

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 **Authors:**

2 Qihua Liang, María Muñoz-Amatriaín, Shengqiang Shu, Sassoum Lo, Xinyi Wu, Joseph W.
3 Carlson, Patrick Davidson, David M. Goodstein, Jeremy Phillips, Nadia M. Janis, Elaine J. Lee,
4 Chenxi Liang, Peter L. Morrell, Andrew D. Farmer, Pei Xu, Timothy J. Close, Stefano Lonardi

5 **Author contributions:** Biological materials (SaL, XW, PX, MMA, TJC), Assembly (StL), SNP
6 and structural variant calling (QL, StL), Gene Annotation (SS), CowpeaPan (JWC, PD, DMG, JP),
7 GO enrichment analysis (MMA, ADF, TJC), VeP annotation (NMJ, EJL, CL, PLM), gene size
8 comparisons (NMJ, EJL, CL, PLM, ADF, TJC), synteny view (ADF), manuscript preparation
9 (TJC, StL, MMA, QL, PLM, AF)

10 **Keywords:** Cowpea, *Vigna unguiculata*, pan-genome, genetic variation, SNPs, presence/absence
11 variants (PAV), inversions, IT97K-499-35, Suvita-2, Sanzi, CB5-2, UCR779, TZ30, ZN016

12 **Abstract:**

13 Cowpea, *Vigna unguiculata* L. Walp., is a diploid warm-season legume of critical importance as
14 both food and fodder in sub-Saharan Africa. This species is also grown in Northern Africa, Europe,
15 Latin America, North America, and East to Southeast Asia. To capture the genomic diversity of
16 domesticates of this important legume, *de novo* genome assemblies were produced for
17 representatives of six sub-populations of cultivated cowpea identified previously from genotyping
18 of several hundred diverse accessions. In the most complete assembly (IT97K-499-35), 26,026
19 core and 4,963 noncore genes were identified, with 35,436 pan genes when considering all seven
20 accessions. GO-terms associated with response to stress and defense response were highly
21 enriched among the noncore genes, while core genes were enriched in terms related to transcription
22 factor activity, and transport and metabolic processes. Over 5 million SNPs relative to each
23 assembly and over 40 structural variants >1 Mb in size were identified by comparing genomes.
24 Vu10 was the chromosome with the highest frequency of SNPs, and Vu04 had the most structural
25 variants. Noncore genes harbor a larger proportion of potentially disruptive variants than core
26 genes, including missense, stop gain, and frameshift mutations; this suggests that noncore genes
27 substantially contribute to diversity within domesticated cowpea.

28

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Article Summary (80 words maximum)

2 This study reports annotated genome assemblies of six cowpea accessions. Together with the
3 previously reported annotated genome of IT97K-499-35, these constitute a pan-genome resource
4 representing six subpopulations of domesticated cowpea. Annotations include genes, variant calls
5 for SNPs and short indels, larger presence or absence variants, and inversions. Noncore genes are
6 enriched for loci involved in stress response and harbor many genic variants with potential effects
7 on coding sequence.

8 Introduction:

9 Individuals within a species vary in their genomic composition. The genome of any individual
10 does not include the full complement of genes contained within the species. A pan-genome
11 includes genes core to the species (shared among all individuals) and those absent from one or
12 more individuals (noncore, dispensable, or variable genes). This pan-genome concept started to be
13 applied to plants by Morgante *et al.* (2007) but began in bacterial species (reviewed by Golicz *et*
14 *al.*, 2020). Due to the complexity of plant genomes, the first studies exploring gene presence-
15 absence variation (PAV) in plants used reduced-representation approaches, including array
16 comparative genomic hybridization (CGH) and sequencing of transcriptomes (e.g., Springer *et al.*
17 2009, Muñoz-Amatriaín *et al.* 2013; Hirsch *et al.* 2014). Once sequencing of multiple plant
18 genomes became feasible, several pan-genomes of variable degrees of completeness were
19 generated, and it was soon understood that PAV is prevalent in plants and that the pan-genome of
20 any plant species is larger than the genome of any individual accession (reviewed by Lei *et al.*
21 2021). Moreover, many of the genes absent in reference accessions have functions of potential
22 adaptive or agronomic importance, such as time to flowering, and response to abiotic and biotic
23 stresses (Gordon *et al.* 2017; Montenegro *et al.* 2017; Bayer *et al.* 2020), making the construction
24 of a pan-genome a crucial task for crops of global importance.

25 Cowpea is a diploid ($2n = 22$) member of the family Fabaceae tribe Phaseoleae, closely related to
26 mung bean, common bean, soybean, and several other warm-season legumes. Cowpea was
27 domesticated in Africa, but its cultivation has spread throughout most of the globe (Herniter *et al.*,
28 2020). The inherent resilience of the species to drought and high temperatures (Hall 2004),
29 together with its nutritional value as a reliable source of plant-based protein and folic acid, position
30 cowpea favorably as a component of sustainable agriculture in the context of global climate
31 change. Most cowpea production and consumption presently occur in sub-Saharan Africa,
32 especially in the Sudano-Sahelian Zone, with production mainly by smallholder farmers, often as
33 an intercrop with maize, sorghum, or millet (Boukar *et al.*, 2019). Tender green seeds are often
34 consumed during the growing season, and immature pods are eaten as a vegetable, especially in

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 East and Southeast Asia. In addition, fresh leaves are sometimes consumed, and dry haulms are
2 harvested and sold as fodder for livestock. Spreading varieties are also utilized as cover crops to
3 prevent soil erosion and weed control.

4 A reference genome sequence of cowpea cv. IT97K-499-35 was previously generated (Lonardi *et*
5 *al.*, 2019). Preliminary sequence comparisons using whole genome shotgun (WGS) data of 36
6 accessions suggested that extensive SNP and structural variation exists within domesticated
7 cowpea (Lonardi *et al.*, 2019). Cowpea also displays a wide range of phenotypic variation, and
8 genetic assignment approaches have identified six subpopulations within cultivated cowpea
9 germplasm (Muñoz-Amatriaín *et al.*, 2021). These observations support the need to develop
10 cowpea pan-genome resources based on diverse cowpea accessions.

11 This study reports *de novo* assemblies of six cultivated cowpea accessions. Each accession was
12 annotated using transcriptome sequences from the accession along with *ab initio* methods. These
13 genome sequences, together with the previously reported sequence of IT97K-499-45 (Lonardi *et*
14 *al.*, 2019), constitute a pan-genome resource for domesticated cowpea. Using annotations for the
15 seven genomes, including genes, along with variant calls for SNPs and short indels, and larger
16 structural variants, the following questions were addressed: (i) What proportion of genes are core
17 and noncore, and do core and noncore genes differ in size or functional class? (ii) What proportion
18 of large-effect variants are created by single nucleotide variants versus structural variants
19 (including indels), and do the proportions of large-effect variants differ among core and noncore
20 genes? (iii) To what extent are gene content and gene order consistent across accessions within the
21 species *V. unguiculata* and across species within the genus *Vigna* and the tribe Phaseoleae? The
22 results suggest that both extensive structure differences among individual accessions and the
23 nature of variation in noncore genes are important considerations in efforts to identify genetic
24 variation with adaptive potential.

25 **Materials & Methods:**

26 **Cowpea accessions selected for sequencing (Supplemental Table S01)**

27 Accessions chosen for sequencing and *de novo* assembly represented the six subpopulations of
28 domesticated cowpea described in Muñoz-Amatriaín *et al.* (2021), as indicated in Figure 1. The
29 intention of choosing accessions that cover each subpopulation was to maximize the discovery of
30 genetic variations relevant to cultivated cowpea using a small number of samples. As shown by
31 Gordon *et al.* (2017) in *Brachypodium distachyon*, the addition of individuals from subpopulations
32 not previously sampled contributes much more to increasing the pan-genome size than adding
33 closely related individuals.

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 IT97K-499-35 is a blackeye variety with resistance to the parasitic plants *Striga* and *Alectra*,
2 developed at the International Institute of Tropical Agriculture in Ibadan, Nigeria (Singh *et al.*,
3 2006) and provided by Michael Timko (U Virginia, Charlottesville, Virginia, USA) to the
4 University of California Riverside (UCR) in 2006. The sequence assembly and annotation of
5 IT97K-499-35 were described in Lonardi *et al.* (2019). CB5-2 is a fully inbred isolate closely
6 related to CB5, the predominant Blackeye of the US Southwest for several decades. CB5
7 (Blackeye 8415) was bred by WW Mackie at the University of California (Mackie, 1946) to add
8 resistances to Fusarium wilt and nematodes to a California Blackeye landrace, and provided to
9 UCR by K Foster, University of California, Davis, in 1981. Suvita-2, also known as Gorom Local
10 (IITA accession TVu-15553, US NPGRI PI 583259), is somewhat resistant to bruchids and certain
11 races of *Striga* and is relatively drought tolerant. This landrace was collected from a local market
12 by VD Aggarwal at the Institut de l'Environnement et de Recherches Agricoles (INERA) in
13 Burkina Faso (Aggarwal *et al.*, 1984) and provided to UCR by VD Aggarwal in 1983. Sanzi is an
14 early flowering, small-seeded landrace from Ghana with resistance to flower bud thrips (Boukar
15 *et al.*, 2013), provided by KO Marfo, Nyankpala Agricultural Experiment Station, Tamale, Ghana
16 to UCR in 1988. UCR779 (PI 583014) is a landrace from Botswana (de Mooy, 1985; Ehlers *et al.*,
17 2002) that was provided to UCR as B019-A in 1987 by CJ de Mooy of Colorado State University.
18 Yardlong bean or asparagus bean (cv.-gr. *Sesquipedalis*), the vegetable type of cowpea, is widely
19 grown in Asian countries for the consumption of tender long pods. TZ30 is an elite Chinese variety
20 with a pod length of around 60 cm. ZN016 is a landrace originating from southeastern China with
21 a pod length of about 35 cm and showing resistance to multiple major diseases of cowpea. TZ30
22 and ZN016 were used previously as parents of a mapping population to study the inheritance of
23 pod length (Xu *et al.*, 2017).

24 **DNA sequencing and *de novo* assembly of seven cowpea accessions**

25 The annotated genome (v1.0) of African variety IT97K-499-35 was assembled from Pacific
26 Biosciences (Menlo Park, California, USA) long reads, two Bionano Genomics (San Diego,
27 California, USA) optical maps and ten genetic linkage maps as described previously (Lonardi *et*
28 *al.*, 2019). The six additional *de novo* assemblies were produced by Dovetail Genomics (Scotts
29 Valley, California, USA) using Illumina (San Diego, California, USA) short reads (150x2). DNA
30 was extracted by Dovetail Genomics from seedling tissue of CB5-2, TZ30, and ZN016, and seeds
31 of CB5-2, Suvita-2, Sanzi, and UCR779. Meraculous (Chapman *et al.*, 2011) was used to assemble
32 the reads, then sequences from Dovetail Chicago® and Dovetail Hi-C® libraries were added
33 (using their proprietary pipeline) to resolve misassemblies and increase contiguity. These
34 assemblies were further refined using ALLMAPS (Tang *et al.*, 2015). This analysis used ten
35 previously reported genetic linkage maps to relate assemblies to the standard orientations and

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 numbering of the eleven cowpea chromosomes, as described in Lonardi *et al.* (2019) for IT97K-
2 499-35. See “Data Availability Statement” for access to raw data and assemblies.

3 Calling of SNPs, indels, and structural variants

4 SNPs and indels were called using each reference genome versus the reads from the six other
5 accessions. Reads of each accession described above for genome assemblies, plus short-read
6 sequences produced by 10X Genomics from IT97K-49-35, were mapped to all assemblies using
7 BWA (Li *et al.*, 2009). SNPs and indels were called using the GATK 4.2.0 pipeline in GVCF mode
8 for each accession. All the per-sample GVCFs were gathered in joint genotyping to produce a set
9 of joint-called SNPs and indels. Both per-sample SNPs and joint-called SNPs were filtered with
10 the same parameters of 'QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 ||
11 ReadPosRankSum < -8.0 || SOR > 4.0'. Indels were filtered with 'QD < 2.0 || FS > 200.0 ||
12 ReadPosRankSum < -20.0 || SOR > 10.0'.

13 Each pair of individual genomes was aligned using minimap2 (Li, 2018), producing $\binom{7}{2} = 21$
14 alignment files. Structural variants, including inversions and translocations, were identified from
15 the alignment files using SyRI (Goel *et al.*, 2019). Figures were produced using PlotSR (Goel *et*
16 *al.*, 2022). Depth analyses were carried out using Mosdepth (Pedersen & Quinlan 2018). The
17 average nucleotide diversity within and between populations was calculated from a VCF file using
18 Pixy (Korunes *et al.*, 2021).

