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Abstract:

Locomotion results from the interactions of highly nonlinear neural and biomechanical dynamics.
Accordingly, understanding gait dynamics across behavioral conditions and individuals based on
detailed modeling of the underlying neuromechanical system has proven difficult. Here, we
develop a data-driven and generative modeling approach that recapitulates the dynamical
features of gait behaviors to enable more holistic and interpretable characterizations and
comparisons of gait dynamics. Specifically, gait dynamics of multiple individuals are predicted by
a dynamical model that defines a common, low-dimensional, latent space to compare group and
individual differences. We find that highly individualized dynamics — i.e., gait signatures — for
healthy older adults and stroke survivors during treadmill walking are conserved across gait
speed. Gait signatures further reveal individual differences in gait dynamics, even in individuals
with similar functional deficits. Moreover, components of gait signatures can be biomechanically
interpreted and manipulated to reveal their relationships to observed spatiotemporal joint
coordination patterns. Lastly, the gait dynamics model can predict the time evolution of joint
coordination based on an initial static posture. Our gait signatures framework thus provides a
generalizable, holistic method for characterizing and predicting cyclic, dynamical motor behavior
that may generalize across species, pathologies, and gait perturbations.
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Introduction

Locomotion is a ubiquitous, complex, and dynamic behavior that is essential for survival.
Using cyclic patterns of joint angles, inter-limb and inter-joint coordination, animals effectively
move through their environments: walking, running trotting, swimming, flying, and crawling. Even
within species and types of locomotion, variations in locomotor patterns often occur across
behavioral contexts, groups, and individuals. Thus, although locomotor patterns can appear highly
stereotyped, considerable inter- and intra-individual variability exists. Studies of locomotor
behaviors have shown systematic differences in movement patterns based on a wide range of
neural (Frisk et al., 2019; Ilvanenko et al., 2003; Krogh et al., 2022; Young et al., 2022) and
biomechanical perturbations (Genthe et al., 2018; Pan et al., 2022; Reisman et al., 2010; Wang
et al., 2022) environmental challenges (D’souza et al., 2020; Larsen et al., 2022), psychological
state (Attwood et al., 2021; Elkjeer et al., 2022), social status (Steptoe and Zaninotto, 2020;
Zaninotto et al., 2013), injury (Garcia et al., 2022; Jang and Wikstrom, 2022; Milner et al., 2022),
and disease (ljmker and Lamoth, 2012; Jonkers et al., 2009; Moura Coelho et al., 2022; Prosser
et al., 2022; Russo et al., 2022; Troisi Lopez et al., 2022; Young et al., 2022). Furthermore,
locomotor impairments can arise from a wide range of physiological and neurological changes,
from the subtle changes that may be indicators of progressive disorders (e.g., aging, cognitive
impairments) to profound impairments with brain injury (e.g., stroke, spinal cord injury) that can
severely limit locomotor function. Although locomotor deficits are often subjectively visible to a
human observer, objectively characterizing and understanding sometimes subtle yet important
differences in locomotion from a scientific and mechanistic standpoint has been challenging
(Correa et al., 2011; Geyer and Herr, 2010; Kuo and Donelan, 2010). For example, kinematic
movement patterns (the continuous motion of joint angles over time) have been collected across
a wide range of locomotor modes and species but revealing individual-specific differences in
kinematics remains difficult. One barrier to progress is that interpreting individual differences in
kinematics without an underlying dynamical model is challenging, as kinematics are the result of
the complex neuromechanical dynamics that drive the spatiotemporal dependencies of joint
kinematics over time. Thus, capturing these underlying gait dynamics is likely essential for
interpreting differences in gait and movement across conditions and individuals.

Traditionally, gait dynamics are modeled using physiologically detailed neuromechanical
equations, however making predictive models using this approach has often proved challenging
(Falisse et al., 2019; Meyer et al., 2016; Pitto et al., 2019a). Partially, this difficulty arises because
in order to understand the dynamics underlying gait, we also need to understand how neural
feedback and control shape these dynamics. While many models (e.g., musculoskeletal models)
that use principles like optimal control can generate simulations of unimpaired gait, as well as
changes in gait due to altered biomechanical or neural constraints, they often fail to predict
changes in gait kinematics following neurological injury (Meyer et al., 2016) or more subtle
perturbations (De Groote and Falisse, 2021; Pitto et al., 2019b). Progress in the physiological
modeling of locomotor circuitry in the spinal cord and brainstem demonstrates the role of neural
circuits in gait dynamics. However, these models typically rely on simplified (Dzeladini et al., 2014;
Taga et al., 1991) biomechanical properties and cannot yet predict the deficits in gait specific to
an individual (Angelidis et al., 2021; Geyer and Herr, 2010; Kuo, 2002; McCrea and Rybak, 2008).
More importantly, if a hyper-realistic model of the neural and biomechanical system did exist, the
relationships between the high-dimensional parameters and actual movement patterns would not
likely be unique, as many parameters would not be identifiable, even given massive amounts of
data, as many different parameter choices could lead to the same biomechanical output (Holmes
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83 et al., 2006; Prinz et al., 2004). This non-identifiability limits the predictive power and
84  generalizability of these models to other interventions and conditions outside of limited contexts,
85  suggesting a need for a more holistic approach.

86 Despite these challenges, rich individual-specific information exists in gait data. For
87 instance, through observation of movement, the human brain can perceive many socially salient
88 features of an individual's gait, suggesting that it should be possible to infer aspects of gait
89  dynamics from kinematic data. As an example, humans can derive a host of information about
90 individuals from movement patterns, including gender (Pollick et al., 2005), body size (Troje,
91  2002), sexual orientation (Johnson et al., 2007), emotion (Gross et al., 2012), individual
92 differences in dancing (Brown et al., 2021), perceived affective states (Edey et al., 2017) and
93  underlying intention (Becchio et al., 2012). Furthermore, judgements based on how individuals
94 move can drive decisions such as partner desirability or attractiveness (Neave et al., 2011),
95 disease diagnosis (Habersack et al., 2022; Heinik et al., 2010), and treatment planning (Ferrante
96 etal., 2016; Mikolajczyk et al., 2018).

97 Despite the rapid advent of technologies providing kinematic measurements through a

98 wide range of techniques, from videos to wearable sensors, we are still limited in how kinematic

99 datacan help interpret individual differences in gait (Porciuncula et al., 2018; Stenum et al., 2021).
100 Current approaches to comparing biomechanical features or kinematic trajectories quantify
101  between-group differences or inter-individual similarity but lack sufficient sensitivity to reveal
102  interpretable differences in individuals’ gaits (Chen et al., 2005; Kettlety et al., 2022; Ries et al.,
103  2014). Inter-joint coordination differs across individuals, as muscular coordination patterns vary
104  across a variety of motor skills and deficits in individual-specific ways. Indeed, metrics of muscle
105  coordination in children with cerebral palsy are consistent with clinician judgements of motor
106  control complexity that predict intervention outcomes (Steele et al., 2015). Recently, supervised
107  machine learning methods have been used to classify differences in a large sets of gait kinematics
108 that were labeled by groups or individuals (Halilaj et al., 2018; Ries et al., 2014). However, these
109 approaches have not modeled the underlying gait dynamics, nor can they discover subtle
110 differences in gait that are not labeled a priori.

111 Here we develop a data-driven framework for modeling gait dynamics that represents
112 multiple individuals in the same latent space. This latent space reveals individual- and group-level
113  differences in the neuromechanical dynamics of gait. We used kinematic data from multiple
114  healthy and neurologically impaired individuals, each walking at six different speeds, to train a
115  recurrent neural network (RNN) that learns gait dynamics. This phenomenological approach infers
116  complex spatiotemporal dynamics and enables future kinematic predictions to be made based on
117  current and prior kinematic postures. Once trained, differences in gait dynamics across groups,
118 individuals, and walking speed were projected onto a common, low-dimensional latent space of
119 the model parameters. The stride-averaged representation of gait dynamics in the latent space
120  constitutes a “gait signature” that we use to characterize differences across individuals, groups,
121  gait speed, and impairment severity. To demonstrate the generalizability of gait dynamics, we
122 show that interpolating gait signatures to predict gait kinematics at new walking speeds is more
123 accurate than interpolating the kinematics themselves in healthy individuals. Further, we show
124  that the low-dimensional basis functions we discovered have biomechanical interpretability in
125 terms of the inter- and intra-limb coordination patterns that they generate. The dynamical
126  projections onto each basis function for each trial can be independently driven through the trained
127  gait dynamics model to reconstruct the kinematics associated with that specific basis function.
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128  We generated illustrations of the reconstructed joint angle kinematics to visualize and infer what
129  aspects of gait coordination each subcomponent influences. These subcomponents of gait
130 coordination can be manipulated independently (i.e., gait sculpting) to infer the relationships
131  between specific underlying dynamical components and their corresponding kinematic
132 phenotypes and to identify what specific gait rehabilitation strategies are likely required for
133 individuals. Finally, our gait dynamics model is generative; it can predict individual-specific time
134  evolution of kinematics from an initial arbitrary posture (self-driving) once the network is primed
135  with several gait cycles of the individual's kinematic data. This study establishes a new data-
136  driven framework to quantitatively interpret individual-specific differences in gait dynamics with
137  the potential to enable discovery in a wide range of gait coordination deficits, contexts and
138  interventions in humans and other animals.

139 Results
140  Gait signatures: a low-dimensional representation of gait dynamics

141 We used motion capture to collect sagittal-plane kinematic data that consisted of 15
142 seconds of continuous gait kinematics from bilateral, hip, knee, and ankle joints from 5 able-
143  bodied (AB) participants and 7 stroke survivors (> 6 months post-stroke, gait speeds 0.1 to 0.8
144  m/s) walking on a treadmill at a range of six different speeds each. Taking inspiration from neural
145  network models that capture neural dynamics (Pandarinath et al., 2018; Sussillo et al., 2015; Vyas
146 et al., 2020) and biological systems, we implemented a recurrent neural network (RNN) model to
147  capture the dynamical properties of gait.

