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Abstract

Color is an important source of biological information in fields ranging from

disease ecology to sexual selection. Despite its importance, most metrics for color

are restricted to point measurements. Methods for moving beyond point measure-

ments rely on color maps, where every pixel in an image is assigned to one of a set

of discrete color classes (color segmentation). Manual methods for color segmen-

tation are slow and subjective, while existing automated methods often fail due to
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biological variation in pattern, technical variation in images, and poor scalability

for batch clustering. As a result, color segmentation is the common bottleneck

step for a majority of existing downstream analyses. Here we present recolorize,

an R package for color segmentation that succeeds in many cases where existing

methods fail. Recolorize has three major components: (1) an effective two-part

clustering algorithm where color distributions are binned and combined according

to perceived similarity in a frequency-independent manner; (2) a toolkit for minor

manual adjustments to automatic output where needed; and (3) flexible export

options. This paper illustrates how to use recolorize and compares it to existing

methods, including examples where we segment formerly intractable images, and

demonstrates the downstream use of methods that rely on color maps.

Introduction1

Color is an important source of biological variation, and is an important trait in a wide2

range of biological questions, ranging from sexual selection, camouflage, and animal com-3

munication, to thermal physiology, disease ecology, development, and genetics (Bekker4

et al., 1837; Bates, 1863; Poulton, 1890; Orteu and Jiggins, 2020; Hooper et al., 2020;5

Van Belleghem et al., 2020). Despite their obvious importance in biology (e.g., signal6

function, taxon identification, color production and variation), there is little consensus7

about how to quantify and compare color patterns, even though this is a necessary first8

step in testing most questions about them. Contrast this with, for example, geometric9

morphometrics, a family of methods for quantifying variation in biological shape (Book-10

stein, 1996). Researchers have reached a general consensus about how to quantify and11
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compare morphology (Klingenberg, 2011; Adams and Otárola-Castillo, 2013; Olsen and12

Westneat, 2015). This consensus, coupled with the availability of a handful of software13

tools for easily digitizing specimens, has led to a marked increase in both the number14

of studies that use geometric morphometrics and the insights resulting from this work15

(Polly et al., 2013; Adams et al., 2004; Lawing and Polly, 2010). There is no such set of16

consensus methods for measuring variation in biological color.17

Partly, lack of consensus is inevitable—color patterns are multidimensional and receiver-18

dependent, so variation can come from a wide range of biological and technical sources19

(this true to some extent for morphology, but at least this variation all exists in the same20

three dimensions). Individual organisms might vary in the location, arrangement, and21

intensity of their color pattern elements; the optical physical properties of those patterns22

(pigmentary or structural); and the surface topology and 3D morphology of the organism23

itself. Even if these sources of variation are well-defined, the ways in which we detect and24

record this information can introduce noise and error.25

Color pattern data is usually measured from images captured through digital sensors26

constructed from human-centric visual system sensitivities, which can (and do) vary from27

camera to camera. The colors reflected by a surface also depend on the available light,28

whether natural or artificial, which varies in emission output, intensity, and direction,29

all of which will affect how light reflects off of a given surface (with its own material30

properties) (Johnsen, 2012). Given these constraints, it is not surprising that universal31

methods for measuring color patterns in a consistent and repeatable way have remained32

elusive. How do we meaningfully measure the difference between organisms that may not33

have homologous color pattern elements? What if the images were taken with different34
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Figure 1: Color map example made with recolorize. A: Original image of a beetle,
Chrysochroa corbetti. Limbs, antennae, and insect pin have all been masked. B: Color
map, where each pixel has been assigned to one of five color classes. C: The five color
classes displayed as a color palette; in this case the displayed colors of the palette (the
color centers) represent the average red-green-blue (RGB) color of all pixels assigned to
that class. D: A representative section of the color map as a numeric matrix: each pixel is
assigned to a color class, so that we can refer to the entirety of color patch 2 by indexing
all values of the color map equal to 2, which is associated with a particular color (in this
case, green). E: Color maps are a major bottleneck step of color pattern quantification.
The boxes on the left list some fields for which color pattern is an important trait; on the
right are commonly used metrics or methods for quantifying color pattern, all of which
require color maps as a starting point. Original image: Nathan P. Lord. Citations: 1.
Chan et al. (2019); 2. Van Belleghem et al. (2018); 3. Maia et al. (2019); 4. Endler
(2012); 5. Endler et al. (2018); 6. Mason et al. (2021); 7. van den Berg et al. (2020).
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lighting conditions and cameras? What do we compare? How much can we reduce35

this dimensionality and still retain the relevant variation—assuming we even know what36

constitutes relevant variation?37

Plenty of available methods exist for measuring particular aspects of color patterns,38

but most of these are specific to a system or question. Researchers often have no choice39

but to build a new method specific to their problem (Caves and Johnsen, 2018; Valcu and40

Dale, 2014; Gawryszewski, 2018; Chan et al., 2019; van den Berg et al., 2020; Troscianko41

et al., 2017; Yang et al., 2016; Van Belleghem et al., 2018; Maia et al., 2019; Weller42

and Westneat, 2019; Hooper et al., 2020; Valvo et al., 2021; Endler et al., 2018; Endler,43