19 Annotation of genes and repeats

20 All genomes were annotated using the JGI plant genome annotation pipelines (Shu *et al.*, 2014),
21 integrated gene call (IGC), and gene model improvement (GMI). Both IGC and GMI are evidence-
22 based gene call pipelines. In IGC, a gene locus was defined by peptide alignments of related
23 organism homologous peptides and with alignments of within-organism transcriptome assemblies.
24 Genes were predicted by homology-based gene prediction programs FGENESH+ (Salamov and
25 Solovyev, 2000), FGENESH_EST, and GenomeScan (Yeh *et al.*, 2001), and a JGI in-house
26 homology-constrained transcriptome assembly ORF finder. Homologous proteomes included
27 *Arabidopsis thaliana* and those from common bean (*Phaseolus vulgaris*), soybean (*Glycine max*),
28 barrel medic (*Medicago truncatula*), poplar (*Populus trichocarpa*), rice (*Oryza sativa*), grape
29 (*Vitis vinifera*) and Swiss-Prot. For transcript-based annotations of the six new assemblies, RNA
30 for RNA-seq was extracted using Qiagen RNeasy Plant (Hilden, Germany) from each accession
31 from well-hydrated and drought-stressed young seedling root and leaves, immature flower buds,
32 and pods five days after pollination, and from developing seeds of Suvita-2, TZ30 and ZN016 (not
33 CB5-2, Sanzi or UCR779) 13 days after pollination. RNA quality was assessed, and concentrations

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

were determined using an Agilent 2100 BioAnalyzer (Santa Clara, California, USA) and the Agilent RNA 6000 Nano Kit. The RNA-seq short reads from each accession were assembled using a JGI in-house genome-guided assembler, PERTRAN (Shu *et al.*, 2013), using each genome assembly. Each short-read-based assembly and UNIGENE sequences (P12_UNIGENES.fa from harvest.ucr.edu) were fed into PASA (Haas *et al.*, 2003) to produce transcriptome assemblies. The best gene per locus (based on evidence) was defined using PASA from alignment of transcriptome assemblies for splicing correctness, alternative transcripts, and UTR addition. The PASA genes were filtered to obtain the final gene set, including an automated repeat coding sequence (CDS) overlap filter, a manual low-quality gene filter, and an automatic filter from transposable element (TE) protein domain assignments. This process was repeated once with one additional homology seeding of non-self, high-confidence gene models.

12 Determination of core and noncore genes among seven accessions

Core and noncore genes were determined by running the GET_HOMOLOGUES-EST tool (https://github.com/eedad-csic-compbio/get_homologues) on the primary transcripts of the seven cowpea accessions provided in nucleotide and protein formats. GET_HOMOLOGUES-EST was run in orthoMCL-mode, as suggested by the authors for pan-genome analyses (Contreras-Moreira *et al.*, 2017). The other GET_HOMOLOGUES-EST options "-M -c -z -t 0 -A -L" were used to obtain orthoMCL gene clusters, which had genes in 1-7 accessions. The term "core" means that a matching gene was identified in all seven accessions and "noncore" means that a matching copy gene was identified in less than all seven accessions.

GO-term enrichment analyses were performed in agriGO v2.0 (Tian *et al.*, 2017) for core and noncore genes using GO terms available from the Legume Information System (<https://www.legumeinfo.org/>). Given the large number of GO terms in both the core and noncore gene sets, GO slims (Onsongo *et al.*, 2008) were extracted and used for Figure 3. The full list of core and noncore genes, with GO and other annotations, is available from the Google Drive noted in the Data Availability Statement.

27 Annotation of variants in core and noncore genes

To test if variants in noncore genes have been subject to reduced selective constraint, Variant Effect Predictor (VeP) (McLaren *et al.*, 2016) was used to annotate variants identified in the primary transcripts of core and noncore genes. Gene annotations for IT97K-499-35 were used to identify intervals that overlap core and noncore genes, and filtering of the VCF file used BEDtools intersect (Quinlan & Hall, 2010) with variants called relative to the IT97K-499-35 assembly using the six other assemblies. Scripts used for these analyses are at

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 https://github.com/MorrellLAB/Cowpea_Pangenome. VeP was run separately for SNPs and
2 indels, reporting classes of variants with potentially large effects, including missense, stop gains,
3 start or stop changes, and frameshifts. The numbers of synonymous changes and in-frame indels
4 are also reported.

5 **Relative size of core and noncore genes**

6 The physical sizes of core and noncore genes were compared in the total annotated length and the
7 length of the coding portion of the primary transcript of each gene. The length of each gene was
8 extracted from the general feature format (GFF) annotations. The CDS length was calculated based
9 on the primary transcript identified in Phytozome annotations ([https://phytozome-
10 next.jgi.doe.gov/cowpeapan/info/Vunguiculata_v1_2](https://phytozome-next.jgi.doe.gov/cowpeapan/info/Vunguiculata_v1_2)). The full list of core and noncore genes,
11 with gene and CDS sizes indicated, is available from the Google Drive noted in the Data
12 Availability Statement.

13 **Nucleotide sequence diversity in cowpea**

14 Tajima's (1983) estimate of $\theta = 4Ne\mu$ was used to determine the level of sequence diversity in the
15 pangenome accessions. "Callable" regions were identified based on coverage estimates in
16 mosdepth (Pederson & Quinlan, 2018), with "callable" regions defined as those with coverage
17 between 5x and 400x. This estimate was derived from a sample with ~200X average coverage.
18 The callable regions were used to create a BED file used for filtering genomic regions. This
19 approach is intended to avoid variant calls in regions with inadequate sequence depth or regions
20 where very high coverage may indicate non-unique mapping of sequence reads. The callable
21 regions and the VCF file of filtered variants mapped to the IT97K-499-35 reference were used
22 with pixy (Korunes & Samuk, 2020), a tool designed to deal with missing data in genome-level
23 resequencing datasets.

24 **Physical locations of SNPs from genotyping platforms**

25 The physical positions of SNPs in the Illumina iSelect Cowpea Consortium Array (Muñoz-
26 Amatriaín *et al.*, 2017), whose positions in the IT97K-499-35 genome were provided in Lonardi
27 *et al.* (2019), were mapped using BWA MEM (Li *et al.*, 2009) within each of the seven assemblies
28 using the contextual sequence that flanked each variant. The resulting alignment file was processed
29 with SAMtools (Li *et al.*, 2009) and SNP_Utils (https://github.com/MorrellLAB/SNP_Utils) to
30 report positions in a VCF file. The positions of iSelect SNPs relative to all seven genome
31 assemblies are provided in Supplemental Table S02, and an updated summary map for the 51,128
32 iSelect SNPs is in Supplemental Table S03. The positions identified for iSelect SNPs relative to

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 the IT97K-499-35 assembly were used to annotate the variants. The annotation used variant effect
2 predictor (VeP) (McLaren *et al.*, 2016) with the GFF file provided by Phytozome
3 (<https://genome.jgi.doe.gov/portal/>) and SNP positions in VCF files
4 (https://github.com/MorrellLAB/cowpea_annotation/blob/main/Results/IT97K-499-35_v1.0/iSelect_cowpea.vcf; see Data Availability Statement).

6 Synteny analysis among genome assemblies

7 To assess the conservation of gene content and ordering between genome assemblies from diverse
8 species, MCScanX (Wang *et al.*, 2012) was run for every genome pair, using default settings and
9 homologous gene pairings derived from gene family assignments defined as the best match of the
10 longest protein product with an E-value of 1e-10 or better from hmmsearch (Eddy 2011) applied
11 to the legfed_v1_0 families (Stai *et al.*, 2019).

12 Results and Discussion:

13 Development of six *de novo* assemblies and pan-genome construction

14 Summary statistics for the seven assemblies (assembly characteristics, repetitive content, genes,
15 BUSCO completeness) are reported in Table 1. More detailed statistics of the intermediate
16 assembly steps are reported in Supplemental Table S04. The contiguity of the new six assemblies,
17 as indicated by their N50s, is comparable to the PacBio assembly for IT97K-499-35 despite being
18 based on short-read sequences. In all six new assemblies, each of the eleven chromosomes of
19 cowpea is represented by a single scaffold. These six assembled genomes are similar to each other
20 in size, ranging from 447.58 Mb to 453.97 Mb, with a mean of 449.91 Mb. IT97K-499-35 had a
21 ~15% larger (more complete) assembled size (519.44 Mb) than these six accessions, with the
22 difference attributable to long-read sequencing and optical mapping providing a more complete
23 assembly. Assemblies of the six additional accessions share the same percentage of repetitive
24 content of about 45-46% (Table 1 and Supplemental Figure S1). The IT97K-499-35 assembly has
25 a somewhat higher repetitive content than the assemblies of these six accessions. This may be
26 attributable to more complete resolution of unique positions of repetitive sequences within long
27 sequence reads than is possible from only short reads. A difference between the sequencing
28 methods in the resolution of repetitive sequences is evident in centromeric regions, which are
29 typically abundant in repetitive sequences, where some chromosomes of the six newly sequenced
30 accessions appear to be missing from the assemblies. Centromeric regions were defined based on
31 a 455-bp tandem repeat previously identified by fluorescence in situ hybridization (Iwata-Otsubo
32 *et al.*, 2016). Supplemental Table S05 shows the coordinates of the putative centromeric regions
33 in IT97K-499-35 for all eleven chromosomes for a total span of 20.18 Mb, in CB5-2 on five

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 chromosomes for a total span of 5.6 Mb, in Sanzi on one chromosome for a total span of 0.59 Mb,
2 in ZN016 on four chromosomes for a total of 7.13 Mb and TZ30 on one chromosome for 1.32 Mb.
3 The tandem repeat was not found in any assembled chromosome of Suvita-2 or UCR779, nor in
4 the other chromosome assemblies where coordinates are not listed.

5 RNA was prepared from each accession to support gene annotation, and the same annotation
6 protocol was applied to each accession (see Materials & Methods). This is important when
7 comparing genomes at the gene level, as it reduces the technical variability that can otherwise
8 obfuscate the interpretation of results (Lei *et al.* 2021). The number of genes annotated in the six
9 new assemblies ranged from 27,723 to 28,562, with a mean of 28,222 (Table 1). IT97K-499-35
10 had ~13% more annotated genes, with a total of 31,948, reflecting deeper transcriptome
11 sequencing and, to some extent, the more complete assembly of its genome. Supplemental Table
12 S06 summarizes the number of alternative transcripts, exon statistics, gene model support, and
13 ontology annotations (Panther, PFam, KOG, KEGG, and E.C.). The number of alternative
14 transcripts in the six new assemblies ranged from 15,088 to 17,115. Again, IT97K-499-35 had a
15 higher number of alternative transcripts, a total of 22,536, than the other six accessions. The
16 average number of exons was 5.4 in each of the six new assemblies and 5.2 in IT97K-4899-35,
17 with a median length ranging from 162 to 169 bp. Gene and repeat density were computed in 1Mb
18 non-overlapping sliding windows along each chromosome and each accession (Supplemental
19 Figure S1). All chromosomes have a higher gene density in their more recombinationally active
20 regions, while repeat density peaks in the low-recombination centromeric and pericentromeric
21 regions (see also Supplemental Figure S8 in Lonardi *et al.*, 2019). All seven accessions have
22 similar gene and repeat density, and high BUSCO v4 completeness at the genome, transcript, and
23 protein levels (Supplemental Table S07), with somewhat higher numbers for IT97K-499-35 than
24 the six new assemblies.

25 As stated above (Materials and Methods), genes annotated in the seven genomes were classified
26 as core if a matching gene was present in all accessions and noncore if absent in one or more of
27 the seven accessions. In IT97K-499-35, a total of 26,026 core genes (in 24,476 core clusters) and
28 4,963 noncore genes (in 4,285 noncore clusters) were identified (Supplemental Table S08). When
29 considering all seven accessions itemized in Supplemental Table S08, a total of 26,494 core genes
30 and 9,042 noncore genes (in 8,157 noncore clusters) were identified, resulting in a total of 35,536
31 pan genes in 32,633 pan gene clusters.

32 To determine if adding accessions significantly changed the numbers and proportions of core and
33 noncore genes, we took advantage of the analysis results produced by GET_HOMOLOGUES-
34 EST. GET_HOMOLOGUES-EST produces pan or core genome growth simulations by adding
35 accessions in random order, using twenty permutations. Figure 2 shows the growth of core and

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 pan genomes for an increasing number of accessions. A fitted Tettelin function (Tettelin *et al.*,
2 2005) is plotted in green. As expected, the number of pan genes increases as additional accessions
3 are “added” to the pan-genome, while the number of core genes decreases. However, the fact that
4 the core gene plot is flattening considerably (approaching an asymptotic limit) for six and seven
5 accessions indicates that most core genes have been identified with these seven diverse accessions.
6 In contrast, the pan-genome plot has not flattened, indicating that there may be many more noncore
7 genes not included among these seven accessions. Figure 2 provides an estimated 29,659 pan gene
8 clusters and an estimated 24,439 core gene clusters as the output of GET_HOMOLOGUES-EST
9 from 20 random samplings. Roughly, it appears that the pan-genome defined by the seven
10 cultivated cowpea accessions is comprised of about 80% core genes, constituting nearly the entire
11 set of core genes in cultivated cowpea, and 20% noncore genes. Clearly, more noncore genes
12 would be revealed with a larger number of accessions.

13 A GO term enrichment analysis was performed for genes within the two components of the pan-
14 genome (core and noncore) using agriGO v2 (Tian *et al.*, 2017). Many GO terms for all three
15 ontology aspects (biological process, cellular component, and molecular function) were
16 significantly enriched in both core and noncore genes (Supplemental Table S09). Given the high
17 number of significant GO terms, GO Slim terms (Onsongo *et al.*, 2008) were extracted and used
18 for Figure 3. Terms enriched in the core genes were related to transport and some metabolic
19 processes and molecular functions involving DNA-binding transcription factor activity (Figure 3;
20 Supplemental Table S09). This supports the idea that the core genome contains genes that perform
21 essential cellular functions that are highly conserved at the species level. The output was quite
22 different for the noncore genes, with very high enrichment of the GO term “response to stress”
23 (Figure 3), in particular “defense response” ($-\log_{10}q = 123.7$; Supplemental Table S09). This is
24 consistent with previous research showing that the “dispensable” genome encodes genes involved
25 in defense response and other beneficial functions for some individuals (Golicz *et al.*, 2016;
26 Gordon *et al.*, 2017; Montenegro *et al.*, 2017).

