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Summary

The gut microbiome is a key modulator of immune and metabolic health. Human microbiome

data is biased towards industrialized populations, providing limited understanding of the distinct

and diverse non-industrialized microbiomes. Here, we performed ultra-deep metagenomic

sequencing and strain cultivation on 351 fecal samples from the Hadza, hunter-gatherers in

Tanzania, and comparative populations in Nepal and California. We recover 94,971 total

genomes of bacteria, archaea, bacteriophages, and eukaryotes, 43% of which are absent from

existing unified datasets. Analysis of in situ growth rates, genetic pN/pS signatures,

high-resolution strain tracking, and 124 gut-resident species vanishing in industrialized

populations reveals differentiating dynamics of the Hadza gut microbiome. Industrialized gut

microbes are enriched in genes associated with oxidative stress, possibly a result of microbiome

adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome

provides a valuable resource that expands our understanding of microbes capable of colonizing

the human gut and clarifies the extensive perturbation brought on by the industrialized lifestyle.

Introduction

The gut microbiome is increasingly recognized as a critical aspect of human health. While

microbiome composition varies profoundly across global lifestyles, microbiome studies are

heavily biased towards western industrialized populations (Abdill et al., 2022). Industrialized

populations are characterized by low microbiome diversity, and aspects of lifestyle, including i)

consumption of highly-processed foods, ii) high rates of antibiotic administration, iii) birth via

cesarean section, iv) sanitation of the living environment, and v) reduced physical contact with

animals and soil have been hypothesized to mediate this reduced diversity (Sonnenburg and

Sonnenburg, 2019b). These aspects are absent from the lifestyle of non-industrialized human

populations, including hunter-gatherers who harbor extremely high microbiome diversity (Smits

et al., 2017). The transition to an industrialized microbiome is observed in immigrants to the

United States of America, supporting a causal role of lifestyle (Vangay et al., 2018).

Groups of microbial taxa that are specifically associated with industrialized and

non-industrialized populations are referred to as BloSSUM (Bloom or Selected in Societies of

Urbanization/Modernization) and VANISH (Volatile and/or Associated Negatively with
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Industrialized Societies of Humans) taxa, respectively (Blaser, 2017; Clemente et al., 2015;

Martínez et al., 2015; Modi et al., 2014; Mueller et al., 2015; Sonnenburg and Sonnenburg,

2019a; Yatsunenko et al., 2012). Analysis of coprolites supports the view that ancient

microbiomes more closely resemble the modern non-industrialized microbiome than the

industrialized microbiome (Wibowo et al., 2021). Human-associated microbial lineages have

been passed across hominid generations over evolutionary time (Linz et al., 2007; Moeller et al.,

2014), raising the possibility that human biology has become reliant upon functions and cues that

these VANISH microbes provide (Blaser and Falkow, 2009).

Our current understanding of the VANISH taxa is crude and primarily based on 16S rRNA

sequencing (Sonnenburg and Sonnenburg, 2019b), and therefore lacks phylogenetic resolution

and genomic/functional insight. A higher-resolution view, including an understanding of

VANISH functional capacity, growth dynamics, and dispersal patterns, is needed to understand

microbiome change induced by the industrialized lifestyle. Further, recent efforts to establish

comprehensive databases of gut-associated genomes and genes have shown that populations

living non-industrial lifestyles still have not been sequenced sufficiently to capture the extent of

microbiome novelty (Almeida et al., 2019, 2020; Nayfach et al., 2019; Olm et al., 2020; Pasolli

et al., 2019).

Metagenomic sequencing has transformed our ability to understand microbes without cultivation.

Most modern human microbiome studies use relatively shallow sequencing, but deep sequencing

improves de novo genome recovery (including from microbial eukaryotes (Olm et al., 2019a))

and allows the use of recently-developed techniques such as in situ growth rate prediction and

high-precision strain-tracking and microdiversity analysis (Brown et al., 2016; Olm et al., 2021).

Further, more complex microbiomes require deeper sequencing for tasks such as metagenomic

assembly. Therefore, in addition to reconciling the decreased representation of non-industrialized

lifestyle populations in general (Abdill et al., 2022), there is a key need for deep metagenomic

sequencing from these populations to better understand their complex and diverse microbiomes.

Here we present ultra-deep metagenomic sequencing and high-resolution analysis of the Hadza

hunter-gatherer gut microbiome. We report 9.4 Tbp of metagenomic sequencing data generated
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from 351 Hadza fecal samples, high-quality metagenomic assemblies, 83,044 de novo

metagenomic assembled genomes (MAGs) from 4 domains of life, and the results from

numerous state-of-the-art bioinformatic techniques. Among these metagenomes is the most

deeply-sequenced human gut metagenome to date (210 Gbp). Crucially, because the sequencing

depth generated for these Hadza samples is so much higher than previous studies, we also

performed deep sequencing on Nepali and Californian populations to enable microbiome

lifestyle comparisons without the need for sequence rarefaction. The data generated allow us to

make several key insights into the Hadza gut microbiome and the impacts of industrialization.

All data generated and the results of all analyses performed are made freely publicly available as

a resource for future study by other scientists, including i) metagenomic sequencing reads,

assemblies, and MAGs, ii) prevalence data for 5,755 species-level representative genomes

across 22 global microbiome studies, iii) isolate genome reads, genomes, and isolate-to-MAG

comparisons, and iv) organized metadata.

Results

Generating a Vast Resource of Hadza Gut Microbiome Data

The Hadza reside near Lake Eyasi in the central Rift Valley of Tanzania. They live in bush camps

of approximately 5 to 30 people, move between camps approximately every 4 months, primarily

drink from water springs and streams, and eat a diet that includes foraged tubers, berries, honey,

and hunted animals (Marlowe, 2010). They are among the last remaining populations in Africa

that continue a form of the ancestral foraging legacy of our human species.

We performed metagenomic sequencing on stool samples collected from 167 Hadza individuals

(including 33 infants and 6 mothers (Olm et al., 2022)) between September 2013 and August

2014 (Fragiadakis et al., 2019; Smits et al., 2017) (Fig. 1A; Supplementary Table 1). Of these,

101 individuals were sampled once and 66 individuals were sampled longitudinally (Fig. 1A).

DNA extraction was performed using the MoBio PowerSoil kit (n=318), phenol chloroform

extraction (n=38), or both (n=32), and the resulting DNA was subjected to paired-end Illumina

shotgun sequencing (Fig. 1B). Extraction methods did not have a statistically significant effect

on the number of genomes detected per sample (Fig. S1).
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Fig. 1. A vast resource of Hadza gut microbiome data.

(A) Overview of sample collection for shotgun metagenomic sequencing of Hadza fecal samples.

(B) Summary of the computational workflow, tools used, and primary data generated from Hadza stool samples.

(C) Number of samples versus the number of bases sequenced per sample for 21 previously published human gut

metagenomic data sets and the present study.

A total of 9,395 giga base-pairs (Gbp) of metagenomic data were generated from these 388

Hadza metagenomes (range = 0.7 - 210.3 Gbp, avg = 21.0 Gbp, std dev = 14.5 Gbp). Both the

sequencing depth per sample and the overall number of samples sequenced in this study are
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exceptional relative to previously reported human microbiome metagenomic studies (Fig. 1C).

Using multi-domain assembly, binning, and read-mapping (Fig. 1B), we recovered 48,475

bacterial and archaea MAGs (≥ 50% completeness and ≤ 10% contamination; medium quality or

better by MiMAG standards (Bowers et al., 2017)), 17 eukaryote MAGs (≥ 50% completeness

and ≤ 15% contamination according to EukCC (Saary et al., 2020)), and 4,552 bacteriophage

MAGs (medium-quality or better according to CheckV (Nayfach et al., 2021a)) (Table S2). We

performed numerous diversity, taxonomic, and functional analyses on these recovered genomes,

as outlined in Fig. 1B and described below.

Many genomes recovered from the Hadza come from species that are absent from the Unified

Human Gastrointestinal Genome (UHGG) database (Almeida et al., 2020), the Genome

Taxonomy Database (GTDB) (Parks et al., 2022) (Fig. 2A), and the Metagenomic Gut Virus

(MGV) catalog (Nayfach et al., 2021b) (Fig. 2B). MAGs recovered from the Hadza expand the

Unified Human Gastrointestinal Genome (UHGG, v1) database (Almeida et al., 2020) bacterial

and archaeal species count by 25.4% and 14.3%, respectively, and the Metagenomic Gut Virus

(MGV) catalog (Nayfach et al., 2021b) viral species count by 23.7%. The majority of eukaryotic

genomes recovered from the Hadza are from the genus Blastocystis (n=10), a prevalent member

of the mammalian gut microbiota (Clark et al., 2013). Of the 7 other eukaryotic genomes

recovered from the Hadza gut, one is a remarkably large and complete genome of a stingless bee

(232 megabase pairs and 92.3% complete), the honey and larvae of which are known to be

consumed by the Hadza (Marlowe et al., 2014), and four are novel Amoebae (n=2) and

Trepomonas (n=2) genomes (Fig. 2C). While a comprehensive genome database does not yet

exist for eukaryotes known to colonize the human gut, genomes from these species are not

present in NCBI GenBank (a repository of genomes sequenced from all environments) (NCBI

Resource Coordinators, 2017). Finally, over half (59.7%) of the 6.6 million protein families

(clustered at 95% amino acid identity) found in Hadza gut microbes are absent from the

UHGP-95 protein database (Almeida et al., 2020), a collection of all proteins from genomes in

UHGG (Fig. 2D). Together these data highlight the exceptional species- and gene-level novelty

elucidated by deep sequencing within this single study.
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Fig. 2. The Hadza gut microbiota contains substantial multi-domain novelty.

(A) Phylogenetic tree of bacterial species-level representative genomes (SRGs) from Hadza and UHGG based on

bacterial single copy gene alignment; branch colors correspond to phyla. SRGs from species-level groups

consisting of only genomes assembled from the Hadza or only UHGG are colored green and orange in the outer

ring, respectively. The number of SRGs found in the Hadza, UHGG, or both is shown as a horizontal line. Hadza

genomes that are novel at the family or order level according to GTDB are annotated with red and blue stars,

respectively.

(B) The percentage of bacteriophage species clusters assembled from the Hadza that are novel at the species level

according to the MGV ((Nayfach et al., 2021b)), categorized by phylum of the predicted host. Bacteriophages

without a host prediction are labeled “Uncharacterized”.

(C) A phylogenetic tree of eukaryotic genomes recovered from Hadza and Nepali gut metagenomes based on

universal single copy genes. Public reference genomes are marked with blue text labels. The heatmap shows the

prevalence of the individual eukaryotes in the Hadza, Nepali and Californian cohorts.
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(D) For each population, the percentage of predicted proteins from recovered genomes that are present in the

UniRef100 and UHGP-95 (Almeida et al., 2020) protein databases.

(E) The percentage of metagenomic reads mapping to various domains averaged across all metagenomic samples

from each population. The phyla “Bacteriodota” and “Firmicutes_A” are shown separated from other bacteria.

“Unmapped” depicts the percentage of reads that do not map to any genomes, and “Low confidence” depicts the

percentage of reads that map to genomes with less than 50% genome breadth.

(F) The Shannon diversity of bacteria, archaea, bacteriophage, and eukaryote genomes in metagenomes

sequenced in this study. P-values from two-sided Mann-Whitney-Wilcoxon test with multiple hypothesis

correction; *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001, ns: p ≥ 0.05.

(G) Collectors’ curves depicting the average number of genomes detected per sample in each population

sequenced in this study after rarefaction to various sequencing depths. The vertical dotted lines indicate the

average per-sample sequencing depth of this study (~23 Gbp) and the average depth of samples studied

previously (~4 Gbp; ref. (Almeida et al., 2020)). Shaded areas around lines indicate 95% confidence intervals.

“Nepal For.” includes the Chepang foragers, while “Nepal Ag.” includes Raute, Raji, and Tharu agrarians.

In parallel to the metagenomic genome recovery efforts described above, which allow study of

all microbes in a culture-free manner, we performed anaerobic cultivation and isolation on the

same Hadza stool samples. A total of 117 bacterial strains were isolated and subjected to

whole-genome sequencing (Supplementary Table 3). These genomes belong to 56 different

bacterial species, 18 of which have no previously-cultivated representative and 9 of which are

novel relative to UHGG v1 (Fig. S2). Phylogenetic analysis shows that genomes we recovered

through isolation are highly related to those recovered through metagenomic assembly,

corroborating the accuracy of our metagenomic genome recovery pipeline and highlighting the

utility of these strains for future laboratory studies of Hadza-associated bacteria.

Deep Sequencing Reveals Greater Microbiome Insight

The striking level of genomic novelty in the Hadza microbiome uncovered here could be due to

the unique lifestyle of the Hadza and/or the exceptionally deep metagenomic sequencing

performed (Fig. 1C). In order to compare the Hadza microbiome to populations living other

lifestyles without the need for sequence rarefaction, we performed additional deep metagenomic

on fecal samples from Nepali and Californian individuals (Jha et al., 2018; Wastyk et al., 2021)

Table S1). The Nepali samples are from four populations living on a lifestyle gradient: foragers

(Chepang), and agrarians (Raute and Raji, recent agrarians; Tharu, longtime agrarians (Jha et al.,
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2018)). The Nepali and Californian samples were sequenced to the same depth as the Hadza

samples, and data were processed using an identical computational pipeline (Fig. S3).

