

1 OptoRheo: Simultaneous *in situ* micro-mechanical sensing and 3D 2 imaging of live cell cultures.

3 **Authors:** Tania Mendonca¹, Katarzyna Lis-Slimak², Andrew B. Matheson³, Matthew G.
4 Smith⁴, Akosua B. Anane-Adjei⁵, Robert Cavanagh⁵, Lynn Paterson³, Paul A.
5 Dalgarno³, Cameron Alexander⁵, Manlio Tassieri⁴, Catherine L. R. Merry² and Amanda J.
6 Wright¹

7

8 ¹ Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham,
9 Nottingham, NG7 2RD, UK

10 ² Stem Cell Glycobiology Group, Nottingham Biodiscovery Institute, School of Medicine,
11 University of Nottingham, Nottingham, NG7 2RD, UK

12 ³ Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering
13 and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK

14 ⁴ Division of Biomedical Engineering, James Watt School of Engineering, University of
15 Glasgow, Glasgow, G12 8LT, UK

16 ⁵ School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK

17

18 **Abstract**

19 Biomechanical cues from the extracellular matrix (ECM) are essential for directing many
20 cellular processes, from normal development and repair to disease progression. To better
21 understand cell-matrix interactions, we have developed an optical instrument combining light
22 sheet fluorescence microscopy with particle tracking microrheology. We name this new
23 instrument OptoRheo. OptoRheo lets us image cells in 3D as they proliferate over several
24 days while simultaneously sensing the biomechanical properties of the surrounding
25 extracellular and pericellular matrix at a sub-cellular scale. OptoRheo can be used in two
26 operational modalities to extend the dynamic range of microrheology measurements, making
27 the instrument suitable for different cell culture systems. We corroborated this by

28 characterising the ECM surrounding live breast cancer cells in two distinct culture systems,
29 3D hydrogels and suspension culture. This cutting-edge instrument will transform the
30 exploration of drug transport through complex cell culture matrices and optimise the design
31 of the next-generation disease models.

32

33 **Introduction**

34 Cells sense and respond to the mechanical properties of the extracellular matrix (ECM) at a
35 cellular length scale, using traction forces to probe stiffness ¹, steer migration ^{2,3} and
36 influence cell fate ⁴. Simultaneously, the ECM is continuously remodelled by cells as they
37 exert these traction forces ⁵ during cell migration and morphological re-arrangement ⁶.
38 Anomalies in the mechanical properties of the ECM play significant roles in the development
39 of pathologies such as cancer ⁷ and fibrosis ⁸, often establishing barriers to therapeutic
40 intervention ⁹. Modelling and understanding the cellular influence on ECM biomechanics are
41 challenging processes given the wide range of mechanical environments experienced in
42 health and disease. In healthy tissues, the elastic modulus has been reported to range from
43 tens of Pa (e.g., brain, lung) to well above 10 KPa (e.g., skeletal muscle, bone), with disease
44 states such as cancer and fibrosis showing a significant change in stiffness (e.g., from 800
45 Pa for normal breast to more than 4KPa in breast cancer) ¹⁰. Moreover, the full mechanical
46 characterisation of the ECM also contains a viscous component that may influence cell
47 behaviour, although this property is often disregarded in the literature. The recent
48 development of engineered hydrogels with tuneable mechanical properties ^{11,12} have made it
49 possible to recreate elements of the ECM micro-architecture *in vitro* and reveal the influence
50 of ECM viscoelasticity on cell processes ^{13,14}. Despite these advances and their importance,
51 the mechanistic processes of cell-matrix interactions remain poorly understood. For
52 instance, do cells ‘prime’ their local environment prior to migrating or do they exploit existing
53 weaknesses in the ECM and migrate accordingly? These unanswered questions call for

54 minimally invasive optical approaches to monitor changes in the microscopic mechanical
55 properties of the ECM, *in situ* and in real time, local to proliferating cells over many days.
56
57 To address this aim, OptoRheo combines three different microscopy techniques into a single
58 instrument, enabling live fluorescence imaging deep in 3D cell cultures and microrheology
59 measurements of the ECM within the same region of interest, local to and far from the cells.
60 3D fluorescence imaging is achieved using a new version of reflected light sheet
61 fluorescence microscopy (LSFM)^{15–18} built on a commercial inverted microscope body to
62 image hundreds of microns deep from the coverslip, within live 3D cell cultures and with sub-
63 cellular resolution. The sample is kept completely stationary during z-scanning, with no
64 perturbation or contamination risk from dipping lenses, both crucial for ensuring that
65 observation does not influence the mechanical or biological properties of the sample. This
66 novel configuration allows for delicate samples such as hydrogel scaffolds to be imaged
67 simply in off-the-shelf chambered coverslips. To extract the viscoelastic properties of the
68 ECM non-invasively, OptoRheo tracks the thermally driven Brownian motion of micro-scale
69 probes across a wide frequency range. The inert probes can be embedded in the hydrogel
70 during encapsulation^{6,19–21} or even internalised into cells²² to probe intra-cellular
71 viscoelasticity. In suspension cultures, an optical trap can be used to hold the probe in the
72 field of view within the cells' microniche during the measurement time-window²³. This
73 approach makes the instrument suitable for micro-mechanical sensing in a wide range of cell
74 culture substrates such as those commonly employed in the biomedical field. Finally,
75 OptoRheo incorporates optional multiplane imaging that can be used to extend
76 microrheology to 3D in a configuration similar to the one developed for OptiMuM²⁴, to
77 achieve a full 3D characterisation of the extracellular microenvironment.
78
79 To highlight the capability of OptoRheo, we present data obtained from the analysis of two
80 systems seeded with human-derived MCF-7 breast cancer cells, either (I) encapsulated as
81 clusters in 3D hydrogels or (II) as spheroids maintained in suspension culture. In the case of

82 hydrogel scaffolds, matrix stiffness was measured using passive particle tracking
83 microrheology without the use of an optical trap or multiplane imaging, whereas in the case
84 of suspension cultures, the optical trap was implemented along with multiplane imaging.
85 Imaging and microrheology were performed sequentially at multiple regions within the
86 samples at depths of 150 μm - 400 μm from the coverslip. In the case of the hydrogels, the
87 samples were monitored over three days to reveal microscale variations in the elastic
88 properties of the ECM near to and away from cells. When studying spheroids in suspension
89 the optical trap was used to place and hold the probes in user-defined locations and extract
90 the relative viscosity of the media near the spheroids. Notably, in both the cases our
91 measurements were found to be sensitive to local spatio-temporal variations in the
92 biomechanical properties of the culture medium. As we aim to show, our multimodal and
93 minimally invasive approach opens a wide range of future opportunities for physiologically
94 relevant, long-time course investigations of cell-ECM interactions in fragile live cell culture
95 samples. We anticipate that this approach will be applied to increasingly complex and
96 relevant *in vitro* models, providing an essential insight into the previously opaque
97 mechanistic control of cell behaviour by the ECM in health and disease.

98

99 **Results**

100

101 3D imaging deep in live cell cultures

102

103 A schematic representation of OptoRheo can be seen in Figure 1. 3D light sheet
104 fluorescence microscopy (LSFM) is achieved by projecting a thin, planar excitation
105 beam limited to the detection plane of the microscope and collecting the emitted
106 fluorescence at a 90° angle to the illumination plane^{25,26}. For deep imaging of live 3D cell
107 cultures, the light sheet illumination was introduced using a 10 mm 90:10 (Reflectance:
108 Transmittance) beam splitter cube placed in the sample chamber prior to casting the gel

109 alongside it (Figs 1, 2 and S1). This LSFM approach has multiple advantages; deep and fast
110 fluorescence imaging with low phototoxicity²⁷ and minimal sample perturbation during
111 imaging, while being cost-effective and modular. The glass beam splitter cube can be
112 sterilized for reuse and placed either inside or outside the sample chamber to provide
113 flexibility to adapt to different experimental conditions.

114

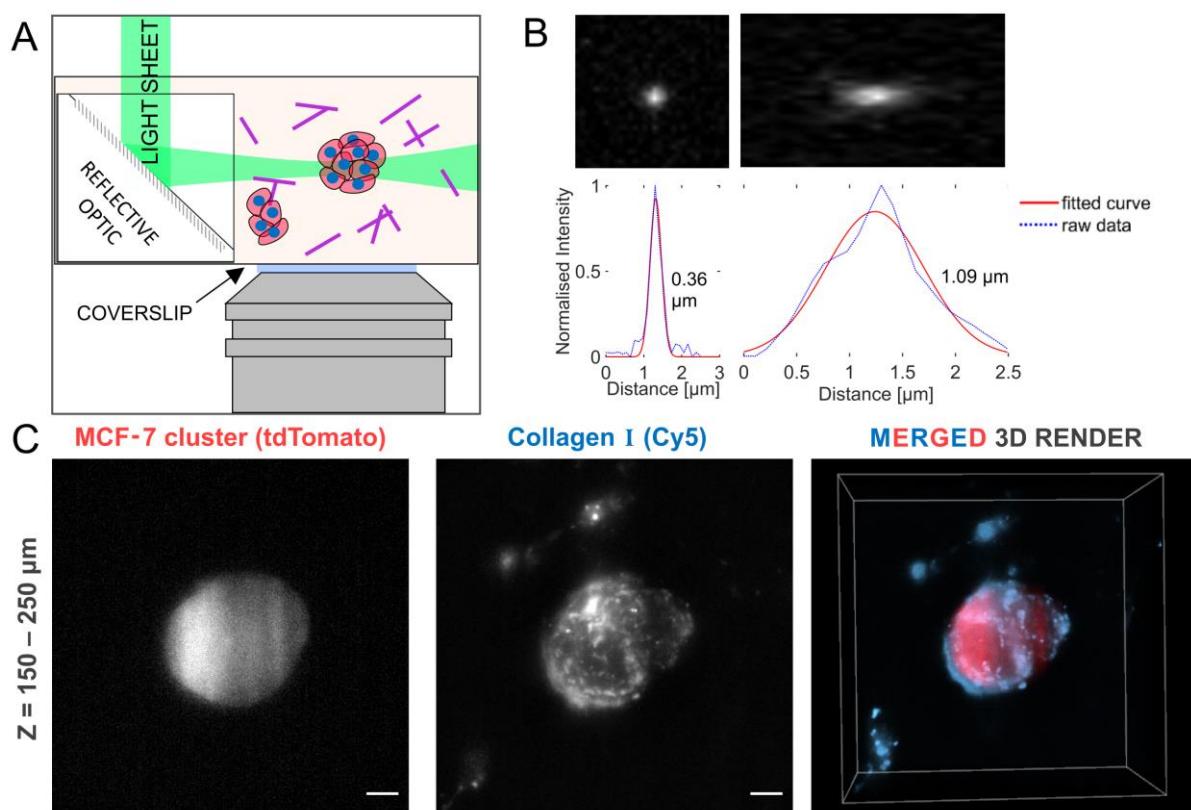
115 Unlike some other prism or mirror based LSFM solutions^{15,28,29}, 3D image generation was
116 achieved here by scanning the light sheet and not the sample. Notably, this allows the
117 sample to be kept stationary and undisturbed throughout data collection, which is essential
118 for imaging delicate samples prepared in soft hydrogels (Fig 2A) or liquid suspension media
119 over multiple days. The light sheet itself was generated using a cylindrical lens, the
120 properties of which set the thickness of the light sheet and influences the axial resolution and
121 optical sectioning capabilities of the microscope. In the presented configuration, the
122 measured axial resolution of the detection optics of the LSFM on OptoRheo was 1.09 μm for
123 $\lambda_{\text{ex}} \setminus \lambda_{\text{em}} = 532 \text{ nm} \setminus 580 \text{ nm}$ which agrees closely with theory (1.1 μm) (Fig 2B).

