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Abstract

Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components
that occur in children and young adults. Gangliogliomas are often characterized by a rare
population of immature astrocyte-appearing cells expressing CD34, a marker expressed in
the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed
to refine tumor classification and to identify therapeutic approaches. We evaluated five
gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes
by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34-rich
neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers.
Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of
transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during
neuroectodermal/neural development. Developmental trajectory analyses place
neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-
like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor
cell niche with relative lack of vascular and immune cells. We used these high resolution
results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-
associated gene programs associate with gangliogliomas compared to other glial brain
tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma
cellular hierarchy - confirming CD34+ neuroectoderm-like tumor precursor cells, controlling
transcription programs, cell signaling, and associated immune cell state. These findings may
guide ganglioglioma tumor classification, diagnosis, and therapeutic investigations.
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Introduction

Glioneuronal tumors (GNTs) are brain tumors that are composed of both neoplastic
neuron-like and macroglial-like components®. GNTs account for approximately 2% of all
primary brain tumors and most often occur in children and young adults’. GNTs include
ganglioglioma (GG)*. The majority of GNTs are slow-growing tumors that do not result in
death of the patients®. Nevertheless, GNTs can be associated with significant morbidity due to
associated seizure disorders, risks of surgical resection, and tumor recurrence’. The standard
of care therapy is surgical resection’. However, new treatment strategies are needed for
patients with anaplastic, recurrent, or progressive GNTs*. Genomic alterations in
ganglioglioma are minimal*™*. Nonetheless, at least 90% of GGs have driver alterations in the
BRAF/MAPK pathway, with about half of GGs carrying BRAF V600E*™. Additional recurrent
alterations include chromosome 7 gains with BRAF, KIAA1549, and EGFR copy number
gains as well as homozygous CDKN2A/B loss®>™. BRAF/MAPK targeted therapies are
undergoing clinical testing for BRAF-mutant glioneuronal and other brain tumors, with early
evidence suggesting clinically-significant anti-tumor activity>®. However, further understanding
of how to molecularly target GNTs is needed. Additionally, immunotherapeutic advances have
resulted in significant breakthroughs for many malignancies, but immunotherapies have not
yet improved outcomes for GNTs""~°. Better understanding of tumor microenvironment may
help to identify opportunities for effective immunotherapy.

Opportunities exist to further understand GNT development and maintenance and
thereby improve upon GNT treatment. There is now decades of work supporting the existence
of cancer stem cells for myriad cancer types, and putative primitive progenitor cell types have
been identified in other low grade brain tumors, such as pilocytic astrocytoma'®*,
Understanding cellular hierarchy is important for understanding tumorigenesis, tumor
maintenance, and tumor treatment, but little is understood about the potential for or nature of
GNT stem cells. SCRNA-seq approaches have revealed that many subtypes of brain tumors
contain tumor cells that transcriptionally resemble normal brain progenitor cell subtypes®?*2.
However, this approach has not yet been used to investigate GNTs. Many pediatric low grade
gliomas such as GGs contain tumor cells that express CD34, (an endothelial and
hematopoietic stem cell marker but also) a transient marker of neuroectodermal neural
precursor cells during neural development***. The precise nature of these cells is not well
understood. However, because of their primitive neuroectodermal neural precursor cell
marker expression and histologic appearance, it is tempting to hypothesize that GNT CD34+
cells are neoplastic stem or precursor cells that transcriptionally resemble normal
neuroectodermal neural precursor cells.

In addition to the therapeutic challenges, classification of GNTs is a major diagnostic
challenge with resultant impacts on understanding of prognosis and medical decision
making’. Brain tumor classification has evolved enormously over the last several years with
the gradual incorporation of tumor genetic features leading to significant improvements in
tumor classification and medical decision making'”*2. Tumor heterogeneity and associated
under-sampling are notorious issues with brain tumors, resulting in significant rates of under-
grading and under-treatment but can sometimes be compensated for to a large extent by
accounting for genetic factors™®. Many types of pediatric brain tumors are now being
understood as separate entities, with implications for prognosis and medical decision
making*"*2.

Single nucleus (or cell) RNA-sequencing (snRNA-seq), cellular indexing of
transcriptomes and epitopes by sequencing (CITE-seq), and spatial transcriptomics (StRNA-
seq) have been carried out on a number of brain tumor subtypes to provide insights to guide
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the development of new therapeutic strategies and new classification schemes for the
tumors®1#1329-24 However, these high-resolution transcriptomic techniques have not yet
been published for GNTs. As outlined above, a deep understanding of GNT cellular
composition is needed to generate hypotheses for therapeutic interventions that may benefit
select patients with GNT and to provide insights that may refine the GNT pathologic
classification. We hypothesize that the GNT CD34+ cells transcriptionally resemble embryonic
neuroectodermal (neural precursor) cells that may serve as progenitors for the other neuron-
like and macroglia-like tumor cells. We additionally hypothesize that a detailed definition of
GNT immune cell composition and activation status will further the understanding of the utility
of immunotherapeutic targeting for GNT. Consequently, we endeavored to characterize a
major GNT subtype (ganglioglioma) using snRNA-seq, CITE-seq, and stRNA-seq.

Results

Neoplastic neuron-like, macroglia-like, and CD34-associated neuroectoderm-like components
in GNTs

To elucidate normal and neoplastic cell states in GNTSs, single nucleus RNA-seq was
carried out on 4 GG tumors (sTable 1). This yielded high-quality RNA-seq profiles from
34,907 nuclei. Nuclei were subjected to non-linear dimensional reduction and clustered based
on k-nearest neighbor search® 2 yielding 30 clusters (Figure 1A). Nuclei largely segregated
by tumor-of-origin except for select normal-appearing clusters (sFigure 1A-G). Normal and
putative neoplastic cells were initially identified by cell type markers (Figure 1B and sFigure
1H).

Normal brain, immune cell, and vascular clusters expressed classic cell type markers
(Figure 1B and sFigure 1H). Normal clusters included macroglia comprising astrocytes
(GFAP-, AQP4-, and ALDH1L1-expressing, cluster 23), oligodendrocytes (MBP-, MOG-, and
CNP-expressing, cluster 20), and oligodendrocyte precursor cells (OPCs, GPR17-, CSPG4-,
OLIG1-, and OLIG2-expressing, cluster 21)?*=*!, Cluster 15 was composed of neurons
defined by RBFOX3 expression including CUX2-, NRGN-, SLC17A7-, and/or TBR1-
expressing excitatory neuron subclusters and GAD1-, SLC32A1-, SST-, and/or VIP-
expressing inhibitory neuron subclusters®*3%*?, Immune cell clusters included a microglial
supercluster (PTPRC-, CD14-, and P2RY12-expressing, clusters 1, 5, 11, and 17) and
lymphocyte clusters (PTPRC-expressing but not CD14-expressing, clusters 7 and 28 with
cluster 7 nuclei expressing T cell marker (CD3, CD4, and CD8)-encoding transcripts)*=°. We
further identified an endothelial cluster (VWF-, PECAM1-, and CD34-expressing, cluster 12)
and vascular leptomeningeal cells (VLMCs, cluster 22, DCN-, COL1A1-, COL1A2-
expressing)?>303334 After identifying brain stromal cells with high confidence, we turned our
attention to the remaining putative neoplastic cell clusters.

The remaining clusters contained abnormal appearing macroglia- and neuronal-like
cells (cluster 0, 2-4, 6, 8-10, 13, 14, 16, 18, 19, 24-27, and 29). These clusters contained
abnormal combinations of markers (despite doublet removal during preprocessing, Figure 1B
and sFigure 1H). For instance, cluster 6 cells tended to express CD34 (an endothelial,
hematopoietic stem, and neuroectodermal neural precursor cell marker), RBFOX3 (normally a
pan-neuron-specific marker), and AQP4 (normally an astrocyte-specific marker)'#230:33:34,
Among these putative neoplastic cells, cluster 6 was the only CD34-rich cluster. In terms of
cell type proportions, 22932/34907=66% of cells were neoplastic-appearing. Of these
neoplastic cells, 694/22932=3.0% were in cluster 6, 259/22932=1.1% were CD34+, and
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168/22932=0.7% were cluster 6, CD34+ cells. Substantially smaller proportions of CD34+
cells were present among clusters 24 (5% CD34+), 3 (1.6% CD34+), 19 (1.2% CD34+), 14
(0.9% CD34+), 10 (0.5% CD34+), 8 (0.4% CD34+), 13 (0.2% CD34+), and 0 (0.02% CD34+).
Hence, analysis of initial cell markers identified the majority of ganglioglioma cells as
neoplastic-appearing with a rare CD34-rich population possibly representing tumor
neuroectoderm neural precursor cell-like stem cells.