148 Developing the recurrent neural network (RNN) architecture and training the model

149 The gait dynamics model was developed in Python using common Python libraries such
150 as TensorFlow, Keras, Pandas, and NumPy. We developed our code in Google Colab to facilitate
151 open-source sharing of our dynamic framework, which can be found here:
152  https://github.com/bermanlabemory/gait_signatures. The model architecture was selected based
153  on two criteria: 1) minimizing model training and validation loss, and 2) maximizing the similarity
154  of short-time (single stride) and long-time (multiple strides) self-driven model predictions (termed:
155  gait signature alignment) (Fig. 1 - figure supplement 1). We evaluated these criteria against
156  alternative models by varying 2 hyperparameters (number of LSTM units and the lookback time,
157  see Methods). The selected model architecture is a sequence-to-sequence RNN (Sutskever et
158  al., 2014) consisting of an input layer, a hidden layer of 512 LSTM units, and an output layer. The
159  RNN learns a map from time-series kinematic input data (0 to T-1) to kinematics one time-step in
160  the future (1 to T) for all training trials (Fig. 1A). The model was trained until training and validation
161  error converged and stabilized around the same point (degrees < 0.75°). Thus, the model
162  successfully learns the underlying dynamics of gait (Fig. 1 - figure supplement 2). The model’s
163 internal states capture trial-specific dynamics predicting the time evolution of joint kinematics;
164  activation coefficients (H) and memory cell states (C) and are tuned based on kinematic inputs.
165 Kinematic data was input in multivariate format, not concatenated (Horst et al., 2019;
166  Santhiranayagam et al., 2015). In brief, our RNN model was designed to capture short and long-
167  term gait dependencies in time (Ahamed et al., 2021; Hausdorff et al., 1996) as well as inter-and
168 intra-limb coordination over time, uncovering features of gait that were not previously targeted or
169  used in gait analysis. To verify whether our model was generalizable, we conducted leave-one-
170  out cross validation where 12 different models were trained leaving a single individual’s 6 trials
171  on each model run (Fig. 1 - figure supplement 3). Stroke-survivors are known for having
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172 neurological impairments that result in heterogeneous gait dysfunction that are not fully
173  understood; thus, we anticipate that our gait dynamics model will capture and shed light on these
174  individual-specific deficits in gait coordination, identify similar coordination strategies or deficits
175 amongst our stroke cohort, and allow us to compare these different gait dysfunctions to the able-
176  bodied ‘normative’ gait (controls).

177  Generating gait signatures

178 To generate gait signatures, kinematic trajectories from each walking speed trial across
179  participants were fed as input into the trained neural network and the corresponding internal states
180 (H and C parameters, see above) were extracted (Fig.1A). The internal activations prescribe the
181  spatial and temporal dependencies generating the input kinematics. The resulting time-series of
182 1024 internal states (512 H, 512 C parameters) were dimensionally reduced using Principal
183  Components Analysis (PCA) and phase averaged (Revzen and Guckenheimer, 2008). Phase
184  averaging is applicable here, as the underlying gait dynamics are periodic, and the translation
185  from time to a phase between 0 and 2m allows us to describe all internal state dynamics in a
186  speed-independent manner.

A) Data-driven approach: train sequence to sequence RNN to extract dynamics B) 3D visualizations to examine individual differences in gait dynamics
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188 Figure 1: Pipeline figure outlining the steps to generating individual-specific gait signatures. Continuous, multi-
189 joint kinematics from multiple individuals are fed into the RNN model as input data and the model is trained sequence-
190 to-sequence to predict one-step time shifted output kinematics. High dimensional internal parameter (H and C) time
191 traces per individual are extracted and principal component analysis was applied to reduce the dimensionality of the
192 data to form individual gait signatures (A). 3D time trace visualizations of 3 representative individuals (able-bodied
193 (blue), high-functioning (red), low-functioning stroke (orange)) of the 1st 3 dominant principal component contributions
194 (B, left). 3D projections of the 6-D gait signatures using multi-dimensional scaling (MDS) reveal different gait dynamics
195 amongst the three gait groups: able-bodied (blue), high-functioning (red) and low-functioning (orange) stroke survivors
196 (B, right). The size of the circles represents the individual’s trial speed (i.e., the smallest circles represent an individual’s
197 slowest gait speed, and the size of the circles increase with gait speed).

198 The first 6 Principal Components (PCs) explain ~77% of the variance in gait dynamics
199  (Fig. 1 - figure supplement 4), allowing us to focus on these modes for our visualization and
200 analysis. The time-varying contributions of the first 3 dominant PCs were plotted in 3D for 3
201 representative individuals - able-bodied adults, high-functioning stroke (self-selected (SS) walking
202  speed > 0.4m/s) and low-functioning stroke (SS speed < 0.4m/s) - highlighting that the gait
203  dynamics between all 3 individuals are different (Fig. 1B, left). The gait dynamics of the high-
204  functioning stroke survivor (red), while spatially closer to the able-bodied individual (blue) than
205 the low-functioning stroke survivor (orange), show observable differences in its dynamical
206  trajectory between to the two individuals. To determine whether some structure exists amongst
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207  the three different subject groups, all the 6-dimensional gait signatures were projected onto a 3D
208  map using Multidimensional scaling (MDS) (Cox and Cox, 2008) to visualize relative distances
209  between all gait signatures (Fig.1B, right). The locations of the 3 MDS projections of the 3
210 representative individuals are not arbitrary, as they belong to clusters of gait signatures of the
211  same gait group. Thus, gait signatures preserve key clinically relevant features of the underlying
212 gait dynamics, independent of the individual or speed.

213 Gait signatures reveal that individual-specific differences in dynamics are favored in the
214  gait representation, over differences in gait speed

215 Gait signatures of individuals’ 6 speed trials within both cohorts (healthy and stroke) are
216  tightly grouped together. Gait signatures represent individual-specific dynamics; the unimpaired
217  cohort exhibit a stereotyped low-dimensional structure across individuals in the able-bodied
218  cohort (Fig. 2A, i left) vs. the impaired cohort, which display much more variable (i.e., highly
219  individualized) low-dimensional representations (Fig. 2A, i right). Because the data are phase
220  averaged over the gait cycle, we demonstrate that gait signature trajectories are well-aligned with
221  the four gait phases (leg 1 swing, leg 1 stance, leg 2 swing, leg 2 stance), enabling phase-specific
222 comparisons of differences in gait dynamics. The unimpaired group showed similar structure
223 across the four gait events (Fig. 2A, ii, left), whereas there was much more variability within the
224 impaired group (Fig. 2A, ii, right), revealing individual-specific differences within and across
225  distinct parts of the gait cycle. The similarity between gait signatures was computed and visualized
226  in a dimensionally reduced gait map space using MDS and colored according to the different
227  individuals in the dataset (Fig. 2B, i). The unimpaired group form a cluster in the gait map, showing
228  that individuals in the unimpaired group are distinct from the impaired group. Stroke-survivors
229  occupy distinct positions from other impaired individuals’ sub-clusters in the gait space that
230  highlight the well-established but poorly understood heterogeneity in gait deficits in the stroke
231  cohort. Furthermore, individual-specific gait signatures change slightly as individuals walk faster
232 than their self-selected pace (Fig. 2B, i). However, these within-subject speed-induced changes
233  are much smaller than between-individual difference in gait signatures. We calculated the
234  Euclidean distance between individuals’ self-selected speed trial gait signature and the calculated
235  able-bodied centroid (Fig. 2B, i black square) and the results shown on the plot to the right reveal
236  that low-functioning stroke survivors (self-selected gait speed < 0.4 m/s) are further away from
237  the able-bodied cluster than the high-functioning stroke survivors. Showing the validity of our
238  approach, low-functioning stroke survivors are less dynamically similar to AB than higher
239  functioning stroke survivors.

240 Gait speed does not appear to strongly influence the differences in dynamics between
241  individuals’ gaits (note that the range of gait speeds for each participant may not have been wide
242 enough to elicit major differences in their overall dynamics). Overall, as expected, the unimpaired
243 group walked at faster speeds than the impaired group (Fig. 2B, ii). Individuals in the able-bodied
244  cluster walk at a range of different speeds, but individual gait signatures still cluster tightly
245  together. Post-stroke individuals who walk at similar slower speeds, however, maintain their own
246  distinct individualized groupings. Thus, individuals’ characteristic gait signatures were preserved
247  across their range of walking speeds and were not grouped based on absolute walking speed.
248  For example, several clinically similar post-stroke individuals (similar overground walking speed
249  and Fugl-Meyer score (Fugl-Meyer et al., 1975) have very different gait signatures that remain
250 recognizable across a range of gait speeds (Fig. 2). Furthermore, when used to distinguish
251  between gait groups and identify individuals, gait signatures perform similarly to a when using a
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252  set of 26 commonly used discrete variables (Fig. 2 - figure supplement 1). Gait signatures also
253  perform better than continuous kinematics and joint velocities at these same tasks (Fig. 2 - figure
254  supplement 1). These results serve as a positive control, as researchers previously could
255  distinguish gait groups by building a classifier based on important subjectively selected discrete
256  variables. Here, we have created a dynamical representation that can distinguish groups with
257  similar accuracy. It is not surprising that the continuous kinematics performed worse than the
258  RNN gait signatures (which were developed from these very same data), as the RNN model used
259 the data to encode important time-varying changes in the kinematics, allowing for more
260 information to be extracted. Thus, parameterizing the evolution of individuals’ walking patterns
261  into a common subspace allows for a more holistic, less biased, and straightforward analysis of
262  primarily their overall differences in gait dynamics, inter- and intra-limb coordination over any
263  differences attributed to absolute gait speed. Gait signatures can allow gait researchers to study
264  or analyze the dynamical differences underlying impairment independently from gait speed,
265 facilitating analysis of dynamics between individuals who may not be capable of walking at the
266  same speeds and allowing investigation of changes in the underlying mechanism of gait changes
267 under different conditions (walking speed, gait rehabilitation intervention, age etc.)

