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 58 

Abstract 59 

 60 

Facial affect is expressed dynamically – a giggle, grimace, or an agitated frown. However, 61 

the characterization of human affect has relied almost exclusively on static images. This 62 

approach cannot capture the nuances of human communication or support the naturalistic 63 

assessment of affective disorders. Using the latest in machine vision and systems modelling, 64 

we studied dynamic facial expressions of people viewing emotionally salient film clips. We 65 

found that the apparent complexity of dynamic facial expressions can be captured by a small 66 

number of simple spatiotemporal states - composites of distinct facial actions, each expressed 67 

with a unique spectral fingerprint. Sequential expression of these states is common across 68 

individuals viewing the same film stimuli but varies in those with the melancholic subtype of 69 

major depressive disorder. This approach provides a platform for translational research, 70 

capturing dynamic facial expressions under naturalistic conditions and enabling new 71 

quantitative tools for the study of affective disorders and related mental illnesses. 72 

 73 

74 
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 75 

Introduction 76 

 77 

Facial expressions are critical to interpersonal communication and offer a nuanced, dynamic 78 

and context-dependent insight into internal mental states. Humans use facial affect to infer 79 

personality, intentions and emotions, and it is an important component of the clinical 80 

assessment of psychiatric illness. For these reasons, there has been significant interest in the 81 

objective analysis of facial affect(1–3). However, decisive techniques for quantifying facial 82 

affect under naturalistic conditions remain elusive. 83 

 84 

A traditional approach is to count the occurrences of a discrete list of “universal basic 85 

emotions”(4). While the most commonly used system designates six basic emotions, there is 86 

disagreement about the number and nature of such affective “natural forms” (5,6). 87 

Quantifying facial affect using the Facial Action Coding System (FACS), has become the 88 

dominant technique to operationalise facial expressions (7). Action units, each corresponding 89 

to an anatomical facial muscle group, are rated on a quantitative scale. Traditional emotion 90 

labels are associated with the co-occurrence of a specific set of action units – for example a 91 

“happy” facial expression corresponds to action units “Cheek Raiser” and “Lip Corner 92 

Puller”(8). However, due to the time-intensive nature of manually coding every frame in a 93 

video, FACS has traditionally been applied to the analysis of static pictures rather than videos 94 

of human faces.  95 

 96 

Recent developments in machine learning have automated the identification of basic 97 

emotions and facial action units from images and videos of human faces. Feature extraction 98 

for images include local textures (9,10) and 3D geometry(11,12), while video analysis 99 

benefits from temporal features such as optical flow(13). Supervised learning algorithms 100 

classifying facial expressions based on feature values have achieved impressive accuracies 101 

benchmarked to manually coded datasets (see 14 for a review).  102 

 103 

Videos of faces can now be reliably transformed into action unit time series which capture 104 

the rich temporal dynamics of facial expressions(11). This is important because human faces 105 

express emotional states dynamically – such as in a giggle or a sob. However, the rich 106 

potential of these temporal dynamics has not yet been fully exploited in the psychological and 107 
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behavioural sciences. For example, some psychological studies and databases have asked 108 

responders to pose discrete emotions such as happiness or sadness(15). This strategy suits the 109 

needs of a classic factorial experimental design but fails to produce the natural dynamics of 110 

real-world facial expressions. To evoke dynamic emotion, clinical interviews have been 111 

used(16), or participants have been asked to narrate an emotive story or been shown emotive 112 

pictures rather than videos(17). Such pictures can be grouped into distinct categories and 113 

presented repetitively in a trial structure, but their ecological validity is unclear. 114 