Preliminary normal and neoplastic cell identification was confirmed by analysis of top
differentially expressed genes (Supplementary Information and sTable 2), inference of copy
number variation, and Seurat-based label transfer. Inference of copy number variations using
inferCNV* identified clonal dellp and subclonal del14 exclusively in the putative neoplastic
cell clusters in tumor 4 (sFigure 11), providing support that these clusters represented
neoplastic cells. Note that most gangliogliomas do not carry large CNVs**®, so the absence of
such alterations for snRNA-seq cells from the other tumors does not rule out their assignment
as neoplastic. We next mapped snRNA-seq profiles to transcriptional atlases from developing
brain®~*, adult brain®******, primary brain tumors*®**** and tumor-associated immune
cells**™*8. This mapping reinforced and refined stromal cell type assignments (examples in
Figure 1C and sFigure 1J-L). Nuclei of the suspected neoplastic clusters generally had
much more mixed and uncertain mapping, consistent with these representing abnormal,
neoplastic cells. Interestingly, the CD34-rich cluster 6 nuclei were confidently identified as
immature astrocytes where represented in reference atlases. For instance, cluster 6 mapped
confidently to first-/second-trimester (i.e. immature) astrocytes in a developmental brain atlas
(Figure 1C)*, and cluster 6 was confidently identified as protoplasmic/immature astrocyte by
mapping to a glioblastoma atlas (sFigure 1L)*. Other neoplastic-appearing clusters tended
to map to either neurons or macroglia at different developmental stages. For instance,
clusters 0, 4, 8, 9, 10, 18, and 19 mapped to first-/second-trimester neurons while cluster 13
mapped to developing OPCs and clusters 2, 16, and 29 mapped more closely to ventricular
radial glia (VRG; Figure 1C)*. Thus, snRNA-seq results support the presence of large
neuron-like and macroglia-like populations in addition to a smaller neuroectoderm neural
precursor cell-like compartment among neoplastic GG cells.

GG CD34-associated neuroectodermal neural precursor-like cells exhibit stem cell states

Many cancers, including gliomas, are composed of a cellular hierarchy containing
stem-like cells capable of self-renewal, differentiation, tumorigenecity, tumor progression, or
resilience in the face of anti-tumor therapy and ultimately tumor regrowth?®2+:3>4%.
Understanding these cells is of special interest because their identification could be used for
better tumor classification, prognostication, and therapeutic targeting. Cell typing and
mapping above identified a neoplastic, CD34-rich cluster 6. Such CD34+ cells have
previously been hypothesized to represent ganglioglioma tumor precursor/stem cells, but their
transcriptomic profile and location in the tumor cell hierarchy was not previously well
understood.

Given the working hypothesis that gangliogliomas arise from neuroectodermal neural
precursor-like cells, neoplastic cells were next interrogated for individual neuroectodermal
markers in addition to CD34. Interestingly, cluster 6 identity and CD34 expression were
each associated with expression of neuroectodermal neural precursor cell markers PAX6,
SOX2, and MSI1 (Figure 2A)**™3. Hence, analysis of cell markers supported our hypothesis
that neoplastic CD34+ cells resemble primitive neuroectoderm neural progenitor cells.

We next sought to identify where the neuroectoderm neural precursor cell-like cluster 6
cells fall within a putative GG neoplastic cell developmental hierarchy. First, we used
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CellRank/CytoTRACE to infer pseudotime®**°. Analysis of our neoplastic-appearing
ganglioglioma nuclei in this manner assigned cluster 6 nuclei or CD34+ nuclei (and
particularly cluster 6, CD34+ nuclei) the earliest pseudotimes (Figure 2B-E). We next used
SCENT to calculate signaling entropy rates (SR), which closely approximate stemness®. This
method largely recapitulated the results with CellRank/CytoTRACE (Figure 2F-I). Finally, we
used RNA velocity to infer temporal relationships between cell states®’. Multiple RNA
velocity methods consistently agreed that cluster 6 and/or CD34+ neoplastic cells appeared
to be the most primordial of neoplastic cells (Figure 2J-M). Therefore, several orthogonal
methods showed that neoplastic cells represented in cluster 6 and/or CD34+ appeared
particularly potent (i.e. stem cell-like), consistent with these representing primitive, neoplastic
stem/precursor cells.

To further pin-down stem cell-like states and possibly the cell type of origin for
ganglioglioma, we combined analysis of neuroectodermal neural precursor markers and
cellular hierarchy results. Co-expression of CD34, PAX6, SOX2, and MSI1 (after stringent
counter selection against vascular cells using PECAM1, VWF, DCN, and COL1A2), was
particularly strongly associated with ganglioglioma neoplastic cell stemness (sFigure 2A). To
evaluate the timing of disappearance of such cell states during normal development, we
tested existing single cell brain atlases for the presence of
CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-COL1A2- cells. We first noted that prenatal
brain reference atlases we probed all contained small but appreciable numbers of these cells:
14/2394 in Zhong et al.**, 10/4129 in Nowakowski et al.*’, 7/25161 in van Bruggen et al.*,
and 9/48215 in Eze et al.*® Considering data drop out, the actual potent precursor cells of the
intended type are likely somewhat more prevalent. In contrast, adult brain reference atlases
had no CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-COL1A2- cells detected: E.g.
0/47432 in the Allen Institute multiple cortical areas atlas® and 0/78886 cells in Nagy et al.*
Interestingly, a very large, recently published brain single cell atlas spanning the third
trimester to 40 years of age helped to fill the gaps in developmental data during childhood and
adolescence®®:; 0 out of 154748 cells in the Herring et al. atlas were
CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-COL1A2-. A potential confounder is the
possible spatial variability of this cell type. However, when limiting our analysis to the pre-
frontal cortex (due to there being robust data spanning development for this region), we still
found an apparent disappearance of CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-
COL1A2- cells during fetal development. Prenatal pre-frontal cortex
CD34+PAX6+SOX2+MSI1+PECAM1-VWF-DCN-COL1A2- cells were found by Nowakowski
et al. (2 cells out of 1076)*" and Zhong et al. (14 cells out of 2394)**. No such cells were
detected in the pre-frontal cortex third trimester to 40 years old (0/154748)* or a purely adult
pre-frontal cortex atlas (0/78886)*. Hence, these results overall support the disappearance of
the neuroectodermal neural precursor cells that ganglioglioma stem-like cells most resemble
during normal brain development (fetal development for the pre-frontal cortex) and suggest
that the ganglioglioma cell of origin may in fact arise during fetal brain development.

Ligand-receptor analysis reveals PTN-PTPRZ1, FGF family, and PDGF family communication
among GG neoplastic cells

Intercellular communication pathways were interrogated in an unbiased manner using
CellChat® (sFigure 3A-B, sTables 3-5). This analysis suggested neoplastic tumor cell
PTPRZ1 targeting by PTN, the latter largely produced by the neoplastic cells (Figure 3A and
sFigure 3C-D). 57% of neoplastic cluster-neoplastic cluster pairs exhibited a PTN-PTPRZ1
interaction (p-value <0.01). Every neoplastic cluster had at least one cluster by which it was
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targeted (p-value<0.01). Cluster 6 was particularly active in signaling, as a source for 17/18
neoplastic clusters (p<0.01, all except cluster 18) and as a target from 10/18 neoplastic
clusters (p<0.01). PTPRZ1 is a receptor tyrosine phosphoprotein phosphatase®. PTN binding
antagonizes PTPRZ1, which has been shown to have pleiotropic effects including activation
of MAPK and AKT signaling axes®. A mouse model of BRAF-V600E neuroectodermal tumors
required a second hit with increased AKT/mTOR signaling to produce ganglioglioma-like
tumors®. These results identify a neoplastic-cell-to-neoplastic-cell interaction that is known to
drive the signaling axes needed for gangliogliomagenesis as a major feature of GG in
general, and of GG cluster 6 stem/neuroectoderm neural precursor-like cells in particular.

We also localized neoplastic cell compartments that take part in FGF and PDGF family
ligand-receptor interactions. FGFR alteration is associated with a substantial minority of
pediatric low grade gliomas®™. PDGF(R) aberrant hyperactivity is potently oncogenic, more
typically associated with high grade gliomas®. FGF1-FGFR1 interactions occurred between
most clusters of neoplastic cells or OPCs (p<0.01 for 37% of possible neoplastic cluster-
neoplastic cluster interactions, cluster 6 as a source p<0.01 for 10/18 neoplastic clusters
including itself, cluster 6 as a target p<0.01 for 12/18 neoplastic clusters; Figure 3B and
sTables 4-5). Other FGF-FGFR family members exhibited highly significant interactions
between multiple neoplastic clusters (sFigure 3E-I and sTables 4-5). The PDGF family
pathway was also a top hit (sTable 3). For instance, we identified interactions between
PDGFA-PDGFRB in cluster 6 (p<0.01 for cluster 6 targeting by 5/18 neoplastic clusters,
including itself, with no other significant neoplastic cluster-neoplastic cluster interaction (p=1))
as well as endothelial cluster 12 and VLMC cluster 22 (Figure 3C and sTables 4-5). We also
detected PDGFB-PDGFRB and PDGFD-PDGFRB targeting directed at cluster 6 and vascular
cells (sFigure 3J-K and sTables 4-5). These results pinpoint GG neoplastic cell states that
take part in FGF and PDGF signaling interactions, and reveal that such processes are
especially active in neuroectoderm neural progenitor cell-like cluster 6 cells.

BRAF and AKT pathway signaling in neoplastic cells

We next sought to identify signaling programs that may function downstream of the
ligand-receptor interactions to drive growth and maintenance of the neoplastic cells. To
ascertain important cellular signaling pathways in ganglioglioma, neural cells were subject to
gene set enrichment analysis (GSEA) using clusterProfiler for gene ontology (GO), KEGG,
and Wiki pathways®*®*,

To uncover neoplastic cluster-associated pathway suppression or activation,
neoplastic-appearing ganglioglioma clusters were compared to normal-appearing neural
clusters (clusters 15, 20, 21, and 23). Consistently among the most suppressed pathways (in
neoplastic cells) were various pathways responsible for oxidative phosphorylation or
ribosomal function, whether comparing by individual cluster or using neoplastic-appearing
cells altogether (Figure 4A and sFigure 4A-F). Oxidative metabolism suppression is
consistent with the Warburg effect typical of neoplastic cells and offers further support for our
identification of cells as neoplastic or stromal®.

