimate, which would require backpropagation
through time. Assuming that the mean is fixed allows formulating LPL as a temporally local
learning rule (cf. Eq. (3)). To minimize the computational burden in DNN simulations, we
performed all necessary computations on minibatches, which includes estimating the mean and
variance. However, these quantities could also be estimated using stale estimates from previous
inputs, a requirement for implementing LPL as an online learning rule. Using stale mean and
variance estimates from previous minibatches in our DNN simulations did cause a drop in
readout performance (Supplementary Table S1). Still, such a drop could possibly be avoided
either using larger mini batch sizes, by further reducing the learning rate, or by computing
the estimates as running averages over past inputs. All of the above manipulations result in
essentially the same learning rule (see Supplementary Note S1).

Decorrelation component. Finally, we use a decorrelation objective to prevent excessive
correlation between different neurons in the same layer as suggested previously [24, 36, 68]. The
decorrelation loss function is the sum of the squared off-diagonal terms of the covariance matrix
between units within the same layer, which is given as

Edecorr(t) = (B _ 1 Z Z Z - ZZ )Q(ZI?:(t) - Zk(t))z (6)

b 1i=1 ki

with a scaling factor that keeps the objective invariant to the number of units in the population.

The full learning rule. We obtain the LPL rule as the negative gradient of the total objective
L1p1, plus an added weight decay. For a single network layer, this yields the layer-local LPL
rule where we omitted the time argument ¢ from all present quantities for brevity:

8[:pred OLHebb OLqgecorr
A A - wVV'L”
8Wl’j T oW T OWi; LA

AWy = —n<

a = — _
= UMB Z (22— 22(t — At)) + Alg(zlb — %) — Bzt — %) Z(z,’i — 7)? f’(ag’)xg
v k#i
—Unsz'j (7)

Here A1 and A are parameters which control the relative strengths of each objective, a and
[ are the appropriate normalizing constants for batch size and number of units, and 7,, is a
parameter controlling the strength of the weight decay.

Numerical optimization methods. We implemented all network models learning with LPL
using gradient descent on the equivalent objective function in PyTorch [69] with the Lightning
framework [70]. DNN simulations were run on five Linux workstations equipped with Nvidia
Quadro RTX 5000 graphic processing units (GPUs) and a compute cluster with Nvidia V100
and A100 GPUs. In case of the DNNs, we used the Adam optimizer [71] to accelerate learning.
Parameter values used in all simulations are summarized in Supplementary Table S2.

Learning in the single neuron setup

We considered a simple linear rate-based neuron model whose output firing rate z is given by
the weighted sum of the firing rates x; of the input neurons, ie, z = Z]- W;x;, where W;
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corresponds to the synaptic weight of input j. We trained the neuron using stochastic gradient
descent (SGD) on the corresponding objective function:

£ = % (+(0) — SG((t — M)~ log (02(1) + ) — S W 8)

Here, and in all following simulations, we fixed the Hebbian coefficient Ay = 1. We also added a
small constant € = 1076 to the estimate of the variance o, for numerical stability. In case of a
single rate neuron, the LPL rule (Eq. (7)) simplifies to Eq. (1) without the decorrelation term.

Synthetic two-dimensional dataset generation. The two-dimensional synthetic data se-
quence (Fig. 2e) consists of two clusters of inputs, one centered at x = —1, and the other at
x = +1. Pairs of consecutive data points were drawn independently from normal distributions
centered at their corresponding cluster. To generate a family of different datasets, we kept the
standard deviation in the x-direction fixed at o, = 0.1 and varied o,. Additionally, to account
for occasional transitions between clusters with probability p, we included a corresponding frac-
tion of such “crossover pairs” in the training batch. For each value of o,, we simulated the
evolution of the input connections of a single linear model neuron that received the x and y as
its two inputs, and updated its input weights according to LPL. In the simulations in Fig. 2 we
assumed p — 0, however, the qualitative behavior remained unchanged for noise levels below
p = 0.5, i.e, as long as the “noisy” pairs of points from different clusters were rare in each
training batch (Supplementary Fig. S9).

Neuronal selectivity measure. After training weights to convergence, we measured the
neuron’s selectivity to the x-input as the normalized difference between mean responses to
stimuli coming from the two respective input clusters. Concretely, let (z;) be the average
output caused by inputs from the z = 1 cluster, and (z2) from the z = —1 cluster, then the
selectivity x is defined as:

(=) - ()]

Zmax — “min

9)

with zmax the maximum and zyi, the minimum response across all inputs.

Learning in deep convolutional neural networks

For all network simulations, we used a convolutional DNN based on the VGG-11 architecture
[72] (see Supplementary Note S5 for details). We trained this network on STL-10 [73] and
CIFAR-10 [74] (Supplementary Fig. S10), two natural image datasets (see Supplementary Ta-
ble S2 for hyperparameters). To simulate related consecutive inputs, we used two differently
augmented versions of the same underlying image, a typical approach in vision-based SSL meth-
ods. Specifically, we first standardized the pixel values to zero mean and unit standard deviation
within each dataset before using the set of augmentations originally suggested in [14], which
includes random crops, blurring, color jitter and random horizontal flips (see Supplementary
Fig. S2 for examples).

Network training. We trained our network models on natural image data by minimizing
the equivalent LPL objective function. For both datasets, we trained the DNN using the Adam
optimizer with default parameters [71] and a cosine learning rate schedule that drove the learning
rate to zero after 800 epochs. We distinguish between two cases: layer-local and end-to-end

learning. End-to-end learning corresponds to training the network by optimizing ££01§1£) at the
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network’s output while using backpropagation to train the hidden layer weights. This is the
standard approach used in deep learning. In contrast, in layer-local learning, we minimized the
LPL objective L1 p1, at each layer in the network independently without backpropagating loss
gradients between layers similar to previous work [21, 30]. In this case, every layer greedily learns
predictive features of its own inputs, i.e, its previous layer’s representations. To achieve this
behavior, we prevented PyTorch from backpropagating gradients between layers by detaching
the output of every layer in the forward pass and optimizing the sum of per-layer losses ), E(Lll):L.