To assess microbiome composition of all samples in light of the newly-recovered genomes from

this study, we mapped our metagenomic reads to a series of three custom databases containing

full genome sequences of species-level representatives for the bacteria/archaea (n=5,755)

bacteriophage (n=16,899), and eukaryote (n=12) genomes (see methods for details). Over 80% of

the metagenomic reads from Hadza, Nepali, and Californian samples map to these databases

(Fig. 2E). Notably, the Hadza have higher bacterial, bacteriophage, and archaeal diversity than

other populations in this study, with the exception of Nepali forager bacteriophage diversity (Fig.

2F). This increased diversity was not due to increased sequencing depth, as an in-silico

rarefaction analysis revealed more total and novel species of bacteria, archaea, and bacteriophage

in Hadza samples compared to other populations across a range of sequencing depths (Fig. 1G).

To better understand the impact of sequencing depth across lifestyles we performed an additional

in-silico rarefaction analysis on the 11 individual samples sequenced to ≥ 50 Gbp, including the

deepest publicly-available human gut shotgun metagenome sequenced to date (210 Gbp) (Fig.

3A). The analysis suggests that the Hadza adult gut microbiome contains over 800 bacterial

species, compared to ~200 species within Californians sequenced to a similar depths. As deeper

sequencing allows detection of lower-abundance microbiome members, we also assessed

microbiome composition and genomic novelty of species detected at different abundance levels

(Fig. 3B). Rarer species are more likely to be novel across all four populations, even among the

Californian cohort. The vast majority of the low-abundance species are Firmicutes, known and

common human gut colonists, supporting their status in each population studied as true members

of the gut microbiome and not environmental or food-associated microbes. Taken together these

data suggest that typically-used shallow sequencing depths present a biased view of the gut

microbiome, and that the prevalent use of these depths in the field has led to a systemic bias for

highly-abundant species in current genome databases.
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Fig. 3. Increased sequencing depth results in the detection of novel and phylogenetically distinct taxa.

(A) The number of genomes detected in individual samples sequenced in this study when limiting sequencing

depth by 5 Gbp increments. Each line represents an individual sample from which ≥ 50 Gbp of trimmed, filtered

reads were generated. Lines are colored by population. Vertical dotted lines indicate the average per-sample

sequencing depth of this study (23 Gbp) and the average per-sample sequencing depth of samples used in

Almleida et al. (4 Gbp (Almeida et al., 2020)).

(B) Taxonomic distribution of organisms present at different ranges of relative abundance levels (horizontal

stacked bar plots) and the percentage of species that are novel according to GTDB r95 (text percentages right of

horizontal bars). Organisms detected at low relative abundance levels are more likely to be novel than those that

are more abundant.

VANISH microbes abound in the Hadza

To explore the extent to which the Hadza microbiome differs from other populations, we curated

a dataset of 1,800 human gut metagenomes from 21 published studies (Bengtsson-Palme et al.,

2015; Brito et al., 2016; Clemente et al., 2015; Conteville et al., 2019; Costea et al., 2017a;

Human Microbiome Project Consortium, 2012; Liu et al., 2016; Lloyd-Price et al., 2017; Lokmer

et al., 2019; Obregon-Tito et al., 2015; Pasolli et al., 2019; Pehrsson et al., 2016; Qin et al., 2010,

2012; Rampelli et al., 2015; Rosa et al., 2018; Vangay et al., 2018; Zeevi et al., 2015) (industrial,

n=950; transitional, n=583; Hadza hunter-gatherers from this study, n=135; and other

hunter-gatherers, n=132; Fig. S4A-B, Table S4). Analysis of the hunter-gatherer samples

demonstrates that substantial diversity and distinguishing taxa are recovered with deeper
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sequencing, so subsequent compositional analysis was focused on the deeply sequenced Hadza

samples (Fig. S4C-F); hunter-gatherer samples from other studies proved difficult to integrate

into the analysis due to the shallow depth of sequencing (Fig. 1A) and were excluded from the

analysis. The presence of each species within our bacterial/archaeal genome database was

determined for each sample (Fig. 4A, Table S5); and VANISH (n=124) and BloSSUM (n=63)

taxa were defined as those that are most significantly enriched in the Hadza and industrial

populations, respectively (Fisher’s exact test; ≥95th percentile; Fig. 4B; Fig. S5).
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Fig. 4. VANISH and BloSSUM taxa have distinct global prevalence, function, growth rates and covariance

with eukaryote detection.

(A) A heatmap depicting the presence of 524 SRGs (columns) within metagenomic samples from populations

living different lifestyles (rows). Darker blue indicates SRG presence, lighter blue indicates SRG absence. SRGs

with >30% prevalence among all samples in any lifestyle category were included.

(B) SRGs were classified as “BloSSUM” or “VANISH” based on their prevalence across lifestyles (see methods

for details). Colored bars correspond to columns in the heatmap.

12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


(C) The prevalence of VANISH (magenta), BloSSUM (blue) and non-enriched taxa (gray) in the Hadza,

transitional lifestyle populations and industrial lifestyle populations. Dashed lines connect median prevalence

across the taxa in each category surrounded by standard deviation (color shaded regions). Solid lines show the

median prevalence for 6 representative taxa in each of these lifestyle groups.

(D) The in situ growth rate of SRGs in metagenomes from Nepali individuals, stratified by status as “VANISH”

(middle), “BloSSUM” (bottom), or neither (top) (* P ≤ 0.05; ** P ≤ 0.01; Wilcoxon rank-sum test).

(E) The association of Pfams with VANISH or BloSSUM genomes. The x-axis displays the fraction of BloSSUM

genomes a Pfam is detected in minus the fraction of VANISH genomes a Pfam is detected in (Pfam differential

prevalence). The y-axis displays the p-value resulting from Fisher's exact test with multiple hypothesis correction.

Most VANISH taxa (n=120; 96%) and all BloSSUM taxa (n=63; 100%) are detected in

“transitional” samples (taken from human populations that have neither hunter-gatherer/forager

nor industrialized lifestyles). We find these taxa are typically found at intermediate prevalence,

consistent with the extent of lifestyle change corresponding to the magnitude of microbiome

shifts (Tamburini et al., 2022) (Fig. 4C). Interestingly, BloSSUM taxa have higher in situ growth

rates than VANISH taxa in transitional samples (Fig. 4D) and are negatively associated with the

presence of Blastocystis, even when comparing within industrialized populations (Fig. S6).

Replication rate differences may indicate a competitive advantage of BloSSUM taxa over

VANISH taxa in the human gut environment.

The observed trade-off between VANISH and BloSSUM taxa concomitant with lifestyle

differences poses the question of whether an accompanying trade-off exists with regard to

functional capacity in the human gut microbiome. The extraordinary level of novelty present in

the Hadza gut precludes the use of most gene annotation pipelines, and we thus focused our

analysis on protein domains (Pfams), which represent broad, evolutionary conserved functional

units (Mistry et al., 2021). This functional analysis identified 145 and 588 Pfams that are more

prevalent in VANISH and BloSSUM taxa, respectively (p < 0.01; Fisher’s exact test, Benjamini

p-value correction; Fig. 4E; Table S6). Pfams most associated with VANISH taxa point to a

relatively outsized use of metal ions, peptidases, and RNA methylation. BloSSUM Pfams are

associated with antioxidant and redox sensing functionality, perhaps reflecting increased oxygen

tension associated with inflammation or an altered epithelial metabolic state in the industrialized

gut (Litvak et al., 2018; Sonnenburg and Sonnenburg, 2019b). The difference in the associated
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functions of enriched Pfams demonstrates that BloSSUM taxa are not functionally redundant to

VANISH taxa.

Treponema succinifaciens dispersal mirrors human migration

Several species of the phylum Spirochaetota were identified as VANISH taxa in this study (Table

S5). Spirochaetota in general, and especially the most well-studied human gut species

Treponema succinifaciens, are known to be depleted in industrialized microbiomes (Sonnenburg

and Sonnenburg, 2019a). Here we leveraged the deep sequencing we performed on Hadza,

Nepali, and Californian samples using consistent methods and the 1,047 new Spirochaetota

MAGs recovered in this study to conduct a robust analysis of Spirochaetota abundance and

prevalence across lifestyles. Our recovered Spirochaetota MAGs belong to the Treponemataceae,

Sphaerochaetaceae, or Brachyspiraceae families and span 26 species (including a sequenced

isolate of Treponema perunse (Belkhou et al., 2021)), 16 of which are novel relative to the

UHGG v1. The relative abundance of Spirochaetota species decreases with increased

industrialization and no Spirochaetota genomes are detected within Californians (Fig. 5A).

Hadza Spirochaetota genomes fall into three diverse families also found in other populations

(colored boxes, Fig. 5B) suggesting that Spirochaetota are a core component of the

non-industrialized lifestyle microbiome and highly susceptible to loss upon lifestyle change.
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Fig. 5. Spirochaetota that are highly abundant in the Hadza are absent in industrial samples.

(A) A heatmap showing the relative abundance of the 10 most prevalent Spirochaetota species in the Hadza,

Nepali, and American cohorts. All samples are sequenced to approximately the same sequencing depth.

(B) A phylogenetic tree of all Spirochaetota species using genomes from NCBI, the UHGG and the

species-representative genomes added in this study. Clades of commensal organisms in the genera Brachyspira,

Spirochaeta, and Treponema are highlighted.

(C) A phylogenetic tree of all Treponema succinifaciens MAGs in the UHGG in addition to new MAGs recovered

in this study (annotated in outer ring). The inner ring is colored based on the country of origin of the individual

contributing the MAG.

(D) World map showing locations of populations from which T. succinifaciens MAGS were recovered as nodes

(TZA = Tanzania, MDG = Madagascar, NEP = Nepal, FIJ = Fiji, PER = Peru, ELS = El Salvador). Arrows

indicate the detection of transition events between populations as detected by stochastic character mapping.

Thickness of the arrow indicates frequency of the transition event (thickest arrow is Tanzania to Fiji, 17.1%). The

top 7 most frequent transition events are shown, accounting for 65.7% of all transitions.

The MAGs recovered here increase the number of publicly available Treponema succinifaciens

genomes from 125 to 346 (276% increase), enabling a robust phylogenomic analysis of the

species (Fig. 5C). We identified both Hadza-specific and globally distributed clades of T.

succinifaciens and observed a significant association between phylogeny and continent of origin

(p-value<0.0001; delta statistic d=7.79) (Borges et al., 2019). To model the dispersal of T.
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succinifaciens between human populations, we performed stochastic character mapping on the

phylogenetic tree of MAGs in which the country of origin of each MAG was coded as a trait of

the genome and the frequency of “transition events” between each pair of populations is

quantified (Suzuki et al., 2021) (Fig. 5D). The 4 most frequent transition events between

populations are from the Hadza to other populations, accounting for 46.7% of all transition

events, suggesting that T. succinifaciens was carried along the out-of-Africa human dispersal

routes (Liu et al., 2006). The congruence of T. succinifaciens phylogenomics with known

patterns of past human migration is consistent with its dispersal being linked to close human

contact (e.g., vertical, mother-to-infant, or intergenerational, transmission), as has been described

for Helicobacter pylori (Falush et al., 2003; Linz et al., 2007).

Evolution, growth, and dispersal in the Hadza gut

The high sequencing depth and sample number achieved in this study provide an unprecedented

opportunity to investigate in situ growth rates, microdiversity, and strain sharing within a

hunter-gatherer population. To elucidate genes with distinct selective pressures within the Hadza

microbiome, we performed an analysis of intra-genic pN/pS ratios, a measure of bias towards

non-synonymous mutations that suggests positive or diversifying selection (Fig. 6A; Table S6).

Pfams with consistently lower pN/pS ratios (p < 0.01; n=520) were often associated with

house-keeping annotations, as expected. Notably, however, Pfams with consistently higher pN/pS

ratios (p < 0.01; n=693) were often associated with extracellular or membrane-bound proteins,

such as Ig-like folds, pilin motifs, and collagen-binding proteins. These data provide a roster of

functions within the Hadza gut that show relatively increased signatures of diversifying

selection, likely in response to dynamics relevant to the Hadza gut such as seasonality of diet,

antigen escape from host immune response (Lizano et al., 2007), and phage predation

(Rodriguez-Valera et al., 2009).
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Fig. 6. Microdiversity, growth rates, and patterns of strain sharing among Hadza gut bacteria.

(A) Pfams with high or low pN/pS values in Hadza fecal metagenomes. The x-axis displays the mean pN/pS value

of all genes annotated with each Pfam within Hadza fecal metagenomes. The y-axis displays the probability that

the number of times genes annotated as each Pfam were in the top 10% or bottom 10% of all genes on detected

genomes was due to random chance (binomial test with multiple hypothesis correction). The 30 Pfams with the

lowest p-values for low and high pN/pS were manually annotated with broad functional categories.

(B) In situ growth rate measurements of all taxa detected in Hadza adult metagenomes across seasons. Error bars

indicate 95% confidence intervals. (n.s. P > 0.05; **** P ≤ 0.0001; Wilcoxon rank-sum test).

(C) Rectangles along the circumference represent Hadza individuals and each link drawn between boxes indicates

a shared strain. Links between members of the same bush camp are colored based on the bush camp; links

between bush camps are colored black. The mean number of strains shared between members of the same bush

camp and the p-value comparing strains sharing among members of that bush camp vs members from different

bush camps are shown (Wilcoxon rank-sums test).