In order to ascertain the pathways significant to CD34+ neoplastic cells in particular,
we compared neoplastic CD34+ cells to neoplastic CD34- cells. The most CD34+ cell-
activated pathways were those involving oxidative phosphorylation and ribosomal machinery
(Figure 4B and sFigure 4G-L). Unsurprisingly given neoplastic CD34+ cells' promiscuous
use of signaling nodes, they had very little in the way of pathway suppression (recall the high
signaling entropy rate discussed above, Figure 4B, and sFigure 4G-L). Nearly identical
results were obtained when comparing cluster 6 CD34+ cells to the remaining neoplastic-
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appearing cells. Close inspection of KEGG pathways of interest showed especially brisk
expression of the PKB/AKT pathway machinery from FGF through downstream AKT effectors
in neoplastic CD34+ versus neoplastic CD34- cells (sFigure 4K). Additionally, there was
generally higher expression of BRAF pathway machinery encoding transcripts in CD34+ cells,
including BRAF itself (sFigure 4K). Pluripotency machinery encoding transcripts were
generally greatly enriched in the CD34+ cells, including the transcription factor SOX2, a SOX
B1 member which contributes to embryonic, neural stem, and progenitor cell self-renewal and
pluripotency (very early; sFigure 4L)*. These results were overall congruous with the
preceding analysis. Particularly interesting is the persistent theme of signaling via AKT in
addition to BRAF, particularly in the most stem-like of the neoplastic cells, the CD34+ and/or
cluster 6 cells. For the AKT pathway, there may very well be contribution by autocrine
signaling via FGFs and/or PTN.

Neoplastic transcriptional programs and putative drivers

We next characterized transcription factors that may account for compartmental
expression of the gene programs identified above. To do so, gene regulatory networks were
reconstructed in an unbiased manner using SCENIC®®. Top candidate transcription factors for
both cluster 6 and CD34-expressing neoplastic cells included paired box 6 (PAX6) and its
transcriptional activators myeloid ectopic viral integration site homeobox 1 (MEIS1) and
transcription factor 7 like 2 (TCF7L2; sFigure 5A-D)°”®. In the healthy adult brain, these
transcription factors are not normally coexpressed®*°. More interestingly, PAX6 is a
neuroectodermal neural precursor cell marker, and the MEIS1-PAX6 cascade appears critical
to early neuroectodermal cell fate determination®*®’. In addition, TCF7L2 coordinates PAX6
activation in neural cells and modulates MYC as part of the WNT pathway®®. PAX6, MEIS1,
and TCF7L2 concentrations as well as SCENIC-calculated regulon scores correlated strongly
with ganglioglioma neoplastic cell stemness by CellRank/CytoTRACE pseudotime or SCENT
signaling entropy rate (Figure 5A and sFigure 5E-F). SOX2 also appeared as a factor with
significantly increased activity (and transcript expression) among certain neoplastic cells,
particularly those most stem-like (including among cluster 6) and/or CD34-expression (Figure
5B). SOX2 contributes to embryonic, neural stem, and progenitor cell self-renewal and
pluripotency (very early, including in the neuroectoderm) and is not normally appreciably
expressed in the adult brain®®3%*3, These observations implicate PAX6, MEIS1, TCF7L2, and
SOX2 programs in the more primitive, neuroectoderm neural precursor-like (cluster 6 and/or
CD34+) tumor cells, and these programs are possibly controlling tumor cell
potency/stemness/differentiation.

Immune landscape

Myeloid cells

In healthy brain, myeloid cells are predominantly resident microglia; however, others
have established the presence of bone marrow derived macrophages associated with brain
tumors®. To determine the nature of myeloid cells in gangliogliomas, we first used markers of
a priori interest to further decipher cell states. Ganglioglioma clusters 1, 5, 11, and 17 were
PTPRC-, ITGAM-, CD14-, and P2RY 12-expressing consistent with these representing
microglia (Figure 6A and recall Figure 1B and sFigure 1H)?**3%%°_ Myeloid cells lacked
appreciable expression of the classical pro-inflammatory markers IL1A, IL6, TNF, and CD40
(all myeloid cells IL6-; otherwise Figure 6A)*. In terms of anti-inflammatory activity, they did
not express appreciable levels of IL10, but there was diffuse expression of TGFB1 (Figure
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6A)*. Moreover, when looking at the broader cellular context, lymphocytes from clusters 7
and 28 expressed significant TGFB1 and tumor clusters 3, 8, and 14 expressed substantial
CSF1, which promote immunosuppressive and pro-inflammatory properties in macrophages,
respectively (Supplementary Information and sTable 2)*. Clusters 1, 5, 11, and 17 all
appeared to express significant amounts of CD163 (except cluster 11) and MSR1 (encodes
CD204) and variable MRC1 (encodes CD206), classic markers of immunosuppressive/tissue
reparative/tumor promoting M2 macrophages (Figure 6A)*. In terms of classic pro-
inflammatory M1 markers, myeloid cells expressed TLR2 highly, CD86, variable HLA-DR
(most in cluster 17), and very little NOS2 (Figure 6A)*. This co-expression of M1 and M2
markers appears consistent with prior observations suggesting that the M1 versus M2
dichotomy does not seem to hold on the single cell level in tumor microenvironments™.
Instead, M1 and M2 traits tend to be strongly positively co-varying in individual tumor-
associated cells®***. More recently, with the help of single cell typing of tumor-associated
immune cells, it has been suggested that C1Q and SPP1 status best differentiate different
types of tumor-associated macrophages and that these markers are also associated with
prognosis’®*. C1Q expression appears to be associated with T lymphocyte recruitment and
activation whereas SPP1 expression appears to be associated with tumor growth and
metastasis. C1Q expression was variable in ganglioglioma myeloid cells, with high
concentrations in cluster 17 and consistently elevated concentrations in cluster 11 (Figure
6A). C1Q+ cells were not distinct from SPP1+ cells, with SPP1 expression high in cluster 11
and parts of clusters 17 and 5 (Figure 6A). These results overall support the presence of
tumor-associated, aberrantly activated microglia.

We attempted to use differential gene expression analysis, multi-gene signature
scoring, and k-nearest neighbors mapping to reference atlases to further type these cells. Top
microglial cluster-overexpressed genes were enriched for complement-encoding transcripts
(particularly C1Qs) and MHC class llI-encoding transcripts, consistent with their expected
roles in the complement cascade and professional antigen presentation, respectively
(sFigure 6A). To confirm ganglioglioma myeloid cells represented microglia, Seurat-based
label transfer was performed?®. Using annotated tumor reference atlases differentiating
microglia from macrophages*®** for label transfer, the bulk of myeloid cells were consistently
more strongly identified with an overall microglial rather than macrophage signature (recall
sFigure 1K-L). When ganglioglioma-associated myeloid cells were subjected to scoring (by
UCell) based on established M1 and M2 signatures®, the two scores appeared positively
correlated both within each cluster and among cells of the supercluster, consistent with the
aberrant activation that was found at the individual marker level and further supporting the
lack of this dichotomy in the context of some tumors (sFigure 6B-D). Overall, differential gene
expression analysis, multi-gene signature scoring, and k-nearest neighbors mapping to
reference atlases confirmed ganglioglioma-associated microglial cell identity and refined their
cell states.

Ganglioglioma-associated myeloid cellular hierarchy was evaluated with
CellRank/CytoTRACE, SCENT signaling entropy rate, and scVelo RNA velocity®*™’. These
generally identified cluster 11 and 17 members of greater potency/stemness and therefore
candidates for tumor-associated myeloid precursor states (e.g., Figure 6B).

Myeloid cell interactions were explored. Interestingly, myeloid cell-expressed
concentrations of transcripts encoding lymphocyte co-stimulatory and co-inhibitory ligands
appeared positively correlated throughout the supercluster (Figure 6C). Among the top
ranked pathways in unbiased ligand-receptor analysis by CellChat and CellPhoneDB>*"?,
microglia participated in significant antigen presentation, including as senders and receivers
of the MHC class Il pathway, senders for the MHC class | pathways (clusters 5, 11, 17), and
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receivers for the APP-CD74 signaling pathway (MHC class Il antigen processing, recall
sFigure 3A-B and sTable 3-5). On the other hand, microglia also participated heavily in
TGFB signaling, as senders and receivers, and they were receivers for CSF1-CSF1R (from
neoplastic clusters 3, 14, and 8), consistent with a classicallgl M2-promoting milieu and
activities (Figure 6D, recall sFigure 3A-B and sTable 3-5)*. Hence, ganglioglioma-
associated microglial cell interactions appeared along a spectrum of aberrant activation,
consistent with what was ascertained about myeloid cell states earlier.

To ascertain important cellular signaling pathways in ganglioglioma-associated myeloid
cells, microglia were subject to gene set enrichment analysis (GSEA) using clusterProfiler®.
Among Wikipathways, the TYROBP causal network in microglia was among the top 2
activated pathways for each microglial cluster (Figure 6E). The microglia pathogen
phagocytosis pathway was also among the top 2 activated pathways for clusters 5 and 17.
Top activated GO pathways for clusters 11 and 17 were pathways related to the ribosome and
translation whereas those for clusters 1 and 5 included B cell activation, regulation of immune
response, leukocyte differentiation, lymphocyte activation, and innate immune response
among other immune cell activation/differentiation pathways. These findings overall support
the assignment of these cells as microglia and show a spectrum of pathway utilization among
the microglia particularly as it pertains to modulation of immune response.