Unless mentioned otherwise, we used global average pooling (GAP) to reduce feature maps
to a single vector before applying the learning objective at the output of every convolutional
layer for layer-local training, or just at the final output in the case of end-to-end training.
Although pooling was not strictly necessary and LPL could be directly applied on the feature
maps, it substantially sped up learning and led to an overall improved linear readout accuracy
on CIFAR-10 (Supplementary Table S1). However, we observed that GAP was essential on
the STL-10 dataset for achieving readout accuracy levels above the pixel-level baseline (cf.
Table 1). This discrepancy was presumably due to the larger pixel dimensions of this dataset
and the resulting smaller relative receptive field size in early convolutional layers. Concretely,
feature pixels in the first convolutional layer of VGG-11 have a receptive field of 3 x 3 pixels
covering a larger portion of the 32 x 32 CIFAR-10 images as compared to the 96 x 96 STL-10
inputs. This hypothesis was corroborated by the fact that when we sub-sampled STL-10 images
to a 32 x 32 resolution, the dependence on GAP was removed and LPL was effective directly
on the feature maps (Supplementary Table S1).

Baseline models. As baseline models for comparison (Supplementary Table S3), we trained
the same convolutional neural network (CNN) network architecture either with a standard cross-
entropy supervised objective, which requires labels, or with a contrastive objective, which relies
on negative samples. To implement contrastive learning, the network outputs z(t) were passed
through two additional dense projection layers v(t) = fproj(2(t)), which is considered crucial in
contrastive learning to avoid dimensional collapse [41]. Finally, the following contrastive loss
function was applied to these projected outputs

B
Leontrast ( Z —sim(v°(t), SG(vP(t — At))) + Z sim(v”(t), v (1)) (10)
=1 b #b
T
where sim(vy,vs) = 42— is the cosine similarity between two representations v; and wvs.
. |vl|ﬁHU2|| o L ; .
The second term in the loss function is a sum over all pairwise similarities between inputs in

a given minibatch. These pairs correspond to different underlying base images and therefore
constitute negative samples. During training the network is therefore optimized to reduce the
representational similarity between them.

For training the layer-local versions of the supervised and contrastive models, we followed
the same procedure as with LPL of optimizing the respective loss function at the output of every
convolutional layer [ of the DNN without backpropagation between the layers. Because projec-
tion networks are necessary for avoiding dimensional collapse in case of contrastive learning, we
included two additional dense layers to obtain the projected representations v'(t) = Il)roj(zl(t))
at every level of the DNN before calculating the layer-wise contrastive loss £., (.- This meant
that gradients were backpropagated through each of these dense layers for training the corre-
sponding convolutional layers of the DNN, but consecutive convolutional layers were still trained
independent of each other.
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Analysis of population activity and representational dimension

We adopted two different metrics in order to analyze the representations learned by the DNN
after unsupervised training with LPL on the natural image datasets.

Linear readout accuracy. To evaluate how well the LPL rule trained the DNN to disentangle
and identify underlying latent factors in a given image, we measured linear decodability by
training a linear classifier on the network outputs in response to a set of training images.
Crucially, during this step we only trained the readout weights while keeping the weights of
the LPL-pretrained DNN frozen. We then evaluated the linear readout accuracy (Fig. 3b) on
a held-out test set of images. We used the same procedure to evaluate the representations at
intermediate layers (Fig. 3c), and for the baseline models.

Dimensionality and activity measures. To characterize mean activity levels in the net-
work models, we averaged neuronal responses over all inputs in the validation set. To quantify
the dimensionality of the learned representations, we computed the participation ratio [75]. Con-
cretely, if Z € RP*N are N-dimensional representations of B input images, and \;, 1 <i < N
is the set of eigenvalues of Z7 Z, then the participation ratio is given by:

(Zi]\il )‘i)z
PIARPY,

Dim. =

(11)

Brain-Score. We computed Brain-Scores [66] for instances of our model by submitting it to
http://www.brain-score.org. Specifically, we obtained the values for the untrained network
and after training the model on STL-10 using both LPL and supervised training. We computed
these scores for both end-to-end and layer-wise training objectives. Because our networks were
trained on 96 x 96 images, we downsampled the Brain-Score inputs to our network’s native
resolution using the preprocessing function provided in the submission pipeline.

Model of unsupervised learning in inferotemporal cortex

Network model and pretraining dataset. To simulate the experimental setup of [16], we
modeled the animal’s ventral visual pathway with a convolutional DNN. To that end, we used
the same network architecture as before except that we removed all biases in the convolutional
layers in order to prevent boundary effects. This modification resulted in a drop in linear
readout accuracy (Supplementary Table S1). Pre-training of the network model proceeded in
two steps as follows. First, we performed unsupervised pre-training for 800 epochs on STL-10
using augmented image views exactly as before. Next, we added a fully-connected dense layer
at the network’s output, and trained it for 10 epochs with the LPL objective while keeping
the weights of the convolutional layers frozen. During this second pre-training phase, we used
augmented STL-10 inputs which were spatially extended in order to account for the added
spatial dimension of different canvas positions in the experiment by Li et al. [16]. The expanded
inputs consisted of images placed on a large black canvas at either the center position X, or
one of two peripheral positions X, /5 at the upper or lower end of the canvas. Concretely, these
images had dimensions (13 x 96) x 96 which resulted in an expanded feature map at the output of
the convolutional DNN with spatial dimensions 13 x 1 (see Supplementary Note S5 for details).
Note that we only expanded the canvas in the vertical dimension instead of using a setup with a
13 x 13 feature map because it resulted in a substantial reduction of computational and memory
complexity. During this second stage of pre-training, the network was only exposed to “true”
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temporal transitions wherein the image was not altered between time steps apart from changing
position on the canvas.