(D) The mean number of strains shared between Hadza adults broken down by various types of familial

relationships. Exact p-values shown from Wilcoxon rank-sum test.
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The Hadza gut microbiome has been previously shown to undergo seasonal cycling in

carbohydrate-active enzyme (CAZyme) and species composition (Fragiadakis et al., 2019; Smits

et al., 2017), and here we confirm these findings using deeper sequencing and updated

metagenomic methods (Fig. S7). The deep sequencing performed in this study also allowed us

to, for the first time, measure whether in situ growth rates exhibit seasonal cycling in the Hadza

gut as well. Average bacterial replication rates are lowest in the late dry and early wet seasons,

highest in late wet and early dry seasons, and equivalent between the 2013 and 2014 late dry

season (Fig. 6B). This pattern of seasonal cycling in the replication rates of Hadza gut bacteria

may be driven by i) persistent microbial colonists changing their growth in response to

seasonally available foods, or ii) the displacement of bacteria based on seasonally-matched

distinct growth strategies.

Family relation and cohabitation are among the strongest factors associated with microbial strain

sharing in industrial populations (Faith et al., 2013; Valles-Colomer et al., 2022), but it is

unknown whether these patterns hold for hunter-gatherer populations like the Hadza. We

performed a high-resolution strain-tracking analysis (threshold for same strain = 99.999%

popANI) and found that family members share more recently-transmitted strains than unrelated

individuals among the Hadza (Fig. 6C, Table S7). Interestingly, strain sharing among members

of the same bush camp approaches that between members of the same family (Fig. 6C), and this

effect is stronger in some bush camps (Fig. 6D). For example, individuals from the Hukamako

camp (pink, bottom right of plot) share more strains with one another than family members share

on average across all camps. Drinking water source (e.g., spring, stream, riverbed, etc.) and

season (late dry, early dry, early wet, or late wet) have been previously linked to gut microbiome

similarity (Jha et al., 2018; Smits et al., 2017), and here we demonstrate that these factors are

also linked with the sharing of identical microbial strains (Fig. 6C). Overall, these results point

to the importance of environmental factors, kinship, and bush camp membership (a social

structure with no equivalent in the industrialized populations) in driving strain dispersal among

hunter-gatherers.

Discussion
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The data generated in this study represents a one-of-a-kind collection of human gut microbiome

data from one of the last remaining hunter-gatherer populations. The Hadza are a modern people

facing challenges related to land dispossession, hunger, and lack of access to education,

healthcare and political decision-making, though technologies, food, and medicines from urban

centers are becoming increasingly available (Mangola et al., 2022). The data generated from

Hadza fecal samples in this study (collected in 2013-14) may thus represent a critical permanent

reference point for microbiome scientists to understand the impacts of industrialization on the

gut microbiome.

All data generated in this study, and results from all analyses performed in this study, represent a

considerable resource to the scientific community considering the large existing gap in general

microbiome characterization, including deep metagenomic sequencing in populations living

non-industrialized lifestyles. These data and analyses are made freely available to the scientific

community. These resources include anonymized metadata, raw metagenomic sequencing reads,

full metagenomic assemblies, all MAGs and isolate genome sequences, bacteriophage host

identifications, growth rate and population genomic information, millions of genes with

UniRef100 annotations, and species-level abundance information across 1,800 public

metagenomes across a range of lifestyles. Crucially, the isolation and sequencing of bacterial

strains from the same fecal samples on which we performed metagenomics highlight the

accuracy and reliability of our computational approach. The genomes recovered in this study will

lead to better profiling in future studies, and should encourage the field to adopt deeper

sequencing techniques.

In this study we elucidate many novel facets of lifestyle differentiation in the gut microbiome,

particularly among the Hadza hunter-gatherers of Tanzania. The discovery of numerous novel

clades of bacteria, archaea, bacteriophage, and eukaryotes highlight a leap in understanding of

non-industrialized human microbiomes and reframe the incompleteness and bias of commonly

used microbial genome reference databases. Functional differences in the gut microbiomes of

humans living different lifestyles highlight the consequences of our intestinal inhabitants

adapting to a changing gut environment. The VANISH taxa found in present-day Hadza may

represent lineages of microbes that shaped human development throughout our species’ long
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history as foragers. Global phylogenomic analysis of the commensal spirochaete, Treponema

succinifaciens, shows strain relatedness consistent with known human migration patterns prior to

industrialization. Extending deep metagenomic sequencing to populations living across

additional geographies will enable a better understanding of which microbes traveled with, were

lost, or gained in human populations as we spread around the planet. An important challenge is

to characterize the impact of these microbes on human physiology and determine in which

contexts the absence or presence of species and functions are beneficial or detrimental to human

health. Overall, our results conclusively show that the differences between industrialized and

non-industrialized microbiomes go well beyond simple taxonomic membership and diversity.

These findings have substantial implications for how the microbiome may be investigated

towards improving the health of both industrialized and non-industrialized populations.
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Materials and methods

Sample collection

Samples from Tanzania are from 2013-2014 and described previously (Fragiadakis et al., 2019;

Smits et al., 2017). Permission was obtained from the National Institute of Medical Research and

the Tanzania Commission for Science and Technology. For longitudinal samples, one sample

from each individual was marked “high_prority” (Table S1) and used as noted in statistical

analyses that are not robust to multiple samples from the same individual. Nepal samples were

obtained previously (Jha et al., 2018) approved by the Ethical Review Board of the Nepal Health

Research Council (NHRC) and the Stanford University Institutional Review Board (IRB). U.S.

samples were obtained previously (Wastyk et al., 2021). All human samples were de-identified

and collected after receiving informed consent from participants.

Library preparation and sequencing

Shotgun metagenome sequencing was performed on extracted DNA (MoBio PowerSoil) as

described previously (Fragiadakis et al., 2019; Smits et al., 2017). Deeper shotgun metagenome
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sequencing was performed on samples extracted using phenol:chloroform:isoamyl alcohol

described previously (Smits et al., 2017). 101 Hadza individuals were sampled once and 66

individuals were sampled longitudinally. DNA extraction was performed using mechanical

extraction (n=318), phenol chloroform extraction (n=38), or both (n=32).

Libraries were prepared using half-reactions (Nextera Flex), using a minimum of 10 ng of DNA

and 6 or 8 PCR cycles to minimize amplification bias using a different 12 base pair unique

dual-indexed barcode. Libraries were quantified (Agilent Fragment Analyzer) and size-selected

(AMPure XP beads,Beckman), targeting a fragment length of 450bp (insert size 350 bp).

Paired-end sequencing (2x140bp) was performed on a NovaSeq 6000 using S4 flow cells at

Chan Zuckerberg Biohub (San Francisco, CA, USA). Samples were randomized across runs and

sequenced repeatedly until the target depth was reached. Minimum target depth for each sample

was 50 million paired-end reads (~14 Gbp) with a subset of samples sequenced to a minimum

target depth of 100 million paired-end reads (~28 Gbp). A total of 8,148 giga base pairs (Gbp) of

metagenomic data were generated from 388 Hadza metagenomes (range = 0.7 - 210.3 Gbp, mean

= 21.0 Gbp, std dev = 14.5 Gbp), 57 Nepali metagenomes (1,794 Gbp total, range = 14.9 – 84.9

Gbp, mean =31.5 Gbp, std dev = 11 Gbp), and 12 California metagenomes (418 Gbp total, range

= 25.2 – 56.8 Gbp, mean = 34.8 Gbp, std dev = 9.2 Gbp) for a total of 10.4 Tbp.

Metagenome quality control and assembly

Raw sequencing reads were demultiplexed and data originating from the same libraries were

concatenated prior to analysis. Raw reads were processed using BBtools suite (Bushnell, 2014).

Exact duplicate reads (subs=0) were marked (clumpify), adapters and low-quality bases were

trimmed (bbduk;trimq=16 minlen=55), trimmed reads were mapped (BBmap) against the human

genome (hg19) with masks over regions conserved broadly in eukaryotes, and duplicate reads

were removed. FastQC (Andrews, 2010) was used to ensure read quality. BBMerge was used to

merge reads that could be joined unambiguously using the recommended settings (rem k=62

extend2=50 ecct vstrict) (Bushnell et al., 2017).
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Metagenomes were assembled individually (metaSPAdes (Nurk et al., 2017) ; v3.13) using

unmerged forward/reverse and merged reads (-k 21,33,55,77) with error-correction enabled.

Assembly size and contig metrics were evaluated (QUAST (Gurevich et al., 2013) v5.0) and

filtered to contigs >=1500 bp for all subsequent analyses. Gene-calling was performed on all

assemblies (Prodigal (Hyatt et al., 2010); v2.6.3) in metagenome mode.

Strain isolation and genome sequencing

Stool resuspended in PBS was plated on CHG, YCFA (Anaerobe Systems), MRS (Sigma

Aldrich), BSM (BBL), Colombia (Anaerobe Systems), BHI (Sigma Alrdich), LKV (Anaerobe

Systems), Treponema media (DSM Medium 275), and milk-enriched media under anaerobic

conditions. Individual colonies were re-streaked and then biotyped on a Bruker MALDI-TOF

microflex to determine taxonomy. Colonies were grown in liquid media of the same type as the

originating agar plate in anaerobic conditions. For isolating Treponema, 0.5% agar was added to

the liquid media before making plates. Treponema strains were isolated after removing the top

layer of agar to harvest colonies within the agar. Many of these isolated strains are not currently

amenable to freezer storage and liquid-cultivation-based propagation in isolation.

Genomic DNA was extracted (Qiagen DNeasy Blood and Tissue). Libraries were prepared using

half-reactions of the Nextera Flex kit, a minimum of 10 ng of DNA as input, 6 or 8 PCR cycles

to minimize PCR amplification bias and a different 12 base pair unique dual-indexed barcode.

Libraries were quantified (Agilent Fragment Analyzer) and size-selected (AMPure XP beads;

Beckman), targeting a fragment length of 450bp (insert size of 350 bp). Paired-end sequencing

(2x140bp) was performed on a NovaSeq 6000 using S4 flow cells at Chan Zuckerberg Biohub.

Assembly of genomes was performed by trimming using BBduk (trimq=30), normalizing read

depth using BBnorm (target=320, min=2), and assembled using SPAdes v3.13.1 (-k

21,33,55,77,99,127) (Prjibelski et al., 2020). Genomes were assessed for completeness and

contamination using CheckM v1.1.2 (Parks et al., 2015).

Bacterial and archaeal genome recovery and refinement

A novel “co-mapping” approach was developed to leverage contig depth information from

multiple, closely related samples and improve genome bin recovery from single-sample
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assemblies. MASH sketches (-s 1000000 -k 32 -m 2)(Ondov et al., 2016) were created from

reads in each metagenome individually, and sketches were compared in a pairwise manner. For

each assembly, reads from that sample and the nine next-closest related samples by MASH

distance were mapped (Bowtie2 (Langmead and Salzberg, 2012); --very-sensitive -X 1000) and

genome bins generated using contig depth for all 10 samples (MetaBAT2 (Kang et al., 2019);

v2.15, default settings). For California samples, only samples taken from the same individual

were co-mapped. Genome bin quality was assessed using CheckM v1.1.2 (Parks et al., 2015) and

anvi’o (Eren et al., 2015) (v6.3).

Bins were refined using MAGpurify v2 (Nayfach et al., 2019) (using weighted mode for

gc_content, tetra_freq, and coverage). The database used by Nayfach et al.(Nayfach et al., 2019)

for conspecific analysis was augmented by adding all bins that were >=95% complete and <=5%

contaminated (CheckM and anvi’o). For each species-level group, only the highest-quality

genome bin for each individual was included. Flagged contigs were removed. Rarely, a module

suggested the removal of >25% of a bin’s length, and in such cases that module was turned off.

Genomes with ≥50% completeness and <10% contamination according to CheckM were

retained, in accordance with MIMAG standards (Bowers et al., 2017).

Evaluation of self- and co-mapping relative to isolate genomes

Isolate genomes from Hadza stool samples were de-replicated (dRep v3.2.2; -s 100000, -sa 0.99).

The highest scoring isolate as the representative when multiple isolates from the same secondary

cluster were isolated from the same sample. 19 representative isolates were identified from

samples that also had metagenome sequencing, assembly, and binning. Representative isolates

and bins (>=50% complete, <5% contamination) generated using self-mapping and co-mapping

were compared (MASH; -s 100000), selecting most similar bin MASH distance <0.05), with

co-mapping and self-mapping recovered 17 and 10 bins representing isolates, respectively, with

no significant differences in quality.

Creating bacteria / archaeal species-level genome database

Bacterial and archaeal genomes sharing ≥ 95% average nucleotide identity (ANI) over 30% of

their length were considered the same species (Olm et al., 2020). Species-level groups were
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determined using dRep (v3.0.0 (Olm et al., 2017) ;--S_algorithm fastANI

--multiround_primary_clustering --clusterAlg greedy -ms 10000 -pa 0.9 -sa 0.95 -nc 0.30 -cm

larger) based on the ANI between all genomes within each species-level group. Each genome

was assigned a “centrality” score according to its average ANI to all other genomes in the group.

The highest score genome was chosen as representative for each species-level group using the

formula: score = (1*completeness) - (5*contamination) + (0.5*log10(ctg_N50)) +

(1*log10(contig_bp)) + (2*(centrality-0.95)*100).

Centrality was calculated between all genomes in the UHGG genome database (v1.0) using the

species-grouping (Almeida et al., 2020), and species representatives were chosen as above.