A) 3D loop representation of gait signature loops B) 3D multidimensional scaling gait map all gait signatures color-scaled by:
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each hue of blue represents an individual each hue of red represents an individual M Able-bodied centroid
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269 Figure 2: Gait signatures reveal highly individualized low dimensional representations of gait dynamics
270 irrespective of absolute gait speed. A) 3D unimpaired (left) and impaired (right) gait signatures colored by i) individual
271 and ii) gait phase. Gait signatures are grouped together according to individuals within both cohorts (same hues of blue
272 cluster together for unimpaired (i, left) and similarly the same hues of red cluster in the impaired cohort (i, right)). In our
273 convention the right leg of all unimpaired individuals was assigned to be the paretic leg and left leg the non-paretic leg.
274 Impaired individuals can have either left or right leg paresis. Unimpaired gait signatures reveal a similar looped
275 structure across the four gait phases that occur during a gait cycle (leg 1 swing, leg 1 stance, leg 2 swing, leg 2 stance)
276 (ii, left) whereas impaired signatures showed individual-specific differences across the four phases and were more
277 variable (ii, right). B) 3D multidimensional scaling applied to all gait signatures shows the pronounced separation
278 between unimpaired (blue hues in left section of map) and impaired (red hues in right section of map) gait dynamics
279 (i). Impaired signatures (red hues) are located further away from the centroid of all unimpaired gait signatures (black
280 square), indicating that they are less dynamically similar to the unimpaired individuals. The smallest circles represent
281 an individual’s self-selected walking speed trial and larger circles correspond to the faster speed trials. Low-functioning
282 stroke survivors (encapsulated in green; based on self-selected gait speed < 0.4m/s) are located furthest away (largest
283 Euclidean distances) from the unimpaired centroid (i). Gait speed does not appear to strongly influence the differences
284 in dynamics between individuals as similar speed gait signatures are in different regions of the gait map (ii). Particularly,
285 gait speed does not explain the heterogeneity in low-functioning stroke survivors’ gait dynamics.
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286  Low-functioning stroke-survivors are less dynamically analogous to able-bodied and more
287  dynamically variable compared to high-functioning stroke-survivors.

288 Clinically, gait rehabilitation researchers use gait speed as a primary quantitative indicator
289  of gait impairment (Awad et al., 2015; Hornby et al., 2020; Jonkers et al., 2009). While this coarse
290 metric gives an overall value or number to one’s overall gait function, it does not identify the
291  specific dysfunctions or impairments underlying the individuals’ gait. To derive more precise
292 measures or indicators of gait impairment, we anticipated that utilizing this gait signatures
293  framework, we would be able to capture both subtle and obvious differences in impaired gait. In
294  the clinic, stroke survivors are typically segmented into subgroups according to their self-selected
295  walking speeds: high-functioning stroke survivors who typically maintain a self-selected (SS)
296  walking speed above 0.4m/s and low-functioning stroke survivors who adopt SS walking speeds
297 less than or equal to 0.4m/s (Bowden et al., 2008). It is assumed that low-functioning stroke
298  survivors are more impaired and thus adopt slower walking speeds to be able to navigate the
299  environment safely. Gait deficits of stroke survivors within either sub-group are heterogeneous
300 across individuals and include different impairments such as foot drop, reduced paretic push-off
301  during late stance, limited initial heel contact during early stance, as well as further compensatory
302 gait strategies such as hip circumduction and hip hiking. We expected that higher functioning
303 individuals would have less severe impairments and would be more dynamically analogous to
304 able-bodied individuals, whereas low-functioning stroke survivors would exhibit highly variable
305 impairments from each other and be even less dynamically analogous to able-bodied dynamics
306 compared to higher functioning stroke survivors.

307 To better visualize all developed individuals' gait signatures across their 6 different speed
308 trials in our dataset, we again used MDS to project the 6D gait signatures to 3D. This mapping
309 allows us to visualize the relative locations of individuals in comparison to all the other gait
310 signatures to gain insights on how dynamically similar they are from one another. A 3D MDS gait
311 map of all gait signatures reveals that able-bodied and high-functioning stroke survivors are
312  located near each other, whereas low-functioning stroke survivors are farther and more dispersed,
313 and form distinct clusters in different regions of the map (Fig. 3A). Sub-group level analysis
314 reveals significant differences in the Euclidean distance metric (distance between each gait
315  signature and the able-bodied centroid) between the able-bodied group and the low- and high-
316  functioning stroke survivor groups, respectively (Fig. 3B). Able-bodied gait signatures are located
317  closest to the centroid, followed by high-functioning and low-functioning stroke survivors (Fig. 3B).
318  The within-group dispersion of gait dynamics for the low- and high- functioning stroke survivors
319  was calculated based on the radius of a hypersphere enclosing 95% of the groups’ gait signatures.
320 Using a leave-one-out sample with replacement method, multiple within-group dispersion
321  calculations were conducted for each group and the average within-group dispersion was
322 expressed alongside the standard error in Fig. 3C. The 95" percent radius was significantly higher
323 in the low-functioning stroke-survivors gait signatures compared to the high-functioning,
324  highlighting that low-functioning gait signatures were more dispersed from each other (higher
325 inter-individual variability) and the RNN model can capture these individual-specific gait deficits
326  inindividuals with more severe gait impairment.
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328 Figure 3: Comparison of gait signatures across three gait subgroups: able-bodied (AB), high functioning (HF)
329 and low functioning (LF). A) 3D gait map using multidimensional scaling highlights the relative distances between AB
330 (blue), HF (red) and LF (orange) stroke survivors. LF stroke survivors are less clustered and occupy distinct regions of
331 the map away from the able-bodied centroid (black square). B) Gait dynamics similarity based on Euclidean distance
332 between AB centroid and each patrticipant, showing larger distances within the low-versus high-functioning groups. C)
333 Within-group dispersion of gait signatures based on the radius of a hypersphere enclosing 95% of each group’s gait
334 signature reveals more dispersed gait signatures in low- versus high-functioning stroke survivors, highlighting the
335 potential of gait signatures to capture individual differences in more severe gait impairments.

336  Gait signatures are biomechanically interpretable

337 While Principal Component trajectories and low-dimensional maps provide one way to
338 compare the overall dynamics between individuals and groups, it remains to be seen what
339 information the independent components of the 6D gait signature represent biomechanically. The
340  contributions of each principal component (PC) to a gait signature fluctuates over the gait cycle,
341  shown for an exemplar able-bodied, one high-functioning stroke survivor, and one low-functioning
342  stroke survivor in Fig. 4A. Superimposed individual stride-averaged PC projections from these 3
343  individuals (Fig. 4B) highlight the specific differences in each PC. For PC1, both able-bodied and
344  high-functioning stroke survivor traces are within the able-bodied 95% confidence interval,
345  whereas the low-functioning stroke survivor is outside of these bounds around the middle of the
346  gait cycle. For PC2, some regions of the low and high-functioning stroke survivor can be found
347 outside of the confidence interval, however the entirety of the PC3 projection of the low-
348  functioning stroke survivor is found outside of interval (vertically shifted). Given the generative
349  nature of our RNN-based model, a specified number of the loadings on the PCs can be driven
350 through the trained RNN model to reconstruct the corresponding kinematics. Thus, to interpret
351 the individual PC components, the internal parameters corresponding to each isolated PC were
352  driven through the gait dynamics model, generating gait predictions, i.e., a multi-joint coordination
353  pattern and their temporal evolution over the gait cycle that can be visualized in an animation or
354  gait movie. Stick figure snapshots (7 equally spaced samples of 100 frames) show that PC1
355  encodes dynamics driving hip flexion and extension, PC2 encodes dynamics driving knee flexion
356  and extension and PC3 encodes dynamics driving primarily postural coordination (trunk location
357 relative to joints) (Fig. 4C, Fig. 4 - video supplements 1-4). This framework can potentially allow
358 for the identification and targeting of individual-specific gait deficits, informing the tailoring of
359  precision rehabilitation strategies.
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361 Figure 4: Biomechanical interpretation of gait signatures. A) Gait signatures reveal different gait dynamics between
362 exemplar AB, low-and high-functioning stroke survivors. B) The loadings on each principal component (PC), e.g., the
363 contributions of each PC vary over the gait cycle and can be compared to the AB 95 % confidence interval (gray). C)
364 Each PC generates specific multi-joint gait coordination patterns when used to drive the gait model, enabling
365 biomechanical interpretation of gait deficits and effects of treatment.