Data generation for simulated swap exposures. To simulate the experiment by [16], we
exposed the network to normal and swap temporal transitions. In the latter case the image
was consistently switched to one belonging to a different object category at the specific swap
position. The swap position for a given pair of images was randomly pre-selected to be either Xy
or Xo, while the other non-swap position was used as a control. Specifically, we switched object
identities during transitions from one peripheral swap position, say Xi, to the central position
X, while keeping transitions from the other peripheral position Xs to the center unmodified.
As in the experiment, we chose several pairs of images as swap pairs, and fixed X; as the swap
position for half the pairs of images and X5 as the swap position for the other half. To simulate
ongoing learning during exposure to these swap and non-swap input sequences, we continued
fine-tuning the convolutional layers. To that end, we used the Adam optimizer we used during
pre-training with its internal state restored to the state at the end of pre-training. Moreover,
we used a learning rate of 1077 during fine-tuning which was approximately 100x larger than
the learning rate reached by the cosine learning rate schedule during pre-training (4 x 1077,
after 800 epochs). Finally, we trained the newly added dense layers with vanilla SGD with a
learning rate of 0.02.

Neuronal selectivity analysis. Before training on the swap exposures, for each output
neuron in the dense layer, we identified the preferred and non-preferred member of each swap
image pair, based on which image drove higher activity in that neuron. This allowed us to
quantify object selectivity on a per-neuron basis as P — N, where P is the neuron’s response to
its initially preferred image, and N to its nonpreferred image at the same position on the canvas.
Note that, by definition, the initial object selectivity for every neuron is positive. Finally, we
measured the changes in object selectivity P — N during the swap training regimen, at the swap
and non-swap positions averaging over all output neurons for all image pairs. As a control, we
included measurements of the selectivity between pairs of control images that were not part of
the swap set.

Comparison to experimental data. To compare our model to experiments, we extracted
the data from Li et al. [16] using the Engauge Digitizer software [76] and replotted it in Fig. 4b.

Spiking neural network simulations

We tested a spiking version of LPL in networks of conductance-based leaky integrate-and-
fire (LIF) neurons. Specifically, we simulated a recurrent network of 125 spiking neurons (100
excitatory and 25 inhibitory neurons) receiving afferent connections from 500 input neurons. In
all simulations the input connections evolved according to the spike-based LPL rule described
below. In our model, neurons actively decorrelated each other through locally connected in-
hibitory interneurons whose connectivity was shaped by inhibitory plasticity.

Neuron model. The neuron model was based on previous work [26, 55] in which the mem-
brane potential U; of neuron ¢ evolves according to the ordinary differential equation

mem dU;

dt

where 7M™ denotes the membrane time constant, U* are the synaptic reversal potentials (Sup-
plementary Table S4), and the g7 (t) the corresponding synaptic conductances expressed in units

T

_ (Uleak _ Ui) T+ g () (U — U;) + g (1) <Uinh _ UZ-) (12)
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of the neuronal leak conductance. The excitatory conductance is the sum of NMDA and AMPA
conductances ¢g&*¢(t) = 0.5(g>"P*(t) + g™™9a(¢)). Their dynamics are described by the following

(2 K3 (2
differential equations

dg:™* g5 (t)

) = e T Z w;; S;(t) (13)

J € exc

nm adgznmda ampa nmda
e (1) = g™ () — g™ (1) (14)

whereas the inhibitory GABA conductance gi"!" = gigaba evolves as

dggaba
rgaba = —gF DT wS;t) (15)
j € inh
In the above expressions Sj(t) = >, 0 (téC —1t) refers to the afferent spike train emitted by neuron

7, in which té? are the corresponding firing times, and 7% denotes the individual neuronal and
synaptic time constants (Supplementary Table S4). Neuron i fires an output spike whenever its
membrane potential reaches the dynamic firing threshold ¥;(¢) that evolves according to

dv;
dt

0 = L0 s (16)

to implement an absolute and relative refractory period. Specifically, ¥; jumps by Ay = 100 mV
every time an output spike is triggered after which it exponentially decays back to its rest value
of 9%t = —50mV. All neuronal spikes are delayed by 0.8 ms to simulate axonal delay and to
allow efficient parallel simulation before they trigger postsynaptic potential in other neurons.

Time varying spiking input model. Inputs were generated from 500 input neurons divided
into five populations of 100 Poisson neurons each. All inputs where implemented as independent
Poisson processes with the same average firing rate of 5 Hz and neurons within the same group
shared the same instantaneous firing rate. Concretely, neurons in P0 had a fixed firing rate of
5 Hz, whereas the firing rates in groups P1 and P2 changed slowly over time. Specifically, we
generated periodic template signals z(t) from a Fourier basis

z(t) =) % sin (W) (17)

k

with random uniformly drawn coefficients 0 < 0y, ¢, < 1. The spectral decay constant o = 1.1
biased the signals toward slow frequencies and thus slowly varying temporal structure. We
chose the period 7' = 3s for P1 and (3+41/13)s for P2 respectively. The different periods were
chosen to avoid phase-locking between the two signals. Both signals were then sampled at 10 ms
intervals, centered on 5 Hz, variance-normalized, and clipped below at 0.1 Hz before using them
as periodic time varying firing rates for P1 and P2. Additionally, we simulated control inputs
P1/2. of the two input signals by destroying their slowly varying temporal structure. To that
end, we repeated the original firing rate profile for 13 periods before shuffling it on a time grid
with 10 ms temporal resolution.