Representatives from de novo genomes generated here and from the UHGG database (v1.0) were

compared (dRep; --S_algorithm fastANI --multiround_primary_clustering --clusterAlg greedy

-ms 10000 -pa 0.9 -sa 0.95 -nc 0.30 -cm larger). Representatives for each species-level group

were chosen using the formula: score = (1*completeness) - (5*contamination) +

(0.5*log10(ctg_N50)) + (1*log10(contig_bp)). Representatives were compared using the same

dRep command, and winners were chosen using the same scoring criteria. Species-level group

membership was back-propagated to the original bins.

Annotating bacteria / archaeal genomes and assessing genomic novelty

Taxonomy was determined for all species-level representative genomes using GTDB (r95)

(Chaumeil et al., 2019). Novelty against UHGG v1 was determined based on the species-level

clustering described above. Only genomes that pass both the MIMAG genomic standards used in

this study (≥50% completeness and <10% contamination) and the standard used during UHGG

creation (completeness - (5*contamination) > 50) were considered in comparisons against

UHGG. Species groups containing only genomes recovered from the Hadza were considered

novel relative to UHGG.

A phylogenetic tree was made (GtoTree (v1.5.36) (Lee, 2019) with bacterial gene sets (-H

Bacteria). All other settings were default. The tree was visualized using iTol (Letunic and Bork,

2007) with taxonomy provided by GTDB.
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Eukaryotic genome recovery and analysis

EukRep (v0.6.6) (West et al., 2018) was employed on all assemblies (default settings) and if a

genome bin was both >5 mega base pairs and >80% eukaryotic according to EukRep, it was

called eukaryotic. EukCC (v1.1) (Saary et al., 2020) was run on eukaryotic bigs using database

eukcc_db_20191023_1

Proteins identified via EukCC were compared against UniRef100 (Suzek et al., 2007)

(downloaded 3/5/2020) using DIAMOND (Buchfink et al., 2015) with a maximum e-value of

0.0001 (blastp -f 6 -e 0.0001 -k 1). The resulting taxonomy was parsed with tRep

(https://github.com/MrOlm/tRep/tree/master/bin) (Olm et al., 2019b). Eukaryotic genomes with

the same species-level taxonomy that originated from the same metagenomic sample were

presumed to be from the same organism, were merged into a single file and re-analyzed using

EukCC and tRep.

Phylogenetic tree was created (GToTree; v1.5.36) (Lee, 2019) “GToTree -H

Universal_Hug_et_al -j 4 -B -c 1 -t”) with a custom set of public reference genomes. Tree was

visualized using iTol (Letunic and Bork, 2007).

Creating eukaryotic species-level genome database

To identify eukaryotic species that may be present in the metagenomics sequenced in this study

and which did not have genomes recovered using the pipeline described above, we ran the

program EukDetect (Lind and Pollard, 2021) on all metagenomes sequenced in this study. Five

species were detected in at least two samples with “perecent_observed_markers” ≥ 50, and

reference genomes for these five species were included in the eukaryotic species-level genome

database. In addition to these five genomes, the highest quality representative genome from each

of the seven species of eukaryotes recovered in this study was included in the eukaryotic

species-level genome database.

Metagenome reads were mapped onto the eukaryotic species-level genome database (Bowtie 2

(Langmead and Salzberg, 2012)) and the resulting mappings were processed (inStrain

quick_profile; v1.2.14 (Olm et al., 2021) and CoverM v0.4.0
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(https://github.com/wwood/CoverM)). A species was “present” if the breadth of coverage

according to inStrain exceeded 0.1.

Viral genome recovery

CheckV (Nayfach et al., 2021a) (version 0.8.1, end-to-end mode, database v1.0) was run on all

assembled contigs >=1500bp. Contigs predicted to contain one or more proviruses were run

iteratively through CheckV (up to 5 rounds) until CheckV assumed the remaining region was

viral. For provirus iterations only yielding an HMM-based completeness estimates, the most

complete fragment was selected and excised from the parent contig. For provirus iterations with

AAI (Average Amino acid Identity)-based completeness predictions, the fragment with the

length closest to expected length was selected and excised from the parent contig. Viral contigs

were passed through the MGV viral detection pipeline (Nayfach et al., 2021b) and Bacphlip

(v0.9.6) was run to assign a lytic and temperate score (Hockenberry and Wilke, 2021).

Creating bacteriophage species-level genome database

The 40,171 viruses recovered in this study were clustered into species-level groups as described

previously (Nayfach et al., 2021b) (blastn --min_ani 95 --min_qcov 0 --min_tcov 85,

https://github.com/snayfach/MGV/tree/master/ani_cluster), and the longest viral contig in each

cluster was selected as the representative. To measure novelty versus MGV, the 16,899

species-level representatives were subsequently clustered with the 54,118 MGV cluster

representatives into species-level groups using the same method, and clusters without an MGV

genome were considered novel.

Viral host prediction

Host prediction was performed on the 40,171 viruses as described previously (Nayfach et al.,

2021b). Briefly, CRISPR spacers were identified (PILER-CR (Edgar, 2007) and CRT (Bland et

al., 2007)). BLASTN (Camacho et al., 2009) was used to search viruses for CRISPR spacers

identified from bins reported here and UHGG v1 (-dust no -word_size 18). CRISPR spacer hits

were retained if there was a maximum of one mismatch or gap over >=95% of the spacer length.

Additionally, hs-blastn (Chen et al., 2015) was used to identify >=1kb and >=96% DNA identity

hits between all UHGG and newly-recovered genomes and viruses reported here. All viral
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connections to host genomes were aggregated, and host taxonomy was assigned based on the

lowest host taxonomic rank that had >70% agreement across CRISPR or BLASTN.

Characterizing diversity

Reads from all metagenomes generated here were mapped to the bacterial/archaeal,

bacteriophage, and eukaryote species-level genome databases (Bowtie 2 (Langmead and

Salzberg, 2012)). Resulting mappings were processed (inStrain quick_profile; v1.2.14 (Olm et

al., 2021) and CoverM v0.4.0 (https://github.com/wwood/CoverM). Prokaryotes where the

representative genome was detected at ≥ 0.5 breadth (i.e. at least half of bases were covered by at

least 1 read) were considered present. Bacteriophages and eukaryotes breadth thresholds were

0.75 and 0.1, respectively.

Relative abundance (% DNA) was calculated as (# reads mapping a genome / total # reads in

metagenome). Shannon diversity was calculated based on relative abundance (% DNA) values

(scikit-bio (http://scikit-bio.org)).

Rarefaction analysis

In silico rarefaction was performed on samples sequenced to ≥ 50 Gbp using the InStrain

auxiliary script “rarefaction_curve.py“ (v0.3.0)

(https://github.com/MrOlm/inStrain/blob/master/auxiliary_scripts/rarefaction_curve.py) on a

.bam file of reads mapped with Bowtie 2 (Langmead and Salzberg, 2012). For other rarefaction

curves (Fig. 2) an alternative in silico rarefaction technique was used. Genomes with < 50%

breadth were removed from the analysis, and for each rarefaction level 1) a scaling threshold was

established based on the total sequencing depth (scaling factor = rarefaction depth / total

sequencing depth), 2) scaled genome coverage was calculated by each genome by multiplying

un-rarefied coverage by this scaling factor, and 3) genomes with scaled coverage ≥ 1 were

considered detected.

Collating previously published human gut metagenomic samples

Prevalence of microbial species across lifestyle was characterized using a curated collection of

2122 metagenomes including samples from industrial (Bäckhed et al., 2015; Bengtsson-Palme et
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al., 2015; Human Microbiome Project Consortium, 2012; Lloyd-Price et al., 2017; Pehrsson et

al., 2016; Qin et al., 2010, 2012; Zeevi et al., 2015), transitional (Brito et al., 2016; Costea et al.,

2017b; Liu et al., 2017; Lokmer et al., 2019; Pehrsson et al., 2016; Rosa et al., 2018; Tett et al.,

2019; Vangay et al., 2018), and hunter-gatherer populations (Conteville et al., 2019; Lokmer et

al., 2019; Pasolli et al., 2019; Rampelli et al., 2015). Samples were binned using the U.N. Human

Development Index (HDI ) (Groussin et al., 2021). Samples from individuals < 3 years old were

excluded. For longitudinal samples, a single sample was randomly selected resulting in 137

Hadza samples. Reads were processed as described above. Samples with fewer than 60 genomes

detected were excluded.

Hadza sample ERR7803603, sequenced to a depth of 210 Gbp, was determined to be the deepest

human gut metagenome sequenced as of 28 Feb 2022 by downloading all summary metadata

from NCBI SRA with the search term “(txid408170[Organism:noexp]) AND WGS[Strategy]”

and sorting by decreasing base pairs sequenced.

Species prevalence analysis

All reads generated here and publicly available were mapped to the bacterial/archaeal

species-level genome database (Bowtie2 (Langmead and Salzberg, 2012)), and resulting

mappings were processed using inStrain quick_profile (v1.2.14) (Olm et al., 2021) and CoverM

v0.4.0 (https://github.com/wwood/CoverM)). Species detected at ≥ 0.5 breadth were considered

present and prevalence was calculated as the percentage of metagenomes in which the species

was present.

Genomes were assigned to VANISH or BloSSUM using p-values resulting from Fisher’s exact

test on the following contingency table: [[(# Hadza samples where genome is found, # industrial

samples where genome is found), (# Hadza samples genome is not found, # industrial samples

where genome is not found)]]. All p-values were ranked and a percentile score was assigned.

Genomes in the 95th percentile or greater where Hadza prevalence was higher were “VANISH”

taxa. Those in the 95th percentile or greater where industrial prevalence was higher were

“BloSSUM”.
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Heatmaps displaying species prevalence data were created using the R package “pheatmap”

(v1.0.12). Principal coordinate analysis was performed on the species prevalence data using the

vegdist function in the package “vegan” (Dixon, 2003) (v2.5-6) and the function cmdscale from

the package “stats” (v4.0.4).

Growth rate analyses

InStrain profile (v1.2.14) (26) was run on all .bam files created as described in the “species

prevalence analysis” section. All iRep values for genomes with ≥ 50% genome breadth and with

values < 5 were considered valid. Seasonality of iRep values was plotted using seaborn v0.11.1

(Waskom, 2021) “lineplot” with the default estimator (mean) and 95% confidence interval for

error bars.

Blastocystis analysis

Presence or absence of each Blastocystis MAG was determined as described above. The top two

most prevalent Blastocystis MAGs were most closely related to Blastocystis ST1 and Blastocystis

ST4, respectively (tRep; https://github.com/MrOlm/tRep/tree/master/bin) (Olm et al., 2019b).

Wilcoxon rank sum test was used to determine if presence of a Blastocystis genome was

correlated with total relative abundance of VANISH taxa and BloSSUM taxa separately. Linear

discriminant analysis was performed using the “lda” function from the package MASS (v7.3) to

determine the effect size of each association.

Seasonality analysis

Principal coordinate analysis was performed on the Bray-Curtis distance between all Hadza

samples in our study. Relative abundance was aggregated at the taxonomic level of family to

mirror initial analysis done in Smits, et al. (Smits et al., 2017). The adonis function in the R

package “vegan” was used to test significance by season. Subject ID was used as a sub-stratum.

A Wilcoxon rank-sum test was used to determine whether samples varied in composition along

the major axis of variation, aggregated by season.

The average relative abundance of each species-level group in our bacterial/archaeal

species-level genome database was calculated for each sub-season. Taxa that observed cyclical
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abundance over the course of a year was determined (Kruskal-Wallis test; p-values were

Bonferroni-adjusted to control for multiple hypothesis testing).

CAZyme annotation was performed using dbCAN_v9 HMMs (Zhang et al., 2018)

(http://bcb.unl.edu/dbCAN2/download/Databases/V9/dbCAN-HMMdb-V9.txt). Proteins were

searched against the HMM collection using hmmscan (Eddy, 2011) and filtered using the

“hmmscan-parser.sh” script provided with dbCAN2. Seasonal CAZyme analysis was performed

using previously described seasonal delineations (Smits et al., 2017).

Protein clustering and novelty assessment

Predicted proteins were clustered at 95% identity (MMseqs2 (Steinegger and Söding, 2017) ;

v12.113e3; easy-linclust --cov-mode 1 -c 0.8 --kmer-per-seq 80 --min-seq-id 0.95 --compressed

1). Novelty relative to UHGP-95 (v1.0) (Almeida et al., 2020) was determined by clustering

together UHGP-95 with our de novo representative proteins (MMseqs2) and back-propagating to

the initial de novo clustering to calculate the number of protein clusters assembled from each

lifestyle. Representative proteins were also compared against UniRef100 using DIAMOND

(Buchfink et al., 2015). Novel proteins were defined when the representative protein was not

related to any protein in the UniRef100 database with ≥ 95% amino acid identity.

Protein annotation

Proteins were annotated (Pfams (v32) (El-Gebali et al., 2018); hmmsearch (Eddy, 2011)), filtered

(hmmsearch --cut_ga --domtblout), and protein domain overlap was resolved

(cath-resolve-hits.ubuntu14.04 (Lewis et al., 2019); --input-format hmmer_domtblout

--hits-text-to-file).

