
A stable, distributed code for cue value in mouse
cortex during reward learning

David J. Ottenheimer1,2,3,5, Madelyn M. Hjort1,2,5, Anna J. Bowen3,5,
Nicholas A. Steinmetz1,3,6, Garret D. Stuber1,2,4,6

1Center for the Neurobiology of Addiction, Pain, and Emotion,
2Anesthesiology and Pain Medicine, 3Biological Structure,

4Pharmacology, University of Washington, Seattle.
5These authors contributed equally

6Corresponding authors: nick.steinmetz@gmail.com, gstuber@uw.edu

Summary

The ability to associate reward-predicting stimuli with adaptive behavior is frequently attributed

to the prefrontal cortex, but the stimulus-specificity, spatial distribution, and stability of pre-

frontal cue-reward associations are unresolved. We trained headfixed mice on an olfactory

Pavlovian conditioning task and measured the coding properties of individual neurons across

space (prefrontal, olfactory, and motor cortices) and time (multiple days). Neurons encoding

cues or licks were most common in olfactory and motor cortex, respectively. By quantifying the

responses of cue-encoding neurons to six cues with varying probabilities of reward, we unex-

pectedly found value coding, including coding of trial-by-trial reward history, in all regions we

sampled. We further found that prefrontal cue and lick codes were preserved across days. Our

results demonstrate that individual prefrontal neurons stably encode components of cue-reward

learning within a larger spatial gradient of coding properties.
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Introduction

Association of environmental stimuli with rewards and the subsequent orchestration of value-

guided reward-seeking behavior are crucial functions of the nervous system linked to the pre-

frontal cortex (PFC) (Klein-Flügge et al., 2022; Miller and Cohen, 2001). PFC is heterogeneous,

with many studies noting subregional differences in both neural coding of (Hunt et al., 2018;

Kennerley et al., 2009; Sul et al., 2010; Wang et al., 2020a) and functional impact on (Buckley

et al., 2009; Dalley et al., 2004; Kesner and Churchwell, 2011; Rudebeck et al., 2008) value-

based reward seeking in primates and rodents. Further, functional manipulations of PFC subre-

gions exhibiting robust value signals do not always cause a discernible impact on reward-guided

behavior (Chudasama and Robbins, 2003; Dalton et al., 2016; St. Onge and Floresco, 2010; Ver-

haren et al., 2020; Wang et al., 2020a), encouraging investigation of differences between value

signals across PFC. Within individual PFC subregions, multiple studies have observed evolving

neural representations across time, calling into question the stability PFC signaling (Hyman

et al., 2012; Malagon-Vina et al., 2018). A systematic comparison of coding properties across

rodent PFC and related motor and sensory regions, as well as across days and stimulus sets, is

necessary to provide a full context for the contributions of PFC subregions to reward processing.

Identifying neural signals for value requires a number of considerations. One issue is that

other task features can vary either meaningfully or spuriously with value. In particular, action

coding is difficult to parse from value signaling, given the high correlations between behavior

and task events (Musall et al., 2019; Zagha et al., 2022) and widespread neural coding of reward-

seeking actions (Steinmetz et al., 2019). Additionally, without a sufficiently rich value axis,

it is possible to misidentify neurons as ‘value’ coding even though they do not generalize to

valuations in other contexts (Hayden and Niv, 2021; Stalnaker et al., 2015; Zhou et al., 2021).

Because reports of value have come from different experiments across different species, it is
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difficult to compare the presence of value signaling even across regions within prefrontal cortex

(Hayden and Niv, 2021; Hunt et al., 2018; Kennerley et al., 2009; Namboodiri et al., 2019; Otis

et al., 2017; Stalnaker et al., 2015; Sul et al., 2010; Wang et al., 2020a; Zhou et al., 2021).

In this work, we sought to address the existing ambiguity in the distribution and stability

of value signaling. We implemented an olfactory Pavlovian conditioning task that permitted

identification of value correlates within the domain of reward probability across two separate

stimulus sets. With acute in vivo electrophysiology recordings, we were able to assess coding of

this task across 11 brain regions, including five PFC subregions, as well as olfactory and motor

cortex, in a single group of mice, permitting a well-controlled comparison of coding patterns

across a large group of task-relevant regions in the same subjects. Unexpectedly, in contrast to

the graded cue and lick coding across these regions, there was a similar proportion of neurons

encoding cue value in all regions. A subset of value coding neurons were sensitive to trial-by-

trial fluctuations in value according to reward history. To assess coding stability, we performed

2-photon imaging of neurons in PFC for multiple days and determined that the cue and lick

codes we identified were stable over time. Our data demonstrate universality and stability of

cue-reward coding in mouse cortex.

Results

Distributed neural activity during an olfactory Pavlovian conditioning task.

We trained mice on an olfactory Pavlovian conditioning task with three cue (conditioned stim-

ulus) types that predicted reward on 100% (‘CS+’), 50% (‘CS50’), or 0% (‘CS-’) of trials (Fig.

1A). Each mouse learned two odor sets, trained and imaged on separate days and then, for

electrophysiology experiments, presented in six alternating blocks of 51 trials during recording

sessions (Fig. 1B). Mice developed anticipatory licking (Fig. 1C-D), and the rate of this licking

correlated with reward probability (Fig. S1), indicating that subjects successfully learned the
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meaning of all six odors.

Figure 1: Electrophysiology and imaging during olfactory Pavlovian conditioning.
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Figure 1. Electrophysiology and imaging during olfactory Pavlovian conditioning.

(A) Trial structure in Pavlovian conditioning task.

(B) Timeline for mouse training.

(C) Mean (+/- standard error of the mean (SEM)) lick rate across mice (n = 5) on
each trial type for each odor set during electrophysiology sessions. CS50(r) and
CS50(u) are rewarded and unrewarded trials, respectively. Inset: mean anticipatory
licks (change from baseline) for the CS+ and CS50 cues for every session, color-
coded by mouse. F (1, 66) = 36.6 for a main effect of cue in a two-way ANOVA
including an effect of subject.

(D) Same as (C), for Day 3 imaging sessions (n = 5 mice). t(4) = −5.4 for a t-test
comparing anticipatory licks on CS+ and CS50 trials.

(E) Neuropixels probe tracks labeled with fluorescent dye (red) in cleared brain (autofluo-
rescence, green). AP, anterior/posterior; ML, medial/lateral; DV, dorsal/ventral. Allen
CCF regions delineated in gray. Outline of prelimbic area in purple.

(F) Reconstructed recording sites from all tracked probe insertions (n = 44 insertions,
n = 5 mice), colored by mouse.

(G) Sample histology image of lens placement. Visualization includes DAPI (blue) and
GCaMP (green) signal with lines indicating cortical regions from Allen Mouse Brain
Common Coordinate Framework.

(H) Location of all lenses from experimental animals registered to Allen Mouse Brain
Common Coordinate Framework. Blue line indicates location of lens in (A). The
dotted black line represents approximate location of tissue that was too damaged to
reconstruct an accurate lens track. The white dotted line indicates PL borders.

(I) ML and DV coordinates of all neurons recorded in one example session, colored by
region, and spike raster from example PL neurons.

(J) ROI masks for identified neurons and fluorescence traces from 5 example neurons.

Using Neuropixels 1.0 and 2.0 probes (Jun et al., 2017; Steinmetz et al., 2021), we recorded

the activity of individual neurons in PFC, including anterior cingulate area (ACA), frontal pole

(FRP), prelimbic area (PL), infralimbic area (ILA), and orbital area (ORB) (Laubach et al.,

2018; Wang et al., 2020b). We also recorded from: secondary motor cortex (MOs), includ-

ing anterolateral motor cotex (ALM), which has a well-characterized role in licking (Chen

et al., 2017); olfactory cortex (OLF), including dorsal peduncular area (DP), dorsal taenia

tecta (TTd), and anterior olfactory nucleus (AON), which receive input from the olfactory bulb
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(Igarashi et al., 2012; Mori and Sakano, 2021); and striatum, including caudoputamen (CP)

and nucleus accumbens (ACB) (Fig. 1E-F), which are major outputs of PFC (Heilbronner

et al., 2016). In a separate group of mice, we performed longitudinal 2-photon imaging through

a GRIN lens to track the activity of individual neurons in PL across several days of behavioral

training (Fig. 1G-H). Both techniques permitted robust measurement of the activity of neurons

of interest and generated complementary results (Figs. 1I-J, S2).

Figure 2: Graded cue and lick coding across the recorded regions.
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Figure 2. Graded cue and lick coding across the recorded regions.

(A) Location of each recorded neuron relative to bregma, projected onto 1 hemisphere.
Each neuron is colored by CCF region. Numbers indicate total neurons passing quality
control from each region.