Spike-based LPL. To extend LPL to the spiking domain, we build on SuperSpike [77], a
previously published online learning rule, which had only been used in the context of supervised
learning in SNNs thus far. In this article, we replaced the supervised loss with the LPL loss
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(Eq. (3)) without the decorrelation term. The resulting spiking LPL online rule for the weight
wj; is given by

dw;; , A _
G = | SO POO) | s | 6 - Silt = M)+ (S0 - 5i(0)
pre post predictive
Hebb
+1 4.55(1) (18)
~——

transmitter-triggered

with the learning rate = 1072, a small positive constant & = 1073 to avoid division by zero.
Further, « is a double exponential causal filter kernel applied to the neuronal spike train S;(t).
Similarly, € is a causal filter kernel that captures the temporal shape of how a presynaptic spike
influences the postsynaptic membrane potential. For simplicity, we assumed a fixed kernel
and ignored any conductance-based effects and NMDA dependence. Further, we added the
transmitter-triggered plasticity term with 6 = 107° to ensure that weights of quiescent neurons
slowly potentiate in the absence of activity to ultimately render them active [78]. Finally, A =1
is a constant that modulates the strength of the Hebbian term. We set it to zero to switch off
the predictive term where this is mentioned explicitly.

Further, f(U;) = (1 + ‘Ui — 19“3“‘)72 is the surrogate derivative with 8 = 1mV ™!,
which renders the learning rule voltage-dependent. Finally, S;(t) and o2(t) are slowly varying
quantities obtained online as exponential moving averages with the following dynamics

meandiit(t) — Si(t) - Si1) (19)
L) = o)+ (80 - 5(0)° (20)

with 7" = 600s and 7V = 20s. These quantities confer the spiking LPL rule with elements
of metaplasticity [33].

In our simulations, we computed the convolutions with « and e by double exponential
filtering of all quantities. Generally, for the time varying quantity ¢(¢) we computed

Trise%té(t) — —E(t)+C(t) (21)
fall%f(t) — —E(t)—i—é(t) (22)

= 10ms, 7,%¢ =

_ fall
= 2ms, 7.2 p

which yields the convolved quantity ¢ Specifically, we used 755 o

(0%
Tampa = D ms, and TEfall = Tmem = 20 ms.

Overall, one can appreciate the resemblance of Eq. (18) with the non-spiking equivalent
(cf. Eq. (1)). As in the non-spiking case the learning rule is local in that it only depends
on pre- and postsynaptic quantities. The predictive term in the learning rule can be seen as
an instantaneous error signal which is minimized when the present output spike train S;(¢) is
identical to a delayed version of the same spike train S;(t — At) with At = 20ms. In other

words, the past output serves as a target spike train (cf. [77]).

Microcircuit connectivity. Connections from the input population to the network neurons
and recurrent connections were initialized with unstructured random sparse connectivity with
different initial weight values (Supplementary Table S5). One exception to this rule was the
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excitatory-to-inhibitory connectivity which was set up with a Gaussian connection probability
profile
(j — (i)
P = oxp (-4 (29

with ¢(i) = 0.25i with 02 = 20 to mimic the dense local connectivity onto inhibitory neurons
due to which inhibitory neurons inherit some of the tuning of their surrounding excitatory cells.

Inhibitory plasticity. Inhibitory to excitatory synapses were plastic unless mentioned oth-
erwise. We modeled inhibitory plasticity according to a previously published inhibitory STDP
model [37].

dw;«?h stdp
0 = ¢ ((@alt) + 2679)5(0) + (@5 (1)Si(1) ) (24)
using pre- and postsynaptic traces
diL'k T (t)
dt = _TSTDP + Sk‘(t) (25)

STDP — 90 ms, learning rate { = 1 x 1073, and target firing rate x = 10 Hz.

with time constant 7
Reconstruction of input signals from network activity. To reconstruct the input signals,
we first computed input firing rates of the five input populations by binning their spikes emitted
during the last 100 s of the simulation in 25ms bins. We further averaged the binned spikes
over input neurons to provide the regression targets. Similarly, we computed the binned firing
rates of the network neurons but without averaging over neurons. We then performed Lasso
regression using SciKit-learn with default parameters to predict each target input signal from
the network firing rates. Specifically, we trained on the first 95s of the activity data, and
computed R? scores on the Lasso predictions over the last 5s of held-out data (Fig. 5b).

Signal selectivity measures. We measured signal selectivity of each neuron to the two slow
signals relative to their associated shuffled controls (Fig. 5d) using the following relative measure
defined on the weights:

1
Xi — wP chtl (26)
i i
wp +wp,,

where w}; is the average synaptic connection strength from the signal pathways P1/2 onto
excitatory neuron i, and wp  is the same but from the control pathways P1 /2ct1-

Representational dimension. To quantify the dimensionality of the learned neuronal rep-
resentations (Fig. 5f), we binned network spikes in 25 ms bins and computed the participation
ratio (Eq. (11)) of the binned data.

Neuronal tuning analysis of the learned weight profiles. To characterise the receptive
fields of each neuron (Fig. 5g,h), we plotted wpy against wps for every neuron in the excitatory
population (Figs. 5g,h; left), and colored the resulting weight vectors by mapping the cosine
of the vectors with the x-axis (wps) to a diverging color map. Furthermore, we calculated the
relative tuning index as follows
; Wy — Wy
Xrel w}J2 + w};l ( )
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STDP induction protocols. To measure STDP curves, we simulated a single neuron using
the spiking LPL rule (Eq. 18) with a learning rate of 7 = 5 x 1073. In all cases, we measured
plasticity outcomes from 100 pairings of pre- and postsynaptic spikes at varying repetition
frequencies p. The postsynaptic neuron’s membrane voltage was held fixed between spikes at
-51mV for the entire duration of the protocol. To measure STDP curves, we set the initial
synaptic weight at 0.5 and simulated 100 different pre-post time delays At chosen uniformly
from the interval [—50,50] ms with p = 10 Hz. To measure the rate-dependence of plasticity, we
repeated the simulations for fixed At = +10ms while varying the repetition frequency p.

