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Abstract

Facial affect is expressed dynamically — a giggle, grimace, or an agitated frown. However,
the characterization of human affect has relied almost exclusively on static images. This
approach cannot capture the nuances of human communication or support the naturalistic
assessment of affective disorders. Using the latest in machine vision and systems modelling,
we studied dynamic facial expressions of people viewing emotionally salient film clips. We
found that the apparent complexity of dynamic facial expressions can be captured by a small
number of simple spatiotemporal states - composites of distinct facial actions, each expressed
with a unique spectral fingerprint. Sequential expression of these states is common across
individuals viewing the same film stimuli but varies in those with the melancholic subtype of
major depressive disorder. This approach provides a platform for translational research,
capturing dynamic facial expressions under naturalistic conditions and enabling new

quantitative tools for the study of affective disorders and related mental illnesses.
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75
76  Introduction

77

78  Facial expressions are critical to interpersonal communication and offer a nuanced, dynamic
79  and context-dependent insight into internal mental states. Humans use facial affect to infer
80  personality, intentions and emotions, and it is an important component of the clinical
81  assessment of psychiatric illness. For these reasons, there has been significant interest in the
82  objective analysis of facial affect(1-3). However, decisive techniques for quantifying facial
83  affect under naturalistic conditions remain elusive.

84

85 A traditional approach is to count the occurrences of a discrete list of “universal basic
86  emotions”(4). While the most commonly used system designates six basic emotions, there is
87  disagreement about the number and nature of such affective ‘“natural forms” (5,6).
88  Quantifying facial affect using the Facial Action Coding System (FACS), has become the
89  dominant technique to operationalise facial expressions (7). Action units, each corresponding
90 to an anatomical facial muscle group, are rated on a quantitative scale. Traditional emotion
91 labels are associated with the co-occurrence of a specific set of action units — for example a
92  “happy” facial expression corresponds to action units “Cheek Raiser” and “Lip Corner
93  Puller”’(8). However, due to the time-intensive nature of manually coding every frame in a
94  video, FACS has traditionally been applied to the analysis of static pictures rather than videos
95  of human faces.

96

97 Recent developments in machine learning have automated the identification of basic
98 emotions and facial action units from images and videos of human faces. Feature extraction
99  for images include local textures (9,10) and 3D geometry(11,12), while video analysis
100  benefits from temporal features such as optical flow(13). Supervised learning algorithms
101 classifying facial expressions based on feature values have achieved impressive accuracies
102  benchmarked to manually coded datasets (see 14 for a review).

103

104  Videos of faces can now be reliably transformed into action unit time series which capture
105  the rich temporal dynamics of facial expressions(11). This is important because human faces
106  express emotional states dynamically — such as in a giggle or a sob. However, the rich

107  potential of these temporal dynamics has not yet been fully exploited in the psychological and
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108  behavioural sciences. For example, some psychological studies and databases have asked
109  responders to pose discrete emotions such as happiness or sadness(15). This strategy suits the
110  needs of a classic factorial experimental design but fails to produce the natural dynamics of
111 real-world facial expressions. To evoke dynamic emotion, clinical interviews have been
112 used(16), or participants have been asked to narrate an emotive story or been shown emotive
113 pictures rather than videos(17). Such pictures can be grouped into distinct categories and
114  presented repetitively in a trial structure, but their ecological validity is unclear.
115  Consequently, there is an expanding interest in naturalistic video stimuli such as movie
116  clips(18-20). These are more ecologically valid, have greater test-retest reliability than
117  interviews, evoke stronger facial expressions than static pictures, and produce stronger
118  cortical responses during functional neuroimaging(3,21,22). However, interpreting the facial
119  expressions resulting from naturalistic stimulus viewing poses challenges, because each time
120  point is unique. There is currently no obvious way to parse the stimulus video into discrete
121 temporal segments. Naive attempts at dimensionality reduction — for example, averaging
122 action unit activations across time — omit temporal dynamics and so fail to capture the
123 complexity of natural responses.

124

125  Disturbances in facial affect occur across a range of mental health disorders, including major
126  depressive disorder, schizophrenia, and dementia. Capturing the nuances of facial affect is a
127  crucial skill in clinical psychiatry but in the absence of quantitative tests this remains
128  dependent on clinical opinion. Supervised learning has shown promise in distinguishing
129  people with major depression from controls, using input features such as facial action units
130 coded manually(23) or automatically(24), or model-agnostic representations of facial
131 movements such as the ‘Bag of Words’ approach(25,26). Studies documenting action unit
132 occurrence during the course of a naturalistic stimulus(27), a short speech(28) or a clinical
133 interview(29), have demonstrated that depression is associated with reduced frequency of
134  emotional expressions, particularly expressions with positive valence. Unfortunately, by
135  averaging action unit occurrence over time, these methods poorly operationalise the
136  clinician’s gestalt sense of affective reactivity, which derive from a patient’s facial responses
137  across a range of contexts.

