

Architecture of the MKK6-p38 α complex defines the basis of MAPK specificity and activation

5 Pauline Juyoux¹, Ioannis Galdadas^{2, 3†}, Dorothea Gobbo^{2, 3†}, Mark Tully⁴, Francesco Luigi Gervasio^{2,3,5,6}, Erika Pellegrini^{1*} and Matthew W. Bowler^{1*}

Affiliations:

¹ European Molecular Biology Laboratory; Grenoble, France.

10 ² Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva; Geneva, Switzerland

³ School of Pharmaceutical Sciences, University of Geneva; Geneva, Switzerland.

⁴ European Synchrotron Radiation Facility; Grenoble, France.

⁵ Department of Chemistry, University College London; London, UK

15 ⁶ Institute of Structural and Molecular Biology, University College London; London, UK

*Corresponding authors. Email: epellegr@embl.fr, mbowler@embl.fr

†These authors contributed equally

Abstract

The MAP kinase p38 α is a central component of signalling in inflammation and the immune response, and is therefore an important drug target. Little is known about the molecular mechanism of its activation by double-phosphorylation from MAP2Ks, due to the challenge of trapping a transient and dynamic hetero-kinase complex. Here, we applied a multidisciplinary approach to generate the first structure of p38 α in complex with its MAP2K MKK6 and understand the activation mechanism. Integrating cryo-EM with MD simulations and *in cellulo* experiments, we demonstrate a dynamic, multi-step, phosphorylation mechanism, reveal new catalytically relevant interactions, and show that MAP2K disordered N-termini determine pathway specificity. Our work captures, for the first time, a fundamental step of cell signalling: a kinase phosphorylating its downstream target kinase.

One-Sentence Summary: Integrative Cryo-EM and MD analysis of an active hetero-kinase complex reveals details of cellular signal transmission

Main Text: The mitogen activated protein kinases (MAPKs) are conserved in all eukaryotes where they form signalling cascades responding to extra-cellular stimuli leading to diverse responses from differentiation to apoptosis. In higher organisms, the MAPK p38 α acts in response to stress such as irradiation, hypoxia and osmotic shock, and also to signalling from inflammatory cytokines (1). Pathogens often elicit upregulation of p38 α , with particular relevance in the current pandemic, where SARS-CoV-2 has been shown to promote p38 α activation leading to the cytokine storm responsible for the Chronic Obstructive Pulmonary Disease (COPD) associated with severe COVID19 (2, 3). Signals propagate through phosphorylation of successive protein kinases (MAP4K, MAP3K to MAP2K), which eventually phosphorylate and activate a MAPK via double phosphorylation at the TxY motif in the activation loop (A-loop), leading to a conformational change (4, 5). When the A-loop is phosphorylated, key residues surrounding the ATP and Mg²⁺ ions reorient, stabilising the activated MAPK. The activated MAPK is then transported to the nucleus where it modulates gene expression (6-8). The key role of p38 α in inflammation, and the fact that aberrant p38 α signalling is implicated in numerous diseases, such as arthritis and cancer, but also in the response to infection, makes it a highly studied drug target (1). Despite initial successes in developing potent compounds targeting the kinase nucleotide binding pocket, many potential therapies failed in clinical trials due to off target effects (9). Therefore, a molecular understanding of its interaction with upstream activators is essential in order to develop new strategies to target either p38, or its activators. The structures of individual MAPKs (10-12) and MAP2Ks (13-16) have been extensively studied and subsequent work has defined the interacting regions between these partners (17-20). The MAP2Ks contain a kinase interaction motif (KIM) at the start of their intrinsically disordered N-termini, which interacts with an allosteric docking site on their target MAPK. The KIM partially ensures specificity between members of the

pathway (17), acts allosterically to expose the A-loop, preparing the MAPK for activation (21, 22), and also enhances the local concentration of kinase and substrate (23). However, there is little structural data on the global interactions between MAP kinase cascade components. In particular, beyond the KIM interaction, molecular details of selectivity and activation of a MAPK by its upstream MAP2K remain unknown. Moreover, our knowledge of kinase-kinase interactions in general is restricted to homo-dimers and inactive conformations (24-27).

In order to further our understanding of how signals are transmitted through the MAP kinase pathway, we applied a multi-disciplinary approach, combining cryo-EM with molecular dynamics simulations and cellular assays, to characterize a complex between the MAP kinase p38 α (MAPK14) and its activating MAP2K MKK6 (MAP2K6). Here, we present the first detailed molecular model of this highly dynamic and transient interaction between signalling components, providing insights into specificity and multi-step catalysis. Our findings open potential new routes to drug development for the important MAPK signalling pathway, and also lead to a better understanding of a crucial step in kinase signalling cascades.

Engineering an active and stable MKK6-p38 α complex for structural studies

The MAP kinases are malleable proteins that have to adapt to multiple upstream and downstream effectors, as well as phosphorylating a large range of substrates. The proteins must therefore adopt multiple conformations and, crucially, interactions with effectors and substrates must be transient in order to maintain signal transmission. In order to stabilise the complex for structural studies, we created a chimera of MKK6, named MKK6^{DD}GRA, where we replaced the native KIM with that from the *Toxoplasma gondii* effector protein GRA24 (28) that has a 100-fold higher affinity for p38 α (29). We also inserted phosphomimetic mutations in the MKK6 A-loop (S207D and T211D) (Fig. 1A and S1). Analysis by small angle X-ray scattering (SAXS) showed significant heterogeneity in the size of the complex formed with p38 α (Fig. S2A). By screening MKK6^{DD}GRA with a combination of different nucleotide analogues and p38 α A-loop mutants, we identified the mutant p38 α ^{T180V} (one of the residues phosphorylated in the A-loop), in combination with the transition state analogue ADP.AlF₄⁻, as the complex with the smallest radius of gyration (Rg) (Table S1).

Architecture of the MKK6-p38 α complex

We imaged the 80 kDa MKK6^{DD}GRA-p38 α ^{T180V} complex by cryogenic electron microscopy (cryo-EM) (Fig. 1). The purified complex was well dispersed and yielded 2D class averages that showed clear secondary structure features (Fig. 1B). The selected particles allowed the 3D reconstruction to a nominal resolution of 4 Å (map range 2.7-6.5 Å, Fig. 1C and S3, Movie S1). The final resolution was limited not only by the small size of the complex, but also by the highly dynamic nature of the interaction between the kinases, leading to particle heterogeneity. Therefore, very strict selection of particles was necessary to capture this conformation.

The model was initially built by docking previously determined crystal structures of both kinases within the density. We then computed the cross-correlation between experimental and predicted maps for structures obtained from molecular dynamics and modelling to select the model that best recapitulates the available data (Fig. 1D and S3C, Tables S2 and S3). The reconstruction shows the kinases adopting a ‘face-to-face’ conformation with most contact between the C-lobes. MKK6 is in the active kinase conformation based on its α C-helix rotated position (Fig. S4) and density can be observed for nucleotide in its active site (Fig. S5). The p38 α A-loop is ordered and extends toward the MKK6 active site; however, it remains dynamic, limiting the resolution of this region (Fig. S5). The p38 α active site also binds nucleotide (Fig. S5) implying it is already in an active conformation. MKK6 interacts with the p38 α docking site through the GRA24 KIM at the start of its N-terminal extension that can be traced in the density (Fig. 1C and S5). Most of the linker between the KIM and the MKK6 kinase core, as well as MKK6 A-loop, remains disordered and therefore unresolved.

The main kinase core fold interaction is between the α G-helix (residues 262-273) of MKK6 and a hydrophobic pocket in p38 α partly formed by the MAPK specific insert in the C-lobe (Fig. 2A, C and D, Movie S2). This insert has been described as a lipid binding site important in regulation (30, 31) and several studies have identified small molecules that target this pocket (32-36) (Fig. S6). Recently, it has also been shown to be important in substrate binding (37, 38), where a helix from the p38 α substrate ATF2 binds in a similar manner (Fig. S6). The exposed residues of this helix, as well as residues lining the MAPK hydrophobic pocket, are highly conserved in the MAP2Ks and MAPKs respectively, suggesting a common interaction site for the pathways (Fig. 2E). Additionally, there is a potential interaction between the N-lobes via the loop between the β 3-sheet and α C-helix of MKK6 (residues 87 to 89) and β -strands 1, 2 and 3 of the N-lobe of p38 α (Fig. 2B). To study the importance of these interactions

on p38 α activation we mutated the MKK6 α G-helix residues facing the p38 α hydrophobic pocket to alanine (F264A, Q265A, L267A, K268A, E272A – referred to as MKK6^{DD} α G-helix mutant) and also the β 3- α C loop of the MKK6 N-terminal interaction to alanine residues (T87A, V88A, N89A – referred to as MKK6^{DD} β 3- α C loop mutant) and read out the effect on signalling *in cellulo* using a reporter luciferase assay (Fig. 2F). We transiently transfected HEK293T cells with p38 α and MKK6^{DD} mutants, together with a plasmid encoding firefly luciferase under the control of the AP-1 promoter, where AP-1 activity is stimulated by p38 α via several substrates (e.g. ATF2, see Materials and Methods). The MKK6^{DD} α G-helix mutant reduced the activation of p38 α by 70% when compared to MKK6^{DD}, demonstrating the important role this interaction plays in the stability of the complex and activation. The MKK6^{DD} β 3- α C loop mutant increased activity to \sim 170% over MKK6^{DD}. This loop is the site of numerous activating mutations, particularly in cancer, that stabilise the ‘ α C-in’ conformation (39, 40). This could explain the observed increase in signalling, but does not rule out a role of the p38 α N-lobe in the stabilisation of the active conformation of MKK6 in the face-to-face complex.

15

The N-terminal extension of MKK6 remains mainly disordered and its length and secondary structure elements contribute to pathway specificity

There is a wealth of data on interactions between KIMs and MAPKs, but the role of the remainder of the N-terminus is poorly understood (41, 42). The MAP2Ks MEK1 and MKK7 contain a regulatory helix between their KIMs and the kinase core fold (16, 43, 44) (Fig. 3). MKK7 also presents two short extra β -strands completing the N-lobe β -sheet of the kinase core after the regulatory helix, a feature that is also predicted for MKK6, MKK3 and MKK4 by AlphaFold2 (45) (Fig. 3C). This extended β -sheet fits into our reconstruction (Fig. 1C and S5). We do not observe density beyond this element, presumably because most of the N-terminus

remains disordered. In our cryo-EM map, the engineered KIM is clearly visible (Fig. 1C and S5), but it does not appear to interact further with p38 α . To investigate whether the N-terminal extension has a role beyond simply associating the kinase to the KIM, we again used the luciferase reporter assay to test the role of the MKK6 N-terminus in activating p38 α . We 5 produced constructs that scan the region between the KIM and the first consensus β -sheet of the kinase core with alanine blocks in order to determine if there is sequence specificity or direct interaction with p38 α (Fig. 3D). Our results show that the sequence of the middle region (MKK6^{DD} Ala scan 28-39) of the N-terminal linker has no effect on p38 α signalling *in cellulo*. However, the sequence of the linker close to the KIM (MKK6^{DD} Ala scan 18-29) and the region 10 close to the kinase core, which comprises the predicted β -strands (MKK6^{DD} Ala scan 38-49) seem to have some importance as their mutation to alanines reduced p38 α signalling by 27% and 15 58% respectively.

While KIM sequences are important, they do not sufficiently explain specificity. Comparing the N-terminal linkers of the MAP2Ks, they differ significantly in their length and 20 secondary structure elements (Fig. 3B and C), could this contribute to specificity between the pathways? When we substituted the MKK6 linker with those from the MAP2Ks of the other pathways, activity is significantly reduced (Fig. 3D). This is most drastically observed with the linkers from MEK1 and 2. Even the linkers from MAP2Ks that activate p38 α see reduced activity and are not sufficient to rescue the activation, even though the KIM, MAP2K and MAPK are in the correct combination. Moreover, our reconstruction implies that the length of the linker is just sufficient to allow the observed interactions between the kinases, in particular the MAP2K α G-helix position relative to the MAPK hydrophobic pocket formed by the MAP kinase insert. By removing or adding 10 residues to the linker region, activity is reduced by ~50%. This implies that the length of the linker, controlled by either the number of amino acids

and/or secondary structure elements, is important in the positioning of the MAP2K for engagement with the MAPK, and is finely tuned for MAP kinase pairs. The specificity of a MAP2K is therefore defined by cooperation between the KIM, the linker and the kinase core itself.

5

Molecular dynamics show the complex is metastable but that a catalytically competent state can be formed

Given the highly dynamic nature of the kinase interaction, resulting in heterogeneity and moderate resolution of the cryo-EM data, we carried out a series of molecular dynamics (MD) simulations to better understand the details of the transphosphorylation of p38 α on T180 and Y182 by MKK6 in the face-to-face complex (Table S6). We ran a set of simulations, either with or without restraints between the kinases, starting from models derived from the cryo-EM structure: MKK6GRA-p38 α with the WT A-loop, and MKK6-p38 α , where we reverted the sequence of the A-loop and the GRA24 KIM back to the WT.

In most of the simulations, the contact between the KIM and p38 α was retained. In some cases, a partial detachment of p38 α from MKK6 was observed. We also observed a number of “rotated” complexes (discussed below). Finally, in some simulations, conformations not compatible with catalysis were observed. This variety is not unexpected given the heterogeneity observed when preparing the complex for structural studies, which is indicative of the transient nature of the interaction of the two kinases. Thus, we also ran simulations with mild restraints at the interface to increase the sampling of the A-loop and other flexible regions in the face-to-face catalytically competent dimer orientations (see supplementary text). In accordance with the 70% decrease in activity seen in the MKK6^{DD} α G-helix mutant (Fig. 2F), the MD simulations indicate a significant role of a hydrophobic patch and a network of hydrogen bonds located at the interface of the C-lobes of the two kinases in keeping them together. In all simulations in which

the two kinases break apart, this tight hydrogen-bonding network is the last point of contact to be lost. In particular, the α G-helix of MKK6 (residues F264-E272) is involved in interacting with p38 α and stabilising the complex. The interaction between MKK6 K268 and E272 and p38 α S261 seems to be one of the main interactions keeping the two kinases in close proximity (Fig. 5 2G).

With respect to the phosphorylation mechanism, in a number of instances, either p38 α T180 or Y182 approached the MKK6 ATP at a catalytically competent distance (the distance of the OH group of p38 α T180 or Y182 and the γ -phosphate group of MKK6 bound ATP was comparable to that observed in the phosphorylation of the SP20 substrate by PKA (46)) (Fig. 10 4 and Table S7). In particular, in the simulations of MKK6-p38 α (WT KIM) both T180 and Y182 come close to the catalytic site. While in the simulations of MKK6GRA-p38 α , we observe a number of “rotated” complexes where T180 is preferentially close to the catalytic site (see below). In the catalytically competent conformations, we observed that in most cases p38 α Y182 reached the MKK6 ATP before T180.

15 The tendency of monomeric, unphosphorylated p38 α to adopt inactive, sequestered, A-loop conformations has been extensively shown in previous studies (47). Thus, the observation that in the simulated complex the unphosphorylated A-loop of p38 α adopts an exposed conformation in multiple instances in proximity to the catalytic site of MKK6, is indicative of an active role of MKK6 in stabilizing such conformations. The active role of 20 MKK6 is further confirmed by the fact that in one of the “released” simulations, initiated from a frame showing the p38 α Y182 close to MKK6 ATP, we observe a series of events starting with the MKK6 KIM detaching, which in turn destabilises the complex and leads to the separation of the two kinases. After the separation, the p38 α A-loop transitions from an exposed to sequestered

conformation (Fig. 5). This is consistent with the importance of the KIM in stabilising the dimer and the importance of the complex in stabilising extended conformations of the A-loop.

5

A rotated complex might facilitate the phosphorylation of p38 α T180

In one of the MD unrestrained simulations of MKK6GRA-p38 α , we observe T180 approaching the γ -phosphate of ATP in the catalytic site of MKK6 from an unexpected angle, where the p38 α N-lobe underwent a large conformational change that resulted in a 77° rotation around its axis (Fig. 6A, Movie S3). In this conformation, p38 α was kept close to MKK6 through the KIM, despite the rotation. Interestingly, the KIM of MKK6 seems to play a key role, not only in maintaining the two kinases close together, but also in facilitating the rotation of p38 α . Particularly, before T180 gets close to the ATP, a key lysine located just after the KIM, K17, forms a salt-bridge with p38 α E160 which seems to initiate the rotation of p38 α (Fig. 6B). In two of the “released” simulations, we also observe the p38 α N-lobe rotation (by 51° and 66°, respectively) and concurrent proximity of T180 with MKK6 bound ATP (Movie S3).

The rotated complex was validated by comparing one of the rotated conformations extracted from clustering the relevant trajectory against SAXS data. The SAXS data clearly indicate that in the presence of AMP-PCP, the complex is highly flexible and dynamic with R_g in the 39 to 40 Å range compared to the more compact values obtained with the transition state analogue ADP.AlF₄⁻, where the face-to-face conformation is stabilised. The most compact state is the p38 α ^{T180V} complex (29.6 Å) followed by p38 α ^{WT} (32.2 Å) and p38 α ^{Y182F} (35.3 Å) (Table S1 and Figure S2). The theoretical R_g for the rotated conformation is larger than the p38 α ^{T180V} complex corresponding to the face-to-face dimer.

To validate the functional relevance of this rotated intermediate observed in the simulations, we carried out site-directed mutagenesis where we mutated the key lysine K17 to alanine. Interestingly, the MKK6^{DD-K17A} leads to 26% increase in activity as measured by downstream signalling (Fig. 6C). The mutation is expected to abolish the K17-E160 salt bridge that primes the complex towards the rotated orientation (and T180 phosphorylation). As discussed below, we expect that by suppressing the rotated complex, the mutant could favour the formation of face-to-face dimers and enhance the more efficient phosphorylation pathway of Y182.

10

Discussion

Initial docking

The N-termini of the MAP2Ks contain a conserved KIM motif that is required for binding to MAPK substrates. The first step in activation is KIM binding, and in our structure, the KIM of MKK6 is in contact with the known docking site of p38 α . During the MD simulations, KIM binding was seen to induce allosteric changes in p38 α that adopts a prone-to-be-phosphorylated conformation with its A-loop extended, exposing the tyrosine and threonine residues, in agreement with crystal structures. However, the KIM only partially explains the strength and specificity of the interaction between a MAP2K and its substrate MAPK (48). Our data indicate that the interaction between MKK6 N-terminus and p38 α extends beyond the hydrophobic residues of the KIM and is important in the activation process. Although most of the MKK6 N-terminal linker remains disordered, its length seems to be tightly linked to the substrate MAPK and the presence of some secondary structural elements differs between MAP2Ks contributing to specificity (Fig. 3C). Comparison with other MAP2K-MAPK dimers could reveal the implications of this region in the specificity of the pathways. In the structure

presented here, MKK6 is in the active conformation, whilst all crystal structures of MKK6 solved so far are in the inactive conformation, even in the presence of activating mutations of the A-loop and nucleotide binding (Fig. S4). Once p38 α is recruited, some parts of the MKK6 N-terminal linker could participate in the conformational shift towards the MKK6 active conformation, but its main function appears to be to prepare the MAPK A-loop and guide the engagement with the α G-helix.