2012; Ezray et al., 2019). This sets an unreasonably high barrier to entry for measuring44

color patterns: developing methods is time-consuming and measurements are difficult to45

compare.46

Some of the most frequently used and promising methods for quantifying color pat-47

tern variation are also the most flexible, in that they can be applied to a wide variety48

of organisms and pattern types. Well-known examples include Endler’s adjacency and49

boundary strength metrics (Endler, 2012; Endler et al., 2018), which emphasize contrast50

between adjacent color patches; the patternize package (Van Belleghem et al., 2018),51

which quantifies color pattern variation essentially using a sampling grid); the micaTool-52

box suite of tools for multispectral image analysis (van den Berg et al., 2020); and the53

matching of spatial image data with spectral reflectance data in the pavo package (Maia54

et al., 2019). Most of these metrics require first clustering the image into discrete color55

patches (making “color maps”) and then measuring how various aspects of these patches56

vary across images (Fig. 1). Essentially, they start from the simplifying assumption that57
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a color pattern can be discretized into regions of uniform color, and then compare the58

shape and color of those regions in some biologically relevant way.59

Generating color maps from digital images–in a reproducible and efficient way–has60

proven to be the bottleneck step for these methods, especially across sets of images61

(Fig. 1E). Image segmentation in general is a notoriously complex problem, compounded62

here by the fact that the number and boundaries of color patches are often ambiguous;63

there isn’t necessarily a ‘correct’ answer, just one appropriate to the biological question.64

An image without some kind of segmentation, however, is little more than a pile of65

pixels; segmentation provides labels to groups of pixels so that we can refer to (and66

measure) particular regions. Researchers typically choose between automated methods,67

which require little or no user input but are difficult to modify when they do not work68

well, and manual segmentation, which is typically slow and subjective (Hooper et al.,69

2020).70

The most widely used automated method is k-means clustering (Hartigan and Wong,71

1979), which has been implemented in several R packages for color pattern analysis72

(Weller and Westneat, 2019; Van Belleghem et al., 2018; Maia et al., 2019), making it73

more accessible than other approaches. Users specify only the expected number of color74

classes, and the k-means algorithm attempts to find the set of color classes that minimize75

within-cluster variances. While this is a relatively intuitive and flexible approach in76

theory, in practice k-means clustering suffers from a number of issues:77

1. In trying to minimize variances, k-means tends to over-cluster large color patches78

and fails to differentiate small, colorful patches, meaning it often misses details and79

is highly sensitive to shadows, 3D contours, texture, and specular reflections (all80
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frequent features of organism photographs) (Fig. 2A-B).81

2. Users can’t compare images that were taken from different sources or under differ-82

ent lighting conditions, because they can produce very different color distributions83

(Fig. 2C) that k-means clustering can’t correct for.84

3. Users have to specify the number of color classes, which is subjective, and for85

comparative datasets may not be the same for all species (Fig. 2D).86

4. The implementation of the algorithm is usually heuristic, not deterministic. The87

same image will result in different color clusters depending on the run, and the88

color classes themselves are returned in an arbitrary order. This makes it difficult89

to perform batch processing when we want to map a set of images to the same set of90

colors, because yellow might be color 1 in our first image and color 2 in our second91

image (Fig. 2E), and the colors will be in a new random order every time we rerun92

the analysis unless users set a particular seed at the start of a clustering session.93

There are other methods for performing color segmentation, but they share many of94

the same weaknesses as k-means or are otherwise too limited in scope to be as easily95

generalized to a range of problems. Edge detection methods (e.g. watershedding, Otsu96

algorithm, Canny operator) use spatial information, which can resolve glare and noise97

to some extent, but only work well for segmenting color patches with sharp boundaries98

and often treat textures like scales as edges. The receptor-noise limited (RNL) clustering99

implemented in the Quantitative Color Pattern Analysis toolbox for ImageJ (van den100

Berg et al., 2020), which uses properties of the visual system to segment colors based on101

perceived color differences, works well under specific assumptions. However, it addresses102
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Figure 2: Examples of images and image sets for which k-means clustering is inade-
quate for color segmentation. A: This angelfish (Pygoplites diacanthus) has four color
classes: yellow, black, blue, and white. K-means achieves lower within-cluster variances
by assigning a light and dark yellow color center when we fit n = 4 centers. B: A coral
snake (Micrurus sp.) with three color classes: red, white, and black. Specular highlights
(shine) and scale texture result in shiny areas of the snake being assigned to the white
color center. C: The same beetle specimen (Chrysochroa mniszechii) photographed using
diffuse (upper row) and direct (lower row) light. Fitting n = 2 color centers using k-means
clustering produces different color centers and different color patch geometries. D: Batch
processing with the same set of color classes. All of these Polistes fuscatus wasp faces
share a palette of three colors (yellow, reddish brown, and dark brown), but fitting n=3
color centers for each image using k-means clustering results in subtly different colors
for each image, and they are returned in an arbitrary order. E: Batch processing for
image sets with different types and numbers of colors. We chose to fit n = 4 colors for
each beetle (Chrysochroa spp.) in this 5-species dataset, resulting in some images being
over-clustered and some being under-clustered. Image sources: Jack Randall (A), Alison
Davis-Rabosky (B), Nathan P. Lord (C & E), James Tumulty (D).
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only a subset of biological questions about color pattern variation, and as a result has103

more stringent requirements for data and equipment (and thus a higher barrier to entry).104

