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Abstract

Color is an important source of biological information in fields ranging from
disease ecology to sexual selection. Despite its importance, most metrics for color
are restricted to point measurements. Methods for moving beyond point measure-
ments rely on color maps, where every pixel in an image is assigned to one of a set
of discrete color classes (color segmentation). Manual methods for color segmen-

tation are slow and subjective, while existing automated methods often fail due to
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biological variation in pattern, technical variation in images, and poor scalability
for batch clustering. As a result, color segmentation is the common bottleneck
step for a majority of existing downstream analyses. Here we present recolorize,
an R package for color segmentation that succeeds in many cases where existing
methods fail. Recolorize has three major components: (1) an effective two-part
clustering algorithm where color distributions are binned and combined according
to perceived similarity in a frequency-independent manner; (2) a toolkit for minor
manual adjustments to automatic output where needed; and (3) flexible export
options. This paper illustrates how to use recolorize and compares it to existing
methods, including examples where we segment formerly intractable images, and

demonstrates the downstream use of methods that rely on color maps.

Introduction

Color is an important source of biological variation, and is an important trait in a wide
range of biological questions, ranging from sexual selection, camouflage, and animal com-
munication, to thermal physiology, disease ecology, development, and genetics (Bekker
et al., 1837; Bates, 1863; Poulton, 1890; Orteu and Jiggins, 2020; Hooper et al., 2020;
Van Belleghem et al., 2020). Despite their obvious importance in biology (e.g., signal
function, taxon identification, color production and variation), there is little consensus
about how to quantify and compare color patterns, even though this is a necessary first
step in testing most questions about them. Contrast this with, for example, geometric
morphometrics, a family of methods for quantifying variation in biological shape (Book-

stein, 1996). Researchers have reached a general consensus about how to quantify and
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12 compare morphology (Klingenberg, 2011; Adams and Otarola-Castillo, 2013; Olsen and
13 Westneat, 2015). This consensus, coupled with the availability of a handful of software
1 tools for easily digitizing specimens, has led to a marked increase in both the number
15 of studies that use geometric morphometrics and the insights resulting from this work
16 (Polly et al., 2013; Adams et al., 2004; Lawing and Polly, 2010). There is no such set of
17 consensus methods for measuring variation in biological color.

18 Partly, lack of consensus is inevitable—color patterns are multidimensional and receiver-
19 dependent, so variation can come from a wide range of biological and technical sources
20 (this true to some extent for morphology, but at least this variation all exists in the same
2 three dimensions). Individual organisms might vary in the location, arrangement, and
2 intensity of their color pattern elements; the optical physical properties of those patterns
23 (pigmentary or structural); and the surface topology and 3D morphology of the organism
a itself. Even if these sources of variation are well-defined, the ways in which we detect and
»s  record this information can introduce noise and error.

2 Color pattern data is usually measured from images captured through digital sensors
2 constructed from human-centric visual system sensitivities, which can (and do) vary from
;s camera to camera. The colors reflected by a surface also depend on the available light,
2 whether natural or artificial, which varies in emission output, intensity, and direction,
2 all of which will affect how light reflects off of a given surface (with its own material
a properties) (Johnsen, 2012). Given these constraints, it is not surprising that universal
2 methods for measuring color patterns in a consistent and repeatable way have remained
;3 elusive. How do we meaningfully measure the difference between organisms that may not

s have homologous color pattern elements? What if the images were taken with different
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Figure 1: Color map example made with recolorize. A: Original image of a beetle,
Chrysochroa corbetti. Limbs, antennae, and insect pin have all been masked. B: Color
map, where each pixel has been assigned to one of five color classes. C: The five color
classes displayed as a color palette; in this case the displayed colors of the palette (the
color centers) represent the average red-green-blue (RGB) color of all pixels assigned to
that class. D: A representative section of the color map as a numeric matrix: each pixel is
assigned to a color class, so that we can refer to the entirety of color patch 2 by indexing
all values of the color map equal to 2, which is associated with a particular color (in this
case, green). E: Color maps are a major bottleneck step of color pattern quantification.
The boxes on the left list some fields for which color pattern is an important trait; on the
right are commonly used metrics or methods for quantifying color pattern, all of which
require color maps as a starting point. Original image: Nathan P. Lord. Citations: 1.
Chan et al. (2019); 2. Van Belleghem et al. (2018); 3. Maia et al. (2019); 4. Endler
(2012); 5. Endler et al. (2018); 6. Mason et al. (2021); 7. van den Berg et al. (2020).
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55 lighting conditions and cameras? What do we compare? How much can we reduce
36 this dimensionality and still retain the relevant variation—assuming we even know what
s constitutes relevant variation?

38 Plenty of available methods exist for measuring particular aspects of color patterns,
3 but most of these are specific to a system or question. Researchers often have no choice
w0 but to build a new method specific to their problem (Caves and Johnsen, 2018; Valcu and
s Dale, 2014; Gawryszewski, 2018; Chan et al., 2019; van den Berg et al., 2020; Troscianko
2 et al., 2017; Yang et al., 2016; Van Belleghem et al., 2018; Maia et al., 2019; Weller
i3 and Westneat, 2019; Hooper et al., 2020; Valvo et al., 2021; Endler et al., 2018; Endler,
s 2012; Ezray et al., 2019). This sets an unreasonably high barrier to entry for measuring
ss color patterns: developing methods is time-consuming and measurements are difficult to
s compare.