Numerical simulations. All SNN simulations were implemented in C++ using the Auryn
SNN simulator! [79]. Throughout we used a 0.1 ms simulation time step. Simulations were run
on seven Dell Precision workstations with eight-core Intel Xeon CPUs.
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Data availability

The deep learning tasks used the STL-10 [73] and CIFAR-10 [74] datasets, typically available
through all major machine learning libraries. The original releases for these datasets can be
found at http://ai.stanford.edu/7Eacoates/st110/, and https://www.cs.toronto.edu/
~kriz/cifar.html respectively.

Code availability
The simulation code to reproduce the key results is publicly available at https://github.com/
fmi-basel/latent-predictive-learning.

Acknowledgments

We thank all members of the Zenke Group for comments and discussions that shaped this
project, and Atul Kumar Sinha for many helpful suggestions. We are particularly grateful to Ju-
lian Rossbroich for providing invaluable insights throughout the course of this work. This project
was supported by the Swiss National Science Foundation [grant number PCEFP3_202981] and
the Novartis Research Foundation.

Author contributions

F.Z. conceived the study. M.S.H. and F.Z. developed the theory. M.S.H. wrote DNN code,
performed simulations, and analysis. F.Z. developed SNN code. M.S.H. and F.Z. wrote the
manuscript.

Competing interests

The authors declare no competing interests.

32


http://ai.stanford.edu/%7Eacoates/stl10/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/fmi-basel/latent-predictive-learning
https://github.com/fmi-basel/latent-predictive-learning
https://doi.org/10.1101/2022.03.17.484712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.17.484712; this version posted July 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Supplementary Figures
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Figure S1: Same as Figure 2a-d but for the rectified linear unit (ReLU) activation function

used for the DNN simulations. (a) The ReLU activation function shifted to approximately fit

typical neuronal transfer functions. (b) Weight change induced by the LPL rule for co-varying input x

and the postsynaptic activity z for different values of the plasticity threshold 6. (c) Same as (b) but for

different values of the variance of the postsynaptic activity with zero prediction error % = 0 and fixed
d

mean activity Z = 30. (c) Same as (c) but with a negative prediction error 47 = —10.

Original Crop and resize Horizontal flip Color jitter Grayscale Blur
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Figure S2: Image augmentation model. (a) Illustration of the image transformations used to generate
natural image sequences as suggested by Chen et al. [14]. (b) Sample images from STL-10 and their
transformed versions used for training the DNNs.
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Figure S3: Disentangling of object representations in the DNN. (a) Data distribution of the STL-
10 validation set along the first two principal components in pixel-space. Data corresponding to different
object classes are highly entangled. (b) Same as (a) but along the principal components of representations
in Layer 3 of the DNN after learning with LPL. Object classes are somewhat disentangled. (c) Same

as (a) but along the principal components of representations in Layer 8 of the DNN. Object classes are
highly disentangled.
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Figure S4: Illustration of collapse modes typifying poorly disentangled features Effectively
disentangled representations (left) separate categories well with different representational directions en-
coding different relevant features. Purely predictive learning without counteracting Hebbian plasticity
leads to collapsed representations (center), typically to zero activity levels. Dimensional collapse (right)
is characterized by highly correlated activity across all neurons, indicating that only one relevant fea-

ture is encoded by all neurons, which is unlikely to be conducive to hierarchical feature extraction for
non-trivial tasks such as object recognition.
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§ Figure S5: Learned network representations are invariant to ob-
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Figure S6: Same as Figure 5 but with detailed controls. (a) Snapshot of spiking activity (left)
and underlying firing rate signals or their reconstructions (right) over 100 ms for the input and net-
work populations. (b) Same as Fig. 5d showing signal selectivity learned with the different variations
of spiking LPL given in (a). (c) Average synaptic connection strength grouped by input population for
the different configurations in (a). LPL with plastic inhibition results in higher weights on the slowly
varying signals relative to the shuffled controls, but not when the predictive or Hebbian term are dis-
abled. Without inhibition or without inhibitory plasticity, connections from all populations are strong
with a small preference for P2. (d) Average firing rates over 100 s bins throughout training for the
configurations in (a). Firing rates saturate with the inhibitory neurons settling at a higher firing rate
when learning with spiking LPL with inhibition, even when the predictive term is disabled or the inhi-
bition is not plastic. Activity collapses without the Hebbian term, whereas firing rates diverge without
inhibition. (e) Averaged weight vectors from populations P1 and P2 onto each excitatory neuron (left)
and distribution of the excitatory neurons’ relative selectivity between the two populations (right). Dif-
ferent neurons are exclusively selective to either P1 pr P2 under spiking LPL with inhibitory plasticity.
Without the predictive term, or the Hebbian term, few if any neurons are selective to one population
over the other. Moreover, weights collapse to small values without the Hebbian term. When inhibition
is removed altogether, a few neurons become exclusively selective to P2, but the weight vectors are not
well-decorrelated. Without inhibitory plasticity, a few weight vectors are well-decorrelated, but most
neurons are not preferentially selective to either signal.
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Figure S7: Learning threshold determines the sign of plasticity (a) Weight changes as a function
of repetition frequency p for positive and negative relative spike timings (At = +10ms) with ot =
0) =0 and S;(t =0) = 0. (b) Same as (a) but for S;(t = 0) = 50.
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Figure S8: Brain-Scores [66] of the DNN used in this article trained on STL-10 using different
objectives. To match the input image dimension of our model 96 x 96 to the dimensions required by
Brain-Score, we first (linearly) down-sampled the input images. One possible reason for the generally
low behavioral scores might be that the network was trained on STL-10, which does not contain several
classes that are relevant for the underlying benchmark (e.g., wrench, knife, bear, etc).
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Figure S9: LPL is robust to noise. (a) Same as Figure 2f but for high rates of noisy transitions
between clusters in the training data sequence with p = 0.2 (Methods). A neuron learning with LPL
still consistently becomes selective to cluster identity even with noisy transitions. (b) Cluster selectivity
as a function of the probability of noisy cross-cluster transitions in the data sequence with o, = 1. LPL
drives selectivity to cluster identity only below p = 0.5, i.e, only as long as cluster identity remains the
slow feature.
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Figure S10: Same as Figure 3 but for the CIFAR-10 dataset. (a) Linear readout accuracy of object
categories decoded from representations at the network output after training it on natural image data
for different learning rules in layer-local (dark) as well as the end-to-end configuration (light). (b) Linear
readout accuracy of the internal representations at different layers of the DNN after layer-local training.
(c) Dimensionality of the internal representations for the different learning rule configurations shown
in (b). (d) Mean neuronal activity at different layers of the DNN after training for the different learning
rule variants shown in (b).
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Supplementary Tables
| STL-10 | CIFAR-10
VGG-11 63.2+0.3 | 59.44+0.4
VGG-11 without bias terms 58.7 54.6
VGG-11 with stale mean and variance estimates || 59.3+0.6 | 47.74+0.6
VGG-11 without GAP in the loss computation 29.2+1.8 | 47.7+0.3
VGG-11 without GAP (down-sampled inputs) 45.3£0.5 -