(B) Mean normalized activity of all neurons from each region, aligned to odor onset,
grouped by whether peak cue activity (0 - 2.5 s) was above (top) or below (bottom)
baseline in held out trials. Number of neurons noted for each plot.

(C) Example kernel regression prediction of an individual neuron’s normalized activity on
an example trial.

(D) CS+ trial activity from an example neuron and predictions with full model and with
cues, licks, and reward removed. Numbers in parentheses are model performance
(fraction of variance explained).

(E) Coordinates relative to bregma of every neuron encoding only cues or only licks, pro-
jected onto one hemisphere.

(F) Fraction of neurons in each region and region group classified as coding cues, licks,
reward, or all combinations of the three.

(G) Additional cue (left) or lick (right) neurons in region on Y-axis compared to region on
X-axis as a fraction of all neurons, for regions with non-overlapping 95% confidence
intervals (see Methods).

Graded cue and lick coding across the recorded regions.

In the electrophysiology experiment, we isolated the spiking activity of 5332 individual neurons

in regions of interest across 5 mice (449-1550 neurons per mouse, Figs. 2A, S3A). The activity

of neurons in all regions exhibited varying degrees of modulation in response to the six trial

types (Fig. 2B). Broadly, there was strong modulation on CS+ and CS50 trials that appeared to

be common to both odor sets (Fig. S3B). Across regions, there was heterogeneity in both the

magnitude and the timing of the neural modulation relative to odor onset (Fig. S3C).

To quantify the relative contribution of cues and conditioned responding (licking) to the

activity of neurons in each region, we implemented reduced rank kernel regression (Steinmetz

et al., 2019), using cues, licks, and rewards to predict neurons’ activity on held out trials (Figs.

2C, S4A). To determine the contribution of cues, licks, and rewards to each neuron’s activity, we
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calculated unique variance explained by individually removing each predictor from the model

and calculating the reduction in model performance (Fig. 2D).

We identified individual neurons encoding cues, licks, or rewards as those for which that

predictor uniquely contributed to 2% or more of their variance (a cutoff with an estimated

false positive rate of 0.02%, see Methods). Neurons encoding cues (24% of all neurons), licks

(11%), or both (16%) were most common. Neurons with any response to reward (independent

of licking) were rare (5%) (Horst and Laubach, 2013). Cue neurons were characterized by sharp

responses aligned to odor onset; in contrast, lick neurons’ responses were delayed and peaked

around reward delivery (Fig. S4B-C), consistent with the timing of licks (Fig. 1C). The activity

of cue neurons on rewarded and unrewarded CS50 trials validated our successful isolation of

neurons with cue but not lick responses (Fig. S4D). The spatial distributions of cue and lick

cells were noticeably different (Fig. 2E). The differences could be described as graded across

regions, with the most lick neurons in ALM, and the most cue neurons in olfactory cortex and

ORB, though each type of neuron was observed in every region (Fig. 2F-G, S5). Thus, our

quantification of task encoding revealed varying prioritization of cue and lick signaling across

all regions.

Cue value coding is present in all regions.

To expand upon our analysis identifying cue-responsive neurons, we next assessed the pres-

ence of cue value coding in this population. The three cue types (CS+, CS50, or CS-) in our

behavioral task varied in relative value according to the predicted probability of reward (Eshel

et al., 2016; Fiorillo et al., 2003; Winkelmeier et al., 2022). We reasoned that a neuron encod-

ing cue value should have activity that scaled with the relative value of the cues (Fig. 3A). We

modeled this relationship on a per-neuron basis by scaling a single cue kernel by the typical

number of anticipatory licks for each cue (see Methods, Fig. 3B). This model describes cue
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activity as similar across odors of the same value, and scaling in magnitude according to each

odor’s value. As a shuffle control, we also fit each neuron with 89 additional models contain-

ing all possible permutations of reassigning the original values across the six odors, as well as

an ‘untuned’ model with the same value for all odors (Fig. S6). After removing neurons best

fit by the untuned model, the remaining 90 models would be equally likely to fit each neuron

best if cue responses were independent of cue association, as would be expected with a sensory

olfactory code (Pashkovski et al., 2020; Stettler and Axel, 2009). We found, however, that the

original model with cue responses that scale directly with value (CS+ > CS50 > CS-) was the

best model for a large fraction of cue neurons (30%), far exceeding chance (1%) (Fig. 3C). We

refer to these neurons as value cells (Fig. S7A). Interestingly, five additional models stood out

as the best model for sizable fractions of cue neurons. These models corresponded to the five

alternative rankings of cue types (for example, CS50 > CS- > CS+ rather than CS+ > CS50 >

CS-) irrespective of odor set (Fig. 3D) and accounted for 22% of cue neurons. This population

of cells, which we refer to as trial type cells (Fig. S7B), encoded each cue’s reward probability

independent of its particular odor, but with firing rates not proportional to value. The difference

between value and trial type cells, therefore, is that value cells have both CS- activity closer

to baseline and CS+ and CS50 activity occurring along the same dimension relative to CS- ac-

tivity, evident in a smaller angle between CS+ and CS50 population response vectors for value

cells (Fig. S7C-E).

The frequency of value cells was similar across the recorded regions (Fig. 3E). Indeed,

despite the regional variability in number of cue cells broadly (Fig. 2F-G), there were no regions

that statistically differed in their proportions of value cells (Figs. 3E, S8). Though there were

fewest cue neurons in motor cortex, they were more likely than cue neurons in other regions to

encode value, followed by PFC (Fig. S9). The frequency of trial type cells was more variable,

peaking in DP (Fig. 3F) and decreasing from olfactory to PFC to motor cortex (Fig. S8).
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Figure 3: Widespread cue value coding.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.07.13.499930doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499930
http://creativecommons.org/licenses/by/4.0/


Figure 3. Widespread cue value coding.

(A) Normalized activity of an example value cell with increasing modulation for cues of
higher value.

(B) For the same neuron, model-fit cue kernel for the original value model and with one
of the 89 alternatively-permuted value models.

(C) Distribution of best model fits across all cue neurons. Light blue is value model, purple
is trial type models, gray is untuned model, and the remaining models are dark blue.

(D) First principal component of all neurons best fit by the original value model or other
trial type and untuned models.

(E) Fraction of neurons in each region and region group classified as value cells (blue)
and other cue neurons (gray), as well as fraction (+/- 95% CI) estimated from a linear
mixed effects model with random effect of session (see Methods). n.s. indicates
overlapping 95% CI for all three region groups.

(F) Additional value cells in region on Y-axis compared to region on X-axis as a fraction
of all neurons, for regions with non-overlapping 95% confidence intervals. * indicates
non-overlapping 95% CI for all three region groups.

(G) Principal component most related to value for value cells from all regions (2nd com-
ponent in ACA, 1st component in all others).

(H) Same as (F), for region groups.

(I) PL population activity 0 to 2.5 s from odor onset projected onto first 3 principal com-
ponents, defined on odor set 1 activity.

(J) Normalized distance (+/- SD) from baseline firing in odor set 1 PCA space (first 3
components) for odor set 2 trial types for value cells (top) and other cue cells (bottom)
for 5000 selections of neurons (see Methods).

We next investigated the robustness of the value representation in each of our recorded

regions. Principal component analysis on value cells from each region revealed similarly strong

value-related dynamics across motor, prefrontal, and olfactory regions (Fig. 3G-H). Within the

population space defined by the first 3 principal components of odor set 1 activity of value cells

in each region, odor set 2 activity of this population showed strong value features; specifically,

population activity deflected furthest from baseline for CS+ trials, less for CS50 trials, and least

for CS- trials, with similar robustness in ALM, FRP, PL, ILA, ORB, and TTd (Fig. 3I-J). Taken

together, these data illustrate that, in contrast to cue and lick coding broadly, and in contrast to
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trial type cue coding, value coding is similarly represented across the regions we sampled. In

fact, this observation extended to the striatal regions we sampled as well, indicating that such

value coding is widespread even beyond cortex (Fig. S10).

Because cue valuations can be influenced by preceding reward outcomes, We next consid-

ered whether the cue value signaling we detected was sensitive to the history of reinforcement

(Nakahara et al., 2004; Ottenheimer et al., 2020; Winkelmeier et al., 2022). To estimate the

subjects’ trial-by-trial cue valuation, we fit a linear model predicting the number of anticipatory

licks on each trial from cue type, overall reward history, and cue type-specific reward history;

we used the model prediction of licks per trial as our estimate of value. We found a strong

influence of cue type-specific reward history and a more modest influence of overall reward his-

tory (Fig. 4A). These effects of reward history on lick rate are also visible when comparing the

lick rate on trials grouped by the model-estimated value (Fig. 4B). Thus our behavioral model

revealed that subjects more highly valued trials preceded by rewards.