7 Some of the most frequently used and promising methods for quantifying color pat-
s tern variation are also the most flexible, in that they can be applied to a wide variety
s of organisms and pattern types. Well-known examples include Endler’s adjacency and
so boundary strength metrics (Endler, 2012; Endler et al., 2018), which emphasize contrast
st between adjacent color patches; the patternize package (Van Belleghem et al., 2018),
2 which quantifies color pattern variation essentially using a sampling grid); the micaTool-
53 box suite of tools for multispectral image analysis (van den Berg et al., 2020); and the
s« matching of spatial image data with spectral reflectance data in the pavo package (Maia
ss et al.,, 2019). Most of these metrics require first clustering the image into discrete color
ss patches (making “color maps”) and then measuring how various aspects of these patches

sv vary across images (Fig. 1). Essentially, they start from the simplifying assumption that
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s a color pattern can be discretized into regions of uniform color, and then compare the
so shape and color of those regions in some biologically relevant way.

60 Generating color maps from digital images—in a reproducible and efficient way—has
s proven to be the bottleneck step for these methods, especially across sets of images
e (Fig. 1E). Image segmentation in general is a notoriously complex problem, compounded
&3 here by the fact that the number and boundaries of color patches are often ambiguous;
s« there isn’t necessarily a ‘correct’ answer, just one appropriate to the biological question.
s An image without some kind of segmentation, however, is little more than a pile of
e pixels; segmentation provides labels to groups of pixels so that we can refer to (and
&7 measure) particular regions. Researchers typically choose between automated methods,
s¢ which require little or no user input but are difficult to modify when they do not work
o well, and manual segmentation, which is typically slow and subjective (Hooper et al.,
w0 2020).

7 The most widely used automated method is k-means clustering (Hartigan and Wong,
22 1979), which has been implemented in several R packages for color pattern analysis
7z (Weller and Westneat, 2019; Van Belleghem et al., 2018; Maia et al., 2019), making it
72 more accessible than other approaches. Users specify only the expected number of color
7 classes, and the k-means algorithm attempts to find the set of color classes that minimize
7 within-cluster variances. While this is a relatively intuitive and flexible approach in

77 theory, in practice k-means clustering suffers from a number of issues:

78 1. In trying to minimize variances, k-means tends to over-cluster large color patches
70 and fails to differentiate small, colorful patches, meaning it often misses details and
80 is highly sensitive to shadows, 3D contours, texture, and specular reflections (all
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frequent features of organism photographs) (Fig. 2A-B).

2. Users can’t compare images that were taken from different sources or under differ-
ent lighting conditions, because they can produce very different color distributions

(Fig. 2C) that k-means clustering can’t correct for.

3. Users have to specify the number of color classes, which is subjective, and for

comparative datasets may not be the same for all species (Fig. 2D).

4. The implementation of the algorithm is usually heuristic, not deterministic. The
same image will result in different color clusters depending on the run, and the
color classes themselves are returned in an arbitrary order. This makes it difficult
to perform batch processing when we want to map a set of images to the same set of
colors, because yellow might be color 1 in our first image and color 2 in our second
image (Fig. 2E), and the colors will be in a new random order every time we rerun

the analysis unless users set a particular seed at the start of a clustering session.

There are other methods for performing color segmentation, but they share many of
the same weaknesses as k-means or are otherwise too limited in scope to be as easily
generalized to a range of problems. Edge detection methods (e.g. watershedding, Otsu
algorithm, Canny operator) use spatial information, which can resolve glare and noise
to some extent, but only work well for segmenting color patches with sharp boundaries
and often treat textures like scales as edges. The receptor-noise limited (RNL) clustering
implemented in the Quantitative Color Pattern Analysis toolbox for ImageJ (van den
Berg et al., 2020), which uses properties of the visual system to segment colors based on

perceived color differences, works well under specific assumptions. However, it addresses
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Figure 2: Examples of images and image sets for which k-means clustering is inade-
quate for color segmentation. A: This angelfish (Pygoplites diacanthus) has four color
classes: yellow, black, blue, and white. K-means achieves lower within-cluster variances
by assigning a light and dark yellow color center when we fit n = 4 centers. B: A coral
snake (Micrurus sp.) with three color classes: red, white, and black. Specular highlights
(shine) and scale texture result in shiny areas of the snake being assigned to the white
color center. C: The same beetle specimen ( Chrysochroa mniszechii) photographed using
diffuse (upper row) and direct (lower row) light. Fitting n = 2 color centers using k-means
clustering produces different color centers and different color patch geometries. D: Batch
processing with the same set of color classes. All of these Polistes fuscatus wasp faces
share a palette of three colors (yellow, reddish brown, and dark brown), but fitting n=3
color centers for each image using k-means clustering results in subtly different colors
for each image, and they are returned in an arbitrary order. E: Batch processing for
image sets with different types and numbers of colors. We chose to fit n = 4 colors for
each beetle (Chrysochroa spp.) in this 5-species dataset, resulting in some images being
over-clustered and some being under-clustered. Image sources: Jack Randall (A), Alison
Davis-Rabosky (B), Nathan P. Lord (C & E), James Tumulty (D).
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only a subset of biological questions about color pattern variation, and as a result has
more stringent requirements for data and equipment (and thus a higher barrier to entry).
We could also find no dedicated tools specifically for making color maps: most methods
provide a function or functions for performing color segmentation before running the rest
of the analysis, so users who need color maps for any other purpose not yet implemented
in these tools need sufficient coding expertise to extract them.