138

139  Here, we present a novel pipeline for processing facial expression data recorded while
140  participants view a dynamic naturalistic stimulus. The approach is data-driven, eschewing the

141 need to preselect emotion categories or segments of the stimulus video. We derive a time-

5
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142  frequency representation of facial movement information, on the basis that facial movements
143  in vivo are fundamentally dynamic and multiscale. These time-frequency representations are
144  then divided into discrete packets with a hidden Markov model (HMM), a method for
145  inferring hidden states and their transitions from noisy observations. We find dynamic
146  patterns of facial behaviour which are expressed sequentially and localised to specific action
147 units and frequency bands. These patterns are context-dependent, consistent across
148  participants, and correspond to intuitive concepts such as giggling and grimacing. We first
149  demonstrate the validity of this approach on an open-source dataset of facial responses of
150  healthy adults watching naturalistic stimuli. We then test this approach on facial videos of
151  participants with melancholic depression, a severe mood disorder characterised by
152 psychomotor changes(30). We show that dynamic facial patterns reveal specific changes in
153  melancholia, including reduced facial activity in response to emotional stimuli, anomalous
154  facial responses inconsistent with the affective context, and a tendency to get “stuck” in
155  negatively valenced states. Moreover, using these decoded patterns improves accuracy in
156  classifying patients from healthy controls.

157
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158  Results

159  We first analysed dynamic facial expressions from video recordings of 27 participants
160  viewing short emotive clips of 4 minute duration, covering a breadth of basic emotions (the
161 DISFA dataset(19), detailed in Supplementary Table 1). Frame-by-frame action unit
162  activations were extracted with OpenFace software(31) (see Supplementary Table 2 for
163  action unit descriptions).

164

165 From these data, we used the continuous wavelet transform to extract a time-frequency
166  representation of individual action unit time series in each participant. To test whether this
167  time-frequency representation captures high frequency dynamic content, we first compared
168  the group average of these individual time-frequency representations with the time-frequency
169  representation of the group mean time series. We selected the activity of action unit 12 “Lip
170  Corner Puller” during a positive valence video clip (a ‘talking dog’), as this action unit is
171 conventionally associated with happy affect, and its high frequency activity denotes smiling
172 or laughing. Compared to the group mean time series, the time series of individuals had
173 significantly greater amplitude (Figure 1a), particularly at higher frequencies (Figure le).
174  This demonstrates that the time-frequency representations of individual participants capture
175  high frequency dynamics that are obscured by characterising group-averaged time courses.
176  This is because stimulus-evoked facial action unit responses have asynchronous alignment
177  across participants, hence cancelling when superimposed. This problem is avoided in the
178  group-level time-frequency representation, whereby the amplitude is first extracted at the
179  individual level, prior to group averaging. Comparable results occurred in all action units
180  (Supplementary Figure 2).

181
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Figure 1. Time-frequency representation of action unit 12 “Lip Corner Puller” during
positive valence video stimulus reveals high frequency dynamics. (a) Action unit time series
for 5 example participants (blue). The group mean time course across all participants is
shown in red. Red arrows indicate funny moments in the stimulus, evoking sudden facial
changes in individual participants. These changes are less prominent in the group mean time
course. (b) Time-frequency representation for the same 5 participants, calculated as the
amplitude of the continuous wavelet transform. Shading indicates the cone of influence — the
region contaminated by edge effects. (c) Mean of all participants’ time-frequency
representations. (d) Time-frequency representation of the group mean time course. Red
arrows correspond to time points with marked high frequency activity above 1 Hz. (e)
Difference between (c) and (d). Non-significant differences (p > 0.05) are shown in

greyscale. Common colour scale is used for (c)-(e).
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196

197  Having shown how the time-frequency representation captures dynamic content, we next
198  sought to quantify the joint dynamics of facial action units. To this end, a hidden Markov
199  model (HMM) was inferred from the time course of all facial action units’ time-frequency
200 representations. A HMM infers a set of distinct states from noisy observations, with each
201  state expressed sequentially in time according to state-to-state transition probabilities. Each
202  state has a distinct mapping onto the input space, here the space of frequency bands and
203  action units (Figure 2a). Examples of participants in each state are provided in the
204  Supplementary Videos. Their occurrence corresponded strongly with annotated video clip
205 valence (Figure 2b). We found that inferred state sequences had high between-subject
206  consistency, exceeding chance level across the vast majority of time points and reaching 93%
207  during specific movie events (Figure 2d). States were frequency-localised and comprised
208 intuitive combinations of action units which reflected not only distinct emotion categories as
209  defined in previous literature(8), but also stimulus properties such as mixed emotions. State
210 transition probabilities appeared clustered by valence rather than frequency, such that
211 frequent transitions between low and high frequency oscillations of the same facial action
212 units were more likely than transitions between different emotions (Figure 2e).