We could also find no dedicated tools specifically for making color maps: most methods105

provide a function or functions for performing color segmentation before running the rest106

of the analysis, so users who need color maps for any other purpose not yet implemented107

in these tools need sufficient coding expertise to extract them.108

The color segmentation problem has proven to be so intractable that quantitative109

color pattern analysis has mostly been limited to organisms with brightly colored, highly110

contrasting color patterns on relatively flat and untextured surfaces. This largely limits111

us to some species of butterflies and poison frogs. As a result, our ability to generate112

questions and hypotheses about color pattern evolution have far outpaced our ability to113

quantitatively analyze them.114

The recolorize package is designed to address this problem so that downstream color115

pattern analysis tools can be used for a wider variety of contexts. We aim to make the116

package easy to use, easy to modify, and easy to export to other packages and pipelines.117

The color segmentation options are fast and deterministic, have been tested across a118

wide variety of images, organisms, and use cases, and are reasonably straightforward in119

their structure. The general process is: 1. initial clustering step; 2. refinement step; 3.120

optional semi-manual edits; 4. export to desired format. The resulting toolbox is capable121

of handling a wide range of images, and has been used successfully in several contexts122

where k-means clustering has not worked. In order to illustrate that functionality, this123

paper will go over how to use recolorize to generate usable color maps for all of the124

examples which fail with k-means clustering in Fig. 2.125
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Glossary126

Terms used for each of the components of this process vary somewhat in the literature;127

here we define what we mean in this paper (and in the package) for reference.128

1. Color pattern: Static visual appearance of the sender, e.g. how colors are arranged129

on the organism, as captured by a single image (or 3D surface).130

2. Color class: A specific ID (usually numeric) to which portions of the color pattern131

are assigned.132

3. Color center: The computer-readable color of the color class, typically expressed133

as an RGB triplet.134

4. Color patch: All the portions of a color pattern which are assigned to the same135

color class.136

5. Color space: The coordinate system (typically three-dimensional) used to repre-137

sent the color of each pixel, and within which color distances are calculated.138

6. Color segmentation: The process of segmenting an image into discrete color139

patches.140

Results141

Code and images for running each of these examples is provided at https://github.com/142

hiweller/recolorize_examples. All examples are deterministic, meaning that the code143

as written will produce the same results every time it is run, regardless of the R seed or144

computer.145
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Preparing images for recolorize146

Many users of recolorize will already have images, and the package is fairly forgiving147

of variation due to lighting, texture, or arrangement (e.g., of feathers on a bird) since148

we include tools for making post-hoc adjustments. In brief, users should try to control149

for as many sources of variation as possible: use the same camera, lighting, background,150

resolution, positioning, and color standard for the entire dataset.151

The most important pre-processing step for using recolorize is background masking,152

for which there are many existing tools available. The package does not perform back-153

ground masking or image segmentation: instead, users should mask out the background154

of the image using transparencies (e.g. using GIMP or Photoshop). Recolorize can155

also ignore a background of uniform color by specifying a range of RGB colors. There156

are several tools available for automatic background masking, such as Sashimi (Schwartz157

and Alfaro, 2021) or Batch-Mask (Curlis et al., 2021), which could be used for large158

image sets. The exception is for the patternize workflows we show in examples E and159

F below, where the landmark alignment performs automatic background masking on160

unmasked images.161

Examples162

Example A: Main recolorize workflow163

The major problem in Fig. 2A is that by fitting n = 4 color centers for the angelfish164

image, k-means clustering achieves lower within-cluster variances by assigning separate165

light and dark yellow color centers (since these take up a greater proportion of the image)166

and grouping the white pixels into the light yellow color class, despite the fact that these167
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Figure 3: Successful segmentation of the angelfish (Pygoplites diacanthus) image from
Fig. 2A, illustrating the core steps of the package. A: First, the pixels of the original
image are binned by their coordinates in each color channel using a user-selected number
of bins per channel using the recolorize function. In this case, only 9 of 27 bins had
pixels assigned to them. B: These initial bins are combined based on perceived similarity
using recluster by combining either bins that have a Euclidean distance less than the
user-selected cutoff (here, cutoff = 50), or by specifying a final number of colors. The
original image is then re-fit using the resulting set of color centers. C: The resulting
color map is exported to any of a number of formats. Here, individual color patches are
exported as binary masks using the splitByColor function.
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colors are less similar than the dark and light yellow (as indicated by their proximity in168