The color segmentation problem has proven to be so intractable that quantitative
color pattern analysis has mostly been limited to organisms with brightly colored, highly
contrasting color patterns on relatively flat and untextured surfaces. This largely limits
us to some species of butterflies and poison frogs. As a result, our ability to generate
questions and hypotheses about color pattern evolution have far outpaced our ability to
quantitatively analyze them.

The recolorize package is designed to address this problem so that downstream color
pattern analysis tools can be used for a wider variety of contexts. We aim to make the
package easy to use, easy to modify, and easy to export to other packages and pipelines.
The color segmentation options are fast and deterministic, have been tested across a
wide variety of images, organisms, and use cases, and are reasonably straightforward in
their structure. The general process is: 1. initial clustering step; 2. refinement step; 3.
optional semi-manual edits; 4. export to desired format. The resulting toolbox is capable
of handling a wide range of images, and has been used successfully in several contexts
where k-means clustering has not worked. In order to illustrate that functionality, this
paper will go over how to use recolorize to generate usable color maps for all of the

examples which fail with k-means clustering in Fig. 2.
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Glossary

Terms used for each of the components of this process vary somewhat in the literature;

here we define what we mean in this paper (and in the package) for reference.

1. Color pattern: Static visual appearance of the sender, e.g. how colors are arranged

on the organism, as captured by a single image (or 3D surface).

2. Color class: A specific ID (usually numeric) to which portions of the color pattern

are assigned.

3. Color center: The computer-readable color of the color class, typically expressed

as an RGB triplet.

4. Color patch: All the portions of a color pattern which are assigned to the same

color class.

5. Color space: The coordinate system (typically three-dimensional) used to repre-

sent the color of each pixel, and within which color distances are calculated.

6. Color segmentation: The process of segmenting an image into discrete color

patches.

Results

Code and images for running each of these examples is provided at https://github.com/
hiweller/recolorize_examples. All examples are deterministic, meaning that the code
as written will produce the same results every time it is run, regardless of the R seed or
computer.

10
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Preparing images for recolorize

Many users of recolorize will already have images, and the package is fairly forgiving
of variation due to lighting, texture, or arrangement (e.g., of feathers on a bird) since
we include tools for making post-hoc adjustments. In brief, users should try to control
for as many sources of variation as possible: use the same camera, lighting, background,
resolution, positioning, and color standard for the entire dataset.

The most important pre-processing step for using recolorize is background masking,
for which there are many existing tools available. The package does not perform back-
ground masking or image segmentation: instead, users should mask out the background
of the image using transparencies (e.g. using GIMP or Photoshop). Recolorize can
also ignore a background of uniform color by specifying a range of RGB colors. There
are several tools available for automatic background masking, such as Sashimi (Schwartz
and Alfaro, 2021) or Batch-Mask (Curlis et al., 2021), which could be used for large
image sets. The exception is for the patternize workflows we show in examples E and
F below, where the landmark alignment performs automatic background masking on

unmasked images.

Examples
Example A: Main recolorize workflow

The major problem in Fig. 2A is that by fitting n = 4 color centers for the angelfish
image, k-means clustering achieves lower within-cluster variances by assigning separate
light and dark yellow color centers (since these take up a greater proportion of the image)

and grouping the white pixels into the light yellow color class, despite the fact that these

11
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Figure 3: Successful segmentation of the angelfish (Pygoplites diacanthus) image from
Fig. 2A, illustrating the core steps of the package. A: First, the pixels of the original
image are binned by their coordinates in each color channel using a user-selected number
of bins per channel using the recolorize function. In this case, only 9 of 27 bins had
pixels assigned to them. B: These initial bins are combined based on perceived similarity
using recluster by combining either bins that have a Euclidean distance less than the
user-selected cutoff (here, cutoff = 50), or by specifying a final number of colors. The
original image is then re-fit using the resulting set of color centers. C: The resulting
color map is exported to any of a number of formats. Here, individual color patches are
exported as binary masks using the splitByColor function.

12
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colors are less similar than the dark and light yellow (as indicated by their proximity in
3D color space). This is a common issue with k-means clustering that is easily resolved
by the basic recolorize workflow, so we will use this image to illustrate these steps in
detail.

The core of the recolorize package is a two-step process for color segmentation:
first, each pixel in the image is assigned to a region based on ranges defined for each
color channel, resulting in what is essentially a 3D histogram of color distribution for
the image (Fig. 3A). This is accomplished with the recolorize function, using a user-
specified number of bins per channel, where the total number of resulting color centers
will be n3 for n bins per channel (here, we used 3 bins per channel resulting 3% = 27
possible color regions, only 9 of which contained pixels from the fish image). The color
center of each region is then calculated as the average value of all of the pixels assigned
to that region (or the geometric center if no pixels were assigned to it). This step requires
no distance calculations or color center estimations because pixels are binned into pre-
existing regions. As a result, this step is relatively fast and deterministic, and serves to
reduce potentially millions of colors in the original image to typically only a few dozen,
depending on the user’s specification of how finely to bin them.