We therefore investigated whether value cells showed similar trial-by-trial differences in

their firing rates (Fig. 4C). To test this, we compared the fit of our original value model (Fig.

3B) with an alternative model in which the kernel scaled with the per-trial value estimates

from our lick regression (Fig. 4D). Overall, 30% of value cells were better fit by the history-

dependent value model than by the model without history dependence. To further evaluate

the history component, we calculated these neurons’ activity on CS50 trials of varying value

and projected it onto the population dimension maximizing the separation between CS+ and

CS-. We hypothesized that high value CS50 trials would be closer to CS+ activity while low

value CS50 trials would be closer to CS- activity. Indeed, history value cells (and lick cells)

demonstrated graded activity along this dimension, in contrast to non-history value cells and

trial type cells (Fig. 4E-F). Finally, we examined the spatial distribution of history value cells

and found similar, low numbers across all regions, but with higher prevalence overall in PFC
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than in olfactory cortex (Fig. 4G). Also, as a fraction of all value cells, history cells were least

common in olfactory cortex (Fig. 4H), providing evidence for less dynamic task-centric cue

signaling there.
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Figure 4: A subset of value cells incorporate reward history.

Figure 4. A subset of value cells incorporate reward history.

(A) Coefficient weight (+/- standard error from model fit) for reward outcome on the pre-
vious 10 trials of any type (left) and on the previous 10 trials of the same cue type
(right) for a linear model predicting the number of anticipatory licks on every trial
of every session. Lick rates were normalized so that the maximum lick rate for each
session was equal to 1. Colored lines are models fit to each individual mouse.
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(B) Mean (+/- SEM) lick rate across mice (n = 5 mice) on trials binned according to value
estimated from the lick model, incorporating recent reward history.

(C) Normalized activity of an example history value cell with increasing modulation for
cues of higher value.

(D) For the same neuron, model-predicted activity with the original value model (left) and
with trial-by-trial value estimates from the lick model (right).

(E) The activity of all cells in each category projected onto the coding dimension maxi-
mally separating CS- and CS+ for CS50 trials binned by value estimated from the lick
model.

(F) The mean (+/- std across 5000 bootstrapped selections of neurons) activity (1 - 2.5 s
from odor onset) along the coding dimension maximally separating CS- and CS+ for
CS50 trials binned by value estimated from the lick model. * = p < 10−7 comparing
highest and lowest value CS50 trials (other categories p > 0.23).

(G) Fraction of neurons in each region and region group classified as history value (light
blue), non-history value (blue), and other cue neurons (gray), as well as estimated
fraction (+/-95% CI) with random effect of session (see Methods). * indicates non-
overlapping 95% CI for PFC and olfactory regions.

(H) Fraction of value neurons in each region group with history effect and estimated frac-
tion (+/- 95% CI) with random effect of session. * indicates non-overlapping 95% CI
for olfactory compared to PFC and motor regions.

Cue coding emerges along with behavioral learning.

To determine the timescales over which these coding schemes emerged and persisted, we per-

formed longitudinal 2-photon imaging and tracked the activity of individual neurons across

several days of behavioral training (Fig. 5A). We targeted our GRIN lenses to PL, a location

with robust cue and lick coding (Fig. 2F) and where cue responses predominantly encode cue

trial type and value (Fig. 3E-F). Mice (n = 8) developed anticipatory licking on day 1 that

differentiated CS+ trials from CS50 (t(7) = 3.2, p = 0.015) and CS- (t(7) = 7.0, p = 0.0002)

trials and CS50 trials from CS- (t(7) = 3.7, p = 0.008) trials (Fig. 5B-C). Visualizing the

normalized activity across the imaging plane following CS+ presentation early and late on day

1 revealed a pronounced increase in modulation in this first session (Fig. 5D-E). Individual neu-

rons (n = 705, 41-165 per mouse) also displayed a notable increase in modulation in response

to the CS+ after task learning (Fig. 5F).
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Figure 5: Acquisition of conditioned behavior and cue encoding in PFC.
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Figure 5. Acquisition of conditioned behavior and cue encoding in PFC.

(A) Training schedule for 5 of the mice in the imaging experiment. An additional 3 were
trained only on odor set 1.

(B) Mean (+/- SEM) licking on early (first 60) and late (last 60) trials from day 1 of odor
set 1 (n = 8 mice).

(C) Mean (+/- SEM) baseline-subtracted anticipatory licks for early and late trials from
each day of odor set 1. Thin lines are individual mice (n = 8 mice).

(D) Standard deviation of fluorescence from example imaging plane.

(E) Normalized activity of each pixel following CS+ presentation in early and late day 1
trials.

(F) Normalized deconvolved spike rate of all individual neurons for early and late trials
on day 1.

(G) Proportion of neurons classified as coding cues, licks, rewards, and all combinations
for each third of day 1.

(H) Mean(+/- SEM) unique variance explained by cues, licks, and rewards for neurons
from each mouse. Thin lines are individual mice. Unique variance was significantly
different across session thirds for cues (F (2, 21) = 3.71, p = 0.04) but not licks
(F (2, 21) = 0.37, p = 0.69) or reward (F (2, 21) = 0.65, p = 0.53, n = 8 mice,
one-way ANOVA).

(I) Mean (+/- SEM) normalized deconvolved spike rate for cells coding cues, licks, both,
or neither on early and late trials, sorted by whether peak cue activity (0 - 2.5 s) was
above (top) or below (bottom) baseline for late trials.

To determine whether this increase in activity was best explained by a cue-evoked response,

licking, or both, we again used kernel regression to fit and predict the activity of each neuron for

early, middle, and late trials on day 1. The number of individual neurons encoding cues more

than doubled from early to late day 1 trials (Fig. 5G). The unique variance cues increased across

this first session, in contrast to licks and reward (Fig. 5H). This stark change in cue coding was

also noticeable when plotting neurons encoding cues, licks, or both, as defined at the end of

the session, on both early and late trials (Fig. 5I). These data indicated that PFC neural activity

related to cues (but not licks) rapidly emerges during initial learning of the behavioral task.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.07.13.499930doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499930
http://creativecommons.org/licenses/by/4.0/


Cue and lick coding is stable across days

We next assessed whether cue and lick coding were stable across days. By revisiting the same

imaging plane on each day of training, we were able to identify neurons that were present on all

three days of odor set 1 training (n = 371, 20-65 per mouse) (Fig. 6A-B). There was remarkable

conservation of task responding across days, both on an individual neuron level (Fig. 6C) and

across all imaged neurons (Fig. 6D). To quantify coding stability, we fit our kernel regression to

the activity of each neuron on day 3 (Fig. 6E) and then used these models to predict activity on

early, middle, and late trials on days 1-3 (Fig. 6F). Day 3 model predictions were most highly

correlated with true activity on day 3, but they outperformed shuffle controls at all time points

except early day 1, demonstrating preservation of a learned coding scheme. We then asked

more specifically whether cells coding cues, licks, and both maintained their coding preferences

across days. For each group of cells, we calculated their unique cue, lick, and reward variance

at each time point. The preferred coding of each group, as defined on day 3, was preserved in

earlier days (Fig. 6G). Thus, cue and lick coding are stable properties of PFC neurons across

multiple days of behavioral training.
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Figure 6: Cue and lick coding is stable across days.
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Figure 6. Cue and lick coding is stable across days.

(A) Standard deviation fluorescence from example imaging plane.

(B) Masks (randomly colored) for all tracked neurons from this imaging plane.

(C) Deconvolved spike rate on every CS+ trial from all three days of odor set 1 for an
example neuron. Vertical dashed line is reward delivery. Color axis as in (D).

(D) Normalized deconvolved spike rate for all tracked neurons on all three days of odor
set 1.

(E) Fraction of tracked neurons coding cues, licks, rewards, and their combinations on
day 3.

(F) Model performance when using day 3 models to predict the activity of individual
neurons across odor set 1 training, plotted as mean (+/- SEM) correlation between
true and predicted activity across mice. Thin lines are individual mice. Performance
was greater than shuffled data at all time points (p < 0.0001) except early day 1
(p = 0.21, Bonferroni-corrected, n = 8 mice).

(G) Mean (+/- SEM) unique cue, lick, and reward variance for cells classified as coding
cues, licks, both, or neither on day 3. Day 3 cue cells had increased cue variance on
day 2 (p < 10−7, see Methods) and 1 (p < 0.03) relative to lick and reward variance.
Same pattern for lick cells on day 2 (p < 0.0001) and day 1 (p < 0.01).