213

214 e States 1 and 2 were active during stimuli annotated as “happy”. They activated two action

215 units typically associated with happiness, action unit 6 “Cheek Raiser” and 12 “Lip
216 Corner Puller”, but also action unit 25 “Lips Part”. State 2 likely represents laughing or
217 giggling as it encompassed high frequency oscillations in positive valence action units, in
218 comparison to the low frequency content of State 1.

219 e States 3 and 4 were active during videos evoking fear and disgust — for example of a man

220 eating a beetle larva. They encompassed mixtures of action units conventionally
221 implicated in disgust and fear, at low and high frequency bands respectively. State 3
222 recruited action units 4 “Brow Lowerer” and 9 ‘“Nose Wrinkler”, while state 4 involved
223 these action units as well as action units 15 “Lip Corner Depressor”, 17 “Chin Raiser”,
224 and 20 “Lip Stretcher”.

225 e States 5 and 6 occurred predominantly during negatively valenced clips, and deactivated
226 oscillatory activity in most action units, with sparing of action units typically associated

227 with sadness, 4 “Brow Lowerer” and 15 “Lip Corner Depressor”.
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229  Figure 2. Dynamic facial states inferred from time-frequency representation of DISFA
230 dataset. (a) Mean of the observation model for each state, showing their mapping onto action
231 units and frequency bands. Avatar faces (top row) for each state show the relative
232 contribution of each action unit, whereas their spectral projection (bottom row) shows their
233 corresponding dynamic content. (b) Sequence of most likely states for each participant at
234  each time point. Vertical lines demarcate transition between stimulus clips with different
235  affective annotations. (c) Most common states across participants, using a 4s sliding temporal
236 window. (d) Proportion of participants expressing the most common state. Blue shading
237 indicates 5% - 95% bootstrap confidence bands for the estimate. Grey shading indicates the
238 95" percentile for the null distribution, estimated using time-shifted surrogate data. (e)
239  Transition probabilities displayed as a weighted graph. Each node corresponds to a state.
240  Arrow thickness indicates the transition probability between states. For visualization clarity,
241 only the top 20% of transition probabilities are shown. States are positioned according to a
242  force-directed layout where edge length is the inverse of the transition probability.

243

244  Facial affect in melancholia

245  We next analysed facial video recordings from a cohort of participants with melancholic

246 depression and healthy controls who watched three video clips consecutively — a stand-up

10
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247  comedy, a sad movie clip and an amusing video (weather report) in a non-English language
248  (German). These three stimuli were chosen from a database of independently rated videos of
249  high salience(32). The stand-up comedy comprises episodic jokes with a deadpan delivery
250 and audience laughter, whereas the weather report depicts someone laughing uncontrollably
251 and spontaneously. Clinical participants with melancholia were recruited from a tertiary
252 mood disorders clinic and met melancholia criteria including psychomotor changes,
253  anhedonia and diurnal mood variation (see Methods). We conducted analyses based firstly on
254  group-averaged time courses, and then on the time-frequency representation.

255

256  Group time courses in melancholia

257  Facial action unit time courses showed clear group differences (see Figure 3 for action units
258 typically implicated in expressing happiness and sadness, and Supplementary Figure 5 for all
259  action units). For each action unit in each participant, we calculated the median action unit
260  activation across each stimulus video. These were compared with a 3-way ANOVA, with

261  factors for clinical group, stimulus, and the facial valence. We considered two stimulus

262  videos, one with positive and one with negative valence, and two facial valence states,

263  happiness and sadness, calculated as sums of positively and negatively valenced action unit
264  activations respectively(8). A significant 3-way interaction was found between clinical group,
265  stimulus, and facial valence (p=0.003). Post-hoc comparisons with Tukey’s honestly

266  significant difference criterion (Supplementary Figure 4) quantified that during stand-up

267  comedy, participants with melancholia had reduced activation of action unit 12 “Lip Corner
268  Puller” (p<0.0001) and increased activation of action unit 4 “Brow Lowerer” (p<0.0001).

269 Interestingly, facial responses of participants with melancholia during stand-up comedy, were
270  similar to those of controls during the sad movie (p > 0.05 for both action units).

271

272 To move away from individual action units, we next extracted the first principal component
273 across all action units. The time course of this composite component closely followed joke
274 punch lines during stand-up comedy (Figure 3b). This responsivity of this component to

275  movie events was substantially diminished in the melancholia cohort

276

11
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278  Figure 3. At each time point, mean intensity across participants of facial action unit
279 activation in controls (blue) and melancholia (red). Shading indicates 5% and 95%
280 confidence bands based on a bootstrap sample (n=100). (a) Action units commonly
281  implicated in happiness (top row) and sadness (bottom row). Participants watched stand-up
282  comedy, a sad video, and a funny video in sequence. Vertical lines demarcate transitions
283  between video clips. (b) First principal component of action units, shown during stand-up
284  comedy alone. Vertical lines indicate joke annotations. Avatar face shows the relative
285  contribution of each action unit to this component.