Table S1: Linear classification accuracy on the STL-10 and CIFAR-10 datasets for layer-locally trained
LPL with the base VGG-11 architecture, and several modified versions. VGG-11 without bias terms
refers to the standard architecture including GAP but without any bias terms in the convolutional
layers. Stale mean and variance estimates denote calculating the representational mean and variance
from the previous batch. VGG-11 without GAP refers to computing and optimizing the LPL objective
on the unpooled feature maps. Downsampled inputs correspond to the architecture without GAP, but
now using STL-10 images subsampled to a lower resolution of 32 x 32. Reported error values correspond
to SEM over four simulations with different random seeds.

| Single neuron (2D dataset) | Single neuron (digit dataset) | Network simulations

A1 1 1 1

A2 - - 10
Optimizer SGD SGD Adam?
Learning rate n min(10~2,1072/0y,) 1072 10-3P
Weight decay 7, 0.15 0.15 1.5x 1076
Batch size B 200 200 1024
Training steps max (10000, 1000 ) 1000 ~T78000¢

* With default parameters from Kingma et al. [71].

> Reduced to zero during training using a cosine learning rate schedule.

¢ ~35000 for CIFAR-10.

Table S2: Hyperparameter values for DNN simulations.

STL-10 CIFAR-10
Layer-local (%) | End-to-end (%) || Layer-local (%) | End-to-end (%)
LPL 63.2+0.3 72.5£0.1 59.4+0.4 70.4+0.2
Neg. samples 77.0£0.2 81.0£0.3 67.4£0.3 76.5£0.1
Supervised 70.8£0.3 77.8.5£0.3 81.7£0.2 87.14+0.2

Pixel-space decoding H

31.6

[

35.9

Table S3: Extended version of Table 1 showin linear classification accuracy on the STL-10 and CIFAR-10
datasets for LPL and different baseline models (Methods). Error values correspond to SEM over four
simulations with different random seeds.
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Parameter | Value H Parameter ‘ Value

roem 20 ms Uexe O0mV
Tampa 5ms yinh -80mV
r8aba 10 ms yleak -70mV
rnmda 100 ms

P 5ms

Table S4: Table summarizing the neuronal parameters.

Source | Destination H Connection probability ‘ Initial weight value

input exc 0.1 0.15
exc inh local (see Methods) 0.4
inh exc 0.5 0.1
inh inh 0.1 0.4

Table S5: Summary of SNN connectivity parameters.

39


https://doi.org/10.1101/2022.03.17.484712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.17.484712; this version posted July 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Supplementary Notes

S1 Equivalence of the objective function and learning rule for-
mulations

Here, we show that the objective functions defined in Egs. (4), (5), and (6) indeed result in the
LPL rule (Eq. (7)).

Predictive component. We recall that the predictive objective Lpeq is the mean squared
difference between neuronal activity in consecutive time steps.

M
Lpea = g1 Zuz - SGE - AP = 5SS (- saE - an)

b=1 =1

Taking the derivative with respect to the network weights results in the following learning rule

aaﬁ;;;d = Z (= 20— an) f(a)a (28)

which does not require backpropagation through time due to the Stopgrad function.

Hebbian component. The Hebbian component minimizes the negative logarithm of the
variance of neuronal activity:
M
L = — —log (o7
Hebb = 5or : g (U Z)
i=1
where z, = SG(% S8 2b) and o2 = 5 e (20— ZZ-)2 are the mean and variance of the
activity of the ith output neuron over the minibatch. The corresponding learning rule is obtained
as the negative gradient of this loss function with respect to the weights W. The gradient itself

is given by:

OLpery b
oWi; n B-1) 12; )wj (29)

Note that the objective and the resulting gradient is essentially unchanged upto a scaling
factor when we use running estimates of the variance with a time constant 7 instead of batch

estimates.
| M
Leny(t) = o Z —log (O‘?(t))
1 Z;l
= 537 2 —log ((1 —7)(z(t) — zZ(t )) + 78G(0* (t 1)+ 6)
ILgew,,,  (1—-7) o
g, 1 = ez GO~ EO) (@ O)5(0)

Decorrelation component. Finally, the decorrelation objective is the decorrelation loss
function as the sum of the squared off-diagonal terms of the covariance matrix between units.