Lymphocytes

Understanding tumor-infiltrating lymphocytes has become of great basic, translational,
and clinical interest of late”. To explore ganglioglioma tumor-infiltrating lymphocytes, we
started by interrogating for lymphocyte markers. Ganglioglioma cluster 7 was largely PTPRC-,
CD2-, and CD3-expressing (Figure 7A), consistent with T lymphocyte identity?>*. Cytotoxic T
lymphocyte (CTL) activity is central to anti-tumor immune response’®. Cells represented in the
upper and right side of cluster 7 UMAP expressed the classic CD2+CD3+CD4-CD8+ cytotoxic
T lymphocyte markers including granzymes and perforin (Figure 7A), consistent with these
cells representing cytotoxic T lymphocytes?**°. On the other hand, the remaining cluster 7
cells expressed CD4 but not CD8 or other cytotoxic T lymphocyte-specific markers (Figure
7A), consistent with these representing helper T lymphocytes®*°. Cluster 28 was PTPRC-
expressing but negative for CD2 and CD3 (Figure 7A). On the other hand, this cluster had
expression of B cell markers CD19, CD20 (MS4A1), CD22, and immunoglobulin components
(Figure 7A), consistent with B lymphocyte identity”>*°. Hence, interrogation for lymphocyte
markers revealed two ganglioglioma-infiltrating lymphocyte clusters, T lymphocytes in cluster
7 and B lymphocytes in cluster 28. This was further supported by top cluster-specific
differentially expressed transcripts (sFigure 7A and recall sTable 2) and Seurat-based label
transfer (sFigure 7B).

To fine tune our understanding of tumor-infiltrating lymphocyte cell states, we explored
cell markers further. The cluster 7 CTL subpopulation expressed a mixture of co-inhibitory
receptor-encoding transcripts CTLA4, PD1, TIGIT, LAG3, TIM3, and CD160 and co-
stimulatory receptor-encoding RNAs CD28, ICOS, and CD40LG (Figure 7B)***%**, They had
higher expression of exhaustion-related transcription factor-encoding RNAs EOMES and TOX
than the precursor or pre-exhaustion factors TBX21 and HNF1A (Figure 7B)?**%*°. These
observations altogether suggest some degree of CTL dysfunction and exhaustion.

In addition to interrogation of individual markers, cell states were determined by
signature score (rank-based, by UCell) based on subtype signatures previously evaluated in a
single cell context*®. Similar to what was observed for myeloid cell M1 versus M2 state,
ganglioglioma-associated T lymphocyte M1 polarizing signatures and M2 polarizing
signatures® were actually positively correlated (sFigure 7C-D). Signature scoring also
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identified a G2/M subpopulation of lymphocytes in cluster 7 (sFigure 7E)**. UCell scores
were significantly higher for the Azizi et al. CD8 T cell activation, pro-inflammatory, and
cytolytic effector pathway signatures® for those cells previously identified as enriched for CTL
markers (sFigure 7E), confirming this assessment. In sum, TIL signature-scoring confirmed
and refined preliminary cell state assignments based on individual markers.

We next turned to lymphocyte intercellular interactions because they constitute
important determinants of T lymphocyte anti-tumor and anti-inflammatory roles. First, we
analyzed a priori CTL ligand-receptor interactions of interest. As was expected, MHC class |
component-encoding expression was particularly robust among microglia and only
subpopulations of neoplastic cells (Figure 7C)***%%°. Some transcripts encoding co-
stimulatory or co-inhibitory ligands, CD86, LILRB4, CD58, and HAVCR2 were robustly
expressed across the microglial supercluster but other such ligands were generallg/ scarce
(Figure 7C)?**%**_|n unbiased ligand-receptor interaction nomination by CellChat>®, the
lymphocyte clusters were among the least interactive cluster in terms of both incoming and
outgoing signals (sFigure 7F and recall sFigure 3A-B).

In terms of cellular signaling, GSEA®® revealed cluster 7 top activated pathways to
include T cell activation (from GO); T cell receptor signaling (from KEGG); and TCR signaling,
modulators of TCR signaling and T cell activation (WP; Figure 7D and sFigure 7G-H).
Cluster 28 top activated pathways included B cell receptor signaling, B cell differentiation, B
cell activation, antigen-mediated signaling, immune response-regulating, lymphocyte
activation, regulation of immune response, and regulation of lymphocyte activation (GO); BCR
signaling and NF-kB signaling (KEGG); and BCR signaling (WP; Figure 7D and sFigure 7G,
). Unbiased transcription factor nomination by SCENIC® concurred with the spectrum of T
cell activation among cluster 7 and B cell activation among cluster 28 (sFigure 7J-K).
Altogether, these findings further confirmed preliminary lymphocyte typing and state.

Validation with CITE-seq

To validate the above findings, fresh ganglioglioma tissue was subjected to CITE-seq.
We analyzed n=3725 cells from three tumors with CITE-seq (recall sTable 1). These findings
reiterated much of the results from snRNA-seq, but due to the smaller number of cells used
for CITE-seq, the latter assays appeared insensitive to some of the more rare phenomena
observed in the snRNA-seq data (please see Supplementary Information, sFigure 8, and
sTable 6 for more information). To correlate RNA profiles with the presence of expressed
epitopes, eight epitopes were simultaneously probed, including CD34. CITE-seq analysis
confirmed a strong correlation between CD34 expression and expression of the CD34 epitope
commonly used for diagnostic purposes (R=0.37, p<2.2e-16 by Pearson correlation test,
sFigure 8S). These results confirm the snRNA-seq results using an orthogonal method which
includes protein-level data (CITE-seq).

Spatial transcriptomics identified neuroectoderm neural precursor-like cells deep in neoplastic
niches

To determine spatial context of tumor cells, four GGs analyzed by snRNA-seq above
were subjected to spatially-resolved transcriptomic profiling (stRNA-seq). H&E slides were
manually neuropathologist (GYL)-annotated with exclusion of spots with significant artifact,
folded tissue, tissue degradation, or blood products. StRNA-seq yielded a mean of n=1791
high-quality RNA-seq profiles per tumor in 55 um spots (sFigure 9A-D; note that with this
spot size, there are multiple cells per spot). Two of the four slides show appreciable
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histological variation. Tumor 1 had distinct (prominently or minimally/mildly) myxoid,
hypercellular, hypocellular, and vascular areas making up 10 distinct annotations (sFigure
9C). Tumor 4 had (prominently) myxoid, non-myxoid, generic tumor, and vascular areas
making up 4 distinct annotations (sFigure 9D). KNN clustering correlated with these
distinctions (sFigure 9E-F). Final clusters were determined based on the combination of
histopathological annotation and kNN clustering (Figure 8A-B).

To characterize these distinct tumor regions, top cluster-specific differentially
expressed genes were determined, and cluster-variable pathway activation was probed by
clusterProfiler®®. Several cancer-relevant patterns emerged (Figure 8C, sFigure 9G, and
sTable 7). There was a clearly inverse correlation between activation of immune cell
response/effector function pathways and activation of neuronal- (or macroglial-) function
related pathways. For instance, in tumor 1, clusters (prominently) myxoid 1, (prominently)
myxoid 2, and hypocellular 3 were each characterized by suppression of various immune
response pathways but with activation of neuronal morphogenesis pathways ((prominently)
myxoid 1), GO astrocyte projection ((prominently) myxoid 2), or neuron-related pathways
(hypocellular 3, Figure 8C). In contrast, in tumor 1, clusters mildly myxoid, hypocellular 1U2,
and hypercellular 1U2 each showed activation of numerous immune response pathways with
associated suppression of cell morphogenesis (mildly myxoid), synaptic pathways
(hypocellular 1U2), other neuron-related pathways (hypercellular 1U2), or neural crest
differentiation (hypercellular 1U2, Figure 8C). Hence, tumor cellular composition appeared
guite heterogenous on the molecular level with pro-inflammatory - and presumably anti-tumor
- environments and neoplastic glioneuronal cell areas that appear to be relatively privileged
from immune regulation. There also appeared to be an inverse correlation between activation
of neuron-related pathways and vascular genesis-related pathways including the
Wikipathways VEGFA-VEGFR2 pathway. For each of tumor 1 and tumor 4, there were
dispersed spots that co-clustered (into tumor 1 hypercellular 3 and tumor 4 dispersed)
wherein there was significant activation in vascular genesis-related pathways and
Wikipathways VEGFA-VEGFR2 pathway with associated activation of inflammatory
pathways, PI3K-AKT(-mTOR) pathways, and suppression of neuron-related pathways
(Figure 8C and not shown). In contrast, tumor 1 hypocellular 3 showed suppression of
Wikipathways VEGFA-VEGFR2 pathway in the context of significant activation of multiple
neuron-related pathways (Figure 8C and not shown). Other cluster-specific differences also
emerged. For example, tumor 1 (prominently) myxoid 1 activation of Wikipathways
glioblastoma signaling and Wikipathways WNT signaling pathway and pluripotency; tumor 1
(prominently) myxoid 2 activation of GO zinc homeostasis and suppression of Wikipathways
oxidative phosphorylation; tumor 1 hypocellular 1U2 suppression of various (m)RNA
metabolic pathways (Figure 8C and not shown).