Engagement with substrate

We show that the predominant interaction for activation is mediated by the α G-helix of the MAP2K MKK6 and the p38 α hydrophobic pocket formed by the α G-helix of p38 α and the specific MAPK insert. This region is also important in MAPKs for substrate recognition (37) and interaction with scaffold proteins and downstream regulators such as phosphatases (27, 38, 49). The engagement of α G-helices seems to be an emerging theme in kinase heterodimers: only a few structures have been determined, such as the KSR2-MEK1 heterodimer (27) and more recently, the BRAF-MEK1 complex (25), both upstream components of the related ERK MAPK pathway. In both these structures the α G-helices interaction is very similar, as well as the relative orientation of the kinases. Several studies have shown that small molecules can target this region (32-36) and modulate the position of the MAPK insert helices (Fig. S6). However, as the pocket is very deep, the molecules may not extend far enough to disrupt the interactions identified here. There has been intense interest, and some success (50), in developing drugs that target p38 α , mostly binding to the nucleotide pocket, but they have been mired by off target and toxicity effects (9). The molecules that have been identified as binding to the MAPK insert pocket could be further developed to better disrupt both the MAP2K interaction, and that of substrates, that could lead to highly specific p38 inhibitors.

5 The MKK6 KIM–p38 α docking site, the MKK6 N-terminal linker, and the MKK6 α G-helix–p38 α hydrophobic pocket interactions, are clearly essential for defining the specificity of the kinase-substrate interaction, for positioning the two kinases, and for triggering the necessary changes towards the MKK6 active kinase conformation and positioning the A-loop of p38 α to be perturbs activation of downstream signalling.

Freedom of interaction at the catalytic centre

10 All contacts observed between the kinases are distal to the active site, explaining the lack of sequence specificity or conservation in MAPK A-loops in the region preceding the TxY motif (44). Rather than the active site of a classical enzyme, where substrates are perfectly positioned for catalysis, the MAP2K/MAPK complex appears to provide a zone of proximity, allowing the flexible activation loop to move, but increasing the probability, or local concentration, of the p38 α T180 and Y182 residues to be positioned next to the γ -phosphate of ATP. Dual specificity 15 MAP2Ks are unusual as the two amino acids targeted are significantly different to each other, when compared to serine/threonine kinases. In addition, the two substrate phosphorylation sites are only one residue apart and the MAP2Ks need to have an active site that can accommodate, effectively, 4 substrates (A-loop **T**-x-Y; T-x-**Y**; **T**-x-Y^P; T^P-x-**Y** (targeted residue in **bold**)), all with significantly different sizes and charges. This implies that flexibility in the active site is 20 essential in order to accommodate such a wide variety of substrates. By not binding any residues of the activation loop specifically, the various different residues and phosphorylation states could be accommodated by sacrificing catalytic efficiency for flexibility.

The MD simulations revealed that the face-to-face architecture of the hetero-kinase dimer of our model is compatible with the phosphorylation of either T180 or Y182 of the p38 α A-loop

(Fig. S7). Another conformation, where p38 α rotated, emerged, and seems to favour the phosphorylation of T180. Kinetic data have shown that the dual-phosphorylation of p38 α by MKK6 involves a partially processive mechanism *in vitro*, in which the monophosphorylated intermediates can either dissociate from the enzyme or proceed to the next catalytic step. Wang 5 *et al.* (51) and others (52) proposed that both p38 α monophosphorylated forms can be produced by MKK6 catalysis with a preference for Y182, whose phosphorylation is four-fold faster than that of T180. With respect to the second catalytic step, the experimentally measured kinetic rates indicate that phosphorylation at Y182 in the first step enhances the catalytic efficiency of MKK6 phosphorylation at T180 in the second step. According to our simulations (Fig. 6 and S7), when 10 the N-lobe of p38 α undergoes a large conformational change towards the rotated dimer, T180 is in the right position to be phosphorylated, while Y182 is more distant from the catalytic site, which might explain the observed lower catalytic efficiency of MKK6 when the second phosphorylation is on Y182 by kinetic measurements. Conversely, Y182 seems to be able to easily approach MKK6 ATP in the face-to-face catalytically-competent conformations and then 15 be phosphorylated. Thus, the difference in the experimental kinetic rates measured for the first phosphorylation step may reflect the rotation of p38 α N-lobe around its axis that seems to be involved in the T180 phosphorylation only. The partial processivity of the dual-phosphorylation in a cellular context remains an open question (53, 54), but the architecture of the interaction between MKK6 and p38 α seems to be compatible with either a distributive, partially processive 20 or fully processive mechanism.

By combining cryo-EM and MD simulations, together with structure-driven mutagenesis *in cellulo*, we describe the range of attributes that lead to MKK6 selectivity and p38 α activation as well as identify potential new druggable sites for this medically important complex.

Furthermore, our data describe the first molecular details of the activation of one protein kinase by another – one of the most fundamental mechanisms in cell signalling.

Materials and Methods

Plasmids

Plasmids were ordered from GenScript (gene synthesis, cloning and mutagenesis). For recombinant protein expression, human p38 α sequences (WT, T180V and Y182F mutants) were fused to a His6 tag with a 3C protease cleavage site and cloned into a pET-28b vector; MKK6^{DD}GRA sequence (constitutively active S207D T211D mutant of human MKK6 with GRA24 KIM) was fused to a twin StrepII tag with a 3C cleavage site and cloned into a pFastBac1 vector. For cellular reporter assays, p38 α and MKK6^{DD} mutants sequences were cloned into pcDNA3.1 plasmids. The lambda Phosphatase plasmid was obtained from Addgene (a gift from John Chodera & Nicholas Levinson & Markus Seeliger; Addgene plasmid # 79748 ; <http://n2t.net/addgene:79748> ; RRID:Addgene_79748) (55).

Protein expression and purification

Constructs of p38 α were co-transformed with the lambda phosphatase plasmid into RosettaTM(DE3)pLysS *E. coli* competent cells (Novagen) with appropriate antibiotics. Cells were grown in LB at 37°C until the OD600 = 0.6-0.8, induced with 0.5 mM IPTG, incubated at 16°C overnight, and harvested by centrifugation.

The MKK6^{DD}GRA construct was transformed into DH10 *E. coli* cells to produce recombinant baculoviruses subsequently used for protein expression in *Sf21* insect cells (56). Cells were harvested 48h after proliferation arrest by centrifugation.

Cell pellets were resuspended in lysis buffer (50 mM HEPES pH 7.5, 200 mM NaCl, 10 mM MgCl₂, 5% glycerol, 0.5 mM TCEP, with a Pierce protease inhibitor EDTA-free tablet (Thermo Scientific) and a trace of DNaseI (Sigma)). Cells were lysed by sonication on ice and the lysate centrifuged.

For p38 α , supernatant was loaded onto a pre-packed 5 ml HisTrap column (GE Healthcare), equilibrated according to the supplier's protocols with wash buffer (50 mM HEPES pH 7.5, 200 mM NaCl, 10 mM MgCl₂, 5 % glycerol, 0.5 mM TCEP) with 1% elution buffer (wash buffer with 500 mM Imidazole). Tagged-protein was eluted with elution buffer and p38 α -containing fractions were pooled, incubated with 3C-protease and dialysed against wash buffer at 4°C overnight. The sample was run through the HisTrap column again to remove uncleaved protein and flow-through fractions were collected.

For MKK6^{DD}GRA, supernatant was loaded onto a pre-packed 5 ml StrepTactin XT column (IBA), equilibrated according to the supplier's protocols with wash buffer. Tagged-protein was eluted with elution buffer (wash buffer with 50 mM Biotin), and MKK6-containing fractions were pooled, incubated with 3C-protease and dialysed against wash buffer at 4 °C overnight. The sample was run through the StrepTactin XT column again to remove uncleaved protein and flow-through fractions were collected.

Pure proteins were concentrated using 10 kDa Amicon Ultra membrane concentrators (Millipore), flash-frozen in liquid nitrogen and stored at -80°C.

In order to prepare the hetero-kinase complex, MKK6^{DD}GRA and p38 α aliquots were thawed, mixed in 1:1 mass ratio and incubated on ice for 1h. The sample was then concentrated to 10 mg/ml with a 10 kDa Amicon Ultra membrane concentrators (Millipore) and loaded onto a Superdex S200 increase 10/300 GL size-exclusion column (GE Healthcare) equilibrated in wash buffer (with a reduced glycerol concentration of 2% when for cryo-EM studies). Purest peak fractions were pooled, flash-frozen in liquid nitrogen and stored at -80°C before being used for structural studies or biochemical assays.

SAXS

Purified MKK6^{DD}GRA-p38 α complexes were complemented with either 10 mM ADP, 10 mM NH₄F and 1 mM AlCl₃ or 10 mM AMP-PCP, and incubated on ice for 30 minutes before proceeding.

5 Small Angle X-ray Scattering data were collected at the bioSAXS beamline B21 at the Diamond Light Source (DLS), UK (proposal SM23091-1). Scattering curves were measured from solutions of the different MKK6DDGRA/p38 α samples in SAXS buffer (50 mM HEPES pH 7.5, 200 mM NaCl, 10 mM MgCl₂, 5 % glycerol, 0.5 mM TCEP). Buffer subtractions and all other subsequent analysis were performed with the program Scatter IV (57) and SAXS profile 10 computation used FoXS (58) (Table S9).

Cryo-EM specimen preparation and data collection

Purified MKK6^{DD}GRA-p38 α ^{T180V} was complemented with 250 μ M AMP-CP, 250 μ M NH₄F and 25 μ M AlCl₃, and incubated on ice for 30 minutes before proceeding. UltraAufoil 15 1.2/1.3 grids were glow-discharged for 30 seconds at 25 mA (PELCO easy glow). During the vitrification procedure on a Vitrobot Mark IV (FEI), 4 μ l of sample at 6 μ M concentration was applied to the grid. The blotting force was set to 0 for a total time of 3.5 seconds. Grids were then clipped and screened on a FEI Talos Glacios electron microscope (EMBL Grenoble) operating at 200 kV. Selected grids were then sent for data collection on a FEI Titan Krios 20 (EMBL Heidelberg) operating at 300 kV. Micrographs were automatically collected using SerialEM (59) from a K2 Quantum detector (Gatan) and a GIF Quantum energy filter (Gatan), at a nominal magnification of 215 kx (corresponding to 0.638 \AA /pixel at the specimen level). Three different data collections with a total of 28,633 movies of 40 frames were collected in electron

counting mode with a defocus range of -1.5 to -3 μm , 0.1 μm step, with a total exposure of 62.77 $\text{e}^-/\text{\AA}^2$.

Cryo-EM processing

5 Each dataset was treated independently following a similar workflow and the best particles corresponding to the hetero-kinase sample were finally combined and further processed.

Movies were imported in cryoSPARC (60). All movie frames were aligned and motion-corrected with Patch Motion correction and CTF estimated with Patch CTF. Data were manually curated to eliminate micrographs with large motions, poor resolution, and high ice thickness. The 10 resulting micrographs showed a low signal/noise ratio but classical picking with blob picker failed to identify particles. We successfully picked a large number of particles by using a combination of Topaz particle picker (61) and template picker. Particles were extracted with a box size of 300 x 300 pixels and 2D classification was used to eliminate junk and the most noisy particles. We then applied *ab-initio* and heterogeneous refinement, requesting 3-6 models, and 15 particles corresponding to the hetero kinase model were selected for further 2D classification. Between 2-3 rounds of 2D classification were necessary to select good particles, showing secondary structural features and low background noise. Non-uniform refinement was then used to obtain a 5 \AA resolution map. An exemplary workflow is shown in Figure S3A for dataset 2.

To improve resolution, we then combined selected particles from each dataset (86,510 20 particles in total) and we applied 2D classification, *ab-initio*, heterogeneous and non-uniform refinement to obtain a final map at 4.00 \AA resolution, corresponding to 35,123 particles (Fig. S3B). Maps were sharpened in cryoSPARC and using locscale (62).

The initial model was built from the combination of different structures: the crystal structure of p38 α WT presenting an ordered activation loop (PDB 5etc), the crystal structure of

p38 α bound to GRA24 KIM peptide (PDB 5eta) (29), and the homology model of MKK6^{DD} based on the crystal structure of the active MKK7^{DD} structure (PDB 6yg1) (16) obtained with SWISS-MODEL (63). The model of each kinase was individually docked into the map as a rigid body using phenix.place.model and then refined with one round of morphing and real space refinement using Phenix (64) and corrected in COOT (65). To validate the rebuilt model, we relied on cross-correlation calculations between the experimental maps and those predicted from the MD simulations to select the model that best recapitulates the available data. We considered a set of 87 structures including the rebuilt model, AF2 predictions, complex structures including the linker and p38 α activation loop modelled using the *automodel* functionality of MODELLER, and 79 clusters extracted from one relevant MD simulation showing p38 α Y182 close to MKK6 ATP (rep4 with restraints). Given the sensitivity of cross-correlation calculations to atomic B-factors, we re-assigned temperature factors for each structure using Phenix by running one round of refinement with default parameters. This step allowed us to compare the cross-correlation scores assigned to all the models in the dataset. Cross-correlation scores were then computed considering the entire complex and a selection of key structural features, i.e., hydrophobic patch, KIM, p38 α activation loop, and the MKK6 region close to the resolved linker. By selecting a specific region of the structure, cross-correlation was computed in the area surrounding the selection only. Considering the entire complex, the rebuilt model was assigned to the highest cross-correlation score. However, one of the predicted models was assigned to a higher score than the rebuilt model for the area around the hydrophobic patch, the p38 α activation loop, and the MKK6 region close the linker. We therefore incorporated the structural information for these features into the final model as they are in better agreement with the experimental data. Table S2 summarizes the cross-correlation scores for all structures. See Table S3 for data processing and

refinement statistics. Figures were prepared in ChimeraX (66) and validation performed with Phenix Comprehensive Validation.

5

AP-1 reporter assay

HEK293T cells were maintained in DMEM medium (DMEM) supplemented with 10% (v/v) FBS (Thermo Fisher), at 37 °C and 5% CO₂. According to the manufacturer's protocol, the AP-1 firefly luciferase reporter vector and the constitutively expressing *Renilla* luciferase vector (BPS Bioscience #60612) were transiently co-transfected together with MKK6^{DD} mutants and p38α pcDNA3.1 plasmids (or empty vector for controls) with Lipofectamin2000 (Thermo Scientific) (Fig. S8). Firefly and *Renilla* luciferase activities were measured 24h post-transfection using the Dual Luciferase assay system (BPS Bioscience #60683) with a Clariostar microplate reader (BMG Germany). Each experiment was repeated three times (biological replicate) and each time, three transfections per condition were performed (technical replicate), for a total of nine experiments per construct. Each firefly luciferase value was normalised by its corresponding *Renilla* luciferase measure to correct for cell quantity and transfection efficiency. The luciferase activity was expressed relative to the replicate positive control (MKK6^{DD} + p38α) intensity. Statistical analysis on the AP-1 reporter assay was performed using Rstudio. Briefly, normal distribution was tested with a Shapiro Wilck test and variance homogeneity with a Levene's test. To compare the mutants to the control (MKK6^{DD} + p38α), either a Welch t-test or a Wilcoxon rank sum exact test was performed.

Mass spectrometry

Purified MKK6^{DD}GRA-p38 α complexes were complemented with 10 mM ATP. Intact mass was measured on a quadrupole time of flight (Q-TOF) Premier mass spectrometer (Waters/Micromass) coupled to an Acquity UPLC System (Waters Corporation). Solvent A was water, 0.1% formic acid, and solvent B was acetonitrile, 0.1% formic acid. Samples were acidified using 1% TFA prior to injection onto an Acquity UPLC Protein BEH C4 column (Waters Corporation). Acquisition was carried out using the standard ESI source in positive ion mode over the mass range 500–3500 m/z. Data were externally calibrated against a reference standard of intact myoglobin, acquired immediately prior to sample data acquisition. Spectra from the chromatogram protein peak were then summed and intact mass was calculated using the MaxEnt1 maximum entropy algorithm (Waters/Micromass).

PTMs were measured by LC-MS/MS. SP3 protocol (67) was used for sample preparation. Analysis was performed on an UltiMate 3000 RSLC nano LC system (Dionex) fitted with a trapping cartridge (μ -Precolumn C18 PepMap 100) and an analytical column (nanoEaseTM M/Z HSS T3 column 75 μ m x 250 mm C18, 1.8 μ m, 100 \AA , Waters) coupled to a Fusion Lumos (Thermo) mass spectrometer using the proxeon nanoflow source in positive ion mode. Acquired data were processed by IsobarQuant (68), as search engine Mascot (v2.2.07) was used.

Protein structure preparation for MD simulations

The model derived from cryo-EM of p38 α in complex with the MKK6^{DD}GRA was used as a starting conformation for the unbiased MD simulations. The bound ADP that was resolved in the cryo-EM structure was replaced by ATP, which was docked to the binding sites of p38 α and MKK6 using the Glide software (69) (Schrödinger Release 2021-4). In particular, the docked ATP maintained the ADP pose seen in the cryo-EM structure, while the position of AlF₄⁻ in the binding site of p38 α was used to guide the position of the γ -phosphate group of the docked ATP.

The same γ -phosphate position was used for the ATP in the binding site of MKK6, even though AlF_4^- was not present in this binding site. The mutated residues S207D and T211D on the resolved MKK6^{DD} were reverted back to the WT ones. The K53R mutation was introduced unintentionally when building the model of p38 α with the WT KIM, as this was the mutant used in the crystal structure. It is a kinase dead mutation that stabilizes the protein for structural studies, but has no influence on the studies presented here. The structure of the p38 α -MKK6GRA produced by the aforementioned procedure was then used to model the N-terminal tail of the WT MKK6 (residues M1-K14 of the MKK6 WT sequence) using the crystal structure of p38 α bound to the WT MKK6 KIM (29) and with the *automodel* functionality of MODELLER (70).

MD simulations setup

Prior to any simulation, the protonation state of each residue at pH 7.4 was calculated using the PROPKA 3.1 algorithm as implemented in the PlayMolecule web application (71), which left all residues in their usual charge states, except for p38 α H228, which was double protonated. For all simulated systems, DES-Amber force field was used for the protein as it has been shown to be able to capture the dynamics of protein-protein complexes more accurately than other force fields to this date (71). For the ATP coordinated Mg^{2+} ions, optimized Mg force field parameters that yield water exchange on timescales that agree with experiments (71) were combined with the protein force field. The Meagher et al. parameterization for ATP (72) was used, as these parameters have been benchmarked recently and shown to be able to reproduce the experimentally observed coordination modes of ATP (73). Each system was enclosed in an octahedral box with periodic boundary conditions and solvated with TIP4PD water molecules as

described in the DES-Amber force field, while Na^+ and Cl^- ions were added to reach neutrality at the final NaCl concentration of 150 mM.

The MD simulations were performed using the GROMACS 2021.3 simulation package (74) patched with the PLUMED 2.4.1 plug-in (75). The energy of the MKK6GRA-p38 α and MKK6-p38 α systems was minimized using the steepest descent integrator and the solvated systems were 5 equilibrated afterwards in the canonical (NVT) ensemble for 10 ns, with initial velocities sampled from the Boltzmann distribution at 310 K and a 2 fs timestep. The temperature was kept constant at 310 K by a velocity-rescale thermostat (76). The long-range electrostatics were calculated by the particle mesh Ewald algorithm, with Fourier spacing of 0.16 nm, combined with a switching function at 1.0 nm for the electrostatic and VdW interactions. The systems were 10 then equilibrated for additional 10 ns in the isothermal-isobaric (NPT) ensemble prior to the production runs applying position constraints only to the protein (with a restraint spring constant of 1000 kJ mol $^{-1}$ nm $^{-2}$), where the pressure was maintained at 1 bar through a cell-rescale barostat (77).