3D color space). This is a common issue with k-means clustering that is easily resolved169

by the basic recolorize workflow, so we will use this image to illustrate these steps in170

detail.171

The core of the recolorize package is a two-step process for color segmentation:172

first, each pixel in the image is assigned to a region based on ranges defined for each173

color channel, resulting in what is essentially a 3D histogram of color distribution for174

the image (Fig. 3A). This is accomplished with the recolorize function, using a user-175

specified number of bins per channel, where the total number of resulting color centers176

will be n3 for n bins per channel (here, we used 3 bins per channel resulting 33 = 27177

possible color regions, only 9 of which contained pixels from the fish image). The color178

center of each region is then calculated as the average value of all of the pixels assigned179

to that region (or the geometric center if no pixels were assigned to it). This step requires180

no distance calculations or color center estimations because pixels are binned into pre-181

existing regions. As a result, this step is relatively fast and deterministic, and serves to182

reduce potentially millions of colors in the original image to typically only a few dozen,183

depending on the user’s specification of how finely to bin them.184

Second, these initial color centers are reduced according to some rule, such as com-185

bining similar color centers or dropping the smallest color patches. The most generally186

effective function for this step is the recluster function, which calculates the Euclidean187

distance between all pairs of color centers to which any pixels were assigned. Color cen-188

ters are then clustered by similarity using hierarchical clustering (R Core Team, 2022),189

and users provide either a similarity cutoff which determines which colors to combine or190
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a final number of expected colors. In Fig. 3B, we used a cutoff of 50 (Euclidean distance191

in CIE Lab color space) to combine the 9 initial color centers into 4 consensus color192

centers. New color centers are calculated as the weighted average of the original color193

centers being combined, with color patch size as the weights. The recluster function194

then refits the original image with these new color centers.195

In short, the first step reduces the image to a manageable number of colors, after which196

more computationally intensive steps (such as calculating a pairwise distance matrix) can197

be performed deterministically. Because they are also not density dependent, this two-198

step method also better preserves small but distinct color patches, such as the white patch199

on the ventrum of the fish image. Finally, the color map can be exported to a variety of200

formats and packages. In Fig. 3C, we export the color map as a stack of binary masks (0201

= color absence, 1 = color presence), but the later examples will illustrate functions for202

exporting to specific packages.203

Example B: More complex segmentation204

The coral snake from Fig. 2B represents a more complex example, because the specular205

highlights created by the shiny scales of the snake appear white regardless of their loca-206

tion on the snake (so they cannot be combined with appropriate color centers based on207

similarity). Instead, we first blur the image to reduce minor color variation due to the208

scale texture using blurImage, then produce an initial color map using recolorize and209

recluster as in the prior example, resulting in four color centers (Fig. 4). Note that color210

center 1 (a medium gray) contains most of the specular highlights; remaining portions211

of the highlight have been assigned to color center 4. This is a fairly common problem212
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Figure 4: Successful segmentation of the coral snake (Micrurus sp.) image from Fig. 2B.
This image requires more steps to deal with color variation due to scales and specular
highlights: first we blur the image using blurImage to mitigate the scale texture, then
call recolorize (2 bins per channel = 23 = 8 color centers) and recluster (cutoff = 20)
to perform segmentation. The mergeLayers function allows us to specifically combine
color centers 1 and 2 (becoming the new color class 3), which eliminates much but not all
of the specular highlights. Finally, the absorbLayer function eliminates the remaining
specular highlights by absorbing isolated speckles from patch 2 into the surrounding color
patches.

in color segmentation output: the method mostly works, but has small problems that213

render the color map ineffective, with no easy way for users to modify it. For this rea-214

son, the recolorize package also includes tools for modifying color maps in specific,215

reproducible ways. First, we can combine color centers 1 and 2 using the mergeLayers216

function. Second, to clean up the small areas of highlight which were assigned to color217

center 4, we use the absorbLayer function: this targets areas of a color patch within a218

user-specified area and/or location boundary, and changes the color of each separate area219

to that of the color patch with which it shares the longest border, effectively “absorbing”220

stray speckles.221
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Figure 5: Using recolorize to recover the same color pattern information from photos
with different lighting conditions. Top row: steps for producing a color map for the
diffuse light image. Middle row: steps for the direct light image. Bottom row: differences
between the images (calculated using the imDist function).
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Example C: Lighting variation222

Although the ideal image set is acquired using the same camera, lighting conditions, and223

color standards, users will often have images accumulated from a range of sources where224

these variables cannot be controlled, e.g. images taken from the iNaturalist database225

(Nugent, 2018) or by different lab members over several years of a field season. Although226

the actual color of the image cannot be used for analysis, these images still contain227

information: we can measure the spatial distribution of colors to quantify color pattern228

variation, e.g. with patternize (Van Belleghem et al., 2018).229

Fig. 2C provides a good example of this problem: we know that these images contain230

identical color pattern information (since this is the same specimen), but the colors231

themselves vary from a purplish-blue under diffuse light to black with intense specular232

highlights under direct light. Although k-means clustering produces a dark and a light233

cluster for each image, the color centers themselves are not only quite different, but234

the color patches are very different in shape due to the highlights. In this case, we235

can use recolorize (following a similar procedure to that in Fig. 4) to correct for that236

difference and produce two near-identical color maps from the two images, recovering the237

same spatial information for the distribution of the light and the dark colors (Fig. 5).238

Although even in this case the two final maps are not perfectly identical—the borders239

between the light and dark patches differ slightly (Fig. 5, bottom right)—only 3,270 of240

219,107, about 1.5%, of the pixels are assigned differently in each image.241
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Example D: Pattern analysis with patternize242