Second, these initial color centers are reduced according to some rule, such as com-
bining similar color centers or dropping the smallest color patches. The most generally
effective function for this step is the recluster function, which calculates the Euclidean
distance between all pairs of color centers to which any pixels were assigned. Color cen-
ters are then clustered by similarity using hierarchical clustering (R Core Team, 2022),

and users provide either a similarity cutoff which determines which colors to combine or

13


https://doi.org/10.1101/2022.04.03.486906
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486906; this version posted July 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

191

192

193

194

195

196

197

198

199

201

202

203

204

205

206

207

209

210

211

212

made available under aCC-BY-NC 4.0 International license.

a final number of expected colors. In Fig. 3B, we used a cutoff of 50 (Euclidean distance
in CIE Lab color space) to combine the 9 initial color centers into 4 consensus color
centers. New color centers are calculated as the weighted average of the original color
centers being combined, with color patch size as the weights. The recluster function
then refits the original image with these new color centers.

In short, the first step reduces the image to a manageable number of colors, after which
more computationally intensive steps (such as calculating a pairwise distance matrix) can
be performed deterministically. Because they are also not density dependent, this two-
step method also better preserves small but distinct color patches, such as the white patch
on the ventrum of the fish image. Finally, the color map can be exported to a variety of
formats and packages. In Fig. 3C, we export the color map as a stack of binary masks (0
= color absence, 1 = color presence), but the later examples will illustrate functions for

exporting to specific packages.

Example B: More complex segmentation

The coral snake from Fig. 2B represents a more complex example, because the specular
highlights created by the shiny scales of the snake appear white regardless of their loca-
tion on the snake (so they cannot be combined with appropriate color centers based on
similarity). Instead, we first blur the image to reduce minor color variation due to the
scale texture using blurlmage, then produce an initial color map using recolorize and
recluster as in the prior example, resulting in four color centers (Fig. 4). Note that color
center 1 (a medium gray) contains most of the specular highlights; remaining portions

of the highlight have been assigned to color center 4. This is a fairly common problem

14
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Figure 4: Successful segmentation of the coral snake (Micrurus sp.) image from Fig. 2B.
This image requires more steps to deal with color variation due to scales and specular
highlights: first we blur the image using blurImage to mitigate the scale texture, then
call recolorize (2 bins per channel = 2% = 8§ color centers) and recluster (cutoff = 20)
to perform segmentation. The mergeLayers function allows us to specifically combine
color centers 1 and 2 (becoming the new color class 3), which eliminates much but not all
of the specular highlights. Finally, the absorbLayer function eliminates the remaining
specular highlights by absorbing isolated speckles from patch 2 into the surrounding color
patches.

in color segmentation output: the method mostly works, but has small problems that
render the color map ineffective, with no easy way for users to modify it. For this rea-
son, the recolorize package also includes tools for modifying color maps in specific,
reproducible ways. First, we can combine color centers 1 and 2 using the mergeLayers
function. Second, to clean up the small areas of highlight which were assigned to color
center 4, we use the absorbLayer function: this targets areas of a color patch within a
user-specified area and/or location boundary, and changes the color of each separate area
to that of the color patch with which it shares the longest border, effectively “absorbing”

stray speckles.
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Diffuse light

Direct light

Image differences

J

Figure 5: Using recolorize to recover the same color pattern information from photos
with different lighting conditions. Top row: steps for producing a color map for the
diffuse light image. Middle row: steps for the direct light image. Bottom row: differences
between the images (calculated using the imDist function).
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Example C: Lighting variation

Although the ideal image set is acquired using the same camera, lighting conditions, and
color standards, users will often have images accumulated from a range of sources where
these variables cannot be controlled, e.g. images taken from the iNaturalist database
(Nugent, 2018) or by different lab members over several years of a field season. Although
the actual color of the image cannot be used for analysis, these images still contain
information: we can measure the spatial distribution of colors to quantify color pattern
variation, e.g. with patternize (Van Belleghem et al., 2018).

Fig. 2C provides a good example of this problem: we know that these images contain
identical color pattern information (since this is the same specimen), but the colors
themselves vary from a purplish-blue under diffuse light to black with intense specular
highlights under direct light. Although k-means clustering produces a dark and a light
cluster for each image, the color centers themselves are not only quite different, but
the color patches are very different in shape due to the highlights. In this case, we
can use recolorize (following a similar procedure to that in Fig. 4) to correct for that
difference and produce two near-identical color maps from the two images, recovering the
same spatial information for the distribution of the light and the dark colors (Fig. 5).
Although even in this case the two final maps are not perfectly identical—the borders
between the light and dark patches differ slightly (Fig. 5, bottom right)—only 3,270 of

219,107, about 1.5%, of the pixels are assigned differently in each image.
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Example D: Pattern analysis with patternize

Users will often need to map each image in a dataset to the same color palette in order
to compare differences in color pattern distribution. The patternize package (Van Bel-
leghem et al., 2018) implements this approach: images are aligned to a common sampling
grid (a RasterStack) using image registration or landmarks, mapped to a common color
palette, and then analyzed with principal components analysis (PCA). This method is
probably the closest available equivalent to geometric morphometrics with color pattern
analysis, because the alignment step allows us to control for variation in shape, orienta-
tion, and size before analyzing variation in color pattern.

