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Abstract:  11 

Locomotion results from the interactions of highly nonlinear neural and biomechanical dynamics. 12 
Accordingly, understanding gait dynamics across behavioral conditions and individuals based on 13 
detailed modeling of the underlying neuromechanical system has proven difficult. Here, we 14 
develop a data-driven and generative modeling approach that recapitulates the dynamical 15 
features of gait behaviors to enable more holistic and interpretable characterizations and 16 
comparisons of gait dynamics. Specifically, gait dynamics of multiple individuals are predicted by 17 
a dynamical model that defines a common, low-dimensional, latent space to compare group and 18 
individual differences. We find that highly individualized dynamics – i.e., gait signatures – for 19 
healthy older adults and stroke survivors during treadmill walking are conserved across gait 20 
speed. Gait signatures further reveal individual differences in gait dynamics, even in individuals 21 
with similar functional deficits. Moreover, components of gait signatures can be biomechanically 22 
interpreted and manipulated to reveal their relationships to observed spatiotemporal joint 23 
coordination patterns. Lastly, the gait dynamics model can predict the time evolution of joint 24 
coordination based on an initial static posture. Our gait signatures framework thus provides a 25 
generalizable, holistic method for characterizing and predicting cyclic, dynamical motor behavior 26 
that may generalize across species, pathologies, and gait perturbations. 27 
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Introduction  37 

Locomotion is a ubiquitous, complex, and dynamic behavior that is essential for survival. 38 
Using cyclic patterns of joint angles, inter-limb and inter-joint coordination, animals effectively 39 
move through their environments: walking, running trotting, swimming, flying, and crawling. Even 40 
within species and types of locomotion, variations in locomotor patterns often occur across 41 
behavioral contexts, groups, and individuals. Thus, although locomotor patterns can appear highly 42 
stereotyped, considerable inter- and intra-individual variability exists. Studies of locomotor 43 
behaviors have shown systematic differences in movement patterns based on a wide range of 44 
neural (Frisk et al., 2019; Ivanenko et al., 2003; Krogh et al., 2022; Young et al., 2022) and 45 
biomechanical perturbations (Genthe et al., 2018; Pan et al., 2022; Reisman et al., 2010; Wang 46 
et al., 2022) environmental challenges (D’souza et al., 2020; Larsen et al., 2022), psychological 47 
state (Attwood et al., 2021; Elkjær et al., 2022), social status (Steptoe and Zaninotto, 2020; 48 
Zaninotto et al., 2013), injury (Garcia et al., 2022; Jang and Wikstrom, 2022; Milner et al., 2022), 49 
and disease (Ijmker and Lamoth, 2012; Jonkers et al., 2009; Moura Coelho et al., 2022; Prosser 50 
et al., 2022; Russo et al., 2022; Troisi Lopez et al., 2022; Young et al., 2022). Furthermore, 51 
locomotor impairments can arise from a wide range of physiological and neurological changes, 52 
from the subtle changes that may be indicators of progressive disorders (e.g., aging, cognitive 53 
impairments) to profound impairments with brain injury (e.g., stroke, spinal cord injury) that can 54 
severely limit locomotor function. Although locomotor deficits are often subjectively visible to a 55 
human observer, objectively characterizing and understanding sometimes subtle yet important 56 
differences in locomotion from a scientific and mechanistic standpoint has been challenging 57 
(Correa et al., 2011; Geyer and Herr, 2010; Kuo and Donelan, 2010). For example, kinematic 58 
movement patterns (the continuous motion of joint angles over time) have been collected across 59 
a wide range of locomotor modes and species but revealing individual-specific differences in 60 
kinematics remains difficult. One barrier to progress is that interpreting individual differences in 61 
kinematics without an underlying dynamical model is challenging, as kinematics are the result of 62 
the complex neuromechanical dynamics that drive the spatiotemporal dependencies of joint 63 
kinematics over time.  Thus, capturing these underlying gait dynamics is likely essential for 64 
interpreting differences in gait and movement across conditions and individuals. 65 

Traditionally, gait dynamics are modeled using physiologically detailed neuromechanical 66 
equations, however making predictive models using this approach has often proved challenging 67 
(Falisse et al., 2019; Meyer et al., 2016; Pitto et al., 2019a). Partially, this difficulty arises because 68 
in order to understand the dynamics underlying gait, we also need to understand how neural 69 
feedback and control shape these dynamics. While many models (e.g., musculoskeletal models) 70 
that use principles like optimal control can generate simulations of unimpaired gait, as well as 71 
changes in gait due to altered biomechanical or neural constraints, they often fail to predict 72 
changes in gait kinematics following neurological injury (Meyer et al., 2016) or more subtle 73 
perturbations (De Groote and Falisse, 2021; Pitto et al., 2019b). Progress in the physiological 74 
modeling of locomotor circuitry in the spinal cord and brainstem demonstrates the role of neural 75 
circuits in gait dynamics. However, these models typically rely on simplified (Dzeladini et al., 2014; 76 
Taga et al., 1991) biomechanical properties and cannot yet predict the deficits in gait specific to 77 
an individual (Angelidis et al., 2021; Geyer and Herr, 2010; Kuo, 2002; McCrea and Rybak, 2008). 78 
More importantly, if a hyper-realistic model of the neural and biomechanical system did exist, the 79 
relationships between the high-dimensional parameters and actual movement patterns would not 80 
likely be unique, as many parameters would not be identifiable, even given massive amounts of 81 
data, as many different parameter choices could lead to the same biomechanical output (Holmes 82 
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et al., 2006; Prinz et al., 2004). This non-identifiability limits the predictive power and 83 
generalizability of these models to other interventions and conditions outside of limited contexts, 84 
suggesting a need for a more holistic approach. 85 

Despite these challenges, rich individual-specific information exists in gait data. For 86 
instance, through observation of movement, the human brain can perceive many socially salient 87 
features of an individual’s gait, suggesting that it should be possible to infer aspects of gait 88 
dynamics from kinematic data. As an example, humans can derive a host of information about 89 
individuals from movement patterns, including gender (Pollick et al., 2005), body size (Troje, 90 
2002), sexual orientation (Johnson et al., 2007), emotion (Gross et al., 2012), individual 91 
differences in dancing (Brown et al., 2021), perceived affective states (Edey et al., 2017) and 92 
underlying intention (Becchio et al., 2012). Furthermore, judgements based on how individuals 93 
move can drive decisions such as partner desirability or attractiveness (Neave et al., 2011), 94 
disease diagnosis (Habersack et al., 2022; Heinik et al., 2010), and treatment planning (Ferrante 95 
et al., 2016; Mikolajczyk et al., 2018).  96 

Despite the rapid advent of technologies providing kinematic measurements through a 97 
wide range of techniques, from videos to wearable sensors, we are still limited in how kinematic 98 
data can help interpret individual differences in gait (Porciuncula et al., 2018; Stenum et al., 2021). 99 
Current approaches to comparing biomechanical features or kinematic trajectories quantify 100 
between-group differences or inter-individual similarity but lack sufficient sensitivity to reveal 101 
interpretable differences in individuals’ gaits (Chen et al., 2005; Kettlety et al., 2022; Ries et al., 102 
2014). Inter-joint coordination differs across individuals, as muscular coordination patterns vary 103 
across a variety of motor skills and deficits in individual-specific ways. Indeed, metrics of muscle 104 
coordination in children with cerebral palsy are consistent with clinician judgements of motor 105 
control complexity that predict intervention outcomes (Steele et al., 2015). Recently, supervised 106 
machine learning methods have been used to classify differences in a large sets of gait kinematics 107 
that were labeled by groups or individuals (Halilaj et al., 2018; Ries et al., 2014). However, these 108 
approaches have not modeled the underlying gait dynamics, nor can they discover subtle 109 
differences in gait that are not labeled a priori. 110 

Here we develop a data-driven framework for modeling gait dynamics that represents 111 
multiple individuals in the same latent space. This latent space reveals individual- and group-level 112 
differences in the neuromechanical dynamics of gait. We used kinematic data from multiple 113 
healthy and neurologically impaired individuals, each walking at six different speeds, to train a 114 
recurrent neural network (RNN) that learns gait dynamics. This phenomenological approach infers 115 
complex spatiotemporal dynamics and enables future kinematic predictions to be made based on 116 
current and prior kinematic postures. Once trained, differences in gait dynamics across groups, 117 
individuals, and walking speed were projected onto a common, low-dimensional latent space of 118 
the model parameters. The stride-averaged representation of gait dynamics in the latent space 119 
constitutes a “gait signature” that we use to characterize differences across individuals, groups, 120 
gait speed, and impairment severity. To demonstrate the generalizability of gait dynamics, we 121 
show that interpolating gait signatures to predict gait kinematics at new walking speeds is more 122 
accurate than interpolating the kinematics themselves in healthy individuals. Further, we show 123 
that the low-dimensional basis functions we discovered have biomechanical interpretability in 124 
terms of the inter- and intra-limb coordination patterns that they generate. The dynamical 125 
projections onto each basis function for each trial can be independently driven through the trained 126 
gait dynamics model to reconstruct the kinematics associated with that specific basis function. 127 
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We generated illustrations of the reconstructed joint angle kinematics to visualize and infer what 128 
aspects of gait coordination each subcomponent influences. These subcomponents of gait 129 
coordination can be manipulated independently (i.e., gait sculpting) to infer the relationships 130 
between specific underlying dynamical components and their corresponding kinematic 131 
phenotypes and to identify what specific gait rehabilitation strategies are likely required for 132 
individuals. Finally, our gait dynamics model is generative; it can predict individual-specific time 133 
evolution of kinematics from an initial arbitrary posture (self-driving) once the network is primed 134 
with several gait cycles of the individual's kinematic data. This study establishes a new data-135 
driven framework to quantitatively interpret individual-specific differences in gait dynamics with 136 
the potential to enable discovery in a wide range of gait coordination deficits, contexts and 137 
interventions in humans and other animals.  138 

Results  139 

Gait signatures: a low-dimensional representation of gait dynamics  140 

We used motion capture to collect sagittal-plane kinematic data that consisted of 15 141 
seconds of continuous gait kinematics from bilateral, hip, knee, and ankle joints from 5 able-142 
bodied (AB) participants and 7 stroke survivors (> 6 months post-stroke, gait speeds 0.1 to 0.8 143 
m/s) walking on a treadmill at a range of six different speeds each. Taking inspiration from neural 144 
network models that capture neural dynamics (Pandarinath et al., 2018; Sussillo et al., 2015; Vyas 145 
et al., 2020) and biological systems, we implemented a recurrent neural network (RNN) model to 146 
capture the dynamical properties of gait.  147 