27 **Genetic variation analysis**

28 In addition to identifying gene PAVs (presence-absence variants), the seven assemblies were used
29 to identify other types of variation. Variants were detected using two different software pipelines,
30 depending on their size. SNPs and indels of length up to 300 nucleotides, both considered small
31 variants, were detected using GATK (see Materials & Methods). Larger structural variations,
32 including deletions, duplications, inversions, and translocations, were detected using SyRI (Goel
33 *et al.*, 2019).

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Across all “callable” regions of the genome, average $\theta_\pi = 0.0111$ (± 0.0549). At the
2 pseudomolecule level, average diversity was highest on Vu05, with $\theta_\pi = 0.0155$ (± 0.0723), and
3 lowest on Vu10, with $\theta_\pi = 0.0095$ (± 0.0447) (Supplemental Table S10). A mean diversity of ~1%
4 is higher than many grain crops, such as barley (Morrell et al., 2014; Schmid et al., 2018) and
5 roughly comparable to maize (Tittes et al., 2021). The observed diversity in the cowpea
6 pangenome sample is above average for herbaceous plants (Miller & Gross, 2011; Leffler et al.,
7 2012; Corbett-Detig et al., 2015).

8 For SNPs and indels, the genome of each accession was used in turn as the “reference,” mapping
9 the reads for each of the six other accessions against that genome. For each, the six SNP sets
10 produced by GATK were merged by taking the union of the SNPs based on their location (i.e., a
11 SNP in two accessions was counted only once if it appeared in the same genomic position).
12 Supplemental Table S11 summarizes the number of SNPs detected, where the reference genome
13 is listed on each row. For instance, using Suvita-2 as the reference, 1,489,850 SNPs were detected
14 using mapped reads from CB5-2, compared to 2,625,678 SNPs using the reads from UCR779.
15 Combining the SNPs by counting all distinct SNPs in the union of the six sets of SNPs, the number
16 of SNPs for Suvita-2 was 5,292,933.

17 When UCR779 was used as the reference, a much higher number of SNPs was detected in every
18 pairwise comparison, indicating that UCR779 is the most divergent among these seven accessions.
19 Conversely, CB5-2 (a California cultivar) has fewer SNPs in pairwise comparisons to TZ30 or
20 ZN016 (both from China) than in pairwise comparisons to other accessions. This suggests that
21 CB5-2 is more similar to these two accessions than to the other four accessions. This is consistent
22 with genetic assignment analyses reported by Muñoz-Amatriaín *et al.* (2021) and historical
23 considerations discussed in Herniter *et al.* (2020). Supplemental Table S12 provides a similar
24 analysis for indels, where again, UCR779 stands out as the most different among the seven
25 accessions. Summary statistics for SNPs and indels for each chromosome and each accession can
26 be found in the file “SNPs_indels_stats.xlsx,” available from the Google Drive indicated in the
27 Data Availability Statement below.

28 GATK requires a minimum coverage of 5X to call SNPs. Coverage analysis with Mosdepth
29 indicated that the average read coverage of IT97K-499-35 is very high (e.g., about ~190X when
30 mapping CB5-2 reads to IT97K-499-35), thus a very high fraction of IT97K-499-35 chromosomes
31 was covered by at least five reads. The lowest was Vu10 with 85.1%, the highest was Vu07 with
32 98.6%, and the overall percentage of SNPs in IT97K-499-35 that were in a “callable” region (i.e.,
33 with coverage 5x-400x) was 88.96%. The frequency of SNPs, as the number of unique SNPs
34 identified (Supplemental Table S11) divided by the size of the assembled genome (Table 1), ranges
35 from one in 139 to one in 309 bp, and the indel frequency (Supplemental Table S12) ranges from

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 one in 486 to one in 529 bp. Circos plots for SNP density (SNPs per Mb) on each chromosome
2 using each accession as the reference are in Supplemental Figure S2 (A-G), where it is evident, for
3 example, that Vu04 and Vu10 have the highest SNP frequency. In contrast, Vu05 and Vu09 have
4 the lowest. This was observed previously when mapping nearly one million SNPs on the IT97K-
5 499-35 reference genome (Lonardi *et al.*, 2019). Also, when using UCR779 as the reference
6 (Supplemental Figure S2-E), the number of SNPs on Vu04 and Vu10 is significantly higher than
7 when any other accession is used as the reference, again consistent with UCR779 being the most
8 different among the seven accessions.

9 Structural variations were identified using SyRI (Goel *et al.*, 2019) from the alignment of each pair
10 of individual genomes and visualized using PlotSR (Goel *et al.*, 2022) (Figure 4). The visualization
11 shows a relatively large number of apparent structural rearrangements between the seven cowpea
12 genomes, which are more abundant in the centromeric and pericentromeric regions of all
13 chromosomes. Vu04 is the chromosome with the highest abundance of structural variants (Figure
14 4). A summary of all the structural variants identified in all pairs of accessions is reported in
15 Supplementary Table S13. The table shows that Suvita-2 versus UCR779 had the largest number
16 of inversions (2,008) and translocations (1,822). This intuitively makes sense since these two
17 accessions belong to two different genetic subpopulations separated by the first principal
18 component (Figure 1).

19 Inversions are a common type of rearrangement with important consequences for cross-over
20 frequency and distribution, as they suppress recombination in heterozygotes (Kirkpatrick, 2010).
21 While inversion can be important to maintaining locally adaptive variants (Kirkpatrick & Barton,
22 2006), crossover inhibition can impede plant breeding efforts. Table 2 summarizes the genomic
23 coordinates of all inversions larger than 1 Mbp. For example, the first column of Table 2,
24 corresponding to IT97K-499-35, shows 27 inversions that were identified by comparing the
25 reference genome against the other six accessions. The same inversion can appear in multiple sub-
26 tables. For instance, the ~4.2 Mb inversion on chromosome 3 previously described in (Lonardi *et*
27 *al.*, 2019) occurs in the same orientation in six accessions and the opposite orientation only in
28 IT97K-499-35, so it is listed six times in the column for IT97K-499-35.

29 Similarly, the inversions on Vu04 and Vu05 are detected against five accessions. The ~9.0 Mb
30 inversion on Vu06 is the largest inversion found by SyRI, and its orientation is unique to Suvita-
31 2. However, this inversion appears to be due to an assembly imperfection. It is reported as
32 unoriented in the ALLMAPS output (Supplemental Table S14), and comparisons between optical
33 maps derived from Suvita-2 and another cowpea accession not included here indicate a non-
34 inverted orientation in Suvita-2 (unpublished). Also, as shown in Lonardi *et al.* (2019) and
35 Supplemental Figure S3, this entire region has a very low recombination rate and comprises nearly

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 the entire short arm of acrocentric chromosome 6 (Iwata-Otsubo *et al.*, 2016). These factors can
2 account for a spurious orientation assignment for this region in the Suvita-2 Vu06 assembly.

3 The positions of the largest inversions shown in Figure 4 are provided in Table 2, e.g., the
4 inversions on Vu03 in IT97K-499-35 reported by Lonardi *et al.* (2019), and the inversion on Vu06
5 in Suvita-2 likely due to a mis-assembly, as discussed above. It should be noted that regions with
6 apparently low synteny within several chromosomes are low-recombination centromeric and
7 pericentromeric regions (Lonardi *et al.*, 2019), which are notoriously hard to assemble due to their
8 high repetitive content and hard to orient due to a paucity of mapped and recombinational
9 ordered SNPs. In these regions, it is expected to find compressed contigs, gaps, and misassemblies,
10 any of which might be flagged as apparent structural variations. The number of false-positive
11 structural variations can likely be reduced by increasing the completeness of the assemblies within
12 these regions using long-read sequencing and optical mapping. Supplemental Figure S4 (A-U)
13 shows all 21 SyRi+PlotSR alignments between all pairs of cowpea accessions.

14 **Further characterization of core and noncore genes**

15 Partitioning SNPs into those found in core versus noncore genes in IT97K-499-35 resulted in
16 702,073-SNPs in core genes and 239,100 SNPs in noncore genes. The indel comparison involves
17 161,900 indels in core genes and 39,845 in noncore genes. The numbers of variants with potential
18 consequences are summarized in Figure 5 and Supplementary Table S15. Counting both SNPs and
19 indels, there are 80,693 potentially benign variants among core genes (3.10 per gene) and 36,519
20 in noncore genes (7.36 per gene), which is a 2.37-fold higher frequency in noncore versus core
21 genes. Likewise, potentially harmful variants, including missense, stop gained, start or stop
22 change, and frameshift total 95,465 among core genes (3.67 per gene) and 75,048 in noncore genes
23 (15.12 per gene), which is a 4.12-fold higher incidence in noncore versus core genes. Among these,
24 noncore genes have a much higher incidence of frameshift variants (1.48 per gene) than do core
25 genes (0.23 per gene), this being a 6.43-fold difference. In each of these comparisons, noncore
26 genes contribute proportionally a larger number of variants than do core genes, whether benign or
27 potentially harmful.

28 Based on the gene annotations, core gene primary transcripts are longer than noncore gene primary
29 transcripts, with a mean length of 4,226.08 (\pm 4,047.234) for IT97K-499-35 core genes versus
30 2,341.32 bp (\pm 3,190.67) for IT97K-499-35 noncore genes (with median lengths of 3,292 and
31 1,347 bp, respectively). This difference is significant based on a non-parametric, two-sample
32 Wilcoxon rank sum test, with p-value $< 2.2 \text{ e}^{-16}$. For IT97K-499-35, primary transcripts from core
33 genes cover 110.9 Mb of the genome, while primary transcripts from noncore genes cover 11.6
34 Mb. These differences in lengths could result from either longer coding regions or longer or more

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 abundant introns within the primary transcripts. When considering only the coding sequence
2 (CDS) for each IT97K-499-35 gene, the mean length of the CDS in core genes is greater than in
3 noncore genes, with a mean of 1,319.14 (\pm 960.61) for core versus 792.97 bp (\pm 915.98) for
4 noncore (with median lengths of 1,113 and 426 bp). Based on the Wilcoxon test, the difference in
5 length of the coding sequence is significant, with a p-value $< 2.2e^{-16}$. The explanation for this CDS
6 length difference is unknown.

7 Presence-absence variation of genes controlling black seed coat color

8 To facilitate the community's use of the cowpea pan-genome, all the genomes and their annotations
9 have been included as resources in the Legume Information System (LIS; www.legumeinfo.org;
10 Dash *et al.*, 2016). As an example of a use case for pan-genomics, the Genome Context Viewer
11 (GCV) is an application that enables dynamic comparison of genomes based on their gene content,
12 using assignments of genes to families as the basis for computation and visualization of conserved
13 gene order and structural variation with potential impact on function, e.g., copy number variation
14 (CNV) and presence-absence variation (PAV) (Cleary and Farmer, 2018). Figure 6A shows the
15 results of a query centered on a region from the reference cowpea genome that features a cluster
16 of tandemly duplicated MYB transcription factor genes in which presence-absence variation was
17 previously determined to be associated with seed coat pigmentation (Herniter *et al.*, 2018). The
18 colors of the genes in this “beads on a string” representation reflect the gene family assignments;
19 here, the brown triangles in the center of the region represent the MYB genes with varying copy
20 numbers in the different cowpea accessions, with a maximum of five copies in the reference
21 accession to as few as a single copy in UCR779. Outside the CNV region, there is strong
22 conservation of gene content, with one other region showing some evidence of reordering among
23 the cowpea accessions. The viewer facilitates comparison not only within but across species, and
24 one can see evidence of similar CNV in the corresponding region of several *Phaseolus* spp.
25 genomes (Schmutz *et al.* 2014, Moghaddam *et al.* 2021), as well as an inversion of the segment
26 containing the genes relative to cowpea, soybean (Valliyodan *et al.* 2019) and other *Vigna* species
27 (Sakai *et al.* 2015, Kang *et al.* 2014). Two corresponding homoeologous regions evidence the most
28 recent whole genome duplication in soybean. The region serves as a breakpoint for the syntetic
29 block in Gm09, which, taken together with the other structural variation, suggests that the
30 expansion of gene copy number here has had consequences for the stability of the chromosome in
31 these regions over evolutionary time (Hastings *et al.*, 2009).

32 Although the GCV view shows good evidence for CNV, there are some limitations to what may
33 be inferred from that alone. First, since the viewer only has access to gene family assignment
34 information, it cannot determine which elements among those in tandem arrays have the highest
35 sequence similarity and provide insight into which copies have been deleted. Second, because it

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 relies on the surrounding genomic context of each gene to place it into correspondence, it will have
2 limited capability for finding genes that are present in the assembly but are largely isolated on
3 small scaffolds that were not incorporated into the main pseudomolecules. Another tool at LIS that
4 provides a complementary view based on the underlying sequence identity of the different copies
5 of the expanded gene family is shown in Figure 6B. Here, the InterMine (Kalderamis *et al.*, 2014)
6 instance for cowpea ([https://mines.legumeinfo.org/cowpeamine begin.do](https://mines.legumeinfo.org/cowpeamine	begin.do)) was used to collect all
7 protein sequences for cowpea genes assigned to the given family. A dynamic tree construction
8 procedure invoked based on hmalign-derived
9 (<http://www.csb.yale.edu/userguides/seq/hmmer/docs/node18.html>; Eddy, 2011) additions of
10 these genes to the multiple sequence alignment for the founding members of the family. The
11 resulting tree (a subtree of which is shown) allows the user to determine the best correspondences
12 of the copies in each genome and pulls in two additional genes on unanchored contigs that likely
13 belong to the region.