Consequently, there is an expanding interest in naturalistic video stimuli such as movie 115 

clips(18–20). These are more ecologically valid, have greater test-retest reliability than 116 

interviews, evoke stronger facial expressions than static pictures, and produce stronger 117 

cortical responses during functional neuroimaging(3,21,22). However, interpreting the facial 118 

expressions resulting from naturalistic stimulus viewing poses challenges, because each time 119 

point is unique. There is currently no obvious way to parse the stimulus video into discrete 120 

temporal segments. Naïve attempts at dimensionality reduction – for example, averaging 121 

action unit activations across time – omit temporal dynamics and so fail to capture the 122 

complexity of natural responses. 123 

 124 

Disturbances in facial affect occur across a range of mental health disorders, including major 125 

depressive disorder, schizophrenia, and dementia. Capturing the nuances of facial affect is a 126 

crucial skill in clinical psychiatry but in the absence of quantitative tests this remains 127 

dependent on clinical opinion. Supervised learning has shown promise in distinguishing 128 

people with major depression from controls, using input features such as facial action units 129 

coded manually(23) or automatically(24), or model-agnostic representations of facial 130 

movements such as the ‘Bag of Words’ approach(25,26). Studies documenting action unit 131 

occurrence during the course of a naturalistic stimulus(27), a short speech(28) or a clinical 132 

interview(29), have demonstrated that depression is associated with reduced frequency of 133 

emotional expressions, particularly expressions with positive valence. Unfortunately, by 134 

averaging action unit occurrence over time, these methods poorly operationalise the 135 

clinician’s gestalt sense of affective reactivity, which derive from a patient’s facial responses 136 

across a range of contexts. 137 

 138 

Here, we present a novel pipeline for processing facial expression data recorded while 139 

participants view a dynamic naturalistic stimulus. The approach is data-driven, eschewing the 140 

need to preselect emotion categories or segments of the stimulus video. We derive a time-141 
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frequency representation of facial movement information, on the basis that facial movements 142 

in vivo are fundamentally dynamic and multiscale. These time-frequency representations are 143 

then divided into discrete packets with a hidden Markov model (HMM), a method for 144 

inferring hidden states and their transitions from noisy observations. We find dynamic 145 

patterns of facial behaviour which are expressed sequentially and localised to specific action 146 

units and frequency bands. These patterns are context-dependent, consistent across 147 

participants, and correspond to intuitive concepts such as giggling and grimacing. We first 148 

demonstrate the validity of this approach on an open-source dataset of facial responses of 149 

healthy adults watching naturalistic stimuli. We then test this approach on facial videos of 150 

participants with melancholic depression, a severe mood disorder characterised by 151 

psychomotor changes(30). We show that dynamic facial patterns reveal specific changes in 152 

melancholia, including reduced facial activity in response to emotional stimuli, anomalous 153 

facial responses inconsistent with the affective context, and a tendency to get “stuck” in 154 

negatively valenced states. Moreover, using these decoded patterns improves accuracy in 155 

classifying patients from healthy controls. 156 

157 
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Results 158 

We first analysed dynamic facial expressions from video recordings of 27 participants 159 

viewing short emotive clips of 4 minute duration, covering a breadth of basic emotions (the 160 

DISFA dataset(19), detailed in Supplementary Table 1). Frame-by-frame action unit 161 

activations were extracted with OpenFace software(31) (see Supplementary Table 2 for 162 

action unit descriptions).  163 

 164 

From these data, we used the continuous wavelet transform to extract a time-frequency 165 

representation of individual action unit time series in each participant. To test whether this 166 

time-frequency representation captures high frequency dynamic content, we first compared 167 

the group average of these individual time-frequency representations with the time-frequency 168 

representation of the group mean time series. We selected the activity of action unit 12 “Lip 169 

Corner Puller” during a positive valence video clip (a ‘talking dog’), as this action unit is 170 

conventionally associated with happy affect, and its high frequency activity denotes smiling 171 

or laughing. Compared to the group mean time series, the time series of individuals had 172 

significantly greater amplitude (Figure 1a), particularly at higher frequencies (Figure 1e). 173 

This demonstrates that the time-frequency representations of individual participants capture 174 

high frequency dynamics that are obscured by characterising group-averaged time courses. 175 

This is because stimulus-evoked facial action unit responses have asynchronous alignment 176 

across participants, hence cancelling when superimposed. This problem is avoided in the 177 

group-level time-frequency representation, whereby the amplitude is first extracted at the 178 

individual level, prior to group averaging. Comparable results occurred in all action units 179 