Users will often need to map each image in a dataset to the same color palette in order243

to compare differences in color pattern distribution. The patternize package (Van Bel-244

leghem et al., 2018) implements this approach: images are aligned to a common sampling245

grid (a RasterStack) using image registration or landmarks, mapped to a common color246

palette, and then analyzed with principal components analysis (PCA). This method is247

probably the closest available equivalent to geometric morphometrics with color pattern248

analysis, because the alignment step allows us to control for variation in shape, orienta-249

tion, and size before analyzing variation in color pattern.250

In practice, the most difficult step of using patternize is often the color segmenta-251

tion. Like several other color analysis packages and tools, patternize mostly relies on252

k-means clustering to extract color patches from images (especially for batch process-253

ing), which can fail for any of the reasons outlined above. Instead, we can combine the254

strengths of patternize and recolorize by using patternize to perform the image255

alignment step and recolorize to do the color segmentation. Here we show a working256

example using Polistes fuscatus wasp face images, a subset used with permission from257

Tumulty et al. (2021). We landmarked the original images (Fig. 6A) in ImageJ, using a258

simple scheme of only 8 landmarks, along with masking polygons to restrict our analyses259

to the frons and clypeus of the head (Fig. 6B). These were passed through the alignLan260

function in patternize to produce a list of aligned RasterBrick objects. We converted261

these to image arrays using the brick to array function in recolorize, determined a262

universal color palette using an initial color segmentation of all images (Fig. 5C), then263

used the imposeColors function to map all aligned images to the same set of colors264
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Figure 6: Process for combining recolorize and patternize to run a whole-color-
pattern principal components analysis (PCA). A: Original images of Polistes fuscatus
wasp faces, taken with the same lighting and camera conditions. B: Landmarking scheme
for alignment. C: Generating a universal color palette from color segmentation on individ-
ual images. D: Applying the universal color palette using the imposeColors function to
generate color maps. E: Color pattern PCA as generated by aligned, segmented images,
characterizing color pattern diversity among the wasp face images.

(Fig. 5D). Finally, we converted these color maps back to patternize rasters using the265

recolorize to patternize function and used the patPCA function in patternize to per-266

form a whole color pattern PCA (Fig. 5E). A complete version of this example—including267

step-by-step code to reproduce it and more detailed explanations—is available here:268

https://hiweller.rbind.io/post/recolorize-patternize-workflow/.269
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Example E: Spectral analysis with pavo270

Even under ideal circumstances (identical lighting and camera setups, color correction,271

camera calibration, etc), color images do not provide full-spectrum color information.272

Instead, they are limited to the visible spectrum and biased toward human visual sensi-273

tivities—any user interested in non-human visual perception cannot rely on traditional274

RGB image data alone to test their questions. One relatively cheap and accessible solu-275

tion to this problem is to combine color maps, which provide spatial information, with276

reflectance measurements taken with a point spectrometer.277

Reflectance spectra provide a more objective measurement of color and capture wave-278

lengths outside the range of human perception (ultraviolet, 300-400 nanometers) without279

the expense of obtaining a UV photography set-up. If users have reflectance spectra,280

the color standardization in their images is less important (so long as spectra can still281

be accurately assigned to the corresponding color patch). For example, if photos and282

reflectance spectra were obtained from the same individuals but under variable light-283

ing conditions or camera setups, reflectance spectra could be used to retroactively apply284

color-standardized data to the images. But because they are point measurements, spec-285

tral data cannot provide spatial information. This is part of the workflow of the pavo286

package (Maia et al., 2019), which enables users to combine spatial and spectral informa-287

tion by providing visual models (based on reflectance spectra) in combination with color288

maps. As with patternize, the pavo package relies primarily on k-means clustering to289

do the color segmentation, meaning users encounter many of the pitfalls illustrated in290

earlier examples.291

Here, we illustrate the combination of reflectance spectra with recolorize using an292
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example dataset of birds, flowerpiercers in the genus Diglossa (Fig. 7A), which have293

striking examples of color pattern repetition within and between species (Remsen Jr,294

1984; Vuilleumier, 1969) and colors outside of the human visual spectrum. Birds exhibit295

nearly all of the features which we have shown tend to foil k-mean clustering (Mason et al.,296

2021). The most common type of bird specimen preparation (aptly termed a ‘round skin’)297

is convex, with contours that photograph as color variation similar to Fig. 2A; different298

arrangements of feathers create textures and irregular shadows and shine as in Fig. 2B;299

and many bird species have finescale color pattern elements like speckles, wingbars, or300

facial markings which will usually be absorbed by larger color patches. These features301

make it difficult to combine reflectance spectra with useful color maps.302

We followed the same procedure as in example D to generate the color maps for the303

birds. To identify a universal color palette to which bird images should be mapped,304

we measured reflectance spectra in five locations on the breast of each bird and grouped305

spectra with similar shapes as calculated using the peakshape function in pavo (Fig. 7B).306

In this case, because the reflectance spectra indicated that the navy blue color (color307

center 5) had higher UV reflectance than the black (color center 1), we kept these as308

separate color centers although they were very similar in RGB color—an example of309

using outside information to inform our choice of color palette. We processed bird images310

through patternize and recolorize as in Fig. 5 to control for shape variation, then311

converted the color maps to classify objects using recolorize classify (Fig. 7C).312