366  The gait dynamics model generalizes to unmeasured speeds

367 Our gait signature model can capture and predict nonlinear changes in dynamics in
368  response to speed in cases where interpolation of kinematics may fail. We trained a different gait
369 dynamics model using only 15s of data of the 2 fastest and 2 slowest walking speeds of each
370  subject. Weighted averages of gait signatures from an individual walking at these four different
371  gait speeds can be used to generate multi-joint kinematic trajectories that predict data from a gait
372  speed that was not used to train the model (Fig. 5). Predicted kinematics from interpolation of gait
373  signatures across the four speeds resemble the measured kinematic reference more accurately
374  than do the kinematics generated from interpolating gait kinematics, shown for an exemplary AB
375 individual (Fig. 5A) and low-functioning stroke survivor (Fig. 5B). Kinematic prediction from
376  interpolation of dynamics did considerably better than interpolating kinematics directly for the
377 exemplary low-functioning stroke survivor shown in Fig. 5B, indicating that interpolating gait
378  signatures capture nonlinear (non-monotonic) changes in kinematics between speeds. The
379  kinematic output of the interpolated kinematics follows that of the fast speed in the paretic hip
380 closely but does not resemble the measured kinematic reference waveforms for the paretic knee
381  orankle angles. In some cases where interpolation of kinematics fails, the averaged dynamics do
382  a better job at predicting kinematic trajectories at unseen speeds. Group level analyses show that
383 the R? values between the measured and predicted kinematics from interpolated gait dynamics
384  are significantly higher (Wilcoxon paired signed rank test) than interpolating kinematics within the
385  able-bodied cohort (Fig. 5C), but not for stroke (Fig. 5D). In general, averaging gait dynamics
386 produced less variable R? values and less R? outliers than averaging kinematics in both the able-
387  bodied (Fig. 5C) and stroke survivors (Fig. 5D). The range of R? values in the able-bodied cohort
388 for averaged dynamics was -0.20 to 1.00 compared to —1.30 to 0.98 in averaged kinematics
389  whereas the range of R2 values in the stroke cohort for averaged dynamics was 0.46 to 1.00
390 compared to -0.50 to 1.00 in averaged kinematics. Two low-functioning stroke survivors show
391  higher R? values of their hip, knee and ankle kinematic traces when interpolating kinematics vs.
392  dynamics. Post hoc analysis revealed that these two stroke survivors (ST4 and ST2) were furthest
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393 away from the able-bodied centroid (least dynamically similar to able-bodied) as shown in Fig.
394 2B, i. These results suggest that the RNN largely captures more stereotyped able-bodied
395 dynamics and has a harder time learning the dynamics from more variable stroke individuals,
396 especially those that deviate furthest from able-bodied. Our small sample size also limits the
397 amount of data the RNN sees for each diverse type of stroke dynamics. Thus, with a larger stroke
398 patient sample size and longer trials, the RNN may be able to make better kinematic predictions
399  of lower-functioning stroke survivors. Moreover, this result highlights the utility in predicting
400 kinematics in unseen conditions which in contrast cannot be made using discrete biomechanical
401  or clinical metrics, nor with current biophysical models.
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403 Figure 5: Data-driven gait dynamics model predicts non-linear changes in joint kinematics with gait speed. Gait
404 predictions of joint kinematics (green) at intermediate gait speeds not used in model training were generated by
405 interpolating gait signatures between slow (dashed grey) and fast speeds (dashed black) lines and using them to drive
406 the gait model. Interpolated kinematics from gait dynamics (green) and interpolated directly from kinematics (blue) were
407 compared to the measured reference kinematics (black solid). A) Predictions in an exemplar AB participant are more
408 accurate when interpolating gait signatures compared to interpolating gait kinematics across speeds. B) In an exemplar
409 low-functioning stroke survivor, interpolated gait signatures predict nonlinear changes in kinematics better at
410 intermediate speeds than interpolated gait kinematics. Averaging the kinematics fail in this case where there are larger
411 differences between the slow and fast speed paretic kinematics; the averaged kinematics (blue) follow the fast speed
412 paretic hip kinematics whereas the other angles do not reflect waveforms that resemble either the fast or slow speed.
413 The gait model can therefore predict movement reasonably well when interpolating between tested speeds. There is a
414 statistically significant difference between group level R? comparisons (kinematics generated from interpolated
415 dynamics vs interpolated kinematics) in the able-bodied (C) but not in stroke (D) cohorts. However, the range of R?
416 values are larger in both able-bodied and stroke kinematic predictions resulting from interpolated kinematics (-1.30-
417 0.98, -0.50-1.00 respectively) vs. predicted from interpolated gait dynamics (-0.20-1.00,0.46-1.00 respectively). Thus,
418 while the R? values may not improve on average for the stroke survivors, the model’s performance is more robust
419 overall.

420  Gait sculpting: manipulating the PC components of an individual’s gait signature identifies
421  specific coordination deficits in stroke survivors

422 Previously, we showed that we can leverage our model to reconstruct the kinematics of
423  healthy PC projections of the gait signature to gain insight into their independent biomechanical
424  interpretations. However, identifying and interpreting the biomechanics related to impaired PC
425  dynamics of stroke-survivors' gait would prove to be even more beneficial, as these dynamics can
426  potentially serve as rehabilitation targets when designing tailored gait intervention/strategies for
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427 individuals. Here we present an example of how we use gait signatures to identify specific
428  biomechanical or coordination targets in specific stroke survivors. Specifically, we utilize our
429 finding that the phase-varying contributions of the 6 principal projections of the gait signature differ
430 in individual-specific manners (Fig. 6A). For example, AB2’s 6 PC contributions all lie within the
431  95% confidence interval of all able-bodied individuals. ST4 primarily shows major deviation from
432  ABin PC 3 (located entirely above the AB confidence interval), impaired dynamics during paretic
433  swing in PC 4 and overall irregular shapes in PC 5 and 6. ST2’s PC3 is largely within the AB
434  confidence interval, however PC 4’s paretic swing shows major deviation, their PC 5 contribution
435 is shifted below the AB confidence interval and PC 6 shows an irregular shape. ST3’s PC5
436  projection lies below the AB confidence interval and PC 6 projection is irregularly shaped
437  compared to AB. To validate our finding that suggested that PC 3 primarily influences hip flexion
438  or extension, we exchanged AB2’s healthy PC1 with that of ST4 (Fig. 6A, orange boxes and
439  arrow) and we observed if and how AB2’s original hip joint kinematics (Fig. 6B, orange box, black
440 trace) deviated (Fig. 6B, orange box, red dashed trace, Fig. 6 - video supplement 1). To gain
441  further insight into how the other PC deviations manifest in movement, we manipulated the PC3
442  projection of AB2 by replacing it with that of ST4 (Fig. 6A, brown boxes and arrow). The kinematic
443  reconstruction from this manipulation (Fig. 6B, brown box, red dashed trace, Fig. 6 - video
444  supplement 2) shows a vertical shift downwards for bilateral hip angles and the non-paretic knee.
445  The vertical shifts in the hip flexion/extension angles suggest a major difference in this individual’s
446  posture (perhaps stroke individual leaned forward more during gait) compared to able-bodied. We
447  manipulated AB2’s PC4 projection by replacing it with that of ST2 (Fig. 6A, green boxes and
448  arrow). This manipulation affected specifically the paretic and non-paretic ankle angles and both
449  knee joints primarily during the period between non-paretic stance and paretic swing (Fig. 6B,
450 green box, red dashed trace, Fig. 6 - video supplement 3). This result highlights a coordination
451  deficit between these specific joint angles and, if targeted accurately, may allow for corrected gait
452  patterns of this stroke survivor. Conversely, we tested the effects of replacing an impaired PC
453  projection with a healthy one to observe how gait impairments can potentially be improved. We
454  replaced ST3’s PC5 with that of AB2 (Fig. 6A, purple boxes and arrow) and observed a substantial
455  change in the magnitude and shape of bilateral ankle angle trajectories and slight increase in non-
456  paretic knee magnitude (Fig. 6B, purple box, red dashed trace, Fig. 6 - video supplement 4). We
457  can infer that to make improvements to ST3’s PC5 towards able-bodied or normative kinematics,
458  rehabilitation focusing on these specific knee and ankle strategies may prove useful.
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461 Figure 6: Gait sculpting: interpolating between components of able-bodied and stroke gait dynamics to
462 visualize anticipated gait improvement. The components of individuals’ gait signatures can be manipulated (gait
463 sculpting) to understand the relationship between specific underlying dynamics and their corresponding kinematic
464 phenotype. A) The projection on each of the 1st 6 principal components (PCs) can be observed for a representative
465 able-bodied (AB2), two low functioning stroke-survivors each having similar self-selected (SS) speeds and Fugl-Meyer
466 (FM) scores (ST2 & ST4, as denoted in Figure 2) and another low functioning stroke survivor (ST3) who has a higher
467 FM score and faster SS walking speed. The PC projections are colored according to the 4 gait phases (non-paretic
468 swing, non-paretic stance, paretic swing, paretic stance). The right leg of the unimpaired individuals was arbitrarily
469 assigned to be paretic and the left leg, non-paretic for consistency. Colored boxes and arrows (orange, brown, green,
470 purple) show specific, single PC manipulations, for example, the orange boxes and arrow illustrate that the PC 1
471 projection of AB2 was replaced with the impaired PC 1 projection from ST4. B) The AB2:ST4 manipulation (orange)
472 shows how AB2’s original phase averaged kinematics (black trace) was manipulated by ST4’s impaired PC 1 projection
473 (red dashed traced). ST4’s impaired PC 1 manifests in AB2’s healthy kinematics showing deviation primarily in the hip
474 kinematics (as suggested in Figure 4 where healthy PC 1 encodes a kinematic subcomponent corresponding to hip
475 flexion/extension) and some deviation in the ankle angles, especially the paretic ankle. The AB2:ST4 manipulation
476 (brown) shows how ST4’s impaired PC3 manifests in AB2’s healthy kinematics; we observe a vertical shift downwards
477 (red trace) of the bilateral hip angles as well as the non-paretic knee. This change in hip flexion highlights that this
478 impaired PC3 encodes a reduction in the hip flexion angles; pointing to a more crouched gait (trunk is leaning forward
479 more). The AB2:ST2 manipulation (green) shows replacing AB2’s PC4 projection with ST2’s impaired PC4 dynamics
480 shows deviation in the knee joints especially during paretic swing, a vertical shift upwards in the paretic ankle angle
481 kinematics and deviations around the middle of the gait cycle (transition between non-paretic stance and paretic swing)
482 in the non-paretic ankle kinematics. Alternatively, the AB2:ST3 manipulation (purple) the impaired PC5 in ST3 is
483 replaced with the healthy PC5 projection from AB2 resulting in slight increase in non-paretic knee magnitude and
484 reduced amplitude of paretic and non-paretic ankle flexion. The result of this manipulation points to potential predicted
485 improvements (or deviations) that can occur when aiming to mimic PC5 healthy dynamics in this stroke survivor allowing
486 offline in-silico testing of potential avenues for gait rehabilitation for this stroke survivor.

487  Self-driven signatures: Our gait dynamics model revealed robustness of gait predictions
488  establishing the utility of gait signatures in precision medicine

489 The ability to predict future kinematics based on measured data is key to rapid, virtual
490  design of personalized interventions. We demonstrate that the recurrent neural network model of
491  gait dynamics, once primed with several gait cycles of data from either able-bodied or stroke
492  participants, can predict future joint angle trajectories (Fig. 7). Once the network is primed, an
493 initial posture is presented (initial condition, denoted by blue vertical bar) after which the model
494  self-drives i.e., predicts the general shape of future kinematics in a feedforward manner (without
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495  referencing previous measured data points) in an able-bodied (Fig. 7A, i, left) and stroke individual
496  (Fig. 7B, ii, left). A smooth transition is seen between the previously measured gait cycle (green)
497  and the self-driven cycle (red trace) for both AB and stroke (Fig. 7A, i, right, Fig. 7A, ii, right
498  respectively).