Pfam enrichment analysis

For each Pfam, the number of VANISH and BloSSUM genomes with at least one gene

containing a Pfam was recorded as “c1” and “c2”, respectively. Pfams found more often in one

genome set or the other were detected using a Fisher’s exact test on the following contingency

table: [[c1, (# VANISH genomes) - c1], [c2, (# BloSSUM genomes) - c2]]. Multiple hypothesis
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correction was performed using the FDR method(Seabold and Perktold, 2010)). Pfam differential

prevalence was calculated as (c2 / (# BloSSUM genomes)) - (c1 / (# VANISH genomes)).

Spirochaetota analysis

Spirochaetota genomes from the bacterial/archaeal species-level genome database and NCBI

were de-replicated at the species level (dRep; --S_algorithm fastANI -ms 10000 -pa 0.9 -sa

0.95), and a phylogenetic tree was generated (GtoTree;v1.5.36) (Eddy, 2011; Edgar, 2021;

Gutierrez et al., 2009; Hyatt et al., 2010; Lee, 2019; Tange, 2018)) from bacterial (-H Bacteria)

gene sets. All other settings were default. The tree was visualized using iTol (Letunic and Bork,

2007) and colored by taxonomy provided by GTDB.

A phylogenomic tree of Treponema succinifaciens in the bacterial/archaeal species-level genome

database was generated using GToTree; v1.5.36) (Eddy, 2011; Edgar, 2021; Gutierrez et al.,

2009; Hyatt et al., 2010; Lee, 2019; Tange, 2018) with IQ-Tree (Minh et al., 2020) from bacterial

(-H Bacteria) gene sets (completeness threshold 75% with “-G 0.75”). We used country-of-origin

information (re-coded as continent-of-origin) as a trait of each genome to measure the degree of

phylogenetic signal in the geographic spread of the MAGs (“delta” function from Borges, et al.

(Borges et al., 2019)). P-value of the delta statistic was performed using 100 calculations with

randomly permuted tree tip labels.

Stochastic character mapping of Treponema succinifaciens

Stochastic character mapping was performed using SIMMAP via the “make.simmap” function

(“phytools” R package (Revell, 2012)). We applied the character mapping on the marker-based

tree of T. succinifaciens GToTree generated MAGs (described above). “Country of origin” of

each MAG served as a trait and inferred ancestral character states on phylogeny (equal rates

model, repeated 100 times to calculate average # of character changes and direction of host

transfer events).

Pfam pN/pS analysis

The pN/pS was calculated using inStrain (v1.2.14) (inStrain profile --database_mode) (Olm et al.,

2021) on mappings to the bacterial/archaeal species-level genome database, using the predicted
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genes. All genomes detected with < 80% breadth were excluded from analysis. For remaining

genomes, genes with “SNV_count” < 5 were excluded. If <10 genes in a genome fit this criteria,

the genome was excluded. Genes with ≥ 5 “SNV_count” and a blank “pNpS_variants” value

were assigned a “pNpS_variants” of 100. Genes were sorted according to “pNpS_variants”, and

genes in the top and bottom 10% of “pNpS_variants” were recorded. How many times each

Pfam was detected on any genes that passed the above filters (“trial_count”) and how many

times the Pfam was in genes in the top and bottom 10% of genes based on “pNpS_variants”

(“top_success_count”, “bottom_success_count”) was noted.

To determine Pfams in the top or bottom 10% of “pNpS_variants” more often than expected by

chance, genes detected in less than 5 samples were excluded, the number of times a gene was in

the top 10%, bottom 10%, and seen total was scaled (“trial_count”/5), and the scaled

“top_success_count”, “bottom_success_count”, and “trail_count” values were summed together.

Probability that the “top_success_count” or bottom_success_count” was due to random chance

was calculated using binomial statistics (Python Scipy(Jones et al., 2001)). P-values reported as 0

were set to 1E-300 and multiple hypothesis correction was performed (FDR (Seabold and

Perktold, 2010)). Mean Pfam pN/pS was calculated as the average “pNpS_variants'' of all genes

on genomes with ≥ 80% breadth and a non-blank “pNpS_variants” value.

The procedure described above was repeated using “coverage” instead of “pNpS_variants” to

detect Pfams associated with genes with higher or lower coverage than others. To avoid

mis-mapping (recruiting genes from other populations), all Pfams with uncorrected p-values <

0.01 were excluded from the “pNpS_variants” analysis.

Strain sharing analysis

Genome detection was defined as minCov breadth ≥0.5 (i.e. at least half of bases were covered

by at least 5 reads) as measured using “inStrain profile”. Each species detected in more than one

individual was compared using inStrain compare. Where a genome was detected in more than

120 samples, samples were divided into groups of equal size such that no group had more than

120 samples, and “inStrain compare” was then run on each group. A distance matrix was created

for each species based on resulting popANI values and used to cluster each species into
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individual strains using “average” hierarchical clustering with a threshold of 99.999% popANI

(Scipy cluster). Strains shared between sample pairs were calculated based on this strain

definition, and P-values were calculated only considering pairs of samples in which both samples

were from Hadza adults.

Supplemental Information

Supplementary Table 1: Description of Hadza, Nepali, and Californian cohorts

Supplementary Table 2: Comprehensive genome information info (including representative

genomes and other genomes)

Supplementary Table 3: Roster of strains isolated from Hadza stool (including cultivation

information)

Supplementary Table 4: Global metagenomics data set broken down by sample

Supplementary Table 5: Prevalence/abundance data for each species-level representative

genome in our bacterial/archaeal species-level genome database

Supplementary Table 6: Pfam info (lifestyle-enrichment and pN/pS data)

Supplementary Table 7: Strain sharing data between Hadza adult samples
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Figure S1. Comparing genome recovery from MoBio extraction vs. phenol chloroform
(PheChl) extraction
(A) Scatter plot of genomes recovered versus sequencing depth for Hadza samples extracted via
both MoBio and PheChl extraction methods. Specifying a linear regression of genomes
recovered against sequencing depth with an interaction term for extraction method reveals a
non-significant interaction effect (P = 0.61). (B) Normalized genomes recovered per Gbp
sequencing depth show no statistical difference for samples extracted with both MoBio or
PheChl (P = 0.125, Wilcoxon rank-sum test).
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Figure S2. Phylogenies of strains isolated from Hadza stool samples.
(A) A phylogenetic tree of all isolate genomes sequenced in this study. The tree is decorated with
phylum of each species (inner ring), whether the species is newly isolated for the first time
(middle ring) and whether the species is novel relative to UHGG (outer ring).
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Figure S3. The median metagenomic sequencing depths of populations sequenced in this
study.
A box plot showing the distribution of sequencing depth, in giga base pairs (Gbp) for each of the
populations sequenced in this study. The Chepang foragers and Raute, Raji, and Tharu agrarians
are the Nepali populations. The populations do not differ significantly by sequencing depth (P =
0.097, Kruskal-Wallis test).
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Figure S4. Global metagenomics data set and analysis of publicly available hunter-gatherer
samples.
(A) A flowchart showing the computational pipeline used to analyze global metagenomics
samples. (B) A world map showing the geographic locations of global metagenomics samples.
Dots are colored based on the lifestyle of the study population and the size of the dots indicate
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the number of samples contributed by that population. ‘H-G’, Hunter-Gatherer. (C) PCoA plot of
H-G (green) and transitional (orange) samples in our global metagenomics data set. Triangles are
samples sequenced in this study (Hadza and Nepali samples). Circles are samples from other
studies. Distance matrix was generated with Jaccard similarity between samples. (D) Shannon
diversity of H-G samples in our global metagenomics data set. Significance between groups was
calculated using Wilcoxon rank-sum test (*** P < 0.001, * P < 0.05). (E) Confusion matrix from
a random forest classifier built to predict the lifestyle of Hadza samples from this study and H-G
and transitional lifestyle samples from publicly available studies. 100% of Hadza samples were
classified as Hadza, H-G samples were correctly classified 53% of the time and transitional
samples were classified correctly 91% of the time. (F) Scatter plot showing sequencing depth
versus richness (number of observed species). Linear regression model of richness against
sequencing depth reveals a highly significant association (P = 2.2 x 10-16). ‘H-G’,
Hunter-Gatherer.
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Figure S5. Lifestyle-specific enrichment of bacterial and archaeal taxa.
Volcano plot showing enrichment of each species in either Hadza or industrial samples in our
global metagenomics data set. Dots colored magenta are in the 95th percentile most enriched in
the Hadza and are deemed VANISH taxa (124 total). Dots that are colored blue are in the 95th
percentile most enriched in industrial samples and are deemed BloSSUM (63 total).
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Figure S6. Global prevalence of two most prevalent Blastocystis MAGs and their
association with VANISH and BloSSUM taxa.
(A) A heatmap showing the prevalence of the two most prevalent Blastocystis MAGs (subtype 1
and subtype 4) in 16 different countries in our global metagenomics database. (B) A volcano plot
showing associations between the presence or absence of either Blastocystis genome and the
relative abundance of VANISH (magenta) or BloSSUM (blue) taxa. P-values were determined
with a Wilcoxon rank-sum test and then adjusted with the Benjamini-Hochberg method to
correct for multiple hypothesis testing. Threshold for significance of the adjusted p-values is
P=0.05 (or -log10(P)=1.3). Effect size was determined by linear discriminant analysis.  The data
points labeled “Global” are the associations for all samples in our global metagenomics data set.
Other data points are for individual studies within the global metagenomics data set (annotated
by first author of study and country of origin of the metagenomes). Across all studies we found
that Blastocystis presence was positively and negatively associated with the total abundance of
VANISH (P=5.1x10-14) and BloSSUM (P=8.6x10-21) taxa, respectively. (C) Boxplots showing
the summed relative abundance of BloSSUM taxa per sample and whether Blastocystis was
detected in that sample. Associations shown are for the entire global metagenomics data set and
5 additional populations (NEP = Nepal, TZA = Tanzania, THA = Thailand, ISR = Israel) from
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three lifestyles labeled above the plots. P-values shown are the results of Wilcoxon rank-sum
tests.
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Figure S7. Seasonality in Hadza gut microbiome.
(A) A principal coordinate analysis of Hadza samples where the Bray-Curtis distance matrix was
generated by calculating the relative abundance of each taxonomic family in our
bacterial/archaeal species-level genome database using InStrain (top panel). Samples are colored
by season. Season explains a significant amount of the variation in the data (P = 0.001, R2 =0.09;
ADONIS, using Subject ID as a strata). Sub-season also explains a significant amount of
variation in the data (P = 0.001, R2 =0.14; ADONIS, using Subject ID as a strata). The bottom
panel shows a violin plot of each sample’s PCo1 position, grouped by season. Samples collected
in the dry season are significantly different from the wet season (P = 1.2 x 10-10 and P = 2 x 10-16

for 2013-DRY:2014-WET and 2014-WET:2014-DRY comparisons, respectively; Wilcoxon test).
The samples collected in each dry season do not differ significantly from each other (P=0.34;
Wilcoxon test). (B) The violin plots depict distribution of relative abundance for 6 SRGs that
vary significantly over the 5 sub-seasons. The top three sub-panels depict species-level groups
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that have higher abundance in the wet seasons. The bottom three sub-panels depict species-level
groups that have higher abundance in the dry seasons. (Bulleidia sp., P-adjusted = 7.5 x 10-20;
Dorea formicigenerans, P-adjusted = 1.2 x 10-16; Holdemanella sp003436425, P-adjusted = 6.5 x
10-16; Prevotella copri_A, P-adjusted = 0.0054; Succinivibrio sp000431835, P-adjusted = 4.7 x
10-7; Treponema_D succinifaciens, P-adjusted = 0.012; Kruksal-Wallis test). 2013-LD (Late
Dry); 2014-EW (Early Wet); 2014-LW (Late Wet); 2014-ED (Early Dry); 2014-LD (Late Dry).
(C) For Hadza gut metagenomes sequenced in this study, genes present (≥ 80% breadth of
coverage) on detected genomes (≥ 50% breadth of coverage) were annotated against the
CAZyme database. CAZyme Pielou evenness (left), total richness (middle), and Shannon
diversity (right) were calculated using the summed relative abundance of genomes containing
each GH and PL CAZyme Family (for example, ‘GH16’) or (D) SubFamily (for example,
‘GH16.7’). Values for samples collected from Hadza individuals in different seasons were
compared using a two-sided Wilcoxon rank-sum test (* P < 0.01; ** P < 1 x 10 -5; *** P < 1 x
10-10).

45

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


References

Abdill, R.J., Adamowicz, E.M., and Blekhman, R. (2022). Public human microbiome data are
dominated by highly developed countries. PLoS Biol. 20, e3001536. .

Almeida, A., Mitchell, A.L., Boland, M., Forster, S.C., Gloor, G.B., Tarkowska, A., Lawley, T.D.,
and Finn, R.D. (2019). A new genomic blueprint of the human gut microbiota. Nature 568,
499–504. .

Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z.J., Pollard, K.S.,
Sakharova, E., Parks, D.H., Hugenholtz, P., et al. (2020). A unified catalog of 204,938 reference
genomes from the human gut microbiome. Nat. Biotechnol.
https://doi.org/10.1038/s41587-020-0603-3.

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.

Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie,
H., Zhong, H., et al. (2015). Dynamics and Stabilization of the Human Gut Microbiome during
the First Year of Life. Cell Host Microbe 17, 690–703. .

Belkhou, C., Tadeo, R.T., Bacigalupe, R., Valles-Colomer, M., Chaffron, S., Joossens, M.,
Obregon, A., Marín Reyes, L., Trujillo, O., Huys, G.R.B., et al. (2021). Treponema peruense sp.
nov., a commensal spirochaete isolated from human faeces. Int. J. Syst. Evol. Microbiol. 71.
https://doi.org/10.1099/ijsem.0.005050.