To combine these color maps with spectral data, we first calculated aggregate re-313

flectance spectra using procspec and aggspecec in pavo, resulting in 5 reflectance curves314

corresponding to the 5 color centers in the color maps. We used this reflectance data to315
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Figure 7: Combining color maps with spectral data in pavo. A: Original images of
Diglossa spp. birds. B: Reflectance spectra used to determine the five color classes for
color segmentation (black, gray, yellow, brown, and blue). C: Color maps (generated in a
similar manner to Fig. 6) mapping each bird breast to one of the five color classes. D-E:
Comparison of mean luminance and saturation results using image data and spectral data.
Blue lines are linear regression fits. F-G: Comparisons of Endler’s adjacency analysis as
performed in pavo for a dichromat and a tetrachromat (Maia et al., 2019; Endler, 2012).
The red dashed line represents a slope of 1 and intercept of 0; points on this line would
indicate identical values for the two visual systems. Chromatic boundary strength = color
contrast, achromatic boundary strength = luminance (brightness) contrast. Specimens
from left to right: row 1 LSUMZ 85389, LSUMZ 90468, LSUMZ 91068, LSUMZ 98863,
LSUMZ 98873; row 2 LSUMZ 33373, LSUMZ 33374, LSUMZ 38886, LSUMZ 79148,
LSUMZ 80877; row 3 LSUMZ 189657, LSUMZ 196409, LSUMZ 228146, LSUMZ 229100,
LSUMZ 229115; row 4 LSUMZ 125407, LSUMZ 129286, LSUMZ 163814, LSUMZ 174295,
LSUMZ 179214.

generate visual models and color distance objects using the vismodel and coldist func-316

tions from the pavo package (Maia et al., 2019), here focusing on visual models for a317

UV-sensitive tetrachromat (bluetit, as provided by pavo) and a dichromat (dog).318

We then combined spectral and spatial data by running the adjacent function in319

pavo, which performs Endler’s adjacency analyses, using these visual models and our320

recolorize-generated color maps. For comparison, we also ran adjacency analysis using321

the intrinsic RGB colors of the actual color maps, rather than spectral data, which is a322
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simplifying assumption made by the recolorize adjacency function in the absence of323

spectral data.324

We found that the mean luminance and saturation calculated using the intrinsic RGB325

colors were tightly correlated with these values as calculated using reflectance spectra (R2326

= 0.919 and 0.929, respectively), although the scales of these values were quite different for327

the two methods (Fig. 7D-E). When comparing between dichromatic and tetrachromatic328

visual systems, we found that the chromatic (color contrast) boundary strength scores329

differed substantially, with the tetrachromatic visual system having universally higher330

chromatic boundary strength scores. Interestingly, the achromatic (brightness contrast)331

boundary strength scores were nearly identical for the two visual systems (Fig. 7F-G).332

This example is undoubtedly the most complex of those we present here. We used333

patternize, recolorize, and pavo to combine spatial and spectral data, analyzing334

images which pose many of the problems that traditional segmentation methods can-335

not resolve, and calculating biologically relevant metrics for two different visual models.336

Recolorize worked well for classifying and grouping color patches both within and be-337

tween species, without the loss of the fine scale pattern information (e.g., the chest bands338

and mustaches), thus addressing many of the ‘signal-to-noise’ problems that have been a339

bottleneck for color pattern analysis in birds. Additionally, by integrating recolorize340

with pavo we were able to successfully combine spectral data with visual photographs to341

get a more accurate representation of colors with reflectance in the UV range, a critical342

component to quantifying color data for taxa like birds which detect colors outside of the343

human visual range.344
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Figure 8: Color maps for Chrysochroa spp. beetles, generated by the same series of
recolorize calls for different images. A: Original images. The white spot on each beetle
is where the insect pin was masked with transparency before loading the images into the
package. B: Resulting color maps, which range from 4 to 6 colors for each image in this
case. Image sources: Nathan P. Lord.

Example F: Batch processing with different colors345

Our final example illustrates an aspect of the recolorize workflow which works well for346

batch processing an image set that does not have a shared color palette. When dealing347

with a set of images where not each image can be mapped to the same set of colors–for348

example, a comparative dataset consisting of images of different species–researchers must349

either fit the same number of color centers to each image, resulting in over- and under-350

clustered images (see Fig. 2D) or choose a different number of colors for each individual351

image, meaning they have to invent some criterion for determining how many colors352

to assign each image. In practice, these criteria tend to be fairly subjective. Because353

the automatic recolorize functions operate by grouping colors together by similarity,354

applying the same series of recolorize calls to each image produces a different number355

of color centers depending on the image (Fig. 8).356
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Figure 9: Comparison of recolorize with three other methods for organismal color seg-
mentation. A: Original image. B: Recolorize output as achieved in Fig. 4. C: One run
of k-means clustering output. D: Output from receptor noise-limited (RNL) clustering
as implemented by the QCPA framework in micaToolbox (van den Berg et al., 2020;
Troscianko and Stevens, 2015). E: Watershed segmentation of three colors in patternize
(separate layers are superimposed). F: Simple linear iterative clustering with affinity
propagation (SLICAP) segmentation as described by Zhou (2015) and implemented by
Lampros (2021)

.