Developing the recurrent neural network (RNN) architecture and training the model 148 

The gait dynamics model was developed in Python using common Python libraries such 149 
as TensorFlow, Keras, Pandas, and NumPy. We developed our code in Google Colab to facilitate 150 
open-source sharing of our dynamic framework, which can be found here: 151 
https://github.com/bermanlabemory/gait_signatures. The model architecture was selected based 152 
on two criteria: 1) minimizing model training and validation loss, and 2) maximizing the similarity 153 
of short-time (single stride) and long-time (multiple strides) self-driven model predictions (termed: 154 
gait signature alignment) (Fig. 1 - figure supplement 1). We evaluated these criteria against 155 
alternative models by varying 2 hyperparameters (number of LSTM units and the lookback time, 156 
see Methods). The selected model architecture is a sequence-to-sequence RNN (Sutskever et 157 
al., 2014) consisting of an input layer, a hidden layer of 512 LSTM units, and an output layer. The 158 
RNN learns a map from time-series kinematic input data (0 to T-1) to kinematics one time-step in 159 
the future (1 to T) for all training trials (Fig. 1A). The model was trained until training and validation 160 
error converged and stabilized around the same point (degrees < 0.75°).  Thus, the model 161 
successfully learns the underlying dynamics of gait (Fig. 1 - figure supplement 2). The model’s 162 
internal states capture trial-specific dynamics predicting the time evolution of joint kinematics; 163 
activation coefficients (H) and memory cell states (C) and are tuned based on kinematic inputs. 164 
Kinematic data was input in multivariate format, not concatenated (Horst et al., 2019; 165 
Santhiranayagam et al., 2015). In brief, our RNN model was designed to capture short and long-166 
term gait dependencies in time (Ahamed et al., 2021; Hausdorff et al., 1996) as well as inter-and 167 
intra-limb coordination over time, uncovering features of gait that were not previously targeted or 168 
used in gait analysis. To verify whether our model was generalizable, we conducted leave-one-169 
out cross validation where 12 different models were trained leaving a single individual’s 6 trials 170 
on each model run (Fig. 1 - figure supplement 3).  Stroke-survivors are known for having 171 
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neurological impairments that result in heterogeneous gait dysfunction that are not fully 172 
understood; thus, we anticipate that our gait dynamics model will capture and shed light on these 173 
individual-specific deficits in gait coordination, identify similar coordination strategies or deficits 174 
amongst our stroke cohort, and allow us to compare these different gait dysfunctions to the able-175 
bodied ‘normative’ gait (controls). 176 

Generating gait signatures 177 

To generate gait signatures, kinematic trajectories from each walking speed trial across 178 
participants were fed as input into the trained neural network and the corresponding internal states 179 
(H and C parameters, see above) were extracted (Fig.1A). The internal activations prescribe the 180 
spatial and temporal dependencies generating the input kinematics. The resulting time-series of 181 
1024 internal states (512 H, 512 C parameters) were dimensionally reduced using Principal 182 
Components Analysis (PCA) and phase averaged (Revzen and Guckenheimer, 2008). Phase 183 
averaging is applicable here, as the underlying gait dynamics are periodic, and the translation 184 
from time to a phase between 0 and 2𝜋 allows us to describe all internal state dynamics in a 185 
speed-independent manner. 186 

 187 

Figure 1: Pipeline figure outlining the steps to generating individual-specific gait signatures. Continuous, multi-188 
joint kinematics from multiple individuals are fed into the RNN model as input data and the model is trained sequence-189 
to-sequence to predict one-step time shifted output kinematics. High dimensional internal parameter (H and C) time 190 
traces per individual are extracted and principal component analysis was applied to reduce the dimensionality of the 191 
data to form individual gait signatures (A). 3D time trace visualizations of 3 representative individuals (able-bodied 192 
(blue), high-functioning (red), low-functioning stroke (orange)) of the 1st 3 dominant principal component contributions 193 
(B, left). 3D projections of the 6-D gait signatures using multi-dimensional scaling (MDS) reveal different gait dynamics 194 
amongst the three gait groups: able-bodied (blue), high-functioning (red) and low-functioning (orange) stroke survivors 195 
(B, right). The size of the circles represents the individual’s trial speed (i.e., the smallest circles represent an individual’s 196 
slowest gait speed, and the size of the circles increase with gait speed).   197 

The first 6 Principal Components (PCs) explain ~77% of the variance in gait dynamics 198 
(Fig. 1 - figure supplement 4), allowing us to focus on these modes for our visualization and 199 
analysis. The time-varying contributions of the first 3 dominant PCs were plotted in 3D for 3 200 
representative individuals - able-bodied adults, high-functioning stroke (self-selected (SS) walking 201 
speed > 0.4m/s) and low-functioning stroke (SS speed < 0.4m/s) - highlighting that the gait 202 
dynamics between all 3 individuals are different (Fig. 1B, left). The gait dynamics of the high-203 
functioning stroke survivor (red), while spatially closer to the able-bodied individual (blue) than 204 
the low-functioning stroke survivor (orange), show observable differences in its dynamical 205 
trajectory between to the two individuals. To determine whether some structure exists amongst 206 
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the three different subject groups, all the 6-dimensional gait signatures were projected onto a 3D 207 
map using Multidimensional scaling (MDS) (Cox and Cox, 2008) to visualize relative distances 208 
between all gait signatures (Fig.1B, right). The locations of the 3 MDS projections of the 3 209 
representative individuals are not arbitrary, as they belong to clusters of gait signatures of the 210 
same gait group. Thus, gait signatures preserve key clinically relevant features of the underlying 211 
gait dynamics, independent of the individual or speed. 212 

Gait signatures reveal that individual-specific differences in dynamics are favored in the 213 
gait representation, over differences in gait speed 214 

Gait signatures of individuals’ 6 speed trials within both cohorts (healthy and stroke) are 215 
tightly grouped together. Gait signatures represent individual-specific dynamics; the unimpaired 216 
cohort exhibit a stereotyped low-dimensional structure across individuals in the able-bodied 217 
cohort (Fig. 2A, i left) vs. the impaired cohort, which display much more variable (i.e., highly 218 
individualized) low-dimensional representations (Fig. 2A, i right). Because the data are phase 219 
averaged over the gait cycle, we demonstrate that gait signature trajectories are well-aligned with 220 
the four gait phases (leg 1 swing, leg 1 stance, leg 2 swing, leg 2 stance), enabling phase-specific 221 
comparisons of differences in gait dynamics. The unimpaired group showed similar structure 222 
across the four gait events (Fig. 2A, ii, left), whereas there was much more variability within the 223 
impaired group (Fig. 2A, ii, right), revealing individual-specific differences within and across 224 
distinct parts of the gait cycle. The similarity between gait signatures was computed and visualized 225 
in a dimensionally reduced gait map space using MDS and colored according to the different 226 
individuals in the dataset (Fig. 2B, i). The unimpaired group form a cluster in the gait map, showing 227 
that individuals in the unimpaired group are distinct from the impaired group. Stroke-survivors 228 
occupy distinct positions from other impaired individuals’ sub-clusters in the gait space that 229 
highlight the well-established but poorly understood heterogeneity in gait deficits in the stroke 230 
cohort. Furthermore, individual-specific gait signatures change slightly as individuals walk faster 231 
than their self-selected pace (Fig. 2B, i). However, these within-subject speed-induced changes 232 
are much smaller than between-individual difference in gait signatures. We calculated the 233 
Euclidean distance between individuals’ self-selected speed trial gait signature and the calculated 234 
able-bodied centroid (Fig. 2B, i black square) and the results shown on the plot to the right reveal 235 
that low-functioning stroke survivors (self-selected gait speed < 0.4 m/s) are further away from 236 
the able-bodied cluster than the high-functioning stroke survivors. Showing the validity of our 237 
approach, low-functioning stroke survivors are less dynamically similar to AB than higher 238 
functioning stroke survivors.  239 

Gait speed does not appear to strongly influence the differences in dynamics between 240 
individuals’ gaits (note that the range of gait speeds for each participant may not have been wide 241 
enough to elicit major differences in their overall dynamics). Overall, as expected, the unimpaired 242 
group walked at faster speeds than the impaired group (Fig. 2B, ii). Individuals in the able-bodied 243 
cluster walk at a range of different speeds, but individual gait signatures still cluster tightly 244 
together. Post-stroke individuals who walk at similar slower speeds, however, maintain their own 245 
distinct individualized groupings. Thus, individuals’ characteristic gait signatures were preserved 246 
across their range of walking speeds and were not grouped based on absolute walking speed. 247 
For example, several clinically similar post-stroke individuals (similar overground walking speed 248 
and Fugl-Meyer score (Fugl-Meyer et al., 1975) have very different gait signatures that remain 249 
recognizable across a range of gait speeds (Fig. 2). Furthermore, when used to distinguish 250 
between gait groups and identify individuals, gait signatures perform similarly to a when using a 251 
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set of 26 commonly used discrete variables (Fig. 2 - figure supplement 1). Gait signatures also 252 
perform better than continuous kinematics and joint velocities at these same tasks (Fig. 2 - figure 253 
supplement 1). These results serve as a positive control, as researchers previously could 254 
distinguish gait groups by building a classifier based on important subjectively selected discrete 255 
variables. Here, we have created a dynamical representation that can distinguish groups with 256 
similar accuracy. It is not surprising that the continuous kinematics performed worse than the 257 
RNN gait signatures (which were developed from these very same data), as the RNN model used 258 
the data to encode important time-varying changes in the kinematics, allowing for more 259 
information to be extracted. Thus, parameterizing the evolution of individuals’ walking patterns 260 
into a common subspace allows for a more holistic, less biased, and straightforward analysis of 261 
primarily their overall differences in gait dynamics, inter- and intra-limb coordination over any 262 
differences attributed to absolute gait speed. Gait signatures can allow gait researchers to study 263 
or analyze the dynamical differences underlying impairment independently from gait speed, 264 
facilitating analysis of dynamics between individuals who may not be capable of walking at the 265 
same speeds and allowing investigation of changes in the underlying mechanism of gait changes 266 
under different conditions (walking speed, gait rehabilitation intervention, age etc.) 267 