A subset of mice (n = 5) also learned a second odor set, presented on separate days. Activity

was very similar for both odor sets, evident across the entire imaging plane (Fig. 7A), for

individual tracked neurons (n = 594, 81-153 per mouse) (Fig. S2B), and for kernel regression

classification of these neurons (Fig. 7B). Notably, odor set 1 models performed similarly well

at predicting both odor set 1 and odor set 2 activity (Fig. 7C). Moreover, cue, lick and both

neurons maintained their unique variance preference across odor sets (Fig. 7D). Finally, to

investigate the presence of value coding across odor sets over separate days, we fit tracked cue

neurons with the value model and its shuffles. Even with odor sets imaged on separate days,

we again found that the value model was the best model for a sizable fraction (27%) of cue

neurons, demonstrating that value coding is conserved across stimulus sets and days (Fig. 7E).
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Figure 7: Cue and lick coding in separately trained odor sets.

Figure 7. Cue and lick coding in separately trained odor sets.

(A) Normalized activity of all pixels in the imaging plane following CS+ presentation on
day 3 of each odor set.

(B) Fraction of neurons coding for cues, licks, rewards, and their combinations for day 3
of each odor set.

(C) Mean(+/- SEM, across mice) correlation between activity predicted by odor set 1 mod-
els and true data, for real (black) and trial shuffled (gray) activity. Thin lines are indi-
vidual mice. F (1, 16) = 3.2, p = 0.09 for main effect of odor set, F (1, 16) = 135,
p < 10−8 for main effect of shuffle, F (1, 16) = 2.2, p = 0.16 for interaction, n = 5
mice, two-way ANOVA.

(D) Mean(+/- SEM, across mice) unique cue, lick, and reward variance for cells classified
as coding cues, licks, both, or neither for odor set 1. For each category, odor set 1
unique variance preference was maintained for odor set 2 (p < 0.04) except for both
cells, for which lick and reward variance were not different in odor set 2 (p = 0.22,
Bonferroni-corrected, n = 5 mice).

(E) Distribution of best model fits across all cue neurons, and the first principal component
of the activity of all neurons best fit by the top 3 models.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.07.13.499930doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499930
http://creativecommons.org/licenses/by/4.0/


Discussion

Our experiments assessed how coding for reward-predicting cues and reward-seeking actions

differed across brain regions and across multiple days of training. We found coding for cues

and licks in all regions we sampled, but their proportions varied in a graded way across those

regions. In contrast to regional differences in the proportion of cue-responsive cells, cue value

coding was similarly represented in all regions. Coding for cue value was robust, occurring with

far greater frequency than chance, and, in a subset of neurons, incorporated the recent reward

history. Cue coding was established within the first day of training and neurons encoding cues

or licks maintained their coding preference across multiple days of the task. These results

demonstrate a lack of regional specialization in value coding and the stability of cue and lick

codes in PFC.

Graded cue and lick coding across regions.

We found robust and separable coding for licks and cues (and combined coding of both) in all

regions using electrophysiology and in PL using calcium imaging. The widespread presence of

lick coding is consistent with recent reports of distributed movement and action coding (Musall

et al., 2019; Steinmetz et al., 2019; Stringer et al., 2019); however, we saw sizable differences

in the amount of lick coding across recorded regions. Notably, ALM had the greatest number

of lick neurons, as well as the fewest cue neurons, perhaps reflecting its specialized role in the

preparation and execution of licking behavior (Chen et al., 2017). Conversely, the olfactory

cortical regions DP, TTd, and AON had the most cue neurons (especially non-value coding cue

neurons), suggesting a role in early odor identification and processing (Mori and Sakano, 2021).

PFC subregions balanced lick and cue coding, consistent with their proposed roles as association

areas (Klein-Flügge et al., 2022; Miller and Cohen, 2001), but there was variability within

PFC as well. In particular, ORB had a greater fraction of cue cells than any other subregions,

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.07.13.499930doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499930
http://creativecommons.org/licenses/by/4.0/


consistent with its known dense inputs from the olfactory system (Ekstrand et al., 2001; Price,

1985; Price et al., 1991). Thus, our results establish that the neural correlates of this Pavlovian

conditioned behavior consist of a gradient of cue and response coding rather than segmentation

of sensory and motor responses.

Widespread value signaling.

Value signals can take on many forms and occur throughout task epochs. In our experiments, we

focused on the predicted value associated with each conditioned stimulus, which is crucial for

understanding how predictive stimuli produce motivated behavior (Berridge, 2004). Most com-

parisons of single neuron stimulus-value signaling across PFC have been conducted in primates.

These studies have found neurons correlated with stimulus-predicted value in many subregions,

with the strongest representations typically in ORB (Hunt et al., 2018; Kennerley et al., 2009;

Roesch and Olson, 2004; Sallet et al., 2007). In rodents, there is also a rich history of studying

value signaling in ORB (Kuwabara et al., 2020; Namboodiri et al., 2019; Schoenbaum et al.,

2003; Stalnaker et al., 2014; Sul et al., 2010; van Duuren et al., 2009; Wang et al., 2020a), but

there have been many reports of value-like signals in frontal cortical regions beyond ORB, as

well (Allen et al., 2019; Kondo and Matsuzaki, 2021; Otis et al., 2017; Wang et al., 2020a). In

our present experiment, we sought to expand upon the results from the rodent literature by sep-

arating cue activity from licking, which can track with value and may confound interpretation

of the signal, by including more than two cue types, which provided a rich space to assess value

coding, and by sampling from many frontal regions in the same experiment.

When considering the number of neurons responsive to cues rather than licks, our data

confirmed the importance of ORB, which has more cue-responsive neurons than motor and

other prefrontal regions. However, by analyzing the activity of cue-responsive neurons across all

6 odors predicting varying probabilities of reward, we were able to separate out neurons coding
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value from other neurons, which included a population that had consistent responses for odors

with the same associated reward probability (trial type) but activity that did not scale according

to probability, consistent with the possibility of nonlinear value coding (Enel et al., 2021). When

only considering cue neurons with linear coding of value, the distribution was even across

regions. One consequence of a widely distributed value signal is that manipulating only one

subregion would be less likely to fully disrupt value representations, which is consistent with the

results of studies comparing functional manipulations of different PFC subregions (Chudasama

and Robbins, 2003; Dalton et al., 2016; St. Onge and Floresco, 2010; Verharen et al., 2020;

Wang et al., 2020a). Different subregional impacts on behavior may reveal biases in how the

value signal in each region contributes to reward-related behaviors, for instance during learning

or expression of a reward association (Namboodiri et al., 2019; Otis et al., 2017; Wang et al.,

2020a). A related interpretation is that, in this task, there may be other properties that correlate

with cue value, and the homogeneous value representation we observed across regions masks

regional differences in tuning to these other correlated features, such as motivation (Roesch and

Olson, 2004) and a host of related concepts, including salience, uncertainty, vigor, and arousal

(Hayden and Niv, 2021; Stalnaker et al., 2015; Zhou et al., 2021), which can have different

contributions to behavior. This interpretation is consistent with broader views that observations

of ‘value’ signals are often misconstrued (Zhou et al., 2021) and that pure abstract value may

not be encoded in the brain at all (Hayden and Niv, 2021). Although the identification of value

in our task was robust to three levels of reward probability across two stimulus sets, the fact that

this signal was widespread contributes to the case for revisiting the definition and interpretation

of value to better understand regional specialization.

In our analysis, we uncovered a distinction between neurons encoding the overall value of

cues and those with value representations that incorporated the recent reward history. Neurons

with history effects were rarer but also widespread. These neurons may have a more direct
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impact on behavioral output in this task, because the lick rate also incorporated recent reward

history. Notably, the impact of reward history on these neurons was noticeable even prior to cue

onset, consistent with a previously proposed mechanism for persistent value representations

encoded in the baseline firing rates of PFC neurons (Bari et al., 2019).

Given the presence of value coding in olfactory cortex, the question remains of where odor

information is first transformed into a value signal. In fact, there have been multiple reports

of some association-related modification of odor representations as early as the olfactory bulb

(Chu et al., 2016; Doucette et al., 2011; Koldaeva et al., 2019; Li et al., 2015). Considering the

prevalence of value and non-value trial type coding we observed in AON, DP, and TTd, perhaps

these regions are a crucial first step in processing and amplifying task-related input from the

olfactory bulb. Because they provide input to PFC (Bhattarai et al., 2021; Igarashi et al., 2012),

they may be an important source of the odor coding we observed there. Previous recordings

in AON, DP, and TTd were in anesthetized rodents (Cousens, 2020; Kikuta et al., 2008; Lei

et al., 2006; Tsuji et al., 2019); as the first recordings in awake behaving animals, our results

bring these regions into focus for future work on the transformation of odor information into

task-relevant coding.

Stability of PFC codes.