These color maps are imperfect: each beetle in the dataset has a different relationship357

between texture, shine, and color, which cannot easily be automated in the same call.358

The initial recolorize call could be used to determine the color classes for each image,359

but users should still go through color maps and make individual modifications as-needed.360

Comparison with existing methods361

Although k-means clustering is the most widely used method for color clustering in im-362

ages, here we compare recolorize to a number of other methods that researchers might363

encounter when searching for color segmentation solutions (Fig. 9). We summarize the364

major differences in color clustering methods discussed in this paper in Table 1. In com-365

parison to the other methods, because recolorize includes tools for modifying output that366

is close to satisfactory, users do not need to find a single solution that will perfectly seg-367

ment all of their images; they can modify output on a per-image basis, the steps of which368

are all recorded in the recolorize object for repeatability (see below section on object369
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structure).370

Receptor noise-limited clustering371

The ImageJ plugin micaToolbox (Troscianko and Stevens, 2015) and accompanying372

Quantitative Color Pattern Analysis toolkit (van den Berg et al., 2020) are among the373

most comprehensive tools widely available to biologists for modeling non-human visual374

systems. One option in the toolkit is receptor noise-limited (RNL) color clustering,375

which uses perceptual thresholds of a specified visual system to cluster an image based376

on whether a given viewer could distinguish colors at a specified viewing distance. To377

run RNL clustering, we used a camera RAW image of the snake that included a 40%378

reflectance standard, as well as calibrating the camera using a separate image of an Xrite379

Colorchecker. We then generated a multispectral image, used region-of-interest (ROI)380

masking to analyze only the snake, performed acuity correction for a viewing distance381

of one meter, converted to a cone-catch image (we chose a human model for comparison382

with other methods), ran the RNL ranked filter, and finally RNL clustering (van den Berg383

et al., 2020; Caves and Johnsen, 2018). The resulting image includes some background384

(despite the ROI implementation) and segments the snake itself into 19 color clusters.385

With ROI masking, processing this image took three minutes on a personal laptop with386

16Gb RAM (not accounting for user error); without ROI masking, the image took over387

20 minutes to process.388

Watershedding in patternize389

The watershedding algorithm as implemented in patternize is intended to solve prob-390

lems of shine and texture on an image. Although the watershed output (as implemented391

by the patLanW function in patternize) is usable, it requires repeated user input (clicking392
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on the original image to set seeds for each discrete color patch, e.g. every black segment393

of the snake) for each color cluster, and in this case the results still do not completely394

solve the specular reflectance problem (Fig. 9D), meaning in this case the method is both395

less effective and more subjective.396

General color segmentation algorithm397

We also attempted to use an algorithm for general color segmentation of images as398

described by Zhou (2015), termed simple linear iterative clustering with affinity propa-399

gation (SLICAP). Given that this method also does not require any a priori specification400

of the expected number of colors, it performs remarkably well (producing 6 color clusters401

not counting the background), but still results in many color clusters with no easy way402

for users to modify the output.403

Package installation, structure, and input404

Installation405

The most recent stable release version of the package can be installed from the Compre-406

hensive R Archive Network (CRAN) from R using the install packages() function:407

1 install.packages (" recolorize ")408

The development version of the package can be installed from GitHub (https://github.409

com/hiweller/recolorize) using the devtools package (Wickham et al., 2021):410

1 devtools :: install_github("hiweller/recolorize")411
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The recolorize class412

The recolorize package mostly works with R objects of S3 class recolorize, which are413

output by the base functions and which most functions in later steps of the workflow will414

take in as an argument. Objects of this class are lists with the following elements:415

1. original img: The original image, stored as a raster array (essentially a matrix of416

hexadecimal codes).417

2. centers: A matrix of color centers, listed as one RGB triplet per row in a 0-1418

range. These are usually the average color of all pixels assigned to that color class419

unless otherwise specified by the user.420

3. sizes: The number of pixels assigned to each color class.421

4. pixel assignments: A matrix of color class assignments for each pixel. For exam-422

ple, all pixels coded as 1 in the pixel assignments matrix are assigned to color423

class 1 (which will be row 1 of centers).424

5. call: The set of commands that were called to generate the recolorize object.425

The call is especially helpful for reproducibility, because it stores every step used to426

generate the current segmentation (any function that returns a recolorize class object427

will modify the call element accordingly).428

Discussion429

Fully automated methods rarely work all of the time, and are difficult to modify, while430

fully manual methods are subjective and time-consuming. Recolorize strikes a balance431
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recolorize
k-means

clustering
RNL

clustering
Watershed SLICAP

Images from multiple sources Y Y Y Y
No calibration required Y Y Y
Automated clustering options Y Y Y
Tools for modifying output Y
Deterministic Y Y Y
Batch processing (diff. colors) Y Y Y Y
Batch processing (same colors) Y + Y
Export directly to other methods Y
Supports transparencies Y +
Multispectral images Y
Non-human visual systems Y
Graphical user interface Y Y

between these two extremes by providing an effective color segmentation algorithm along432

with tools for modifying and exporting the resulting color maps. In the simplest case,433

users only have to tinker with the number of initial color centers in the first step and the434

similarity cutoff in the second step. Even in more complicated cases, where color maps are435

modified individually, these steps are recorded in the call element of the recolorize ob-436

jects. This design allows recolorize to handle a much wider range of color segmentation437

problems than it could otherwise.438

Comparison and complementarity with existing methods439

Most of the methods to which we compared recolorize are implemented in existing440

pipelines, and are therefore not the sole focus of the software or method in question. For441

example, the RNL clustering output in Fig. 9C requires specific calibration equipment,442

knowledge of visual system parameters, and ten processing steps to achieve a 19-cluster443

color map. The results are accurate to human perception: portions of the snake are dif-444

ferent colors due to shine and 3D contour, which would be detectable to a human viewer.445