499 To verify that the model was not generating a gait cycle prediction entirely by chance, we
500 calculated the Euclidean distance between the kinematics of the predicted (self-driven) gait cycle
501 and the kinematics from each of the measured gait cycles. We expect that if the model was indeed
502  predicting future gait cycles (more accurately than chance), the Euclidean distance between the
503 predicted and corresponding measured kinematics would be lower than over 50% of the other
504 distances in the distribution. We found that the distance between the able-bodied predicted gait
505 cycle and corresponding measured kinematic cycle was lower than 79% of the distances of the
506  other gait cycles (Fig. 7A, ii) whereas in the stroke survivor the respective distance was only lower
507 than 40% (Fig. 7B, ii) suggesting the model is less able to accurately predict future kinematics in
508 stroke gait. To calculate the Euclidean distances between the gait cycles, we need to normalize
509 each gait cycle to the period of the self-driven cycle. To avoid this potential bias, we also
510 performed a comparison using a metric that was not manipulated in time — gait cycle duration.
511  After priming the model, we presented the model with the first posture of the trial and ran the
512  network forward in self-driving mode for the remainder of the trial length (15 seconds). Able-
513  bodied self-driven predicted kinematics resembled the reference kinematics closely (Fig. 7C, i,
514  top plot) whereas stroke self-driven predicted kinematics matched the first gait cycle closely but
515  soon converged to patterns reflecting able-bodied kinematics (Fig. 7C, ii, top plot). The gait cycle
516  duration of the first few cycles of the self-driven kinematics match those of the measured
517  kinematics (blue dots located close to the y=x line) in both the exemplary able-bodied (Fig. 7C, i,
518 bottom plot) and stroke individual shown (Fig. 7C, ii, bottom plot), however kinematics soon
519 diverged to shorter and relatively consistent gait cycle durations (blue dots appearing almost
520  horizontal in the plots) result in both cases. The model may preferentially predict able-bodied
521 kinematics, which were less variable between individuals than were post-stroke kinematics.
522  These results highlight that the model encodes gait dynamics that can predict kinematics over
523  short timescales, but the variability and amount of training data may influence predictive power
524  over long timescales. The potential of the gait dynamics model as a predictive tool provides a
525 glimpse into the potential future application of our approach for predicting the effects of gait
526  perturbations, technologies, and treatments, thus reducing time, cost, and participant burden
527  while facilitating the development of more effective strategies to improve gait.
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528

529 Figure 7: Our trained RNN model can predict the time evolution of kinematics from an initial posture. The trained
530 gait dynamics model can predict individual-specific time-evolution of gait kinematics from an arbitrary initial posture
531 (self-driving) in able-bodied (A, i) and stroke (A, ii) once the network is primed with several gait cycles of an individual’s
532 data (gait cyclex-nmeasureq), black solid). This predictive ability shows that the model encodes the gait dynamics
533 underlying movement. Despite inter-cycle kinematic variability, the gait dynamics model can predict the general shape
534 of the next gait cycle of kinematics (gait cyclexpredictea), red) in an able-bodied individual (A, i) and stroke survivor (A, ii),
535 however, predicted kinematics (red) show larger deviation from the measured reference gait cycle (gait cyclexmeasured),
536 black dashed) in the stroke survivor. A smooth transition exists between the measured kinematics from the gait cycle
537 preceding (gait cyclex.1measureq)y green) the self-driven predicted cycle (red). For the representative able-bodied
538 individual (B, i), the Euclidean distance (deviation) between the predicted gait cycle of kinematics and its respective
539 measured kinematics (reference) is ~79% lower than the distance between the other gait cycles in the trial; ruling out
540 that the kinematic predictions are attributed to chance. The deviation (Euclidean distance) of the predicted gait cycle of
541 stroke (B, ii) kinematics to its reference gait cycle is ~40% lower than the distance between the other gait cycles in the
542 trial. This suggests that the dynamical model is less able to accurately predict stroke kinematics better than chance.
543 The dynamical model was first initialized with all the trial’s kinematics data (15 seconds) (black trace) after which the
544 trial’s initial posture was presented to the model to self-drive kinematics (red trace) in feedforward mode for 15 seconds
545 (C, i, top plot). The duration of each gait cycle from the measured kinematics is not well encoded by the dynamical
546 model; gait cycle durations of the predicted kinematics are typically underestimated in both able-bodied (C, i, bottom
547 plot) and stroke (C, ii, bottom plot) (to a larger degree) in self-driving mode and as such deviate from the y=x reference

548 line (black).
549 Discussion

550  Summary

551 Here we establish a data-driven framework for comparing and predicting individual-
552  specific locomotor patterns without needing to construct physiologically based mechanistic
553  models. As an initial proof of concept, complex neuromechanical gait dynamics were modeled
554  using a relatively simple recurrent neural network that captures the rules by which joint kinematics
555  during gait transition from one time point to the next. Because the network was trained on multiple
556 healthy and impaired individuals walking at several speeds, its internal parameters provide a basis
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557  for comparing, interpreting, and predicting gait dynamics. Gait signatures further capture
558  coordination between joints and limbs without the need for pre-selecting gait features that may
559 introduce bias and ignore the continuous nature of gait. We show that individuals have little
560  variance in gait dynamics across speeds, leading to the individual-specific “gait signature” concept
561 and enabling comparisons between individuals moving at different speeds. Across stroke
562  survivors, we found greater heterogeneity in low-functioning individuals who exhibited disparate
563  gait dynamics despite similar clinical metrics, highlighting the potential utility of gait signatures in
564  providing more sensitive diagnoses to personalize therapies. Gait signatures provide a predictive
565  simulation framework for sculpting gait dynamics to understand coordination deficits and predict
566  kinematics, potentially forecasting the effects of rehabilitative devices or treatments. Finally, the
567  gait signatures methodology can be readily applied to other periodic motions across species and
568  across conditions that alter movement and may be a powerful adjunct to modern experimental
569 methods aimed at understanding the neural mechanisms underlying movement.

570 Computational framework captures the neuromechanical dynamics of walking

571 Using a data driven modeling approach enabled us to learn the underlying gait dynamics
572  based on data rather than constructing a neuromechanical gait model based on first principles.
573  Data-driven approaches in gait have not focused on gait dynamics but have solved tasks based
574  on unique features in multi-dimensional gait data such as classifying gait based on pathologies
575 (Mannini et al., 2016) or conditions such as fatigue and non-fatigue (Zhang et al., 2014);
576 identifying gait events (e.g., initial contact, loading response (Aung et al., 2013; Castano-Pino et
577  al., 2020; Chia Bejarano et al., 2015); and discriminating individuals (Barton et al., 2012; Horst et
578 al., 2019)). Gait dynamics have typically been described though neuromusculoskeletal models
579  based on physical principles focusing on musculoskeletal mechanics, (De Groote and Falisse,
580 2021; Hainisch et al., 2021) but they lack adequate representations of the neural systems that
581 contribute to the resulting movement patterns, particularly in neurological impairments such as
582  stroke (Pitto et al., 2019b). Machine learning methods to capture dynamics have been used
583 across physics, engineering, and neuroscience to learn the dynamics underlying complex
584  systems when the governing equations are unknown (Bongard and Lipson, 2007; Pandarinath et
585 al., 2018; Sanchez-Gonzalez et al., 2020). Recently, machine learning models have been used
586 in human gait to predict continuous kinetic variables such as ground-reaction forces (Alcantara et
587  al., 2022) or joint torque (Camargo et al., 2022; Giarmatzis et al., 2020) based on kinematic data.
588  Dynamical machine learning models have also been used to encode gait dynamics, including
589 responses to perturbations or assistive devices, but their model structure did not enable
590 comparisons between individuals (Berrueta et al., 2019; Drnach et al., 2019; Maus et al., 2015;
591 Rosenberg et al., 2020; Wang and Srinivasan, 2013). Here, our RNN-based gait dynamics model
592  provides a means to capture the rules underlying continuous, multi-joint coordination between
593  bilateral lower limb joints, and how they evolve over time. Accordingly, we do not explicitly capture
594  mechanical dynamics (i.e., the relationship motion and force), but the effects of force interactions
595  within the body and environment and implicitly represented in how multi-joint kinematics evolve
596  over time, with the network parameters and the internal states at each time point determining the
597  output kinematics.

598 As gait arises from complex interactions between the nervous system and the
599  musculoskeletal system that are not easily modeled from first principles, a data-driven approach
600 provides a powerful framework for capturing and comparing neuromechanical constraints on gait
601 dynamics. While biomechanical dynamics clearly play a role in movement, the activation of
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602 muscles by the nervous system enables the body to perform a variety of motor behaviors.
603 However, the governing spatiotemporal dynamics of neuromuscular signals are poorly
604  understood, especially in neuro-pathologies such as stroke. During behaviors such as locomotion,
605  motor patterns can be characterized by the number and structure of motor modules, or muscle
606  synergies, defining groups of co-activated muscles producing a biomechanical function for gait
607 (Ting et al., 2015). Similar motor modules are used within individuals across different task
608  conditions (Chvatal and Ting, 2013; Torres-Oviedo et al., 2006; Torres-Oviedo and Ting, 2010),
609 and are shaped by learning and disease (Payne et al., 2020; Sawers et al., 2017). Particularly in
610  post-stroke gait, motor modules appear to constrain motor function. Fewer motor modules are
611  observed post-stroke with the number of modules correlated to reduced walking speed (Clark et
612  al.,2010; Shinetal., 2021). Further, different patterns of motor module merging are seen in slower
613  walking stroke survivors, differentially affecting gait biomechanics in a manner that may
614  necessitate individualized rehabilitation approaches (Allen et al., 2018). Adding neural constraints
615  such as motor modules on muscle activations in musculoskeletal simulations improve predictions
616  of key physiological variables such as joint loading in osteoarthritis (Walter et al., 2014). However,
617  relating motor modules to kinematic gait patterns post-stroke and in other neurological disorders
618  has been challenging, likely because the neural constraints are underspecified (Allen et al., 2019;
619 De Groote et al., 2014; Falisse et al., 2020, 2019; Steele et al., 2019). Our data-driven gait
620 dynamics model phenomenologically captures the net effects of both neural and mechanical
621  constraints on gait and can further contribute to an understanding of normal and impaired gait.
622  Corroborating results from motor module analysis, there were greater differences in gait dynamics
623  amongst the slowest walking stroke survivors. Since the gait signatures capture spatiotemporal
624  constraints underlying gait dynamics, they provide a complementary approach to musculoskeletal
625  simulations. Ultimately, gait signatures may play a complementary role to biophysical simulations,
626  enabling the relationships between biomechanical principles, neural constraints, and the
627  emergent gait dynamics to be revealed.