124 A scanning galvanometer mirror was placed conjugate to the cylindrical lens using a 4f
125 system, so that tilting the galvanometer mirror translated to a Z-shift in position of the light
126 sheet at the sample (Fig 1). Acquiring Z-stacks involved synchronisation of the galvanometer
127 mirror with a piezoelectric objective scanner that moved the objective lens, ensuring that the
128 illumination and imaging planes remained co-aligned and synchronised throughout the scan.

129 The light sheet remained at optimal thickness (~3 μm for all three colour channels, see
130 Methods) over a field of view of ~100 μm . However, image tiling could be achieved within a
131 region 4-6 mm from the beam splitter cube to increase the field of view. This required shifting
132 the light sheet focus laterally by moving the position of the cylindrical lens. The shifted
133 position of the beam splitter was compensated by tilting the galvanometer mirror to image
134 the new focal position.

135

136


137

138 **Figure 1: A schematic representation of the OptoRheo instrument.** Components: Lasers
139 – 473 nm, 532 nm and 640 nm lasers provide the light sheet illumination while a 1064 nm
140 laser is used for optical trapping. M1- M3 – mirrors; D1-D3 – dichroic mirrors; L1-L6 –
141 achromatic doublets, L1 and L2 form a 8.3 x beam expander and are part of a 4f system with
142 the galvanometer mirror (GM) and a beam splitter (BS2); CY1, CY2 – cylindrical lenses;
143 BS1, BS2 – beam splitter cubes; OBJ – objective lens; OBJ S – piezoelectric objective
144 scanner; F1 – fluorescence emission filter; TL – tube lens, QG – quadratic gratings and CAM
145 – camera. Yellow arrows indicate synchronised motion of (i) the galvanometer mirror, (ii) the
146 projected light sheet and (iii) the objective lens (using a piezoelectric objective scanner). The
147 quadratic gratings slide in and out of the optical path to enable 2D and 3D particle tracking.
148 The quadratic gratings are removed for the LSFIM imaging.

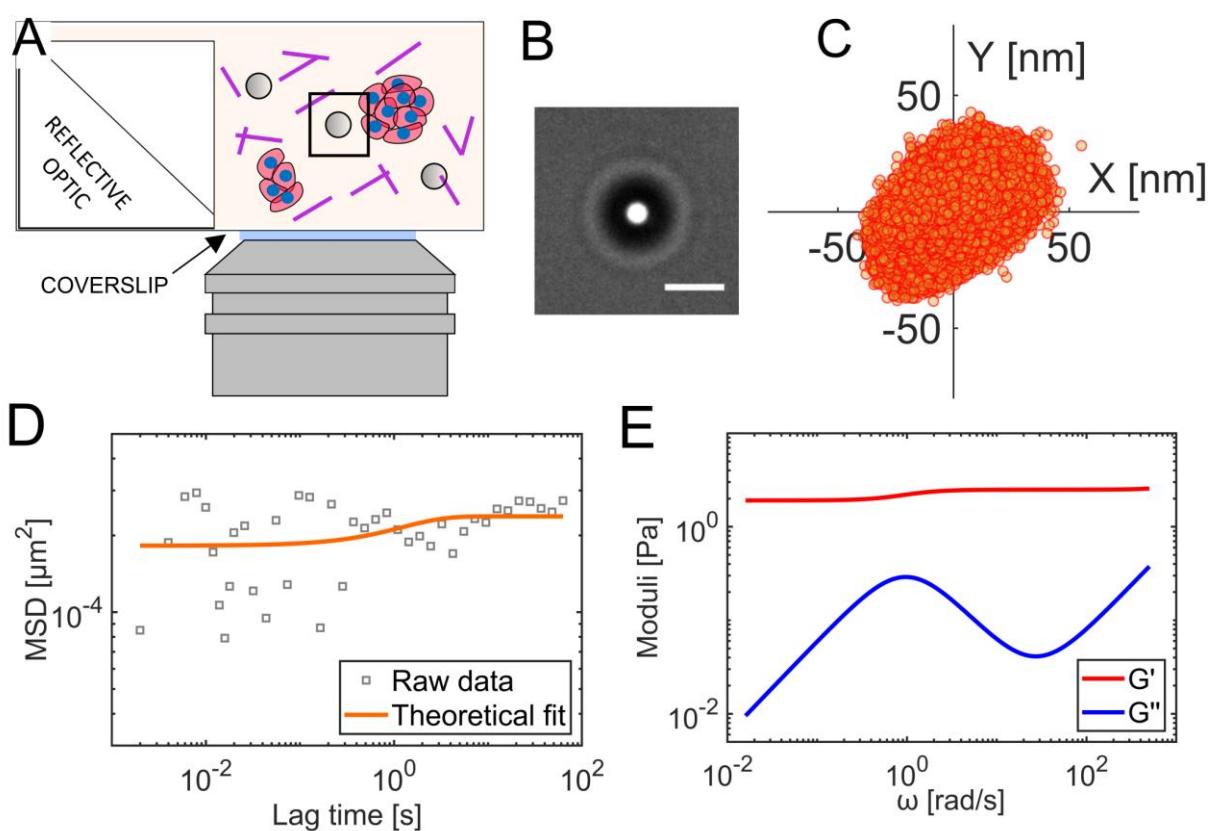
149

150 OptoRheo is fitted with a stage-top incubator that regulates temperature, CO₂ and humidity
151 around the sample, allowing long time-course experiments. The current configuration
152 of OptoRheo uses a 60x objective lens with a 1.5 mm working distance and a numerical
153 aperture (NA) of 1.1, selected to image deep into a sample, but with a high enough NA for
154 optical trapping. For the data presented in this work, z-scans were typically recorded 150 μm
155 - 400 μm from the coverslip (Fig 2C). The multiplane grating breaks up the field of view into
156 nine planes to enable 3D tracking ²⁴ and therefore, is not required for LSFM imaging and can
157 be easily removed by means of a slider. Additionally, the quadratic gratings used were
158 optimised for a particular wavelength (543 nm) making them unsuitable for multicolour
159 imaging.

160
161

162
163 Figure 2: **Light sheet fluorescence microscopy (LSFM) with OptoRheo.** A. Light sheet
164 generation at the sample is enabled by a beam splitter cube placed within the sample

165 chamber. Sample consists of cell clusters (represented by red circles with blue centres) and
166 collagen (purple lines). B. Lateral (left) and axial (right) point spread functions (PSFs) of the
167 system along the XY (0.36 μm FWHM) and YZ (1.09 μm FWHM) planes measured using
168 fluorescent sub-diffraction sized microspheres (diameter = 200 nm, $\lambda_{\text{ex}} / \lambda_{\text{em}} = 532 \text{ nm} / 580$
169 nm) at $\sim 200 \mu\text{m}$ from the coverslip. C. From left to right, maximum intensity projection (z =
170 150 – 250 μm from the coverslip) of a volume showing a cluster of tdTomato ($\lambda_{\text{ex}} / \lambda_{\text{em}} = 554 /$
171 581 nm) MCF-7 cells, the same volume showing Cy5 ($\lambda_{\text{ex}} / \lambda_{\text{em}} = 649 / 666 \text{ nm}$) labelled
172 collagen I and a 3D rendering of the merged channels. Scale bars = 5 μm .
173