ﬁdecorr = 2(B— 1 ZZZ Z _Zz _Zk)z

b 1 i=1 k#:
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which gives the gradient:

0Lq &
ecorr b

= g z —-zZ)f g — zk 30
owi; — (B—1)( ) &= c (30)

The full learning rule. The combined weight updates for a descent along the sum of the
three gradients in Eqgs. (28), (29), and (30) in a single-layer network finally yields the LPL rule
including the decorrelation component:

aﬁpred 0 EHebb 0 Edecorr
A A

awy = - (31)

«
- "MB Z (2 = 2(t = D)) + M — (= — 20) = NPl = ) Y_(2f = 2)* | f'(a)
' ki

where a = % and 8 = W are the appropriate normalizing constants, and A1 and Ag
are the loss coefficients. Including weight decay in the weight update finally yields the LPL rule
for a network given in Eq. (7).
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S2 Relating the Hebbian component of LPL to Oja’s rule

To see the relation of the Hebbian component of LPL with the classic Oja’s rule [1], we consider
the case of a single output neuron (M = 1), with no nonlinearity (f’(a) = 1), along with the
assumption that the input is zero-centered (z; = 0). Consequently, z = Zj W;z; = 0 and

z

gradient in Eq. (29):

o2 = ((z - 2)2> = (z*), which yields a very simple Hebbian learning rule for descending the

oL t t)x;(t
AW o) = PLmentt) _ =)
oW, (22)
This update rule along with a weight decay (with coefficient 7,,) yields a learning rule that,
on average, is equivalent to Oja’s rule up to a scaling factor, and in fact has exactly the same
non-zero fixed point when 7, = 1, but with different convergence dynamics because of the

multiplication by 1/(z?).

AW;(t) = Z(t<):2j>(t) — W
(AW;) = <fj§j>> — W
= () — W (22)) (32)

42


https://doi.org/10.1101/2022.03.17.484712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.17.484712; this version posted July 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

S3 Importance of the variance-dependent modulation of Heb-
bian learning

To analytically understand the importance of the variance-dependent scaling of the Hebbian
term in the learning rule, we first looked at the synthetic two-dimensional learning task from
Fig. 2e, and modeled the behaviour of the LPL loss functions under a particular distribution of
the representations. Specifically, we considered the case where the two input clusters map to
a mixture of two normal distributions in representation space with each Gaussian component
corresponding to the representations of one input cluster. Each of the two Gaussians are assumed
to have a standard deviation of r, with their means symmetrically located on either side of zero
with a distance of D = 4r between their centers. We used this setting to investigate how the
predictive and Hebbian loss terms of LPL behave under different values of the representational
variance by co-varying r and D.

The predictive loss in this case is proportional to the expected squared difference ((z; —
29)?) between two independently drawn samples z; /2 from the same Gaussian, i.e, Lpreq =
2r2. The overall variance of the representations is 02 = r? + (%)2 (variance of the Gaussian
mixture). Under this representational distribution, we studied the overall loss function obtained
by combining the predictive loss with different variance-maximising losses, each a different

a o, b c d
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Figure S11: Variance-dependent modulation of Hebbian learning objective is crucial for

stable learning. (a) Example setting with two clusters distance D apart in representation space. The
size of each cluster r = % is assumed to scale with D. In this case, representational variance is DTZ + 72
(b) Total loss combining the predictive loss with a naive variance maximising loss (—o?) as a function of
cluster separation D. Depending on the coefficient of the variance loss, the global minimum of the loss is
either at D = oo (solid blue) or at D = 0 (dashed blue), implying runaway LTP or collapse respectively.
(c) Same as (b) but using Lyeph, = —logo?, the Hebbian objective optimized by LPL instead of the
naive variance objective. Here, the predictive loss starts dominating at higher values of D inducing a
global minimum at D ~ 3. (d) Same as (b) but the variance loss is now ReLU(1 —0,), the objective that
was optimized in the VICReg model [2]. Here as well, the predictive loss dominates at higher values of
D, inducing a global minimum at D ~ 2. (e) Cluster selectivity learned by LPL on the two-dimensional
synthetic sequence from Fig. 2e with the standard predictive loss combined with the different variance
losses from (a), (b) and (c). Dotted sections indicate simulations where learning diverged. (f) Mean
output activity over training time for LPL on the two-dimensional synthetic sequence with o, = 1 for

the different cases from (a), (b) and (c).
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decreasing function of the variance, i.e, Lyar = f(02). Specifically, we considered the cases
Loyar = —ag, Lyar = —log aﬁ, and Ly, = ReLU(1 — 0,). These loss functions are plotted in
Fig. S11b-d respectively along with Leq, and the resulting full LPL objective in each case. With
the naive variance maximization objective Lya = —02, the full objective is dominated by the
variance term at large values of D (Fig. S11b), and therefore inherently drives unstable learning.
It is not possible to remedy this situation by simply using a smaller weight for the variance loss,
for instance, by weighting Ly, with a small weight of 0.1. This is because downweighting the
variance objective simply moves the loss minimum at D = oo to D = 0, the exact situation of
collapse the variance objective is meant to prevent (Fig. S11b). In contrast, using Lyay = — log 072
(Fig. S11c), or Lyar = ReLU(1—0) (Fig. S11d) along with Leq constitute loss landscapes with
minima at finite non-zero values of D. This is because these variance objectives only dominate
at low values of D, but have diminishing influence with growing D allowing the predictive term
to dictate learning, and preventing runaway activity.