286

287  Time-frequency representation in melancholia

288  Time-frequency representations were calculated for all action units in all participants. For
289  each action unit, the mean time-frequency representation for the control group was subtracted
290 from the participants with melancholia (see Supplementary Figure 6 for the mean of the
291  controls). Significant group differences (p < 0.05) were found by comparison to a null
292  distribution composed of 100 resampled surrogate datasets (see Methods). Participants with
293  melancholia had a complex pattern of reduced activity encompassing a broad range of
294  frequencies (Figure 4a). The most prominent differences were in positive valence action units

295  during positive valence stimuli, but significant reductions were seen in most action units.

12
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Differences in high frequency bands occurred during specific movie events such as jokes
(Figure 4b). There were sporadic instances of increased activity in melancholia participants
during the sad movie involving mainly action units 15 “Lip corner depressor” and 20 “Lip

stretcher”.

a AUO1: Inner Brow Raiser AUO4: Brow Lowerer AU0B: Cheek Raiser AUO7: Lid Tightener

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
AUO09: Nose Wrinkler

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

oa AU15: Lip Corner Depressor

z

oy

c

Q

= |

go.

w

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Time (s) AU25: Lip Parts AU26: Jaw Drop

Melancholia > Control 0.05
0

-0.05
-0.1

Melancholia < Control -0.15

0 100 200 300 0 100 200 300

Controls i Difference

Frequency (Hz)

Time (s)

Figure 4. (a) Mean time-frequency activity in melancholia benchmarked to the control group.
Negative colour values (red-purple) indicate melancholia < controls (p < 0.05). Non-
significant group differences (p > 0.05) are indicated in greyscale. Vertical lines demarcate
stimulus videos. (b) Action unit 12 “Lip Corner Puller” during stand-up comedy in controls,
participants with melancholia, and difference between groups. Vertical lines indicate joke
annotations.
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308 We next pursued whether the additional time-frequency information would improve the
309 classification accuracy of differentiating participants with melancholia from controls. A
310 support vector machine, using as inputs the mean action unit activation for each stimulus
311  video, achieved 63% accuracy with 5-fold cross-validation. In contrast, using as inputs the
312 mean time-frequency amplitude in discrete frequency bands within 0 — 5 Hz, improved
313  average cross-validation accuracy to 71%. As a control for the additional number of input
314  features, we tested a third set of models which naively modelled temporal dynamics using
315 mean action unit activations within shorter time blocks. These models had 63 — 64% accuracy
316  despite having a greater number of input features than the time-frequency representation
317  (Supplementary Table 3).

318

319  Sequential affective states in melancholia

320 Inverting a HMM from the time-frequency representations of facial action units yielded the
321  sequential expression of 8 states across participants (Figure 5).

322 e States 1 and 2 activated positive valence action units, each in distinct frequency bands,

323 and were dominant through the stand-up comedy for most participants (Figure 5B). State
324 2 comprised high frequency oscillations in positive valence action units, corresponding to
325 laughing or giggling.

326 e The sad movie was associated with early involvement of state 3, which deactivated high-
327 frequency activity, followed by states 4 and 5, which also deactivated oscillatory activity,
328 but with more specificity for lower frequencies and positive valence action units.

329 e State 6 comprised action units 4 “Brow Lowerer”, 9 “Nose Wrinkler”, 17 “Chin Raiser”,

330 and 23 “Lip Tightener”, traditionally associated with anger, disgust, or concern. State 7
331 can be associated with “gasping”, with very high frequency activation of most mouth-
332 associated action units including 25 “Lips Part”. These states occurred sporadically
333 through the weather report.

334 e State 8 predominantly activated action unit 1 “Inner Brow Raiser”, commonly associated
335 with negative valence.
336

14
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Figure 5. Hidden Markov model inferred from time-frequency representation of melancholia
dataset. (a) Contribution of action units and their spectral expression to each state. Avatar
faces for each state show the relative contribution of each action unit. (b) State sequence for
each participant at each time point, for controls (top) and participants with melancholia
(bottom). Vertical lines demarcate stimulus clips. (c) Most common state across participants,
using a 4s sliding temporal window. (d) Proportion of participants expressing the most
common state for control (blue) and melancholia cohorts (black). Shading indicates 5% and
95% bootstrap confidence bands. (e) Transition probabilities displayed as a weighted graph,
with the top 20% of transition probabilities shown. States are positioned according to a force-
directed layout where edge length is the inverse of transition probability. (f) Differences in
mean transition probabilities between participants with melancholia and controls. Each
row/column represents a HMM state. Colours indicate (melancholia — controls) values