628  Gait signatures enable holistic comparison of gait dynamics across individuals, speed,
629 and groups

630 In contrast to other applications of dynamical machine learning models for gait, we capture
631  multiple individuals within a single network, enabling comparisons of gait dynamics across groups,
632 individuals, and gait conditions. Rather than using the network as a black box solely to generate
633  predictions, we explicitly compare and interpret the model’s internal parameters to identify low-
634 dimensional latent variables representing gait dynamics. To encourage a generalizable data-
635  driven gait dynamics model, we omitted subject and trial condition (gait speed) labels as inputs to
636  the neural network. Adding input labels might force the RNN to create separable gait models,
637  whereas our goal was to have the network learn a structure that could be modified parametrically
638 to represent individual differences in the neuromechanics of walking. Similarly,
639  neuromusculoskeletal models assume common dynamic principles across individuals, using
640  parameter variations to represent individual differences (De Groote et al., 2014; Falisse et al.,
641 2020, 2019; Fregly et al., 2007; Meyer et al., 2016). We intentionally designed a relatively simple
642  RNN architecture (e.g., single layer, linear input/output) as a starting point to recover as much
643 interpretability as possible, with the awareness that more complexity could be added to the model
644  architecture (number of hidden layers, number of neurons, etc.) if required to fit a given data set
645  robustly. The representations of gait dynamics that emerge from our model holistically capture
646  the changes underlying measured kinematics, without being attributable to specific neural or
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647  biomechanical constraints. The loss of physiological interpretability is counterbalanced by the
648  holistic approach to representing gait dynamics and explaining gait kinematics features.

649 Analogous to written signatures, we find that features of individual-specific gait signatures
650 are largely preserved across walking speeds. Recognizable qualitative features of handwriting
651  are preserved even as the size of letters changes quantitatively, or if different limbs, or writing
652 instruments are used (Bernshtein, 1967). Similarly, it is well known that individuals can be
653  recognized based on how they move or walk (Beer et al., 2000; Meyer et al., 2016; Sanchez et
654 al., 2018; Troje, 2002; Zajac et al., 2002), even if joint angle excursions are similar. We show that
655  gait dynamics are more similar within individuals across speeds than between individuals, leading
656  to the concept of the gait signature. In contrast, gait kinetics and kinematics vary characteristically
657  across speeds, such that they cannot be directly compared across speeds (van Hedel et al.,
658  2006). The relatively small changes in gait signatures across speeds suggest that the signatures
659 reflect changes in the spatiotemporal relationships between joint kinematics, rather than
660 quantitative changes in their magnitude. As such, gait signatures appear to encode individual-
661  specific constraints of walking, making it possible to compare gait either within or between
662 individuals walking at different speeds.

663 Gait signatures characterize the high inter-individual variability in gait impairment amongst
664  stroke survivors beyond overall gait function explained by clinical gait metrics. This heterogeneity
665 is a direct reflection of the wide range of impairments in stroke survivors, including muscle
666  weakness, impaired coordination, spasticity, abnormal synergistic activation (muscles not
667  independently coordinated), and compensatory motion (Chen et al., 2005; Jonkers et al., 2009;
668 Little et al., 2018). We found that higher-functioning stroke survivors were more dynamically
669  similar to each other, whereas lower functioning stroke survivors were more dispersed. In fact,
670  two low-functioning stroke survivors with similar clinical metrics (Fugl Meyer score and gait speed)
671  had quite different gait signatures. As such, gait signatures have the potential to provide insights
672 into individual differences in gait dynamics that are simply not captured by clinical metric such as
673  gait speed. Moreover, in contrast to higher-functioning stroke survivors who share similar gait
674  dynamics, lower-functioning stroke survivors may require more individuals individualized
675  rehabilitation approaches targeting specific aspects of gait dysfunction. Further gait signatures do
676  not require a priori selection of which gait variables to compare (Patterson et al., 2008; Rinaldi
677  and Monaco, 2013; Schutte et al., 2000; Wonsetler and Bowden, 2017). As such gait signatures
678  provide a powerful, holistic approach to enhance the specificity and precision of gait diagnosis
679  and treatment. This framework can potentially extend to other diseases, disorders, injury, etc. to
680  gain further insight into individuals' specific impairments and uncover specific targets towards
681  developing targeted therapies for individuals.

682  Gait signatures enable biomechanical interpretation and manipulation

683 Our gait dynamics model enables biomechanical interpretation of gait signatures and
684  exploring “what if’ scenarios to sculpt desirable gait dynamics. Gait signatures are based on
685  principal components (PCs) of the gait model internal states, where the weightings on each PC
686  vary over the gait cycle. The model parameters can be prescribed over the gait cycle, resulting in
687  the predicted kinematic outputs (i.e., joint angles). The gait signature PCs and their time-varying
688  weightings can be individually prescribed in the network as a method to reveal the specific inter-
689  and intra-limb coordination patterns governed by each PC. Further, any combination of PC’s can
690 be combined and reweighted to generate new kinematic output patterns. For example, we
691 interchanged healthy and impaired PCs to gain deeper insight into how specific impaired PCs
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692  alter healthy gait and vice versa. Further, interpolating gait dynamics can predict gait kinematics
693  at walking speeds that were not used in the training data. Especially when there was a nonlinear
694 response in gait kinematics across speeds, interpolation of gait dynamics to predict gait
695  kinematics performed better than interpolating gait kinematics directly. As such our data driven
696  gait dynamics model can be used to show how changing select components of the gait signature
697  alters gait kinematics, providing a potential framework to identify personalized therapeutic targets
698 for gait rehabilitation.

699  Gait Signatures enable prediction of future kinematics

700 Another powerful aspect of our gait signatures framework is its ability to generate future
701  gait kinematics in the absence of new data. The model is self-driving for able-bodied individuals,
702  predicting multiple cycles of gait kinematics in the future. However, the ability of the model to
703  predict future stroke kinematics is limited to approximately one gait cycle in the future; rendering
704 it promising in applications that provide control signals to rehabilitation devices (e.g.,
705  exoskeletons). Reduced predictive power for the stroke patients can be attributed to our model
706  architecture’s relative simplicity, a small sample size (7 stroke survivors), and short time series
707 (15 seconds/ 1500 sample points per trial). These factors should be addressed to improve the
708  predictive capacity of the model for impaired gait in the future. Additionally, including more
709 variables besides sagittal plane kinematics (e.g., frontal plane and coronal plane kinematics and
710 joint forces, may improve learning of the underlying dynamics of gait and increase predictive
711  capability of our model.

712  Generalization to other species and rhythmic movements

713 Because the input to this model are periodic sequences of behaviors, our gait dynamics
714  framework should generalize to other species that display similar behavioral motions. (e.g., flight,
715  crawling, walking). Physicists, computational biologists, and other scientists can benefit from this
716  method by studying the dynamical behavior of species whose neuromechanical models and
717  physics of complex terrains are difficult to model. This is the first study to our knowledge that uses
718  a neural network to study the dynamics of gait in an interpretable manner. While much work is left
719  to be done, we have provided a simplistic, unsupervised framework to discover individual-specific
720  differences in walking in health and disease in humans. Despite being limited by a small dataset,
721  we have shown that our model is generalizable to characterizing and predicting kinematics of one
722 held-out subject using leave one out cross validation (Fig. 1 - figure supplement 3). Key to note,
723 this methodology relies on having a periodic or quasi-periodic pattern as non-periodic patterns
724  would not be able to generate a phase and subsequent signature. We also limited our inputs to
725  gait kinematics, anticipating applications to the proliferation of new measurement modalities for
726 movement in humans and animals such as wearable sensors and markerless video-based motion
727  capture (Cao et al., 2019; Mathis et al., 2018; Uhlrich et al., 2022). However, the gait signatures
728  framework could easily be extended to include other data types (e.g., force, muscle activity, joint
729 loadings, center of mass dynamics) and experimental conditions (overground walking,
730 biomechanical constraints, gait interventions, such as exoskeletons, functional electrical
731  stimulation, or treatment e.g., drugs, optogenetics). Overall, by modeling the dynamics of
732  individual's gait based on measured data, we uncovered individual-specific representations of
733  individuals’ neuromechanical constraints that allows direct comparisons between individuals who
734  do not walk at the same speed. The gait signatures framework has implications for the diagnosis
735  of disease, development of future tailored gait therapies or interventions and tracking meaningful
736  changes in the fundamental neuromechanical mechanism of walking.
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737  Materials and methods
738  Human subject participants

739 To develop dynamical signatures of human gait, we collected data in seven post-stroke
740 individuals (age = 56 + 12 years; 2 females; 48 + 25 months post-stroke; Lower Extremity Fugl-
741  Meyer = 20 £ 4) and five able-bodied (AB) controls (age = 24 + 4 years; 4 female). All post-stroke
742  participants experienced a cortical or subcortical ischemic stroke, were able to walk on a treadmill
743  for one minute without an orthotic device, and exhibited no signs of hemi-neglect, orthopedic
744  conditions limiting walking, or cerebellar dysfunction. All participants provided informed consent
745  prior to study participation approved by institutional IRB.