Bengtsson-Palme, J., Angelin, M., Huss, M., Kjellqvist, S., Kristiansson, E., Palmgren, H.,
Larsson, D.G.J., and Johansson, A. (2015). The Human Gut Microbiome as a Transporter of
Antibiotic Resistance Genes between Continents. Antimicrob. Agents Chemother. 59,
6551–6560. .

Bland, C., Ramsey, T.L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N.C., and Hugenholtz, P.
(2007). CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly
interspaced palindromic repeats. BMC Bioinformatics 8, 209. .

Blaser, M.J. (2017). The theory of disappearing microbiota and the epidemics of chronic
diseases. Nat. Rev. Immunol. 17, 461–463. .

Blaser, M.J., and Falkow, S. (2009). What are the consequences of the disappearing human
microbiota? Nat. Rev. Microbiol. 7, 887–894. .

Borges, R., Machado, J.P., Gomes, C., Rocha, A.P., and Antunes, A. (2019). Measuring
phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35, 1862–1869. .

Bowers, R.M., Kyrpides, N.C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T.B.K.,
Schulz, F., Jarett, J., Rivers, A.R., Eloe-Fadrosh, E.A., et al. (2017). Minimum information about
a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of
bacteria and archaea. Nat. Biotechnol. 35, 725–731. .

Brito, I.L., Yilmaz, S., Huang, K., Xu, L., Jupiter, S.D., Jenkins, A.P., Naisilisili, W., Tamminen,
M., Smillie, C.S., Wortman, J.R., et al. (2016). Mobile genes in the human microbiome are
structured from global to individual scales. Nature https://doi.org/10.1038/nature18927.

46

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

http://paperpile.com/b/EUhAuS/UQqw
http://paperpile.com/b/EUhAuS/UQqw
http://paperpile.com/b/EUhAuS/3hQzt
http://paperpile.com/b/EUhAuS/3hQzt
http://paperpile.com/b/EUhAuS/3hQzt
http://paperpile.com/b/EUhAuS/mnORg
http://paperpile.com/b/EUhAuS/mnORg
http://paperpile.com/b/EUhAuS/mnORg
http://paperpile.com/b/EUhAuS/mnORg
http://dx.doi.org/10.1038/s41587-020-0603-3
http://paperpile.com/b/EUhAuS/mnORg
http://paperpile.com/b/EUhAuS/yfAPc
http://paperpile.com/b/EUhAuS/ObgP9
http://paperpile.com/b/EUhAuS/ObgP9
http://paperpile.com/b/EUhAuS/ObgP9
http://paperpile.com/b/EUhAuS/QufT
http://paperpile.com/b/EUhAuS/QufT
http://paperpile.com/b/EUhAuS/QufT
http://paperpile.com/b/EUhAuS/QufT
http://dx.doi.org/10.1099/ijsem.0.005050
http://paperpile.com/b/EUhAuS/QufT
http://paperpile.com/b/EUhAuS/x6KD
http://paperpile.com/b/EUhAuS/x6KD
http://paperpile.com/b/EUhAuS/x6KD
http://paperpile.com/b/EUhAuS/x6KD
http://paperpile.com/b/EUhAuS/DwIIL
http://paperpile.com/b/EUhAuS/DwIIL
http://paperpile.com/b/EUhAuS/DwIIL
http://paperpile.com/b/EUhAuS/WQvR5
http://paperpile.com/b/EUhAuS/WQvR5
http://paperpile.com/b/EUhAuS/rS0UG
http://paperpile.com/b/EUhAuS/rS0UG
http://paperpile.com/b/EUhAuS/lfjx
http://paperpile.com/b/EUhAuS/lfjx
http://paperpile.com/b/EUhAuS/k0c8P
http://paperpile.com/b/EUhAuS/k0c8P
http://paperpile.com/b/EUhAuS/k0c8P
http://paperpile.com/b/EUhAuS/k0c8P
http://paperpile.com/b/EUhAuS/Ej3x
http://paperpile.com/b/EUhAuS/Ej3x
http://paperpile.com/b/EUhAuS/Ej3x
http://dx.doi.org/10.1038/nature18927
http://paperpile.com/b/EUhAuS/Ej3x
https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


Brown, C.T., Olm, M.R., Thomas, B.C., and Banfield, J.F. (2016). Measurement of bacterial
replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263. .

Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment using
DIAMOND. Nat. Methods 12, 59–60. .

Bushnell, B. (2014). BBTools software package. URL Http://sourceforge. Net/projects/bbmap
578, 579. .

Bushnell, B., Rood, J., and Singer, E. (2017). BBMerge--accurate paired shotgun read merging
via overlap. PLoS One 12, e0185056. .

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden,
T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421. .

Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2019). GTDB-Tk: a toolkit to
classify genomes with the Genome Taxonomy Database. Bioinformatics
https://doi.org/10.1093/bioinformatics/btz848.

Chen, Y., Ye, W., Zhang, Y., and Xu, Y. (2015). High speed BLASTN: an accelerated
MegaBLAST search tool. Nucleic Acids Res. 43, 7762–7768. .

Clark, C.G., van der Giezen, M., Alfellani, M.A., and Stensvold, C.R. (2013). Recent
developments in Blastocystis research. Adv. Parasitol. 82, 1–32. .

Clemente, J.C., Pehrsson, E.C., Blaser, M.J., Sandhu, K., Gao, Z., Wang, B., Magris, M.,
Hidalgo, G., Contreras, M., Noya-Alarcón, Ó., et al. (2015). The microbiome of uncontacted
Amerindians. Sci Adv 1. https://doi.org/10.1126/sciadv.1500183.

Conteville, L.C., Oliveira-Ferreira, J., and Vicente, A.C.P. (2019). Gut Microbiome Biomarkers
and Functional Diversity Within an Amazonian Semi-Nomadic Hunter–Gatherer Group. Front.
Microbiol. 10. https://doi.org/10.3389/fmicb.2019.01743.

Costea, P.I., Coelho, L.P., Sunagawa, S., Munch, R., Huerta-Cepas, J., Forslund, K.,
Hildebrand, F., Kushugulova, A., Zeller, G., and Bork, P. (2017a). Subspecies in the global
human gut microbiome. Mol. Syst. Biol. 13, 960. .

Costea, P.I., Coelho, L.P., Sunagawa, S., Munch, R., Huerta-Cepas, J., Forslund, K.,
Hildebrand, F., Kushugulova, A., Zeller, G., and Bork, P. (2017b). Subspecies in the global
human gut microbiome. Mol. Syst. Biol. 13, 960. .

Dixon, P. (2003). VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14,
927–930. .

Eddy, S.R. (2011). Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195. .

Edgar, R.C. (2007). PILER-CR: fast and accurate identification of CRISPR repeats. BMC
Bioinformatics 8, 18. .

Edgar, R.C. (2021). MUSCLE v5 enables improved estimates of phylogenetic tree confidence
by ensemble bootstrapping.

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M.,

47

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

http://paperpile.com/b/EUhAuS/ceiX
http://paperpile.com/b/EUhAuS/ceiX
http://paperpile.com/b/EUhAuS/1ujw6
http://paperpile.com/b/EUhAuS/1ujw6
http://paperpile.com/b/EUhAuS/0SlyW
http://paperpile.com/b/EUhAuS/0SlyW
http://paperpile.com/b/EUhAuS/vY9BP
http://paperpile.com/b/EUhAuS/vY9BP
http://paperpile.com/b/EUhAuS/GBckt
http://paperpile.com/b/EUhAuS/GBckt
http://paperpile.com/b/EUhAuS/gs4Ui
http://paperpile.com/b/EUhAuS/gs4Ui
http://paperpile.com/b/EUhAuS/gs4Ui
http://dx.doi.org/10.1093/bioinformatics/btz848
http://paperpile.com/b/EUhAuS/gs4Ui
http://paperpile.com/b/EUhAuS/3PLfu
http://paperpile.com/b/EUhAuS/3PLfu
http://paperpile.com/b/EUhAuS/uBUy
http://paperpile.com/b/EUhAuS/uBUy
http://paperpile.com/b/EUhAuS/K4TgI
http://paperpile.com/b/EUhAuS/K4TgI
http://paperpile.com/b/EUhAuS/K4TgI
http://dx.doi.org/10.1126/sciadv.1500183
http://paperpile.com/b/EUhAuS/K4TgI
http://paperpile.com/b/EUhAuS/7wlZ
http://paperpile.com/b/EUhAuS/7wlZ
http://paperpile.com/b/EUhAuS/7wlZ
http://dx.doi.org/10.3389/fmicb.2019.01743
http://paperpile.com/b/EUhAuS/7wlZ
http://paperpile.com/b/EUhAuS/8L4H
http://paperpile.com/b/EUhAuS/8L4H
http://paperpile.com/b/EUhAuS/8L4H
http://paperpile.com/b/EUhAuS/z1kq
http://paperpile.com/b/EUhAuS/z1kq
http://paperpile.com/b/EUhAuS/z1kq
http://paperpile.com/b/EUhAuS/jy324
http://paperpile.com/b/EUhAuS/jy324
http://paperpile.com/b/EUhAuS/pB6T1
http://paperpile.com/b/EUhAuS/dyJeH
http://paperpile.com/b/EUhAuS/dyJeH
http://paperpile.com/b/EUhAuS/QF04l
http://paperpile.com/b/EUhAuS/QF04l
http://paperpile.com/b/EUhAuS/1q4oL
https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


Richardson, L.J., Salazar, G.A., Smart, A., et al. (2018). The Pfam protein families database in
2019. Nucleic Acids Res. https://doi.org/10.1093/nar/gky995.

Eren, A.M., Esen, Ö.C., Quince, C., Vineis, J.H., Morrison, H.G., Sogin, M.L., and Delmont, T.O.
(2015). Anvi’o: an advanced analysis and visualization platform for 'omics data. PeerJ 3, e1319.
.

Faith, J.J., Guruge, J.L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A.L.,
Clemente, J.C., Knight, R., Heath, A.C., Leibel, R.L., et al. (2013). The Long-Term Stability of
the Human Gut Microbiota. Science 341, 1237439–1237439. .

Falush, D., Wirth, T., Linz, B., Pritchard, J.K., Stephens, M., Kidd, M., Blaser, M.J., Graham,
D.Y., Vacher, S., Perez-Perez, G.I., et al. (2003). Traces of human migrations in Helicobacter
pylori populations. Science 299, 1582–1585. .

Fragiadakis, G.K., Smits, S.A., Sonnenburg, E.D., Van Treuren, W., Reid, G., Knight, R.,
Manjurano, A., Changalucha, J., Dominguez-Bello, M.G., Leach, J., et al. (2019). Links between
environment, diet, and the hunter-gatherer microbiome. Gut Microbes 10, 216–227. .

Green, E.D., Gunter, C., Biesecker, L.G., Di Francesco, V., Easter, C.L., Feingold, E.A.,
Felsenfeld, A.L., Kaufman, D.J., Ostrander, E.A., Pavan, W.J., et al. (2020). Strategic vision for
improving human health at The Forefront of Genomics. Nature 586, 683–692. .

Groussin, M., Poyet, M., Sistiaga, A., Kearney, S.M., Moniz, K., Noel, M., Hooker, J., Gibbons,
S.M., Segurel, L., Froment, A., et al. (2021). Elevated rates of horizontal gene transfer in the
industrialized human microbiome. Cell 184, 2053–2067.e18. .

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool for
genome assemblies. Bioinformatics 29, 1072–1075. .

Gutierrez, S.C., Martinez, J.M.S., and Gabaldón, T. (2009). TrimAl: a Tool for automatic
alignment trimming. Bioinformatics 25, 1972–1973. .

Hockenberry, A.J., and Wilke, C.O. (2021). BACPHLIP: predicting bacteriophage lifestyle from
conserved protein domains. PeerJ 9, e11396. .

Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy
human microbiome. Nature 486, 207–214. .

Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010).
Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC
Bioinformatics 11, 119. .

Jha, A.R., Davenport, E.R., Gautam, Y., Bhandari, D., Tandukar, S., Ng, K.M., Fragiadakis, G.K.,
Holmes, S., Gautam, G.P., Leach, J., et al. (2018). Gut microbiome transition across a lifestyle
gradient in Himalaya. PLoS Biol. 16, e2005396. .

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open source scientific tools for Python.
URL Http://scipy. Org.

Kang, D.D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., and Wang, Z. (2019). MetaBAT 2: an
adaptive binning algorithm for robust and efficient genome reconstruction from metagenome
assemblies. PeerJ 7, e7359. .