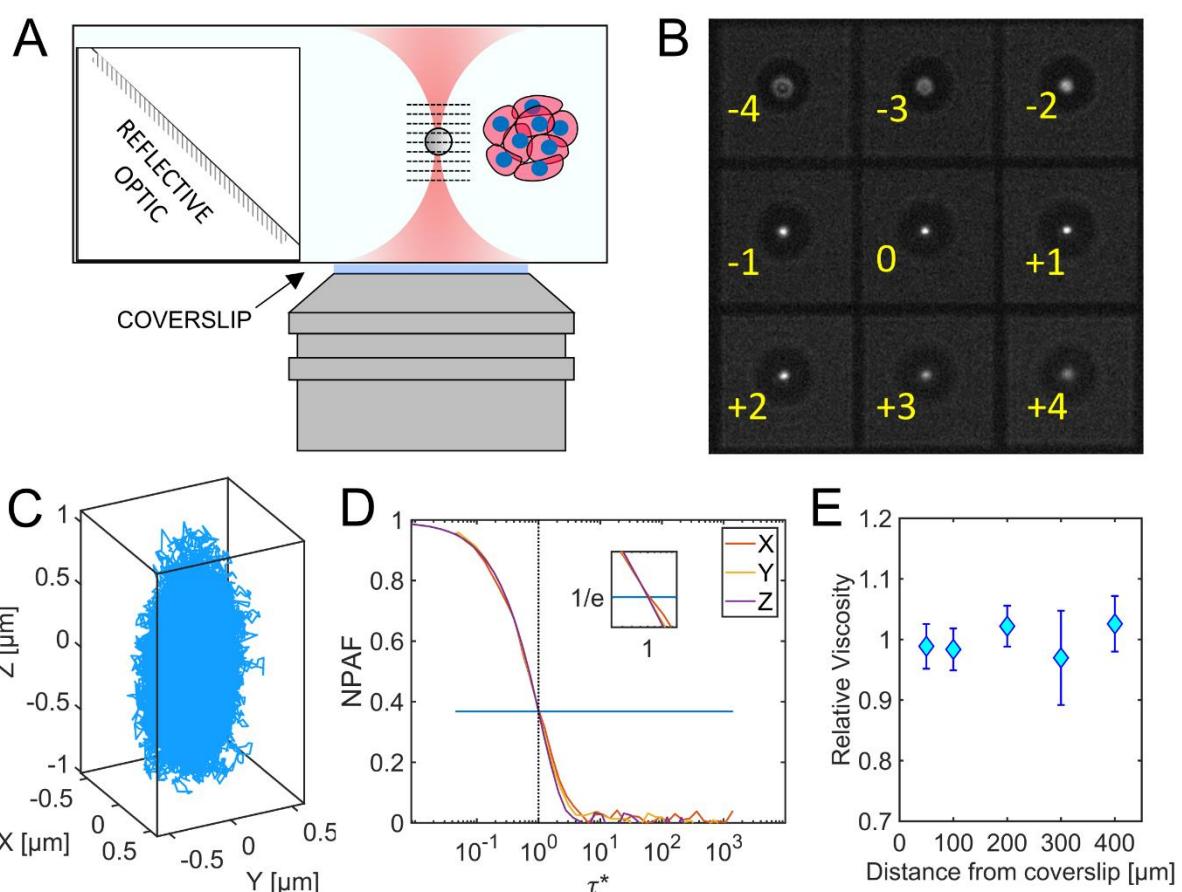

174 Microrheology of gels and suspension cultures

175
176 The viscoelastic properties of biomaterials can be extracted non-invasively using particle
177 tracking microrheology as developed by this group and others^{23,24,30}. This involves a
178 statistical analysis of the residual Brownian motion of micron-sized spherical probes, whose
179 temporal behaviour can be described by means of a Generalised Langevin equation³⁰. For
180 this purpose, polystyrene microsphere probes were seeded in the cell culture samples under
181 sterile conditions (Fig 3A). For hydrogel-based cell culture systems, the diameter of the
182 microsphere probes (6 μm) was selected so that the Brownian motion of the probes were
183 constrained by the hydrogel polymer network. A small field of view (typically 14 $\mu\text{m} \times 14 \mu\text{m}$)
184 was recorded around the microsphere probe (Fig 3B) to track the trajectory of each probe
185 (Fig 3C) at a relatively high frame rate ($\sim 300 \text{ Hz}$) for broadband microrheology. This was
186 done while switching the illumination to transmission mode using a LED source to avoid
187 introducing fluorescence bleaching-related errors in particle tracking (Fig 1). A second
188 cylindrical lens (CY2 in Fig 1) was placed in the LED light path to compensate for the
189 presence of the light sheet forming cylindrical lens (CY1 in Fig 1) and produce uniform
190 illumination. An analysis of the mean squared displacement (MSD) of the confined

191 microspheres (Fig 3D) gives the elastic (G') and viscous (G'') moduli of the surrounding gel
192 (Fig 3E).

193

194



195

196 **Figure 3: Passive microrheology without optical trapping.** A. Microsphere probes were
197 seeded in hydrogel for performing passive microrheology. B. Measurements involve imaging
198 small regions of interest (typically 14 μm x 14 μm as shown) around individual probes (6 μm
199 diameter) at a high frame rate. Scale bar: 4 μm C. Particle positions (orange circles) in a 2D
200 plane. D. The mean squared displacement (MSD) provides a measure of gels' compliance,
201 here modelled by using a simple expression: $MSD(t) = A + B \left(1 - \exp\left(-\frac{t}{\tau}\right)\right)$, where A, B
202 and τ are fitting parameters. The model helps to minimise the detrimental effect of
203 experimental noise, especially at short time scales. E. The elastic (G') and viscous (G'')
204 moduli of the gel over a range of frequencies can be evaluated from the analysis of the MSD
205 fits.

206
207 In liquid media and suspension cultures, microsphere probes sediment to the coverslip over
208 time with a rate dependent on the gravitational force, the buoyancy of the microsphere and
209 the viscosity of the medium ³¹. In aqueous liquids, this sedimentation rate is about 20 $\mu\text{m/s}$
210 for microspheres with a 3 μm radius, thus preventing long-term (i.e. tens of minutes) tracking
211 of the probe trajectory, which are needed for microrheology calculations. Therefore, when
212 working with liquids we used an optical trap (Fig 4A) to hold the probe in the field of view and
213 at the required location relative to the cell/s of interest during the measurement time. The
214 trapping force acting on the microsphere was kept very low ($<10^{-6}$ N/m) by controlling the
215 laser power, to maximise the amplitude of the residual Brownian motion, increasing the
216 sensitivity of the microrheology measurement and the frequency range. The confined
217 Brownian motion of the microsphere could then be recorded at ~ 300 Hz in 3D by using the
218 multiplane detection approach ^{24,32} by inserting a removable pair of quadratic gratings (QG)
219 in the detection path before the sCMOS camera (Fig 1 and 4B). The quadratic grating pair
220 focus light from nine object-planes as an array onto the camera sensor for instantaneous 3D
221 imaging without the need of any mechanical moving parts ^{24,32} (Fig 4B). This method allows
222 the tracking of the microsphere motion in all three dimensions simultaneously (Fig 4C),
223 revealing spatial variation of the sample's viscoelastic properties. However, the smallest
224 variance in particle position we could reliably measure with the present configuration was 30
225 nm in z, compared to 15 nm in xy 15 nm. Therefore, tracking in z was unreliable for our gel
226 samples where the motion is typically less than 50nm (see Fig 3C).
227
228 We validated our microrheology measurements from the 3D particle tracking mode of
229 OptoRheo by using water, a well characterised Newtonian fluid. We extended our previous
230 work ²⁴ by measuring the 3D trajectories of microsphere probes from 50 to 400 μm away
231 from the coverslip, without the use of any aberration correction, thus enabling microrheology
232 measurements at the same sample depths as our light-sheet imaging experiments. It is
233 important to note that most studies employing optical trapping report measurements taken at

234 <100 μm from the coverslip³³. The use of water immersion and a correction collar allowed
235 us to achieve trap stiffness k values of $k_x = 3.2 \times 10^{-7} \pm 0.3 \times 10^{-7}$ N/m along the x axis, $k_y =$
236 $3.2 \times 10^{-7} \pm 0.5 \times 10^{-7}$ N/m along the y axis and $k_z = 6.7 \times 10^{-7} \pm 1.2 \times 10^{-7}$ N/m along the z
237 axis (mean \pm standard deviation) over this large range of distances from the coverslip.
238 Relative viscosity (ratio of viscosity of an aqueous solution to the viscosity of water at the
239 same temperature) could be evaluated in 3D by analysing the normalised position
240 autocorrelation function (NPAF) for x, y and z at depths ranging from 50 μm to 400 μm from
241 the coverslip. In particular, the relative viscosity can be read “at a glance” from the abscissa
242 of the NPAF intercept e^{-1} , when the NPAF is plotted versus a dimensionless lag-time $\tau^* =$
243 $k\tau/(6\pi a\eta_s)$; where k is the trap stiffness, τ is the lag-time (or time interval), a is the probe
244 radius, and η_s is the Newtonian viscosity expected for the pure solvent³⁴ (Fig 4D). Figure 4E
245 shows the mean x, y and z relative viscosity \pm standard deviation, performed at different
246 depths (see Methods). Over the range of recorded measurements, the measured mean
247 relative viscosity (over x, y and z) remained stable with depth (i.e., 1 ± 0.05).
248
249

250
251 **Figure 4: Microrheology with an optical trap and multiplane detection** (3D particle
252 tracking mode) in an aqueous solution. A. An optically trapped microsphere is imaged in 9
253 planes simultaneously (planes represented by dashed lines). B. Captured image of nine
254 separate Z planes ($\Delta z = 0.79 \mu\text{m}$). The planes (labelled from number -4 to +4) are
255 simultaneously recorded at the camera sensor to extract the 3D trajectory. C. The resulting
256 3D trajectory of optically trapped microsphere in water. D. The normalised position
257 autocorrelation function (NPAF) versus a dimensionless time, τ^* . E. The mean \pm standard
258 deviation of the relative viscosity measured at each position over a range of depths.