(Supplementary Figure 2). 180 

181 
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 182 

Figure 1. Time-frequency representation of action unit 12 “Lip Corner Puller” during 183 

positive valence video stimulus reveals high frequency dynamics. (a) Action unit time series 184 

for 5 example participants (blue). The group mean time course across all participants is 185 

shown in red. Red arrows indicate funny moments in the stimulus, evoking sudden facial 186 

changes in individual participants. These changes are less prominent in the group mean time 187 

course. (b) Time-frequency representation for the same 5 participants, calculated as the 188 

amplitude of the continuous wavelet transform. Shading indicates the cone of influence – the 189 

region contaminated by edge effects. (c) Mean of all participants’ time-frequency 190 

representations. (d) Time-frequency representation of the group mean time course. Red 191 

arrows correspond to time points with marked high frequency activity above 1 Hz. (e) 192 

Difference between (c) and (d). Non-significant differences (p > 0.05) are shown in 193 

greyscale. Common colour scale is used for (c)-(e). 194 

195 
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 196 

Having shown how the time-frequency representation captures dynamic content, we next 197 

sought to quantify the joint dynamics of facial action units. To this end, a hidden Markov 198 

model (HMM) was inferred from the time course of all facial action units’ time-frequency 199 

representations. A HMM infers a set of distinct states from noisy observations, with each 200 

state expressed sequentially in time according to state-to-state transition probabilities. Each 201 

state has a distinct mapping onto the input space, here the space of frequency bands and 202 

action units (Figure 2a). Examples of participants in each state are provided in the 203 

Supplementary Videos. Their occurrence corresponded strongly with annotated video clip 204 

valence (Figure 2b). We found that inferred state sequences had high between-subject 205 

consistency, exceeding chance level across the vast majority of time points and reaching 93% 206 

during specific movie events (Figure 2d). States were frequency-localised and comprised 207 

intuitive combinations of action units which reflected not only distinct emotion categories as 208 

defined in previous literature(8), but also stimulus properties such as mixed emotions. State 209 

transition probabilities appeared clustered by valence rather than frequency, such that 210 

frequent transitions between low and high frequency oscillations of the same facial action 211 

units were more likely than transitions between different emotions (Figure 2e).  212 

 213 

• States 1 and 2 were active during stimuli annotated as “happy”. They activated two action 214 

units typically associated with happiness, action unit 6 “Cheek Raiser” and 12 “Lip 215 

Corner Puller”, but also action unit 25 “Lips Part”. State 2 likely represents laughing or 216 

giggling as it encompassed high frequency oscillations in positive valence action units, in 217 

comparison to the low frequency content of State 1. 218 

• States 3 and 4 were active during videos evoking fear and disgust – for example of a man 219 

eating a beetle larva. They encompassed mixtures of action units conventionally 220 

implicated in disgust and fear, at low and high frequency bands respectively. State 3 221 

recruited action units 4 “Brow Lowerer” and 9 “Nose Wrinkler”, while state 4 involved 222 

these action units as well as action units 15 “Lip Corner Depressor”, 17 “Chin Raiser”, 223 

and 20 “Lip Stretcher”. 224 

• States 5 and 6 occurred predominantly during negatively valenced clips, and deactivated 225 

oscillatory activity in most action units, with sparing of action units typically associated 226 

with sadness, 4 “Brow Lowerer” and 15 “Lip Corner Depressor”. 227 
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 228 

Figure 2. Dynamic facial states inferred from time-frequency representation of DISFA 229 

dataset. (a) Mean of the observation model for each state, showing their mapping onto action 230 

units and frequency bands. Avatar faces (top row) for each state show the relative 231 

contribution of each action unit, whereas their spectral projection (bottom row) shows their 232 

corresponding dynamic content. (b) Sequence of most likely states for each participant at 233 

each time point. Vertical lines demarcate transition between stimulus clips with different 234 

affective annotations. (c) Most common states across participants, using a 4s sliding temporal 235 

window. (d) Proportion of participants expressing the most common state. Blue shading 236 

indicates 5% - 95% bootstrap confidence bands for the estimate. Grey shading indicates the 237 

95th percentile for the null distribution, estimated using time-shifted surrogate data. (e) 238 