14 **Pangenome core genes and cross-species synteny**

15 To explore the question of how within-species gene content conservation compares with gene
16 content shared between species in other species and genera, we used the LIS gene family
17 assignments to define homology pairings between all members of each gene family, then used the
18 resulting data to determine collinearity blocks among all pairwise comparisons of the cowpea
19 genomes, as well as to soybean and representative genomes from *Vigna* and *Phaseolus* spp. The
20 counts of genes participating in at least one collinear block were tallied for each genome in each
21 pairwise comparison. As expected, intra-specific comparisons between cowpea accessions yield
22 higher numbers of conserved collinear genes than inter-specific comparisons. On the other hand,
23 there is no appreciable difference in the extent of conserved collinearity when comparing cowpea
24 genomes to other species within the *Vigna* genus versus species from *Phaseolus* or *Glycine* genera
25 (Supplemental Figure S5). Because soybean has an additional whole genome duplication relative
26 to all other species in the comparison, the total number of soybean genes found in collinear blocks
27 is higher than in other comparisons. Comparisons between all species and the *Vigna radiata*
28 version 6 genome (Kang *et al.* 2014) show fewer conserved collinear genes, but this is presumably
29 due to missing data in that assembly, given that all other interspecific comparisons are similar.

30

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 **Data Availability Statement.** The genome assemblies and annotations described in this
2 manuscript are available from CowpeaPan (<https://phytozome-next.jgi.doe.gov/cowpeapan>). Raw
3 DNA and RNA sequence data from IT97K-499-35 and whole genome shotgun DNA sequences
4 for 36 diverse cowpea accessions used for SNP discovery in Muñoz-Amatriaín *et al.* (2017) are
5 available from the National Center for Biotechnology Information (NCBI) as SRA accessions
6 SRS3721827, SRP077082, SAMN071606186 through SAMN071606198, SAMN07194302
7 through SAMN07194309, and SAMN07194882 through SAMN07194909, as stated in Lonardi *et*
8 *al.* (2019). Raw DNA and RNA sequence data from the six additional accessions providing de
9 novo assemblies in this report, and sequences produced by 10X Genomics from IT97K-49-35, are
10 available as BioProject PRJNA836573 from the National Center for Biotechnology Information
11 (NCBI). More complete annotation files, assemblies and SNPs are also available via the
12 <https://drive.google.com/drive/folders/1iQaLW4SLmN2IP7q4k3uovHK3SvsxGbVi?usp=sharing>
13 Google shared drive link.

14 **Acknowledgments.** The authors thank Staff Research Associate Yi-Ning Guo (UCR) for RNA
15 preparation; Programmer Steve Wanamaker (UCR) for informatics assistance; Jeffrey Ehlers (Bill
16 & Melinda Gates Foundation), Phillip Roberts (UCR) and Anthony Hall (UCR) for discussions on
17 the accessions for sequencing; Bao Lam Huynh (UCR) and Mitchell Lucas (UCR) for assistance
18 with greenhouse operations for pure seed production; Richard Hayes (Department of Energy Joint
19 Genome Institute, Berkeley, California, USA) for assistance with Phytozome; Samuel Hokin
20 (National Center for Genome Resources, Santa Fe, New Mexico, USA) for data curation for
21 loading data into CowpeaMine; and Bruno Contreras-Moreira (Spanish National Research
22 Council) for helpful discussions on the use of GET_HOMOLOGUES-EST. The University of
23 Minnesota Supercomputing Institute also provided hardware and software support.

24 **Conflict of Interest.** The authors declare no conflict of interest.

25 **Funder Information.** Development of an initial pan-genome of domesticated cowpea (*Vigna*
26 *unguiculata* ssp. *unguiculata* [L.] Walp.) was an objective of the National Science Foundation
27 BREAD project "Advancing the Cowpea Genome for Food Security" (IOS 1543963). Funding
28 was also provided by NSF IIS-1814359 ("Improving de novo Genome Assembly using Optical
29 Maps"). The work conducted by the US Department of Energy Joint Genome Institute, a DOE
30 Office of Science User Facility, was supported by the Office of Science of the US Department of
31 Energy under Contract No. DE-AC02-05CH11231. Support for the work of ADF provided by the
32 U.S. Department of Agriculture, Agricultural Research Service, Non-Assistance Cooperative
33 Agreement 58-5030-7-069. This work also benefited from and addressed breeding and germplasm
34 management objectives of the Feed the Future Innovation Lab for Climate Resilient Cowpea
35 (USAID Cooperative Agreement AID-OAA-A-13-00070). Partial support was also provided by

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 the National Natural Science Foundation of China (32172568), the Major Science and Technology
2 Project of Plant Breeding in Zhejiang Province (2021C02065-6-3), and the National Ten-
3 Thousand Talents Program of China (to PX). Hatch Project CA-R-BPS-5306-H also provided
4 partial support.

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 **Literature Cited**

2 Aggarwal VD, Muleba N, Drabo I, Souma J, Mbewe M (1984) Inheritance of *Striga*
3 *gesnerioides* resistance in cowpea. In: Proceedings of 3rd International Symposium on
4 Parasitic Weeds (Parker C, Musselman LJ, Polhill RM, Wilson AK eds.) ICARDA, Aleppo,
5 Syria, pp. 143-147

6 Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new
7 reference. *Nature Plants* 6:914-920.

8 Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, Haruna M, Diallo S, Umar
9 ML, Olufajo O, Fatokun C (2019) Cowpea (*Vigna unguiculata*): Genetics, genomics and
10 breeding. *Plant Breeding* 138:415-424, doi.org/10.1111/pbr.12589

11 Boukar O, Bhattacharjee R, Fatokun C, Kumar PL, Gueye B (2013) Cowpea. In: Genetic and
12 Genomic Resources of Grain Legume Improvement (Singh M, Upadhyaya HD, Bisht IS eds.),
13 Chapter 6, pp. 137-156, Elsevier, London, UK. ISBN 978-0-12-397935-3

14 Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz, J, Koenig D, Lanz C, Stegle O,
15 Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D
16 (2011) Whole-genome sequencing of multiple *Arabidopsis thaliana* populations. *Nature*
17 *Genetics* 43:956–963, doi.org/10.1038/ng.911

18 Chapman JA, Ho I, Sunkara S, Luo S, Schroth GP, Rokhsar DS (2011) Meraculous: *de novo*
19 genome assembly with short paired-end reads. *PLOS ONE* 6:e23501

20 Cleary A, Farmer A (2018) Genome Context Viewer: visual exploration of multiple annotated
21 genomes using microsynteny. *Bioinformatics* 34:1562-1564,
22 doi.org/10.1093/bioinformatics/btx757

23 Contreras-Moreira B, Cantalapiedra CP, Garcia Pereira MJ, Gordon S, Vogel JP, Igartua E,
24 Casas AM, Vinuesa P (2017) Analysis of plant pan-genomes and transcriptomes with
25 GET_HOMOLOGUES-EST, a clustering solution for sequences of the same species. *Frontiers*
26 in Plant Science

8:184, doi.org/10.3389/fpls.2017.00184

27 Corbett-Detig RB, Hartl DL, Sackton TB (2015) Natural selection constrains neutral diversity
28 across a wide range of species. *PLOS Biology* 13:e1002112, doi:
29 10.1371/journal.pbio.1002112

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene
2 gain, loss and rearrangement. PLOS ONE 5:e11147, doi.org/10.1371/journal.pone.0011147

3 Dash S, Campbell JD, Cannon EK, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG,
4 Singh J, Umale PE, Weeks NT, Wilkey AP, Farmer AD, Cannon SB. (2016) Legume
5 information system (LegumeInfo.org): a key component of a set of federated data resources for
6 the legume family. Nucleic Acids Research 44:D1181-1188, doi: 10.1093/nar/gkv1159

7 de Mooy BE (1985) Germplasm evaluation of Botswana cowpea (*Vigna unguiculata* [L.] Walp.)
8 landraces. M.S. Thesis, Michigan State University, Lansing, Michigan, USA.

9 Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Computational Biology 7:e1002195,
10 doi: 10.1371/journal.pcbi.1002195.

11 Ehlers JD, Fery RL, Hall AE (2002) Cowpea breeding in the USA: new varieties and improved
12 germplasm. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production.
13 Proceedings of the World Cowpea Conference III held at the International Institute of Tropical
14 Agriculture (IITA), Ibadan, Nigeria, 4-8 September 2000, (Eds. Fatokun CS, Tarawali SA,
15 Singh BB, Kormawa PM, Tamò M), Chapter 1.6, pp. 62-77, IITA, Ibadan, Nigeria, ISBN 978-
16 131-190-8

17 Goel M, Schneeberger K (2022) plotsr: visualizing structural similarities and rearrangements
18 between multiple genomes. Bioinformatics 38:2922-2926,
19 doi.org/10.1093/bioinformatics/btac196

20 Goel M, Sun H, Jiao W-B, Schneeberger K (2019) SyRI: finding genomic rearrangements and
21 local sequence differences from whole-genome assemblies. Genome Biology 20:277,
22 doi:10.1186/s13059-019-1911-0

23 Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D (2020) Pangenomics comes of age: from
24 bacteria to plant and animal applications. Trends in Genetics 36:132-145

25 Golicz AA, Bayer PE, Barker GC, Edger PP, Kim HR, Martinez PA, Chan CKK, Severn-Ellis A,
26 McCombie R, Parkin IAP, Paterson AH, Pires JC, Sharpe AG, Tang H, Teakle GR, Town CD,
27 Bately J, Edwards D (2016) The pangenome of an agronomically important crop plant
28 *Brassica oleracea*. Nature Communications 7:13390, doi.org/10.1038/ncomms13390

29 Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, Shu S, Stritt C, Roulin
30 AC, Schackwitz W, Tyler L, Martin J, Lipzen A, Dochy N, Phillips J, Barry K, Geuten K,

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Budak H, Juenger TE, Amasino R, Caicedo AL, Goodstein D, Davidson P, Mur LAJ, Figueroa
2 M, Freeling M, Catalan P, Vogel JP (2017) Extensive gene content variation in the
3 *Brachypodium distachyon* pan-genome correlates with population structure. *Nature*
4 *Communications* 8:2184, doi.org/10.1038/s41467-017-02292-8

5 Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith Jr RK, Hannick LI, Maiti R, Ronning
6 CM, Rusch DB, Town CD, Salzberg SL, White O (2003) Improving the *Arabidopsis* genome
7 annotation using maximal transcript alignment assemblies. *Nucleic Acids Research* 31:5654-
8 5666, <http://nar.oupjournals.org/cgi/content/full/31/19/5654>

9 Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy
10 number. *Nature Review Genetics* 10:551-564, doi: 10.1038/nrg2593. PMID: 19597530;
11 PMCID: PMC2864001.

12 Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. *European Journal of*
13 *Agronomy* 21:447-454

14 Herniter IA, Muñoz-Amatriaín M, Close TJ (2020) Genetic, textual, and archeological evidence
15 of the historical global spread of cowpea (*Vigna unguiculata* [L.] Walp.). *Legume Science* 3:57

16 Herniter IA, Muñoz-Amatriaín M, Lo S, Guo Y-N, Close TJ (2018) Identification of candidate
17 genes controlling black seed coat and pod tip color in G3 8:3347-3355

18 Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F,
19 Lindquist E, Pedraza MA, Barry K, de Leon N, Kaeppeler SM, Buell CR (2014) Insights into
20 the maize pan-genome and pan-transcriptome. *The Plant Cell* 26:121–135

21 Iwata-Otsubo A, Lin J-Y, Gill N, Jackson SA (2016) Highly distinct chromosome structures in
22 cowpea (*Vigna unguiculata*), as revealed by molecular cytogenetic analysis. *Chromosome*
23 *Research* 24:197-216

24 Kalderimis A, Lyne R, Butano D, Contrino S, Lyne M, Heimbach J, Hu F, Smith R, Stěpán R,
25 Sullivan J, Micklem G (2014) InterMine: extensive web services for modern biology. *Nucleic*
26 *Acids Research* 42:W468-472, doi: 10.1093/nar/gku301

27 Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J,
28 Shim S, Yoon MY, Jang YE, Han KS, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim KS,
29 Gwag JG, Moon JK, Lee YH, Park BS, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R,

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Srinivas P, Varshney RK, Lee SH (2014) Genome sequence of mungbean and insights into
2 evolution within *Vigna* species. *Nature Communications* 5:5443, doi: 10.1038/ncomms6443

3 Kent WJ (2002) BLAT - the BLAST-like alignment tool. *Genome Research* 12:656-64

4 Kirkpatrick M (2010) How and why chromosome inversions evolve. *PLOS Biology* 8:e1000501

5 Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation.
6 *Genetics* 173:419-434

7 Korunes KL, Samuk K (2021) PIXY: Unbiased estimation of nucleotide diversity and
8 divergence in the presence of missing data. *Molecular Ecology Resources* 21:1359-1368

9 Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L, Venkat A, Andolfatto P,
10 Przeworski M (2012) Revisiting an old riddle: what determines genetic diversity levels within
11 species. *PLOS Biology* 10:e1001388

12 Lei L, Goltsman E, Goodstein D, Wu GA, Rokhsar DS, Vogel JP (2021) Plant pan-genomics
13 comes of age. *Annual Reviews of Plant Biology* 72:411-435

14 Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34:3094-
15 3100

16 Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform.
17 *Bioinformatics* 25:1754-1760

18 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R
19 (2009) 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format
20 and SAMtools. *Bioinformatics* 25:2078-2079

21 Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS,
22 Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang
23 Y, Ruan H, Yeung CKL, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY,
24 Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ (2014) *De novo* assembly of soybean wild
25 relatives for pan-genome analysis of diversity and agronomic traits. *Nature Biotechnology*
26 32:1045-1052, doi.org/10.1038/nbt.2979

27 Liang Q, Lonardi S (2021) Reference-agnostic representation and visualization of pan-genomes.
28 *BMC Bioinformatics* 22:502