We validated these scaling arguments with learning simulations using each of the three pro-
posed learning objectives on the synthetic two-dimensional sequence learning task from Fig. 2e.
We found that using the naive variance maximization objective Lyar = —o? results in poor
learning of cluster selectivity, whereas Ly, = — log 02 and Ly, = ReLU(1 — o) prove effective
(Fig. S1le). Furthermore, the naive variance objective indeed suffers from runaway instability
(Fig. S11f).
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S4 Predictive feature selected by LPL strictly depends on tem-
poral contiguity properties of the input sequence

The slow or ”predictive” feature picked up by a single neuron learning with LPL purely depends
on the temporal order of stimuli that it is exposed to. One would expect, then, that it is possible
to manipulate the learned feature by altering the temporal sequence of stimuli.

To illustrate that this is indeed the case, we designed a predictive learning task similar
to that in Fig. 2e using a subset of images from the MNIST handwritten digit dataset [3].
Specifically, we sampled 2000 images from this dataset corresponding to the digits “five” and
“six”, equally distributed between the two classes. We generated sample inputs by embedding
these 28 x 28 grayscale images in a 56 x 56 blank canvas at either the top-left or bottom-right
location. Because we sought to demonstrate that changing the temporal transition structure
qualitatively changes neuronal selectivity, we considered two types of sequences with distinct
temporal contiguity properties (Fig. S12). In the Digit Sequence we preserved digit identity
(either five or six) across subsequent input images, while changing their position on the canvas,
whereas in the Location Sequence, we presented different digits at the same location in successive
inputs. Therefore, the predictive feature is location in the Location Sequence and digit identity
in the Digit Sequence. Furthermore, digit identity and digit location were approximately aligned
with the first two principal components of the data which account for 30 % and 5 % of the
explained variance respectively (Fig. S12).

We again exposed a single rate neuron model to these two sequence types, while allowing the
plastic input connections to evolve according to the LPL rule. After convergence, we measured
neuronal selectivity to digit identity and location. We measured selectivity to location and digit
identity with the same measure defined in Eq. (9), only changing what inputs fall into clusters
1 and 2 in each case. Concretely, we measured selectivity to digit identity by setting (z1) to be
the mean response to the digit five (at any location) and (z3) the mean response to the digit
six. Finally, we set (1) and (z2) to the mean responses to digits at the two locations regardless
of digit identity in order to measure location selectivity.

At initialization with random weights, the neuron was partially selective to both location
and digit identity (Fig. S12f). However, subsequent training with LPL rendered the neuron
purely selective to either location or digit identity depending on which sequence it was exposed
to during training. Yet, when the predictive term was turned off, the specific sequence did not
matter and the neuron always became selective to location, which coincides with the direction
of highest variance in the data (PC1; Supplementary Fig. S12). Finally, we confirmed that
Oja’s rule showed the same behavior (Fig. S12f). Thus, a neuron learning with LPL finds
temporally contiguous features in high-dimensional sequential data rather than the direction of
largest variance, and the the temporally contiguous feature that is learned is strictly determined
by the temporal sequence of the stimuli the neuron is exposed to.
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Figure S12: Temporal contiguities determine features learned under LPL. (a) Schematic of the
two kinds of temporal sequences (Methods) in which subsequent inputs were either different digits shown
at the same location (“Location Sequence”) or the same digit presented at a different location (“Digit
Sequence”). (b) Scatter plot of the first two principal components of the synthetic digit dataset consisting
of randomly sampled handwritten digits in one of the two locations. The principal components closely
correspond to location (PC1) and digit identity (PC2). The four digit-position categories are indicated
by color. Insets show representative examples from each category. (c) Emergent feature selectivity of a
single neuron exposed to the two sequence modalities while learning under different rules (top), and the
resulting input weights learned in each case (bottom). Under LPL, the neuron’s selectivity mirrors the
temporally preserved (predictive) property in each sequence, i.e., location in the Location Sequence and
digit identity in the Digit Sequence. However, the specific sequence does not matter for Oja’s rule or for
LPL without the predictive term. In these cases, the neuron always becomes selective to location, the
direction of maximum variance. Error bars indicate SEM over ten random seeds.

46


https://doi.org/10.1101/2022.03.17.484712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.17.484712; this version posted July 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

S5 Details of the deep neural network architecture

For all DNN simulations, we used the convolutional layers of the VGG-11 architecture consisting
of eight blocks each containing 3 x 3 convolutions, the ReLU activation function followed by a
2 x 2 max-pool operation in some blocks (detailed architecture description provided below).

VGG11Encoder(
(blocks): ModuleList(
(0) : ConvBlock(
(module): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) : ReLU(inplace=True)
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
)
(1) : ConvBlock(
(module) : Sequential(
(0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) : ReLU(inplace=True)
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
)
(2): ConvBlock(
(module) : Sequential(
(0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) : ReLU(inplace=True)
(2): Identity()
)
)
(3): ConvBlock(
(module) : Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) : ReLU(inplace=True)
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
)
(4): ConvBlock(
(module) : Sequential(
(0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) : ReLU(inplace=True)
(2): Identity()
)
)
(5): ConvBlock(
(module) : Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) : ReLU(inplace=True)
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
)
(6) : ConvBlock(
(module) : Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) : ReLU(inplace=True)
(2): Identity()
)
)
(7): ConvBlock(
(module) : Sequential(
(0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
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(1) : ReLU(inplace=True)
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
)
)
(pooler): AdaptiveAvgPool2d(output_size=(1, 1))
)

Furthermore, for the simulations modeling unsupervised learning in the IT, we used an
adaptive average pooling layer with spatial output dimensions of 13 x 1. This ensured that the
final pooling layer preserved spatial separation along the canvas itself so that the final feature
map consisted of 13 x 1 512-dimensional vectors. We added a fully connected layer on top of
these feature maps to finally get a single 512-dimensional feature vector per image.
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