Given the multiple cells per spot, stRNA-seq spot cell composition was determined by
decomposition/deconvolution by cell2location” and UCell signature scoring’ using
ganglioglioma snRNA-seq and CITE-seq data as parallel references. Cell composition
appeared to vary considerably, yet appropriately, within slides and also between samples with
spots estimated to be composed of typically 20-80% neoplastic cells (Figure 8D-E).
Substantial proportions of each of microglia and macroglia were found as were smaller
proportions of neurons, lymphocytes, and vascular cells, as expected. Cell2location tissue
regions derived from cell abundance kNN generally correlated with histopathological
annotations and up front KNN clustering (sFigure 9H-I), further supporting the model-
calculated cell abundances. For slides from two of the tumors, methods concurred on the
presence of clusters of significant areas of neuroectoderm neural precursor-like cell signature
(Figure 8F-G and sFigure 9J-K).
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In order to better understand important intercellular interactions, particularly with these
precursor-like cells, we tested for co-localization of different cell types to any given spot.
When comparing all four tumor samples, themes emerged. Interestingly, neuroectoderm
neural precursor cell-like cell abundance was highly inversely correlated with the presence of
vascular cells, microglia, or lymphocytes (Figure 8H-J). This suggests these cells occupy a
hypovascular, perhaps relatively hypoxic environment. Also, they appear to be relatively
spared of immune targeting. In contrast, neuroectoderm neural precursor cell-like cell
abundance appeared strongly correlated with cell abundance of other neoplastic clusters (not
shown). To further investigate co-localization, cell2location-calculated cell abundance was
subjected to non-negative matrix factorization (NMF). Interestingly, tumor 4 neuroectoderm
neural precursor cell-like cells tended to occupy discrete locations, with these cells separating
out at a low number of factors compared to the number of reference clusters (not shown). In
contrast, at least a subset of tumor 1 neuroectoderm neural precursor cell-like cells appeared
to co-localize with particular other neoplastic cell types (sFigure 9L-N). These observations
appear consistent with these neuroectoderm neural precursor cell-like tumor cells residing
deeply within neoplastic niches.

We next sought to determine the signaling and transcriptional program context of
neuroectodermal neural precursor cell-like tumor cell niches. Interestingly, there was visually
apparent co-localization of tumor neuroectoderm-like cells with high PTPRZ1, PTN, and
FGFR3 (Figure 8K), identified as important for neuroectoderm-like neoplastic cell signaling
as above. Cell type-specific expression was also estimated by cell2location. This identified
tumor neuroectoderm-like cell-specific expression of important neuroectoderm neural
precursor like-cell markers including CD34, PAX6, SOX2, MSI1, MEIS1, and TCF7L2, further
validating the nature of the snRNA-seq cluster 6 neuroectodermal cells and the identification
of these cells in situ despite their being a small minority of tissue cells analyzed spatially
(Figure 8K). Interestingly, there was significant neuroectoderm cell-specific PTN-PTPRZ1,
FGF1/2-FGFR3, and PDGFA/D-PDGFRB expression (Figure 8K). This suggests a
substantial autocrine mechanism for maintenance of the ganglioglioma stem/progenitor cell
compartment.

To further explore the spatial context of ganglioglioma cells, top spatially variable
genes, agnostic to cell type assignment, were uncovered using the mark-variogram method
within Seurat®®. Interesting patterns emerged. For example, for tumor 1, metallothioneins
dominated top spatially-variable features, including M1E (#4), MT1G (#6), MT3 (#7), MT1X
(#10), MT1M (#13), and MT2A (#24) among the top 25 (Figure 8L and not shown).
Interestingly, their expression appeared correlated with neuroectoderm neural precursor cell-
like cell abundance, with high MT1E, MT1G, MT1X, and MT1M each exclusive to areas of
neuroectoderm-like cells (Figure 8L and not shown). In contrast, CD74 (antigen-presenting
cell marker) and SPP1 (oligodendrocyte and microglia marker®>*%) were top-25 spatially-
variable transcripts that were largely excluded from neuroectoderm neural precursor cell-like
cell areas (Figure 8L), once again consistent with the findings above suggesting
neuroectoderm neural precursor cell-like cells to occupy niches with relatively little immune
cell occupancy. FTL and TPT1 had somewhat different distributions but were similarly
inversely associated with neuroectoderm neural precursor cell-like cell abundance (Figure
8L).

Neuroectoderm neural precursor cell-like programs associate with GG bulk RNA-seq profiles

We next turned to translation of these findings to clinically-annotated bulk pediatric low
grade glioma data sets (n=151 patients for Bergthold et al. of whom n=122 had clinical
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outcomes annotations and n=81 patients for the US National Cancer Institute’s Clinical
Proteomic Tumor Analysis Consortium (CPTAC) with the diagnosis of GG or PLGG)"®"".

To determine the degree of representation of the single nucleus/CITE-seq
ganglioglioma cluster cells in the bulk data, deconvolution of the bulk data was performed
using deconvolution/decomposition algorithms’® and UCell signature scoring”. Despite
differences in the nature of the bulk datasets (e.g. 6k gene array vs. bulk RNA-seq), the
methods tested, and the cells present in reference snRNA-seq and CITE-seq datasets,
common themes emerged. Bulk-sequenced tumors were identified as composed of ~40-70%
tumor cells with microglial, macroglial, and vascular minority populations identified (Figure
9A-B).

In comparing cell composition by diagnosis, other low grade gliomas - pilocytic
astrocytoma in particular - actually appeared to have greater components of the OPC-like cell
states (Figure 9C-D). Conversely, gangliogliomas appeared to have a greater neuron
component than other low grade gliomas and pilocytic astrocytoma in particular (Figure 9C-
D). SnRNA-seq neuroectoderm neural precursor cell-like abundance appeared lowest among
pilocytic astrocytomas and at least trended somewhat higher for other histologies, including
ganglioglioma (where it was still rare, with median 2% of GG cells from the Bergthold et al.
dataset and 1% of GG cells from the CPTAC dataset’®’’, similar to expected, Figure 9C-D).

Diagnostic and prognostic genetic signatures

We next used the insights from the above deep transcriptomic analyses to nominate
prognostic features for low grade glioma patients. For Bergthold et al. patients, clinical
annotations included diagnosis, extent of resection, self-organizing matrix cluster, age, receipt
of chemotherapy, BRAF status, event free survival (EFS), and death’. Resection status was
found to be important with gross total resection associated with significantly better EFS
whereas EFS was numerically similar to one another after biopsy, subtotal resection, and
near total resection (Figure 10A-B and sFigure 10A-B). For CPTAC, clinical annotations
included diagnosis (we excluded diagnoses other than ganglioglioma and other low grade
gliomas), extent of resection, BRAF status, tumor grade, EFS, and death’’. Resection status
was once again strongly associated with EFS (sFigure 10C-H).

We next turned our attention to prognostic genetic markers. CDKN2A (and adjacent
CDKN2B) loss has been previously identified in a small minority of gangliogliomas as well as
in other pediatric CNS tumors, such as pleomorphic xanthroastrocytoma (where CDKN2A/B
loss is typical)®™. The prognostic significance of CDKN2A/B loss in ganglioglioma is unclear
though there may be some association with more adverse histopathological features and
poorer prognosis®™. In contrast, we found CDKN2A expression was among the top event-
associated transcripts in both data sets (Bergthold et al. #16/6100 and CPTAC #23/14827 by
average log2-fold-change). When limiting the diagnosis to ganglioglioma, CDKN2A was not
prognostic (Bergthold et al. rank #3201 and CPTAC rank #2840). Instead the association of
CDKN2A expression with EFS events appeared to be associated with other diagnoses,
mostly pilocytic astrocytomas.

The remaining top low grade glioma event-associated transcripts in common between
Bergthold et al. and CPTAC were overwhelmingly associated with inflammation and/or the
extracellular matrix. Particularly interesting was a possible clinical event-associated
enrichment for components of the cytosolic DNA sensing pathways (represented in KEGG
and Wikipathways, sFigure 10I-J), including the cGAS/STING pathway, which has apparent
and/or potential roles in tumorigenesis, prognosis, and therapeutic approach”®.
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To interrogate for prognostic multi-gene-signatures, we started with gene signatures of
curated stemness-associated factors from the snRNA-seq data and unsupervised machine
learning. From this approach, multiple 3-5 gene, curated signatures were of borderline
significance, though none were robustly significant by both Kaplan-Meier and Cox
proportional hazards modeling using both gene signature z- and Mann Whitney U-test-scoring
(arbitrarily using score quarterization for the Kaplan-Meier method). For example, the four-
gene signature CD34, SOX2, CD99, and CTSC scores appeared at least trending towards
association with worse EFS in this regard (Figure 10C-D and sFigure 10K-L).

To develop more sophisticated prognostic genetic signatures and models, we
employed supervised machine learning. A model was trained on Bergthold et al. (in
mir3/mlr3proba: top 2.5% clinical or genetic features selected by surv.rfsrc (fast unified
random forests for survival, regression, and classification) embedded method, surv.aorsf
(accelerated oblique random survival forests) learner selected (sFigure 10M) with
subsequent sequential feature reduction (sFigure 10N) and learner hyperparameterization
yielding tuned model with Harrell's concordance-index of 0.87) and validated on CPTAC,
yielding a 14-feature signature (resection status combined with expression of 13 transcripts:
UBE2M, ELAVL1, FRY, IGFBP4, STX4, PSMC6, MTX2, NFE2L3, C1QB, ELANE,
SMARCD?2, ZNF117, and ABL1). This model predicted CPTAC outcomes with Gonen and
Heller's concordance-index 0.89. Hence, we were able to nominate two promising multi-gene
prognostic signatures: a curated 4-gene signature and a 13-gene signature (in combination
with resection status) from supervised machine learning.