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Lonardi S, Muñoz-Amatriaín M, Liang Q, Shu S, Wanamaker SI, Lo S, Tanskanen J, Schulman
2 AH, Zhu T, Luo MC, Alhakami H, Ounit R, Hasan AM, Verdier J, Roberts PA, Santos JRP,
3 Ndeve A, Doležel J, Vrána J, Hokin SA, Farmer AD, Cannon SB, Close TJ (2019) The
4 genome of cowpea (*Vigna unguiculata* [L.] Walp.). *The Plant Journal* 98:767-782

5 Mackie WW (1946) Blackeye beans in California. *Bulletin* 696, University of California
6 Agricultural Experiment Station

7 McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flieck P, Cunningham F
8 (2016) The Ensembl variant effect predictor. *Genome Biology* 17:122

9 Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. *American
10 Journal of Botany* 98:1389-1414

11 Moghaddam SM, Oladzad A, Koh C, Ramsay L, Hart JP, Mamidi S, Hoopes G, Sreedasyam A,
12 Wiersma A, Zhao D, Grimwood J, Hamilton JP, Jenkins J, Vaillancourt B, Wood JC, Schmutz
13 J, Kagale S, Porch T, Bett KE, Buell CR, McClean PE (2021) The tepary bean genome
14 provides insight into evolution and domestication under heat stress. *Nature Communications*
15 12:2638, doi: 10.1038/s41467-021-22858-x

16 Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan C-KK., Visendi P, Lai K,
17 Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. *The Plant
18 Journal* 90:1007-1013, doi.org/10.1111/tpj.13515

19 Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes.
20 *Current Opinions in Plant Biology* 10:149–155

21 Morrell PL, Gonzales AM, Meyer KKT, Clegg MT (2014) Resequencing data indicate
22 domestication's modest effect on barley diversity: a cultigen with multiple origins. *Journal of
23 Heredity* 105:253-264, doi: 10.1093/jhered/est083

24 Muñoz-Amatriaín M, Eichten SR, Wicker T, Richmond TA, Mascher M, Steuernagel B, Scholz
25 U, Ariyadasa R, Spannagl M, Nussbaumer T, Mayer KF, Taudien S, Platzer M, Jeddeloh JA,
26 Springer NM, Muehlbauer GJ, Stein N (2013) Distribution, functional impact, and origin
27 mechanisms of copy number variation in the barley genome. *Genome Biology* 14:R58

28 Muñoz-Amatriaín M, Lo S, Herniter IA, Boukar O, Fatokun C, Carvalho M, Castro I, Guo Y-N,
29 Huynh B-L, Roberts PA, Carnide V, Close TJ (2021) The UCR Minicore: a resource for
30 cowpea research and breeding. *Legume Science* 3:e95, doi.org/10.1002/leg3

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Muñoz-Amatriaín M, Mirebrahim H, Xu P, Wanamaker SI, Luo M, Alhakami H, Alpert M,
2 Atokple I, Batieno BJ, Boukar O, Bozdag S, Cissé N, Drabo I, Ehlers JD, Farmer A, Fatokun
3 C, Gu YQ, Guo Y, Huynh B, Jackson SA, Kusi F, Lawley CT, Lucas MR, Ma Y, Timko MP,
4 Wu J, You F, Barkley NA, Roberts PA, Lonardi S, Close TJ (2017) Genome resources for
5 climate-resilient cowpea, an essential crop for food security. *The Plant Journal* 89:1042-1054

6 Onsongo G, Xie H, Griffin TJ, Carlis (2008) Generating GO slim using relational database
7 management systems to support proteomics analysis. 21st IEEE International Symposium on
8 Computer-Based Medical Systems, doi.org/10.1109/CBMS.2008.77

9 Pedersen BS, Quinlan AR (2018) Mosdepth: quick coverage calculation for genomes and
10 exomes. *Bioinformatics* 34:867–868, doi.org/10.1093/bioinformatics/btx699

11 Quinlan AR, Hall IM (2010) BEDtools: a flexible suite of utilities for comparing genomic
12 features. *Bioinformatics* 26:841-841

13 Sakai H, Naito K, Ogiso-Tanaka E, Takahashi Y, Iseki K, Muto C, Satou K, Teruya K, Shiroma
14 A, Shimoji M, Hirano T, Itoh T, Kaga A, Tomooka N (2015) The power of single molecule
15 real-time sequencing technology in the de novo assembly of a eukaryotic genome. *Scientific
16 Reports* 5:16780, doi:10.1038/srep16780

17 Salamov AA, Solovyev VV (2000) *Ab initio* gene finding in *Drosophila* genomic DNA. *Genome
18 Research* 10:516-522

19 Schmid K, Kilian B, Russell J (2018) Barley Domestication, Adaptation and Population
20 Genomics. editors. In: Stein N, Muehlbauer G (eds.) *The Barley Genome. Compendium of
21 Plant Genomes*. Springer, Cham. pp. 317-336.

22 Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song
23 Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K,
24 Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL,
25 Jia G, Kelly JD, Kudrna D, Lee R, Richard MM, Miklas PN, Osorno JM, Rodrigues J, Thareau
26 V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA
27 (2014) A reference genome for common bean and genome-wide analysis of dual
28 domestications. *Nature Genetics* 46:707-713, doi:10.1038/ng.3008

29 Shu S, Goodstein D, Rokhsar D (2013) PERTRAN: genome-guided RNA-seq read assembler.
30 <https://www.osti.gov/biblio/1241180>

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Shu S, Rokhsar D, Goodstein D, Hayes D, Mitros T (2014) JGI plant genomics gene annotation
2 pipeline. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

3 Singh BB, Olufajo OO, Ishiyaku MF, Adeleke RA, Ajeigbe HA, Mohammed SG (2006)
4 Registration of six improved germplasm lines of cowpea with combined resistance to *Striga*
5 *gesnerioides* and *Alectra vogelii*. Crop Science 46:2332-2333

6 Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum
7 H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds
8 exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in
9 genome content. PLoS Genetics 5:e1000734

10 Stai JS, Yadav A, Sinou C, Bruneau A, Doyle JJ, Fernández-Baca D, Cannon SB (2019) Cercis:
11 a non-polyploid genomic relic within the generally polyploid legume family. Frontiers in Plant
12 Science 10:345, doi:10.3389/fpls.2019.00345

13 Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics
14 105:437-460

15 Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, Schnable PS, Lyons E, Lu J (2015)
16 ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biology 16:3,
17 doi:10.1186/s13059-014-0573-1

18 Tettelin H, Maignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree
19 J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Immaculada
20 Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM,
21 Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou
22 L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O'Connor KJB, Smith S, Utterback
23 TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR,
24 Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of
25 *Streptococcus agalactiae*: implications for the microbial "pan-genome". Proc. Natl. Acad.
26 Sci. USA 102:13950-13955, doi:10.1073/pnas.0506758102

27 Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis
28 toolkit for the agricultural community, 2017 update. Nucleic Acids Research 45:W122-W129,
29 doi: 10.1093/nar/gkx382

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 Tittes S, Lorant A, McGinty S, Doebley JF, Holland JB, de Jesus Sánchez-González, Seetharam
2 A, Tenaillon M, Ross-Ibarra J (2021) Not so local: the population genetics of convergent
3 adaptation in maize and teosinte. bioRxiv, doi: 10.1101/2021.09.09.459637

4 Torkamaneh D, Lemay M-A, Belzile F (2021) The pan-genome of the cultivated soybean
5 (PanSoy) reveals an extraordinarily conserved gene content. Plant Biotechnology Journal
6 19:1852-1862, <https://doi.org/10.1111/pbi.13600>

7 Valliyodan B, Cannon SB, Bayer PE, Shu S, Brown AV, Ren L, Jenkins J, Chung CY, Chan TF,
8 Daum CG, Plott C, Hastie A, Baruch K, Barry KW, Huang W, Patil G, Varshney RK, Hu H,
9 Batley J, Yuan Y, Song Q, Stupar RM, Goodstein DM, Stacey G, Lam HM, Jackson SA,
10 Schmutz J, Grimwood J, Edwards D, Nguyen HT (2019) Construction and comparison of three
11 reference-quality genome assemblies for soybean. The Plant Journal 100:1066-1082, doi:
12 10.1111/tpj.14500

13 Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger
14 JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene
15 synteny and collinearity. Nucleic Acids Research 40:e49, doi: 10.1093/nar/gkr1293

16 Xu P, Wu X, Muñoz-Amatriaín M, Wang B, Wu X, Hu Y, Huynh BL, Close TJ, Roberts PA,
17 Zhou W, Lu Z, Li G (2017) Genomic regions, cellular components and gene regulatory basis
18 underlying pod length variations in cowpea (*V. unguiculata* L. Walp.). Plant Biotechnology
19 Journal 15:547-557, doi:10.1111/pbi.12639

20 Yeh R-F, Lim LP, Burge CB (2001) Computational inference of homologous gene structures in
21 the human genome. Genome Research 11:803-816

22 Yu G, Wang L, Han Y, He Q (2012). clusterProfiler: an R package for comparing biological
23 themes among gene clusters. OMICS: A Journal of Integrative Biology 16:284-287,
24 doi:10.1089/omi.2011.0118

25

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 **Figure and Table Captions**

2 **Figure 1. Principal component analysis of the UCR Minicore, indicating the accessions**
3 **selected for sequencing and the subpopulation they belong to.** Accessions in the plot are
4 colored by the result of STRUCTURE for $K=6$, as shown in Muñoz-Amatriaín *et al.* (2021).

5 **Figure 2. The number of genes identified in the pan-genome (pan genes) and core genome**
6 **(core genes) as new accessions are added.** Green curves are fitted Tettelin functions.

7 **Figure 3. Gene Ontology (GO) term enrichment analysis.** Significantly enriched GO terms for
8 core (A) and noncore genes (B) are shown for GO-Slim categories belonging to Biological
9 Process, Cellular Component, and Molecular Function aspects (in different colors). -log10 of
10 FDR-adjusted p-values (q-values) are shown on the right of each bar.

11 **Figure 4. Representation of structural variations (of any size) detected by SyRI from the**
12 **output of whole-genome pairwise alignments between the seven cowpea accessions.** The
13 black track indicates gene density in the reference genome IT97K-499-35, while the blue track
14 indicates SNP density in the reference genome IT97K-499-35.

15 **Figure 5. Variant effect predictor (VeP) annotations for SNPs and indels found in the core**
16 **and noncore genes present in IT97K-499-35.** Values on the y-axis are the absolute number of
17 variants in each variant class.

18 **Figure 6. Conservation of gene content within and across species.** (A) A region depicting
19 gene content conservation and variability among cowpea genomes and other representative
20 Phaseoleae species. Triangular glyphs represent order and orientation of genes, with color
21 representing gene family memberships. (<https://vigna.legumeinfo.org/tools/gcv>) (B) All cowpea
22 proteins assigned to the family whose members exhibit copy number variation in (A) are shown
23 augmenting a dynamically recomputed gene tree at the Legume Information System, with genes
24 from unanchored contigs not present in the chromosomes aligned in (A) indicated with arrows
25 (<https://mines.legumeinfo.org/cowpeamine>).

26 **Table 1. Summary of assembly statistics, repetitive content, gene content, and BUSCO**
27 **completeness for the seven genomes.**

28 **Table 2. Genomic coordinates of all inversions of size > 1 Mbp detected by comparing the**
29 **seven cowpea genomes pairwise.** IT97K- 499-35 is abbreviated as IT97K.

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 **Supplemental Figure S1. Gene and repeat density.** Accessions are represented by different
2 shades of red (genes) and blue (repeats). The reference genome of IT97K-499-35 is the longest
3 curve, i.e., the one that extends furthest to the right of each graph.

4 **Supplemental Figure S2. SNP density (number of SNPs per Mb) using each genome as the**
5 **“reference.”** (A) IT97K-499-35 (IT97K), centromeres are marked with orange in the innermost
6 circle, (B) CB5-2, (C) Suvita-2, (D) Sanzi, (E) UCR779, (F) ZN016, (G) TZ30.

7 **Supplemental Figure S3. Output of ALLMAPS for chromosome Vu06 for Suvita-2.** Ten
8 genetic maps were used to orient the five Dovetail contigs in Vu06 (two of which are larger than
9 1Mb – see Supplemental Table S14). The first four were arbitrarily oriented by ALLMAPS due
10 to low recombination in that region, as shown on the graphs on the right, which plot cM position
11 (y-axis) as a function of physical position (x-axis). In particular, the 8.2 Mb contig represented in
12 gray in the bottom left figure is a region of very low recombination frequency and was likely
13 oriented incorrectly.

14 **Supplemental Figure S4. Structural variants (of any size) detected by SyRI between any**
15 **pairs of genomes in this study.** (A) CB5-2 vs Sanzi, (B) CB5-2 vs Suvita-2, (C) CB5-2 vs
16 TZ30, (D) CB5-2 vs UCR779, (E) CB5-2 vs ZN016, (F) IT97K-499-35 vs CB5-2, (G) IT97K-
17 499-35 vs Sanzi, (H) IT97K-499-35 vs Suvita-2, (I) IT97K-499-35 vs TZ30, (J) IT97K-499-35
18 vs UCR779, (K) IT97K-499-35 vs ZN016, (L) Sanzi vs TZ30, (M) Sanzi vs UCR779, (N) Sanzi
19 vs ZN016, (O) Suvita-2 vs Sanzi, (P) Suvita-2 vs TZ30, (Q) Suvita-2 vs UCR779, (R) Suvita-2
20 vs ZN016, (S) UCR779 vs TZ30, (T) UCR779 vs ZN016, (U) ZN016 vs TZ30.