Transition probabilities displayed as a weighted graph. Each node corresponds to a state. 239 

Arrow thickness indicates the transition probability between states. For visualization clarity, 240 

only the top 20% of transition probabilities are shown. States are positioned according to a 241 

force-directed layout where edge length is the inverse of the transition probability. 242 

 243 

Facial affect in melancholia 244 

We next analysed facial video recordings from a cohort of participants with melancholic 245 

depression and healthy controls who watched three video clips consecutively – a stand-up 246 
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comedy, a sad movie clip and an amusing video (weather report) in a non-English language 247 

(German). These three stimuli were chosen from a database of independently rated videos of 248 

high salience(32). The stand-up comedy comprises episodic jokes with a deadpan delivery 249 

and audience laughter, whereas the weather report depicts someone laughing uncontrollably 250 

and spontaneously. Clinical participants with melancholia were recruited from a tertiary 251 

mood disorders clinic and met melancholia criteria including psychomotor changes, 252 

anhedonia and diurnal mood variation (see Methods). We conducted analyses based firstly on 253 

group-averaged time courses, and then on the time-frequency representation.      254 

 255 

Group time courses in melancholia 256 

Facial action unit time courses showed clear group differences (see Figure 3 for action units 257 

typically implicated in expressing happiness and sadness, and Supplementary Figure 5 for all 258 

action units). For each action unit in each participant, we calculated the median action unit 259 

activation across each stimulus video. These were compared with a 3-way ANOVA, with 260 

factors for clinical group, stimulus, and the facial valence. We considered two stimulus 261 

videos, one with positive and one with negative valence, and two facial valence states, 262 

happiness and sadness, calculated as sums of positively and negatively valenced action unit 263 

activations respectively(8). A significant 3-way interaction was found between clinical group, 264 

stimulus, and facial valence (p=0.003). Post-hoc comparisons with Tukey’s honestly 265 

significant difference criterion (Supplementary Figure 4) quantified that during stand-up 266 

comedy, participants with melancholia had reduced activation of action unit 12 “Lip Corner 267 

Puller” (p<0.0001) and increased activation of action unit 4 “Brow Lowerer” (p<0.0001). 268 

Interestingly, facial responses of participants with melancholia during stand-up comedy, were 269 

similar to those of controls during the sad movie (p > 0.05 for both action units). 270 

 271 

To move away from individual action units, we next extracted the first principal component 272 

across all action units. The time course of this composite component closely followed joke 273 

punch lines during stand-up comedy (Figure 3b). This responsivity of this component to 274 

movie events was substantially diminished in the melancholia cohort  275 

 276 
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 277 

Figure 3.  At each time point, mean intensity across participants of facial action unit 278 

activation in controls (blue) and melancholia (red). Shading indicates 5% and 95% 279 

confidence bands based on a bootstrap sample (n=100). (a) Action units commonly 280 

implicated in happiness (top row) and sadness (bottom row). Participants watched stand-up 281 

comedy, a sad video, and a funny video in sequence. Vertical lines demarcate transitions 282 

between video clips. (b) First principal component of action units, shown during stand-up 283 

comedy alone. Vertical lines indicate joke annotations. Avatar face shows the relative 284 

contribution of each action unit to this component. 285 

 286 

Time-frequency representation in melancholia 287 

Time-frequency representations were calculated for all action units in all participants. For 288 

each action unit, the mean time-frequency representation for the control group was subtracted 289 

from the participants with melancholia (see Supplementary Figure 6 for the mean of the 290 

controls). Significant group differences (p < 0.05) were found by comparison to a null 291 

distribution composed of 100 resampled surrogate datasets (see Methods). Participants with 292 

melancholia had a complex pattern of reduced activity encompassing a broad range of 293 

frequencies (Figure 4a). The most prominent differences were in positive valence action units 294 

during positive valence stimuli, but significant reductions were seen in most action units. 295 
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Differences in high frequency bands occurred during specific movie events such as jokes 296 

(Figure 4b). There were sporadic instances of increased activity in melancholia participants 297 

during the sad movie involving mainly action units 15 “Lip corner depressor” and 20 “Lip 298 

stretcher”. 299 

  300 

Figure 4. (a) Mean time-frequency activity in melancholia benchmarked to the control group. 301 