Previous reports have observed drifting representations in PFC across time (Hyman et al., 2012;

Malagon-Vina et al., 2018), and there is compelling evidence that odor representations in piri-

form drift over weeks when odors are experienced infrequently (Schoonover et al., 2021). On

the other hand, it has been shown that coding for odor association is stable in ORB and PL, and

that coding for odor identity is stable in piriform (Wang et al., 2020a), with similar findings for

auditory Pavlovian cue encoding in PL (Grant et al., 2021; Otis et al., 2017) and ORB (Nam-

boodiri et al., 2019). We were able to expand upon these data in PL by identifying both cue
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and lick coding and showing separable, stable coding of cues and licks across days and across

sets of odors trained on separate days. We were also able to detect value coding common to

two stimulus sets presented on separate days. This consistency in cue and lick representations

indicates that PL serves as a reliable source of information about cue associations and licking

during reward seeking tasks, perhaps contrasting with other representations in PFC (Hyman

et al., 2012; Malagon-Vina et al., 2018). Interestingly, the presence of lick, but not cue coding

at the very beginning of day 1 of training suggests that lick cells in PL are not specific to the

task but that cue cells are specific to the learned cue-reward associations.

Overall, our work emphasizes the importance of evaluating regional specialization of neural

encoding with systematic recordings in many regions using the same task. Future work will

clarify whether cue value is similarly widely represented in other reward-seeking settings and

whether there are regional differences in the function of the value signal.
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Methods
Subjects.

Subjects (n = 5 for electrophysiology, n = 8 for imaging) were male and female C57BL/6
mice single-housed on a 12hr light/dark cycle and aged 12-28 weeks at the time of recordings.
Imaging experiments were performed during the dark cycle, electrophysiology during light cy-
cle. Mice were given free access to food in their home cages for the duration of the experiment.
Mice were water restricted for the duration of the experiments and maintained around 85% of
their baseline weight (Guo et al., 2014a). All experimental procedures were performed in strict
accordance with protocols approved by the Animal Care and Use Committee at the University
of Washington.

Surgical procedures.

Mice were anesthetized with isoflurane (5%) and maintained under anesthesia for the duration
of the surgery (1-2%). Mice received injections of carprofen (5 mg/kg) prior to incision.
Electrophysiology. A brief (1 h) initial surgery was performed, as described in (Guo et al.,
2014b; Steinmetz et al., 2017, 2019), to implant a steel headplate (approximately 15 × 3 ×
0.5 mm, 1 g) and a 3D-printed recording chamber that exposed the skull for subsequent cran-
iotomies. Briefly, an incision was made around the circumference of the dorsal surface of the
skull, from the interparietal bone to the frontonasal suture. The skin and periosteum were re-
moved to expose the dorsal surface of the skull. Skull yaw, pitch, and roll were leveled, and
exposed bone was texturized with a brief application of green activator (Super-Bond C&B, Sun
Medical). The incised skin was secured around the circumference of exposed skull with appli-
cation of cyanoacrylate (VetBond; World Precision Instruments), and the chamber was attached
to the skull with L-type radiopaque polymer (Super-Bond C&B). A thin layer of cyanoacrylate
was applied to the skull inside the chamber and allowed to dry. Multiple (2-4) thin layers of
UV-curing optical glue (Norland Optical Adhesives #81, Norland Products) were applied inside
the chamber to cover the entire exposed surface of the skull and cured with UV light. The
headplate was attached to the skull over the interparietal bone posterior to the chamber with
Super-Bond polymer, and more polymer was applied around the headplate and chamber. A
second brief (15-30 min) surgery was conducted to perform craniotomies for probe insertion.
Briefly, following induction of anesthesia a small (2 × 1.5 mm (w × h) craniotomy was made
over frontal cortex (+2.5 - 1 mm AP, ±2.5 - 0.3 mm ML) with a handheld dental drill. The
craniotomy was covered with silicone gel (DOWSIL 3-4680) and the recording chamber was
covered with a 3D-printed lid sealed with Kwik-Cast elastomer for protection.
Imaging. A GRIN lens and metal headcap were implanted following previously described pro-
cedures (Namboodiri et al., 2019) with the following modifications. In most mice, once the dura
was removed from the craniotomy, we injected, 0.5 µL of virus containing the GCaMP gene
construct (AAVDJ-CamKIIa-GCaMP6s, 5.3 ∗ 1012 viral particles/mL from UNC Vector core
lot AV6364) using a glass pipette microinjector (Nanoject II) targeted at Bregma +1.94 mm AP,
0.3 and 1.2 mm ML, -2 mm DV. Ten minues elapsed before microinjector withdrawal to allow
virus to diffuse away from the infusion site. Then, mice were implanted with a 1x4mm GRIN
lens (Inscopix) aimed at +1.94 mm AP, 0.3 and 1.2 mm ML, -1.8 mm DV. A subset of mice did
not receive viral injections; instead, a lens with the imaging face coated 1 µL of the GCaMP6s
virus mixed with 5 percent aqueous silk fibroin solution (Jackman et al., 2018) was implanted
at the same coordinate. GCaMP expression and transients were similar in both preparations.
Mice were allowed to recover for at least 5 weeks before experiments began.
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Behavioral training.

Mice were headfixed during training and recording sessions using either a headring (imaging
experiments) or headbar (electrophysiology experiments). After initial habituation to head fix-
ation, mice were first trained to lick for 2.5µL rewards of 10% sucrose solution, delivered every
8 - 12 s through a miniature inert liquid valve (Parker 003-0257-900). After 4 - 5 days of
lick training, mice experienced their first odor exposure (without reward delivery). Odors were
delivered for a total of 1.5 s using a 4-channel olfactometer (Aurora 206A) with 10% odor
flow rate and 800 SCCM overall flow rate of medical air. Odors were randomly assigned to
sets and cue identities, counterbalanced across mice. Odors were -carvone, -limonene, alpha-
pinene, butanol, benzaldehyde, and geranyl acetate (Sigma Aldrich 124931, 218367, 147524,
281549, 418099, 173495, respectively), selected because of they are of neutral valence to naive
mice (Devore et al., 2013; Saraiva et al., 2016). Odors were diluted 1:10 in mineral oil and 10
µL was pipetted onto filter paper within the odor delivery vials (Thermo Fisher SS246-0040)
prior to each session. Airflow was constant onto the mouse’s nose throughout the session and
switched from clean air to scented air for the duration of odor delivery on each trial.

On days 1 - 2 of Pavlovian conditioning, mice received 50-75 trials each of 3 odor cues,
followed by reward on 100% (CS+), 50% (CS50), or 0% (CS-) of trials, 2.5 s following odor
onset, with 8 - 12 s between odor presentations. Mice then received training days 1 - 2 with
a second odor set with three new odors. For electrophysiology experiments, the odors were
subsequently presented in the same sessions in 6 blocks of 51 trials. Odor set order alternated
and was counterbalanced across days. For imaging experiments, mice received day 3 of odor
set 1 and then day 3 of odor set 2. An additional 3 imaging mice were only trained on one odor
set.

Electrophysiological recording and spike sorting.

During recording sessions, mice were headfixed. Recordings were made using either Neuropix-
els 1.0 or Neuropixels 2.0 electrode arrays (Jun et al., 2017; Steinmetz et al., 2021), which
have 384 selectable recording sites. Recordings were made with either 1.0 (1 shank, 960 sites,
2.1 (1 shank, 1280 sites) or 2.4 (4 shanks, 5120 sites) probes, depending on the regions of
interest. Probes were mounted to a dovetail and affixed to a steel rod held by a micromanip-
ulator (uMP-4, Sensapex Inc.). To allow later track localization, probes were coated with a
solution of DiI (ThermoFisher Vybrant V22888) by holding 2 µl in a droplet on the end of
a micropipette and painting the probe shank. In each session, one or two probes were ad-
vanced through the Duragel covering the craniotomy over frontal cortex, then advanced to
their final position at approximately 3 µm s−1. Electrodes were allowed to settle for around
15 min before starting recording. Recordings were made in internal reference mode using
the ‘tip’ reference site, with a 30 kHz sampling rate. Recordings were repeated at differ-
ent locations on each of multiple subsequent days, performing an additional craniotomy over
contralateral frontal cortex. The resulting data were automatically spike sorted with Kilo-
sort2.5 and Kilosort3 (https://github.com/MouseLand/Kilosort). Extracellular voltage traces
were preprocessed with common-average referencing by subtracting each channel’s median to
remove baseline offsets, then subtracting the median across all channels at each time point
to remove artifacts. Sorted units were curated using automated quality control (International-
Brain-Laboratory et al., 2022): exclusions were based on spike floor violations (the estimated
proportion of spikes that were missed because they fell below the noise level of the recording,
i.e. esatimed false negative rate), and refractory period violations (the estimated proportion of
spikes which did not arise from the primary neuron, i/e/ the estimate false positive rate due
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to contamination, with a 10% cutoff). Quality control accuracy was assessed by manually re-
viewing a subset of the data using the phy GUI (https://github.com/kwikteam/phy). Because
Kilosort2.5 and Kilosort3 use different clustering algorithms that can be advantageous for dif-
ferent types of recordings (stability, region, number of channels), for each session, we used units
sorted with either Kilosort2.5 or Kilosort3 depending on which yielded the greatest number of
high quality units for that session. Brain regions were only included for subsequent analysis if
there were recordings from at least three subjects and in total over 100 neurons in the region.
When we analyzed all of motor cortex together, we included ALM and MOs neurons. When we
analyzed all of olfactory cortex, we included DP, TTd, AON, and other neurons in PIR, EPd,
and OLF. We relabeled PIR and EPd as OLF because there were not enough neurons to analyze
them as separate regions.