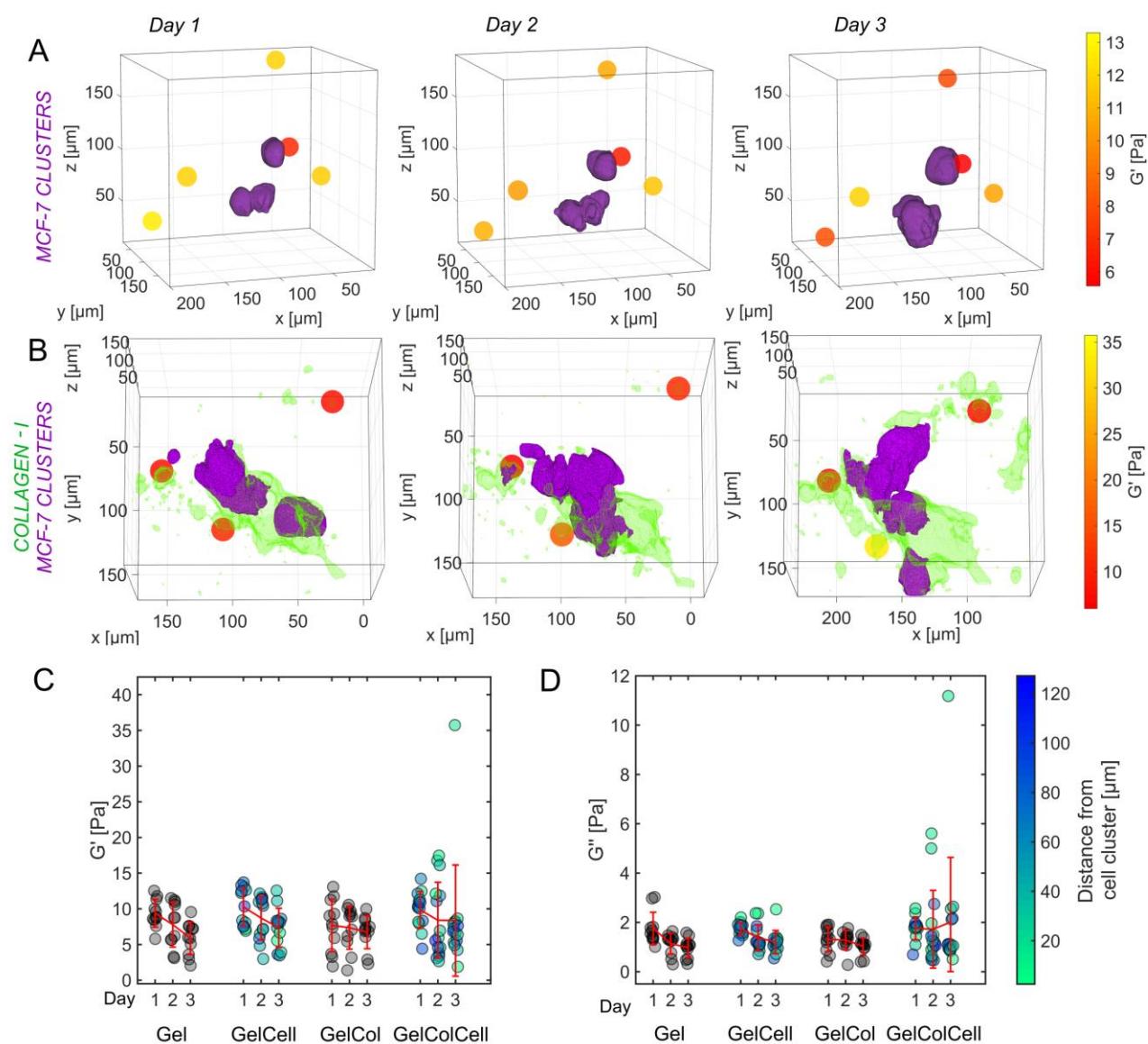
259

260 Monitoring ECM stiffness in hydrogel-encapsulated 3D cell culture

261

262 In order to test the ability of OptoRheo to evaluate biomechanical properties of the ECM in
263 real time, clusters of human-derived MCF-7 cancer cells expressing the tdTomato
264 fluorescent protein were grown in a hydrogel-encapsulated cell culture matrix^{11,35}. Changes
265 in the ECM stiffness around these cells have been correlated with cancer progression and
266 metastasis, and have been shown to alter drug resistance^{36,37}. Complementary multi-colour
267 3D LSFM imaging allowed cells and labelled matrix components (i.e. collagen I) from the
268 same locations to be captured in separate colour channels. These volume images could be
269 overlaid and combined with microrheology measurements to map the changing
270 biomechanical properties to the changing morphology of the sample at the microscale. This
271 approach was used to compare four different complex systems made of hydrogels with and
272 without (i) collagen and (ii) cells.

273


274 Environmental control on OptoRheo allowed samples to be kept under physiological
275 conditions over three days, making it possible to select microsphere probes located near cell
276 clusters and re-visit them multiple times over the duration of the experiment to follow the
277 changing ECM properties experienced by the cells over time (Fig 5A and 5B). The results
278 from these long-time course experiments highlight a dynamic microenvironment.
279 Viscoelasticity measured at individual probes changed over time as cell clusters proliferated
280 and changed their relative distance from the probes (Fig S2) which could be extracted from
281 LSFM images. Our localised measurements reveal heterogeneities in viscoelasticity within
282 all the hydrogel cell culture samples studied, including naked gels (Fig 5C, 5D and
283 Supplementary Table S1). Heterogeneities were found to be greatest in the most complex
284 system studied, that of gels seeded with collagen and cells. These gels showed a factor of 3
285 times greater variance in G' values than each of the other three gel compositions, which
286 were comparable in variability (Fig 5C, 5D and Supplementary Table S1). The variation in G"
287 values of the gels with collagen and cells (n = 20) on the other hand was a factor of ~ 6.5
288 times more than in naked gels (n = 11) and a factor of ~ 12 times more in both gels seeded
289 with collagen alone (n = 11) and gels with cells but without collagen (n = 19).

290

291 There was no clear trend in viscoelastic behaviour with increasing distances, suggesting
292 more complex interactions may be taking place, potentially involving matrix components
293 secreted into the gels by the encapsulated cells. However, there was greater change in both
294 viscoelasticity and relative distance between the probes and cell clusters in gels
295 supplemented with collagen as opposed to those without (Fig S2). Interestingly, we were
296 able to detect a greater heterogeneity in both G' and G'' values in gels with collagen and
297 cells than with either without cells (Fig 5C and 5D), demonstrating the importance of
298 incorporating control conditions when interpreting changes in mechanical environments
299 around encapsulated cells.

300

301

302

303 **Figure 5: Local stiffness measured in live 3D cell cultures with different compositions.**

304 A. Example biomechanical maps produced by OptoRheo of MCF-7 clusters expressing
305 tdTomato (shown in purple) encapsulated in hydrogels and B. MCF-7 clusters from the same
306 cell line in hydrogel supplemented with collagen I labelled with Cy5 (shown in green)
307 monitored over three days. Spheres depict microsphere probes (not to scale) assigned a
308 colour to reflect the local stiffness measured in terms of the material's elastic modulus (G').
309 C. & D. The variation in the material's viscoelastic moduli (G' & G'') over three days for
310 different matrix conditions where Gel stands for hydrogel only, GelCell is hydrogel and cells
311 (including data from A), GelCol is hydrogel with collagen, and GelColCell stands for hydrogel

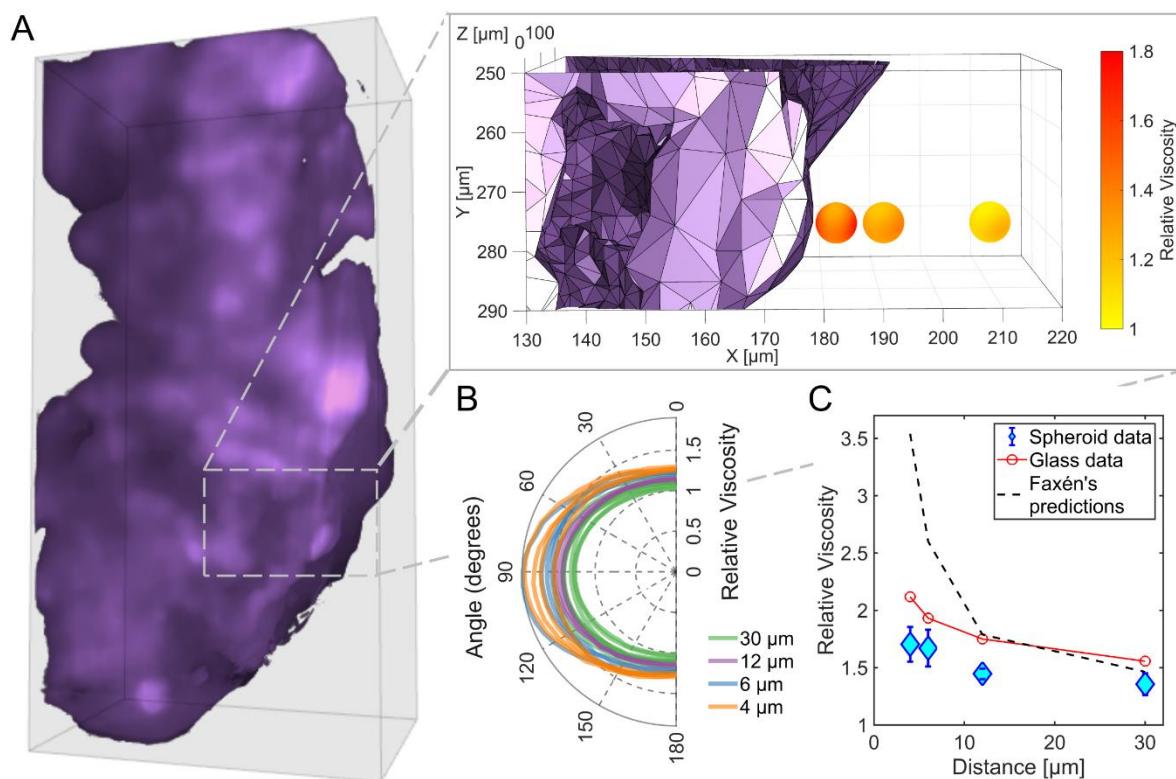
312 with cells and collagen (including data from B). The blue-green gradient denotes distance
313 from the cell cluster. Black represents the samples with no cells.

314

315 Mapping relative viscosity local to spheroids in suspension culture

316

317 The second scenario tested as a proof-of-concept, was to acquire 3D images and
318 microrheology measurements near spheroids in suspension culture. Spheroids were grown
319 from the same MCF-7 cancer cell line as in the peptide hydrogel cultures and were used two
320 days after seeding at a size of ~1 mm in diameter. As both 3D imaging and microrheology
321 on OptoRheo do not involve moving the sample, these spheroids could be maintained in
322 liquid media without the need to immobilise them in agarose or any other hydrogel matrix,
323 unlike most conventional LSFM instruments. Volume images near the edges of spheroids,
324 were acquired by tiling multiple overlapping imaging volumes of 200 μm x 200 μm x 200 μm
325 (between 150 μm – 350 μm from the coverslip) (Fig 6A). Once the images were acquired,
326 the instrument was switched from LSFM modality to 3D particle tracking mode by sliding the
327 quadratic gratings into the optical path and with illumination in transmission (QG in Fig 1).
328 The optical trap enabled microsphere probes to be individually trapped and positioned in 3D
329 with the XY stage and the piezoelectric objective scanner to make measurements at
330 selected locations near the edge of the spheroids (Fig 6A inset).