 268 

Figure 2: Gait signatures reveal highly individualized low dimensional representations of gait dynamics 269 
irrespective of absolute gait speed.  A) 3D unimpaired (left) and impaired (right) gait signatures colored by i) individual 270 
and ii) gait phase. Gait signatures are grouped together according to individuals within both cohorts (same hues of blue 271 
cluster together for unimpaired (i, left) and similarly the same hues of red cluster in the impaired cohort (i, right)). In our 272 
convention the right leg of all unimpaired individuals was assigned to be the paretic leg and left leg the non-paretic leg. 273 
Impaired individuals can have either left or right leg paresis.  Unimpaired gait signatures reveal a similar looped 274 
structure across the four gait phases that occur during a gait cycle (leg 1 swing, leg 1 stance, leg 2 swing, leg 2 stance) 275 
(ii, left) whereas impaired signatures showed individual-specific differences across the four phases and were more 276 
variable (ii, right). B) 3D multidimensional scaling applied to all gait signatures shows the pronounced separation 277 
between unimpaired (blue hues in left section of map) and impaired (red hues in right section of map) gait dynamics 278 
(i). Impaired signatures (red hues) are located further away from the centroid of all unimpaired gait signatures (black 279 
square), indicating that they are less dynamically similar to the unimpaired individuals. The smallest circles represent 280 
an individual’s self-selected walking speed trial and larger circles correspond to the faster speed trials. Low-functioning 281 
stroke survivors (encapsulated in green; based on self-selected gait speed < 0.4m/s) are located furthest away (largest 282 
Euclidean distances) from the unimpaired centroid (i). Gait speed does not appear to strongly influence the differences 283 
in dynamics between individuals as similar speed gait signatures are in different regions of the gait map (ii). Particularly, 284 
gait speed does not explain the heterogeneity in low-functioning stroke survivors’ gait dynamics.  285 
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Low-functioning stroke-survivors are less dynamically analogous to able-bodied and more 286 
dynamically variable compared to high-functioning stroke-survivors.  287 

Clinically, gait rehabilitation researchers use gait speed as a primary quantitative indicator 288 
of gait impairment (Awad et al., 2015; Hornby et al., 2020; Jonkers et al., 2009). While this coarse 289 
metric gives an overall value or number to one’s overall gait function, it does not identify the 290 
specific dysfunctions or impairments underlying the individuals’ gait. To derive more precise 291 
measures or indicators of gait impairment, we anticipated that utilizing this gait signatures 292 
framework, we would be able to capture both subtle and obvious differences in impaired gait. In 293 
the clinic, stroke survivors are typically segmented into subgroups according to their self-selected 294 
walking speeds: high-functioning stroke survivors who typically maintain a self-selected (SS) 295 
walking speed above 0.4m/s and low-functioning stroke survivors who adopt SS walking speeds 296 
less than or equal to 0.4m/s (Bowden et al., 2008). It is assumed that low-functioning stroke 297 
survivors are more impaired and thus adopt slower walking speeds to be able to navigate the 298 
environment safely. Gait deficits of stroke survivors within either sub-group are heterogeneous 299 
across individuals and include different impairments such as foot drop, reduced paretic push-off 300 
during late stance, limited initial heel contact during early stance, as well as further compensatory 301 
gait strategies such as hip circumduction and hip hiking. We expected that higher functioning 302 
individuals would have less severe impairments and would be more dynamically analogous to 303 
able-bodied individuals, whereas low-functioning stroke survivors would exhibit highly variable 304 
impairments from each other and be even less dynamically analogous to able-bodied dynamics 305 
compared to higher functioning stroke survivors.  306 

To better visualize all developed individuals' gait signatures across their 6 different speed 307 
trials in our dataset, we again used MDS to project the 6D gait signatures to 3D. This mapping 308 
allows us to visualize the relative locations of individuals in comparison to all the other gait 309 
signatures to gain insights on how dynamically similar they are from one another. A 3D MDS gait 310 
map of all gait signatures reveals that able-bodied and high-functioning stroke survivors are 311 
located near each other, whereas low-functioning stroke survivors are farther and more dispersed, 312 
and form distinct clusters in different regions of the map (Fig. 3A). Sub-group level analysis 313 
reveals significant differences in the Euclidean distance metric (distance between each gait 314 
signature and the able-bodied centroid) between the able-bodied group and the low- and high-315 
functioning stroke survivor groups, respectively (Fig. 3B). Able-bodied gait signatures are located 316 
closest to the centroid, followed by high-functioning and low-functioning stroke survivors (Fig. 3B). 317 
The within-group dispersion of gait dynamics for the low- and high- functioning stroke survivors 318 
was calculated based on the radius of a hypersphere enclosing 95% of the groups’ gait signatures. 319 
Using a leave-one-out sample with replacement method, multiple within-group dispersion 320 
calculations were conducted for each group and the average within-group dispersion was 321 
expressed alongside the standard error in Fig. 3C. The 95th percent radius was significantly higher 322 
in the low-functioning stroke-survivors gait signatures compared to the high-functioning, 323 
highlighting that low-functioning gait signatures were more dispersed from each other (higher 324 
inter-individual variability) and the RNN model can capture these individual-specific gait deficits 325 
in individuals with more severe gait impairment.  326 
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 327 

Figure 3: Comparison of gait signatures across three gait subgroups: able-bodied (AB), high functioning (HF) 328 
and low functioning (LF). A) 3D gait map using multidimensional scaling highlights the relative distances between AB 329 
(blue), HF (red) and LF (orange) stroke survivors. LF stroke survivors are less clustered and occupy distinct regions of 330 
the map away from the able-bodied centroid (black square). B) Gait dynamics similarity based on Euclidean distance 331 
between AB centroid and each participant, showing larger distances within the low-versus high-functioning groups. C) 332 
Within-group dispersion of gait signatures based on the radius of a hypersphere enclosing 95% of each group’s gait 333 
signature reveals more dispersed gait signatures in low- versus high-functioning stroke survivors, highlighting the 334 
potential of gait signatures to capture individual differences in more severe gait impairments. 335 

Gait signatures are biomechanically interpretable 336 

While Principal Component trajectories and low-dimensional maps provide one way to 337 
compare the overall dynamics between individuals and groups, it remains to be seen what 338 
information the independent components of the 6D gait signature represent biomechanically. The 339 
contributions of each principal component (PC) to a gait signature fluctuates over the gait cycle, 340 
shown for an exemplar able-bodied, one high-functioning stroke survivor, and one low-functioning 341 
stroke survivor in Fig. 4A. Superimposed individual stride-averaged PC projections from these 3 342 
individuals (Fig. 4B) highlight the specific differences in each PC. For PC1, both able-bodied and 343 
high-functioning stroke survivor traces are within the able-bodied 95% confidence interval, 344 
whereas the low-functioning stroke survivor is outside of these bounds around the middle of the 345 
gait cycle. For PC2, some regions of the low and high-functioning stroke survivor can be found 346 
outside of the confidence interval, however the entirety of the PC3 projection of the low-347 
functioning stroke survivor is found outside of interval (vertically shifted). Given the generative 348 
nature of our RNN-based model, a specified number of the loadings on the PCs can be driven 349 
through the trained RNN model to reconstruct the corresponding kinematics. Thus, to interpret 350 
the individual PC components, the internal parameters corresponding to each isolated PC were 351 
driven through the gait dynamics model, generating gait predictions, i.e., a multi-joint coordination 352 
pattern and their temporal evolution over the gait cycle that can be visualized in an animation or 353 
gait movie. Stick figure snapshots (7 equally spaced samples of 100 frames) show that PC1 354 
encodes dynamics driving hip flexion and extension, PC2 encodes dynamics driving knee flexion 355 
and extension and PC3 encodes dynamics driving primarily postural coordination (trunk location 356 
relative to joints) (Fig. 4C, Fig. 4 - video supplements 1-4). This framework can potentially allow 357 
for the identification and targeting of individual-specific gait deficits, informing the tailoring of 358 
precision rehabilitation strategies. 359 
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 360 
Figure 4: Biomechanical interpretation of gait signatures. A) Gait signatures reveal different gait dynamics between 361 
exemplar AB, low-and high-functioning stroke survivors. B) The loadings on each principal component (PC), e.g., the 362 
contributions of each PC vary over the gait cycle and can be compared to the AB 95 % confidence interval (gray). C) 363 
Each PC generates specific multi-joint gait coordination patterns when used to drive the gait model, enabling 364 
biomechanical interpretation of gait deficits and effects of treatment.   365 

The gait dynamics model generalizes to unmeasured speeds 366 

Our gait signature model can capture and predict nonlinear changes in dynamics in 367 
response to speed in cases where interpolation of kinematics may fail. We trained a different gait 368 
dynamics model using only 15s of data of the 2 fastest and 2 slowest walking speeds of each 369 
subject. Weighted averages of gait signatures from an individual walking at these four different 370 
gait speeds can be used to generate multi-joint kinematic trajectories that predict data from a gait 371 
speed that was not used to train the model (Fig. 5). Predicted kinematics from interpolation of gait 372 
signatures across the four speeds resemble the measured kinematic reference more accurately 373 
than do the kinematics generated from interpolating gait kinematics, shown for an exemplary AB 374 
individual (Fig. 5A) and low-functioning stroke survivor (Fig. 5B). Kinematic prediction from 375 
interpolation of dynamics did considerably better than interpolating kinematics directly for the 376 
exemplary low-functioning stroke survivor shown in Fig. 5B, indicating that interpolating gait 377 
signatures capture nonlinear (non-monotonic) changes in kinematics between speeds. The 378 
kinematic output of the interpolated kinematics follows that of the fast speed in the paretic hip 379 
closely but does not resemble the measured kinematic reference waveforms for the paretic knee 380 
or ankle angles. In some cases where interpolation of kinematics fails, the averaged dynamics do 381 
a better job at predicting kinematic trajectories at unseen speeds. Group level analyses show that 382 
the R2 values between the measured and predicted kinematics from interpolated gait dynamics 383 
are significantly higher (Wilcoxon paired signed rank test) than interpolating kinematics within the 384 
able-bodied cohort (Fig. 5C), but not for stroke (Fig. 5D). In general, averaging gait dynamics 385 
produced less variable R2 values and less R2 outliers than averaging kinematics in both the able-386 
bodied (Fig. 5C) and stroke survivors (Fig. 5D). The range of R2 values in the able-bodied cohort 387 
for averaged dynamics was -0.20 to 1.00 compared to –1.30 to 0.98 in averaged kinematics 388 
whereas the range of R2 values in the stroke cohort for averaged dynamics was 0.46 to 1.00 389 
compared to -0.50 to 1.00 in averaged kinematics. Two low-functioning stroke survivors show 390 
higher R2 values of their hip, knee and ankle kinematic traces when interpolating kinematics vs. 391 
dynamics. Post hoc analysis revealed that these two stroke survivors (ST4 and ST2) were furthest 392 
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away from the able-bodied centroid (least dynamically similar to able-bodied) as shown in Fig. 393 
2B, i. These results suggest that the RNN largely captures more stereotyped able-bodied 394 
dynamics and has a harder time learning the dynamics from more variable stroke individuals, 395 
especially those that deviate furthest from able-bodied. Our small sample size also limits the 396 
amount of data the RNN sees for each diverse type of stroke dynamics. Thus, with a larger stroke 397 
patient sample size and longer trials, the RNN may be able to make better kinematic predictions 398 
of lower-functioning stroke survivors. Moreover, this result highlights the utility in predicting 399 
kinematics in unseen conditions which in contrast cannot be made using discrete biomechanical 400 
or clinical metrics, nor with current biophysical models. 401 