Discussion

Deep transcriptomics has recently led to advances in our understanding of many
cancers, including brain tumors'®®>#° However, such techniques have not yet been published
for GNTs, and application of spatial transcriptomics approaches to brain tumors is in its
infancy. Here, we applied deep transcriptomic approaches including spatial transcriptomics to
gain insight into important questions regarding GNT biology. Our data supports our hypothesis
that GNT CD34+ cells represent neuroectoderm neural precursor cell-like tumor precursor
cells. Moreover, we found evidence of perturbations to mTOR/AKT signaling via
PDGF/PDGFR and/or FGF/FGFR agonism in combination with PTN antagonism of the
otherwise antagonistic and highly expressed PTPRZ1. The combination of this AKT
perturbation with MAPK activation (which was present via BRAF V600E in all tumors studied
presently) has been found to be sufficient for glioneuronal tumorigenesis in animal models®*.
Our data suggests such a mechanism for ganglioglioma tumorigenesis with CD34+ GNT cells
as the tumor stem cells. Additionally, we identified important transcriptional regulators for
primitive tumor cells including TCF7L2/MEIS1-PAX6 and SOX transcriptional cascades.
Interestingly, though the neuroectoderm neural precursor-like cells appeared to occupy a
hypovascular niche, they (at least among ganglioglioma neoplastic cells) appeared to be
especially high users of oxidative phosphorylation pathways. It is possible this is related to an
adaptation, e.g. via upregulation of mitochondrial activity given that the master regulator of
mitochondrial biogenesis PPARGC1A was nominated as a neuroectoderm neural precursor-
like cell associated transcription factor in an unbiased fashion by SCENIC.

This study reiterated neoplastic and stromal cell states common to myriad brain
tumors. These include neoplastic OPC-like cells identified in primary brain tumors as diverse
as (adult) glioblastoma®?, diffuse midline glioma®, pilocytic astrocytoma®®, and now in
glioneuronal tumors. Interestingly, these cells have in the past been hypothesized to be tumor
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precursor cells for other primary brain tumor types. However, subsequent study has not
always been consistent with this hypothesis®. Within our study, we saw this effect. By the
CITE-seq data alone with 1.8k neoplastic cells, the most primitive neoplastic cluster was an
OPC-like cluster. However, with increase in cell sampling by an order of magnitude (i.e. to
what was obtained for snRNA-seq), we were able to identify a rarer, much more primitive
neuroectoderm neural precursor-like population that also fits with the hypothesized tumor
stem cell population. This data points to the limitations of undersampling in this context or -
conversely - the significant insights possible with sufficient sampling. Given the alignment of
our results with a priori data and hypotheses, our sampling may very well be adequate to
confidently identify the most important characteristics of ganglioglioma stem cells.

Our major results appear generalizable. For instance, though CD34+ neuroectoderm
neural precursor-like cells were only found from tumor 5 in the shnRNA-seq data, we were able
to uncover nests of these cells in tumors 1 and 4 by stRNA-seq and transcriptionally-similar
cell states in the other tumors. Hence, we are inclined to understand sampling bias to be the
primary factor affecting whether we observe this population in any given tumor.

In addition to neuroectoderm neural precursor-like and OPC-like neoplastic cells, we
were able to identify myriad stromal cell types in the context of ganglioglioma, including
oligodendrocytes, OPCs, astrocytes, various inhibitory and excitatory neurons, endothelial
cells, VLMCs, microglia, and lymphocytes and their associated cell states including significant
interactions with the neoplastic cells. We characterized the immune cells extensively. We
weighed in on the controversy regarding tumor-associated myeloid cell M1-M2
polarization®>’°. Our data supports the model of aberrant co-activation of these programs
rather than polarization between them. Furthermore, we found evidence that this aberrancy
may be directly related to T lymphocyte dysfunction and T lymphocyte stimulation of M1 and
M2 characteristics simultaneously. Our data also appears to further support recent
observations that tumor-associated immune cells appear to fall along a spectrum rather than
as discrete states*. Additionally, we found that even low grade tumors with tumor-infiltrating
lymphocytes may include potentially suppressible regulatory components (e.g. T regs) and
potentially anti-tumor cytotoxic T lymphocytes. Altogether, this data suggests a possible role
for immune therapies such as immune check point inhibitors. However, we did uncover CTL
exhaustion and dysfunction as potential limiting factors to be overcome.

Another theme of general interest that we uncovered was neoplastic PTPRZ1
antagonism. We found this among diverse primary brain tumors tested including glioblastoma,
pilocytic astrocytoma, and ganglioglioma. Interestingly, PTPRZ1 appeared in our SCENIC
SOX regulons, and SOX transcription factors are often hyperactive in primary brain tumors®.
PTPRZ1 overexpression on its own would be expected to abrogate AKT/mTOR signaling and
cancer progression®. These tumors appear to evolve to overcome this antagonism by
overexpression of PTN. This suggests antagonism of PTPRZ1 antagonism by PTN as a
possible therapeutic approach for many primary brain tumor types. FGF/FGFR and/or
PDGF/PDGFR antagonism may also be important in the context of ganglioglioma, either in
combination with PTN-PTPRZ1 antagonism or on their own.

Finally, we translated these findings into existing clinically-annotated bulk
transcriptomic data sets to identify different cell state compositions therein as well as expound
upon potentially clinically useful genetic markers and multi-gene signatures.
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Methods
Reference data sets

Reference single-cell data was obtained via UCSC cell browser (Nowakowski et al.
developing brain®’, Eze et al. developing brain®®, Darmanis et al. glioblastoma*?, Wang/Muller
et al. glioblastoma*, Allen human cortex®?, Allen human M1 cortex®?), Broad Institute single
cell portal (Tirosh et al. oligodendroglioma®, Filbin et al. diffuse midline glioma®®, Reitman et
al. pilocytic astrocytoma®), and GEO GSE104276 (Zhong et al. developing prefrontal
cortex*!), GSE168408 (Herring et al. developing prefrontal cortex*®), GSE144136 (Nagy et al.
adult prefrontal cortex*®®), GSE156728 (Zheng et al. T cells*®), GSE154763 (Cheng et al.
myeloid cells*’), and GSE114724 (Azizi et al. immune cells*). Bulk transcriptomic data and
associated annotations were obtained from CPTAC’’ via pedcbioportal.kidsfirstdrc.org and,
for Bergthold et al., from GEO GSE60898°.

Patients

Ganglioglioma tumor samples for deep transcriptomics were obtained per Duke University
Health System Institutional Review Board (IRB) protocol Pro00072150. The methods were
carried out in accordance with the approved guidelines, with written informed consent
obtained from all subjects or their guardians where appropriate. Patient characteristics are
summarized in supplementary table 1.

SnRNA-seq
Frozen banked tumor tissue was obtained from the Duke Brain Tumor Center Biorepository

and Database. For quality assurance, RNA integrity number was checked with goal RIN>7.
Nuclei were isolated. Briefly, 50 mg tissue was minced to ~0.5 mm cubes, transferred to lysis
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solution (10 mM Tris-HCI pH 7.4 (Sigma), 5 mM NacCl (Sigma), 3 mM MgCl, (VWR), 0.1% NP-
40 substitute (Sigma), and 0.5% RNasin Plus (Promega, aq)), incubated on ice 5 minutes,
and incubated with tituration 10-15 times every 30 seconds for 10 minutes on ice. Residual
debris was removed by 70 mcm filter (VWR). Nuclei were centrifuged 300g x5 minutes at 4°C,
rinsed x2 with resuspension buffer (1% BSA (ThermoFisher), 0.5% RNasin Plus, and 1X PBS
pH 7.4 (Corning, aq)), resuspended in OptiPrep solution (25 mM KCI (ThermoFisher), 5 mM
MgCl, (ThermoFisher), 20mM Tris-HCI pH 7.8 (ThermoFisher), 50% OptiPrep Density
Gradient Medium (Sigma), and 100 mM sucrose (Sigma, aq)), pelleted 10000g x10 minutes
at 4°C, resuspended in resuspension buffer, and assessed for intact nuclei. Otherwise,
snRNA-seq was performed using 3' v3 Single Cell technology according to the manufacturer’s
protocol (10X Genomics, San Diego, CA).

CITE-seq

Fresh tumor tissue was obtained for CITE-seq. Tumor cells were dissociated, washed, and
resuspended. Antibodies for CITE-seq were anti-CD34 (clone 581), anti-CD31 (clone WM59),
anti-CD45RA (clone HI100), anti-CD3 (clone UCHT1), anti-CD8A (clone RPATS8), anti-CD4
(clone RPAT4), anti-CD14 (clone 63D3), and anti-CD19 (clone HIB19) TotalSeg-A antibodies
(BioLegend, San Diego, CA). Cells from one tumor were used to optimize preparation by
adding variable antibody concentrations to 1 million cells in 50 mcl, washing with 200 mcl
FACS buffer, resuspending in 200 mcl FACS buffer, and analyzing by flow cytometry.
Otherwise, cells were used for CITE-seq using 3' v3 Single Cell Immune Profiling technology
according to the manufacturer’s protocol (10X Genomics, San Diego, CA).

Spatial transcriptomics

Frozen banked tumor tissue was obtained from the Duke Brain Tumor Center Biorepository
and Database. StRNA-seq was performed using Spatial 3' v1 technology according to the
manufacturer’s protocol (10X Genomics, San Diego, CA).

SnRNA-seq and CITE-seq data preprocessing and initial processing

Raw sequencing data was processed into unique molecular identifier count (UMI) matrices
using CellRanger (v6.1.2 for snRNA-seq and v3.1.0 for CITE-seq, human genome build
GRCh38, cellranger mkfastq -> cellranger count, 10X Genomics). Processing beyond this
point was carried out in Ubuntu 20.04 using R 4.2.1 or python version 3.x (depending upon
python packages in use). Within Seurat v4°®, snRNA-seq log-normalization, scaling,
SCTransformation, PCA, and UMAP (based on PCA dims 1-50) was performed. For the
projection shown, SCTransform was run based on all cells, 10k variable features, regressing
out based on percent mitochondrial RNA, and otherwise defaults. For CITE-seq, gene
symbols were updated with HGNChelper v0.8.1%%, and this was followed by log-normalization,
scaling, PCA, and UMAP (based on PCA dims 1-50). Neighbors and clusters were also found
within Seurat. Gene symbols were updated by HGNChelper v0.8.1 for analyses sensitive to
antiquated gene symbols.