15 Post equilibration, we ran a series of independent production runs in the NPT ensemble, coupled with a velocity-rescale thermostat (70) at 310 K and a cell-rescale barostat (77) at 1 bar for each of the systems as detailed in Table S6. Both unrestrained and restrained sets of replicas for MKK6GRA-p38 α are randomly initialized from the same initial conformation and differ by the application of a harmonic restraint on the distance to the native inter-kinase contact found at 20 the interface of the two monomers to maintain the initial relative position of p38 α and MKK6GRA. The distance to the native contact map as implemented in the PLUMED plug-in was restrained using a force constant of 1500 kJ mol $^{-1}$ nm $^{-2}$. Since the movement of the A-loop of p38 α was important, contacts that involved residues of the A-loop were removed from the final contact map. The definition of the atoms involved in each contact, as well as the parameters for

the contact map can be found in the input files deposited to the public repository of the PLUMED consortium, PLUMED-NEST (78).

We expanded the dataset of unrestrained simulations for MKK6GRA-p38 α adding a set of three replicas starting from a conformation that originates from a snapshot of one of the restrained simulations in which the A-loop of p38 α extended towards MKK6 ATP binding site and p38 α Y182 was close to MKK6 ATP.

MD simulations derived structures and analysis

In order to quantify the rotation of p38 α with respect to MKK6 over the course of the simulations, we started by clustering the conformations derived from each MD simulation run. All the conformations visited during each simulation were clustered using the *gromos* algorithm (79) and the *g_cluster* routine (GROMACS) by using the RMSD of the backbone atoms of MKK6 as the distance between the structures and the cut-off value from 2 to 4.5 Å to ensure a representative number of frames in each cluster. The central structures of the most populated clusters of each basin (i.e. the structure with the smallest RMSD distance to all the other members of the cluster) were chosen as the representative ones of each simulation. The central structures of each simulation were then superimposed to the cryo-EM structure using the MKK6 as reference and the rotation matrix of p38 α was calculated through the ChimeraX functionalities.

Supplementary Text

Unrestrained simulation of MKK6-p38 α indicate that Y182 can reach MKK6 ATP

Since the resolved cryo-EM structure has a chimeric MKK6 with a modified KIM on its N-terminal tail adopted from GRA24, we reasoned that the simulations of the MKK6/p38 α with the WT KIM of MKK6 could give us more information on the role of this motif that the cryo-EM structure alone could not provide. In the WT, the “electrostatic hook” of KIM is recognised by p38 α and forms ion pairs with residues of the β 7/ β 8 turn of p38 α . Indeed, during the simulations, K8 and R9 of the WT sequence anchor the KIM to p38 α by forming backbone and side-chain hydrogen bonds and salt-bridges with E161, while the salt-bridge between the side chains of K14 and E160 further solidifies the KIM around p38 α (Fig. S9). Unlike the set of simulations with the chimeric MKK6, in two out of the five simulations of this setup, we see both T180 and Y182 coming relatively close to MKK6 ATP (Table S7) without p38 α having to rotate. Both during the approaching of the A-loop of p38 α to the MKK6 ATP and after, the two kinases maintain their initial relative orientation throughout the simulations.

During the simulations of p38 α with MKK6 comprising of the WT sequence we were not able to see the rotation of p38 α even though T180 got relatively close to ATP in one of the replicas. We think that the simulation time may not be sufficient for the N-lobe of p38 α to rotate.

Restraining the MKK6GRA-p38 α relative position enhances the phosphorylation at Y182

We ran a set of five simulations for the MKK6GRA-p38 α dimer starting from the cryo-EM structure and applying mild harmonic restraints on the interface interactions to stabilise the relative orientation of the monomers in the complex (see Methods). Due to the presence of the restraints, we did not observe any large conformational change akin to the one seen in the

unrestrained simulation described in the Main Text showing T180 clearly interacting with MKK6 ATP.

In this set of restrained simulations, two out of the five replicas show p38 α A-loop adopting an extended conformation with Y182 approaching P γ of MKK6 ATP up to a final distance of 4.4 Å and 3.5 Å, respectively. In both cases, p38 α ATP binding site slightly opens allowing the adenine group of p38 α ATP to move out of the binding site. Interestingly, in one of the two simulations, we also see that the extended A-loop forms a one-turn helix (residues E178-Y182), which involves both phosphorylation sites. A similar transient helix on the middle section of the A-loop, which exposes the phosphorylation sites, has been reported in MD simulations of the unphosphorylated kinase domain of EGFR (80, 81), and is also reminiscent of a helix in the A-loop of MPSK1 kinase (82) (PDB 2buj). In the rest of the replicas of this set of simulations, the conformation adopted by the A-loop is not compatible with phosphorylation on either T180 or Y182 since the A-loop extends towards the p38 α C-lobe or the MKK6 α C-helix.

It is worth mentioning that in all restrained simulations the KIM never detaches from p38 α regardless of the relative conformation – catalytically-compatible or not - adopted by the two kinases.

Released simulations of MKK6GRA- p38 α confirm the role of MKK6 KIM in stabilising the active complex

The results obtained from the set of restrained simulations suggest a role of MKK6 KIM in stabilizing the MKK6-p38 α complex. However, due to the presence of the harmonic restraints on the interface contacts we were not able to evaluate to what extent MKK6 KIM contributes to the rotation of p38 α N-lobe.

We thus ran an additional set of three simulations releasing the restraints on the interface.

We started the simulations from a representative conformation of the complex extracted from one of the restrained simulations showing Y182 pointing towards the MKK6 ATP (Y182-P γ =5.1 Å) and residues E178-Y182 of the A-loop folded into a one-turn helix.

5 In two out of three replicas the KIM remains stably in contact with p38 α throughout the simulation.

Concurrently, we observe that in one simulation, p38 α A-loop extends above the MKK6 α C-helix in a way that allows Y182 to interact with Q93, forming, thus, a catalytically incompatible complex. In the simulation we extended up to 2 μ s, we observed the unfolding of 10 the one-turn helix of the A-loop and T180 approaching MKK6 ATP. After clustering of this trajectory (RMSD cut-off distance equal to 2.75 Å), in the most populated cluster (cluster 1), Y182 and T180 fluctuate at 1-2 nm away from MKK6 ATP while in the second most populated cluster (cluster 2) they reach at a distance <1 nm. Interestingly, in cluster 1, the p38 α N-lobe is turned by approximately 51° with respect to the initial conformation, while in cluster 2, in which 15 both Y182 and T180 are closer to MKK6 ATP, the rotation is more significant, i.e., approximately 66°. This observation is consistent with what we observed with the unrestrained simulation showing the N-lobe having to rotate in order for T180 to interact with MKK6 ATP. Although interesting, from this simulation we were not able to confirm the role of the salt bridge between MKK6 K17 and p38 α E160 in priming the rotation of p38 α .

20 Lastly, in the third simulation of this set we observed p38 α A-loop moving from an extended to sequestered conformation concurrently with the dissociation of MKK6 KIM, thus confirming the role of MKK6 KIM in stabilizing the active complex. The conformational change of the A-loop required approximately 200 ns after the detachment of the KIM. Finally, even when most interface contacts are lost, the contacts around the hydrophobic patch between the C-lobes of

p38 α and MKK6 are maintained. Comparing the complex conformation with a reference structure for inactive p38 α (PDB 3s3i) we were able to assess the inactive-like conformation of the A-loop adopted at the end of the simulation ($RMSD_{backbone}^{p38\alpha} = 3.5 \text{ \AA}$ with respect to the crystal structure, Fig. 5B). The KIM is also in contact with the hinge region of p38 α . It is worth mentioning that during the simulations that we ran, we see that fluctuations of MKK6 are propagated through its N-terminal loop and KIM to the hinge region of p38 α , affecting the stability of p38 α ATP inside its pocket.

Acknowledgments:

PJ was supported by a EMBL predoctoral fellowship. We thank Stephen Cusack and Andrew McCarthy (EMBL Grenoble) for providing encouragement during this project, Wojtek Galej (EMBL Grenoble) for critical reading of the manuscript and Mohamed-Ali Hakimi (IAB, Grenoble) for introducing us to the *T.gondii* protein GRA24. We acknowledge Sarah Schneider for support in using the EM Facility at EMBL Grenoble and thank Felix Weiss, Wim Hagen and Simon Fromm for excellent data collection at the EMBL Heidelberg Imaging Centre. We thank Alice Aubert and Martin Pelosse (EMBL, Grenoble) for support in eukaryotic protein expression and the proteomic core facility at EMBL Heidelberg for mass spectrometry. SAXS data were collected at beamline B21 at Diamond Light Source, UK. We acknowledge Massimiliano Bonomi (Institut Pasteur - CNRS, France) for discussions and technical support in cross-correlation analysis. Molecular graphics and analyses were performed with UCSF ChimeraX, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from National Institutes of Health R01-GM129325 and the Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases. We acknowledge PRACE and the Swiss National Supercomputing Centre (CSCS) for large supercomputer time allocations on Piz Daint, project IDs: pr126, s1107.

Funding:

Swiss National Science Foundation [projects number: 200021_204795] (FLG).
Bridge [40B2-0_203628] (FLG).

Author contributions:

Conceptualization: PJ, EP, MWB

Methodology: PJ, IG and DG

Investigation: PJ, IG, DG, MT, FLG, EP, MWB

5

Visualization: PJ, IG and DG

Funding acquisition: FLG and MWB

Supervision: FLG, EP and MWB

Writing - original draft– PJ and MWB

Writing – review & editing: PJ, IG, DG, MT, FLG, EP, MWB

10

Competing interests: Authors declare that they have no competing interests.

Data and materials availability:

Accession codes: Structure of the MKK6^{DD}GRA-p38 α ^{T180V} complex: EMD-15233 (map; Electron Microscopy Data Bank) and PDB-8A8M (coordinates; Protein Data Bank)

Figure Legends

Fig. 1. Structure of the MKK6^{DD}GRA-p38 α ^{T180V} complex. (A) Schematic of the two protein constructs. Key regions and mutations are indicated. (B) Representative 2D class averages from single particle cryo-EM analysis of the MKK6^{DD}GRA-p38 α ^{T180V} complex. (C) Segmented single-particle reconstruction cryo-EM map of the MKK6^{DD}GRA-p38 α ^{T180V} complex, resolved to 4 Å resolution and coloured according to (A). (D) Model of the MKK6^{DD}GRA-p38 α ^{T180V} complex showing the overall structure of the complex. MKK6^{DD}GRA-p38 α ^{T180V} is represented as a cartoon and coloured according to (A), AMP-CP nucleotides are represented as balls and sticks (carbon atoms yellow). The MKK6 linker and A-loop are disordered and respectively shown as a full black line and an orange dashed line. The position of the Y182 residue in the p38 α A-loop is indicated by a red sphere.

Fig. 2. Novel interaction interfaces between MKK6 and p38 α , distal from the active site. (A) Surface representation of the MKK6^{DD}GRA-p38 α ^{T180V} complex. (B) Potential interaction between the N-lobes. (C) Interaction between the α G-helix of MKK6 and the hydrophobic pocket of p38 α . (D) α G-helices of p38 α and MKK6 in the sharpened Coulomb potential map (black mesh). (E) Sequence alignment of MAPK hydrophobic pockets, MAP2K α G-helices and the p38 α substrate ATF2 peptide (Clustal coloring scheme). (F) Luciferase reporter assay to monitor the activity of the p38 α signalling pathway in HEK293T cells, showing the ability of MKK6^{DD} mutants to activate p38 α (statistical analysis in Table S4). (G) Important interactions around the hydrophobic patch maintained over the course of the MD simulations (view rotated 180° relative to A), inset shows details of observed interactions and plots of distances during the simulation.

Fig. 3. MKK6 N-terminal extension length and secondary structure define the specificity of p38 α activation. (A) Top view of a MKK6-p38 α model, for illustrative purposes, built from the cryo-EM model in which the N-terminal linker was built and MKK6 KIM was reverted to the WT motif. (B) Specificity of the MAP2K/MAPK signaling pathways. (C) Sequence alignment of MAP2K N-termini. Secondary structural elements are indicated, from experimental structures in blue, and from AlphaFold2 predictions in orange. (D) Luciferase reporter assay to monitor the activity of the p38 α signalling pathway in HEK293T cells showing the ability of MKK6^{DD} mutants and chimeras to activate p38 α (statistical analysis in Table S5).

Fig. 4. MD simulations show p38 α Y182 approaching MKK6 ATP. Frame extracted from one of the unrestrained MD simulations in which p38 α Y182 approaches the γ -phosphate of MKK6 ATP at a catalytically competent distance (3.8 Å). The π -cation interaction of R95 with Y182 that further stabilizes Y182 close to ATP is shown in a blue dashed line. The frames where p38 α Y182 reaches MKK6 ATP at a catalytically-competent distance in this set of simulations are highlighted in the plot of distances over time (blue).

Fig. 5. Communication between the MKK6 KIM and p38 α . (A) Top and side views of the complex after the detachment of the KIM and consequent transition of p38 α to an inactive-like conformation. (B) Superposition of p38 α with the inactive p38 α crystal structure (PDB 3s3i), $RMSD_{backbone}^{p38\alpha} = 3.5$ Å. Detail: Top: A-loop that breaks the β -sheet motif, Bottom: DFG motif and K/R53-E71 salt-bridge.

5

Fig. 6. Molecular dynamics simulations of the MKK6GRA-p38 α complex show a rotated conformation of p38 α favours T180 phosphorylation. (A) Simulation frame in which p38 α has rotated around its axis with respect to the cryo-EM structure. (B) Detailed view around the KIM. The frames where T180 reaches MKK6 ATP at a catalytically-competent distance in this set of simulations are highlighted in the plot of distances over time (blue). (C) Luciferase reporter assay to monitor the activity of the p38 α signalling pathway in HEK293T cells showing the ability of MKK6^{DD} mutants to activate p38 α (statistical analysis in Table S8).

10

Fig. S1. Expression, purification and activity of the MKK6^{DD}GRA-p38 α ^{T180V} complex. (A) MKK6^{DD}GRA and p38 α ^{T180V} were respectively expressed in *Sf9* and *E. coli*. They were purified by affinity purification (StrepTactin and Ni IMAC respectively), followed by cleavage with 3C protease, and reverse affinity purification. Both proteins were mixed, and the complex was purified with size-exclusion chromatography. (B-C) Mass spectrometry (Native ESI-QTOF in (B) and LC-MS/MS in (C)) reveals that the complex is highly active, either with p38 α ^{WT} (left panel) or with p38 α ^{T180V} (right panel). In the presence of ATP, several sites on both proteins are phosphorylated, including both T180 and Y182 residues of p38 α ^{WT} A-loop and Y182 residue of p38 α ^{T180V} A-loop.

20

Fig. S2. SAXS Curves for MKK6^{DD}GRA + p38 α mutant complexes. (A) On the left tryptic, in blue, shows the IvsQ, Kratky and P(r) plots for MKK6^{DD}GRA + p38 α mutants + ADP + AlF₄⁻ complexes. The complex with p38 α ^{T180V} mutant is more compact than the one with p38 α ^{WT} which is more compact than the one with p38 α ^{Y182F} mutation. On the right tryptic, in green, are the same plots for the MKK6^{DD}GRA + p38 α mutants + AMP-PCP complexes. The complex with p38 α ^{WT} has a slightly increased Rg compared to the two mutants ones but all share a similar D_{max}. (B) χ^2 fits for the cryo-EM MKK6^{DD}GRA + p38 α ^{T180V} model (brick) and MD MKK6 + rotated p38 α ^{WT} model (salmon).

30

Fig. S3. Cryo-EM processing and data assessment of the MKK6^{DD}GRA-p38 α ^{T180V} model. (A) Exemplary workflow processing for one of the three datasets collected (dataset 2). Data processing was performed in cryoSPARC. A representative micrograph, typical result from heterogeneous refinement, final map with angular sampling and gold-standard Fourier Shell Correlation are also shown. (B) Cryo-EM processing of the final particle selection from the three merged datasets to obtain the final reconstruction at 4.0 Å resolution. The final sharpened map, coloured according to local resolution, angular sampling and gold-standard Fourier Shell Correlation are also shown. Representative 2D classes, which yielded the final map, are also shown. (C) Fitting of the model into the cryo-EM map. The MKK6^{DD}GRA-p38 α ^{T180V} complex is shown in cartoon representation with α -helices as cylinders, and the sharpened map is shown as a black mesh.

35

40

Fig. S4. Comparison of MKK6 crystal structures with the cryo-EM model. Overlay of the cryo-EM structure of MKK6^{DD}GRA with (A) the structure of MKK6 in an inactive conformation with AMP-PNP bound, (B) the structure of MKK6 in an inactive conformation inhibited with staurosporin, (C) the structure of MKK6 in an auto-inhibitory dimer, and (D) the active structure of MKK7.

Fig. S5. Detailed views of the MKK6^{DD}GRA-p38 α ^{T180V} model with the sharpened Coulomb potential map. Structural elements of the model are shown in cartoon and stick representation and the sharpened map is shown as a black mesh.

Fig. S6. Interaction and variability of the p38 α hydrophobic pocket. The p38 α surface is coloured according to hydrophobicity. (A) Cryo-EM MKK6^{DD}GRA-p38 α ^{T180V} model (B) Crystal structure of p38 α bound to substrate ATF2 peptide showing a similar binding mode as the MKK6 α G helix. (C-E) The p38 α hydrophobic pocket is flexible: it is opened in inactive p38 α crystal structures and closes in active p38 α conformation (F-I) The p38 α hydrophobic pocket can bind small molecules and regulatory lipids: (F) β -octyl-D-glucopyranoside (β -OG) detergent, (G) phosphatidylinositol ether lipid analogue 24 (PIA24), (H) LiPoLis ligand 9l, and (I) a fluorinated-pyridine derivative.

Fig. S7. Schematic representation of the phosphorylation mechanism derived from the MD simulations. Although both p38 α T180 and Y182 can reach MKK6 ATP at a catalytically competent distance, p38 α seems to have to rotate for T180 to reach ATP in most replicas. The difference in experimentally derived kinetic rates measured for the first phosphorylation step may reflect the rotation of p38 α N-lobe around its axis that seems to be involved in the T180 phosphorylation only.

Fig. S8. Cellular reporter assay. HEK293T cells are transiently transfected with MKK6^{DD} mutants (orange) and p38 α (teal), together with a plasmid encoding firefly luciferase (green) under the control of the AP-1 promoter (purple). When p38 α is activated, it phosphorylates several substrates, including ATF2, that will in turn stimulate the AP-1 promoter and trigger the expression of luciferase. Activity of p38 α can be directly monitored by measurement of luminescence.

Fig. S9. Important interactions that maintain the KIM of MKK6 in contact with p38 α over the course of the MD simulations. The rolling average of the timeseries of side-chain-to-side-chain interactions are shown in black, while the side-chain-to-backbone interactions are shown in green. The reported timeseries refer to one of the simulations with the MKK6 WT sequence (Table S6), however, the same pattern of interactions is observed in three out of the five independent replicas where p38 α stays in contact with MKK6.

Movie S1. Detailed presentation of the fitting of the MKK6^{DD}GRA-p38 α ^{T180V} model in the cryo-EM map and general overview of the model.