 402 

Figure 5: Data-driven gait dynamics model predicts non-linear changes in joint kinematics with gait speed. Gait 403 
predictions of joint kinematics (green) at intermediate gait speeds not used in model training were generated by 404 
interpolating gait signatures between slow (dashed grey) and fast speeds (dashed black) lines and using them to drive 405 
the gait model. Interpolated kinematics from gait dynamics (green) and interpolated directly from kinematics (blue) were 406 
compared to the measured reference kinematics (black solid). A) Predictions in an exemplar AB participant are more 407 
accurate when interpolating gait signatures compared to interpolating gait kinematics across speeds. B) In an exemplar 408 
low-functioning stroke survivor, interpolated gait signatures predict nonlinear changes in kinematics better at 409 
intermediate speeds than interpolated gait kinematics. Averaging the kinematics fail in this case where there are larger 410 
differences between the slow and fast speed paretic kinematics; the averaged kinematics (blue) follow the fast speed 411 
paretic hip kinematics whereas the other angles do not reflect waveforms that resemble either the fast or slow speed. 412 
The gait model can therefore predict movement reasonably well when interpolating between tested speeds. There is a 413 
statistically significant difference between group level R2 comparisons (kinematics generated from interpolated 414 
dynamics vs interpolated kinematics) in the able-bodied (C) but not in stroke (D) cohorts. However, the range of R2 415 
values are larger in both able-bodied and stroke kinematic predictions resulting from interpolated kinematics (-1.30-416 
0.98, -0.50-1.00 respectively) vs. predicted from interpolated gait dynamics (-0.20-1.00,0.46-1.00 respectively). Thus, 417 
while the R2 values may not improve on average for the stroke survivors, the model’s performance is more robust 418 
overall. 419 

Gait sculpting: manipulating the PC components of an individual’s gait signature identifies 420 
specific coordination deficits in stroke survivors 421 

Previously, we showed that we can leverage our model to reconstruct the kinematics of 422 
healthy PC projections of the gait signature to gain insight into their independent biomechanical 423 
interpretations. However, identifying and interpreting the biomechanics related to impaired PC 424 
dynamics of stroke-survivors' gait would prove to be even more beneficial, as these dynamics can 425 
potentially serve as rehabilitation targets when designing tailored gait intervention/strategies for 426 
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individuals. Here we present an example of how we use gait signatures to identify specific 427 
biomechanical or coordination targets in specific stroke survivors. Specifically, we utilize our 428 
finding that the phase-varying contributions of the 6 principal projections of the gait signature differ 429 
in individual-specific manners (Fig. 6A). For example, AB2’s 6 PC contributions all lie within the 430 
95% confidence interval of all able-bodied individuals. ST4 primarily shows major deviation from 431 
AB in PC 3 (located entirely above the AB confidence interval), impaired dynamics during paretic 432 
swing in PC 4 and overall irregular shapes in PC 5 and 6. ST2’s PC3 is largely within the AB 433 
confidence interval, however PC 4’s paretic swing shows major deviation, their PC 5 contribution 434 
is shifted below the AB confidence interval and PC 6 shows an irregular shape. ST3’s PC5 435 
projection lies below the AB confidence interval and PC 6 projection is irregularly shaped 436 
compared to AB. To validate our finding that suggested that PC 3 primarily influences hip flexion 437 
or extension, we exchanged AB2’s healthy PC1 with that of ST4 (Fig. 6A, orange boxes and 438 
arrow) and we observed if and how AB2’s original hip joint kinematics (Fig. 6B, orange box, black 439 
trace) deviated (Fig. 6B, orange box, red dashed trace, Fig. 6 - video supplement 1). To gain 440 
further insight into how the other PC deviations manifest in movement, we manipulated the PC3 441 
projection of AB2 by replacing it with that of ST4 (Fig. 6A, brown boxes and arrow). The kinematic 442 
reconstruction from this manipulation (Fig. 6B, brown box, red dashed trace, Fig. 6 - video 443 
supplement 2) shows a vertical shift downwards for bilateral hip angles and the non-paretic knee. 444 
The vertical shifts in the hip flexion/extension angles suggest a major difference in this individual’s 445 
posture (perhaps stroke individual leaned forward more during gait) compared to able-bodied. We 446 
manipulated AB2’s PC4 projection by replacing it with that of ST2 (Fig. 6A, green boxes and 447 
arrow). This manipulation affected specifically the paretic and non-paretic ankle angles and both 448 
knee joints primarily during the period between non-paretic stance and paretic swing (Fig. 6B, 449 
green box, red dashed trace, Fig. 6 - video supplement 3). This result highlights a coordination 450 
deficit between these specific joint angles and, if targeted accurately, may allow for corrected gait 451 
patterns of this stroke survivor. Conversely, we tested the effects of replacing an impaired PC 452 
projection with a healthy one to observe how gait impairments can potentially be improved. We 453 
replaced ST3’s PC5 with that of AB2 (Fig. 6A, purple boxes and arrow) and observed a substantial 454 
change in the magnitude and shape of bilateral ankle angle trajectories and slight increase in non-455 
paretic knee magnitude (Fig. 6B, purple box, red dashed trace, Fig. 6 - video supplement 4). We 456 
can infer that to make improvements to ST3’s PC5 towards able-bodied or normative kinematics, 457 
rehabilitation focusing on these specific knee and ankle strategies may prove useful.  458 
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 460 

Figure 6: Gait sculpting: interpolating between components of able-bodied and stroke gait dynamics to 461 
visualize anticipated gait improvement. The components of individuals’ gait signatures can be manipulated (gait 462 
sculpting) to understand the relationship between specific underlying dynamics and their corresponding kinematic 463 
phenotype. A) The projection on each of the 1st 6 principal components (PCs) can be observed for a representative 464 
able-bodied (AB2), two low functioning stroke-survivors each having similar self-selected (SS) speeds and Fugl-Meyer 465 
(FM) scores (ST2 & ST4, as denoted in Figure 2) and another low functioning stroke survivor (ST3) who has a higher 466 
FM score and faster SS walking speed. The PC projections are colored according to the 4 gait phases (non-paretic 467 
swing, non-paretic stance, paretic swing, paretic stance). The right leg of the unimpaired individuals was arbitrarily 468 
assigned to be paretic and the left leg, non-paretic for consistency. Colored boxes and arrows (orange, brown, green, 469 
purple) show specific, single PC manipulations, for example, the orange boxes and arrow illustrate that the PC 1 470 
projection of AB2 was replaced with the impaired PC 1 projection from ST4. B) The AB2:ST4 manipulation (orange) 471 
shows how AB2’s original phase averaged kinematics (black trace) was manipulated by ST4’s impaired PC 1 projection 472 
(red dashed traced). ST4’s impaired PC 1 manifests in AB2’s healthy kinematics showing deviation primarily in the hip 473 
kinematics (as suggested in Figure 4 where healthy PC 1 encodes a kinematic subcomponent corresponding to hip 474 
flexion/extension) and some deviation in the ankle angles, especially the paretic ankle. The AB2:ST4 manipulation 475 
(brown) shows how ST4’s impaired PC3 manifests in AB2’s healthy kinematics; we observe a vertical shift downwards 476 
(red trace) of the bilateral hip angles as well as the non-paretic knee. This change in hip flexion highlights that this 477 
impaired PC3 encodes a reduction in the hip flexion angles; pointing to a more crouched gait (trunk is leaning forward 478 
more). The AB2:ST2 manipulation (green) shows replacing AB2’s PC4 projection with ST2’s impaired PC4 dynamics 479 
shows deviation in the knee joints especially during paretic swing, a vertical shift upwards in the paretic ankle angle 480 
kinematics and deviations around the middle of the gait cycle (transition between non-paretic stance and paretic swing) 481 
in the non-paretic ankle kinematics. Alternatively, the AB2:ST3 manipulation (purple) the impaired PC5 in ST3 is 482 
replaced with the healthy PC5 projection from AB2 resulting in slight increase in non-paretic knee magnitude and 483 
reduced amplitude of paretic and non-paretic ankle flexion. The result of this manipulation points to potential predicted 484 
improvements (or deviations) that can occur when aiming to mimic PC5 healthy dynamics in this stroke survivor allowing 485 
offline in-silico testing of potential avenues for gait rehabilitation for this stroke survivor.  486 

Self-driven signatures: Our gait dynamics model revealed robustness of gait predictions 487 
establishing the utility of gait signatures in precision medicine 488 