In practice, the most difficult step of using patternize is often the color segmenta-
tion. Like several other color analysis packages and tools, patternize mostly relies on
k-means clustering to extract color patches from images (especially for batch process-
ing), which can fail for any of the reasons outlined above. Instead, we can combine the
strengths of patternize and recolorize by using patternize to perform the image
alignment step and recolorize to do the color segmentation. Here we show a working
example using Polistes fuscatus wasp face images, a subset used with permission from
Tumulty et al. (2021). We landmarked the original images (Fig. 6A) in ImagelJ, using a
simple scheme of only 8 landmarks, along with masking polygons to restrict our analyses
to the frons and clypeus of the head (Fig. 6B). These were passed through the alignlLan
function in patternize to produce a list of aligned RasterBrick objects. We converted
these to image arrays using the brick to_array function in recolorize, determined a
universal color palette using an initial color segmentation of all images (Fig. 5C), then

used the imposeColors function to map all aligned images to the same set of colors
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Figure 6: Process for combining recolorize and patternize to run a whole-color-
pattern principal components analysis (PCA). A: Original images of Polistes fuscatus
wasp faces, taken with the same lighting and camera conditions. B: Landmarking scheme
for alignment. C: Generating a universal color palette from color segmentation on individ-
ual images. D: Applying the universal color palette using the imposeColors function to
generate color maps. E: Color pattern PCA as generated by aligned, segmented images,
characterizing color pattern diversity among the wasp face images.

s (Fig. 5D). Finally, we converted these color maps back to patternize rasters using the
%6 recolorize_to_patternize function and used the patPCA function in patternize to per-
27 form a whole color pattern PCA (Fig. 5E). A complete version of this example—including

%8 step-by-step code to reproduce it and more detailed explanations—is available here:

=3

%0 https://hiweller.rbind.io/post/recolorize-patternize-workflow/.

=)
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a0 Example E: Spectral analysis with pavo

on Even under ideal circumstances (identical lighting and camera setups, color correction,
o camera calibration, etc), color images do not provide full-spectrum color information.
a3 Instead, they are limited to the visible spectrum and biased toward human visual sensi-
o tivities—any user interested in non-human visual perception cannot rely on traditional
s RGB image data alone to test their questions. One relatively cheap and accessible solu-
a6 tion to this problem is to combine color maps, which provide spatial information, with
arr - reflectance measurements taken with a point spectrometer.

278 Reflectance spectra provide a more objective measurement of color and capture wave-
20 lengths outside the range of human perception (ultraviolet, 300-400 nanometers) without
20 the expense of obtaining a UV photography set-up. If users have reflectance spectra,
21 the color standardization in their images is less important (so long as spectra can still
2 be accurately assigned to the corresponding color patch). For example, if photos and
3 reflectance spectra were obtained from the same individuals but under variable light-
84 ing conditions or camera setups, reflectance spectra could be used to retroactively apply
25 color-standardized data to the images. But because they are point measurements, spec-
6 tral data cannot provide spatial information. This is part of the workflow of the pavo
27 package (Maia et al., 2019), which enables users to combine spatial and spectral informa-
23 tion by providing visual models (based on reflectance spectra) in combination with color
20 maps. As with patternize, the pavo package relies primarily on k-means clustering to
20 do the color segmentation, meaning users encounter many of the pitfalls illustrated in
201 earlier examples.

202 Here, we illustrate the combination of reflectance spectra with recolorize using an

20
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example dataset of birds, flowerpiercers in the genus Diglossa (Fig. 7A), which have
striking examples of color pattern repetition within and between species (Remsen Jr,
1984; Vuilleumier, 1969) and colors outside of the human visual spectrum. Birds exhibit
nearly all of the features which we have shown tend to foil k-mean clustering (Mason et al.,
2021). The most common type of bird specimen preparation (aptly termed a ‘round skin’)
is convex, with contours that photograph as color variation similar to Fig. 2A; different
arrangements of feathers create textures and irregular shadows and shine as in Fig. 2B;
and many bird species have finescale color pattern elements like speckles, wingbars, or
facial markings which will usually be absorbed by larger color patches. These features
make it difficult to combine reflectance spectra with useful color maps.

We followed the same procedure as in example D to generate the color maps for the
birds. To identify a universal color palette to which bird images should be mapped,
we measured reflectance spectra in five locations on the breast of each bird and grouped
spectra with similar shapes as calculated using the peakshape function in pavo (Fig. 7B).
In this case, because the reflectance spectra indicated that the navy blue color (color
center 5) had higher UV reflectance than the black (color center 1), we kept these as
separate color centers although they were very similar in RGB color—an example of
using outside information to inform our choice of color palette. We processed bird images
through patternize and recolorize as in Fig. 5 to control for shape variation, then
converted the color maps to classify objects using recolorize classify (Fig. 7C).