21 **Supplemental Figure S5. Macrosynteny views.** (A) Macrosynteny view with blocks
22 representing regions in the IT97K-499-35 reference cowpea genome with conserved gene order
23 relative to each of the genomes shown as tracks below. The region from the microsynteny view
24 of Figure 6A is shown with a vertical gray bar, and the set of chromosomes displayed is
25 restricted to those showing synteny in that region (i.e., the non-cowpea chromosomes have an
26 apparent lack of synteny downstream because of genomic rearrangements that have moved
27 corresponding content to other chromosomes than those shown). Various inversions are seen as
28 blocks with orientations opposing those of their neighboring blocks. Gaps in otherwise syntetic
29 regions indicate regions where gene content diversity outweighs conserved content through
30 presence-absence and copy-number variation. (B) Counts of genes participating in conserved
31 collinear blocks for all pairwise genome comparisons among the cowpea pangenome members
32 and across representative genomes from several genera in the Phaseoleae tribe. Self-comparisons
33 are included to illustrate within-species conservation of duplicated content from ancient whole

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 genome duplication (WGD) events shared by subfamily Faboideae species and the more recent
2 WGD in the *Glycine max* genome.

3 **Supplemental Table S01. Cowpea accessions used in this work.**

4 **Supplemental Table S02. Cowpea iSelect SNP positions on each of the seven genome**
5 **assemblies.** The allele, chromosome and position in the assembled genome are indicated for
6 each accession (columns D-X). For IT97K-499-35 (97K) the orientation of the sequence used for
7 the cowpea iSelect array (Muñoz-Amatriaín et al. 2017) “forward” strand is indicated in column
8 B and the two possible alleles for iSelect assay “forward” strand are in column C.

9 **Supplemental Table S03. Cowpea iSelect array SNP positions and alleles relative to the**
10 **IT97K-499-35 sequence of Lonardi et al. 2019 (columns B-F,I,J) and to the iSelect**
11 **“Forward Strand” of Muñoz-Amatriaín et al. 2017 and Muñoz-Amatriaín et al. 2021**
12 **(columns G&H).** Other columns indicate reasons for exclusion of data from 2,316 SNPs: blastn
13 alignment ambiguities (columns K-M,S), poor technical performance on array (column N),
14 monomorphic across all DNA samples (column O), excess heterozygote and or no-call (columns
15 P-R).

16 **Supplemental Table S04. Statistics of the six new assemblies at each step of the Dovetail**
17 **assembly pipeline.**

18 **Supplemental Table S05. Putative centromeric region coordinates (all numbers are bp).**

19 **Supplemental Table S06. Gene annotation statistics.**

20 **Supplemental Table S07. BUSCO v4 completeness results.**

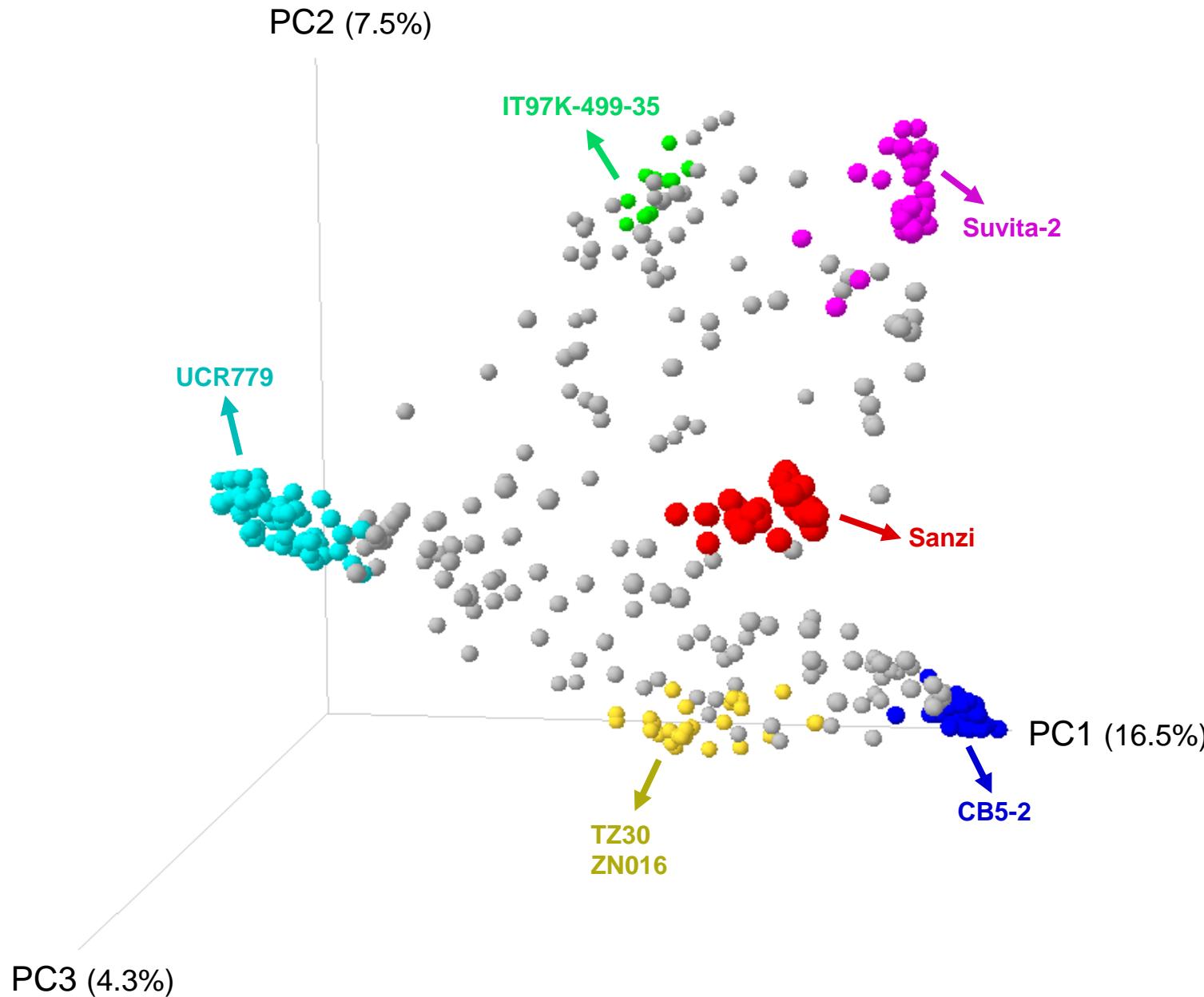
21 **Supplemental Table S08. Core and noncore genes identified from sequencing the seven**
22 **cowpea genomes, tabulated by gene cluster.**

23 **Supplemental Table S09. Enrichment analysis of GO Terms for core and noncore genes**
24 **performed in AgriGO v2.** Only significantly enriched GO terms (FDR < 0.05) are shown for
25 the three different ontology aspects.

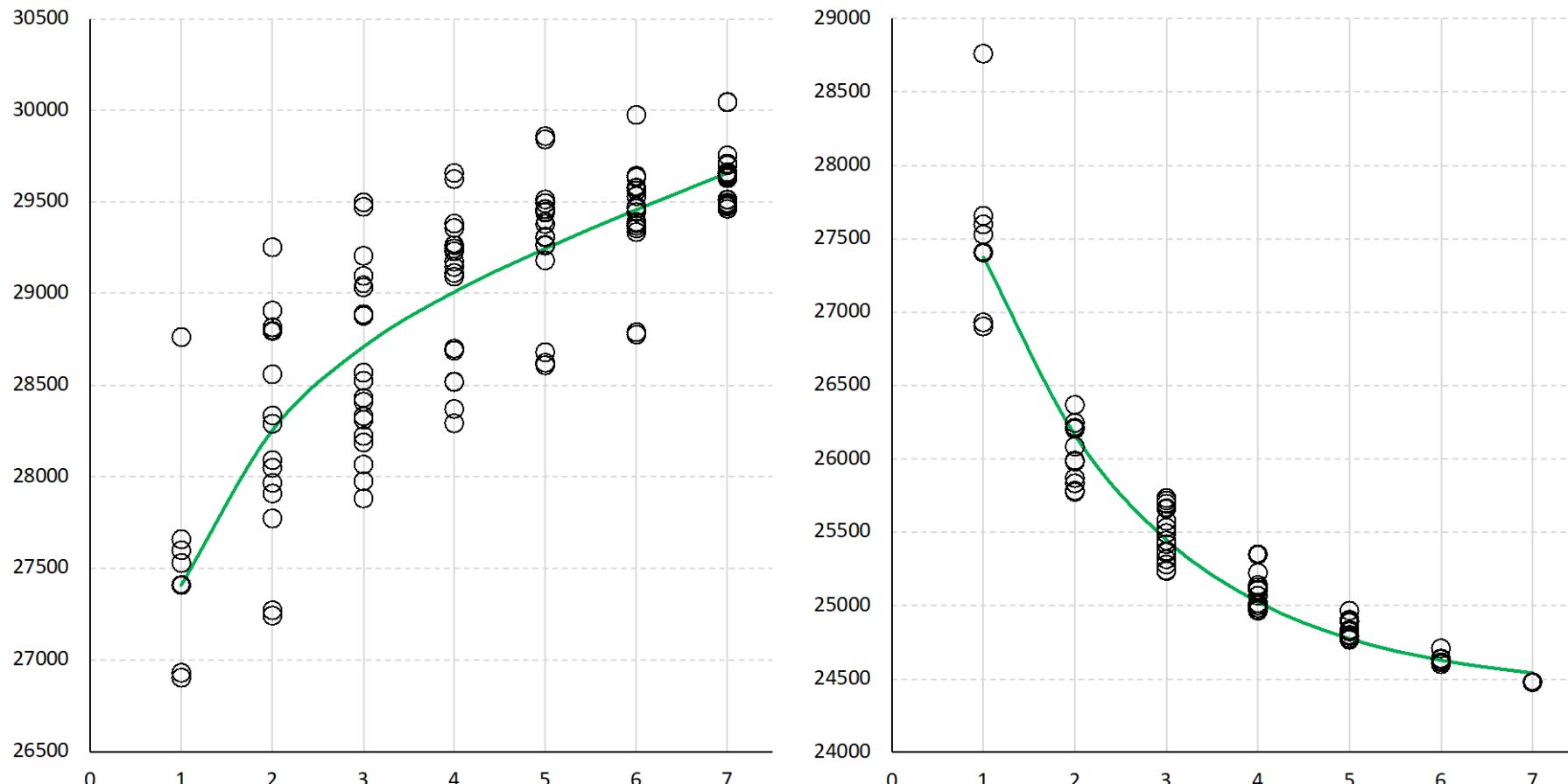
26 **Supplemental Table S10. Average diversity at the chromosome (pseudomolecule) level**
27 **relative to the IT97K-4899-35 assembly.** Values reported are $\theta\pi$ and the standard deviation for
28 “callable regions.”

Title: A view of the pan-genome of domesticated cowpea (*Vigna unguiculata* [L.] Walp.)

1 **Supplemental Table S11. Number of SNPs when considering each accession as the**
2 **“reference” genome and the resulting union of unique SNPs (merged GVCF) for each**
3 **accession.**


4 **Supplemental Table S12. Number of indels of size 1 to 300 bp when considering each**
5 **accession as the “reference” genome and the union set of all indels (merged GVCF) for**
6 **each accession.**

7 **Supplemental Table S13. Genomic coordinates of all structural variants detected via SyRI**
8 **by comparing the seven cowpea genomes pairwise. IT97K-499-35 is abbreviated as IT97K.**


9 **Supplemental Table S14. Largest inversions, using each of the Dovetail assemblies as**
10 **reference.** Left table: ALLMAPS' orientation of assembled contigs based on markers' position
11 on the genetic maps ("?" indicates a contig that was arbitrarily oriented). Right tables: Large
12 (>1Mb) inversions detected by SyRI, and whether they are within an oriented ALLMAPS contig.

13 **Supplemental Table S15. Summary of nucleotide sequence variants in core and noncore**
14 **genes with potential consequences on coding sequence as identified by Variant Effect**
15 **Predictor (VeP).** SNPs and indels were analyzed separately. These values are shown in Figure
16 5. Predictions are based on annotations from the IT97K-499-35 genome assembly.

Figure 1. Principal component analysis of the UCR Minicore, indicating the accessions selected for sequencing and the subpopulation they belong to. Accessions in the plot are colored by the result of STRUCTURE for $K=6$, as shown in Muñoz-Amatriaín et al. (2021).