The ability to predict future kinematics based on measured data is key to rapid, virtual 489 
design of personalized interventions. We demonstrate that the recurrent neural network model of 490 
gait dynamics, once primed with several gait cycles of data from either able-bodied or stroke 491 
participants, can predict future joint angle trajectories (Fig. 7). Once the network is primed, an 492 
initial posture is presented (initial condition, denoted by blue vertical bar) after which the model 493 
self-drives i.e., predicts the general shape of future kinematics in a feedforward manner (without 494 
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referencing previous measured data points) in an able-bodied (Fig. 7A, i, left) and stroke individual 495 
(Fig. 7B, ii, left). A smooth transition is seen between the previously measured gait cycle (green) 496 
and the self-driven cycle (red trace) for both AB and stroke (Fig. 7A, i, right, Fig. 7A, ii, right 497 
respectively). 498 

To verify that the model was not generating a gait cycle prediction entirely by chance, we 499 
calculated the Euclidean distance between the kinematics of the predicted (self-driven) gait cycle 500 
and the kinematics from each of the measured gait cycles. We expect that if the model was indeed 501 
predicting future gait cycles (more accurately than chance), the Euclidean distance between the 502 
predicted and corresponding measured kinematics would be lower than over 50% of the other 503 
distances in the distribution. We found that the distance between the able-bodied predicted gait 504 
cycle and corresponding measured kinematic cycle was lower than 79% of the distances of the 505 
other gait cycles (Fig. 7A, ii) whereas in the stroke survivor the respective distance was only lower 506 
than 40% (Fig. 7B, ii) suggesting the model is less able to accurately predict future kinematics in 507 
stroke gait. To calculate the Euclidean distances between the gait cycles, we need to normalize 508 
each gait cycle to the period of the self-driven cycle. To avoid this potential bias, we also 509 
performed a comparison using a metric that was not manipulated in time – gait cycle duration. 510 
After priming the model, we presented the model with the first posture of the trial and ran the 511 
network forward in self-driving mode for the remainder of the trial length (15 seconds). Able-512 
bodied self-driven predicted kinematics resembled the reference kinematics closely (Fig. 7C, i, 513 
top plot) whereas stroke self-driven predicted kinematics matched the first gait cycle closely but 514 
soon converged to patterns reflecting able-bodied kinematics (Fig. 7C, ii, top plot). The gait cycle 515 
duration of the first few cycles of the self-driven kinematics match those of the measured 516 
kinematics (blue dots located close to the y=x line) in both the exemplary able-bodied (Fig. 7C, i, 517 
bottom plot) and stroke individual shown (Fig. 7C, ii, bottom plot), however kinematics soon 518 
diverged to shorter and relatively consistent gait cycle durations (blue dots appearing almost 519 
horizontal in the plots) result in both cases. The model may preferentially predict able-bodied 520 
kinematics, which were less variable between individuals than were post-stroke kinematics. 521 
These results highlight that the model encodes gait dynamics that can predict kinematics over 522 
short timescales, but the variability and amount of training data may influence predictive power 523 
over long timescales. The potential of the gait dynamics model as a predictive tool provides a 524 
glimpse into the potential future application of our approach for predicting the effects of gait 525 
perturbations, technologies, and treatments, thus reducing time, cost, and participant burden 526 
while facilitating the development of more effective strategies to improve gait.  527 
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 528 

Figure 7: Our trained RNN model can predict the time evolution of kinematics from an initial posture. The trained 529 
gait dynamics model can predict individual-specific time-evolution of gait kinematics from an arbitrary initial posture 530 
(self-driving) in able-bodied (A, i) and stroke (A, ii) once the network is primed with several gait cycles of an individual’s 531 
data (gait cyclex-n(measured), black solid). This predictive ability shows that the model encodes the gait dynamics 532 
underlying movement. Despite inter-cycle kinematic variability, the gait dynamics model can predict the general shape 533 
of the next gait cycle of kinematics (gait cyclex(predicted), red) in an able-bodied individual (A, i) and stroke survivor (A, ii), 534 
however, predicted kinematics (red) show larger deviation from the measured reference gait cycle (gait cyclex(measured), 535 
black dashed) in the stroke survivor.  A smooth transition exists between the measured kinematics from the gait cycle 536 
preceding (gait cyclex-1(measured), green) the self-driven predicted cycle (red). For the representative able-bodied 537 
individual (B, i), the Euclidean distance (deviation) between the predicted gait cycle of kinematics and its respective 538 
measured kinematics (reference) is ~79% lower than the distance between the other gait cycles in the trial; ruling out 539 
that the kinematic predictions are attributed to chance. The deviation (Euclidean distance) of the predicted gait cycle of 540 
stroke (B, ii) kinematics to its reference gait cycle is ~40% lower than the distance between the other gait cycles in the 541 
trial. This suggests that the dynamical model is less able to accurately predict stroke kinematics better than chance. 542 
The dynamical model was first initialized with all the trial’s kinematics data (15 seconds) (black trace) after which the 543 
trial’s initial posture was presented to the model to self-drive kinematics (red trace) in feedforward mode for 15 seconds 544 
(C, i, top plot). The duration of each gait cycle from the measured kinematics is not well encoded by the dynamical 545 
model; gait cycle durations of the predicted kinematics are typically underestimated in both able-bodied (C, i, bottom 546 
plot) and stroke (C, ii, bottom plot) (to a larger degree) in self-driving mode and as such deviate from the y=x reference 547 
line (black).  548 

Discussion  549 

Summary 550 

Here we establish a data-driven framework for comparing and predicting individual-551 
specific locomotor patterns without needing to construct physiologically based mechanistic 552 
models. As an initial proof of concept, complex neuromechanical gait dynamics were modeled 553 
using a relatively simple recurrent neural network that captures the rules by which joint kinematics 554 
during gait transition from one time point to the next. Because the network was trained on multiple 555 
healthy and impaired individuals walking at several speeds, its internal parameters provide a basis 556 
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for comparing, interpreting, and predicting gait dynamics. Gait signatures further capture 557 
coordination between joints and limbs without the need for pre-selecting gait features that may 558 
introduce bias and ignore the continuous nature of gait. We show that individuals have little 559 
variance in gait dynamics across speeds, leading to the individual-specific “gait signature” concept 560 
and enabling comparisons between individuals moving at different speeds. Across stroke 561 
survivors, we found greater heterogeneity in low-functioning individuals who exhibited disparate 562 
gait dynamics despite similar clinical metrics, highlighting the potential utility of gait signatures in 563 
providing more sensitive diagnoses to personalize therapies. Gait signatures provide a predictive 564 
simulation framework for sculpting gait dynamics to understand coordination deficits and predict 565 
kinematics, potentially forecasting the effects of rehabilitative devices or treatments. Finally, the 566 
gait signatures methodology can be readily applied to other periodic motions across species and 567 
across conditions that alter movement and may be a powerful adjunct to modern experimental 568 
methods aimed at understanding the neural mechanisms underlying movement. 569 

Computational framework captures the neuromechanical dynamics of walking  570 

Using a data driven modeling approach enabled us to learn the underlying gait dynamics 571 
based on data rather than constructing a neuromechanical gait model based on first principles. 572 
Data-driven approaches in gait have not focused on gait dynamics but have solved tasks based 573 
on unique features in multi-dimensional gait data such as classifying gait based on pathologies 574 
(Mannini et al., 2016) or conditions such as fatigue and non-fatigue (Zhang et al., 2014); 575 
identifying gait events (e.g., initial contact, loading response (Aung et al., 2013; Castano-Pino et 576 
al., 2020; Chia Bejarano et al., 2015); and discriminating individuals (Barton et al., 2012; Horst et 577 
al., 2019)). Gait dynamics have typically been described though neuromusculoskeletal models 578 
based on physical principles focusing on musculoskeletal mechanics, (De Groote and Falisse, 579 
2021; Hainisch et al., 2021) but they lack adequate representations of the neural systems that 580 
contribute to the resulting movement patterns, particularly in neurological impairments such as 581 
stroke (Pitto et al., 2019b). Machine learning methods to capture dynamics have been used 582 
across physics, engineering, and neuroscience to learn the dynamics underlying complex 583 
systems when the governing equations are unknown (Bongard and Lipson, 2007; Pandarinath et 584 
al., 2018; Sanchez-Gonzalez et al., 2020). Recently, machine learning models have been used 585 
in human gait to predict continuous kinetic variables such as ground-reaction forces (Alcantara et 586 
al., 2022) or joint torque (Camargo et al., 2022; Giarmatzis et al., 2020) based on kinematic data. 587 
Dynamical machine learning models have also been used to encode gait dynamics, including 588 
responses to perturbations or assistive devices, but their model structure did not enable 589 
comparisons between individuals (Berrueta et al., 2019; Drnach et al., 2019; Maus et al., 2015; 590 
Rosenberg et al., 2020; Wang and Srinivasan, 2013). Here, our RNN-based gait dynamics model 591 
provides a means to capture the rules underlying continuous, multi-joint coordination between 592 
bilateral lower limb joints, and how they evolve over time. Accordingly, we do not explicitly capture 593 
mechanical dynamics (i.e., the relationship motion and force), but the effects of force interactions 594 
within the body and environment and implicitly represented in how multi-joint kinematics evolve 595 
over time, with the network parameters and the internal states at each time point determining the 596 
output kinematics.  597 

As gait arises from complex interactions between the nervous system and the 598 
musculoskeletal system that are not easily modeled from first principles, a data-driven approach 599 
provides a powerful framework for capturing and comparing neuromechanical constraints on gait 600 
dynamics. While biomechanical dynamics clearly play a role in movement, the activation of 601 
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muscles by the nervous system enables the body to perform a variety of motor behaviors. 602 
However, the governing spatiotemporal dynamics of neuromuscular signals are poorly 603 
understood, especially in neuro-pathologies such as stroke. During behaviors such as locomotion, 604 
motor patterns can be characterized by the number and structure of motor modules, or muscle 605 
synergies, defining groups of co-activated muscles producing a biomechanical function for gait 606 
(Ting et al., 2015). Similar motor modules are used within individuals across different task 607 
conditions (Chvatal and Ting, 2013; Torres-Oviedo et al., 2006; Torres-Oviedo and Ting, 2010), 608 
and are shaped by learning and disease (Payne et al., 2020; Sawers et al., 2017). Particularly in 609 
post-stroke gait, motor modules appear to constrain motor function. Fewer motor modules are 610 
observed post-stroke with the number of modules correlated to reduced walking speed (Clark et 611 
al., 2010; Shin et al., 2021). Further, different patterns of motor module merging are seen in slower 612 
walking stroke survivors, differentially affecting gait biomechanics in a manner that may 613 
necessitate individualized rehabilitation approaches (Allen et al., 2018). Adding neural constraints 614 
such as motor modules on muscle activations in musculoskeletal simulations improve predictions 615 
of key physiological variables such as joint loading in osteoarthritis (Walter et al., 2014). However, 616 
relating motor modules to kinematic gait patterns post-stroke and in other neurological disorders 617 
has been challenging, likely because the neural constraints are underspecified (Allen et al., 2019; 618 
De Groote et al., 2014; Falisse et al., 2020, 2019; Steele et al., 2019). Our data-driven gait 619 
dynamics model phenomenologically captures the net effects of both neural and mechanical 620 
constraints on gait and can further contribute to an understanding of normal and impaired gait. 621 
Corroborating results from motor module analysis, there were greater differences in gait dynamics 622 
amongst the slowest walking stroke survivors. Since the gait signatures capture spatiotemporal 623 
constraints underlying gait dynamics, they provide a complementary approach to musculoskeletal 624 
simulations. Ultimately, gait signatures may play a complementary role to biophysical simulations, 625 
enabling the relationships between biomechanical principles, neural constraints, and the 626 
emergent gait dynamics to be revealed.  627 