To combine these color maps with spectral data, we first calculated aggregate re-
flectance spectra using procspec and aggspecec in pavo, resulting in 5 reflectance curves

corresponding to the 5 color centers in the color maps. We used this reflectance data to
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Figure 7: Combining color maps with spectral data in pavo. A: Original images of
Diglossa spp. birds. B: Reflectance spectra used to determine the five color classes for
color segmentation (black, gray, yellow, brown, and blue). C: Color maps (generated in a
similar manner to Fig. 6) mapping each bird breast to one of the five color classes. D-E:
Comparison of mean luminance and saturation results using image data and spectral data.
Blue lines are linear regression fits. F-G: Comparisons of Endler’s adjacency analysis as
performed in pavo for a dichromat and a tetrachromat (Maia et al., 2019; Endler, 2012).
The red dashed line represents a slope of 1 and intercept of 0; points on this line would
indicate identical values for the two visual systems. Chromatic boundary strength = color
contrast, achromatic boundary strength = luminance (brightness) contrast. Specimens
from left to right: row 1 LSUMZ 85389, LSUMZ 90468, LSUMZ 91068, LSUMZ 98863,
LSUMZ 98873; row 2 LSUMZ 33373, LSUMZ 33374, LSUMZ 38886, LSUMZ 79148,
LSUMZ 80877; row 3 LSUMZ 189657, LSUMZ 196409, LSUMZ 228146, LSUMZ 229100,
LSUMZ 229115; row 4 LSUMZ 125407, LSUMZ 129286, LSUMZ 163814, LSUMZ 174295,
LSUMZ 179214.

a5 generate visual models and color distance objects using the vismodel and coldist func-
a7 tions from the pavo package (Maia et al., 2019), here focusing on visual models for a
us UV-sensitive tetrachromat (bluetit, as provided by pavo) and a dichromat (dog).

310 We then combined spectral and spatial data by running the adjacent function in
»0 pavo, which performs Endler’s adjacency analyses, using these visual models and our
1 recolorize-generated color maps. For comparison, we also ran adjacency analysis using

322 the intrinsic RGB colors of the actual color maps, rather than spectral data, which is a
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simplifying assumption made by the recolorize_adjacency function in the absence of
spectral data.

We found that the mean luminance and saturation calculated using the intrinsic RGB
colors were tightly correlated with these values as calculated using reflectance spectra (R2
= 0.919 and 0.929, respectively), although the scales of these values were quite different for
the two methods (Fig. 7D-E). When comparing between dichromatic and tetrachromatic
visual systems, we found that the chromatic (color contrast) boundary strength scores
differed substantially, with the tetrachromatic visual system having universally higher
chromatic boundary strength scores. Interestingly, the achromatic (brightness contrast)
boundary strength scores were nearly identical for the two visual systems (Fig. 7F-G).

This example is undoubtedly the most complex of those we present here. We used
patternize, recolorize, and pavo to combine spatial and spectral data, analyzing
images which pose many of the problems that traditional segmentation methods can-
not resolve, and calculating biologically relevant metrics for two different visual models.
Recolorize worked well for classifying and grouping color patches both within and be-
tween species, without the loss of the fine scale pattern information (e.g., the chest bands
and mustaches), thus addressing many of the ‘signal-to-noise’ problems that have been a
bottleneck for color pattern analysis in birds. Additionally, by integrating recolorize
with pavo we were able to successfully combine spectral data with visual photographs to
get a more accurate representation of colors with reflectance in the UV range, a critical
component to quantifying color data for taxa like birds which detect colors outside of the

human visual range.
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Figure 8: Color maps for Chrysochroa spp. beetles, generated by the same series of
recolorize calls for different images. A: Original images. The white spot on each beetle
is where the insect pin was masked with transparency before loading the images into the
package. B: Resulting color maps, which range from 4 to 6 colors for each image in this
case. Image sources: Nathan P. Lord.

Example F: Batch processing with different colors

Our final example illustrates an aspect of the recolorize workflow which works well for
batch processing an image set that does not have a shared color palette. When dealing
with a set of images where not each image can be mapped to the same set of colors—for
example, a comparative dataset consisting of images of different species—researchers must
either fit the same number of color centers to each image, resulting in over- and under-
clustered images (see Fig. 2D) or choose a different number of colors for each individual
image, meaning they have to invent some criterion for determining how many colors
to assign each image. In practice, these criteria tend to be fairly subjective. Because
the automatic recolorize functions operate by grouping colors together by similarity,
applying the same series of recolorize calls to each image produces a different number

of color centers depending on the image (Fig. 8).
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Original k-means RNL cIustermg Watershed SLICAP
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Figure 9: Comparison of recolorize with three other methods for organismal color seg-
mentation. A: Original image. B: Recolorize output as achieved in Fig. 4. C: One run
of k-means clustering output. D: Output from receptor noise-limited (RNL) clustering
as implemented by the QCPA framework in micaToolbox (van den Berg et al., 2020;
Troscianko and Stevens, 2015). E: Watershed segmentation of three colors in patternize
(separate layers are superimposed). F: Simple linear iterative clustering with affinity
propagation (SLICAP) segmentation as described by Zhou (2015) and implemented by
Lampros (2021)

These color maps are imperfect: each beetle in the dataset has a different relationship
between texture, shine, and color, which cannot easily be automated in the same call.
The initial recolorize call could be used to determine the color classes for each image,

but users should still go through color maps and make individual modifications as-needed.