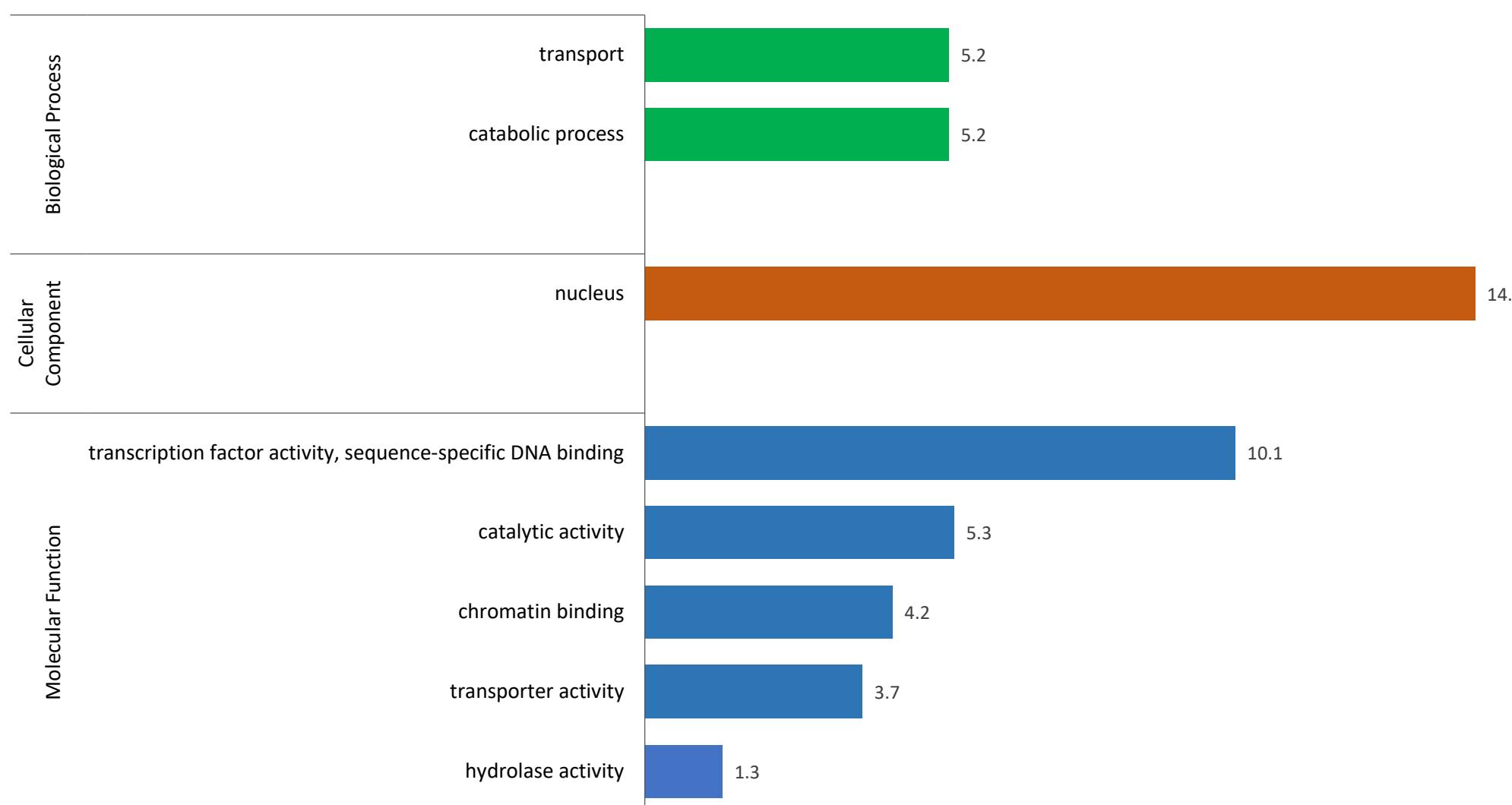


Figure 2. The number of genes identified in the pan-genome (left) and core genome (right) as new accessions are added. Green curves are fitted Tettelin functions.

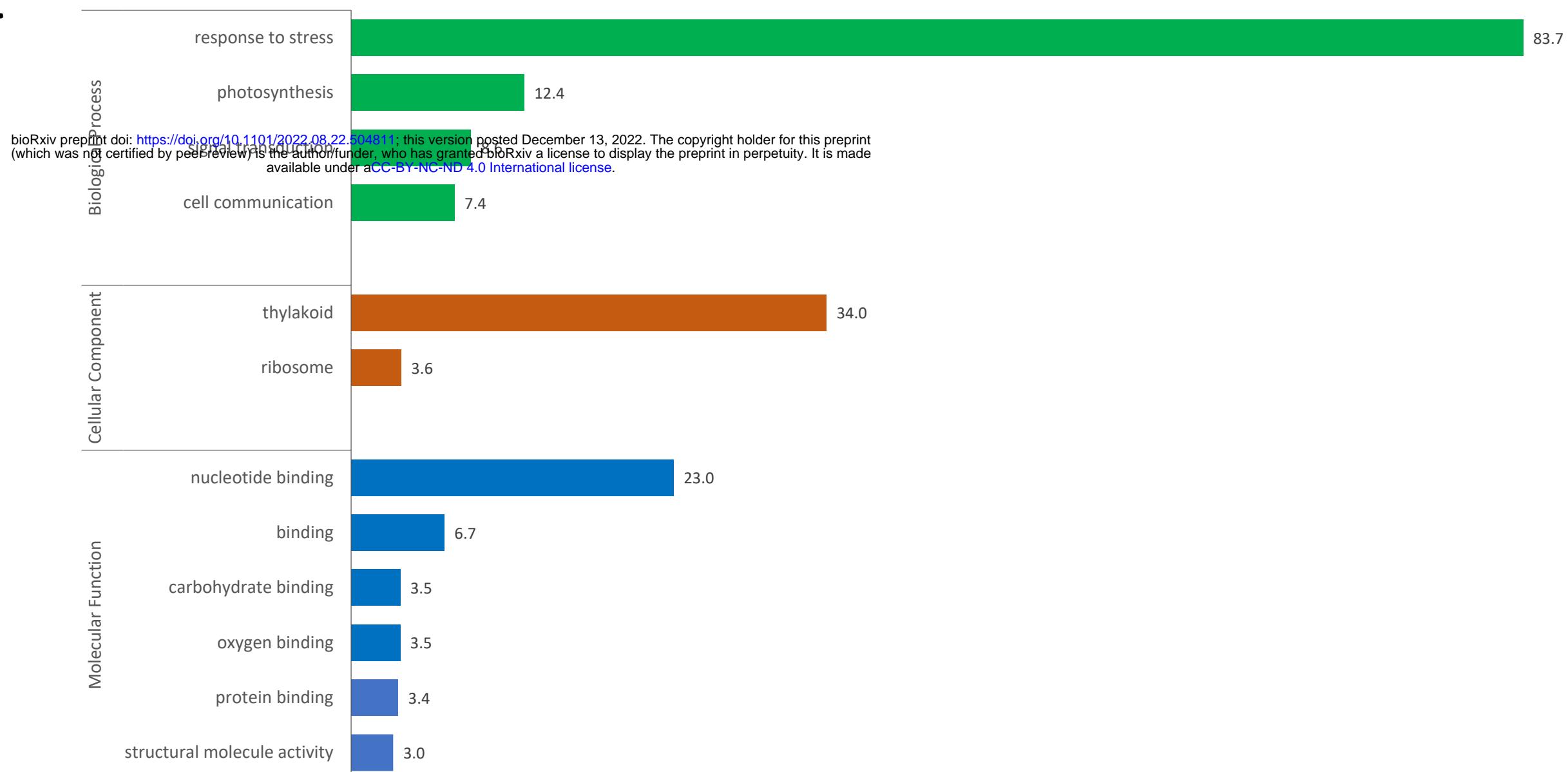
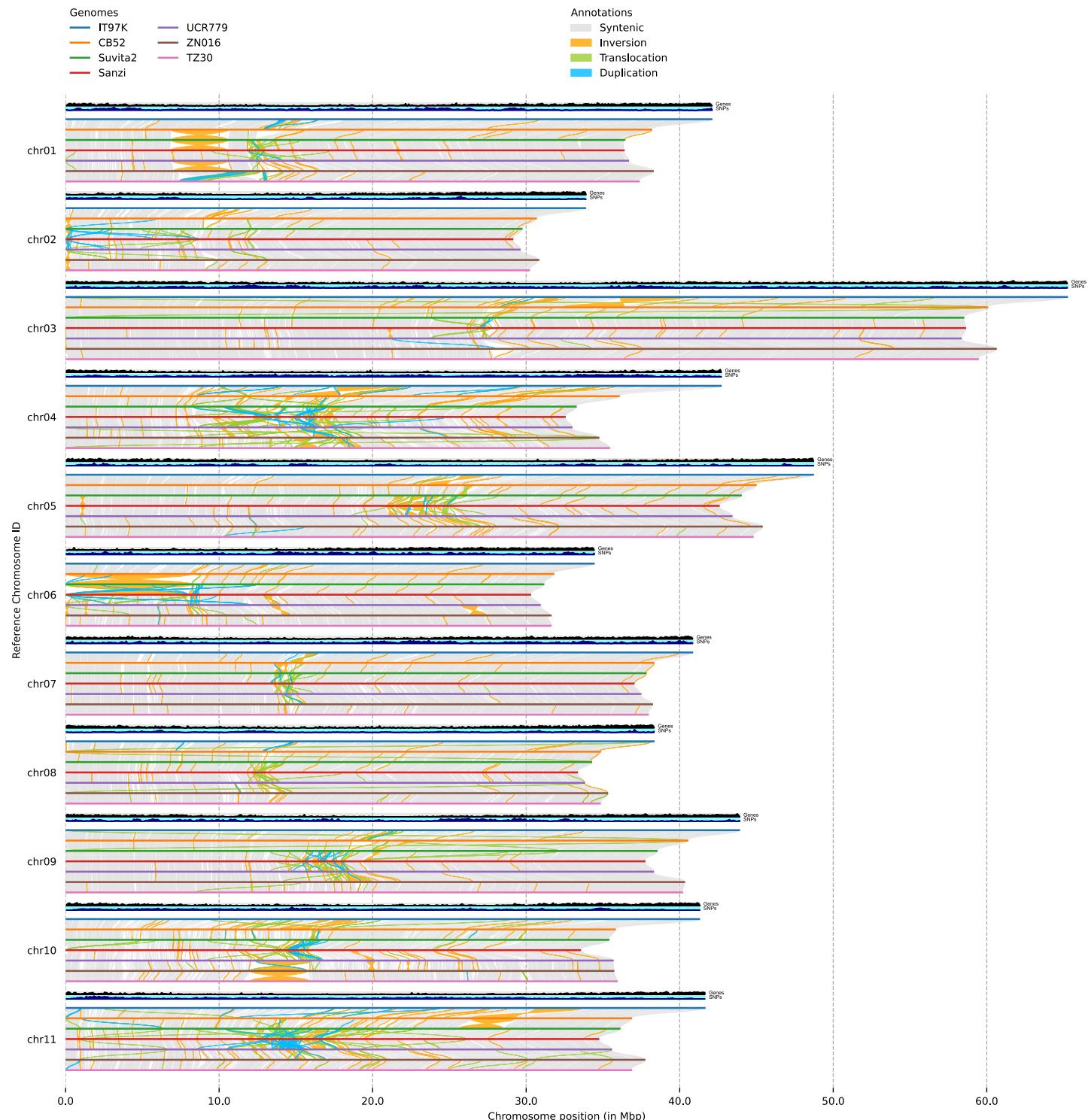


Figure 3. Gene Ontology (GO) term enrichment analysis. Significantly enriched GO terms for core (A) and noncore genes (B) are shown for GO-Slim categories belonging to Biological Process, Cellular Component, and Molecular Function aspects (in different colors). $-\log_{10}$ of FDR-adjusted p-values (q-values) are shown on the right of each bar.


A.

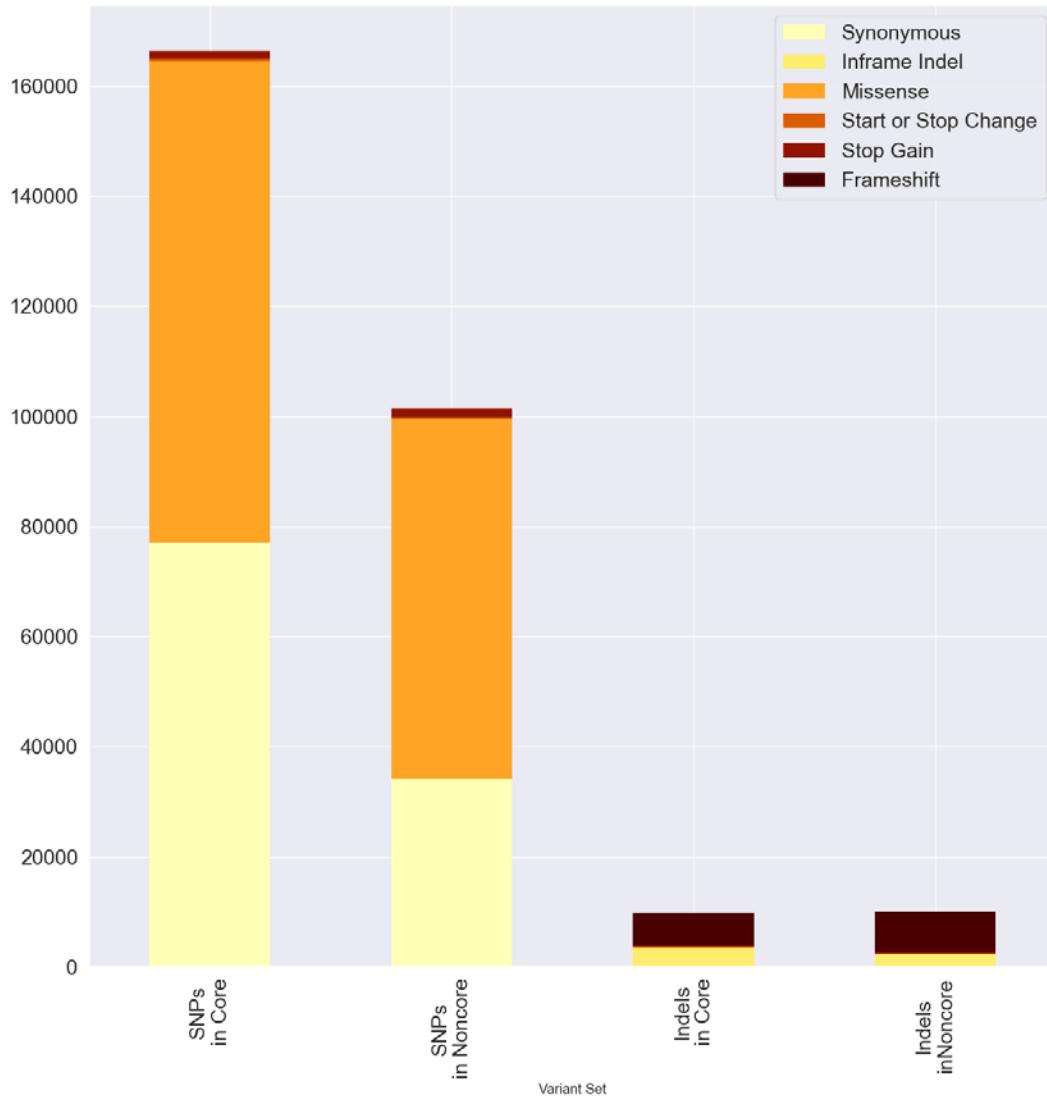

B.