Movie S2. Close up view of the interaction between the α G-helices of p38 α and MKK6 in the sharpened Coulomb potential map (black mesh).

Movie S3. MD simulation trajectory (1 μ s long, unrestrained) where the N-lobe of p38 α rotates to allow access of T180 to the ATP bound to MKK6.

References and Notes

1. B. Canovas, A. R. Nebreda. "Diversity and versatility of p38 kinase signalling in health and disease", *Nat Rev Mol Cell Biol* **22**, 346 (2021).10.1038/s41580-020-00322-w
- 5 2. M. Bouhaddou *et al.* "The Global Phosphorylation Landscape of SARS-CoV-2 Infection", *Cell* **182**, 685 (2020).10.1016/j.cell.2020.06.034
3. Daniella S. Battagello *et al.* "Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission", *Clinical Science* **134**, 2137 (2020).10.1042/cs20200904
- 10 4. S. Bellon, M. J. Fitzgibbon, T. Fox, H.-M. Hsiao, K. P. Wilson. "The structure of phosphorylated P38y is monomeric and reveals a conserved activation-loop conformation", *Structure* **7**, 1057 (1999).[https://doi.org/10.1016/S0969-2126\(99\)80173-7](https://doi.org/10.1016/S0969-2126(99)80173-7)
- 15 5. S. S. Taylor, A. P. Kornev. "Protein kinases: evolution of dynamic regulatory proteins", *Trends in Biochemical Sciences* **36**, 65 (2011).<https://doi.org/10.1016/j.tibs.2010.09.006>
6. N. Bluthgen *et al.* "Effects of sequestration on signal transduction cascades", *FEBS J* **273**, 895 (2006).10.1111/j.1742-4658.2006.05105.x
7. F. Ortega, L. Acerenza, H. V. Westerhoff, F. Mas, M. Cascante. "Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades", *Proc Natl Acad Sci U S A* **99**, 1170 (2002).10.1073/pnas.022267399
- 20 8. M. Thattai, A. van Oudenaarden. "Attenuation of noise in ultrasensitive signaling cascades", *Biophys J* **82**, 2943 (2002).10.1016/S0006-3495(02)75635-X
9. D. Hammaker, G. S. Firestein. "Go upstream, young man": lessons learned from the p38 saga", *Annals of the Rheumatic Diseases* **69**, i77 (2010).10.1136/ard.2009.119479
10. K. P. Wilson *et al.* "Crystal structure of p38 mitogen-activated protein kinase", *J Biol Chem* **271**, 27696 (1996).10.1074/jbc.271.44.27696
- 25 11. X. Xie *et al.* "Crystal structure of JNK3: a kinase implicated in neuronal apoptosis", *Structure* **6**, 983 (1998).10.1016/S0969-2126(98)00100-2
12. F. Zhang, A. Strand, D. Robbins, M. H. Cobb, E. J. Goldsmith. "Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution", *Nature* **367**, 704 (1994).10.1038/367704a0
13. X. Min *et al.* "The structure of the MAP2K MEK6 reveals an autoinhibitory dimer", *Structure* **17**, 96 (2009).10.1016/j.str.2008.11.007
- 30 14. T. Matsumoto *et al.* "Crystal structure of non-phosphorylated MAP2K6 in a putative auto-inhibition state", *J Biochem* **151**, 541 (2012).10.1093/jb/mvs023
15. J. F. Ohren *et al.* "Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition", *Nat Struct Mol Biol* **11**, 1192 (2004).10.1038/nsmb859
- 35 16. M. Schroder *et al.* "Catalytic Domain Plasticity of MKK7 Reveals Structural Mechanisms of Allosteric Activation and Diverse Targeting Opportunities", *Cell Chem Biol* **27**, 1285 (2020).10.1016/j.chembiol.2020.07.014
17. Á. Garai *et al.* "Specificity of Linear Motifs That Bind to a Common Mitogen-Activated Protein Kinase Docking Groove", *Science Signaling* **5**, ra74 (2012).doi:10.1126/scisignal.2003004
- 40 18. T. Tanoue, M. Adachi, T. Moriguchi, E. Nishida. "A conserved docking motif in MAP kinases common to substrates, activators and regulators", *Nature Cell Biology* **2**, 110 (2000).10.1038/35000065
19. W. Peti, R. Page. "Molecular basis of MAP kinase regulation", *Protein Science* **22**, 1698 (2013).<https://doi.org/10.1002/pro.2374>
- 45 20. A. Zeke *et al.* "Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases", *Mol Syst Biol* **11**, 837 (2015).10.15252/msb.20156269

21. T. Zhou, L. Sun, J. Humphreys, E. J. Goldsmith. "Docking interactions induce exposure of activation loop in the MAP kinase ERK2", *Structure* **14**, 1011 (2006).10.1016/j.str.2006.04.006
22. C. I. Chang, B. E. Xu, R. Akella, M. H. Cobb, E. J. Goldsmith. "Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b", *Mol Cell* **9**, 1241 (2002).10.1016/s1097-2765(02)00525-7
- 5 23. M. Dyla, M. Kjaergaard. "Intrinsically disordered linkers control tethered kinases via effective concentration", *Proc Natl Acad Sci U S A* **117**, 21413 (2020).10.1073/pnas.2006382117
- 10 24. J. Beenstock, N. Mooshayef, D. Engelberg. "How Do Protein Kinases Take a Selfie (Autophosphorylate)?", *Trends in Biochemical Sciences* **41**, 938 (2016).10.1016/j.tibs.2016.08.006
25. E. Park *et al.* "Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes", *Nature* **575**, 545 (2019).10.1038/s41586-019-1660-y
- 15 26. Y. Kondo *et al.* "Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases", *Science* **366**, 109 (2019).10.1126/science.aay0543
27. D. F. Brennan *et al.* "A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK", *Nature* **472**, 366 (2011).10.1038/nature09860
28. L. Braun *et al.* "A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation", *J Exp Med* **210**, 2071 (2013).10.1084/jem.20130103
- 20 29. E. Pellegrini *et al.* "Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist", *Structure* **25**, 16 (2017).10.1016/j.str.2016.10.011
30. R. Diskin, D. Engelberg, O. Livnah. "A novel lipid binding site formed by the MAP kinase insert in p38 alpha", *J Mol Biol* **375**, 70 (2008).10.1016/j.jmb.2007.09.002
- 25 31. N. Tzarum, Y. Eisenberg-Domovich, J. J. Gills, P. A. Dennis, O. Livnah. "Lipid molecules induce p38alpha activation via a novel molecular switch", *J Mol Biol* **424**, 339 (2012).10.1016/j.jmb.2012.10.007
32. M. Buhrmann, J. Hardick, J. Weisner, L. Quambusch, D. Rauh. "Covalent Lipid Pocket Ligands Targeting p38alpha MAPK Mutants", *Angew Chem Int Ed Engl* **56**, 13232 (2017).10.1002/anie.201706345
- 30 33. M. Buhrmann *et al.* "Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38alpha MAPK", *PLoS One* **12**, e0184627 (2017).10.1371/journal.pone.0184627
34. K. M. Comess *et al.* "Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases", *ACS Chem Biol* **6**, 234 (2011).10.1021/cb1002619
- 35 35. O. Laufkotter, H. Hu, F. Miljkovic, J. Bajorath. "Structure- and Similarity-Based Survey of Allosteric Kinase Inhibitors, Activators, and Closely Related Compounds", *J Med Chem* **65**, 922 (2022).10.1021/acs.jmedchem.0c02076
36. X. H. Zhang *et al.* "Targeting the non-ATP-binding pocket of the MAP kinase p38 γ mediates a novel mechanism of cytotoxicity in cutaneous T-cell lymphoma (CTCL)", *FEBS Letters* **595**, 2570 (2021).<https://doi.org/10.1002/1873-3468.14186>
- 40 37. K. Kirsch *et al.* "Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38", *Nat Commun* **11**, 5769 (2020).10.1038/s41467-020-19582-3
38. X. Liu *et al.* "A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation", *Nat Commun* **7**, 10879 (2016).10.1038/ncomms10879
- 45 39. S. A. Foster *et al.* "Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2", *Cancer Cell* **29**, 477 (2016).<https://doi.org/10.1016/j.ccr.2016.02.010>
40. B. Zhang *et al.* "Oncogenic mutations within the β 3- α C loop of EGFR/ERBB2/BRAF/MAP2K1 predict response to therapies", *Mol Genet Genomic Med* **8**, e1395 (2020).10.1002/mgg3.1395

41. Y. FLEMING *et al.* "Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7", *Biochemical Journal* **352**, 145 (2000).10.1042/bj3520145
- 5 42. C. Tournier, A. J. Whitmarsh, J. Cavanagh, T. Barrett, R. J. Davis. "The MKK7 Gene Encodes a Group of c-Jun NH₂-Terminal Kinase Kinases", *Molecular and Cellular Biology* **19**, 1569 (1999).doi:10.1128/MCB.19.2.1569
- 10 43. T. O. Fischmann *et al.* "Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors", *Biochemistry* **48**, 2661 (2009).10.1021/bi801898e
- 15 44. V. Modi, R. L. Dunbrack. "A Structurally-Validated Multiple Sequence Alignment of 497 Human Protein Kinase Domains", *Scientific Reports* **9**, 19790 (2019).10.1038/s41598-019-56499-4
- 20 45. J. Jumper *et al.* "Highly accurate protein structure prediction with AlphaFold", *Nature* **596**, 583 (2021).10.1038/s41586-021-03819-2
- 25 46. A. Perez-Gallegos, M. Garcia-Viloca, A. Gonzalez-Lafont, J. M. Lluch. "A QM/MM study of Kemptide phosphorylation catalyzed by protein kinase A. The role of Asp166 as a general acid/base catalyst", *Phys Chem Chem Phys* **17**, 3497 (2015).10.1039/c4cp03579h
- 30 47. A. Kuzmanic *et al.* "Changes in the free-energy landscape of p38alpha MAP kinase through its canonical activation and binding events as studied by enhanced molecular dynamics simulations", *Elife* **6** (2017).10.7554/elife.22175
- 35 48. G. S. Kumar, R. Page, W. Peti. "The interaction of p38 with its upstream kinase MKK6", *Protein Science* **30**, 908 (2021).<https://doi.org/10.1002/pro.4039>
- 40 49. Y. Y. Zhang, J. W. Wu, Z. X. Wang. "A distinct interaction mode revealed by the crystal structure of the kinase p38 α with the MAPK binding domain of the phosphatase MKP5", *Sci Signal* **4**, ra88 (2011).10.1126/scisignal.2002241
- 45 50. C. Dominguez, D. A. Powers, N. Tamayo. "p38 MAP kinase inhibitors: many are made, but few are chosen", *Curr Opin Drug Discov Devel* **8**, 421 (2005)
55. 51. Y. L. Wang *et al.* "Kinetic and mechanistic studies of p38alpha MAP kinase phosphorylation by MKK6", *FEBS J* **286**, 1030 (2019).10.1111/febs.14762
56. 52. J. M. Humphreys, A. T. Piala, R. Akella, H. He, E. J. Goldsmith. "Precisely Ordered Phosphorylation Reactions in the p38 Mitogen-activated Protein (MAP) Kinase Cascade*", *Journal of Biological Chemistry* **288**, 23322 (2013).<https://doi.org/10.1074/jbc.M113.462101>
57. 53. K. Aoki, K. Takahashi, K. Kaizu, M. Matsuda. "A Quantitative Model of ERK MAP Kinase Phosphorylation in Crowded Media", *Scientific Reports* **3**, 1541 (2013).10.1038/srep01541
58. 54. C. Salazar, T. Höfer. "Multisite protein phosphorylation – from molecular mechanisms to kinetic models", *The FEBS Journal* **276**, 3177 (2009).<https://doi.org/10.1111/j.1742-4658.2009.07027.x>
59. 55. S. K. Albanese *et al.* "An Open Library of Human Kinase Domain Constructs for Automated Bacterial Expression", *Biochemistry* **57**, 4675 (2018).10.1021/acs.biochem.7b01081
60. 56. Y. Nie, I. Bellon-Echeverria, S. Trowitzsch, C. Bieniossek, I. Berger. "Multiprotein complex production in insect cells by using polyproteins", *Methods Mol Biol* **1091**, 131 (2014).10.1007/978-1-62703-691-7_8
65. 57. M. D. Tully, N. Tarbouriech, R. P. Rambo, S. Hutin. "Analysis of SEC-SAXS data via EFA deconvolution and Scatter", *J Vis Exp* (2021).10.3791/61578
70. 58. D. Schneidman-Duhovny, M. Hammel, J. A. Tainer, A. Sali. "Accurate SAXS profile computation and its assessment by contrast variation experiments", *Biophys J* **105**, 962 (2013).10.1016/j.bpj.2013.07.020
75. 59. M. Schorb, I. Haberbosch, W. J. H. Hagen, Y. Schwab, D. N. Mastronarde. "Software tools for automated transmission electron microscopy", *Nat Methods* **16**, 471 (2019).10.1038/s41592-019-0396-9

60. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker. "cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination", *Nat Methods* **14**, 290 (2017).10.1038/nmeth.4169
- 5 61. T. Bepler *et al.* "Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs", *Nat Methods* **16**, 1153 (2019).10.1038/s41592-019-0575-8
62. A. J. Jakobi, M. Wilmanns, C. Sachse. "Model-based local density sharpening of cryo-EM maps", *eLife* **6**, e27131 (2017).10.7554/eLife.27131
- 10 63. A. Waterhouse *et al.* "SWISS-MODEL: homology modelling of protein structures and complexes", *Nucleic Acids Res* **46**, W296 (2018).10.1093/nar/gky427
64. P. V. Afonine *et al.* "Real-space refinement in PHENIX for cryo-EM and crystallography", *Acta Crystallogr D Struct Biol* **74**, 531 (2018).10.1107/S2059798318006551
65. P. Emsley, K. Cowtan. "Coot: model-building tools for molecular graphics", *Acta Crystallogr D Biol Crystallogr* **60**, 2126 (2004).10.1107/S0907444904019158
- 15 66. E. F. Pettersen *et al.* "UCSF ChimeraX: Structure visualization for researchers, educators, and developers", *Protein Sci* **30**, 70 (2021).10.1002/pro.3943
67. C. S. Hughes *et al.* "Ultrasensitive proteome analysis using paramagnetic bead technology", *Mol Syst Biol* **10**, 757 (2014).10.15252/msb.20145625
68. H. Franken *et al.* "Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry", *Nat Protoc* **10**, 1567 (2015).10.1038/nprot.2015.101
- 20 69. R. A. Friesner *et al.* "Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes", *J Med Chem* **49**, 6177 (2006).10.1021/jm051256o
70. A. Sali, T. L. Blundell. "Comparative protein modelling by satisfaction of spatial restraints", *J Mol Biol* **234**, 779 (1993).10.1006/jmbi.1993.1626
- 25 71. G. Martinez-Rosell, T. Giorgino, G. De Fabritiis. "PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations", *J Chem Inf Model* **57**, 1511 (2017).10.1021/acs.jcim.7b00190
72. K. L. Meagher, L. T. Redman, H. A. Carlson. "Development of polyphosphate parameters for use with the AMBER force field", *J Comput Chem* **24**, 1016 (2003).10.1002/jcc.10262
- 30 73. F. P. Buelens, H. Leonov, B. L. de Groot, H. Grubmuller. "ATP-Magnesium Coordination: Protein Structure-Based Force Field Evaluation and Corrections", *J Chem Theory Comput* **17**, 1922 (2021).10.1021/acs.jctc.0c01205
74. M. J. Abraham *et al.* "GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers", *SoftwareX* **1-2**, 19 (2015).<https://doi.org/10.1016/j.softx.2015.06.001>
- 35 75. G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi. "PLUMED 2: New feathers for an old bird", *Computer Physics Communications* **185**, 604 (2014).<https://doi.org/10.1016/j.cpc.2013.09.018>
76. G. Bussi, D. Donadio, M. Parrinello. "Canonical sampling through velocity rescaling", *The Journal of Chemical Physics* **126**, 014101 (2007).10.1063/1.2408420
- 40 77. M. Bernetti, G. Bussi. "Pressure control using stochastic cell rescaling", *The Journal of Chemical Physics* **153**, 114107 (2020).10.1063/5.0020514
78. P. consortium. "Promoting transparency and reproducibility in enhanced molecular simulations", *Nat Methods* **16**, 670 (2019).10.1038/s41592-019-0506-8
- 45 79. X. Daura *et al.* "Peptide Folding: When Simulation Meets Experiment", *Angewandte Chemie International Edition* **38**, 236 (1999).[https://doi.org/10.1002/\(SICI\)1521-3773\(19990115\)38:1/2<236::AID-ANIE236>3.0.CO;2-M](https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M)

80. I. Galdadas *et al.* "Structural basis of the effect of activating mutations on the EGF receptor", *eLife* **10**, e65824 (2021).10.7554/eLife.65824
81. Y. Shan, A. Arkhipov, E. T. Kim, A. C. Pan, D. E. Shaw. "Transitions to catalytically inactive conformations in EGFR kinase", *Proceedings of the National Academy of Sciences* **110**, 7270 (2013).doi:10.1073/pnas.1220843110
- 5
82. J. Eswaran *et al.* "Structure of the Human Protein Kinase MPSK1 Reveals an Atypical Activation Loop Architecture", *Structure* **16**, 115 (2008).<https://doi.org/10.1016/j.str.2007.10.026>

Table S1. Calculated SAXS data using Scatter and FoxS.

* Theoretical Rg using ATSAS

	I(0)	Rg (Å)	MW estimation (kDa)	D _{max} (Å)	χ ² against cryo-EM MKK6 ^{DD} GRA + p38α ^{T180V} model	χ ² against MD MKK6 + rotated p38α ^{WT} model
MKK6^{DD}GRA + p38α^{WT} + AMP-PCP	3.0E-01	41.6	68	139	136	94.0
MKK6^{DD}GRA + p38α^{T180V} + AMP-PCP	2.3E-01	39.1	77	140	138	96.6
MKK6^{DD}GRA + p38α^{Y182F} + AMP-PCP	3.0E-01	39.4	70	139	165	115
MKK6^{DD}GRA + p38α^{WT} + ADP + AlF₄⁻	2.6E-01	32.2	65	121	19.1	10.1
MKK6^{DD}GRA + p38α^{T180V} + ADP + AlF₄⁻	2.3E-01	29.6	59	115	5.91	6.46
MKK6^{DD}GRA + p38α^{Y182F} + ADP + AlF₄⁻	2.8E-01	35.3	69	134	86.6	55.1
cryo-EM MKK6^{DD}GRA + p38α^{T180V} model		29*				
MD MKK6 + rotated p38α^{WT} model		32*				

Table S2. Summary of cross-correlation scores for the rebuilt model and the predicted structures.

	Entire complex	Hydrophobic patch	KIM domain	p38 α activation loop	MKK6 region close to the linker
Rebuilt model	0.492	0.441	0.488	0.305	0.248
AF2 model1	0.271	0.152	0.349	0.288	0.272
AF2 model2	0.204	0.190	0.401	0.232	0.010
MODELLER model1	0.477	0.497	0.450	0.307	0.239
MODELLER model2	0.474	0.486	0.427	0.317	0.226
MODELLER model3	0.462	0.478	0.436	0.320	0.140
MODELLER model4	0.486	0.498	0.439	0.322	0.263
MODELLER model5	0.479	0.396	-	0.315	-
Cluster derived from MD simulation*	0.283	0.242	0.351	0.261	0.174

* The highest cross-correlation score is reported.