Comparison with existing methods

Although k-means clustering is the most widely used method for color clustering in im-
ages, here we compare recolorize to a number of other methods that researchers might
encounter when searching for color segmentation solutions (Fig. 9). We summarize the
major differences in color clustering methods discussed in this paper in Table 1. In com-
parison to the other methods, because recolorize includes tools for modifying output that
is close to satisfactory, users do not need to find a single solution that will perfectly seg-
ment all of their images; they can modify output on a per-image basis, the steps of which

are all recorded in the recolorize object for repeatability (see below section on object
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structure).

Receptor noise-limited clustering

The ImageJ plugin micaToolbox (Troscianko and Stevens, 2015) and accompanying
Quantitative Color Pattern Analysis toolkit (van den Berg et al., 2020) are among the
most comprehensive tools widely available to biologists for modeling non-human visual
systems. One option in the toolkit is receptor noise-limited (RNL) color clustering,
which uses perceptual thresholds of a specified visual system to cluster an image based
on whether a given viewer could distinguish colors at a specified viewing distance. To
run RNL clustering, we used a camera RAW image of the snake that included a 40%
reflectance standard, as well as calibrating the camera using a separate image of an Xrite
Colorchecker. We then generated a multispectral image, used region-of-interest (ROI)
masking to analyze only the snake, performed acuity correction for a viewing distance
of one meter, converted to a cone-catch image (we chose a human model for comparison
with other methods), ran the RNL ranked filter, and finally RNL clustering (van den Berg
et al., 2020; Caves and Johnsen, 2018). The resulting image includes some background
(despite the ROI implementation) and segments the snake itself into 19 color clusters.
With ROI masking, processing this image took three minutes on a personal laptop with
16Gb RAM (not accounting for user error); without ROI masking, the image took over
20 minutes to process.

Watershedding in patternize

The watershedding algorithm as implemented in patternize is intended to solve prob-
lems of shine and texture on an image. Although the watershed output (as implemented

by the patLanW function in patternize) is usable, it requires repeated user input (clicking
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on the original image to set seeds for each discrete color patch, e.g. every black segment
of the snake) for each color cluster, and in this case the results still do not completely
solve the specular reflectance problem (Fig. 9D), meaning in this case the method is both
less effective and more subjective.

General color segmentation algorithm

We also attempted to use an algorithm for general color segmentation of images as
described by Zhou (2015), termed simple linear iterative clustering with affinity propa-
gation (SLICAP). Given that this method also does not require any a priori specification
of the expected number of colors, it performs remarkably well (producing 6 color clusters
not counting the background), but still results in many color clusters with no easy way

for users to modify the output.

Package installation, structure, and input

Installation

The most recent stable release version of the package can be installed from the Compre-
hensive R Archive Network (CRAN) from R using the install packages() function:

install.packages("recolorize")

The development version of the package can be installed from GitHub (https://github.

com/hiweller/recolorize) using the devtools package (Wickham et al., 2021):

4111 devtools::install_github("hiweller/recolorize")
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22 The recolorize class

sz The recolorize package mostly works with R objects of S3 class recolorize, which are
aa output by the base functions and which most functions in later steps of the workflow will

a5 take in as an argument. Objects of this class are lists with the following elements:

416 1. original_img: The original image, stored as a raster array (essentially a matrix of
a7 hexadecimal codes).

418 2. centers: A matrix of color centers, listed as one RGB triplet per row in a 0-1
410 range. These are usually the average color of all pixels assigned to that color class
420 unless otherwise specified by the user.

a1 3. sizes: The number of pixels assigned to each color class.

422 4. pixel_assignments: A matrix of color class assignments for each pixel. For exam-
423 ple, all pixels coded as 1 in the pixel_assignments matrix are assigned to color
424 class 1 (which will be row 1 of centers).

425 5. call: The set of commands that were called to generate the recolorize object.
426 The call is especially helpful for reproducibility, because it stores every step used to

27 generate the current segmentation (any function that returns a recolorize class object

w8 will modify the call element accordingly).

» D1iscussion

a0  Fully automated methods rarely work all of the time, and are difficult to modify, while
a1 fully manual methods are subjective and time-consuming. Recolorize strikes a balance
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k-means RNL

recolorize . . Watershed SLICAP
clustering clustering

Images from multiple sources Y Y Y Y
No calibration required Y Y Y
Automated clustering options Y Y Y
Tools for modifying output Y
Deterministic Y Y Y
Batch processing (diff. colors) Y Y Y Y
Batch processing (same colors) Y + Y
Export directly to other methods Y
Supports transparencies Y +
Multispectral images Y
Non-human visual systems Y
Graphical user interface Y Y

between these two extremes by providing an effective color segmentation algorithm along
with tools for modifying and exporting the resulting color maps. In the simplest case,
users only have to tinker with the number of initial color centers in the first step and the
similarity cutoff in the second step. Even in more complicated cases, where color maps are
modified individually, these steps are recorded in the call element of the recolorize ob-
jects. This design allows recolorize to handle a much wider range of color segmentation

problems than it could otherwise.