Figure 4. Representation of structural variations (of any size) detected by SyRI from the output of whole-genome pairwise alignments between the seven cowpea accessions. The black track indicates gene density in the reference genome IT97K-499-35, while the blue track indicates SNP density in the reference genome IT97K-499-35.

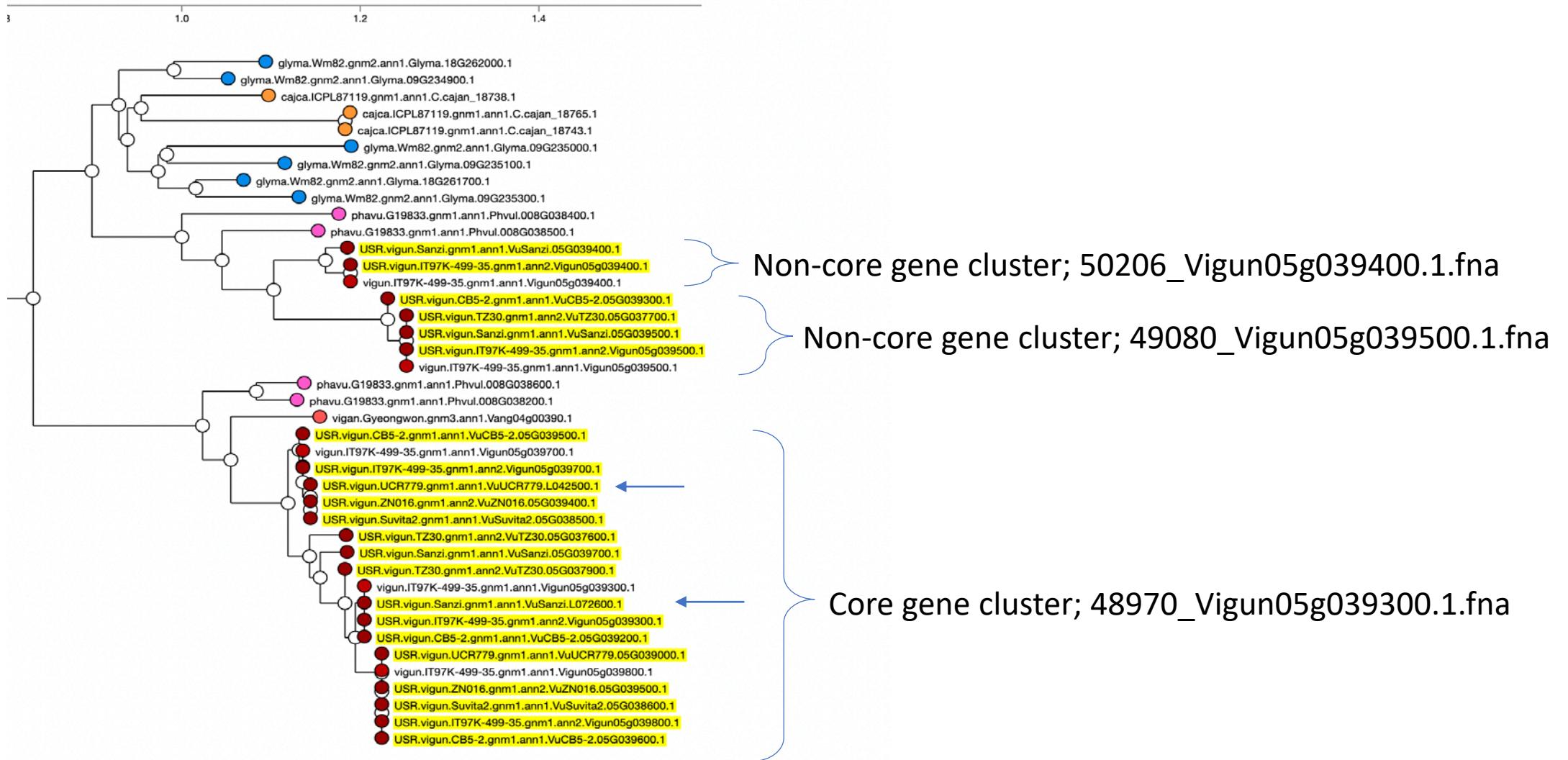

Figure 5. Variant effect predictor (VeP) annotations for SNPs and indels found in the core and noncore genes present in IT97K-499-35. Values on the y-axis are the absolute number of variants in each variant class.

Figure 6A. Conservation of gene content within and across species. A region depicting gene content conservation and variability among cowpea genomes and other representative Phaseoleae species. Triangular glyphs represent order and orientation of genes, with color representing gene family memberships. (<https://vigna.legumeinfo.org/tools/gcv>).

Figure 6B. Conservation of gene content within and across species. All cowpea proteins assigned to the family whose members exhibit copy number variation in Figure 6A are shown augmenting a dynamically recomputed gene tree at the Legume Information System, with genes from unanchored contigs not present in the chromosomes aligned in 6A indicated with arrows (<https://mines.legumeinfo.org/cowpeamine>).

Table 1. Summary of assembly statistics, repetitive content, gene content and BUSCO4 completeness for the seven genomes.

	IT97K-499-35	CB5-2		Suvita-2		Sanzi		UCR779		ZN016		TZ30		
Assembly size (bp)	519,435,864	448,043,751		447,585,192		447,277,261		453,970,486		451,130,807		451,468,680		
N50 (bp)	41,684,185	36,897,245		36,142,647		34,759,918		35,700,653		37,764,243		36,906,789		
#Contigs/scaffolds	686	6,534		9,123		11,268		12,939		7,032		6,771		
#Contigs/scaffolds ≥ 100kbp	103	28		28		17		13		28		48		
#Contigs/scaffolds ≥ 1Mbp	13	11		11		11		11		11		11		
#Contigs/scaffolds ≥ 10Mp	11	11		11		11		11		11		11		
Longest contig (bp)	65,292,630	60,086,998		58,539,223		58,655,738		58,369,212		60,653,587		59,481,915		
Repetitive content	47.25%	45.52%		45.43%		45.50%		45.89%		45.68%		45.76%		
Annotated genes (#)	31,948	28,297		28,545		28,461		28,562		27,723		27,742		
BUSCO completeness														
Genome	1595	98.8%	1574	97.5%	1580	97.8%	1581	97.9%	1574	97.6%	1589	98.5%	1583	98.1%
Transcripts	1594	98.8%	1570	97.2%	1582	98.0%	1585	98.2%	1581	97.9%	1584	98.1%	1580	97.8%
Proteins	1595	98.8%	1569	97.3%	1584	98.2%	1587	98.3%	1585	98.2%	1584	98.1%	1582	98.0%

Table 2. Genomic coordinates of all inversions of size > 1 Mbp detected by comparing the seven cowpea genomes pairwise. IT97K- 499-35 is abbreviated as IT97K.

IT97K											
CBS-2	IT97K		CBS-2		IT97K		CBS-2		CBS-2		
	chr03	36,18,990	40,333,678	chr03	31,262,282	35,207,418	chr05	23,469,613	24,641,440	chr05	22,486,336
chr04	17,622,506	20,913,098	chr04	14,956,441	17,919,052	chr05	23,493,744	24,846,894	chr10	17,517,032	18,768,535
chr05	25,746,455	27,269,915	chr05	14,803,744	15,920,434	chr10	17,517,032	18,768,535	chr11	30,575,795	33,615,557
chr10	17,517,032	18,768,535	chr10	17,517,032	18,768,535	chr11	20,382,424	23,914,031	chr11	15,386,401	19,182,958
chr11	30,575,795	33,615,557	chr11	15,386,401	19,182,958	chr11	15,386,401	19,182,958	chr11	15,386,401	19,182,958
IT97K											
Sanci	IT97K		Sanci		CBS-2		Sanci		Sanci		
	chr03	36,18,990	40,333,678	chr03	31,262,282	35,207,418	chr05	23,469,613	24,641,440	chr05	22,486,336
chr04	17,944,012	20,826,275	chr04	13,863,317	16,451,333	chr11	13,755,783	16,506,588	chr11	13,607,535	14,719,408
chr05	15,386,401	19,182,958	chr05	12,654,484	13,356,503	chr11	26,389,350	29,309,354	chr11	24,170,616	27,116,808
IT97K											
Sativi2	IT97K		Sativi2		IT97K		Sativi2		Sativi2		
	chr01	7,682,345	11,829,963	chr01	6,880,459	10,585,839	chr01	6,882,777	10,598,583	chr01	6,880,226
chr03	36,18,990	40,333,678	chr03	31,052,542	35,034,290	chr05	6,407	8,165,285	chr06	58,197	8,215,985
chr04	17,620,220	21,149,671	chr04	14,956,441	16,532,009	chr11	26,392,061	29,309,384	chr11	25,612,417	28,506,945
chr05	25,746,455	27,269,915	chr05	23,493,744	24,846,894	chr11	26,388,342	29,292,784	chr11	26,278,507	29,207,281
chr06	15,232	8,928,756	chr06	105,004	8,215,985	chr10	17,518,369	18,716,516	chr10	14,746,438	15,817,466
IT97K											
T230	IT97K		T230		IT97K		T230		T230		
	chr01	8,037,455	11,714,887	chr01	7,037,457	12,547,938	chr01	6,952,274	12,533,403	chr01	7,006,778
chr03	31,057,822	35,692,568	chr03	31,052,542	35,034,290	chr05	14,858,370	16,419,900	chr06	25,185,327	26,275,534
chr04	21,097,140	22,125,274	chr04	17,439,715	18,187,637	chr05	26,597,860	27,660,154	chr06	26,599,616	27,728,577
chr05	25,746,455	27,269,915	chr05	23,493,744	24,846,894	chr11	26,388,342	29,292,784	chr11	26,278,507	29,207,281
chr06	17,517,032	18,768,535	chr06	14,761,180	15,883,623	chr10	17,517,032	18,768,535	chr10	17,517,032	18,768,535
IT97K											
UCR779	IT97K		UCR779		IT97K		UCR779		UCR779		
	chr03	36,18,990	40,333,678	chr03	30,810,075	34,783,649	chr11	26,392,061	29,312,944	chr11	25,119,570
chr04	21,097,140	21,086,423	chr04	13,863,317	16,451,333	chr05	14,956,441	17,919,052	chr06	110,090	8,055,049
chr05	25,746,455	27,079,870	chr05	23,493,744	24,846,894	chr10	17,517,032	18,768,535	chr10	17,517,032	18,768,535
IT97K											
ZN016	IT97K		ZN016		IT97K		ZN016		ZN016		
	chr01	7,839,391	11,820,838	chr01	7,018,074	10,785,201	chr01	6,857,029	10,585,385	chr01	7,020,634
chr03	25,746,455	27,223,043	chr03	24,265,392	25,383,012	chr05	1,020,634	10,774,128	chr06	6,813,588	10,522,595
chr04	18,707,087	20,943,046	chr04	14,895,114	17,490,481	chr05	16,419,900	17,439,715	chr06	25,198,638	26,275,534
chr05	25,746,455	27,223,043	chr05	24,265,392	25,383,012	chr10	12,100,442	15,920,434	chr10	12,026,103	15,751,269
chr06	28,999,740	30,127,069	chr06	26,369,290	27,439,171	chr11	26,357,807	29,309,414	chr11	27,061,318	30,061,182
chr10	14,534,255	18,396,632	chr10	12,350,844	15,751,269	chr11	26,357,807	29,309,414	chr11	27,061,318	30,061,182
IT97K											
UCR779	IT97K		UCR779		IT97K		UCR779		UCR779		
	chr03	36,18,990	40,333,678	chr03	31,262,282	35,207,418	chr05	14,858,370	16,419,900	chr05	14,858,370
chr04	21,097,140	21,086,423	chr04	13,863,317	16,451,333	chr05	26,597,860	27,660,154	chr06	11,712,476	14,725,119
chr05	25,746,455	27,079,870	chr05	23,493,744	24,846,894	chr10	12,026,103	15,751,269	chr10	12,027,428	15,751,264
IT97K											
ZN016	IT97K		ZN016		IT97K		ZN016		ZN016		
	chr01	7,839,391	11,820,838	chr01	7,018,074	10,785,201	chr01	6,857,029	10,585,385	chr01	6,946,955
chr03	25,746,455	27,223,043	chr03	24,265,392	25,383,012	chr05	1,020,634	10,774,128	chr06	6,813,588	10,522,595
chr04	18,707,087	20,943,046	chr04	14,895,114	17,490,481	chr05	16,419,900	17,439,715	chr06	25,198,638	26,275,534
chr05	25,746,455	27,223,043	chr05	24,265,392	25,383,012	chr10	12,100,442	15,920,434	chr10	12,026,103	15,751,269
chr06	28,999,740	30,127,069	chr06	26,369,290	27,439,171	chr11	26,357,807	29,309,414	chr11	27,061,318	30,061,182
chr10	14,534,255	18,396,632	chr10	12,350,844	15,751,269	chr11	26,357,807	29,309,414	chr11	27,061,318	30,061,182