Gait signatures enable holistic comparison of gait dynamics across individuals, speed, 628 
and groups 629 

In contrast to other applications of dynamical machine learning models for gait, we capture 630 
multiple individuals within a single network, enabling comparisons of gait dynamics across groups, 631 
individuals, and gait conditions. Rather than using the network as a black box solely to generate 632 
predictions, we explicitly compare and interpret the model’s internal parameters to identify low-633 
dimensional latent variables representing gait dynamics. To encourage a generalizable data-634 
driven gait dynamics model, we omitted subject and trial condition (gait speed) labels as inputs to 635 
the neural network. Adding input labels might force the RNN to create separable gait models, 636 
whereas our goal was to have the network learn a structure that could be modified parametrically 637 
to represent individual differences in the neuromechanics of walking. Similarly, 638 
neuromusculoskeletal models assume common dynamic principles across individuals, using 639 
parameter variations to represent individual differences (De Groote et al., 2014; Falisse et al., 640 
2020, 2019; Fregly et al., 2007; Meyer et al., 2016). We intentionally designed a relatively simple 641 
RNN architecture (e.g., single layer, linear input/output) as a starting point to recover as much 642 
interpretability as possible, with the awareness that more complexity could be added to the model 643 
architecture (number of hidden layers, number of neurons, etc.) if required to fit a given data set 644 
robustly. The representations of gait dynamics that emerge from our model holistically capture 645 
the changes underlying measured kinematics, without being attributable to specific neural or 646 
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biomechanical constraints. The loss of physiological interpretability is counterbalanced by the 647 
holistic approach to representing gait dynamics and explaining gait kinematics features.  648 

Analogous to written signatures, we find that features of individual-specific gait signatures 649 
are largely preserved across walking speeds. Recognizable qualitative features of handwriting 650 
are preserved even as the size of letters changes quantitatively, or if different limbs, or writing 651 
instruments are used (Bernshteĭn, 1967). Similarly, it is well known that individuals can be 652 
recognized based on how they move or walk (Beer et al., 2000; Meyer et al., 2016; Sánchez et 653 
al., 2018; Troje, 2002; Zajac et al., 2002), even if joint angle excursions are similar. We show that 654 
gait dynamics are more similar within individuals across speeds than between individuals, leading 655 
to the concept of the gait signature. In contrast, gait kinetics and kinematics vary characteristically 656 
across speeds, such that they cannot be directly compared across speeds (van Hedel et al., 657 
2006). The relatively small changes in gait signatures across speeds suggest that the signatures 658 
reflect changes in the spatiotemporal relationships between joint kinematics, rather than 659 
quantitative changes in their magnitude. As such, gait signatures appear to encode individual-660 
specific constraints of walking, making it possible to compare gait either within or between 661 
individuals walking at different speeds.  662 

Gait signatures characterize the high inter-individual variability in gait impairment amongst 663 
stroke survivors beyond overall gait function explained by clinical gait metrics. This heterogeneity 664 
is a direct reflection of the wide range of impairments in stroke survivors, including muscle 665 
weakness, impaired coordination, spasticity, abnormal synergistic activation (muscles not 666 
independently coordinated), and compensatory motion (Chen et al., 2005; Jonkers et al., 2009; 667 
Little et al., 2018). We found that higher-functioning stroke survivors were more dynamically 668 
similar to each other, whereas lower functioning stroke survivors were more dispersed. In fact, 669 
two low-functioning stroke survivors with similar clinical metrics (Fugl Meyer score and gait speed) 670 
had quite different gait signatures. As such, gait signatures have the potential to provide insights 671 
into individual differences in gait dynamics that are simply not captured by clinical metric such as 672 
gait speed. Moreover, in contrast to higher-functioning stroke survivors who share similar gait 673 
dynamics, lower-functioning stroke survivors may require more individuals individualized 674 
rehabilitation approaches targeting specific aspects of gait dysfunction. Further gait signatures do 675 
not require a priori selection of which gait variables to compare (Patterson et al., 2008; Rinaldi 676 
and Monaco, 2013; Schutte et al., 2000; Wonsetler and Bowden, 2017). As such gait signatures 677 
provide a powerful, holistic approach to enhance the specificity and precision of gait diagnosis 678 
and treatment. This framework can potentially extend to other diseases, disorders, injury, etc. to 679 
gain further insight into individuals' specific impairments and uncover specific targets towards 680 
developing targeted therapies for individuals. 681 

Gait signatures enable biomechanical interpretation and manipulation 682 

Our gait dynamics model enables biomechanical interpretation of gait signatures and 683 
exploring “what if” scenarios to sculpt desirable gait dynamics. Gait signatures are based on 684 
principal components (PCs) of the gait model internal states, where the weightings on each PC 685 
vary over the gait cycle. The model parameters can be prescribed over the gait cycle, resulting in 686 
the predicted kinematic outputs (i.e., joint angles). The gait signature PCs and their time-varying 687 
weightings can be individually prescribed in the network as a method to reveal the specific inter- 688 
and intra-limb coordination patterns governed by each PC. Further, any combination of PC’s can 689 
be combined and reweighted to generate new kinematic output patterns. For example, we 690 
interchanged healthy and impaired PCs to gain deeper insight into how specific impaired PCs 691 
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alter healthy gait and vice versa. Further, interpolating gait dynamics can predict gait kinematics 692 
at walking speeds that were not used in the training data. Especially when there was a nonlinear 693 
response in gait kinematics across speeds, interpolation of gait dynamics to predict gait 694 
kinematics performed better than interpolating gait kinematics directly. As such our data driven 695 
gait dynamics model can be used to show how changing select components of the gait signature 696 
alters gait kinematics, providing a potential framework to identify personalized therapeutic targets 697 
for gait rehabilitation. 698 

Gait Signatures enable prediction of future kinematics  699 

Another powerful aspect of our gait signatures framework is its ability to generate future 700 
gait kinematics in the absence of new data. The model is self-driving for able-bodied individuals, 701 
predicting multiple cycles of gait kinematics in the future. However, the ability of the model to 702 
predict future stroke kinematics is limited to approximately one gait cycle in the future; rendering 703 
it promising in applications that provide control signals to rehabilitation devices (e.g., 704 
exoskeletons). Reduced predictive power for the stroke patients can be attributed to our model 705 
architecture’s relative simplicity, a small sample size (7 stroke survivors), and short time series 706 
(15 seconds/ 1500 sample points per trial). These factors should be addressed to improve the 707 
predictive capacity of the model for impaired gait in the future. Additionally, including more 708 
variables besides sagittal plane kinematics (e.g., frontal plane and coronal plane kinematics and 709 
joint forces, may improve learning of the underlying dynamics of gait and increase predictive 710 
capability of our model. 711 

Generalization to other species and rhythmic movements  712 

Because the input to this model are periodic sequences of behaviors, our gait dynamics 713 
framework should generalize to other species that display similar behavioral motions. (e.g., flight, 714 
crawling, walking). Physicists, computational biologists, and other scientists can benefit from this 715 
method by studying the dynamical behavior of species whose neuromechanical models and 716 
physics of complex terrains are difficult to model. This is the first study to our knowledge that uses 717 
a neural network to study the dynamics of gait in an interpretable manner. While much work is left 718 
to be done, we have provided a simplistic, unsupervised framework to discover individual-specific 719 
differences in walking in health and disease in humans. Despite being limited by a small dataset, 720 
we have shown that our model is generalizable to characterizing and predicting kinematics of one 721 
held-out subject using leave one out cross validation (Fig. 1 - figure supplement 3). Key to note, 722 
this methodology relies on having a periodic or quasi-periodic pattern as non-periodic patterns 723 
would not be able to generate a phase and subsequent signature. We also limited our inputs to 724 
gait kinematics, anticipating applications to the proliferation of new measurement modalities for 725 
movement in humans and animals such as wearable sensors and markerless video-based motion 726 
capture (Cao et al., 2019; Mathis et al., 2018; Uhlrich et al., 2022). However, the gait signatures 727 
framework could easily be extended to include other data types (e.g., force, muscle activity, joint 728 
loadings, center of mass dynamics) and experimental conditions (overground walking, 729 
biomechanical constraints, gait interventions, such as exoskeletons, functional electrical 730 
stimulation, or treatment e.g., drugs, optogenetics). Overall, by modeling the dynamics of 731 
individual’s gait based on measured data, we uncovered individual-specific representations of 732 
individuals’ neuromechanical constraints that allows direct comparisons between individuals who 733 
do not walk at the same speed. The gait signatures framework has implications for the diagnosis 734 
of disease, development of future tailored gait therapies or interventions and tracking meaningful 735 
changes in the fundamental neuromechanical mechanism of walking. 736 
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Materials and methods 737 

Human subject participants 738 

To develop dynamical signatures of human gait, we collected data in seven post-stroke 739 
individuals (age = 56 ± 12 years; 2 females; 48 ± 25 months post-stroke; Lower Extremity Fugl-740 
Meyer = 20 ± 4) and five able-bodied (AB) controls (age = 24 ± 4 years; 4 female). All post-stroke 741 
participants experienced a cortical or subcortical ischemic stroke, were able to walk on a treadmill 742 
for one minute without an orthotic device, and exhibited no signs of hemi-neglect, orthopedic 743 
conditions limiting walking, or cerebellar dysfunction. All participants provided informed consent 744 
prior to study participation approved by institutional IRB. 745 