Comparison and complementarity with existing methods

Most of the methods to which we compared recolorize are implemented in existing
pipelines, and are therefore not the sole focus of the software or method in question. For
example, the RNL clustering output in Fig. 9C requires specific calibration equipment,
knowledge of visual system parameters, and ten processing steps to achieve a 19-cluster
color map. The results are accurate to human perception: portions of the snake are dif-
ferent colors due to shine and 3D contour, which would be detectable to a human viewer.

However, the extra equipment and number of steps required for processing are prohibitive
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given the research context. This would restrict the analysis to images taken using the
same camera and which include a relatively expensive calibration standard, and while the
results are highly informative for visual perception, users would have to do substantial
modification to measure, for example, the proportion of black on the snake’s body, or
the length of the border shared between the red and white patches, since each of these
is broken up into multiple clusters which sometimes span more than one color. This is
because the QCPA workflow in general is concerned with simulating non-human visual
systems, which requires a higher standard of calibration and more carefully controlled
data collection.

Because recolorize is a dedicated toolbox for organismal color segmentation, it is
designed not as a replacement for existing pipelines but as a complement to them. By
making color segmentation more feasible and providing export options to a variety of
formats for multiple user cases, recolorize makes other color analysis tools easier to use

for a wider variety of projects and images.

Current and potential applications for recolorize

Currently, recolorize works with PNG and JPEG images, and does not support less
common (but more information-rich) formats, such as the multispectral images gener-
ated with micaToolbox (van den Berg et al., 2020) or Image Calibration Analysis Tool-
box (Troscianko and Stevens, 2015). However, the underlying package structure can be
extended to other formats as the central algorithms of the package can be modified to
images with more than 3 channels, and intermediate steps are exported as their own

functions (in addition to being called on by recolorize()). For example, we recently
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used recolorize functions for color segmentation of 3D objects (STL files output from
photogrammetry; Christopher Taylor, pers. comm.). Such future developments, often
driven by specific user cases, will be made available on GitHub.

The recolorize toolbox can be used to process a high number of images more con-
sistently than existing manual or simple automated methods, but its output is imperfect.
Users are invariably going to have to tweak problem images or do some things manually
if they want 100% efficacy, and will otherwise have to accept some amount of error. In
some ways this is about choosing your source of error: computer or user?

The relative ease with which we can combine color maps with spectral data (per ex-
ample E) also suggests interesting possibilities. Even in this reduced example, when we
compare chromatic and achromatic boundary strength for the tetrachromat and dichro-
mat, we see that chromatic boundary strength (color contrast) is measurably different
between the two visual systems (generally higher for the tetrachromat than the dichro-
mat), which we would expect. However, we also see that the two visual systems are very
closely matched in achromatic boundary strength (brightness contrast), which suggests
that achromatic boundary strength depends less on particular properties of a given visual
system than chromatic boundary strength. When we measured mean luminance and sat-
uration from reflectance spectra versus intrinsic RGB colors, we found tight correlations
(but different scales) for the two sets of measurements. In this case, because the Diglossa
dataset contains high-quality images acquired under consistent settings, it would not be
wildly unreasonable to use the intrinsic RGB colors if spectral data were unavailable.
This approach must be used with caution, especially if researchers know of (or are un-

certain about) a substantial UV-reflective component of the color patterns in question,
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A. Original image | B. Detailed color map = ' C. Simple color map

Figure 10: Different color maps generated for the same image. Solution depends on the
use case. Image: Nathan P. Lord.

or if the images are from different sources.

A last possibility would be to use recolorize to generate a training set for a machine
learning approach. These generally have the problem, especially in fields like organismal
biology, that the amount of training data and expertise required to get a sufficiently
trained algorithm is actually more effort than just doing everything manually (given that
it usually has limited applicability). Performing the segmentation in recolorize might
make it easier to generate that training data so this solution could be used for more

specific problems.

The ’correct’ color map depends on the question

Image segmentation is a classically difficult problem in computer vision, especially be-
cause there is no single ‘correct’ answer for appropriate color pattern segmentation. A
color map is by definition a simplified representation of an actual color pattern, so the
correct solution is not intrinsic to the image, but depends on the user’s question. For
example, in Fig. 10, we illustrate two possible color segmentations for our original image

of an iridescent jewel beetle (Chrysochroa fulgidissima). In Fig. 10B, we show a more
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complex, 8-color segmentation, which retains the brighter orange on the borders of the
red stripes, and fits different shades of red and blue to reflect differences in viewing angle
of the iridescent elytra. This color map would be appropriate for answering questions of
visual contrast and perception, since it retains more properties relevant for visual stimuli.
In Fig. 10C, we show a much simpler 2-color segmentation, consisting only of red and
green. This is not a very visually faithful representation of the original image, but if
we wanted to measure the location and distribution of green iridescence across beetle
taxa, this map would be much more helpful to us than that in Fig. 10B. We end on this
example to emphasize that there is no universal solution for the problem of biological
color segmentation: there is no method so comprehensive that it absolves researchers of

posing specific questions.
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se7 used to generate the examples are available in a separate Github repository: https:

ss //github.com/hiweller/recolorize_examples.
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