However, the extra equipment and number of steps required for processing are prohibitive446
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given the research context. This would restrict the analysis to images taken using the447

same camera and which include a relatively expensive calibration standard, and while the448

results are highly informative for visual perception, users would have to do substantial449

modification to measure, for example, the proportion of black on the snake’s body, or450

the length of the border shared between the red and white patches, since each of these451

is broken up into multiple clusters which sometimes span more than one color. This is452

because the QCPA workflow in general is concerned with simulating non-human visual453

systems, which requires a higher standard of calibration and more carefully controlled454

data collection.455

Because recolorize is a dedicated toolbox for organismal color segmentation, it is456

designed not as a replacement for existing pipelines but as a complement to them. By457

making color segmentation more feasible and providing export options to a variety of458

formats for multiple user cases, recolorize makes other color analysis tools easier to use459

for a wider variety of projects and images.460

Current and potential applications for recolorize461

Currently, recolorize works with PNG and JPEG images, and does not support less462

common (but more information-rich) formats, such as the multispectral images gener-463

ated with micaToolbox (van den Berg et al., 2020) or Image Calibration Analysis Tool-464

box (Troscianko and Stevens, 2015). However, the underlying package structure can be465

extended to other formats as the central algorithms of the package can be modified to466

images with more than 3 channels, and intermediate steps are exported as their own467

functions (in addition to being called on by recolorize()). For example, we recently468
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used recolorize functions for color segmentation of 3D objects (STL files output from469

photogrammetry; Christopher Taylor, pers. comm.). Such future developments, often470

driven by specific user cases, will be made available on GitHub.471

The recolorize toolbox can be used to process a high number of images more con-472

sistently than existing manual or simple automated methods, but its output is imperfect.473

Users are invariably going to have to tweak problem images or do some things manually474

if they want 100% efficacy, and will otherwise have to accept some amount of error. In475

some ways this is about choosing your source of error: computer or user?476

The relative ease with which we can combine color maps with spectral data (per ex-477

ample E) also suggests interesting possibilities. Even in this reduced example, when we478

compare chromatic and achromatic boundary strength for the tetrachromat and dichro-479

mat, we see that chromatic boundary strength (color contrast) is measurably different480

between the two visual systems (generally higher for the tetrachromat than the dichro-481

mat), which we would expect. However, we also see that the two visual systems are very482

closely matched in achromatic boundary strength (brightness contrast), which suggests483

that achromatic boundary strength depends less on particular properties of a given visual484

system than chromatic boundary strength. When we measured mean luminance and sat-485

uration from reflectance spectra versus intrinsic RGB colors, we found tight correlations486

(but different scales) for the two sets of measurements. In this case, because the Diglossa487

dataset contains high-quality images acquired under consistent settings, it would not be488

wildly unreasonable to use the intrinsic RGB colors if spectral data were unavailable.489

This approach must be used with caution, especially if researchers know of (or are un-490

certain about) a substantial UV-reflective component of the color patterns in question,491
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Figure 10: Different color maps generated for the same image. Solution depends on the
use case. Image: Nathan P. Lord.

or if the images are from different sources.492

A last possibility would be to use recolorize to generate a training set for a machine493

learning approach. These generally have the problem, especially in fields like organismal494

biology, that the amount of training data and expertise required to get a sufficiently495

trained algorithm is actually more effort than just doing everything manually (given that496

it usually has limited applicability). Performing the segmentation in recolorize might497

make it easier to generate that training data so this solution could be used for more498

specific problems.499

The ’correct’ color map depends on the question500

Image segmentation is a classically difficult problem in computer vision, especially be-501

cause there is no single ‘correct’ answer for appropriate color pattern segmentation. A502

color map is by definition a simplified representation of an actual color pattern, so the503

correct solution is not intrinsic to the image, but depends on the user’s question. For504

example, in Fig. 10, we illustrate two possible color segmentations for our original image505

of an iridescent jewel beetle (Chrysochroa fulgidissima). In Fig. 10B, we show a more506
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complex, 8-color segmentation, which retains the brighter orange on the borders of the507

red stripes, and fits different shades of red and blue to reflect differences in viewing angle508

of the iridescent elytra. This color map would be appropriate for answering questions of509

visual contrast and perception, since it retains more properties relevant for visual stimuli.510

In Fig. 10C, we show a much simpler 2-color segmentation, consisting only of red and511

green. This is not a very visually faithful representation of the original image, but if512

we wanted to measure the location and distribution of green iridescence across beetle513

taxa, this map would be much more helpful to us than that in Fig. 10B. We end on this514

example to emphasize that there is no universal solution for the problem of biological515

color segmentation: there is no method so comprehensive that it absolves researchers of516

posing specific questions.517
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