331

332 Our measurements show an apparent increase in relative viscosity with decreasing distance
333 (4 μm , n = 4; 6 μm , n = 4; 12 μm , n = 3 and 30 μm , n = 7) between the centre of the
334 microsphere and the surface of the spheroid (n = 2 spheroids) (Fig 6A, 6B and 6C).
335 Viscosities could be extracted in 3D by resampling the recorded 3D trajectories along any
336 desired axis, calculating the MSD, and then using Fick's Law (see methods). Such angle-by-
337 angle analysis reveals higher relative viscosity values perpendicular to the surface of the
338 spheroid as compared to parallel to the surface, with the anisotropy increasing as the probe

339 approaches the surface (Fig 6B). This trend is in agreement with predictions from Faxén's
340 law which describes the increased hydrodynamic drag experienced by objects near solid
341 surfaces and manifests itself in an increase in apparent viscosity, albeit our measured values
342 are lower than the predictions ³⁸ (dashed black line in Fig 6C). The lower values could
343 potentially be attributed to the spheroid surface being irregular and not completely inelastic.
344 Additionally, the presence of salts in the nutrient medium may reduce electrostatic
345 interactions at surfaces as corroborated by control measurements at corresponding
346 distances from the inert glass coverslip in the same medium without the presence of the
347 spheroids (red line in Fig 6C).

348

349

350

351 **Figure 6: Viscosity near spheroid.** A. 3D rendering of a section of a spheroid of MCF-7
352 cells expressing td-Tomato (relative dimensions: 200 μm x 400 μm x 100 μm (150-250 μm
353 from the coverslip)). The inset shows one of the areas where viscosity (relative to the
354 solvent) measurements were acquired at incremental distances from the spheroid surface –

355 three measurements (4 μm , 12 μm and 30 μm from the spheroid surface) are depicted as
356 spheres (not to scale). The colour gradient for each sphere represents the relative viscosity
357 sampled by angle at each measurement position. A fourth position (6 μm) has not been
358 shown to aid visualisation. B. Relative viscosity measurements in a plane perpendicular to
359 the spheroid surface, passing through the highest and lowest measured viscosity at the
360 probe position. C. Mean \pm standard deviation of relative viscosity measurements of the
361 nutrient media at each position for a direction perpendicular to the spheroid surface (blue)
362 and glass (red), showing increased apparent viscosity at positions closer to the surface but
363 lower than values predicted from Faxén's law (black dashed line).

364

365 **Discussion**

366 To understand how cells interact with and remodel their surrounding matrix, it is crucial to
367 not only visualise cell clusters in 3D, but also to map these images to the micro-mechanical
368 properties of the matrix local to, and distant from the cells. In this study, we have introduced
369 an integrated instrument, OptoRheo, that combines light sheet fluorescence microscopy
370 (LSFM) with non-invasive microrheology to enable a more complete understanding of cell-
371 matrix interactions. The new LSFM configuration presented here is straightforward to
372 implement and does not require the use of bespoke, expensive optics. This reflected
373 configuration allows for samples to be prepared and mounted as on any commercial inverted
374 microscope, using off-the-self sample chambers and a stage-top incubator to control
375 temperature, humidity and CO_2 throughout experiments, enabling delicate hydrogel-based
376 cell culture samples to be studied over multiple days. With the ability to optically trap
377 microrheological probes when required, we have demonstrated the capability of the
378 instrument to study aqueous (suspension culture) as well as soft solid (hydrogel)
379 environments. This modular functionality with a gratings-based approach allows OptoRheo
380 to transition from 2D to 3D particle tracking effortlessly. We provide experimental evidence of
381 this approach by following changes in matrix viscoelasticity in 2D in hydrogel-encapsulated

382 cell cultures over three days and viscosity in 3D near spheroids. Our localised rheological
383 measurements reveal extensive heterogeneities at the microscale in hydrogel-encapsulated
384 cell cultures. These heterogeneities are seen both in matrix stiffness and in the distribution of
385 matrix components, with fluorescently tagged collagen aggregating in defined regions,
386 particularly in the pericellular space (Fig 5B). Furthermore, we demonstrate 3D imaging of
387 spheroids in suspension (without embedding in agarose), while making selected localised
388 3D rheological measurements near them.

389

390 Extending the rheological measurements to 3D and sampling viscosity in 360 °, as shown in
391 our experiments with spheroids (Fig 6B), increases the capability of our measurements to
392 extract heterogeneities, not just between probe positions, but for different directions at a
393 single probe position. Currently, this 3D approach is restricted to computing viscosity in
394 liquids due to limited spatial sensitivity when tracking probe position in z (Methods). This is
395 not an issue when the extent of the Brownian motion of the probe is large, such as the ~1
396 μm (Fig 4B) observed in a weak optical trap in suspension culture, but is of concern when
397 motion is very small (≤ 50 nm) such as that observed in stiff gels (Fig 3B). In future the
398 sensitivity and measurement range of the ‘sharpness’ metric used for particle tracking in z
399 could be tuned by changing the plane spacing selected with the multiplane grating pair, the
400 probe size, the illumination levels and the signal to noise ratio of the images ²⁴. Efforts to
401 extend these 3D analyses to gels in the future would be highly valuable as biophysical
402 properties in the ECM are likely to vary in 3D, as apparent in the images of labelled collagen
403 present in the gel samples (Fig 5B).

404

405 The outputs from these proof-of-concept experiments are very data-rich. Different locations
406 of interest in the sample can be programmed to be revisited multiple times over a multi-day
407 experiment. As such, OptoRheo enables researchers to track numerous variables over time,
408 so that the relative cell and probe position, and cell behaviour (change in shape or size,
409 migration, apoptosis) can be related to viscous and elastic components of the matrix

410 biophysical properties. In future, it would be relatively straight forward to include additional
411 probes into the sample (either genetically engineered reporters in the cells or sensors
412 embedded in the gel/matrix) to track the coordinated impact of chemical, biological and
413 mechanical cues.

414

415 As highlighted in recent publications ^{4,39}, the control of cell behaviour by mechanical forces
416 exerted through the ECM remains poorly understood, even as researchers take advantage
417 of ECM control to create more complex, physiologically relevant models of development and
418 disease, that better represent the *in vivo* micro-environment. The ability to integrate read-
419 outs of cell behaviour with the microrheology of pericellular and distant matrix will be critical
420 in further improving these models and using them to uncover the mechanistic basis of the
421 phenomena they imitate. In addition, for development of therapeutics, there remains a
422 significant gap in our understanding of the environments that drugs and delivery vehicles
423 encounter in the body. The simultaneous observation of material transport together with
424 rheological measurements will enable us to build detailed structure-function relations of drug
425 delivery pathways, which in turn, will enable more efficient screening of candidate
426 therapeutics and better predictive models of *in vivo* activity and efficacy.

427

428

429 **Online Methods**

430

431 Light sheet fluorescence microscopy (LSFM)

432 OptoRheo uses a reflected light sheet configuration where light sheet illumination is
433 introduced into the imaging plane of an inverted microscope (Olympus IX-73) using a right-
434 angle optic (90:10 RT beam splitter cube, 10 mm; Thorlabs Inc.). Z-scanning was achieved
435 by moving the light sheet through the sample using a galvanometer scanning mirror
436 (dynAIXIS 3S; SCANLAB GmbH) whilst simultaneously moving the

437 objective lens (LUMFLN60XW 60x 1.1 NA 1.5 mm WD; Olympus) via a
438 motorised piezo objective scanner (P-725.4CD; Physik Instrumente Ltd.) to keep the light
439 sheet in focus. Lateral positioning was achieved using a XY microscope stage (MS-2000,
440 ASI) and a zoom-mount attached to the cylindrical lens forming the light sheet. The
441 fluorescence image was detected using an sCMOS camera (Hamamatsu ORCA Flash 4.0
442 V2). Environmental control was achieved using an Okolab stage-top incubator (H301-K-
443 FRAME) supplied with pre-mixed CO₂ gas.

444

445 Multi-colour fluorescence imaging was made possible by using three lasers separately to
446 form the light sheet; 473 nm (SLIM-473; Oxxius), 532 nm (BWN-532-2OE; B&W Tek) and
447 640 nm (OBIS; Coherent). These laser lines were coupled to each other in the illumination
448 beam path using dichroic mirrors. A cylindrical lens ($f = 50$ mm, Thorlabs) was used to
449 generate the light sheet with a beam waist of 2.6 μm for λ_{ex} 473 nm, 2.4 μm for λ_{ex} 532 nm
450 and 3.3 μm for λ_{ex} 640 nm. The light sheet was aligned and characterised by imaging it in
451 reflection using two beam splitters (90:10 RT beam splitter cube, 5 mm; Thorlabs Inc.) in
452 tandem. The relationship between voltage applied to the galvanometer mirror and position of
453 the light sheet was characterised using this double beam splitter set up and keeping the
454 detection objective stationary while scanning the light sheet in z. The slope of the linear fit to
455 the measured position of the light sheet against the voltage applied gave the pixel to voltage
456 step size for synchronised movement.

457

458 When imaging samples, an autofocus step is first performed to ensure the illumination and
459 detection optics, primarily the objective, are aligned. This involves recording a stack of
460 images while keeping the imaging objective stationary and scanning the light sheet with a
461 sub-beam-waist step size. The frame with the highest mean intensity value denotes where
462 the light sheet waist coincides with the imaging plane and so the position of the light sheet
463 for this frame is synchronised with the height of the objective.

464

465 Standard off-the-shelf beam splitter cubes have a blunt edge that make the bottom 150 μm
466 unsuitable for reflecting the light sheet illumination. These regions can be illuminated by
467 tilting the light sheet at BS1 (Fig 1) or by using a bespoke cube with a sharp edge.

468

469 The mechanical components of the OptoRheo including the light sheet parts were controlled
470 in LabVIEW (2018, 64bit; National Instruments Inc.). Image volumes were saved as '.tiff'
471 files.

472

473 Image processing

474 Contrast adjustment and background subtraction was performed on image volumes in
475 ImageJ/ Fiji ⁴⁰ and volume tile stitching was performed using the BigStitcher ⁴¹ plugin for Fiji.
476 3D rendering for Figs 3C and 6A was done in FluoRender (v 2.26.3) ⁴².

477

478 To calculate the distance between microspheres and the nearest cell clusters, the centre
479 positions of the microspheres in image coordinate space were extracted from the LSFM
480 images. Although the microspheres (Polybead® Microspheres 6.00 μm ; PolySciences) were
481 not fluorescently labelled, they are visible in the 3D LSFM images due to light scattering.

482 Mesh renderings of the corresponding cell clusters were exported from FluoRender and
483 these meshes along with positions of the microspheres from the same image volume were
484 used as inputs in the point2trimesh.m ⁴³ code in MATLAB which computes the shortest
485 distance between a given point and the outer edge of a triangular mesh.