48

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

http://paperpile.com/b/EUhAuS/1q4oL
http://paperpile.com/b/EUhAuS/1q4oL
http://dx.doi.org/10.1093/nar/gky995
http://paperpile.com/b/EUhAuS/1q4oL
http://paperpile.com/b/EUhAuS/qCueb
http://paperpile.com/b/EUhAuS/qCueb
http://paperpile.com/b/EUhAuS/qCueb
http://paperpile.com/b/EUhAuS/zB24
http://paperpile.com/b/EUhAuS/zB24
http://paperpile.com/b/EUhAuS/zB24
http://paperpile.com/b/EUhAuS/yDgI
http://paperpile.com/b/EUhAuS/yDgI
http://paperpile.com/b/EUhAuS/yDgI
http://paperpile.com/b/EUhAuS/lPBex
http://paperpile.com/b/EUhAuS/lPBex
http://paperpile.com/b/EUhAuS/lPBex
http://paperpile.com/b/EUhAuS/lm0C
http://paperpile.com/b/EUhAuS/lm0C
http://paperpile.com/b/EUhAuS/lm0C
http://paperpile.com/b/EUhAuS/U9yLz
http://paperpile.com/b/EUhAuS/U9yLz
http://paperpile.com/b/EUhAuS/U9yLz
http://paperpile.com/b/EUhAuS/iGmLd
http://paperpile.com/b/EUhAuS/iGmLd
http://paperpile.com/b/EUhAuS/CarIM
http://paperpile.com/b/EUhAuS/CarIM
http://paperpile.com/b/EUhAuS/ol5jo
http://paperpile.com/b/EUhAuS/ol5jo
http://paperpile.com/b/EUhAuS/Re1A
http://paperpile.com/b/EUhAuS/Re1A
http://paperpile.com/b/EUhAuS/847bU
http://paperpile.com/b/EUhAuS/847bU
http://paperpile.com/b/EUhAuS/847bU
http://paperpile.com/b/EUhAuS/gyJLx
http://paperpile.com/b/EUhAuS/gyJLx
http://paperpile.com/b/EUhAuS/gyJLx
http://paperpile.com/b/EUhAuS/oOhHP
http://paperpile.com/b/EUhAuS/oOhHP
http://paperpile.com/b/EUhAuS/vgfet
http://paperpile.com/b/EUhAuS/vgfet
http://paperpile.com/b/EUhAuS/vgfet
https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357–359. .

Lee, M.D. (2019). GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35,
4162–4164. .

Letunic, I., and Bork, P. (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic
tree display and annotation. Bioinformatics 23, 127–128. .

Lewis, T.E., Sillitoe, I., and Lees, J.G. (2019). cath-resolve-hits: a new tool that resolves domain
matches suspiciously quickly. Bioinformatics 35, 1766–1767. .

Lind, A.L., and Pollard, K.S. (2021). Accurate and sensitive detection of microbial eukaryotes
from whole metagenome shotgun sequencing. Microbiome 9, 58. .

Linz, B., Balloux, F., Moodley, Y., Manica, A., Liu, H., Roumagnac, P., Falush, D., Stamer, C.,
Prugnolle, F., van der Merwe, S.W., et al. (2007). An African origin for the intimate association
between humans and Helicobacter pylori. Nature 445, 915–918. .

Litvak, Y., Byndloss, M.X., and Bäumler, A.J. (2018). Colonocyte metabolism shapes the gut
microbiota. Science 362. https://doi.org/10.1126/science.aat9076.

Liu, H., Prugnolle, F., Manica, A., and Balloux, F. (2006). A geographically explicit genetic model
of worldwide human-settlement history. Am. J. Hum. Genet. 79, 230–237. .

Liu, W., Zhang, J., Wu, C., Cai, S., Huang, W., Chen, J., Xi, X., Liang, Z., Hou, Q., Zhou, B., et
al. (2016). Unique Features of Ethnic Mongolian Gut Microbiome revealed by metagenomic
analysis. Sci. Rep. 6, 34826. .

Liu, W., Zhang, J., Wu, C., Cai, S., Huang, W., Chen, J., Xi, X., Liang, Z., Hou, Q., Zhou, B., et
al. (2017). Corrigendum: Unique Features of Ethnic Mongolian Gut Microbiome revealed by
metagenomic analysis. Sci. Rep. 7, 39576. .

Lizano, S., Luo, F., and Bessen, D.E. (2007). Role of streptococcal T antigens in superficial skin
infection. J. Bacteriol. 189, 1426–1434. .

Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B., Brady, A.,
Creasy, H.H., McCracken, C., Giglio, M.G., et al. (2017). Strains, functions and dynamics in the
expanded Human Microbiome Project. Nature https://doi.org/10.1038/nature23889.

Lokmer, A., Cian, A., Froment, A., Gantois, N., Viscogliosi, E., Chabé, M., and Ségurel, L.
(2019). Use of shotgun metagenomics for the identification of protozoa in the gut microbiota of
healthy individuals from worldwide populations with various industrialization levels. PLoS One
14, e0211139. .

Mangola, S.M., Lund, J.R., Schnorr, S.L., and Crittenden, A.N. (2022). Ethical microbiome
research with Indigenous communities. Nat Microbiol 7, 749–756. .

Marlowe, F. (2010). The Hadza: Hunter-gatherers of Tanzania (University of California Press).

Marlowe, F.W., Berbesque, J.C., Wood, B., Crittenden, A., Porter, C., and Mabulla, A. (2014).
Honey, Hadza, hunter-gatherers, and human evolution. J. Hum. Evol. 71, 119–128. .

49

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

http://paperpile.com/b/EUhAuS/hjOnK
http://paperpile.com/b/EUhAuS/hjOnK
http://paperpile.com/b/EUhAuS/af8RQ
http://paperpile.com/b/EUhAuS/af8RQ
http://paperpile.com/b/EUhAuS/KYOmm
http://paperpile.com/b/EUhAuS/KYOmm
http://paperpile.com/b/EUhAuS/LKQLD
http://paperpile.com/b/EUhAuS/LKQLD
http://paperpile.com/b/EUhAuS/xbSz3
http://paperpile.com/b/EUhAuS/xbSz3
http://paperpile.com/b/EUhAuS/7e7U
http://paperpile.com/b/EUhAuS/7e7U
http://paperpile.com/b/EUhAuS/7e7U
http://paperpile.com/b/EUhAuS/UeDXb
http://paperpile.com/b/EUhAuS/UeDXb
http://dx.doi.org/10.1126/science.aat9076
http://paperpile.com/b/EUhAuS/UeDXb
http://paperpile.com/b/EUhAuS/kzTF
http://paperpile.com/b/EUhAuS/kzTF
http://paperpile.com/b/EUhAuS/8EAy
http://paperpile.com/b/EUhAuS/8EAy
http://paperpile.com/b/EUhAuS/8EAy
http://paperpile.com/b/EUhAuS/AQQy
http://paperpile.com/b/EUhAuS/AQQy
http://paperpile.com/b/EUhAuS/AQQy
http://paperpile.com/b/EUhAuS/ARwy
http://paperpile.com/b/EUhAuS/ARwy
http://paperpile.com/b/EUhAuS/tydM0
http://paperpile.com/b/EUhAuS/tydM0
http://paperpile.com/b/EUhAuS/tydM0
http://dx.doi.org/10.1038/nature23889
http://paperpile.com/b/EUhAuS/tydM0
http://paperpile.com/b/EUhAuS/5L9o
http://paperpile.com/b/EUhAuS/5L9o
http://paperpile.com/b/EUhAuS/5L9o
http://paperpile.com/b/EUhAuS/5L9o
http://paperpile.com/b/EUhAuS/j7AQ
http://paperpile.com/b/EUhAuS/j7AQ
http://paperpile.com/b/EUhAuS/Z961o
http://paperpile.com/b/EUhAuS/0oTue
http://paperpile.com/b/EUhAuS/0oTue
https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


Martínez, I., Stegen, J.C., Maldonado-Gómez, M.X., Eren, A.M., Siba, P.M., Greenhill, A.R., and
Walter, J. (2015). The gut microbiota of rural papua new guineans: composition, diversity
patterns, and ecological processes. Cell Rep. 11, 527–538. .

Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A.,
and Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
Inference in the Genomic Era. Mol. Biol. Evol. 37, 1530–1534. .

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L.,
Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., et al. (2021). Pfam: The protein families
database in 2021. Nucleic Acids Res. 49, D412–D419. .

Modi, S.R., Collins, J.J., and Relman, D.A. (2014). Antibiotics and the gut microbiota. J. Clin.
Invest. 124, 4212–4218. .

Moeller, A.H., Li, Y., Mpoudi Ngole, E., Ahuka-Mundeke, S., Lonsdorf, E.V., Pusey, A.E.,
Peeters, M., Hahn, B.H., and Ochman, H. (2014). Rapid changes in the gut microbiome during
human evolution. Proc. Natl. Acad. Sci. U. S. A. 111, 16431–16435. .

Mueller, N.T., Bakacs, E., Combellick, J., Grigoryan, Z., and Dominguez-Bello, M.G. (2015). The
infant microbiome development: mom matters. Trends Mol. Med. 21, 109–117. .

Nayfach, S., Shi, Z.J., Seshadri, R., Pollard, K.S., and Kyrpides, N.C. (2019). New insights from
uncultivated genomes of the global human gut microbiome. Nature
https://doi.org/10.1038/s41586-019-1058-x.

Nayfach, S., Camargo, A.P., Schulz, F., Eloe-Fadrosh, E., Roux, S., and Kyrpides, N.C. (2021a).
CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat.
Biotechnol. 39, 578–585. .

Nayfach, S., Páez-Espino, D., Call, L., Low, S.J., Sberro, H., Ivanova, N.N., Proal, A.D.,
Fischbach, M.A., Bhatt, A.S., Hugenholtz, P., et al. (2021b). Metagenomic compendium of
189,680 DNA viruses from the human gut microbiome. Nat Microbiol 6, 960–970. .

NCBI Resource Coordinators (2017). Database Resources of the National Center for
Biotechnology Information. Nucleic Acids Res. 45, D12–D17. .

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017). metaSPAdes: a new
versatile metagenomic assembler. Genome Res. 27, 824–834. .

Obregon-Tito, A.J., Tito, R.Y., Metcalf, J., Sankaranarayanan, K., Clemente, J.C., Ursell, L.K.,
Zech Xu, Z., Van Treuren, W., Knight, R., Gaffney, P.M., et al. (2015). Subsistence strategies in
traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505. .

Olm, M.R., Brown, C.T., Brooks, B., and Banfield, J.F. (2017). dRep: a tool for fast and accurate
genomic comparisons that enables improved genome recovery from metagenomes through
de-replication. ISME J. 11, 2864–2868. .

Olm, M.R., West, P.T., Brooks, B., Firek, B.A., Baker, R., Morowitz, M.J., and Banfield, J.F.
(2019a). Genome-resolved metagenomics of eukaryotic populations during early colonization of
premature infants and in hospital rooms. Microbiome 7, 26. .

Olm, M.R., Bhattacharya, N., Crits-Christoph, A., Firek, B.A., Baker, R., Song, Y.S., Morowitz,

50

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

http://paperpile.com/b/EUhAuS/RJa2Q
http://paperpile.com/b/EUhAuS/RJa2Q
http://paperpile.com/b/EUhAuS/RJa2Q
http://paperpile.com/b/EUhAuS/PdYdP
http://paperpile.com/b/EUhAuS/PdYdP
http://paperpile.com/b/EUhAuS/PdYdP
http://paperpile.com/b/EUhAuS/2r84
http://paperpile.com/b/EUhAuS/2r84
http://paperpile.com/b/EUhAuS/2r84
http://paperpile.com/b/EUhAuS/aUJwn
http://paperpile.com/b/EUhAuS/aUJwn
http://paperpile.com/b/EUhAuS/Ob0to
http://paperpile.com/b/EUhAuS/Ob0to
http://paperpile.com/b/EUhAuS/Ob0to
http://paperpile.com/b/EUhAuS/41A1H
http://paperpile.com/b/EUhAuS/41A1H
http://paperpile.com/b/EUhAuS/RCCtu
http://paperpile.com/b/EUhAuS/RCCtu
http://paperpile.com/b/EUhAuS/RCCtu
http://dx.doi.org/10.1038/s41586-019-1058-x
http://paperpile.com/b/EUhAuS/RCCtu
http://paperpile.com/b/EUhAuS/zY1tc
http://paperpile.com/b/EUhAuS/zY1tc
http://paperpile.com/b/EUhAuS/zY1tc
http://paperpile.com/b/EUhAuS/tSuFF
http://paperpile.com/b/EUhAuS/tSuFF
http://paperpile.com/b/EUhAuS/tSuFF
http://paperpile.com/b/EUhAuS/tLx8
http://paperpile.com/b/EUhAuS/tLx8
http://paperpile.com/b/EUhAuS/b8htW
http://paperpile.com/b/EUhAuS/b8htW
http://paperpile.com/b/EUhAuS/ImgN
http://paperpile.com/b/EUhAuS/ImgN
http://paperpile.com/b/EUhAuS/ImgN
http://paperpile.com/b/EUhAuS/G7oKv
http://paperpile.com/b/EUhAuS/G7oKv
http://paperpile.com/b/EUhAuS/G7oKv
http://paperpile.com/b/EUhAuS/65Yt
http://paperpile.com/b/EUhAuS/65Yt
http://paperpile.com/b/EUhAuS/65Yt
http://paperpile.com/b/EUhAuS/pKVW1
https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


M.J., and Banfield, J.F. (2019b). Necrotizing enterocolitis is preceded by increased gut bacterial
replication, Klebsiella, and fimbriae-encoding bacteria. Science Advances 5, eaax5727. .

Olm, M.R., Crits-Christoph, A., Diamond, S., Lavy, A., Matheus Carnevali, P.B., and Banfield,
J.F. (2020). Consistent Metagenome-Derived Metrics Verify and Delineate Bacterial Species
Boundaries. mSystems 5. https://doi.org/10.1128/mSystems.00731-19.

Olm, M.R., Crits-Christoph, A., Bouma-Gregson, K., Firek, B.A., Morowitz, M.J., and Banfield,
J.F. (2021). inStrain profiles population microdiversity from metagenomic data and sensitively
detects shared microbial strains. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-00797-0.