StRNA-seq data preprocessing and initial processing

Raw sequencing data was processed into unique molecular identifier count (UMI) matrices
using SpaceRanger v1.3.0 (human genome build GRCh38, spaceranger mkfastq ->
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spaceranger count, 10X Genomics). The graph-based clusters shown were also calculated
with spaceranger count. Slides were manually annotated (GYL). Empty spots were excluded
as were those with excessive artifact (folded tissue and excessive blood product in particular).
Graph-based clusters were then regrouped based on manual annotation for final clusters.
Processing beyond this point was carried out in Ubuntu 20.04 using R 4.2.1 or python version
3.x (depending upon python packages in use). Gene symbols were updated by HGNChelper
v0.8.1.

Initial cell typing

SnRNA-seq and CITE-seq cells were initially typed based expression of a priori markers of
interest, favoring unbiased atlases where possible, such as the Human Protein Atlas®>*° and
HUBMAP®**** Markers are outlined in the results. Additionally, cells were typed using Seurat
v4-base label transfer to published reference atlases listed under data above®. Cells were
also typed by UCell v2.0.1 signature scoring™.

Inference of copy number alterations

Neoplastic-appearing cells from merged snRNA-seq or merged CITE-seq data were analyzed
by inferCNV v1.12.0 in parallel®. Oligodendroglioma and associated oligodendrocytes were
used as positive and negative controls, respectively”. Tumor 3 snRNA-seq data was
excluded due to low complexity. SnRNA-seq and CITE-seq stromal cells were also used as
controls. For run, cutoff=0.1 was used. Data was subjected to apply_median_filtering with
window_size=7. Runs were otherwise by defaults. Data was displayed using
ComplexHeatmap v2.13.2. Results were verified with CopyKAT v1.1.0%.

Cellular hierarchy

From CellRanger outputs, counts were obtained by velocyto v0.17.17 run10x and otherwise
using the defaults®. Data from different tumors was then merged and then subset by cell
lineage (e.g. neoplastic, microglia, lymphoid, vascular) based on cell typing for RNA velocity
analysis by scVelo v0.2.4>". The results shown were obtained using the package defaults,
with modes described in the text. SCENT v1.0.3 signaling entropy rate results shown were
calculated using the original counts and defaults with the netl7Jan16.m used as the protein-
protein interaction network adjacency matrix>°. CellRank v1.5.1 pseudotimes were calculated
using the CytoTRACE kernel®** based on the original counts after merging samples and
subsetting by lineage (neoplastic, myeloid, and lymphoid). Tumor 3 snRNA-seq data was
excluded due to low complexity resulting in aberrantly high calculated pseudotime. Defaults
used unless specified otherwise.

Ligand-receptor analysis
Significant snRNA-seq and CITE-seq ligand-receptor interactions were nominated in an
unbiased manner among merged snRNA-seq or merged CITE-seq data using CellChat v1.5.0

and CellPhoneDB v3.1.0°%72, Defaults were used for the results shown.

Gene set enrichment analysis (GSEA)
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Average log2-fold-change was calculated within Seurat v4 based on the comparisons
described in the text?®. Gene lists were sorted by descending log2-fold-change and
clusterProfiler v4.4.4 gseGO run with p-value cutoff=0.05 with Bonferroni correction®.
GseKEGG and gseWP were performed analogously. Defaults were otherwise used. KEGG
pathways of interest were visualized by Pathview v1.36.1%°.

Gene regulatory network inference

Transcription factors were nominated among snRNA-seq and CITE-seq by cluster or by
neoplastic CD34-status using pySCENIC v0.12.0 defaults®®. Transcription factors/regulons of
interest were further curated by Wilcoxon rank sum test comparison using AUC log2-fold-
changez20.1. For individual clusters this was performed relative to all other clusters. For each
neoplastic cluster, it was also performed relative to the union of stromal neural clusters. For
neoplastic CD34+ cells, it was performed relative to neoplastic CD34- cells.

StRNA-seq data deconvolution

StRNA-seq spots were deconvoluted using cell2location v0.17*. For deconvolution,
mitochondrial, ribosomal, X, and Y transcripts were excluded. Each of snRNA-seq and CITE-
seq data sets was used as reference in turn. N cells per spot was 12 and detection_alpha=20.
Training max epochs=1000 for references and =30000 for spatial data. Deconvolution, NMF,
and cell type-specific gene expression were otherwise calculated using recommended/default
settings.

Top spatially variable genes

Top spatially variable genes were calculated for each stRNA-seq sample in Seurat v4 using
the mark-variogram method and defaults otherwise?.

Bulk transcriptomic data deconvolution

Bulk data deconvolution was performed with granulator v1.1.0 using defaults’®. Dtangle
results shown are the results from using defaults within granulator, subsequently scaled to
total composition of one for each sample. Statistical analysis comparing subpopulations was
performed using the ggstatsplot v0.9.4.900 package and otherwise as described in the text®’.

Clinical data analysis

Bergthold et al.”® and CPTAC’’ bulk transcriptomic data was filtered for those with annotation
of outcomes (event free survival in particular). Kaplan-Meier curves were calculated survfit
from survival package v3.4.0%® and plotted with log-rank p-values using ggsurvplot from the
survminer library v0.4.9%. Correlograms of available clinical annotations were created by
calculation of bias-corrected Cramer's V for nominal vs. nominal variables, Spearman for
numeric vs. numeric variables, and ANOVA for nominal vs. numeric variables. Multi-gene
signature z-scores were calculated by multiplying n gene z-scores and taking the nth root.
Multi-gene Mann Whitney U-test scores were calculated using UCell”. Prognostic models
were developed by supervised machine learning in mir3 using mir3proba® . Bergthold et al.
relative-count expression combined with clinical annotations was subjected to importance
scoring using surv.rfsrc learner, the top 2.5% features were selected, and surv.aorsf learner
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selected with subsequent sequential feature reduction and learner algorithm
hyperparameterization yielding tuned model using a 14-feature signature (resection status
combined with 13 transcripts: UBE2M, ELAVL1, FRY, IGFBP4, STX4, PSMC6, MTX2,
NFE2L3, C1QB, ELANE, SMARCD2, ZNF117, and ABL1). Surv.aorsf final parameters were
n_tree=10000, n_split=5, n_retry=24, mtry_ratio=0.8111, control_type=cph, and

split_min_stat=11.2. The model was validated on CPTAC FPKM expression combined with
clinical annotations.
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Figure 1: Ganglioglioma single nucleus RNA-seq.

(A) UMAP plot of SCTransformed data from 34,907 nuclei, colored by Seurat cluster.

(B) Feature plots of log1p[RNA] of select cell typing markers, P2RY12 (microglia), CD3D (T
lymphocyte), VWF (endothelial), RBFOX3 (pan-neuron), AQP4 (astrocyte), GPR17 (oligodendrocyte
precursor cell, OPC), CNP (oligodendrocyte), and CD34 (endothelial and stem cell). Colored from 0
(grey), to maximum log1p for the transcript plotted (black), via yellow, then orange, then red.

(C) Heatmap of Seurat label transfer prediction scores (from 0 to 1) for ganglioglioma nuclei queried
against developing brain (Nowakowski et al.) reference atlas with query nuclei as columns and
reference annotations as rows. Note cluster colors in legend should be the same as cluster colors
throughout.

EN-V1-1=early born deep layer/subplate excitatory neuron V1,

OPC=oligodendrocyte precursor cell;

vRG=ventricular radial glia;

RG-div2=dividing radial glia (S-phase);

oRG=outer radial glia;

IN-CTX-CGEL1 or 2=CGE/LGE-derived inhibitory neurons;

Ul, U2, U3, and U4= unknown 1, 2, 3, and 4;

glyc=glycolysis;

nEN-late=newborn excitatory neuron - late born;

nEN-earlyl or 2=newborn excitatory neuron - early born;

IPC-nEN1 , 2, or 3=intermediate progenitor cells excitatory neuron-like;

EN-PFC1=early born deep layer/subplate excitatory neuron prefrontal cortex;

tRG=truncated radial glia;

IPC-divl=dividing intermediate progenitor cells radial glia-like;

MGE-RG1=medial ganglionic eminence radial glia 1;

IN-STR=striatal neurons;

RG-divl=dividing radial glia (G2/M-phase);

IPC-div2=intermediate progenitor cells radial glia-like;

MGE-IPC1, 2, or 3=medial ganglionic eminence progenitors;

niN1, 2, 3, 4, or 5=medial ganglionic eminence newborn neurons;

EN-PFC2 or 3=early and late born excitatory neuron prefrontal cortex;

EN-V1-2=early and late born excitatory neuron V1,

MGE-div=dividing medial ganglionic eminence progenitors;

IN-CTX-MGE2=medial ganglionic eminence-derived Ctx inhibitory neuron, cortical plate-enriched;
IN-CTX-MGE1=medial ganglionic eminence-derived Ctx inhibitory neuron, germinal zone enriched;
EN-V1-3=excitatory neuron V1 - late born;

RG-early=early radial glia;

MGE-RG2=medial ganglionic eminence radial glia 2.
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Figure 2: Ganglioglioma neoplastic cellular hierarchy.