486

487 Figs 5A and 5B and the inset within 6A were prepared in MATLAB using mesh renderings
488 generated in FluoRender overlaid with rendered spheres to depict the microsphere probes
489 with a colour gradient to show the elastic modulus (G') (Fig 5A and 5B) or viscosity (Fig 6A
490 inset) at each probe.

491

492 Optical Tweezers

493 The beam path from a continuous wave 1064 nm 5 W DPSS laser (Opus, Laser Quantum)
494 was directed into the inverted microscope body and focused in the image plane using the
495 same objective lens used for imaging in the LSFM set up. This objective lens was also used
496 to image a small region of interest (14 μm x 14 μm) around the trapped polystyrene
497 microspheres in wide-field with illumination in transmission for fast (300Hz) tracking of
498 thermal fluctuations.

499

500 Multiplane detection

501 3D imaging of the micro-rheology probes was made possible by multiplane detection similar
502 to the OpTIMuM instrument ²⁴ and its predecessors ^{32,44}. Here, a multiplane grating pair was
503 formed using two quadratically distorted diffraction gratings etched into a quartz substrate
504 (bespoke production by Photronics UK Ltd). A single grating generates three sub-images,
505 corresponding to the $m = 0, \pm 1$ diffraction orders while two gratings with orthogonal etch
506 patterns, can generate nine different sub-images, each corresponding to a different image
507 depth which can be captured simultaneously on a single camera sensor (Hamamatsu ORCA
508 Flash 4.0 V2) (Fig 4A). A 4f image relay system consisting of two 300 mm lenses was set up
509 in the detection path between the camera and the inverted microscope body to enable the
510 multiplane grating pair to be placed in the telecentric position. This set up ensured a
511 consistent level of magnification in each of the imaging focal planes. The grating is on a
512 slider and easily removable allowing the user to switch between standard full field of view
513 imaging and multiplane imaging of a small region of interest with no adverse side effects. In
514 our system we have used a relay and grating combination that gives plane separation of Δz
515 = 0.79 μm with the nine images spanning 7.11 μm , designed to show the extent and position
516 of our 6 μm diameter probe. Grating combinations can be chosen to suit the diameter of the

517 probe such that the total span in z covers the extent of the trajectory of the probe with the
518 minimum plane separation for optimal resolution ²⁴.

519

520 Microrheology

521 Particle tracking microrheology was performed using polystyrene microspheres as probes
522 (Polybead® Microspheres 6.00 μ m diameter; PolySciences). In hydrogel cultures, the
523 microspheres were encapsulated during the gelation process at a final dilution of 1:200,000
524 v/v from concentrate product. In suspension cultures, the microspheres were added to a final
525 dilution of 1:200,000 from concentrate product, the probes were individually optically trapped
526 using ~4 mW of laser power (at the sample) and moved to a position of interest. The
527 Brownian motion displayed by the microspheres, was recorded over 300,000 frames at ~300
528 frames per second using OptoRheo with illumination in transmission from an LED light
529 source (Fig 1). Videos of the microsphere probes were acquired using Micro-Manager
530 (version 1.4) ⁴⁵.

531

532 The time-dependent trajectories of the microspheres were extracted from these videos in
533 MATLAB (2019b; MathWorks, Natick, MA). For 2D trajectories along the image plane a
534 centre-of-mass detection method following Otsu's method of multiple thresholding (with two
535 levels) was used. Out-of-plane Z motion of the probe was tracked by computing a
536 'Sharpness' metric as detailed in our OpTIMuM publication ²⁴. Particle tracking with these
537 methods gives us a minimum sensitivity of ~ 15 nm (FWHM) in the xy plane and ~ 30 nm
538 (FWHM) in z for a particle with diameter of ~ 6 μ m, using a 60x objective and a plane
539 spacing of ~ $\Delta z = 0.79 \mu$ m ²⁴. A calibration step is performed for each microsphere before
540 taking a measurement by translating a lens (L4 in Fig 1) in the beam expander in the optical
541 path as described previously ²⁴.

542

543 In the case of hydrogels, the Brownian motion of the microsphere confined within the gel
544 was recorded in 2D without the use of the optical trap or multiplane imaging. For these data,
545 an analysis of the mean squared displacement (MSD) gave the storage (elastic) and loss
546 (viscous) moduli of the gel. To acquire direction-averaged viscoelastic measurements for
547 each probe, first the experimentally acquired trajectory along the x axis was detrended to
548 remove long-term drift and was subjected to a rotational transformation around the y axis at
549 20° intervals from 0° to 180°, to resample the trajectory along different directions. The MSD
550 values for each resampled trajectory was then calculated and these MSD curves were fit to
551 equation 1, a simple model for a Maxwell material characterised by a single relaxation time,
552 which accounts for the solid-like nature of the hydrogels and the pseudo diffusive behaviour
553 of the probe particle ⁴⁶.

554

$$MSD(t) = A + B \left(1 - \exp \left(-\frac{t}{\tau} \right) \right) \quad (1)$$

555 A, B and τ are fitting parameters. This approach mitigates any error generated by the
556 inherently finite nature of the measurements that affects the accuracy to which the MSD is
557 calculated especially at such short-time scales (Fig 3). The MSD relates to the gel's time
558 dependent compliance $J(t)$ ⁴⁷ as follows,

559

$$MSD(t) = \frac{k_B T}{\pi a} J(t) \quad (2)$$

560 where k_B is the Boltzmann's constant, T is the absolute temperature, and a is the radius of
561 the microsphere. The materials' complex shear modulus can be computed from the
562 materials' compliance by means of its Fourier transform ($\hat{J}(\omega)$)

563

$$G^*(\omega) = \frac{1}{i\omega \hat{J}(\omega)} . \quad (3)$$

564 We used a new MATLAB based graphical user interface named π -Rheo (see code
565 availability statement) for evaluating Equations 2 & 3, to compute the Fourier transform of
566 the particles' MSD and the materials' complex modulus for passive microrheology
567 measurements. π -Rheo is underpinned by the algorithm introduced in i-RheoFT ⁴⁸. The real

568 and imaginary parts of the complex modulus give the elastic (G') and viscous (G'') moduli of
569 the gel. Values reported are mean values over the explored frequency range.

570

571 For aqueous solutions, where 3D positions of the probe are tracked, the viscosity may be
572 extracted by fitting an exponential decay against the normalised position autocorrelation
573 function ³⁴. This method is highly effective for data aligned with the principal axes of the
574 optical trap (see Fig 4D). However, when calculating viscosity along vectors not aligned with
575 these axes using this method, the significant trap anisotropy along the z-axis introduces
576 artefacts as outlined in detail previously ⁴⁹. Alternatively, if the material under investigation is
577 purely viscous, then at very early times the MSD of the bead should behave as if the bead is
578 not trapped. Under these conditions, Fick's Law for unconstrained diffusion can be used to
579 extract viscosity in any arbitrary direction rather than just x, y, z at these early times. Fick's
580 law for motion in 1D is given by,

581 $MSD_{(t,\theta,\varphi)} = 2D_{(\theta,\varphi)}t$ (4)

582 where θ and ψ define the direction being probed and D is the diffusion coefficient for a
583 sphere of radius a in a liquid with viscosity η . From the Stokes-Einstein relation

584 $D = \frac{k_B T}{6\pi\eta_{(\theta,\varphi)}a}$. (5)

585 This approach was used to compute viscosity in 3D as shown in Fig 4E and Fig 6A.

586

587 Cell culture

588 The breast cancer cell line MCF7 expressing tdTomato was maintained in high glucose
589 DMEM (Life Technologies; 21969-035) with 10 % foetal bovine serum (Life Technologies,
590 10500-064), 1 % L-glutamine (Life Technologies, 25030-024). To maintain the tdTomato
591 protein expression, the medium was supplemented with Puromycin 1:1000 (Gibco, A11138-
592 03) at every passage. Cells were maintained at 37 °C and 5 % CO₂ in a humidified
593 atmosphere during cell culture and measurements on the OptoRheo.

594

595 Peptide gel precursor preparation

596 The precursor and gel preparation method was followed as previously published ⁵⁰. A
597 commercially available peptide preparation in powder form was used as the source of the
598 octapeptide gelator (Pepceuticals UK, FEFEFKFK, Phe-Glu-Phe-Glu-Phe-Lys-Phe-Lys). To
599 form the precursor, a mass of 10 mg peptide preparation was dissolved in 800 μ L sterile
600 water (Sigma, W3500), using a 3 min vortex step followed by centrifugation (3 min at 1000
601 rpm) and a 2 hour incubation at 80 °C. After incubation, 0.5 M NaOH (Sigma, S2770) was
602 added incrementally to the gel until optically clear. The gel was vortexed, buffered by
603 addition of 100 μ L 10 \times PBS (Gibco, 70011), and incubated at 80 °C overnight. The resulting
604 precursor could be stored at 4 °C until required.

605

606 Peptide gel formation with collagen I supplementation

607 Prior to peptide gel formation, the precursor was heated at 80 °C until liquid to ensure
608 homogeneity, before transferring to a 37 °C water bath. Cy5 labelled (in-house preparation,
609 see method below) rat tail Collagen I was neutralised directly before use with 1M NaOH
610 according to manufacturer instructions, and diluted with sterile water and 10x PBS to a
611 concentration of 1 mg/mL while keeping on ice at all times to prevent polymerisation. Peptide
612 gel formation was then induced by pH neutralisation on addition of cell culture medium (with
613 or without cell suspension) to the gel precursor. A final volume of 1.25 mL was obtained from
614 a preparation by adding 125 μ L of cell suspension and 125 μ L Cy5 collagen I to a precursor
615 volume of 1 mL. The end concentration of peptide preparation was 8 mg/mL and collagen I
616 concentration was 100 μ g/mL. Polystyrene microspheres (Polybead® Microspheres 6.00 μ m;
617 PolySciences) were added at final density of approx. 3 \times 10⁵/mL. The medium / cell
618 suspension was thoroughly mixed with the precursor and Collagen-I by gentle (reverse)
619 pipetting, before plating at 100 μ L per well into a 4 μ -well glass bottom chambered coverslips

620 (IBIDI, 80427) pre-mounted with a beamsplitter cube (ThorLabs, BS070). The wells were
621 then flooded with cell culture medium and incubated at 37 °C and 5 % CO₂ in a humidified
622 atmosphere. Sequential media changes (at least two) over the next 2 hours ensured
623 complete neutralisation and therefore gelation.