5

10

15

20

25

30

Table S3. Cryo-EM data collection, processing and refinement

Data collection and processing		MKK6 ^{DD} GRA-p38 α ^{T180V} complex (8A8M)
Magnification	215,000	
Voltage (kV)	300	
Electron exposure (e ⁻ /Å ²)	62.77	
Defocus range (μm)	-1.5 to -3	
Pixel size (Å)	0.638	
Final particle images (no.)	35,123	
Map resolution (Å)	4.0 Å	
FSC threshold	0.143	
Map resolution range (Å)	2.7-6.5 (25 th to 75 th percentile)	
Refinement		
Initial models used	5ETA, 5ETC and a homology model of 6YG1	
Map sharpening factor (Å ²)	200	
Model composition		
Non-hydrogen atoms	5249	
Protein residues	5157	
Ligands	92	
R.M.S deviations		
Bond length (Å)	0.004	
Bond angles (°)	0.934	
Validation		
MolProbity score	2.44	
Clash score	28.69	
Poor rotamers (%)	0.52	
Ramachandran plot		
Favoured (%)	91.69	
Allowed (%)	8.31	
Outliers (%)	0	

Table S4. Statistical analysis of cellular assay (Fig. 2.)

p38	MKK6	Mean	se	Shapiro Wilk	Welch t test against p38+/MKK6DD	Significance (<0.5 *; <0.01 **; < 0.001 ***)
+	-	2%	0.002	4,36E-01	3,66E-12	***
+	DD	100 %	0.057	7,71E-01	1,00E+00	NS
+	penta Ala	31 %	0.023	7,76E-01	1,68E-10	***
+	T87A N89A	168 %	0.122	8,21E-01	3,57E-04	***

Table S5. Statistical analysis of cellular assay (Fig. 3.)

p38	MKK6	Mean	se	Shapiro Wilk	Welch t test against p38+/MKK6DD	Wilcoxon rank sum exact test against p38+/MKK6DD	Significance (<0.5 *; <0.01 **; < 0.001 ***)
+	-	2 %	0.004	2,47E-01	1,43E-11		***
+	DD	100 %	0.055	1,32E-01	1,00E+00		NS
+	10 Ala insertion	53 %	0.040	3,87E-01	3,47E-07		***
+	10 res deletion	50 %	0.040	1,37E-01	1,22E-07		***
+	20 Ala insertion	62 %	0.052	2,02E-01	4,40E-05		***
+	Ala scan 18-29	73 %	0.054	4,37E-01	2,09E-03		**
+	Ala scan 28-39	101 %	0.078	2,32E-01	8,84E-01		NS
+	Ala scan 38-49	42 %	0.022	4,35E-01	6,15E-09		***
+	MEK1 linker	12 %	0.007	9,16E-01	5,63E-11		***
+	MEK2 linker	14 %	0.017	1,01E-01	1,72E-11		***
+	MKK3 linker	44 %	0.028	6,96E-01	9,74E-09		***
+	MKK3 short linker	44 %	0.035	5,61E-02	9,76E-09		***
+	MKK4 linker	29 %	0.045	1,83E-02		1,96E-06	***
+	MKK4 short linker	16 %	0.017	4,83E-01	2,11E-11		***
+	MKK7 linker	34 %	0.029	2,54E-01	5,77E-10		***
+	MKK7 short linker	26 %	0.037	4,95E-01	6,70E-11		***

Table S6. Summary of the unbiased simulations of the p38 α -MKK6.

The reported times correspond to the simulation time of each independent unbiased simulation.

* started from a conformation originating from the restrained simulations of p38 α -MKK6GRA, where p38 α Y182 was close to MKK6 ATP.

System		Simulation time (ns)	Inter-kinase contacts restraints
p38 α -MKK6GRA	rep1	1000	No
	rep2	1000	No
	rep3	1000	No
	rep4	1000	No
	rep5	1000	No
p38 α -MKK6GRA	rep1	1000	Yes
	rep2	1000	Yes
	rep3	1000	Yes
	rep4	1000	Yes
	rep5	1000	Yes
p38 α -MKK6GRA	rep1	1000	No*
	rep2	1000	No*
	rep3	2000	No*
p38 α -MKK6	rep1	1000	No
	rep2	1000	No
	rep3	1000	No
	rep4	1000	No
	rep5	1000	No
Total simulation time		19000	

5

Table S7. Comparison of MD-derived atom distances (Å) important for the phosphorylation of p38 α at T180 and Y182 by MKK6 with atom distances reported for the SP20 phosphoryl transfer mechanism catalysed by the cAMP-dependent protein kinase (PKA). The reported distances for the PKA-SP20 phosphorylation were derived from QM/MM calculations (46), while the MD distances were derived from a frame where either T180 or Y182 was the closest to MKK6 ATP.

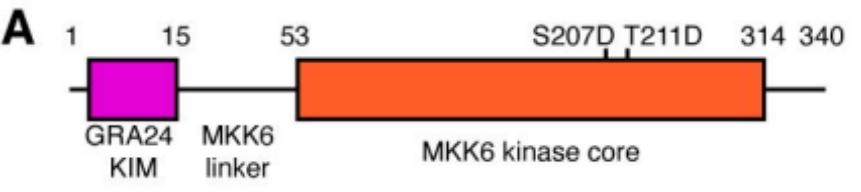
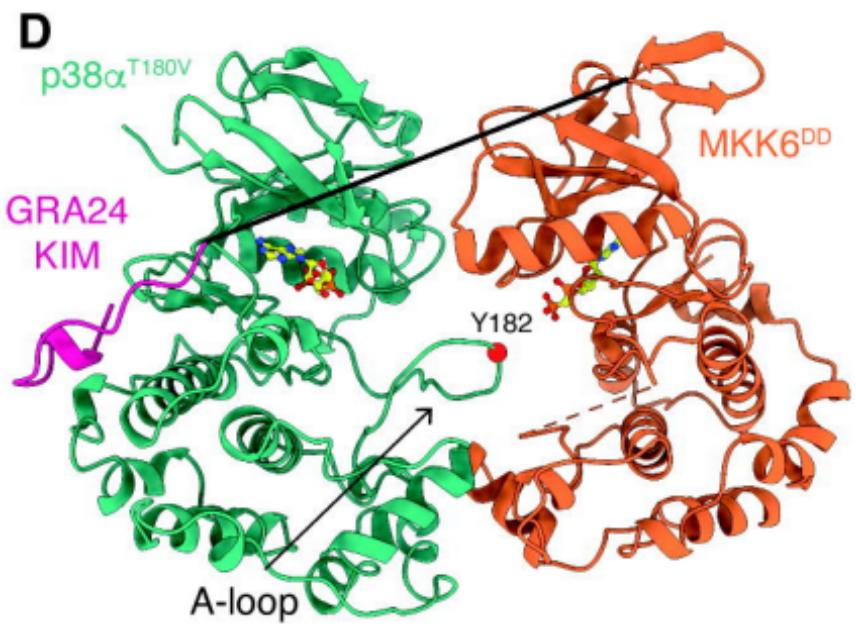
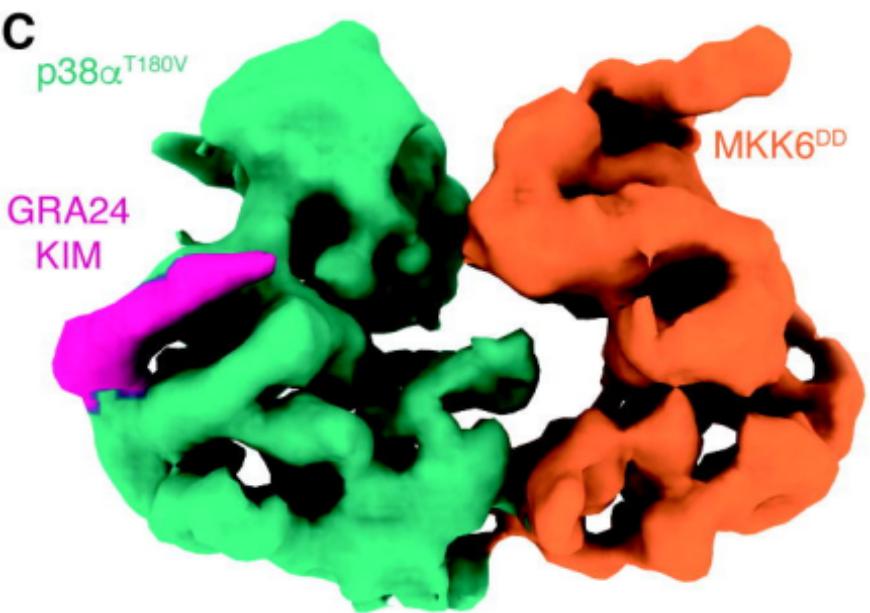
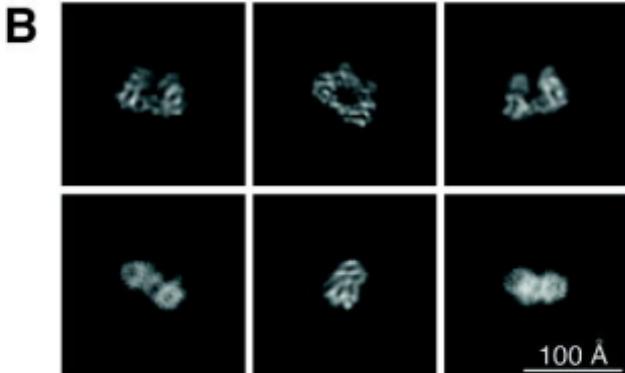
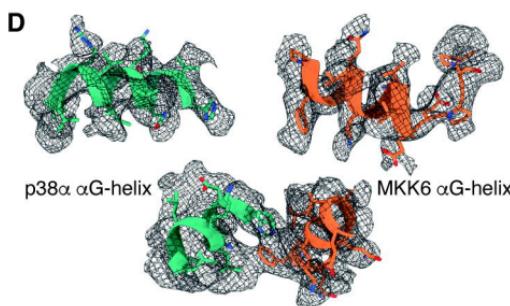
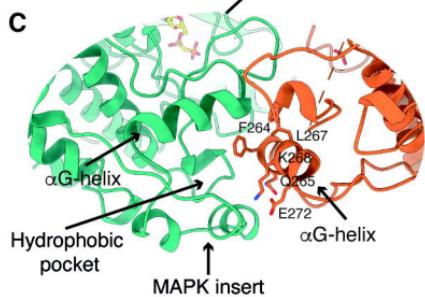
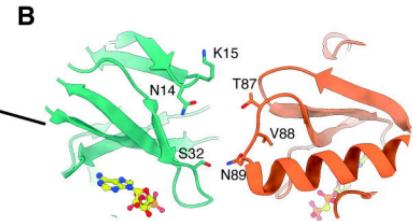
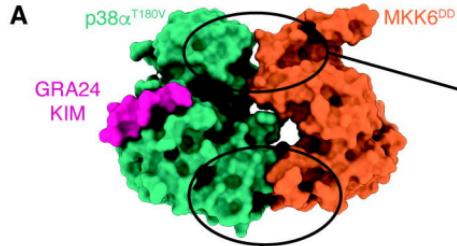

	QM/MM	MD simulations			
	PKA-SP20	MKK6GRA-p38 α (rep3 / rep5, no restraints)	MKK6GRA-p38 α (rep3 / rep4, with restraints)	MKK6GRA-p38 α (rep3, released restraints)	MKK6-p38 α (rep2 / rep5, no restraints)
ATP _(Pγ) -T180 _(OH)	3.76	3.3 / 16.5	10.4 / 14.4	13.0	13.5 / 5.6
T180 _(HG1) -ATP _(OG1)	1.81	1.6 / 15.2	11.3 / 13.3	14.0	17.8 / 8.7
T180 _(HG1) -ATP _(OG2)		2.9 / 17.5	9.1 / 14.8	15.2	15.2 / 8.1
T180 _(HG1) -ATP _(OG3)		1.7 / 16.1	9.6 / 15.8	12.8	17.0 / 7.8
ATP _(Pγ) -Y182 _(OH)	3.76	17.4 / 3.8	4.4 / 3.5	3.6	4.3 / 15.1
Y182 _(HH) -ATP _(OG1)	1.81	17.3 / 1.9	5.0 / 1.4	3.7	7.3 / 19.1
Y180 _(HH) -ATP _(OG2)		17.5 / 3.8	3.3 / 3.6	4.8	7.5 / 18.3
Y182 _(HH) -ATP _(OG3)		16.9 / 3.7	2.9 / 3.9	2.6	7.5 / 17.9

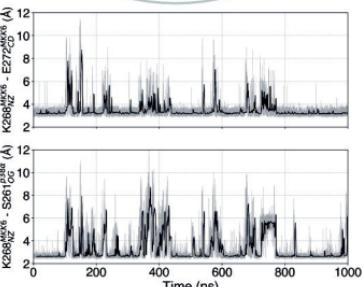
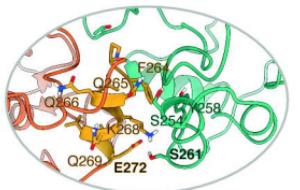
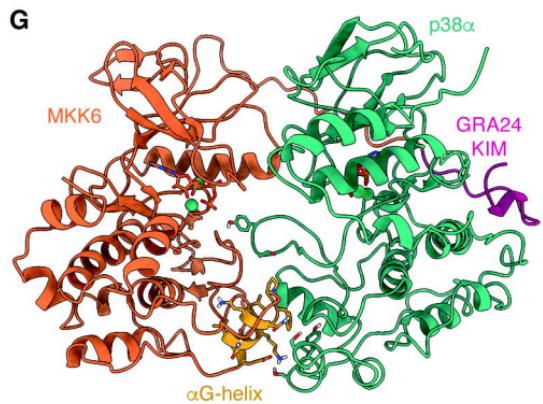
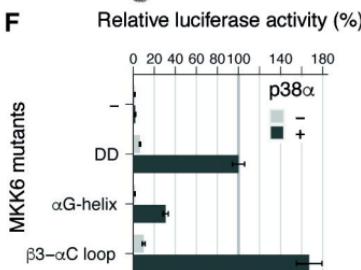
Table S8. Statistical analysis of cellular assay (Fig. 4.)




p38	MKK6	Mean	se	Shapiro Wilk	Welch t test against p38+/MKK6DD	Significance (<0.5 *; <0.01 **; <0.001 ***)
+	-	2%	0.004	5.42E-01	2.65E-09	***
+	DD	100%	0.044	2.76E-01	1.00E+00	NS
+	K17A	126%	0.104	8.85E-02	3.68E-02	*

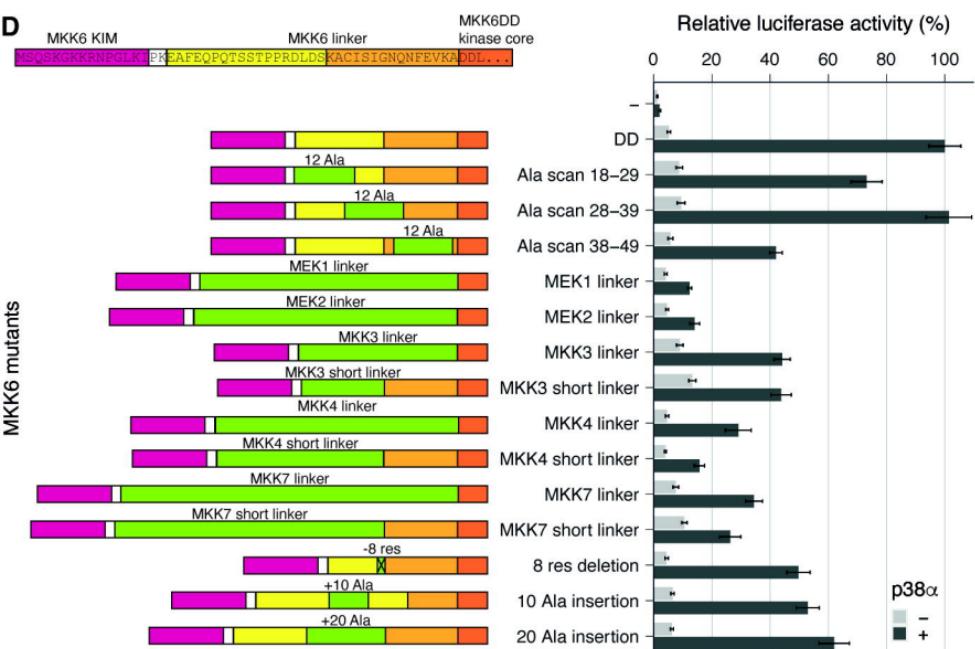
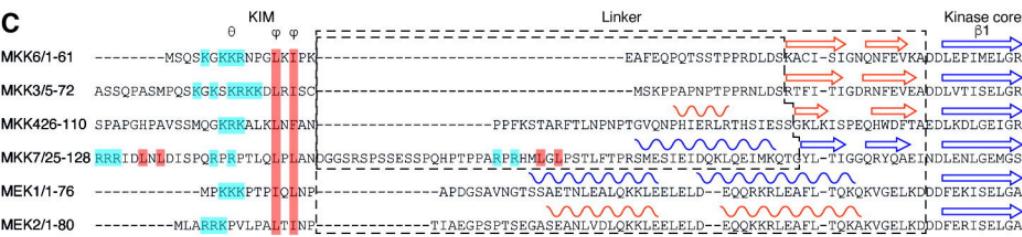
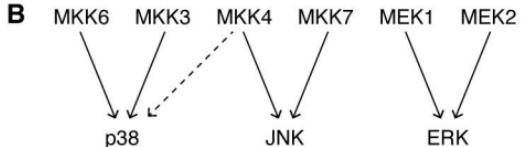
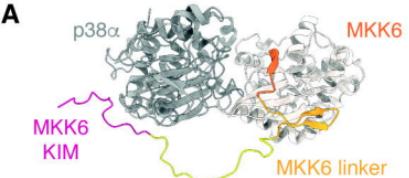