(A) Violin plots of neoplastic cell expression (loglp[RNA], base 2) of individual neuroectodermal
markers by cluster (left) or by CD34 status (right).

(B) Feature plot of ganglioglioma neoplastic tumor 1, 4, and 5 nuclei CellRank/CytoTRACE
pseudotime (tumor 3 nuclei excluded due to low complexity which resulted in aberrantly high
calculated pseudotime for tumor 3 nuclei).

(C-D) Violin plots of CytoTRACE pseudotime by ganglioglioma cluster (C) or CD34 status (D).

(E) Random walk of earliest pseudotime cells (black dots) via CellRank/CytoTRACE pseudotime to
predicted terminal states (yellow dots).

(F-H) Differentiation potency was also inferred via SCENT signaling entropy rate (SR) for
ganglioglioma neoplastic nuclei. Feature and violin plots of SR shown analogous to B-D above for
CytoTRACE pseudotime.

(I) Signaling entropy rate versus CytoTRACE pseudotime for ganglioglioma neoplastic nuclei
(except tumor 3), colored by CD34 status (CD34+ in blue, CD34- gray). Gray line represents linear
least-squares fit to (all of the neoplastic) data, with gray shading representing the 95% confidence
interval.

(J-L) Neoplastic cell scVelo RNA velocity-derived pseudotimes by dynamical (J), stochastic (K), and
steady state (L) modes.

(M) RNA velocity steady state pseudotime vs CytoTRACE pseudotime, colored by CD34 status
(CD34+ in blue, CD34- gray). Gray line represents linear least-squares fit to (all of the neoplastic)
data, with gray shading representing the 95% confidence interval.
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Figure 3: Ganglioglioma
neoplastic cell
communications of interest
by snRNA-seq evaluated
with CellChat.

(A) Significant PTN-
PTPRZ1 interaction as
nominated by CellChat with
results shown as hierarchy
plots. Line thickness
reflects strength of
observed interaction.
Interactions targeting
neoplastic cells on the left
plot and interactions
targeting stromal cells on
the right plot. Note that
within each plot, neoplastic
cluster sources are on the
left and stromal cluster
sources are on the right.
Neoplastic targets are in
the same order as
neoplastic sources in the
left plot, and stromal targets
are in the same order as
stromal sources in the right
plot.

(B-C) Analogous to (A)
except for FGF1-FGFR1 (B)
and PGFA-PDGFRB (C).
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Figure 4: Ganglioglioma snRNA-seq gene set enrichment analysis.

(A) Dotplots of top 10 (or fewer if Bonferroni-adjusted p-value>0.05) most activated or suppressed
GO pathways when comparing neoplastic-appearing cells as a whole to normal-appearing neural
cells. Bonferroni-adjusted-p-value shown as well as gene count in each pathway.

(B) Dotplots of top 10 (or fewer if Bonferroni-adjusted p-value>0.05) most activated or suppressed
GO pathways when comparing CD34+ neoplastic-appearing cells as a whole to CD34- neoplastic-
appearing cells. Bonferroni-adjusted-p-value shown as well as gene count in each pathway.
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cluster Figure 5:
Ganglioglioma
significant
transcription factors.
(A) Left: Scatterplots
of PAX6 cluster-based
SCENIC AUC and
transcription factor
expression vs
CytoTRACE
pseudotime or SCENT
signaling entropy rate
(SR) with data colored
by cluster (legend to
the topright of the
figure). Loess best fit
shown as a black
curve; gray shading
for the 95%
confidence interval.
Right: CD34 status-
based SCENIC AUC
and transcription
factor expression vs
CytoTRACE
pseudotime or SCENT
signaling entropy rate
(SR) with data colored
by CD34 status
(CD34+ blue, CD34-
gray). Loess best fit
shown as a black
curve; gray shading
for the 95%
confidence interval.
(B) Analogous results
to (A) are shown for
SOX2 (cluster-based
results only due to
CD34-based regulon
not meeting filters).
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Figure 6: Ganglioglioma-associated myeloid cells.

(A) Myeloid supercluster feature plots of RNA concentrations (loglp, base 2) for key general myeloid
(PTPRC, ITGAM, CD14), microglia (P2RY12, TYROBP, SALL1, SPI1), macrophage (CD44,
SIGLEC1), classical proinflammatory (IL1A, TNF, CD40; no expression for IL6, so not shown), anti-
inflammatory (IL10, TGFB1), tissue reparative M2 (CD163, MSR1, MRC1, CD68), and M1
proinflammatory (TLR2, CD86, HLA-DRA, NOS2) markers as well as C10QB and SPP1.

(B) Microglia feature plot of cellular hierarchy by CellRank/CytoTRACE pseudotime.

(C) Heatmap of microglia expression of transcripts encoding lymphocyte stimulatory and inhibitory
ligands of interest a priori.

(D) Hierarchy plots of CellChat results showing significant involvement of microglia in TGFB and CSF
pathways. Lines weighted by interaction significance.

(E) Most (top 10 or fewer if Bonferroni-adjusted-p-value>0.05) activated or suppressed Wikipathways
compared to the bulk ganglioglioma population for each of the microglial clusters.
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Figure 7: Ganglioglioma-infiltrating lymphocytes.

(A) Lymphocyte feature plots of RNA concentrations for key general T lymphocyte (PTPRC, CD2,
CD3 (CD3E, CD247)), T helper (CD4), cytotoxic T lymphocyte (CD8 (CD8A and CD8B), GZMA,
PRF1), and regulatory T (IL2ZRA, FOXP3) markers.

(B) Heatmap of lymphocyte RNA concentrations (loglp, base 2) for important markers of cytotoxic T
lymphocyte state.

(C) Heatmap of ganglioglioma cell expression of a priori important T cell modulating ligands.

(D) Most (top 10 or fewer if Bonferroni-adjusted-p-value>0.05) activated or suppressed GO pathways
for lymphocyte clusters.
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Figure 8: Ganglioglioma spatial transcriptomics
shown for two samples from tumor 1 and tumor 4.
(A-B) Spatial feature plots of final clusters for tumor
1 (A) and tumor 4 (B). Note ‘U’ in the final cluster
name is used to denote union of multiple Space
Ranger-generated graph-based (KkNN) clusters.

(C) GO term enrichment for select tumor 1 clusters.
(D-E) Cell type proportions per spot as determined
by cell2location with sShnRNA-seq as reference for
tumor 1 (D) and tumor 4 (E). OPC=oligodendrocyte
precursor cell. VLMC=vascular leptomeningeal cell.
(F) Tumor 1 cell2location-calculated neuroectoderm
neural precursor cell-like cell abundance per spot.
(G) Analogous to (F) but for tumor 4.

(H-J) Inverse correlation of neuroectoderm neural
precursor-like cell proportion and that of vascular
(H), microglial (1), and lymphoid (J) cells, shown for
tumor 1 spot cell proportions calculated by
cell2location with snRNA-seq clusters as reference.
Points and curves are colored according to the cell
type whose proportion is being compared to the
proportion of neuroectoderm neural precursor-like
cells. Curves (outlined in black to enhance visibility)
represent non-linear (exponential) least-squares fit
for each reference cell type.

(K) Overall (left) and cell type-specific (right)
expression of neuroectoderm neural precursor cell-
like cell markers as well as important transcription
factors and ligand-receptor pairs based on
SNRNA/CITE-seq analysis.

(L) Feature plots of log1p (base 2) [RNA] for
examples of top spatially-variable features from
tumor 1, as determined by mark-variogram method
in Seurat.
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Figure 9: Pediatric low grade glioma bulk transcriptomic data deconvolution in light of ShARNA/CITE-

seq results.

(A) CPTAC pediatric low grade glioma and ganglioglioma bulk RNA-seq deconvolution example
using dtangle method with snRNA-seq data cell type reference.
(B) Bergthold et al. low grade glioma bulk RNA-seq deconvolution analogous to (A).

(C) Violin plots with CPTAC tumor OPC-like, mixed neuron, and neuroectoderm-like cell composition,
by diagnosis. Medians marked with red dots and labeled. Statistical comparisons by Mann Whitney

with p-values shown.

(D) Analogous to (C) for Bergthold et al. tumors except for statistical testing, Kruskal-Wallis was
used initially, followed by Dunn test with Bonferroni adjustment as needed.

OPC=oligodendrocyte precursor cell, DA=diffuse astrocytoma, GG=ganglioglioma,
ODG-=oligodendroglioma, DNT=dysplastic neuroepithelial tumor, NOS or LGG=low-grade glioma, not
otherwise specified. PA=pilocytic astrocytoma.
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Figure 10: Low grade glioma outcomes analysis.

(A-B) Kaplan-Meier EFS (95% CI shaded, dotted line for median) for Bergthold et al. patients overall
(A) and by resection status (B).

(C) Kaplan-Meier EFS (95% CI shaded, dotted line for median) for Bergthold et al. patients by UCell
score quartile for the gene signature of CD34, SOX2, CD99, and CTSC.

(D) Forest plot of COXPH EFS HR for Bergthold et al. patients with continuous variables kept
continuous. Includes HR for Z-score for the gene signature of CD34, SOX2, CD99, and CTSC.
EFS=event-free survival, NR=none reported, GTR=gross total resection, NTR=near total resection,
G/NTR=gross or near total resection, STR=subtotal resection, WT=wild-type. DA=diffuse
astrocytoma, GG=ganglioglioma, ODG=oligodendroglioma, DNT=dysplastic neuroepithelial tumor,
NOS or LGG=low-grade glioma, not otherwise specified. PA=pilocytic astrocytoma.
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