624

625 For cell encapsulation, the 125 µL volume of cell culture medium was prepared as a cell
626 suspension at 1.25 x the intended final seeding density, to allow for the dilution factor on
627 mixing with the gel precursor. Trypsin-EDTA (0.25%; Life Technologies, 25200056) was
628 used to detach cells from 2D culture at sub-confluence. Cells were re-suspended in 125 µL
629 cell culture medium at a density of 1.25 × 10⁵ cells/mL, giving final seeding density in the
630 peptide gel 1× 10⁵ cells/mL. 24 hrs post encapsulation culture medium was replenished, with
631 the addition of HEPES buffer (Life Technologies, 15630-056) at 10 mM final concentration.

632

633 Prior to casting the gel, the beam splitter cubes were sterilised in absolute ethanol. Cubes
634 were soaked for 1 hour, then left to dry on a paper tissue inside the class 2 safety cabinet. To
635 minimise movement and consequently damage to delicate structure of a hydrogel, the cubes
636 were secured in place with glass coverslips.

637

638 Collagen gel labelling with Cy5

639 Rat tail collagen type 1 gel (10 mL; Gibco, A1048301) was dissolved in 0.1 M sodium
640 bicarbonate buffer (10 mL, pH 8.5) and 110 µL Cy5 NHS ester solution (10 mg/mL, DMSO)
641 added. The reaction mixture was stirred at 4 °C overnight. The reaction mixture was purified
642 via the dialysis method at 4 °C to remove the unreacted dye and yield the Cy5 labelled
643 collagen. It was then lyophilised and reconstituted in 20 mM acetic acid buffer.

644

645 Spheroid preparation

646 Corning 7007 Ultra-low attachment (ULA) 96-well round-bottom plates were used to culture
647 the 3D spheroids. 80 % confluent tdTomato MCF-7 monolayer cells were detached,
648 collected and the cell number determined using an automated cell counter (Biorad TC20). A
649 single-cell suspension was diluted in culture medium and cells seeded at 6000 cells/well to
650 generate the spheroids (final volume of cell suspension in each well was 100 μ L). The plates
651 were then centrifuged at 300 RCF for 5 min and cultured for 3 days until visible spheroid
652 formation.

653

654 For experiments on the OptoRheo, spheroids were placed in 4 μ -well glass bottom
655 chambered coverslips (IBIDI, 80427) using a P1000 pipette with the pipette tip cut off at the
656 end. Each spheroid was placed singularly in 500 μ L of phenol-free nutrient media (1:1
657 DMEM:F12 supplemented with 10% FBS) per well and ~ 5 mm away from the edge of a 10
658 mm beam splitter cube (ThorLabs, BS070) (Fig S1 A) to enable LSFM imaging. Similar to
659 the peptide gel sample preparation protocol, beam splitter cubes were sterilised between
660 uses and secured in place in the chambered coverslips by wedging glass coverslips
661 between the cube and the chamber side wall.

662

663 **Data Availability**

664 Data will be made available at the time of peer-reviewed publication.

665

666 **Code Availability**

667 π -Rheo software will be available to download as a supplementary information file
668 (Supplementary software) at the time of peer-reviewed publication.

669

670 **References**

- 671 1. Discher, D. E., Janmey, P. & Wang, Y. Tissue Cells Feel and Respond to the Stiffness of
672 Their Substrate. *Science* **310**, 1139–1143 (2005).
- 673 2. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the
674 rigidity of the substrate. *Biophys. J.* **79**, 144–152 (2000).
- 675 3. Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by
676 substrate flexibility. *Proc. Natl. Acad. Sci.* **94**, 13661–13665 (1997).
- 677 4. Veenvliet, J. V., Lenne, P.-F., Turner, D. A., Nachman, I. & Trivedi, V. Sculpting with
678 stem cells: how models of embryo development take shape. *Development* **148**,
679 dev192914 (2021).
- 680 5. Fernandez, P. & Bausch, A. R. The compaction of gels by cells: a case of collective
681 mechanical activity. *Integr. Biol.* **1**, 252–259 (2009).
- 682 6. Bloom, R. J., George, J. P., Celedon, A., Sun, S. X. & Wirtz, D. Mapping Local Matrix
683 Remodeling Induced by a Migrating Tumor Cell Using Three-Dimensional Multiple-
684 Particle Tracking. *Biophys. J.* **95**, 4077–4088 (2008).
- 685 7. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: A dynamic niche in cancer
686 progression. *J. Cell Biol.* **196**, 395–406 (2012).
- 687 8. Long, Y., Niu, Y., Liang, K. & Du, Y. Mechanical communication in fibrosis progression.
688 *Trends Cell Biol.* **32**, 70–90 (2022).
- 689 9. Meng, H. & Nel, A. E. Use of Nano Engineered Approaches to Overcome the Stromal
690 Barrier in Pancreatic Cancer. *Adv. Drug Deliv. Rev.* **130**, 50–57 (2018).
- 691 10. Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: A strained
692 relationship. *Biochim. Biophys. Acta Rev. Cancer* **1873**, 188356 (2020).
- 693 11. Ashworth, J. C. et al. Peptide gels of fully-defined composition and mechanics for
694 probing cell-cell and cell-matrix interactions in vitro. *Matrix Biol.* (2019)
695 doi:10.1016/j.matbio.2019.06.009.

696 12. Chaudhuri, O. Viscoelastic hydrogels for 3D cell culture. *Biomater. Sci.* **5**, 1480–1490
697 (2017).

698 13. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects
699 of extracellular matrix viscoelasticity on cellular behaviour. *Nature* **584**, 535–546 (2020).

700 14. Charrier, E. E., Pogoda, K., Wells, R. G. & Janmey, P. A. Control of cell morphology and
701 differentiation by substrates with independently tunable elasticity and viscous
702 dissipation. *Nat. Commun.* **9**, 449 (2018).

703 15. Greiss, F., Deligiannaki, M., Jung, C., Gaul, U. & Braun, D. Single-Molecule Imaging in
704 Living Drosophila Embryos with Reflected Light-Sheet Microscopy. *Biophys. J.* **110**,
705 939–946 (2016).

706 16. Beicker, K., O'Brien, E. T., Falvo, M. R. & Superfine, R. Vertical Light Sheet Enhanced
707 Side-View Imaging for AFM Cell Mechanics Studies. *Sci. Rep.* **8**, 1504 (2018).

708 17. Kashekodi, A. B., Meinert, T., Michiels, R. & Rohrbach, A. Miniature scanning light-sheet
709 illumination implemented in a conventional microscope. *Biomed. Opt. Express* **9**, 4263
710 (2018).

711 18. Gustavsson, A. K., Petrov, P. N., Lee, M. Y., Shechtman, Y. & Moerner, W. E. 3D single-
712 molecule super-resolution microscopy with a tilted light sheet. *Nat. Commun.* **9**, (2018).

713 19. Buchmann, B. *et al.* Mechanical plasticity of collagen directs branch elongation in human
714 mammary gland organoids. *Nat. Commun.* **12**, 2759 (2021).

715 20. Hafner, J. *et al.* Monitoring matrix remodeling in the cellular microenvironment using
716 microrheology for complex cellular systems. *Acta Biomater.* **111**, 254–266 (2020).

717 21. Ciccone, G. *et al.* What Caging Force Cells Feel in 3D Hydrogels: A Rheological
718 Perspective. *Adv. Healthc. Mater.* 2000517 (2020) doi:10.1002/adhm.202000517.

719 22. Han, Y. L. *et al.* Cell swelling, softening and invasion in a three-dimensional breast
720 cancer model. *Nat. Phys.* **16**, 101–108 (2020).

721 23. Guadayol, Ò. *et al.* Microrheology reveals microscale viscosity gradients in planktonic
722 systems. *Proc. Natl. Acad. Sci.* **118**, (2021).

723 24. Matheson, A. B. *et al.* Optical Tweezers with Integrated Multiplane Microscopy
724 (OpTIMuM): a new tool for 3D microrheology. *Sci. Rep.* **11**, 5614 (2021).

725 25. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical Sectioning
726 Deep Inside Live Embryos by Selective Plane Illumination Microscopy. *Science* **305**,
727 1007–1009 (2004).

728 26. Pitrone, P. G. *et al.* OpenSPIM: an open-access light-sheet microscopy platform. *Nat.*
729 *Methods* **10**, 598–599 (2013).

730 27. Reynaud, E. G., Krzic, U., Greger, K. & Stelzer, E. H. K. Light sheet-based fluorescence
731 microscopy: more dimensions, more photons, and less photodamage. *HFSP J.* **2**, 266–
732 75 (2008).

733 28. Hu, Y. S. *et al.* Light-sheet Bayesian microscopy enables deep-cell super-resolution
734 imaging of heterochromatin in live human embryonic stem cells. *Opt. Nanoscopy* **2**, 7
735 (2013).

736 29. Gebhardt, J. C. M. *et al.* Single-molecule imaging of transcription factor binding to DNA
737 in live mammalian cells. *Nat. Methods* **10**, 421–426 (2013).

738 30. Tassieri, M. Microrheology with optical tweezers: peaks & troughs. *Curr. Opin. Colloid*
739 *Interface Sci.* **43**, 39–51 (2019).

740 31. Lee, M. P., Padgett, M. J., Phillips, D., Gibson, G. M. & Tassieri, M. Dynamic stereo
741 microscopy for studying particle sedimentation. *Opt. Express* **22**, 4671 (2014).

742 32. Blanchard, P. M. & Greenaway, A. H. Simultaneous multiplane imaging with a distorted
743 diffraction grating. *Appl. Opt.* **38**, 6692 (1999).

744 33. Dasgupta, R., Verma, R. S., Ahlawat, S., Chaturvedi, D. & Gupta, P. K. Long-distance
745 axial trapping with Laguerre–Gaussian beams. *Appl. Opt.* **50**, 1469–1476 (2011).

746 34. Tassieri, M. *et al.* Microrheology with Optical Tweezers: Measuring the relative viscosity
747 of solutions ‘at a glance’. *Sci. Rep.* **5**, 8831 (2015).

748 35. Pal, A. *et al.* A 3D Heterotypic Breast Cancer Model Demonstrates a Role for
749 Mesenchymal Stem Cells in Driving a Proliferative and Invasive Phenotype. *Cancers* **12**,
750 2290 (2020).