Experimental Design 746 

Participants completed 15-second walking trials at six different speeds, distributed evenly 747 
between and ranging from each participant’s self-selected (SS) speed to the fastest safe and 748 
comfortable speed. Across stroke participants, gait speeds ranged from 0.3-1.6 m/s. Each 749 
participant’s fastest walking speed was determined by progressively increasing the treadmill 750 
speed from the SS speed until the participant could no longer comfortably or safely maintain the 751 
speed for 30 seconds. Participants rested for 1-2 minutes between consecutive gait trials. During 752 
data collection, speed increased from the participant’s SS to their fastest speed (i.e., not 753 
randomized). 754 

Data acquisition  755 

Reflective markers were attached to the trunk, pelvis, and bilateral shank, thigh, and foot 756 
segments (Kesar et al., 2011a). We collected marker position data while participants walked on 757 
a split-belt instrumented treadmill (Bertec Corp., Ohio, USA) using an 8-camera motion analysis 758 
system (Vicon Motion Systems, Ltd., UK). Participants held onto a front handrail and wore an 759 
overhead safety harness that did not support body weight. Marker data were collected at 100 Hz, 760 
and synchronous ground reaction forces were recorded at 2000 Hz and were down sampled to 761 
100Hz using previously established techniques (Kesar et al., 2011b, 2010, 2009). 762 

Data processing  763 

Raw marker position data were labeled, gap-filled, and low-pass filtered in Vicon Nexus. 764 
Labeled marker trajectories and ground reaction force raw analog data were low-pass filtered In 765 
Visual 3D. Gait events (bilateral heel contact and toe-off) were determined using a 20-N vertical 766 
GRF cutoff, and sagittal-plane hip, knee, and ankle joint kinematics were calculated in Visual 3D 767 
(C-Motion Inc., Maryland, USA). 768 

RNN model development 769 

Our goal was to start with a simple RNN to reduce overfitting with too many parameters 770 
and deep layers. We wanted the simplest model capable of learning the dynamics underlying gait 771 
which also preserved interpretability. The simplest recurrent neural network (RNN) model 772 
architecture consisted of one input layer, one hidden layer and one output layer. The hidden layer 773 
was composed of long short-term memory (LSTM) units with a lookback parameter that spaned 774 
at least one gait cycle. Model hyperparameter selection is described in a later paragraph.  775 

 776 
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RNN model training 777 

Model fitting on our selected dataset and architecture was executed on the order of 778 
minutes to tens of minutes, using Keras 3.7.13 and TensorFlow 2.8.2 on Google Colab’s standard 779 
GPU with high-RAM runtime (54.8 gigabytes). The RNN model was trained using bilateral, sagittal-780 
plane, lower-limb joint angles from 5 able-bodied (AB) participants and 7 stroke survivors each 781 
walking on a treadmill at 6 steady speeds, ranging from each participant’s preferred speed to the 782 
fastest safe speed. Our training dataset was input to the RNN in multivariate format (not 783 
concatenated) (Horst et al., 2019; Santhiranayagam et al., 2015).  We trained a sequence-to-784 
sequence RNN with 512 long-short-term memory (LSTM) activations units in the single hidden 785 
layer, capable of using 15 seconds (sample rate of 100 Hz) time-series kinematic input data (0 to 786 
T-1) to predict kinematics one time-step in the future (1 to T) for all training data across individuals 787 
and speeds. Our data was batched according to the number of total trials (N = 72); thus, the LSTM 788 
maintains its internal state while a batch is being processed, after which the internal state can be 789 
maintained or cleared. Because our network retains its internal state from one time step to the 790 
next (i.e., the RNN is stateful), we have fine-grained control over when the internal state of the 791 
LSTM network is reset. The input data from all trials was ‘mini-batched’ into 2 training batches 792 
and 1 validation batch (499 samples each) that were used to update model weights on each model 793 
run (epoch). To format our data into equal length input and output mini batches for training and 794 
account for the output data being a one-time step shifted version of our input data, our lookback 795 
parameter must be one value less than a divisor of the trial length. For example, in our dataset 796 
(1500 sample length trials), a lookback parameter of 499 would result in the first mini batch input 797 
of samples [0:499] which will predict our reference output samples [1:500], our 2nd mini batch input 798 
data would include samples [501:999] and corresponding output [502:1000] and the last mini-799 
batch input of samples [1001: 1499] predicts samples [1002: 1500]. This lookback parameter of 800 
499 allows us to construct 3 mini-batches of shorter input and output data lengths which would 801 
be used to train and validate the RNN model (2:1 training: validation mini batch split). Similarly 802 
with the lookback parameter of 499 (2:1 training: validation mini-batch split) and 749 (1:1 training: 803 
validation split). Mean squared error was used as the LSTM loss function and ADAM as the 804 
optimization algorithm. The model was trained for at least 5000 iterations or until training and 805 
validation error converged (< 0.75°). The training resulted in a sample-specific dynamical model 806 
structure defined by a single set of LSTM network weights (W). The model’s internal states 807 
capture trial-specific dynamics predicting the time evolution of joint kinematics; activation 808 
coefficients (H) and memory cell states (C) and are tuned based on kinematic input. 809 

Model hyperparameter selection 810 

We selected the hyperparameter values of 512 nodes in the LSTM layer and a 499-sample 811 
LSTM lookback length (number of samples preceding the current time point that is used to train 812 
the LSTM) were selected based on training and validation loss, as well as the ability to encode 813 
dynamics over short and long timescales. In two steps, we evaluated all pairs of the following 814 
hyperparameter values: 1024, 512, 256, and 128 LSTM nodes and 749, 499, and 249-sample 815 
lookback parameters. Because RNN performance can change with the parameters used to 816 
initialize the RNN, we fit an RNN gait dynamics model 20 times using random initial parameters, 817 
for each hyperparameter pair. First, we compared model training and validation loss for each 818 
hyperparameter pair: the ‘best’ hyperparameter pair would have low training and validation loss. 819 
The following [node-lookback] pairs were considered the best hyperparameter pairs: 512-499 820 
(MSEtrain = 0.010 ± 0.001 deg2; MSEval = 0.018 ± 0.000 deg2), 256-749 (MSEtrain = 0.010 ± 0.002 821 
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deg2; MSEval = 0.015 ± 0.001 deg2), 256-499 (MSEtrain = 0.010 ± 0.001 deg2; MSEval = 0.017 ± 822 
0.000 deg2). (Fig. 1 - figure supplement 1, A). The training loss was not different between 823 
hyperparameter pairs (p > 0.235). The validation loss differed between all three models (p < 824 
0.001), with the 256-749 model having the lowest validation loss. However, if the differences in 825 
validation loss of less than 0.003 deg2 corresponded to meaningful differences in performance 826 
was unclear. 827 

Our second analysis was, therefore, used to compare the three hyperparameter pairs 828 
deemed best in the prior analysis. Here, we evaluated the models’ abilities to encode the average 829 
dynamical behavior over long timescales (long-time) and the stride-to-stride behavior (short-time). 830 
We defined the best model as the one with the highest long- and short-time performance. The 831 
following analysis was performed for 10 of the 20 random initializations. For long- and short-time 832 
analyses, we created a single set of reference dynamics as done in the manuscript: we performed 833 
one time-step predictions over the full (1500-sample) time-series. This step provided best-case 834 
predictions of the gait dynamics (Fig. 1 - figure supplement 1, B). 835 

Long-time performance: We generated long-time predictions of each trial’s gait signatures (RNN 836 
latent states) by simulating each participant’s gait dynamics forward in time, 1500 samples into 837 
the future. Each simulation was initialized by setting the RNNs’ latent states to those of the last 838 
sample of the trial’s reference dynamics and using the last sample of the trial’s kinematics. We 839 
then phase-averaged both the reference dynamics and the long-time predictions using the same 840 
technique as described in the main manuscript. Long-time performance was defined as the 841 
similarity of the phase-averaged latent states (i.e., the gait signatures) between the reference and 842 
the long-time predictions and was quantified using R2. Note that using R2 as a similarity metric, 843 
rather than the Euclidean distance metric used in the main manuscript, was needed to compare 844 
models with different numbers of nodes. Unlike R2, Euclidean distances are sensitive to the 845 
number of samples used to compare models, which would bias short- and long-time performance 846 
towards models with fewer nodes. Low R2 values between predictions indicates that the learned 847 
dynamics are sufficiently complex to capture instantaneous gait dynamics but can also accurately 848 
generate the time evolution of dynamics over the gait cycle - a major challenge in data-driven 849 
models of locomotion (Maus et al., 2015; Rosenberg et al., 2020). 850 

The 512-node model captured gait dynamics over long time scales significantly better (i.e., more 851 
accurate predictions of the time-varying dynamics) than the 249-node models (Fig. 1 - figure 852 
supplement 1, B). For long-time predictions, the 512-node model predictions (R2 = 0.50 ± 0.46) 853 
were better than the 249-node 499-sample lookback model (ΔR2 = 0.27 ± 0.06; p < 0.001; 854 
independent-samples t-tests) and the 249-node 499-sample lookback model (ΔR2 = 0.31 ± 0.07; 855 
p < 0.001).  856 

Short-time performance: We generated short-time predictions by simulating single strides in 857 
each trial’s time-series, initialized from the first sample of each stride. Initialization used the latent 858 
RNN states and kinematics of the reference dynamics at the onset of a new stride (phase = 0 859 
rad). For each initial condition, we integrated the dynamics forward in time, up to the onset of the 860 
next stride. For each stride, we then compare the similarity of the reference dynamics to the 861 
dynamics of the corresponding short-time prediction using R2. Short-time performance was 862 
quantified as the average R2 value across trials for a single model and initialization. 863 

The 512-node model captured gait dynamics over short time scales significantly better (i.e., more 864 
accurate predictions of the time-varying dynamics) than the 249-node models (Fig. 1 - figure 865 
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supplement 1, B). For short-time predictions, the 512-node model predictions (R2 = 0.11 ± 0.51) 866 
were more accurate than the 249-node 499-sample lookback model (ΔR2 = 0.51 ± 0.13; p = 0.055; 867 
independent-samples t-tests) and the 249-node 499-sample lookback model (ΔR2 = 0.34 ± 0.09; 868 
p < 0.001). Based on difference in short- and long-time prediction performance, we selected the 869 
512-node, 499-sample lookback hyperparameters for the RNN model. 870 