Imaging and ROI extraction.

During imaging sessions, mice were headfixed and positioned under the 2-photon microscope
(Bruker Ultima2P Plus) using a 20x air objective (Olympus LCPLN20XIR). A Spectra-Physics
InSight X3 tuned to 920nm was used to excite GCaMP6s through the GRIN lens. Synchroniza-
tion of odor and 10 percent sucrose delivery, lick behavior recordings, and 2-photon recordings
was achieved with custom Arduino code. After recording, raw TIF files were imported into
suite2p (https://github.com/MouseLand/suite2p). We used their registration, region-of-interest
(ROI) extraction, and spike deconvolution algorithms, inputting a decay factor of τ = 1.3 to
reflect the dynamics of GCaMP6s, and manually reviewed putative neuron ROIs for appropriate
morphology and dynamics. To find changes in activity across the entire imaging plane, found
the mean pixel intensity for frames in the time of interest (2 to 2.5 s from CS+), subtracted the
mean intensity of each pixel prior to cue onset (-2 to 0 s from all cues), and divided by the
standard deviation for each pixel across those frames prior to cue onset.

Histology.

Animals were anesthetized with pentobarbital or isoflurane. Mice were perfused intracardially
with 0.9% saline followed by 4% paraformaldehyde (PFA).
Electrophysiology. Brains were extracted immediately following perfusion and post-fixed in
4% paraformaldehyde for 24 h. In preparation for light sheet imaging brains were cleared us-
ing organic solvents following the 3DISCO protocol (Ertürk et al., 2012) (https://idisco.info/),
with some modification. Briefly, on day 1 brains were washed 3× in PBS, then dehydrated
in a series of increasing MeOH concentrations (20%, 40%, 60%, 80%, 100%, 100%; 1-h
each) and incubated overnight for lipid extraction in 66% dichloromethane (DCM) in MeOH.
On day 2 the brains were washed twice for 1-h each in 100% MeOH, then bleached in 5%
H2O2 in MeOH at 4◦C overnight. On day 3 brains were washed 2× in 100% MeOH, then
final lipid extraction was accomplished in a series of DCM incubations (3-h in 66% DCM in
MeOH, 2× 100% DCM for 15 min each) before immersion in dibenzyl ether (DBE) for re-
fractive index matching. Brains were imaged on a light sheet microscope (LaVIsion Biotec
UltraScope II) 2-7 days after clearing. Brains were immersed in DBE in the imaging well se-
cured in the horizontal position, and illuminated by a single light sheet (100% width, 4 µm
thick) from the right. Images were collected through the 2X objective at 1X magnification,
from the dorsal surface of the brain to the ventral surface in 10 µm steps in 488 nm (aut-
ofluorescence, 30% power) and 594 nm (DiI, 2-10% power) excitation channels. The ap-
proximately 1000 raw TIF images were compiled into a single multi-image file with 10 µm
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voxels, then spatially downsampled to 25 µm voxels for transformation to the Allen common-
coordinate framework (CCF) volume (Wang et al., 2020b) using the Elastix algorithm (Sha-
monin et al., 2014). Transformed volumes were used to track fluorescent probe tract loca-
tions in CCF using Lasagna (https://github.com/SainsburyWellcomeCentre/lasagna), generat-
ing a series of CCF pixel coordinates for points along each probe tract. CCF pixel coordinates
(origin front, top, left) were transformed to bregma coordinates (x==ML, y==AP and z==DV)
in preparation for final integration with electrophysiology recordings using the International
Brain Lab electrophysiology GUI (Faulkner M, Ephys Atlas GUI; 2020. https://github.com/int-
brain-lab/iblapps/tree/master/atlaselectrophysiology). For recording alignment, sorted spikes
and RMS voltage on each channel were displayed spatially in relation to the estimated chan-
nel locations in Atlas space from the tracked probe. The recording sites were then aligned to
the Atlas by by manually identifying a warping such that recording sites were best fit to the
electrophysiological characteristics of the brain regions (e.g. matching location of ventricles or
white matter tracts with low firing activity bands). This procedure has been estimated to have
70 µm error (Liu et al., 2021; Steinmetz et al., 2019). Brain regions were then ascribed to each
unit based on location of the recording site with maximum waveform. We additionally assigned
MOs neurons to anterolateral motor cortex (ALM) if they were within a 0.75 mm radius of 2.5
mm AP, 1.5 mm ML (Chen et al., 2017).
Imaging. Following perfusion, intact heads were left in PFA for an additional week before brain
extraction. Brains were then sliced on a Leica Vibratome (VT1000S) at 70 µm before mount-
ing and nuclear staining via Fluoroshield with DAPI (Sigma-Aldrich F6057-20ML). Slices with
GRIN lens tracks were then imaged on a Zeiss Axio Imager M2 Upright Trinocular Phase Con-
trast Fluorescence Microscope with ApoTome. The resulting images were manually aligned to
the to the Allen Brain Atlas to reconstruct the location of each GRIN lens.

Neuron tracking.

To identify the same neurons across imaging sessions, we used two approaches. To track neu-
rons across the two odor sets on day 3, we concatenated the TIF files from each session and
extracted ROIs simultaneously. To track neurons across days 1 - 3, we manually identified
ROIs from the ROI masks outputted by suite2p. We linked the ROIs using a custom Python
script that permitted selection of the same ROI across the 3 imaging planes using OpenCV and
saved the coordinates on each day. The tracking results across days 1 - 3 from one of the mice
is displayed in Fig. 6B.

Behavioral analysis.

For electrophysiology experiments, eye and face movements were monitored by illuminating
the subject with infrared light (850 nm, CMVision IR30). The right eye was monitored with a
camera (FLIR CM3-U3-13Y3M-CS) fitted with a zoom lens (Thorlabs MVL7000) and long-
pass filter (Thorlabs FEL0750), recording at 70 Hz. Face movements were monitored with
another camera (same model with a different lens, Thorlabs MVL16M23) directed at a 2 ×
2 cm mirror reflecting the left side of the face, recording at 70 Hz. Licks were detected by
thresholding the average intensity of an ROI centered between the lips and the lick spout, calcu-
lated for every frame. For imaging experiments, licks were detected with a capacitance sensor
(MPR121, Adafruit Industries) connected to an Arduino board. To determine the impact of cues
and previous outcomes on anticipatory licking, we fit a linear model on all electrophysiology
sessions simultaneously (and for each mouse). We predicted the number of licks 0 to 2.5 s from
odor onset using cue identity, outcomes on previous 10 trials, outcomes on previous 10 of that
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cue type, and total number of presentations of that cue type so far (to account for cue-specific
satiety) using ‘fitlm’ in MATLAB. When dividing sessions into ‘early’ and ‘late’, we used the
first 60 and last 60 trials of the session. When dividing sessions into thirds for the GLM (‘early’,
‘middle’, ‘late’), we used even splits of trials into thirds.

PSTH creation.

Peri-stimulus time histograms (PSTHs) were constructed using 0.1s bins surrounding cue onset.
Electrophysiology. Neuron spike times were first binned in to 0.02s bins and smoothed with
a half-normal causal filter (σ = 300 ms) across 50 bins. PSTHs were then constructed in 0.1s
bins surrounding each cue onset. Each bin of the PSTH was z-scored by subtracting the mean
firing rate and dividing the standard deviation across the 0.1s bins in the 2s before all trials.
When splitting responses by polarity (above/below baseline, Figs. 2B, S4B), we used half of
trials to determine polarity and plotted the mean across the other half of trials.
Imaging. Frames were collected at 30Hz with 2-frame averaging, so the fluorescence for each
neuron and the estimated deconvolved spiking were collected at 15Hz. We interpolated the
smoothing filter from the electrophysiology analysis (which was calculated at 50Hz) and applied
it to the deconvolved spiking traces. We then constructed PSTHs in 0.1s bins surrounding each
cue onset and z-scored (same as electrophysiology).
Licks. Licking PSTHS were constructed in 0.1s bins surrounding cue onset. Each trial was then
smoothed with a half-normal filter (σ = 800 ms) across the previous (but not upcoming) 10
bins. For the GLM, the lick rate was calculated across the whole session by first counting licks
in either the 0.02s (electrophysiology) or 15Hz (imaging) bins, smoothed with a half-normal
filter over 25 previous bins, and then converted to 0.1s bins relative to each cue.