746  Experimental Design

747 Participants completed 15-second walking trials at six different speeds, distributed evenly
748  between and ranging from each participant’s self-selected (SS) speed to the fastest safe and
749  comfortable speed. Across stroke participants, gait speeds ranged from 0.3-1.6 m/s. Each
750  participant’s fastest walking speed was determined by progressively increasing the treadmill
751  speed from the SS speed until the participant could no longer comfortably or safely maintain the
752  speed for 30 seconds. Participants rested for 1-2 minutes between consecutive gait trials. During
753  data collection, speed increased from the participant's SS to their fastest speed (i.e., not
754  randomized).

755 Data acquisition

756 Reflective markers were attached to the trunk, pelvis, and bilateral shank, thigh, and foot
757  segments (Kesar et al., 2011a). We collected marker position data while participants walked on
758  a split-belt instrumented treadmill (Bertec Corp., Ohio, USA) using an 8-camera motion analysis
759  system (Vicon Motion Systems, Ltd., UK). Participants held onto a front handrail and wore an
760  overhead safety harness that did not support body weight. Marker data were collected at 100 Hz,
761  and synchronous ground reaction forces were recorded at 2000 Hz and were down sampled to
762  100Hz using previously established techniques (Kesar et al., 2011b, 2010, 2009).

763  Data processing

764 Raw marker position data were labeled, gap-filled, and low-pass filtered in Vicon Nexus.
765  Labeled marker trajectories and ground reaction force raw analog data were low-pass filtered In
766  Visual 3D. Gait events (bilateral heel contact and toe-off) were determined using a 20-N vertical
767  GRF cutoff, and sagittal-plane hip, knee, and ankle joint kinematics were calculated in Visual 3D
768  (C-Motion Inc., Maryland, USA).

769  RNN model development

770 Our goal was to start with a simple RNN to reduce overfitting with too many parameters
771  and deep layers. We wanted the simplest model capable of learning the dynamics underlying gait
772 which also preserved interpretability. The simplest recurrent neural network (RNN) model
773  architecture consisted of one input layer, one hidden layer and one output layer. The hidden layer
774  was composed of long short-term memory (LSTM) units with a lookback parameter that spaned
775  atleast one gait cycle. Model hyperparameter selection is described in a later paragraph.

776
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777  RNN model training

778 Model fitting on our selected dataset and architecture was executed on the order of
779  minutes to tens of minutes, using Keras 3.7.13 and TensorFlow 2.8.2 on Google Colab’s standard
780  GPU with high-RAM runtime (54.8 gigabytes). The RNN model was trained using bilateral, sagittal-
781  plane, lower-limb joint angles from 5 able-bodied (AB) participants and 7 stroke survivors each
782  walking on a treadmill at 6 steady speeds, ranging from each participant’s preferred speed to the
783  fastest safe speed. Our training dataset was input to the RNN in multivariate format (not
784  concatenated) (Horst et al., 2019; Santhiranayagam et al., 2015). We trained a sequence-to-
785  sequence RNN with 512 long-short-term memory (LSTM) activations units in the single hidden
786 layer, capable of using 15 seconds (sample rate of 100 Hz) time-series kinematic input data (0 to
787  T-1)to predict kinematics one time-step in the future (1 to T) for all training data across individuals
788  and speeds. Our data was batched according to the number of total trials (N = 72); thus, the LSTM
789  maintains its internal state while a batch is being processed, after which the internal state can be
790 maintained or cleared. Because our network retains its internal state from one time step to the
791 next (i.e., the RNN is stateful), we have fine-grained control over when the internal state of the
792  LSTM network is reset. The input data from all trials was ‘mini-batched’ into 2 training batches
793  and 1 validation batch (499 samples each) that were used to update model weights on each model
794  run (epoch). To format our data into equal length input and output mini batches for training and
795  account for the output data being a one-time step shifted version of our input data, our lookback
796  parameter must be one value less than a divisor of the trial length. For example, in our dataset
797 (1500 sample length trials), a lookback parameter of 499 would result in the first mini batch input
798  of samples [0:499] which will predict our reference output samples [1:500], our 2" mini batch input
799 data would include samples [501:999] and corresponding output [502:1000] and the last mini-
800  batch input of samples [1001: 1499] predicts samples [1002: 1500]. This lookback parameter of
801 499 allows us to construct 3 mini-batches of shorter input and output data lengths which would
802 be used to train and validate the RNN model (2:1 training: validation mini batch split). Similarly
803  with the lookback parameter of 499 (2:1 training: validation mini-batch split) and 749 (1:1 training:
804  validation split). Mean squared error was used as the LSTM loss function and ADAM as the
805  optimization algorithm. The model was trained for at least 5000 iterations or until training and
806 validation error converged (< 0.75°). The training resulted in a sample-specific dynamical model
807  structure defined by a single set of LSTM network weights (W). The model’s internal states
808 capture trial-specific dynamics predicting the time evolution of joint kinematics; activation
809  coefficients (H) and memory cell states (C) and are tuned based on kinematic input.

810 Model hyperparameter selection

811 We selected the hyperparameter values of 512 nodes in the LSTM layer and a 499-sample
812  LSTM lookback length (number of samples preceding the current time point that is used to train
813 the LSTM) were selected based on training and validation loss, as well as the ability to encode
814  dynamics over short and long timescales. In two steps, we evaluated all pairs of the following
815  hyperparameter values: 1024, 512, 256, and 128 LSTM nodes and 749, 499, and 249-sample
816  lookback parameters. Because RNN performance can change with the parameters used to
817 initialize the RNN, we fit an RNN gait dynamics model 20 times using random initial parameters,
818  for each hyperparameter pair. First, we compared model training and validation loss for each
819  hyperparameter pair: the ‘best’ hyperparameter pair would have low training and validation loss.
820 The following [node-lookback] pairs were considered the best hyperparameter pairs: 512-499
821  (MSEgain = 0.010 + 0.001 deg?, MSE,a = 0.018 + 0.000 deg?), 256-749 (MSEin = 0.010 % 0.002


https://doi.org/10.1101/2022.12.22.521665
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521665; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

822  deg? MSEya = 0.015 £ 0.001 deg?), 256-499 (MSEjain = 0.010 + 0.001 deg®, MSE.a = 0.017
823  0.000 deg?). (Fig. 1 - figure supplement 1, A). The training loss was not different between
824  hyperparameter pairs (p > 0.235). The validation loss differed between all three models (p <
825  0.001), with the 256-749 model having the lowest validation loss. However, if the differences in
826  validation loss of less than 0.003 deg? corresponded to meaningful differences in performance
827  was unclear.

828 Our second analysis was, therefore, used to compare the three hyperparameter pairs
829 deemed bestin the prior analysis. Here, we evaluated the models’ abilities to encode the average
830  dynamical behavior over long timescales (long-time) and the stride-to-stride behavior (short-time).
831  We defined the best model as the one with the highest long- and short-time performance. The
832  following analysis was performed for 10 of the 20 random initializations. For long- and short-time
833  analyses, we created a single set of reference dynamics as done in the manuscript: we performed
834  one time-step predictions over the full (1500-sample) time-series. This step provided best-case
835  predictions of the gait dynamics (Fig. 1 - figure supplement 1, B).

836 Long-time performance: We generated long-time predictions of each trial’s gait signatures (RNN
837 latent states) by simulating each participant’s gait dynamics forward in time, 1500 samples into
838 the future. Each simulation was initialized by setting the RNNs’ latent states to those of the last
839  sample of the trial’s reference dynamics and using the last sample of the trial’s kinematics. We
840 then phase-averaged both the reference dynamics and the long-time predictions using the same
841 technique as described in the main manuscript. Long-time performance was defined as the
842  similarity of the phase-averaged latent states (i.e., the gait signatures) between the reference and
843  the long-time predictions and was quantified using R?. Note that using R? as a similarity metric,
844  rather than the Euclidean distance metric used in the main manuscript, was needed to compare
845  models with different numbers of nodes. Unlike R? Euclidean distances are sensitive to the
846  number of samples used to compare models, which would bias short- and long-time performance
847  towards models with fewer nodes. Low R? values between predictions indicates that the learned
848  dynamics are sufficiently complex to capture instantaneous gait dynamics but can also accurately
849  generate the time evolution of dynamics over the gait cycle - a major challenge in data-driven
850  models of locomotion (Maus et al., 2015; Rosenberg et al., 2020).

851  The 512-node model captured gait dynamics over long time scales significantly better (i.e., more
852  accurate predictions of the time-varying dynamics) than the 249-node models (Fig. 1 - figure
853  supplement 1, B). For long-time predictions, the 512-node model predictions (R? = 0.50 + 0.46)
854  were better than the 249-node 499-sample lookback model (AR? = 0.27 + 0.06; p < 0.001;
855 independent-samples t-tests) and the 249-node 499-sample lookback model (AR? = 0.31 + 0.07;
856 p <0.001).

857  Short-time performance: We generated short-time predictions by simulating single strides in
858  each trial’s time-series, initialized from the first sample of each stride. Initialization used the latent
859  RNN states and kinematics of the reference dynamics at the onset of a new stride (phase = 0
860 rad). For each initial condition, we integrated the dynamics forward in time, up to the onset of the
861 next stride. For each stride, we then compare the similarity of the reference dynamics to the
862  dynamics of the corresponding short-time prediction using R2 Short-time performance was
863  quantified as the average R? value across trials for a single model and initialization.

864  The 512-node model captured gait dynamics over short time scales significantly better (i.e., more
865  accurate predictions of the time-varying dynamics) than the 249-node models (Fig. 1 - figure
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866  supplement 1, B). For short-time predictions, the 512-node model predictions (R? = 0.11 + 0.51)
867  were more accurate than the 249-node 499-sample lookback model (AR? = 0.51 +0.13; p = 0.055;
868 independent-samples t-tests) and the 249-node 499-sample lookback model (AR? = 0.34 + 0.09;
869 p <0.001). Based on difference in short- and long-time prediction performance, we selected the
870  512-node, 499-sample lookback hyperparameters for the RNN model.