The temporal sequence of most common states was similar across groups (Figure 5C), but the
between-subjects consistency was markedly reduced in the melancholic participants during
both funny videos (Figure 5D). Some participants with melancholia - for example
participants 2 and 3 (Figure 5B) - had highly anomalous state sequences compared to other

participants.
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357  Fractional occupancy — the proportion of time spent by participants in each state — was
358  significantly different between groups for the positive valence states - state 1 (Melancholia <
359  Controls, prpr=0.03) and state 2 (Melancholia < Controls, prpr=0.004) — as well as for
360 negatively valenced state 8 (Melancholia > Controls prpr=0.03). We then asked whether
361  group differences in the time spent in each state were attributable to changes in the likelihood
362  of switching in to, or out of, specific facial states. Participants with melancholia were
363  significantly less likely to switch from a low-frequency positive valence state (1, smiling) to
364  high-frequency positive valence oscillations (state 2, giggling), but were more likely to
365  switch to states associated with any other emotion (states 4, 5, 6, 7, and 8). From the high
366  frequency positive valence state, they were more likely to switch to the deactivating “ennui”
367  state 4 (all pror < 0.05).

368

369 Discussion

370

371  Facial expressions played a crucial role in the evolution of social intelligence in primates(2)
372 and continue to mediate human interactions. Observations of facial affect, its range and
373  reactivity play a central role in clinical settings. Quantitative analysis of facial expression has
374  accelerated of late, driven by methods to automatically factorise expressions into action
375  units(7) and the availability of large datasets of posed emotions(15). The dynamics of facial
376  expression mediate emotional reciprocity, but have received less attention(3). Naturalistic
377  stimuli offer distinct advantages to affective research for their ability to evoke these dynamic
378  responses(33), but their incompressibility has made analysis problematic. By leveraging
379  techniques in computer vision, we developed a pipeline to characterise facial dynamics
380  during naturalistic video stimuli. Analysis of healthy adults watching emotionally salient
381 videos showed that facial expression dynamics can be captured by a small number of
382  spatiotemporal states. These states co-activate facial muscle groups with a distinct spectral
383  fingerprint, and transition dynamically with the emotional context. Application of this
384  approach to melancholia showed that the clinical gestalt of facial non-reactivity in
385 melancholia(34) can be objectively identified not just with restrictions in spectral content, but
386  also with anomalous facial responses, more frequent occurrence of an ennui affect, and more
387  frequent state switching from transiently positive facial expressions to neutral and negative
388  states. This approach provides a unique perspective on how facial affect is generated by the

389 interplay between inner affective states and the sensorium.
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390

391  Our pipeline first comprises automatic action unit extraction, then spectral wavelet-based
392  analysis of the ensuing feature dynamics. Wavelet energy at a given time corresponds to the
393  occurrence of a specific facial “event”, while energy in a given frequency reflects the
394  associated facial dynamics, like laughing. Unlike temporal averaging methods, which require
395 an arbitrary timescale, wavelets cover a range of timescales. The spectral approach also
396 allows participant facial responses to be pooled, without the limitations of averaging
397 responses whose phases are misaligned. We then inferred a hidden Markov model,
398 identifying spatially and spectrally resolved modes of dynamic facial activity which occur
399  sequentially with high consistency across participants viewing the same stimulus. States
400 transitions aligned with intuitive notions of affective transitions — for example, the common
401 transition between the low frequency and high frequency positive valence state, reflected
402  transitions between smiling and laughing.

403

404  Our method builds on the Emotion Facial Action Coding System (EMFACS)(8), where each
405 canonical emotion label (happy, angry, etc) is defined on the basis of a sparse set of
406  minimally necessary action units. The sparsity of this coding allows manual raters to find the
407  minimal necessary combinations of action units in a facial video to reflect an emotion label,
408  but may not include all action units that are involved in each affective state. Affective states
409 inferred from our HMM reflected prototypical action unit combinations from EMFACS, but
410 also provide a richer mapping across a broader range of action units. For example, while
411  happiness has been previously associated with just two action units, “Cheek Raiser” and “Lip
412  Corner Puller”, such sparse activations are rare, particularly during intense emotional
413  displays. We demonstrated that laughing during stand-up comedy activated eyebrow-related
414  action units, some of which are traditionally associated with sadness. Conversely, negatively
415  valenced stimuli dampened facial movements, with a relative sparing of those action units
416  typically associated with sadness.

417

418  Ensembles of HMMs have previously been used to improve emotion classification accuracy
419  when benchmarked against manually coded datasets. In these studies, one HMM models the
420 temporal dynamics of one action unit(35,36) or one universal basic emotion(13,37), with
421  HMM states corresponding to expression onset/offset. Given a video frame, the HMM with
422  the greatest evidence determines the decoded expression. Nested HMMs have also been

423  employed, with a second level HMM predicted transitions between the basic emotions(38). In
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424  contrast, the present method uses a single HMM to describe facial expressions without prior
425  emotion categories, capturing the dynamic co-occurrence of facial actions that together
426  comprise distinct affective states. By taking the spectral activity of action units as input
427  features into the HMM, our approach uniquely captures the spatiotemporal texture of
428  naturally occurring facial affect. This enables, for example, the disambiguation of a smile
429  from a giggle. The importance of the spectral characterization is highlighted by our finding
430 that in melancholia, smile states were more likely to transition to ennui, and less likely to the
431  laughter state. Our use of dynamic spectra as inputs into a HMM is similar to their recent use
432 in neuroimaging research(39). Using the raw time series is also possible — hence additionally
433  capturing phase relationships, although this comes with an additional computational burden
434  and reduced interpretability of states(40).