Leave-one-out subject model evaluation for generalizability871 

Using the selected hyperparameters, 12 different models were trained where one different 872 
subject (all 6 speed trials per subject) was held out for evaluation on each model run. The same 873 
model architecture, training and validation setup was used as the original model trained using the 874 
full dataset (12 subjects). The minimum training loss, validation loss, and overall evaluated test 875 
loss for each model were extracted and box plots of each generated. The Wilcoxon Rank-Sum 876 
Test statistic was used to compare the means. Each model was evaluated on the 6 held-out speed 877 
trials from training and an average loss was calculated for each model. The reference kinematics, 878 
externally driven and self-driven predictions of each of the 6 held-out trials per model were phase 879 
averaged and R2 between the phase averaged externally driven and long-time self-driven 880 
predictions (see Long-Time Performance section, above) were calculated. Box plots for each 881 
metric across the held-out trials were generated and the Wilcoxon Rank-Sum Test statistic used 882 
to compare the means.  883 
 884 
Computing gait signatures from RNN internal states 885 

To develop the gait signatures, we extract the activation and cell states from the LSTM 886 
(denoted “H” and “C” respectively) which evolve over time (the course of the gait cycle) as the 887 
kinematics of each trial are fed through the trained RNN. These H and C parameters represent 888 
how the model’s internal parameters change as it encodes the prediction of future kinematic 889 
trajectories. The selected 512-node LSTM layer had 512 H parameters and 512 C parameters. 890 
Time-varying gait signatures were computed by identifying dominant modes of variation in the 891 
internal states using principal components analysis (PCA). A single PCA operation was used to 892 
transform the internal states for all participants into a common basis. Consequently, inter-trial 893 
differences in the time-varying activations of the principal components (modes) reflect differences 894 
in the underlying dynamics of the individual(s). These activations constituted the time-varying 895 
(1500 sample) gait signatures, which had the same dimension as the RNN’s hidden layer (1024 896 
units). However, the first six principal components accounted for 77% of the variance in the 897 
internal states. 898 

To compare gait signatures within and between individuals, we phase averaged each 899 
trial’s signatures across strides. Rather than linearly interpolating the data between foot contact 900 
events before averaging, as is common in gait analysis (many refs), we computed a continuous 901 
phase using the first 3 gait signature modes for each trial using Von Mises interpolation (Berman 902 
et al., 2014). Compared to averaging across linearly interpolated strides, phase averaging is 903 
expected to reduce the variance in the data at any point in the stride (Revzen and Guckenheimer, 904 
2008; Rosenberg et al., 2020). As the domain for interpolation, we estimated the time-varying 905 
phase for each trial separately using the Phaser algorithm, using the first 3 principal components 906 
as phase variables (Revzen and Guckenheimer, 2008). To align phase estimates across trials, 907 
we defined zero-phase as the maximum of the first principal component. 908 

 909 
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Gait event estimation of phase averaged signatures  910 

The force plates embedded in the treadmill captured precise gait event timing information 911 
(left heel strike, right toe off, right heel strike, left toe off) across individuals’ trials which we 912 
represented as a vector of 1’s, 2’s, 3’s and 4’s, respectively (ground truth markings for the 4 gait 913 
events). We leveraged the Phaser algorithm again (Revzen and Guckenheimer, 2008) to develop 914 
a phase estimator to transform these 4 gait events over time into gait events over phase. For each 915 
trial, we determined the mode phase that corresponded to each of the 4 gait events to gain a 916 
representation of where the 4 gait events occurred during phase averaged dynamics (0 - 2π) for 917 
each trial.  918 

Interpolation of unseen speed gait signatures to reconstruct kinematics  919 

To demonstrate the generalizability of gait dynamics, we show that linearly interpolating 920 
gait signatures to predict gait kinematics at new walking speeds is more accurate than linearly 921 
interpolating the kinematics themselves. We trained another RNN model with the same 922 
architecture and hyperparameters to the first model, however using only the 2 slowest and 2 923 
fastest speeds from each participant (i.e., we held out the 2 middle speed trials from each 924 
participant). We then linearly interpolated the 2-middle speeds’ internal states and ran the data 925 
through the trained RNN to reconstruct or predict kinematics. We compared the original phase 926 
averaged kinematics to the predicted kinematics resulting from each of the two linear 927 
interpolations (dynamics and kinematics) using the coefficient of determination. Furthermore, 928 
even when we reduced the dimensionality of the model’s internal states from the full 1024 to the 929 
first 6 principal components (the selected dimension on the gait signatures), it still performed 930 
better than interpolating kinematics (also rank = 6).  931 

Biomechanical interpretation of principal components of the gait signature 932 

To reconstruct kinematics from the corresponding underlying dynamics (internal state 933 
representations), we restored our trained model’s weights to a new model using the ‘model.set’ 934 
and ‘model.get_weights’ Keras built in functions. The function ‘model.predict’ takes in the hidden 935 
state values (Hs) only (first 512 of the 1024 internal-state time trajectories) and predicts the 936 
corresponding kinematics for the provided internal states. Using this framework, we provided this 937 
new model with independent principal component representations of individuals’ hidden states 938 
and visualized the corresponding kinematics through stick figure movie representations of the 939 
resulting kinematics over the walking trials.  940 
 941 
Predicting time evolution of kinematics from an initial posture (self-driving) 942 

Our trained generative gait model can take in a single initial posture of size (6,1) 943 
corresponding to a single time point representation of each of the 6 joint angles to predict the next 944 
time step posture/kinematics using command ‘model.predict’. To make further predictions, the 945 
predicted value is used as the new initial condition (posture) and predictions are made on a one-946 
time step basis in a similar fashion for a pre-specified prediction length (self-driving). 947 

Data and code availability  948 

To ensure rigor, reproducibility, and promote open science, all software is shared under a 949 
GNU GPL 3.0 license and on GitHub. Links to Google Colab notebooks enable our software to 950 
be run on the cloud for users without computational resources. The gait signature code developed 951 
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and used in this paper has been deposited at GitHub: 952 
https://github.com/bermanlabemory/gait_signatures.The RNN model and code was developed in 953 
Python programming language using built-in Python-based libraries such as Keras, Pandas, and 954 
NumPy. We revised the Phaser algorithm (Revzen and Guckenheimer, 2008; 955 
https://github.com/sheim/phaser) to estimate phase for our kinematic time trajectories in the 956 
development of our phase averaged dynamics per trial. Shareable Jupyter Notebooks were 957 
developed on the Google Colab platform. The data analysis of the generated gait signatures was 958 
conducted in MATLAB 2022a (MathWorks).  959 
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Supplemental Figures 970 

 971 

Figure 1- figure supplement 1: Comparison of model performance on training and validation loss (left), and 972 
long- and short-time prediction performance. In both plots, small dots represent the average values across trials for 973 
each random initialization of each model. Large dots and bars denote the average and standard deviation of model 974 
performance metrics across initializations. Left: Training and validation loss (RMSE) for all 12 hyperparameter pairs. 975 
Models in the lower-left consider are considered better. Right: Long- and short-time prediction performance (R2) for the 976 
3 hyperparameter pairs with the lowest training and validation loss. Models in the upper-right corner are considered 977 
better.  978 
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 979 

Figure 1- figure supplement 2: RNN model training (green) and validation (blue) loss curves.  980 

 981 
Figure 1- figure supplement 3: RNN dynamic learning generalizes across 12 leave-one-individual-out models. 982 
The minimum train loss (blue) and validation loss (green) was low (< 0.02 degrees2) for 5 models that were trained 983 
each with a single able-bodied individual held out of the training data (A, i) and 7 models each with a stroke individual 984 
held out of training data (A, ii). The magnitude and range of the test loss (evaluation of model on the held-out data) 985 
(orange) was higher than the respective minimum training and validation losses for both held-out able-bodied (A, i) and 986 
stroke (A, ii) models. The magnitude and range of test losses evaluated on held-out able-bodied individuals, however, 987 
were lower than models evaluated on held-out stroke data. The models generate external predictions (blue) of held-988 
out test trials with higher R2 values than that of self-driven predictions (red) in models evaluated on both able-bodied 989 
(B, i) and stroke trials (B, ii). The models can generate external kinematic predictions (blue) of held-out able-bodied (B, 990 
i) trials better than that of stroke (B, ii). Self-driven predictions of stroke kinematics were generally very low (R2 values 991 
below 0.5). Models were incapable of generating self-driven predictions for 5 of 30 able-bodied trials and 16 of 42 stroke 992 
trials (these R2 values are not shown in B i and ii plots). (C) shows reference (black), externally driven (blue) and self-993 
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driven (red) phase averaged kinematic predictions for an exemplary able-bodied trial (C, i) and exemplary stroke trial 994 
(C, ii). Models can predict kinematics of held-out able-bodied trials better (higher R2) than that of stroke.    995 

 996 

Figure 1- figure supplement 4: Cumulative proportion of variance explained by the first 100 principal 997 
components of gait dynamics. Six (6) principal components (PCs) explained 77% of the variance in the gait 998 
dynamics. The top 6 dominant PCs were used to develop the gait signature.   999 

 1000 

Figure 2- figure supplement 1: Support vector machine cross-validation classification accuracy of four 1001 
different gait descriptors (discrete variables, gait signatures, kinematics, and a combination of kinematics & 1002 
joint velocity) for discrimination between:  a) gait group (able-bodied vs. stroke) and B) individuals. Using k = 1003 
25 folds, RNN gait signatures distinguished between impaired and unimpaired gait with 100% accuracy, along with the 1004 
26 discrete variables (100%, p = 1), whereas kinematic (92.67 ± 0.15%, p < 0.05) and kinematics & velocity (88.67 ± 1005 
0.17%, p <0.05) discrimination were significantly lower. Using k = 6 folds, SVM classification of individuals was most 1006 
accurate using RNN gait signatures and discrete variables (100%), lower using kinematics (88.9 ± 0.13%, p = 0.061) 1007 
and significantly lower using a kinematics and velocity (68.10 ± 0.16%, p < 0.05).  1008 
 1009 

 1010 
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