Kernel regression.

To identify coding for cues, licks, and rewards in individual neurons, we fit reduced rank kernel-
based linear model (Steinmetz et al., 2019).
Data preparation. The discretized firing rates fn(t) for each neuron n were calculated as de-
scribed above for PSTH creation. We used the activity -1 to 6.5 s from each cue onset for our
GLM analysis.
Predictor matrix. The model included predictor kernels for cues (CS+, CS50, and CS- for
each odor set, as relevant), licks (individual licks, lick bout start, and lick rate), and reward
(initiation of consummatory bout). The cue kernels were supported over the window 0 to 5s
relative to stimulus onset. The lick predictor kernels were supported from -0.3 to 0.3 s relative
to each lick, from -0.3 to 2 s relative to lick bout start, and lick rate was shifted from -0.4 to 0.6
s in 0.2 s increments from original rate. The reward kernel was supported 0 to 4s relative to first
lick following reward delivery. For electrophysiology experiments, the model also included 6
constants that identified the block number, accounting for changes in firing rate across blocks.
For each kernel to be fit we constructed a Toeplitz predictor matrix of size T × l, in which T is
the total number of time bins and l is the number of lags required for the kernel. The predictor
matrix contains diagonal stripes starting each time an event occurs and 0 otherwise. The predic-
tor matrices were horizontally concatenated to yield a global prediction matrix P of size T ×L
containing all predictor kernels. Rate vectors of all N neurons were horizontally concatenated
to form F, a T ×N matrix.
Reduced-rank regression. To prevent noisy and overfit kernels we implemented reduced-rank
regression (Steinmetz et al., 2019), which allows regularized estimation by factorizing the ker-
nel matrix K into the product of a L × r matrix B and a r × N matrix W, minimizing the
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total error: E = ∥F − PBW∥2. The T × r matrix PB may be considered as a set of ordered
temporal basis functions, which can be linearly combined to estimate the neuron’s firing rate
over the whole training set, resulting in the best possible prediction from any rank r matrix. To
estimate each neuron’s kernel functions we generated the reduced rank predictor matrix PB for
r = 20, estimated the weights wn to minimize the squared error En = |fn − PBwn|2 with
lasso regularization (using the MATLAB function ‘lassoglm’) with parameters α = 0.5 and
λ = [0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5] , using 4-fold cross-validation to determine the
optimal value for λ for each neuron. The kernel functions for neuron n were then unpacked
from the L-length vector obtained by multiplying the first r = 20 columns of B by wn.
Predictor unique contributions. To assess the importance of each group of kernels for predict-
ing a neuron’s activity we first fit the activity of each neuron using the reduced-rank regression
procedure, then fit the model (with 4-fold cross-validation) again excluding the kernels belong-
ing to the predictor to be tested (cues, licks, rewards). If the difference in variance explained
between the full and held-out model was > 2%, and the total variance explained by the full
model was > 2%, the neuron was deemed selective for those predictors (Steinmetz et al., 2019).
We validated this cutoff by randomly shuffling the onset time of each trial, which resulted in
only 1/5332 neurons with > 2% unique variance explained by any variable.
Training and testing on other time points. In the imaging experiments, we also fit the models
independently to each session third (early, middle, late) of days 1-3 with odor set 1 to determine
how fits and unique contributions evolved over time. To assess coding stability of individual
neurons in the imaging experiment, we used the kernels resulting from fitting the full model on
day 3 and the predictors from each session third to predict neural activity at those time points.
We assessed the the accuracy of the prediction by correlating it with the true activity and com-
paring that to the correlation with trial-shuffled data. We also did this with models trained on
day 3 odor set 1 and tested on day 3 odor set 1 and 2.
Cue coding models. To assess cue coding schemes, we fit a new set of models focusing on
a more restricted time window (-1 to 2.5 s from cue onset) using only cues and licks as pre-
dictors. Cue and lick neurons were identified as before, and subsequent cue characterization
was performed on neurons with only a unique contribution of cues. To identify value coding
among cue neurons, we fit an additional version of the kernel model with only one cue kernel
that scaled according to cue value. We estimated cue value for each cue type in each session
by finding the mean value predicted by the lick linear model (described in section ‘Behavioral
analysis’), using cue type, 10 previous outcomes, and 10 previous cue outcomes as predictors.
These values were used to scale the height of cue kernel for each trial type and were approx-
imately 0.05, 0.35, and 0.5 for CS-, CS50, and CS+, respectively. We also fit 89 additional
versions of this model consisting of all permutations of cue value assignment to the 6 odors.
We further fit each neuron with an ‘untuned’ model that had the same value for all cues. These
models are visualized in Fig. S6. After removing neurons best fit with the untuned model (sig-
nifying non-specific odor responses), we classified the remaining neurons according to which
of the 90 models best fit an individual neuron. For neurons where the value model was the best,
we also fit another version of the model where instead of scaling the cue kernel by mean value,
we scaled it by the trial-by-trial prediction of value from the lick linear model, which we called
the history value model. For neurons better fit by the history model, we also fit 1000 additional
models with shuffled trial values within each cue. The median percentage of shuffles that the
true history model improved upon was 96.5% across all neurons for which the history model
improved over the mean model. All value neurons best fit by the history model and improving
over > 65% shuffles (< 8% of value neurons better fit by the history model than the mean
model were below 65%) were classified as history coding. We also fit the value model and its
89 shuffles to the neurons imaged on separate days (Fig. 7E), concatenating the data from each
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odor set and adding a constant for each day to account for day differences.

Principal component analysis.

To visualize the dominant firing pattern of PL neurons (Fig. S2), and of value and trial type cells
(Fig. 3), irrespective of direction (excitation or inhibition), we performed principal component
analysis (‘PCA’ in MATLAB) on the concatenated PSTHs across all 6 cues for the neurons
of interest, with each neuron’s activity normalized by peak modulation so that each neuron’s
concatenated PSTH peaked at -1 or 1. We then plotted the score of the first components. To
visualize the value dynamics of value neurons from each region (Fig. 3), we performed PCA
as before on this subset and plotted the component most related to value (first component for
all regions except ACA, which was second). To quantify value dynamics within PCA space for
each region, we randomly selected 10 neurons from each region (or 60 neurons from region
group) and performed PCA as before but using only the 3 cues from odor set 1. We then
projected the activity of those neurons during odor set 2 cues onto the first 3 components. We
then calculated the distance between baseline (0 to 0.5 s) and cue (1 to 2.5 s) activity for each
odor set 2 cue in this 3-dimensional space as a fraction of maximum total distance spanned
across all time points. We performed this 5000 times with different selections of neurons to
estimate the distribution of differences between cue distances.

Cue coding dimension.

To project population activity onto the coding dimensions separating CS- activity from CS+ and
CS50 activity, respectively, we adapted an approach from Li et al. (2016). We first normalized
the odor set 1 PSTH activity of each neuron by dividing all of that neurons’ activity by its peak
activity across odor set 1 PSTHs. This prevented neurons with particularly large z-score values
from dominating the dimension. We then used half of odor set 1 trials to define the dimensions.
For each neuron, we found the 0.5s bin in the range 0 to 2.5s from cue onset that maximally
separated CS- activity from CS+ or CS50 activity, respectively. The difference between the
normalized CS+ and CS- activity for all neurons in their preferred bins comprised a vector
defining the coding dimension for each group of neurons of interest. We then multiplied that
difference vector by the original z-score values of each neuron in their peak bins to find the
values of peak CS+ and CS- coding; we used these values to transform the data onto a 0 to 1
scale for CS- to CS+ activity. To find population activity along that dimension at each moment
in CS+, CS50, and CS- trials, we multiplied the activity of all neurons in each 0.1s bin of the
other half of odor set 1 trials (z-score) by the difference vector and used the same conversion
to 0 to 1 scale (‘same odor set’). We also multiplied the activity of neurons for cues in the
other odor set by the difference vector (‘other odor set’). We repeated the same process for CS-
and CS50 activity. To find the baseline distance from CS-, we bootstrapped (5000 iterations of
selecting which neurons to include in the analysis, with replacement) the euclidean distance of
the average baseline values for all 3 cues from odor set 1 from the CS- position (0, 0). To find
the angle between the CS+ and CS50 projections, we bootstrapped the vectors that connected
baseline activity to peak activity of CS50 and CS+ along the CS- / CS+ and CS- / CS50 axes
and found the angle between these vectors. To find population activity along the CS+ / CS-
dimension at each moment for CS50 trials of various values, we multiplied the activity of all
neurons in each 0.1s bin of the CS50 PSTH from each value level (z-score) by the difference
vector and used the same conversion to 0 to 1 scale. To estimate the distribution of values along
the CS+ / CS- dimension for each CS50 value condition, we bootstrapped (5000 iterations,
with replacement) the population projection and took the mean 1 - 2.5 s from odor onset. We
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calculated a p-value by finding the bootstrapped distribution of differences between CS50 high
value projections and CS50 low value projections and calculating the fraction of the distribution
that was less than 0 (supporting the null hypothesis that CS50 high value activity is not greater
than CS50 low value activity).