Olm, M.R., Dahan, D., Carter, M.M., Merrill, B.D., Yu, F.B., Jain, S., Meng, X., Tripathi, S.,
Wastyk, H., Neff, N., et al. (2022). Robust variation in infant gut microbiome assembly across a
spectrum of lifestyles. Science 376, 1220–1223. .

Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S., and
Phillippy, A.M. (2016). Mash: fast genome and metagenome distance estimation using MinHash.
Genome Biol. 17. https://doi.org/10.1186/s13059-016-0997-x.

Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2015). CheckM:
assessing the quality of microbial genomes recovered from isolates, single cells, and
metagenomes. Genome Res. 25, 1043–1055. .

Parks, D.H., Chuvochina, M., Rinke, C., Mussig, A.J., Chaumeil, P.-A., and Hugenholtz, P.
(2022). GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically
consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50,
D785–D794. .

Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi, P.,
Tett, A., Ghensi, P., et al. (2019). Extensive Unexplored Human Microbiome Diversity Revealed
by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell
176, 649–662.e20. .

Pehrsson, E.C., Tsukayama, P., Patel, S., Mejía-Bautista, M., Sosa-Soto, G., Navarrete, K.M.,
Calderon, M., Cabrera, L., Hoyos-Arango, W., Bertoli, M.T., et al. (2016). Interconnected
microbiomes and resistomes in low-income human habitats. Nature 533, 212–216. .

Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., and Korobeynikov, A. (2020). Using
SPAdes DE Novo Assembler. Curr. Protoc. Bioinformatics 70, e102. .

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N.,
Levenez, F., Yamada, T., et al. (2010). A human gut microbial gene catalogue established by
metagenomic sequencing. Nature 464, 59–65. .

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., et al.
(2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490,
55–60. .

Rampelli, S., Schnorr, S.L., Consolandi, C., Turroni, S., Severgnini, M., Peano, C., Brigidi, P.,
Crittenden, A.N., Henry, A.G., and Candela, M. (2015). Metagenome Sequencing of the Hadza
Hunter-Gatherer Gut Microbiota. Curr. Biol. 25, 1682–1693. .

51

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

http://paperpile.com/b/EUhAuS/pKVW1
http://paperpile.com/b/EUhAuS/pKVW1
http://paperpile.com/b/EUhAuS/5jlC8
http://paperpile.com/b/EUhAuS/5jlC8
http://paperpile.com/b/EUhAuS/5jlC8
http://dx.doi.org/10.1128/mSystems.00731-19
http://paperpile.com/b/EUhAuS/5jlC8
http://paperpile.com/b/EUhAuS/4WwUD
http://paperpile.com/b/EUhAuS/4WwUD
http://paperpile.com/b/EUhAuS/4WwUD
http://dx.doi.org/10.1038/s41587-020-00797-0
http://paperpile.com/b/EUhAuS/4WwUD
http://paperpile.com/b/EUhAuS/QHpi
http://paperpile.com/b/EUhAuS/QHpi
http://paperpile.com/b/EUhAuS/QHpi
http://paperpile.com/b/EUhAuS/W7T9d
http://paperpile.com/b/EUhAuS/W7T9d
http://paperpile.com/b/EUhAuS/W7T9d
http://dx.doi.org/10.1186/s13059-016-0997-x
http://paperpile.com/b/EUhAuS/W7T9d
http://paperpile.com/b/EUhAuS/TJGFp
http://paperpile.com/b/EUhAuS/TJGFp
http://paperpile.com/b/EUhAuS/TJGFp
http://paperpile.com/b/EUhAuS/kPsa
http://paperpile.com/b/EUhAuS/kPsa
http://paperpile.com/b/EUhAuS/kPsa
http://paperpile.com/b/EUhAuS/kPsa
http://paperpile.com/b/EUhAuS/aSYZO
http://paperpile.com/b/EUhAuS/aSYZO
http://paperpile.com/b/EUhAuS/aSYZO
http://paperpile.com/b/EUhAuS/aSYZO
http://paperpile.com/b/EUhAuS/wUDV
http://paperpile.com/b/EUhAuS/wUDV
http://paperpile.com/b/EUhAuS/wUDV
http://paperpile.com/b/EUhAuS/7J0k4
http://paperpile.com/b/EUhAuS/7J0k4
http://paperpile.com/b/EUhAuS/es4j
http://paperpile.com/b/EUhAuS/es4j
http://paperpile.com/b/EUhAuS/es4j
http://paperpile.com/b/EUhAuS/s5vZ
http://paperpile.com/b/EUhAuS/s5vZ
http://paperpile.com/b/EUhAuS/s5vZ
http://paperpile.com/b/EUhAuS/mW9B
http://paperpile.com/b/EUhAuS/mW9B
http://paperpile.com/b/EUhAuS/mW9B
https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


Revell, L.J. (2012). phytools: an R package for phylogenetic comparative biology (and other
things). Methods Ecol. Evol. 3, 217–223. .

Rodriguez-Valera, F., Martin-Cuadrado, A.-B., Rodriguez-Brito, B., Pašić, L., Thingstad, T.F.,
Rohwer, F., and Mira, A. (2009). Explaining microbial population genomics through phage
predation. Nat. Rev. Microbiol. 7, 828–836. .

Rosa, B.A., Supali, T., Gankpala, L., Djuardi, Y., Sartono, E., Zhou, Y., Fischer, K., Martin, J.,
Tyagi, R., Bolay, F.K., et al. (2018). Differential human gut microbiome assemblages during
soil-transmitted helminth infections in Indonesia and Liberia. Microbiome 6, 33. .

Saary, P., Mitchell, A.L., and Finn, R.D. (2020). Estimating the quality of eukaryotic genomes
recovered from metagenomic analysis with EukCC. Genome Biol. 21, 244. .

Seabold, S., and Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with
python. In Proceedings of the 9th Python in Science Conference, (Austin, TX), p. 61.

Smits, S.A., Leach, J., Sonnenburg, E.D., Gonzalez, C.G., Lichtman, J.S., Reid, G., Knight, R.,
Manjurano, A., Changalucha, J., Elias, J.E., et al. (2017). Seasonal cycling in the gut
microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806. .

Sonnenburg, E.D., and Sonnenburg, J.L. (2019a). The ancestral and industrialized gut
microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390. .

Sonnenburg, J.L., and Sonnenburg, E.D. (2019b). Vulnerability of the industrialized microbiota.
Science 366. https://doi.org/10.1126/science.aaw9255.

Steinegger, M., and Söding, J. (2017). MMseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028. .

Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., and Wu, C.H. (2007). UniRef:
comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288. .

Suzuki, T.A., Fitzstevens, L., Schmidt, V.T., Enav, H., Huus, K., Mbong, M., Adegbite, B.R.,
Zinsou, J.F., Esen, M., Velavan, T.P., et al. (2021). Codiversification of gut microbiota with
humans.

Tamburini, F.B., Maghini, D., Oduaran, O.H., Brewster, R., Hulley, M.R., Sahibdeen, V., Norris,
S.A., Tollman, S., Kahn, K., Wagner, R.G., et al. (2022). Short- and long-read metagenomics of
urban and rural South African gut microbiomes reveal a transitional composition and
undescribed taxa. Nat. Commun. 13, 926. .

Tange, O. (2018). GNU Parallel 2018 (Lulu.com).

Tett, A., Huang, K.D., Asnicar, F., Fehlner-Peach, H., Pasolli, E., Karcher, N., Armanini, F.,
Manghi, P., Bonham, K., Zolfo, M., et al. (2019). The Prevotella copri Complex Comprises Four
Distinct Clades Underrepresented in Westernized Populations. Cell Host Microbe 26,
666–679.e7. .

Valles-Colomer, M., Bacigalupe, R., Vieira-Silva, S., Suzuki, S., Darzi, Y., Tito, R.Y., Yamada, T.,
Segata, N., Raes, J., and Falony, G. (2022). Variation and transmission of the human gut
microbiota across multiple familial generations. Nat Microbiol 7, 87–96. .

52

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

http://paperpile.com/b/EUhAuS/UH4GB
http://paperpile.com/b/EUhAuS/UH4GB
http://paperpile.com/b/EUhAuS/LgBK
http://paperpile.com/b/EUhAuS/LgBK
http://paperpile.com/b/EUhAuS/LgBK
http://paperpile.com/b/EUhAuS/2Lyu
http://paperpile.com/b/EUhAuS/2Lyu
http://paperpile.com/b/EUhAuS/2Lyu
http://paperpile.com/b/EUhAuS/uXexr
http://paperpile.com/b/EUhAuS/uXexr
http://paperpile.com/b/EUhAuS/0U9Ev
http://paperpile.com/b/EUhAuS/0U9Ev
http://paperpile.com/b/EUhAuS/9e53g
http://paperpile.com/b/EUhAuS/9e53g
http://paperpile.com/b/EUhAuS/9e53g
http://paperpile.com/b/EUhAuS/xRbnl
http://paperpile.com/b/EUhAuS/xRbnl
http://paperpile.com/b/EUhAuS/7mJx2
http://paperpile.com/b/EUhAuS/7mJx2
http://dx.doi.org/10.1126/science.aaw9255
http://paperpile.com/b/EUhAuS/7mJx2
http://paperpile.com/b/EUhAuS/TDist
http://paperpile.com/b/EUhAuS/TDist
http://paperpile.com/b/EUhAuS/puCOb
http://paperpile.com/b/EUhAuS/puCOb
http://paperpile.com/b/EUhAuS/GoBg
http://paperpile.com/b/EUhAuS/GoBg
http://paperpile.com/b/EUhAuS/GoBg
http://paperpile.com/b/EUhAuS/Akd6
http://paperpile.com/b/EUhAuS/Akd6
http://paperpile.com/b/EUhAuS/Akd6
http://paperpile.com/b/EUhAuS/Akd6
http://paperpile.com/b/EUhAuS/NhAeB
http://paperpile.com/b/EUhAuS/zmCi
http://paperpile.com/b/EUhAuS/zmCi
http://paperpile.com/b/EUhAuS/zmCi
http://paperpile.com/b/EUhAuS/zmCi
http://paperpile.com/b/EUhAuS/SqTZ
http://paperpile.com/b/EUhAuS/SqTZ
http://paperpile.com/b/EUhAuS/SqTZ
https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


Vangay, P., Johnson, A.J., Ward, T.L., Al-Ghalith, G.A., Shields-Cutler, R.R., Hillmann, B.M.,
Lucas, S.K., Beura, L.K., Thompson, E.A., Till, L.M., et al. (2018). US Immigration Westernizes
the Human Gut Microbiome. Cell 175, 962–972.e10. .

Waskom, M. (2021). seaborn: statistical data visualization. J. Open Source Softw. 6, 3021. .

Wastyk, H.C., Fragiadakis, G.K., Perelman, D., Dahan, D., Merrill, B.D., Yu, F.B., Topf, M.,
Gonzalez, C.G., Van Treuren, W., Han, S., et al. (2021). Gut-microbiota-targeted diets modulate
human immune status. Cell 184, 4137–4153.e14. .

West, P.T., Probst, A.J., Grigoriev, I.V., Thomas, B.C., and Banfield, J.F. (2018).
Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome
Res. 28, 569–580. .

Wibowo, M.C., Yang, Z., Borry, M., Hübner, A., Huang, K.D., Tierney, B.T., Zimmerman, S.,
Barajas-Olmos, F., Contreras-Cubas, C., García-Ortiz, H., et al. (2021). Reconstruction of
ancient microbial genomes from the human gut. Nature 594, 234–239. .

Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M.,
Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P., et al. (2012). Human gut microbiome
viewed across age and geography. Nature https://doi.org/10.1038/nature11053.

Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., Ben-Yacov, O.,
Lador, D., Avnit-Sagi, T., Lotan-Pompan, M., et al. (2015). Personalized Nutrition by Prediction
of Glycemic Responses. Cell 163, 1079–1094. .

Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P.K., Xu, Y., and Yin, Y.
(2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic
Acids Res. 46, W95–W101. .

53

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

http://paperpile.com/b/EUhAuS/zD90
http://paperpile.com/b/EUhAuS/zD90
http://paperpile.com/b/EUhAuS/zD90
http://paperpile.com/b/EUhAuS/l1i4Q
http://paperpile.com/b/EUhAuS/Tnu0
http://paperpile.com/b/EUhAuS/Tnu0
http://paperpile.com/b/EUhAuS/Tnu0
http://paperpile.com/b/EUhAuS/uoTpj
http://paperpile.com/b/EUhAuS/uoTpj
http://paperpile.com/b/EUhAuS/uoTpj
http://paperpile.com/b/EUhAuS/klCr
http://paperpile.com/b/EUhAuS/klCr
http://paperpile.com/b/EUhAuS/klCr
http://paperpile.com/b/EUhAuS/qT2ky
http://paperpile.com/b/EUhAuS/qT2ky
http://paperpile.com/b/EUhAuS/qT2ky
http://dx.doi.org/10.1038/nature11053
http://paperpile.com/b/EUhAuS/qT2ky
http://paperpile.com/b/EUhAuS/cNWB
http://paperpile.com/b/EUhAuS/cNWB
http://paperpile.com/b/EUhAuS/cNWB
http://paperpile.com/b/EUhAuS/4cXaP
http://paperpile.com/b/EUhAuS/4cXaP
http://paperpile.com/b/EUhAuS/4cXaP
https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/