Table S9. SAXS data collection and analysis

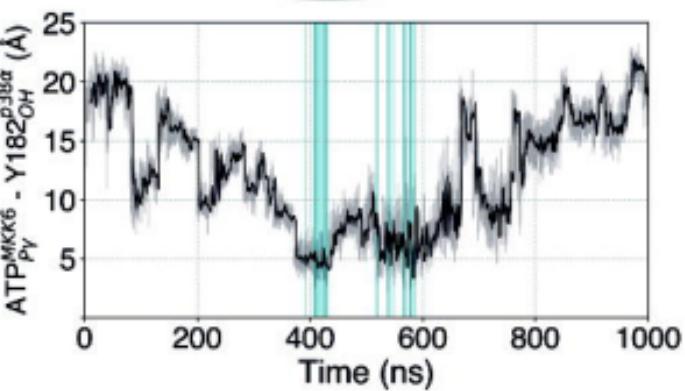
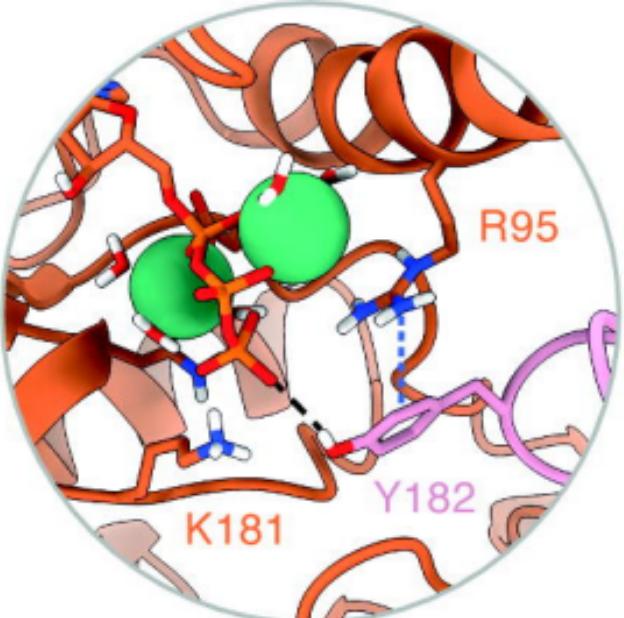
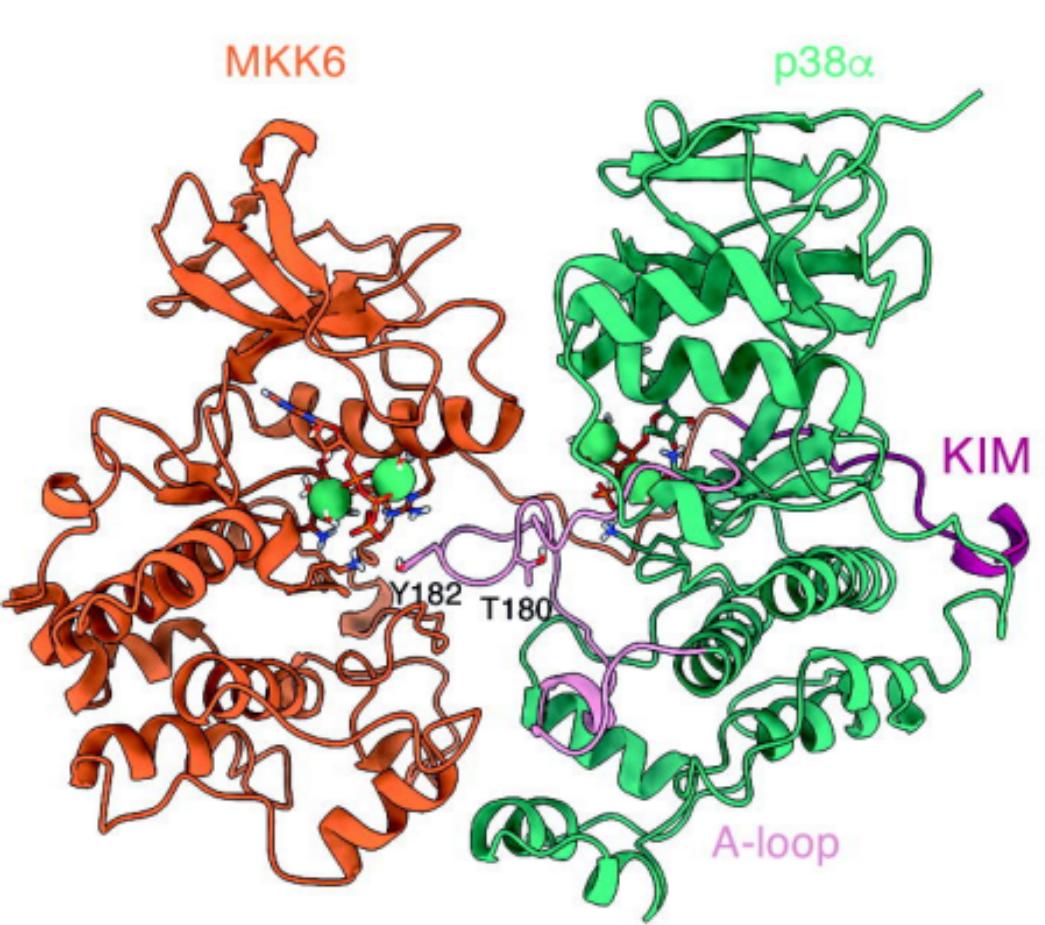
Data-collection parameters			
Instrument:	Diamond light source B21		
Wavelength (Å)	0.9524		
q-range (Å ⁻¹)	0.0026-0.34		
Sample-to-detector distance (m)	3.7		
Concentration (mg/mL)	5		
Temperature (K)	277		
Detector	Eiger 4M (Dectris)		
Flux (photons/s)	2*10 ¹²		
Beam size (μm)	1102*240		
Structural parameters (AMP-PCP)		MKK6 ^{DD} GRA + p38 α ^{WT} + AMP-PCP	MKK6 ^{DD} GRA + p38 α ^{T180V} + AMP-PCP
I0 (kDa) [from Guinier]	3,00E-01		
Rg (Å) [from Guinier]	41,6		
qminRg - qmaxRg used for Guinier	1.4*10 ⁻² -3.1*10 ⁻²		
Volume (Å ³)	1.5*10 ⁵		
D _{max} (Å)	139		
Calculated MW	68		
Structural parameters (ADP + AlF ₄ ⁻)		MKK6 ^{DD} GRA + p38 α ^{WT} + ADP + AlF ₄ ⁻	MKK6 ^{DD} GRA + p38 α ^{T180V} + ADP + AlF ₄ ⁻
I0 (kDa) [from Guinier]	2,60E-01		
Rg (Å) [from Guinier]	32,2		
qminRg - qmaxRg used for Guinier	1.4*10 ⁻² -4.0*10 ⁻²		
Volume (Å ³)	1.3*10 ⁵		
D _{max} (Å)	121		
Calculated MW	65		
Software employed			
Primary data reduction:	B21 autoprocessing pipeline		
Data processing	Scatter IV		
χ^2 determination	FoXs		

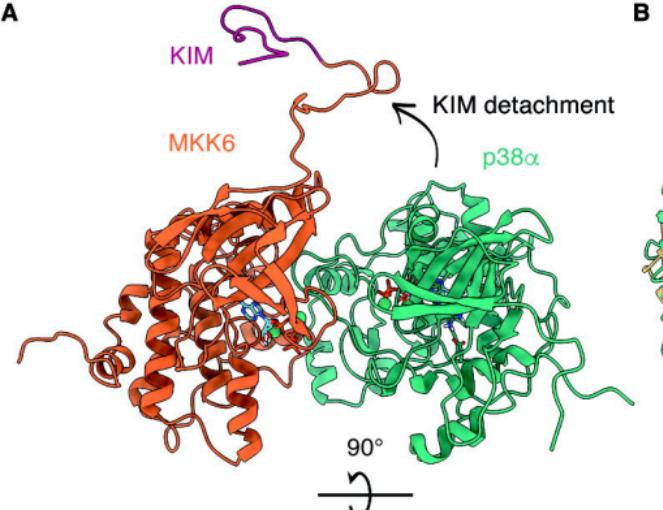
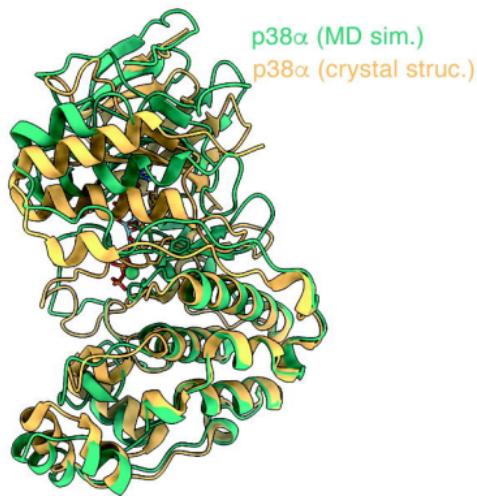
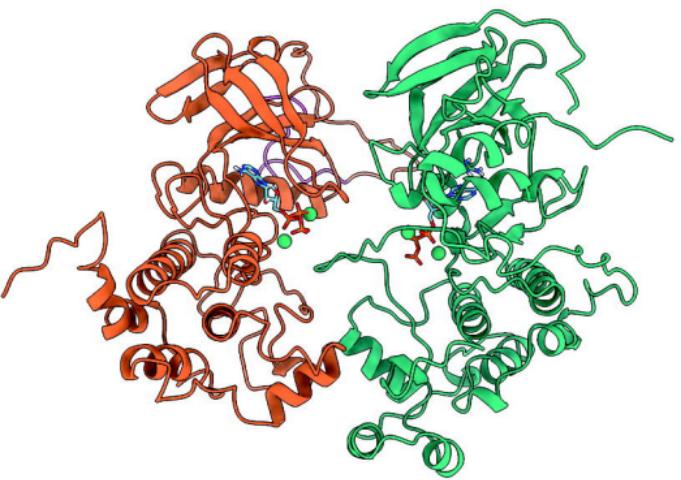
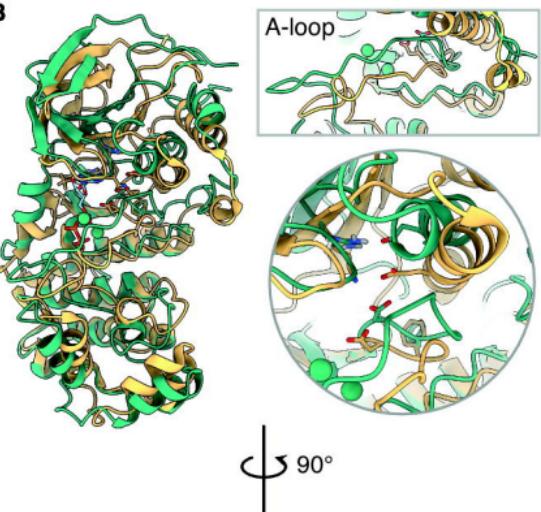
MKK6^{DD}GRA

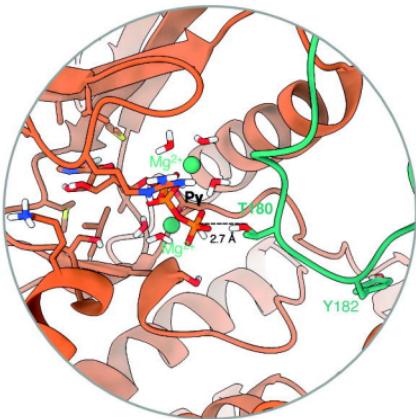
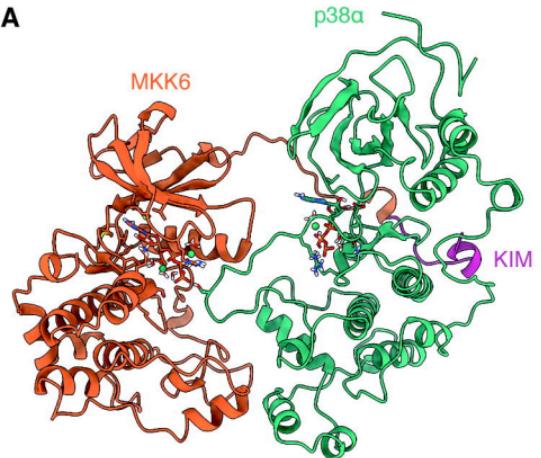
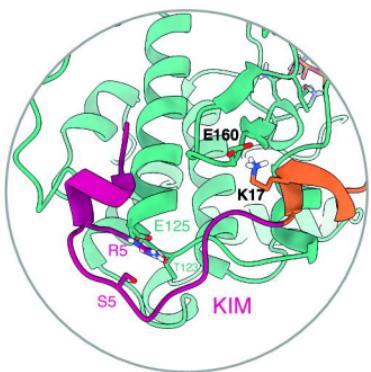
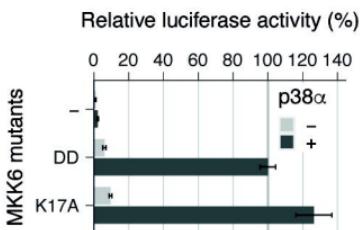





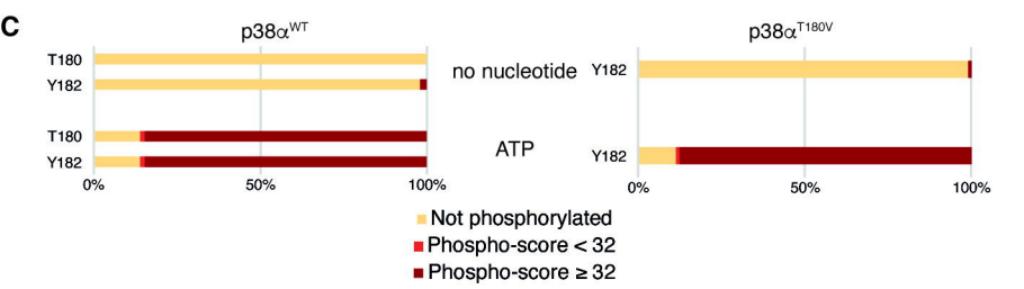
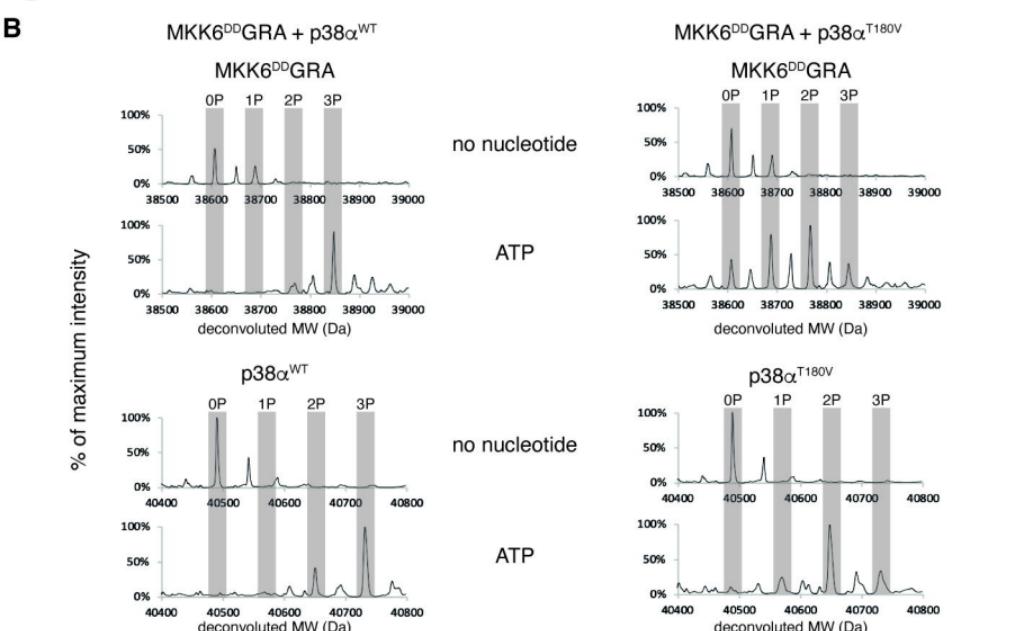
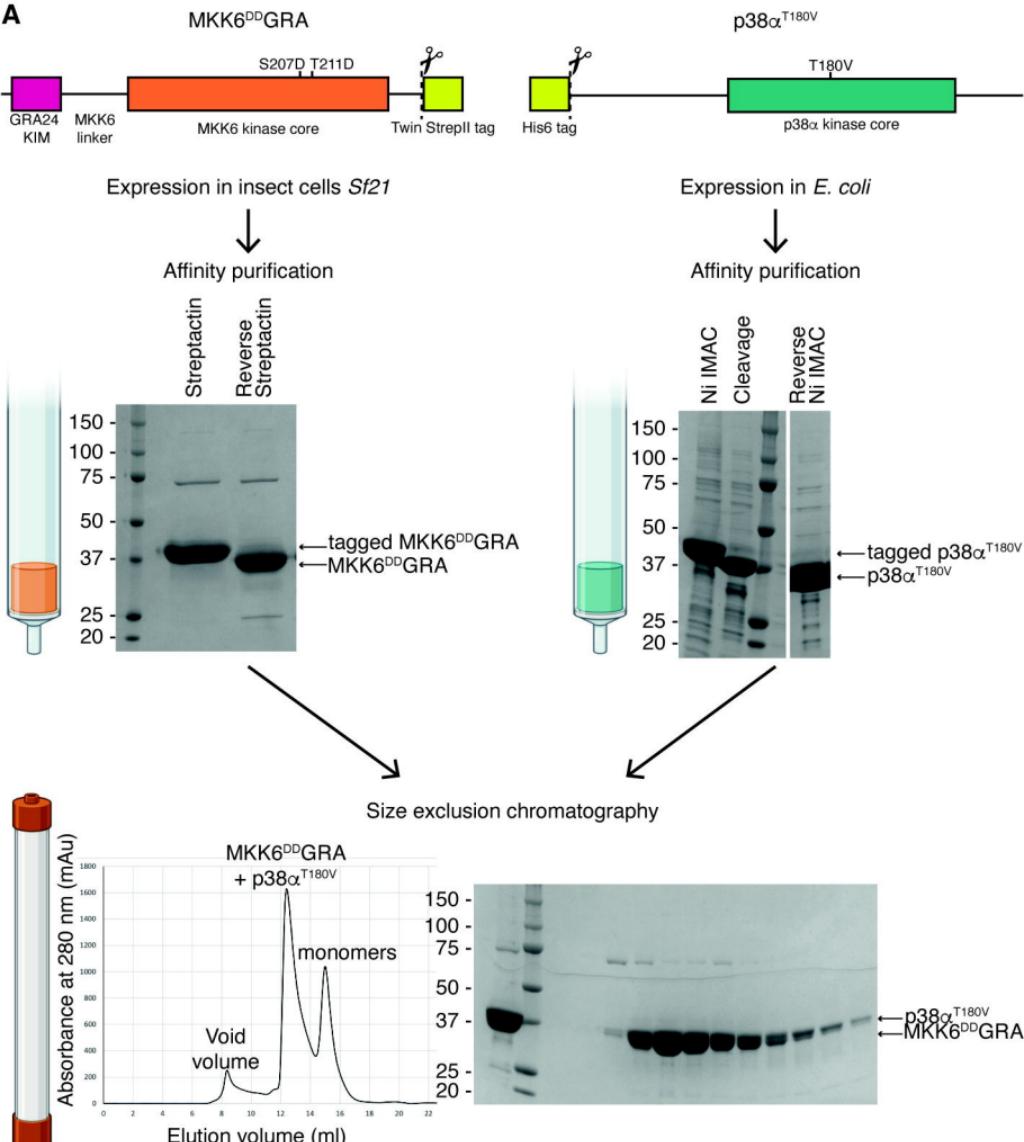
E Sequence alignment of the p38 α MAPK insert (red) and the α G-helix (green) across various MAPKs. The p38 α sequence is shown for reference.