435

436  Dynamic facial patterns were influenced by the affective properties of the stimulus video. For
437 the DISFA dataset, the HMM inferred two disgust-associated states, in low and high
438  frequency bands respectively. These states occurred predominantly during two disgusting
439  video clips. For the melancholia dataset, the inferred HMM states over-represented happiness
440 and sadness, and under-represented disgust. This is ostensibly because the stimulus had
441  prominent positive and negatively valenced sections without disgusting content. The co-
442  occurrence of the states and the state transitions across participants speaks to the influence of
443  the video content on affective responses and hence, more broadly, the dynamic exchange
444  between facial affect and the social environment.

445

446  We found that participants with melancholia exhibited broad reductions in facial activity, as
447  well as specific reductions in high frequency activity in response to specific events such as
448  joke punchlines, reflecting the clinical gestalt of impaired affective reactivity(30). Viewing
449 affect as a dynamic process provided two further insights into facial responses in
450  melancholia. First, decreased between-subject consistency and more anomalous facial
451  responses suggest that their facial activity is less likely to be driven by a common external
452  stimulus. Ambiguous facial responses are also seen in schizophrenia(41), suggesting the
453  possibility of a common underlying mechanism with melancholia. Second, participants with
454  melancholia were less likely to enter high frequency positive valence states like laughing, and
455  once there, transitioned out quickly to the “ennui” state. This reflects the clinical impression
456  that positive mood states persist in healthy controls, but such states are fleeting in those with

457  melancholia, who tend to get “stuck” in negative mood states instead. The results are
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458  commensurate with the proposal that depressed states relate to persistent firing in non-reward
459  functional areas mediated by attractor dynamics(42). Additionally, these findings accord with
460  neurobiological models of melancholia whereby dysfunctional cortical-basal ganglia circuitry
461 underlie the disturbances in volition and psychomotor activity that characterise the
462  disorder(30). More generally, the notion of affect as a sequence of spatiotemporal states
463 aligns with the proposal that instabilities in brain network activity generate adaptive
464  fluctuations in mood and affect, with these being either over- or under-damped in affective
465  disorders(43). Our paradigm also raises clinical questions predicated on dynamics — for
466  example, do biological or psychological treatments for melancholia work by increasing the
467  probability of entering positive affective states, or reducing the probability of exiting such
468  states?

469

470  Several caveats bear mention. First, a small number of participants with constant zero
471  activation in one or more action units were excluded from analysis, because this produces an
472  ill-defined spectral transform. Excluded participants, of whom 1 was a control and 4 had
473 melancholia, may have had the greatest impairments in facial affect. This issue could be
474  addressed with a lower detectable limit of action unit activation. Second, time-frequency
475  maps were standardised in mean and variance before HMM inference. This ensures that states
476  occur sequentially across time, but reduces the differences in state sequences across groups.
477  Omitting this standardisation step yields states that are biased towards group differences
478  rather than temporal differences (see Supplementary Figure 7). Future work could consider
479  methods that are less susceptible to this trade-off. Finally, the utility of our approach is likely
480 to be improved by multimodal fusion of facial, head pose, vocal and body language
481  behaviour, each of which independently improve classification(44—47).

482

483  Human emotion and affect are inherently dynamic. Our work demonstrates that momentary
484  affective responses, such as laughing or grimacing, traditionally viewed from a qualitative
485  standpoint, can be understood within a quantitative framework. These tools provide a
486  translational platform for mental health research to understand the dynamics of facial affect -
487  for example in clinical states such as melancholia with its distinctive sign of psychomotor
488  disturbance, the masked facies of Parkinson’s disease, emotional incongruence and affective
489  blunting in schizophrenia, and emotional lability integral to bipolar disorder.

490
491

19


https://doi.org/10.1101/2022.05.08.490793
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.08.490793; this version posted May 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

492
493
494
495
496
497  Materials and Methods

498 Data

499  The Denver Intensity of Spontaneous Facial Action (DISFA) dataset contains facial videos
500 recorded at 20 frames per second from 27 participants who viewed a 4 minute video
501  consisting of short emotive clips from Youtube(19) (Supplementary Table 1).