751 36. Vasudevan, J., Lim, C. T. & Fernandez, J. G. Cell Migration and Breast Cancer
752 Metastasis in Biomimetic Extracellular Matrices with Independently Tunable Stiffness.
753 *Adv. Funct. Mater.* **30**, 2005383 (2020).

754 37. Lovitt, C. J., Shelper, T. B. & Avery, V. M. Doxorubicin resistance in breast cancer cells
755 is mediated by extracellular matrix proteins. *BMC Cancer* **18**, 41 (2018).

756 38. Leach, J. *et al.* Comparison of Faxén's correction for a microsphere translating or
757 rotating near a surface. *Phys. Rev. E* **79**, 026301 (2009).

758 39. Gjorevski N. *et al.* Tissue geometry drives deterministic organoid patterning. *Science*
759 **375**, eaaw9021 (2022).

760 40. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat.*
761 *Methods* **9**, 676–82 (2012).

762 41. Hörl, D. *et al.* BigStitcher: reconstructing high-resolution image datasets of cleared and
763 expanded samples. *Nat. Methods* **16**, 870–874 (2019).

764 42. Wan, Y. *et al.* FluoRender: joint freehand segmentation and visualization for many-
765 channel fluorescence data analysis. *BMC Bioinformatics* **18**, 280 (2017).

766 43. Frisch, D. Point2trimesh () distance between point and triangulated surface. *MATLAB*
767 *Cent. File Exch.* **25**, (2016).

768 44. Dalgarno, P. A. *et al.* Multiplane imaging and three dimensional nanoscale particle
769 tracking in biological microscopy. *Opt. Express* **18**, 877 (2010).

770 45. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer Control of
771 Microscopes Using µManager. *Curr. Protoc. Mol. Biol.* **92**, 14.20.1-14.20.17 (2010).

772 46. Alshareedah, I., Moosa, M. M., Pham, M., Potocyan, D. A. & Banerjee, P. R.
773 Programmable viscoelasticity in protein-RNA condensates with disordered sticker-
774 spacer polypeptides. *Nat. Commun.* **12**, 6620 (2021).

775 47. Tassieri, M., Evans, R. M. L., Warren, R. L., Bailey, N. J. & Cooper, J. M. Microrheology
776 with optical tweezers: Data analysis. *New J. Phys.* **14**, 115032 (2012).

777 48. Smith, M. G., Gibson, G. M. & Tassieri, M. i-RheoFT: Fourier transforming sampled
778 functions without artefacts. *Sci. Rep.* **11**, 24047 (2021).

779 49. Matheson, A. B. *et al.* Microrheology With an Anisotropic Optical Trap. *Front Phys* **9**,
780 621512 (2021).

781 50. Ashworth, J. C. *et al.* Preparation of a User-Defined Peptide Gel for Controlled 3D
782 Culture Models of Cancer and Disease. *J. Vis. Exp. JoVE* (2020) doi:10.3791/61710.

783

784 **Acknowledgements**

785 The authors acknowledge support via linked EPSRC grants EP/R035067/1, EP/R035563/1,
786 and EP/R035156/1 and NC3Rs grants NC/T001259/1 and NC/T001267/1.

787

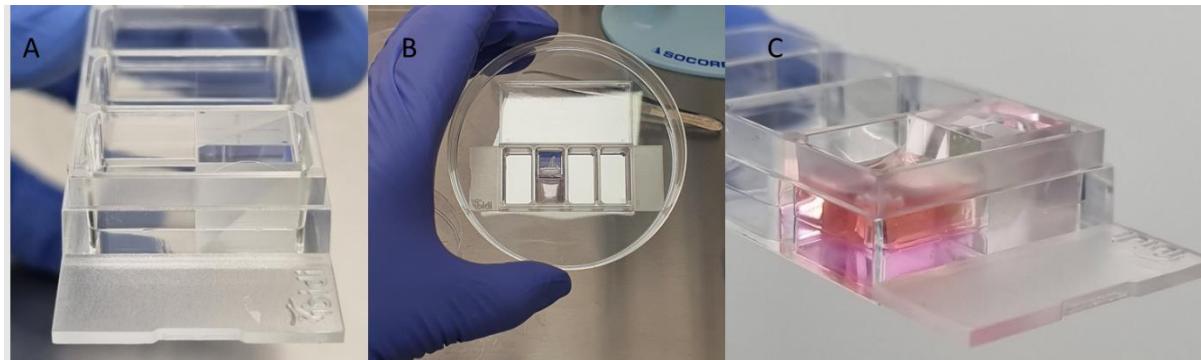
788 The MCF-7 tdTomato cell line was provided by and with thanks to Prof. Anna Grabowska,
789 University of Nottingham.

790

791 **Competing Interests**

792 The authors declare no conflicts of interest.

793


794

795 **Supplementary Information**

796

797 1. Sample preparation

798

799 Fig S1: Sample set up: A. Side view of the 4 μ -well chambered coverslip with a 10 mm
800 beam splitter cube inserted with the reflective surface facing the empty half of the chamber.
801 B. Top view of a sample with the gel cast next to the beam splitter cube. C. Side view of the
802 peptide hydrogel topped up with medium next to the beam splitter cube.

803

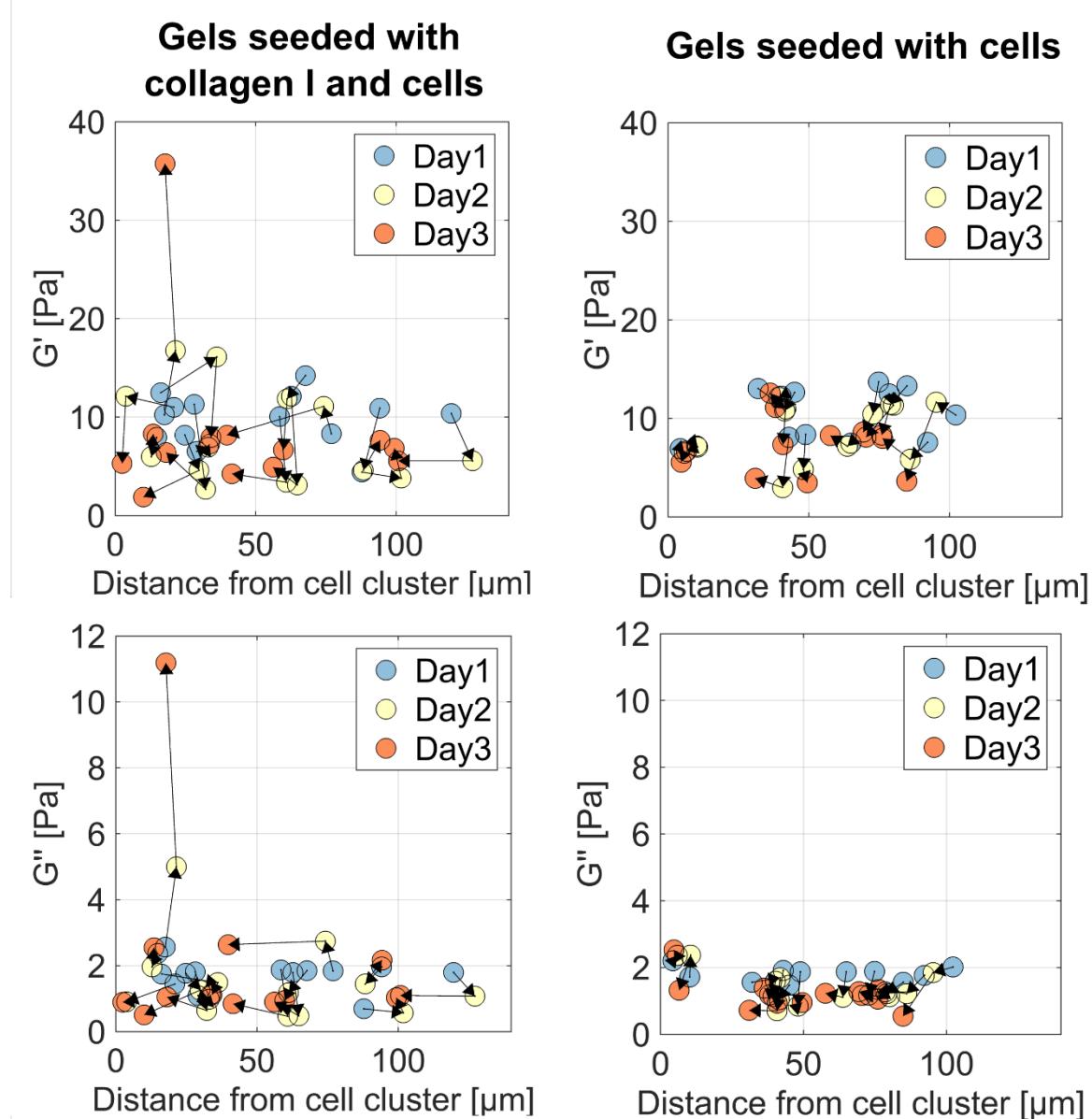
804

805 2. Supplementary table: Viscoelasticity values per gel condition and day

	Condition	G' (mean) [Pa]	G' (var) [Pa]	G'' (mean) [Pa]	G'' (var) [Pa]
Day 1	gel	9.38	3.82	1.75	0.43
	gel + cells	10.09	7.64	1.73	0.06
	gel + collagen	7.68	13.42	1.31	0.25
	gel + collagen + cells	10.06	6.19	1.71	0.18
Day 2	gel	7.79	9.90	1.14	0.17
	gel + cells	8.74	7.69	1.32	0.20
	gel + collagen	7.34	9.05	1.27	0.15
	gel + collagen + cells	8.68	24.19	1.56	1.84
Day 3	gel	5.88	5.20	0.96	0.15
	gel + cells	7.71	7.44	1.24	0.15
	gel + collagen	6.73	5.34	1.02	0.11
	gel + collagen + cells	7.83	43.97	1.82	4.95

806

807 Table S1: Mean and variance of G' and G'' measurement values for different gel conditions


808 over three days.

809

810

811

3. Spatiotemporal changes in viscoelastic measurements

812

813 Fig S2: Changing elastic (G') and viscous (G'') moduli values with changing relative distance
814 between probes and cell clusters in gel with (left top and bottom) and without (right top and
815 bottom) collagen over three days.