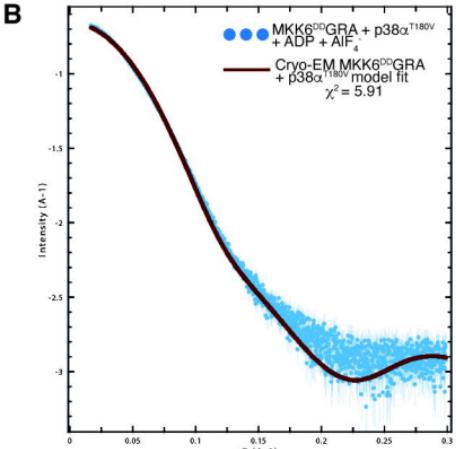
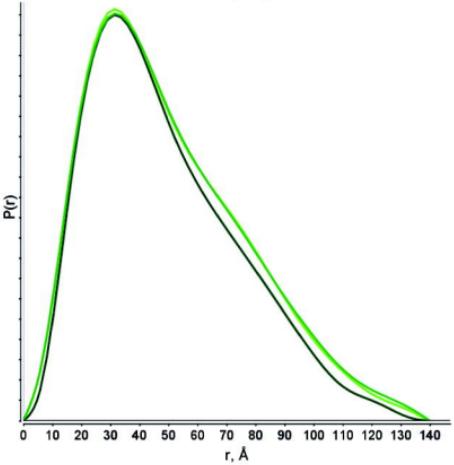
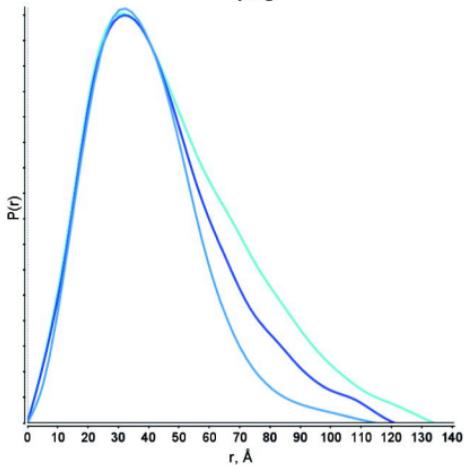
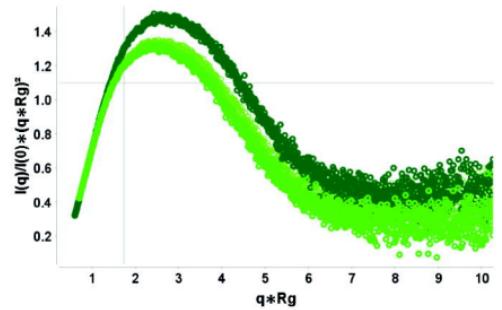
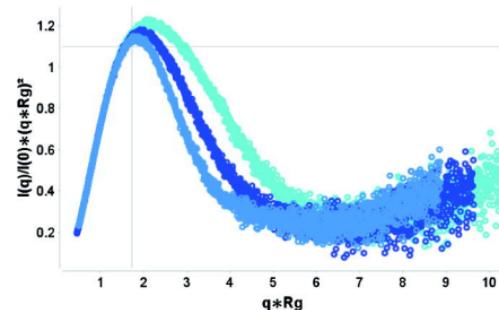
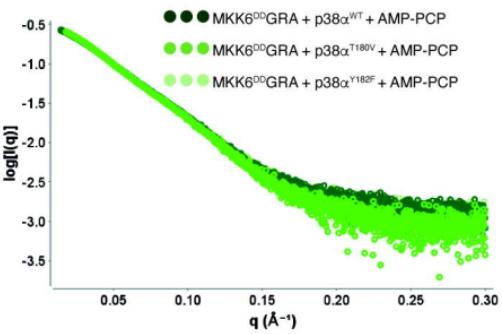
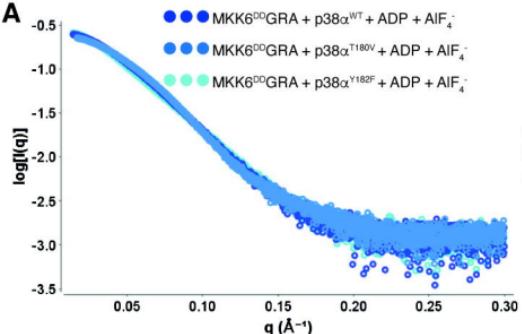




	α G-helix	MAPK insert
p38 α	227 DHIDQDL	255 ARNYIQSQLT
p38 β	227 DYIDQDL	255 ARTYIQSQLP
p38 γ	230 DHLDQDL	258 AKNYMKGLP
p38 δ	227 DYLDQDL	255 AKSYIQSQLP
JNK1	229 DYIDQDW	256 VRTYVENRNP
JNK3	229 DHIDQDW	256 VRNYVENRNP
JNK2	267 DYIDQDW	294 VRNYVENRNP
ERK2	232 HYLDQDL	260 ARNYILSLP
ERK1	249 HYLDQDL	277 ARNYIQSLP
ERK5	266 NYVHQI	294 VRAYIQSLP




E Sequence alignment of the p38 α MAPK insert (red) and the α G-helix (green) across various MAPKs. The p38 α sequence is shown for reference.

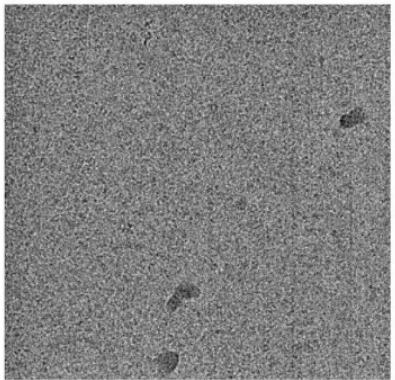




	α G-helix
MKK6	263 PFOQLKQVVEE
MKK3	274 PFOQLKQVVEE
MKK4	313 VFDQLTQVVKG
MKK7	328 DFEVLTQVQLE
MEK1	310 IFELLDDYIVVNE
MEK2	318 IFELLDDYIVVNE
MEK5	368 PLQLLQCIIVDE
ATF2	91 PFENEFKKKASE




Molecular dynamics simulation

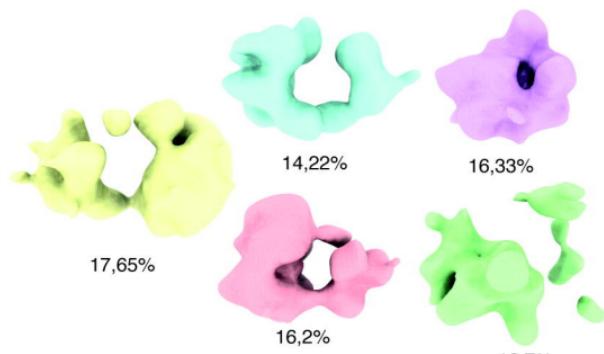
A**B**


A**B****C**

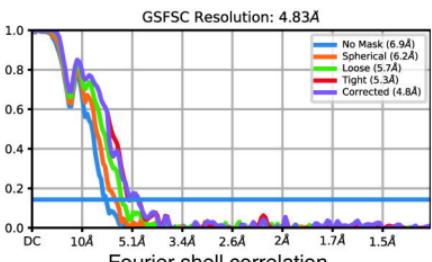
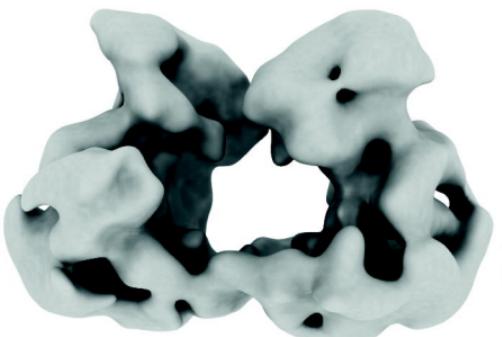
A

9943 movies

Patch motion correction
Patch CTF estimation
Exposure curation


9548 micrographs

Topaz picking
Template picking
Extraction (300 px box size)




2825616 particles

2D classification
Ab initio (6 models)
Heterogeneous refinement

457747 particles

2D classification
Non-uniform refinement

 $\sim 30K$ particles

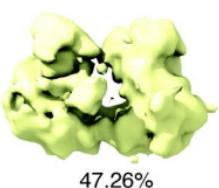
Angular sampling

B

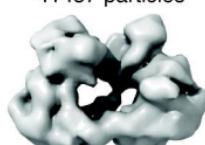
Dataset 1
(6911 micrographs)

Dataset 2
(9548 micrographs)

Dataset 3
(9558 micrographs)

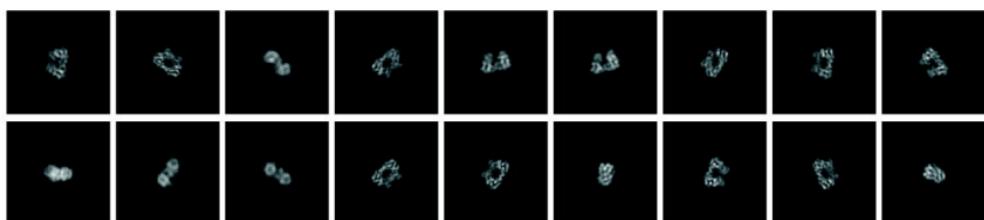

1230 particles

37441 particles

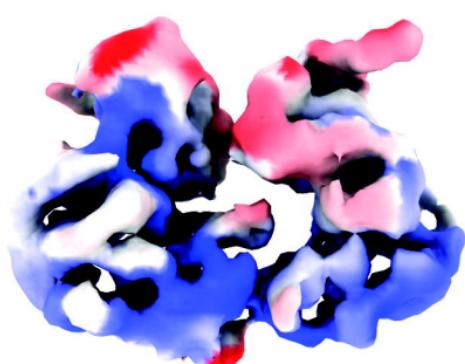

47839 particles

86510 particles

2D classification
Ab initio (2 models)
Heterogeneous refinement

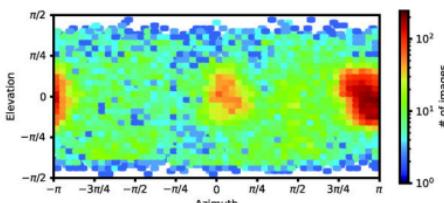
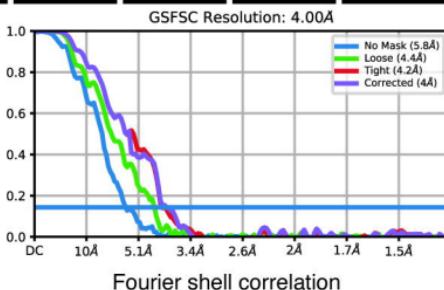


41437 particles

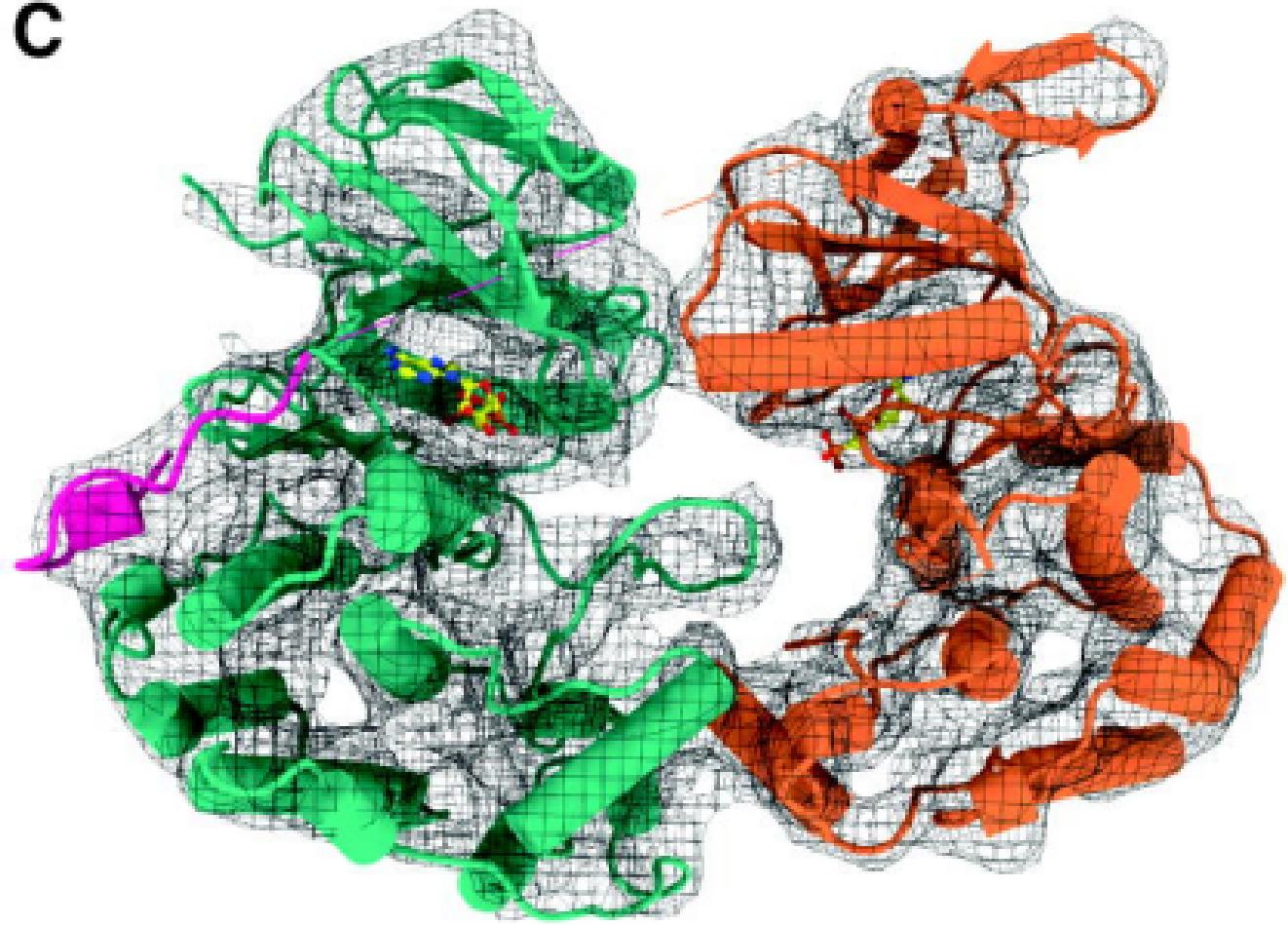
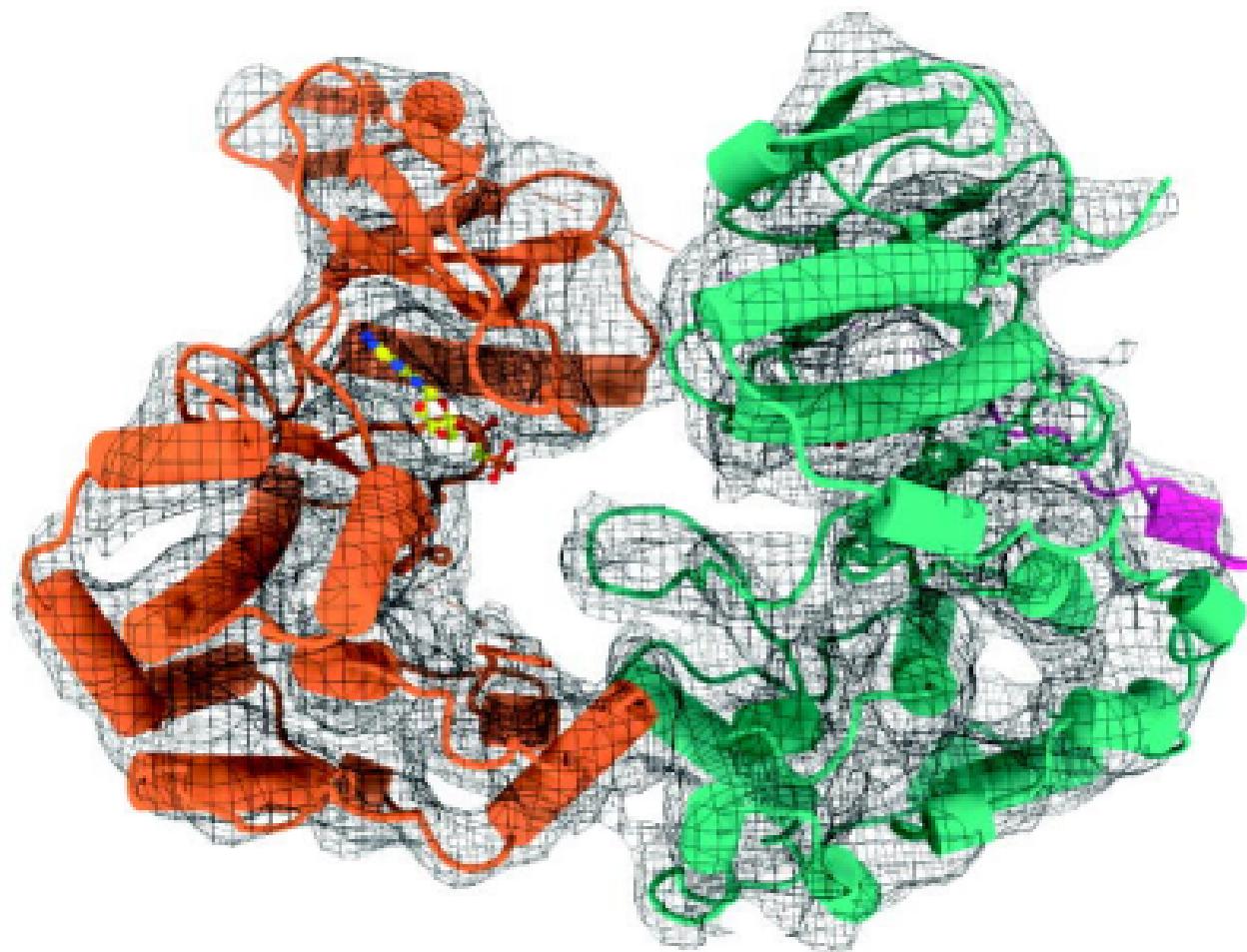
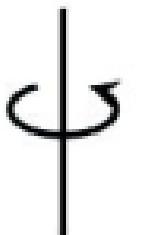


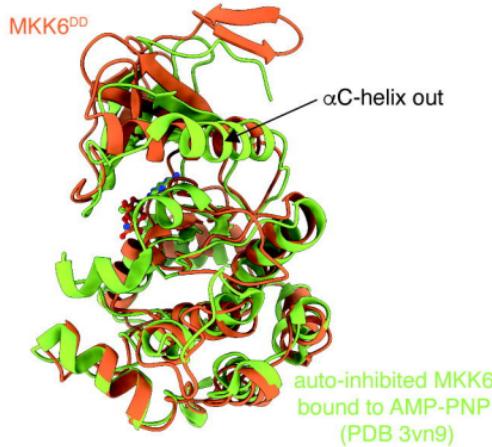
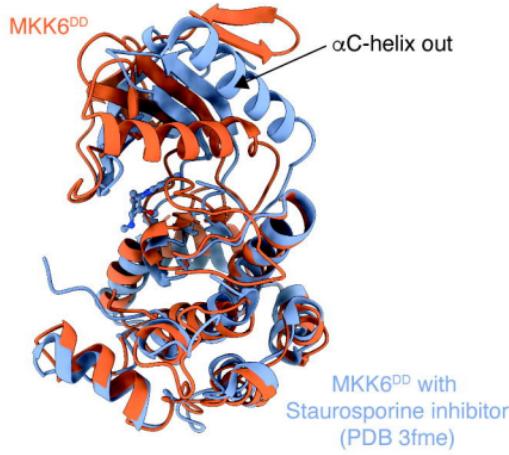
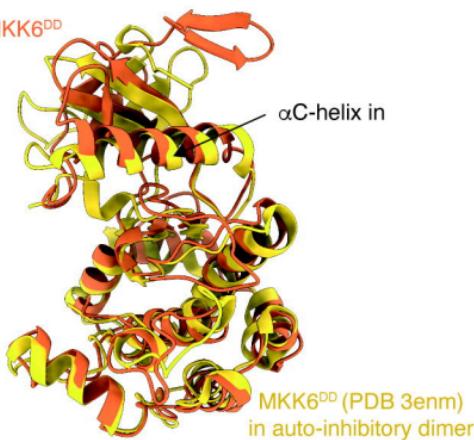
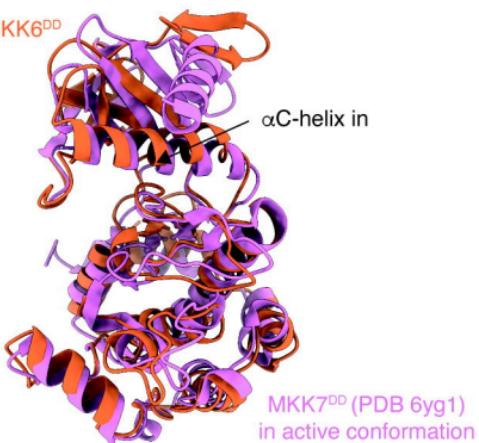
2D classification
non-uniform refinement
(low pass filter = 15 Å)