Statistics.

All statistical tests were performed in MATLAB (MathWorks). To compare the fraction of neu-
rons of a specific coding type across regions, we fit a generalized linear mixed-effects model
(‘fitglme’ in MATLAB) with logit link function and with fixed effects of intercept and region
and a random effect of session and then found the estimated mean and 95% confidence inter-
val for each region. Regions with non-overlapping CIs were considered to have significantly
different fractions of neurons of that coding type. To compare the number of anticipatory licks
on different trial types, we found the mean number of anticipatory licks for each cue in each
session and then performed a two-way ANOVA with effects of cue and subject and session as
our n (Fig. 1C). To compare variance explained during each third of the first session, we found
the mean value across neurons from each mouse and then performed a one-way ANOVA on
those means with mouse as our n (Fig. 5H). To compare day 3 model performance on true and
shuffled data across each time point (Fig. 6F), we found the mean value across neurons from
each mouse at each time point and then performed a two-way ANOVA with main effects of
shuffle and time point, with mouse as our n. We then calculated pairwise statistics using ‘mult-
compare’ in MATLAB with Bonferroni correction. To compare cue, lick, and reward unique
variance at each time point for each cell category (determined on day 3, Fig. 6G), we found
the mean from the cells in that category in each mouse at each time point and performed a two-
way ANOVA with main effects of variable and day, with mouse as our n. We then calculated
pairwise statistics using ‘multcompare’ in MATLAB with Bonferroni correction.
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Figure S 1: Anticipatory licking during the electrophysiology sessions.

Figure S1. Anticipatory licking during the electrophysiology sessions.

(A) Mean anticipatory licks (change from baseline) for the CS+ and CS50 from odor set
1 (left) and 2 (right) for every session, color-coded by mouse. F (1, 66) = 32.07 and
F (1, 66) = 26.93 in each odor set for a main effect of cue in a two-way ANOVA
including an effect of subject.

(B) As above, for the CS+ and CS- from odor set 1 (left) and 2 (right). F (1, 66) = 433.1
and F (1, 66) = 574.6 in each odor set for a main effect of cue in a two-way ANOVA
including an effect of subject.

(C) As above, for the CS50 and CS- from odor set 1 (left) and 2 (right). F (1, 66) = 252.3
and F (1, 66) = 450.1 in each odor set for a main effect of cue in a two-way ANOVA
including an effect of subject.
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Figure S 2: Similar neural activity in prelimbic area using electrophysiology and imaging.

Figure S2. Similar neural activity in prelimbic area using electrophysiology and imag-
ing.

(A) Heatmap of the normalized activity of each neuron recorded with electrophysiology
in PL, aligned to each of the 6 odors. All columns sorted by mean firing 0 - 1.5 s
following odor onset for odor set 1 CS+ trials.

(B) As in (A), for all neurons imaged in PL on day 3 of each odor set.
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(C) The score from the first 4 principal components of the normalized activity presented
in (A), with variance explained in parentheses.

(D) As in (C), for the activity in (B).
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Figure S 3: Task-related neural activity across brain regions.

Figure S3. Task-related neural activity across brain regions.

(A) For each of the 5 mice in the electrophysiology experiment, the number of neurons
recorded in each region.
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(B) Heatmap of the normalized activity of each neuron (n = 51 trials per cue). All
columns sorted by region and then by mean firing 0 - 1.5 s following odor onset for
odor set 1 CS+ trials.

(C) Mean (+/- SEM) activity of neurons from 4 regions aligned to each cue type, grouped
by whether peak cue activity (0 - 2.5 s) was above (top) or below (bottom) baseline in
held out trials.
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Figure S 4: Identification of cue and lick cells with GLM.

Figure S4. Identification of cue and lick cells with GLM.

(A) Mean variance explained (fraction) by linear models in each region for each session
(x) and the mean (+/- SEM) across those sessions.

(B) Mean (+/- SEM) activity of neurons encoding cues, licks, both, or neither aligned to
each cue type, grouped by whether peak cue activity (0 - 2.5 s) was above (top) or
below (bottom) baseline in held out trials.

(C) Normalized activity of every neuron encoding cues, licks, or both, aligned to CS+
onset, sorted by mean firing 0 - 1.5 s following odor onset.

(D) Mean (+/- SEM) activity of neurons encoding cues or licks, grouped as in (B), on CS50
trials, divided into rewarded (lighter colors) or unrewarded (darker colors) trials.
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Figure S 5: Comparing proportions of cue and lick neurons across regions.

Figure S5. Comparing proportions of cue and lick neurons across regions.
(A) Fraction of neurons in each region classified as coding cues (left), licks (middle), or

both (right), as well as estimated fraction(+/-95% CI) with random effect of session
(see Methods).

(B) Additional cue/lick/both cells in region on Y-axis compared to region on X-axis as a
fraction of all neurons, for regions with non-overlapping 95% confidence intervals.

(C) As in (A), for region groups.

(D) As in (B), for region groups.
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Figure S 6: Schematic of value model shuffles.

Figure S6. Schematic of value model shuffles.

(A) For each of the 90 permutations of the Value model, the value taken on by the variable
cue kernel on trials corresponding to each of the 6 cue types. Value is determined in
units of predicted anticipatory licks, from 0 to 1 (maximum number of anticipatory
licks made). Additionally, there is an Untuned model, where all cues take on the same
value.
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Figure S 7: Additional analysis of odor coding schemes.

Figure S7. Additional analysis of odor coding schemes.

(A) Normalized activity of every value neuron, sorted by mean firing 0 - 1.5 s following
odor set 1 CS+ onset.

(B) Normalized activity of every trial type neuron, sorted by model and then by mean
firing 0 - 1.5 s following odor set 1 CS+ onset.

(C) Projecting the activity of all trial type and value cells onto the coding dimensions
maximally separating CS- and CS+ (x-axis) and CS- and CS50 (y-axis). Solid line is
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activity during cue, dashed line is activity following reward delivery. X marks baseline
activity.

(D) For the odor set 1 projection, distribution of 5000 bootstrapped distances between
baseline activity (prior to odor onset) and the CS- representation (0, 0). Value cells
were closer to CS- at baseline than trial type cells.

(E) For the odor set 1 projection, distribution of 5000 bootstrapped angles between CS+
and CS50 vectors (baseline to peak). Value cells had a smaller angle than trial type
cells.
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Figure S 8: Relative proportions of value and trial type cells across regions.

Figure S8. Relative proportions of value and trial type cells across regions.

(A) Additional cue value (left) or trial type (right) neurons in region on Y-axis compared
to region on X-axis as a fraction of all neurons, for regions with non-overlapping 95%
confidence intervals.

(B) As in (A), for region groups.
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Figure S 9: Value coding as a proportion of cue cells.

Figure S9. Value coding as a proportion of cue cells.

(A) Fraction of cue neurons in each region classified as coding value (left) or trial type
(right), as well as estimated fraction(+/-95% CI) with random effect of session (see
Methods).

(B) Additional value/trial type cue neurons in region on Y-axis compared to region on X-
axis as a fraction of all cue neurons, for regions with non-overlapping 95% confidence
intervals.

(C) As in (A), for region groups.
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(D) As in (B), for region groups.
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Figure S 10: Comparing PFC and striatum.

Figure S10. Comparing PFC and striatum.

(A) Fraction of neurons in each region and region group classified as coding cues (left),
licks (middle), or both (right), as well as estimated fraction(+/-95% CI) with random
effect of session (see Methods).

(B) Fraction of neurons in each region and region group classified as coding value (left)
or trial type (right), as well as estimated fraction(+/-95% CI) with random effect of
session. Light gray bars are remaining cue neurons not in that category.
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