871 Leave-one-out subject model evaluation for generalizability

872 Using the selected hyperparameters, 12 different models were trained where one different
873  subject (all 6 speed trials per subject) was held out for evaluation on each model run. The same
874  model architecture, training and validation setup was used as the original model trained using the
875  full dataset (12 subjects). The minimum training loss, validation loss, and overall evaluated test
876  loss for each model were extracted and box plots of each generated. The Wilcoxon Rank-Sum
877  Test statistic was used to compare the means. Each model was evaluated on the 6 held-out speed
878 trials from training and an average loss was calculated for each model. The reference kinematics,
879  externally driven and self-driven predictions of each of the 6 held-out trials per model were phase
880 averaged and R? between the phase averaged externally driven and long-time self-driven
881  predictions (see Long-Time Performance section, above) were calculated. Box plots for each
882  metric across the held-out trials were generated and the Wilcoxon Rank-Sum Test statistic used
883 to compare the means.
884

885  Computing gait signatures from RNN internal states

886 To develop the gait signatures, we extract the activation and cell states from the LSTM
887 (denoted “H” and “C” respectively) which evolve over time (the course of the gait cycle) as the
888  kinematics of each trial are fed through the trained RNN. These H and C parameters represent
889  how the model’'s internal parameters change as it encodes the prediction of future kinematic
890 trajectories. The selected 512-node LSTM layer had 512 H parameters and 512 C parameters.
891 Time-varying gait signatures were computed by identifying dominant modes of variation in the
892 internal states using principal components analysis (PCA). A single PCA operation was used to
893 transform the internal states for all participants into a common basis. Consequently, inter-trial
894  differences in the time-varying activations of the principal components (modes) reflect differences
895 in the underlying dynamics of the individual(s). These activations constituted the time-varying
896 (1500 sample) gait signatures, which had the same dimension as the RNN’s hidden layer (1024
897  units). However, the first six principal components accounted for 77% of the variance in the
898 internal states.

899 To compare gait signatures within and between individuals, we phase averaged each
900 trial's signatures across strides. Rather than linearly interpolating the data between foot contact
901 events before averaging, as is common in gait analysis (many refs), we computed a continuous
902 phase using the first 3 gait signature modes for each trial using Von Mises interpolation (Berman
903 et al,, 2014). Compared to averaging across linearly interpolated strides, phase averaging is
904  expected to reduce the variance in the data at any point in the stride (Revzen and Guckenheimer,
905 2008; Rosenberg et al., 2020). As the domain for interpolation, we estimated the time-varying
906  phase for each trial separately using the Phaser algorithm, using the first 3 principal components
907 as phase variables (Revzen and Guckenheimer, 2008). To align phase estimates across trials,
908 we defined zero-phase as the maximum of the first principal component.

909
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910 Gait event estimation of phase averaged signatures

911 The force plates embedded in the treadmill captured precise gait event timing information
912  (left heel strike, right toe off, right heel strike, left toe off) across individuals’ trials which we
913  represented as a vector of 1's, 2’s, 3’s and 4’s, respectively (ground truth markings for the 4 gait
914  events). We leveraged the Phaser algorithm again (Revzen and Guckenheimer, 2008) to develop
915 aphase estimator to transform these 4 gait events over time into gait events over phase. For each
916 trial, we determined the mode phase that corresponded to each of the 4 gait events to gain a
917  representation of where the 4 gait events occurred during phase averaged dynamics (0 - 21r) for
918  each trial.

919 Interpolation of unseen speed gait signatures to reconstruct kinematics

920 To demonstrate the generalizability of gait dynamics, we show that linearly interpolating
921  gait signatures to predict gait kinematics at new walking speeds is more accurate than linearly
922 interpolating the kinematics themselves. We trained another RNN model with the same
923  architecture and hyperparameters to the first model, however using only the 2 slowest and 2
924  fastest speeds from each participant (i.e., we held out the 2 middle speed trials from each
925  participant). We then linearly interpolated the 2-middle speeds’ internal states and ran the data
926  through the trained RNN to reconstruct or predict kinematics. We compared the original phase
927 averaged kinematics to the predicted kinematics resulting from each of the two linear
928 interpolations (dynamics and kinematics) using the coefficient of determination. Furthermore,
929 even when we reduced the dimensionality of the model’s internal states from the full 1024 to the
930 first 6 principal components (the selected dimension on the gait signatures), it still performed
931  better than interpolating kinematics (also rank = 6).

932 Biomechanical interpretation of principal components of the gait signature

933 To reconstruct kinematics from the corresponding underlying dynamics (internal state
934  representations), we restored our trained model’s weights to a new model using the ‘model.set’
935 and ‘model.get_weights’ Keras built in functions. The function ‘model.predict’ takes in the hidden
936 state values (Hs) only (first 512 of the 1024 internal-state time trajectories) and predicts the
937  corresponding kinematics for the provided internal states. Using this framework, we provided this
938 new model with independent principal component representations of individuals’ hidden states
939  and visualized the corresponding kinematics through stick figure movie representations of the
940  resulting kinematics over the walking trials.
941

942  Predicting time evolution of kinematics from an initial posture (self-driving)

943 Our trained generative gait model can take in a single initial posture of size (6,1)
944  corresponding to a single time point representation of each of the 6 joint angles to predict the next
945 time step posture/kinematics using command ‘model.predict’. To make further predictions, the
946  predicted value is used as the new initial condition (posture) and predictions are made on a one-
947 time step basis in a similar fashion for a pre-specified prediction length (self-driving).

948 Data and code availability

949 To ensure rigor, reproducibility, and promote open science, all software is shared under a
950 GNU GPL 3.0 license and on GitHub. Links to Google Colab notebooks enable our software to
951  be run on the cloud for users without computational resources. The gait signature code developed
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952 and used in this paper has been deposited at GitHub:
953  https://github.com/bermanlabemory/gait_signatures.The RNN model and code was developed in
954  Python programming language using built-in Python-based libraries such as Keras, Pandas, and
955 NumPy. We revised the Phaser algorithm (Revzen and Guckenheimer, 2008;
956 https://github.com/sheim/phaser) to estimate phase for our kinematic time trajectories in the
957 development of our phase averaged dynamics per trial. Shareable Jupyter Notebooks were
958 developed on the Google Colab platform. The data analysis of the generated gait signatures was
959  conducted in MATLAB 2022a (MathWorks).
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972 Figure 1- figure supplement 1: Comparison of model performance on training and validation loss (left), and
973 long- and short-time prediction performance. In both plots, small dots represent the average values across trials for
974 each random initialization of each model. Large dots and bars denote the average and standard deviation of model
975 performance metrics across initializations. Left: Training and validation loss (RMSE) for all 12 hyperparameter pairs.
976 Models in the lower-left consider are considered better. Right: Long- and short-time prediction performance (R?) for the
977 3 hyperparameter pairs with the lowest training and validation loss. Models in the upper-right corner are considered
978 better.
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980 Figure 1- figure supplement 2: RNN model training (green) and validation (blue) loss curves.
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982 Figure 1- figure supplement 3: RNN dynamic learning generalizes across 12 leave-one-individual-out models.
983 The minimum train loss (blue) and validation loss (green) was low (< 0.02 degrees?) for 5 models that were trained
984 each with a single able-bodied individual held out of the training data (A, i) and 7 models each with a stroke individual
985 held out of training data (A, ii). The magnitude and range of the test loss (evaluation of model on the held-out data)
986 (orange) was higher than the respective minimum training and validation losses for both held-out able-bodied (A, i) and
987 stroke (A, ii) models. The magnitude and range of test losses evaluated on held-out able-bodied individuals, however,
988 were lower than models evaluated on held-out stroke data. The models generate external predictions (blue) of held-
989 out test trials with higher R? values than that of self-driven predictions (red) in models evaluated on both able-bodied
990 (B, i) and stroke trials (B, ii). The models can generate external kinematic predictions (blue) of held-out able-bodied (B,
991 i) trials better than that of stroke (B, ii). Self-driven predictions of stroke kinematics were generally very low (R2 values
992 below 0.5). Models were incapable of generating self-driven predictions for 5 of 30 able-bodied trials and 16 of 42 stroke
993 trials (these R? values are not shown in B i and ii plots). (C) shows reference (black), externally driven (blue) and self-
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driven (red) phase averaged kinematic predictions for an exemplary able-bodied trial (C, i) and exemplary stroke trial
(C, ii). Models can predict kinematics of held-out able-bodied trials better (higher R?) than that of stroke.

1001

90+

80

70

60

50t

40

Cumulative Proportion of
Variance Explained (%)

30

20
0

[« > JLLLL UL LR RN TR RN R T

10 20 30 40 50 60 70 80 90 100
Number of Principal Components

Figure 1- figure supplement 4: Cumulative proportion of variance explained by the first 100 principal

components of gait dynamics. Six (6) principal components (PCs) explained 77% of the variance in the gait
dynamics. The top 6 dominant PCs were used to develop the gait signature.
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Figure 2- figure supplement 1: Support vector machine cross-validation classification accuracy of four
different gait descriptors (discrete variables, gait signatures, kinematics, and a combination of kinematics &
joint velocity) for discrimination between: a) gait group (able-bodied vs. stroke) and B) individuals. Using k =
25 folds, RNN gait signatures distinguished between impaired and unimpaired gait with 100% accuracy, along with the
26 discrete variables (100%, p = 1), whereas kinematic (92.67 + 0.15%, p < 0.05) and kinematics & velocity (88.67 +
0.17%, p <0.05) discrimination were significantly lower. Using k = 6 folds, SVM classification of individuals was most
accurate using RNN gait signatures and discrete variables (100%), lower using kinematics (88.9 + 0.13%, p = 0.061)
and  significantly lower using a kinematics and velocity (68.10 + 0.16%, p < 0.05).
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