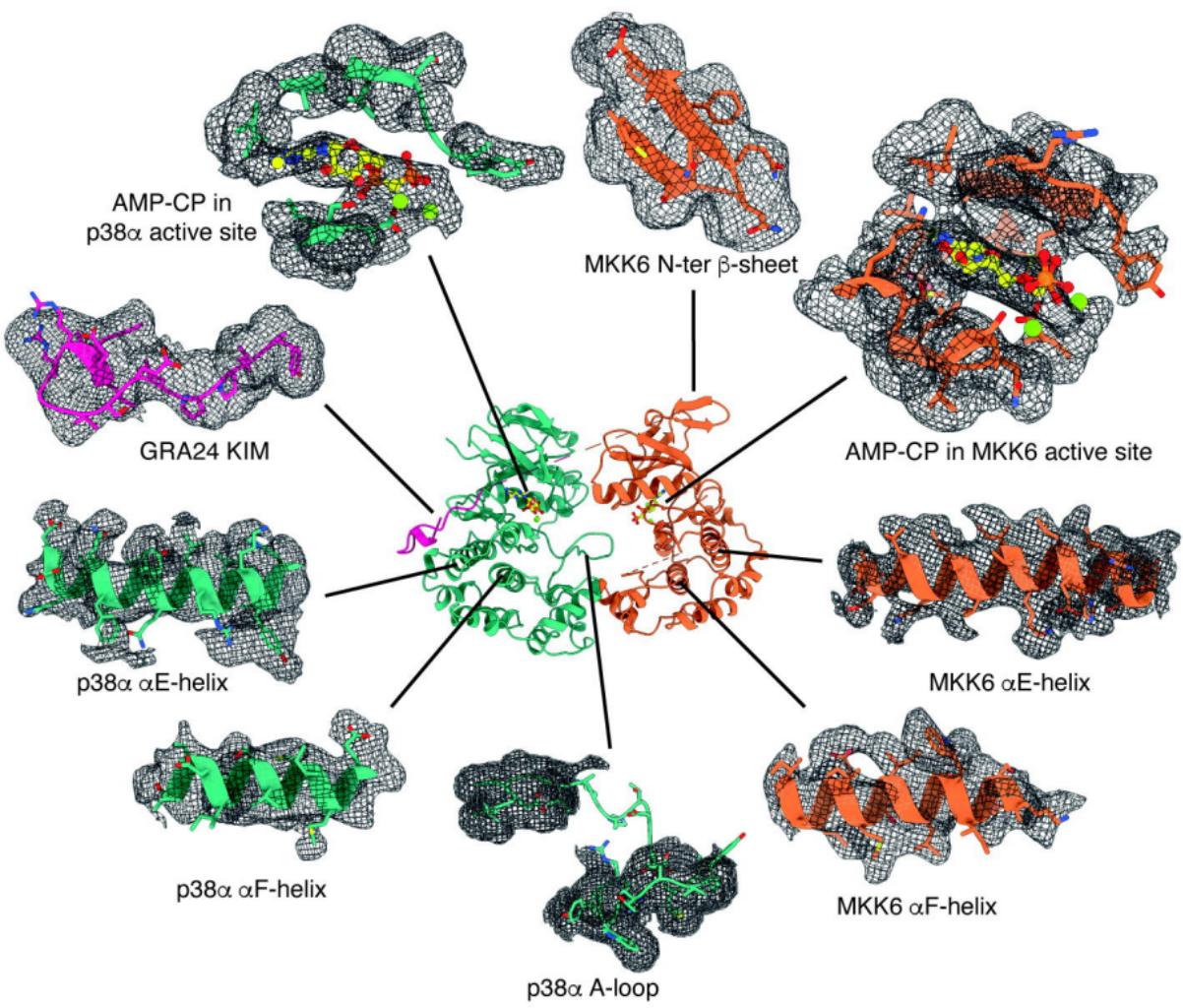
35123 particles

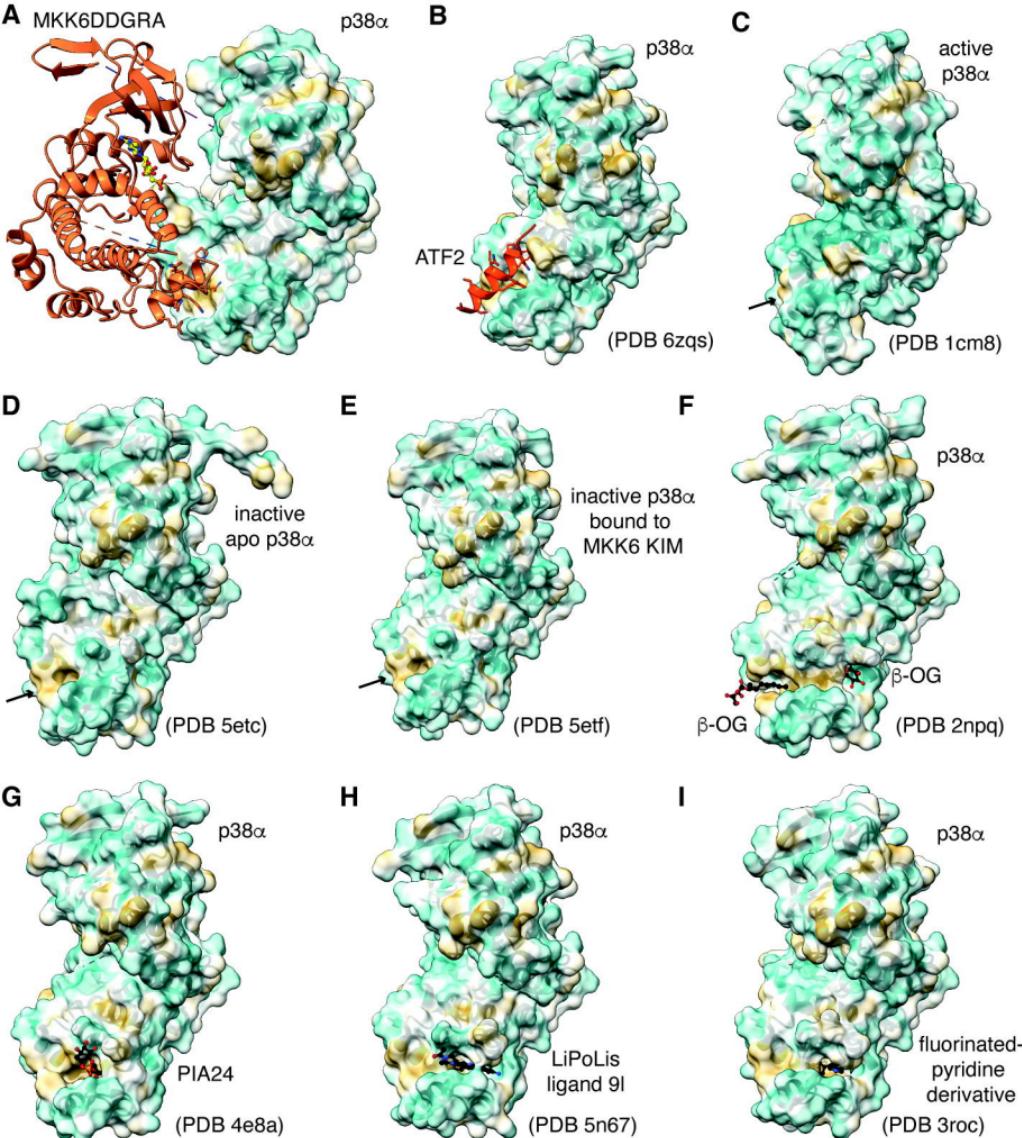



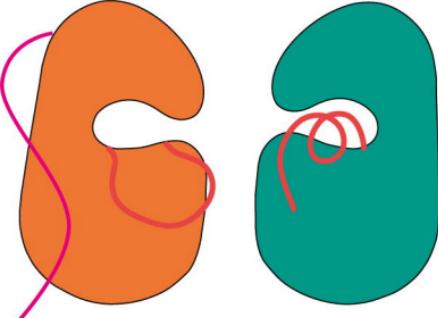
GSFSC Resolution: 4.00 Å




2.5 5 7.5





Local resolution

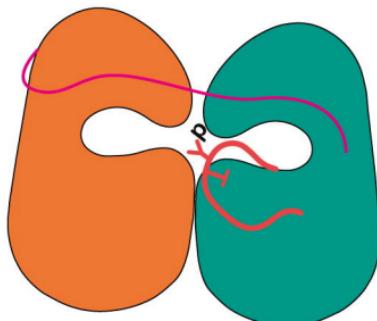


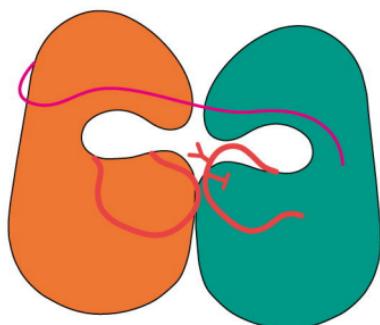

Angular sampling


C

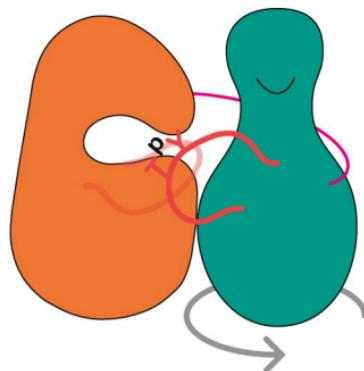
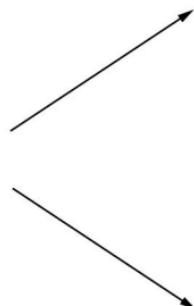
 180°

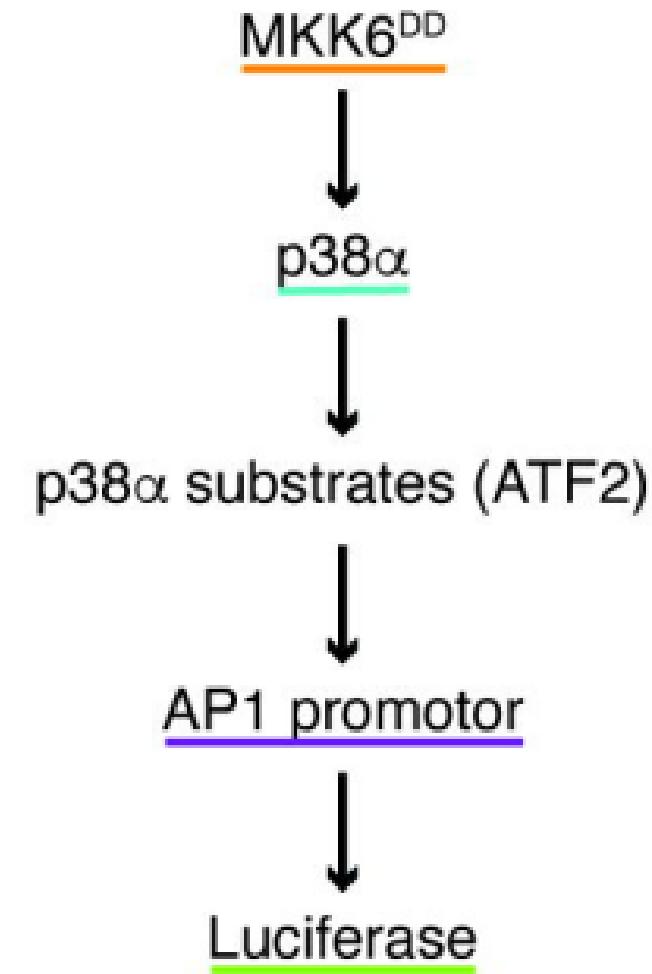
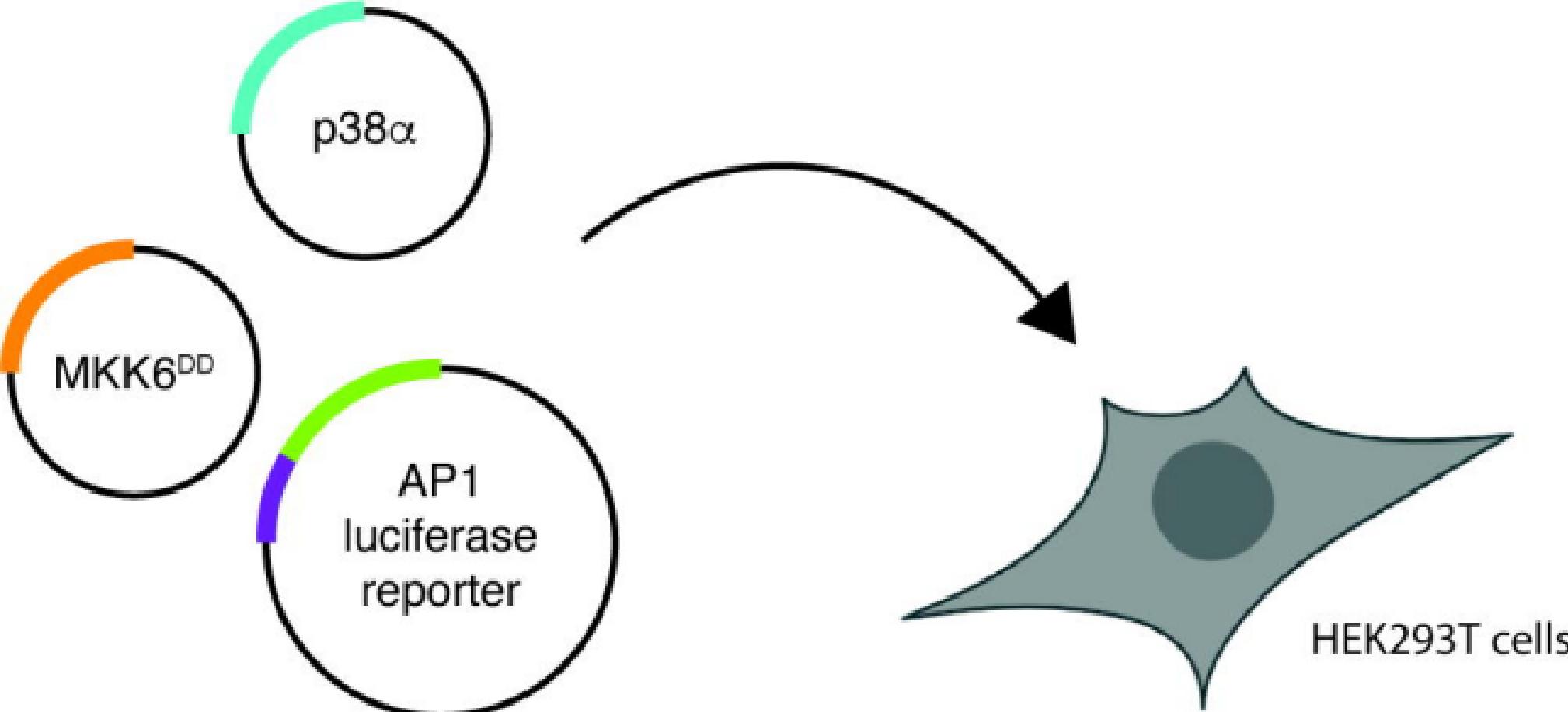
A**B****C****D**

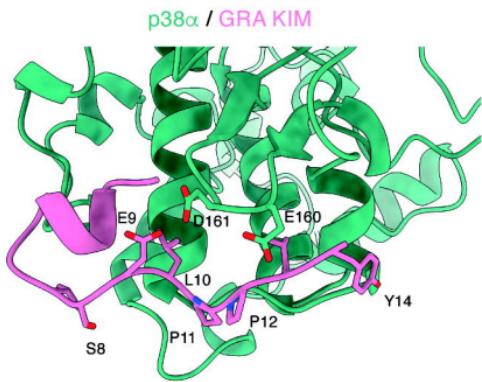
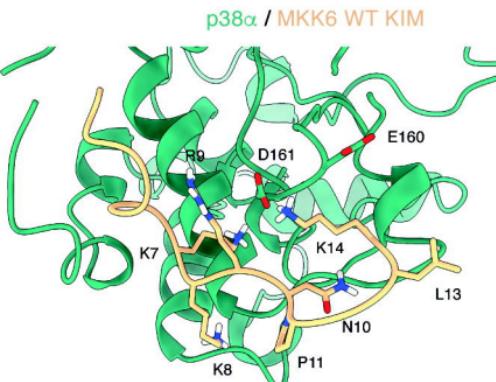
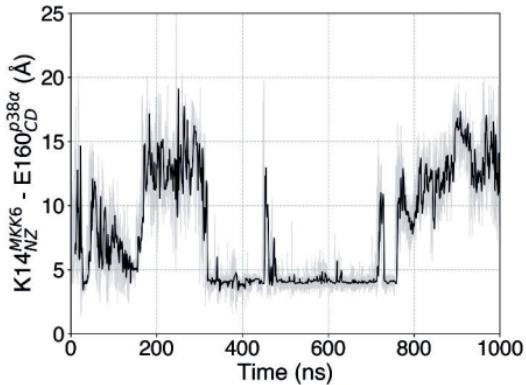
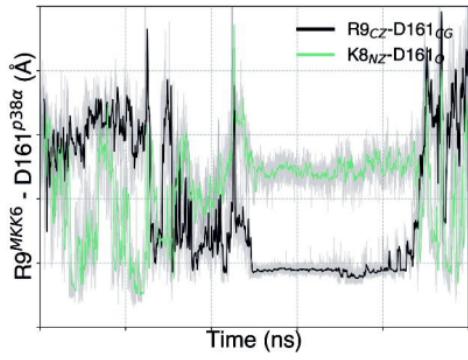
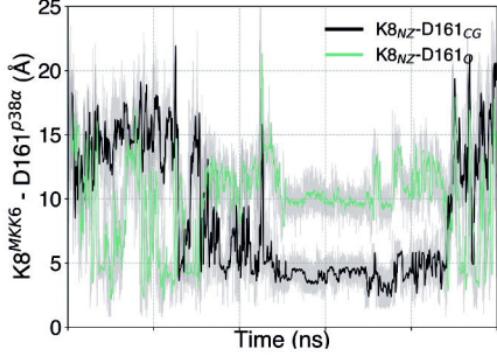




p38 α + MKK6



- MKK6 (Orange circle)
- p38 α (Teal circle)
- A-loop (Red line)
- N-term. + KIM (Pink line)



p38 α /pY • MKK6

p38 α • MKK6

p38 α /pT • MKK6