502

503  The melancholia dataset comprises 30 participants with major depressive disorder, who were
504  recruited from the specialist depression clinic at the Black Dog Institute in Sydney, Australia.
505  These participants met criteria for a current major depressive episode, were diagnosed as
506 having the melancholic subtype by previously detailed criteria(48), and did not have lifetime
507  (hypo)mania or psychosis (Table 1). 38 matched healthy controls were recruited from the
508 community. All participants were screened for psychotic and mood conditions with the Mini
509 International Neuropsychiatric Interview (MINI). Exclusion criteria were current or past
510 substance dependence, recent electroconvulsive therapy, neurological disorder, brain injury,
511 invasive neurosurgery, or an estimated full scale 1Q score (WAIS-I1I) below 80. Participants
512  provided informed consent for the study. Participants watched 3 video clips consecutively —
513  stand-up comedy (120 seconds), a sad movie clip (152 seconds), and a German weather
514  report video depicting a weather reporter laughing uncontrollably (56 seconds). Facial video
515  was recorded at a resolution of 800 x 600 pixels at 25 frames per second using an AVT Pike
516  F-100 FireWire camera. The camera was mounted on a tripod, which was placed behind the
517  monitor so as to record the front of the face. The height of the camera was adjusted with
518  respect to the participant’s height when seated.

519

520 Table 1. Demographics and clinical characteristics

521

Healthy controls Melancholia Group comparison,

t or %, p-value

Number of participants 38 30 -
Age, mean (SD) 46.5 (20.0) 46.2 (15.5) 0.95
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Sex (M:F) 13:19 17:13 0.21
Medication, % yes (n)

Any psychiatric 7% (1) 85% (23) -

medication

Nil medication 93% (13) 15% (4) -

Selective serotonin 7% (1) 15% (4) -

reuptake inhibitor

Dual-action 0% (0) 48% (13) -

antidepressant?

Tricyclic or 0% (0) 19% (5) -

monoamine oxidase

inhibitor

Mood stabilizer® 0% (0) 11% (3) -

Antipsychotic 0% (0) 33% (9) -

522 2 For example, serotonin noradrenaline reuptake inhibitor
523 P For example, lithium or valproate
524

525  Facial action units

526  For the melancholia dataset, facial video recordings of different participants were aligned
527  with FaceSync(49). For both datasets, facial action unit intensities were extracted with
528  OpenFace(31). OpenFace uses a convolutional neural network architecture, Convolutional
529  Experts Constrained Local Model (CE-CLM), to detect and track facial landmark points.
530 After face images are aligned to a common 112 x 112 pixel image, histogram of oriented
531  gradients features are extracted. A linear kernel support vector machine was then trained on 6
532  facial expression datasets with manually coded action unit occurrence times.

533

534  Action unit time series from OpenFace for each participant were not normalised, as we were
535 interested in between-subjects differences. Recordings with more than 0.5% missing frames
536  were excluded, and any remaining missing frames were linearly interpolated. Action unit 45
537  “Blink” was not used as it is not directly relevant to emotion. Action units 2 “Outer Brow
538  Raiser” and 5 “Upper Lid Raiser” were not used as they had constant zero value throughout
539 the recording for most participants. Participants with any other action units with zero value
540 through the recording were also excluded, as the time-frequency representation is undefined
541  for these time series. This comprised 1 control and 4 participants with melancholia.
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542

543  Time-frequency representation

544  For each participant, each facial action unit time series was transformed into a time-frequency
545  representation, using the amplitude of the continuous wavelet transform. An analytic Morse
546  wavelet was used with symmetry parameter 3, time-bandwidth product 60, and 12 voices per
547  octave. Mean time-frequency maps were visualised with a cone of influence — outside which
548  edge effects produce artefact (Supplementary Figure 2 for DISFA, Supplementary Figure 6
549  for melancholia dataset). To determine information lost by averaging raw time series across
550 participants, the amplitude of the continuous wavelet transform for the group mean time
551  series was calculated. At each point in time-frequency space, the distribution of individual
552  participants’ amplitude was compared with the amplitude of the group mean, with a two-
553  sided t-test (p=0.05) (Figure 1).

554

555  Hidden Markov model

556 A Hidden Markov model (HMM), implemented in the HMM-MAR MATLAB toolbox
557  (https://github.com/OHBA-analysissHMM-MAR)(50), was wused to identify states

558  corresponding to oscillatory activity localised to specific action units and frequency bands. A

559 HMM specifies state switching probabilities which arise from a time-invariant transition
560 matrix. Each state is described by a multivariate Gaussian observation model with distinct
561 mean and covariance in (action unit x frequency) space. Input data were 110 frequency bins
562 in 0-5Hz, for each of 14 facial action units. Individual participants’ time series were
563  standardised to zero mean and unit variance before temporal concatenation to form a single
564  time series. This time series was downsampled to 10Hz, and the top 10 principal components
565  were used (for DISFA). Other HMM parameters are listed in Supplementary Table 4.

566

567  The initialisation algorithm used 10 optimisation cycles per repetition. Variational model
568 inference optimised free energy, a measure of model accuracy penalised by model
569  complexity, and stopped after the relative decrement in free energy dropped below 107°. Free
570 energy did not reach a minimum even beyond n=30 states (Supplementary Figure 3).
571  Previous studies have chosen between 5 and 12 states(51,52). We chose an 8-state model as
572 done in previous work(39), as visual inspection of the states showed trivial splitting of states
573  beyond this value. However, the analyses were robust to variations in the exact number of
574  states.

575
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576 HMM state observation models were visualised with FACSHuman(53). The contribution of
577  each action unit to each state was calculated by summing across all frequency bands. For
578  each state, positive contributions were rescaled to the interval [0,1] and visualised on an
579 avatar face (Figure 2a). State sequences for individual subjects were calculated with the
580  Viterbi algorithm (Figure 2). To calculate between-subjects consistency of state sequences
581  over time, we used an 8s sliding window. Within this window, for each state, we counted the
582  number of participants who expressed this state at least once, and found the most commonly
583  expressed state. Uncertainty in this consistency measure at each time point was estimated
584  from the 5 and 95 percentiles of 100 bootstrap samples. The null distribution for consistency
585 was obtained by randomly circular shifting the Viterbi time series for each subject
586 independently (n=100). Consistency values exceeding the 95" percentile (59% consistency)
587  were deemed significant.

588

589  Analysis of melancholia dataset

590 Mean action unit activations were calculated for each group, and uncertainty visualised with
591 the 5th and 95th percentiles of 100 bootstrap samples (Figure 3, Supplementary Figure 5). A
592  3-way ANOVA for activation was conducted with group, stimulus video, and facial valence
593  as regressors. To avoid redundancy between the two positive valence videos, we limited the
594  ANOVA to two stimulus videos — the stand-up comedy and sad movie clips. In keeping with
595  previous work(8), we defined happiness as the sum of action units 6 “Cheek Raiser” and 12
596  “Lip Corner Puller”, and sadness as the sum of action units 1 “Inner Brow Raiser”, 4 “Brow
597  Lowerer”, and 15 “Lip Corner Depressor”. Post-hoc comparisons used Tukey’s honestly

598  significant difference criterion (Supplementary Figure 4).

599

600  Time-frequency representations were computed as the amplitude of the continuous wavelet
601 transform. Group differences in wavelet power, localised in time and frequency, were
602  calculated by subtracting the mean time-frequency representation of each clinical group
603  (Figure 4). To confirm that these effects were not due to movement-related noise in action
604 unit encoding having different effects depending on the frequency and time window
605  considered, the null distribution of the effect was obtained by resampling 100 surrogate
606  cohorts from the list of all participants. Time-frequency points with effect size inside 2.5 —
607  97.5 percentile were considered non-significant and excluded from visualisation.

608
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609  To compare classification accuracy with action unit time series or time-frequency data, a
610  support vector machine with Gaussian kernel was used. All tests used mean accuracy over 5
611  repetitions of 5-fold cross validation, but varied in the input features. Inputs to the first model
612  were mean action unit activations for each action unit (n=14) and each stimulus video (n=3).
613  For the time-frequency model, inputs were mean wavelet amplitude in each frequency bin
614  (n=10) in each stimulus video, for each action unit. For the third set of models, input features
615  were mean action unit activation within discrete time chunks of 2, 10, and 30 seconds
616  (Supplementary Table 3).

617

618 The HMM was inferred as described above (Figure 5). Supplementary Figure 7 shows the
619  results when input data were not standardised. Local transition probabilities were then
620 inferred for each participant separately. Two-sided significance testing for group differences
621 in fractional occupancy was implemented within the HMM-MAR toolbox by permuting
622  between subjects as described previously(54). Next, we considered only those state
623  transitions that could explain the group differences in fractional occupancy and tested these
624  transitions for group differences with t-tests (one-sided in the direction that could explain
625  fractional occupancy findings). Group differences in fractional occupancy and transition
626  probability were corrected to control the false discovery rate(55).

627

628  Results were consistent across repetitions of HMM inference with different initial random
629  seeds. In addition, all analyses were repeated with time-frequency amplitudes normalised by
630 the standard deviation of the time series, to ensure that results were not solely due to group
631  differences in variance for each action unit time. This was motivated by previous work
632  showing that the square of wavelet transform amplitude increases with variance for white
633  noise sources(56). Results were consistent with and without normalisation, including
634  differences between clinical groups, the distributions and time courses of HMM states.

635
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Data availability

The DISFA dataset is publically available at http://mohammadmahoor.com/disfa/. The

melancholia dataset is not publically available due to ethical and privacy considerations for

patients.

Code availability

Code to replicate the analysis of healthy controls in the DISFA dataset is available at

https://github.com/jaysonjeg/FacialDynamicsHMM
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