Negative colour values (red-purple) indicate melancholia < controls (p < 0.05). Non-302 

significant group differences (p > 0.05) are indicated in greyscale. Vertical lines demarcate 303 

stimulus videos. (b) Action unit 12 “Lip Corner Puller” during stand-up comedy in controls, 304 

participants with melancholia, and difference between groups. Vertical lines indicate joke 305 

annotations. 306 

 307 
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We next pursued whether the additional time-frequency information would improve the 308 

classification accuracy of differentiating participants with melancholia from controls. A 309 

support vector machine, using as inputs the mean action unit activation for each stimulus 310 

video, achieved 63% accuracy with 5-fold cross-validation. In contrast, using as inputs the 311 

mean time-frequency amplitude in discrete frequency bands within 0 – 5 Hz, improved 312 

average cross-validation accuracy to 71%. As a control for the additional number of input 313 

features, we tested a third set of models which naively modelled temporal dynamics using 314 

mean action unit activations within shorter time blocks. These models had 63 – 64% accuracy 315 

despite having a greater number of input features than the time-frequency representation 316 

(Supplementary Table 3). 317 

 318 

Sequential affective states in melancholia 319 

Inverting a HMM from the time-frequency representations of facial action units yielded the 320 

sequential expression of 8 states across participants (Figure 5). 321 

• States 1 and 2 activated positive valence action units, each in distinct frequency bands, 322 

and were dominant through the stand-up comedy for most participants (Figure 5B). State 323 

2 comprised high frequency oscillations in positive valence action units, corresponding to 324 

laughing or giggling.  325 

• The sad movie was associated with early involvement of state 3, which deactivated high-326 

frequency activity, followed by states 4 and 5, which also deactivated oscillatory activity, 327 

but with more specificity for lower frequencies and positive valence action units. 328 

• State 6 comprised action units 4 “Brow Lowerer”, 9 “Nose Wrinkler”, 17 “Chin Raiser”, 329 

and 23 “Lip Tightener”, traditionally associated with anger, disgust, or concern. State 7 330 

can be associated with “gasping”, with very high frequency activation of most mouth-331 

associated action units including 25 “Lips Part”. These states occurred sporadically 332 

through the weather report.  333 

• State 8 predominantly activated action unit 1 “Inner Brow Raiser”, commonly associated 334 

with negative valence.  335 

 336 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.08.490793doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.08.490793
http://creativecommons.org/licenses/by/4.0/


15 
 

 337 

Figure 5. Hidden Markov model inferred from time-frequency representation of melancholia 338 

dataset. (a) Contribution of action units and their spectral expression to each state. Avatar 339 
faces for each state show the relative contribution of each action unit. (b) State sequence for 340 

each participant at each time point, for controls (top) and participants with melancholia 341 
(bottom). Vertical lines demarcate stimulus clips. (c) Most common state across participants, 342 

using a 4s sliding temporal window. (d) Proportion of participants expressing the most 343 
common state for control (blue) and melancholia cohorts (black). Shading indicates 5% and 344 
95% bootstrap confidence bands. (e) Transition probabilities displayed as a weighted graph, 345 

with the top 20% of transition probabilities shown. States are positioned according to a force-346 
directed layout where edge length is the inverse of transition probability. (f) Differences in 347 

mean transition probabilities between participants with melancholia and controls. Each 348 
row/column represents a HMM state. Colours indicate (melancholia – controls) values 349 

 350 

The temporal sequence of most common states was similar across groups (Figure 5C), but the 351 

between-subjects consistency was markedly reduced in the melancholic participants during 352 

both funny videos (Figure 5D). Some participants with melancholia - for example 353 

participants 2 and 3 (Figure 5B) - had highly anomalous state sequences compared to other 354 

participants. 355 

 356 
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Fractional occupancy – the proportion of time spent by participants in each state – was 357 

significantly different between groups for the positive valence states - state 1 (Melancholia < 358 

Controls, pFDR=0.03) and state 2 (Melancholia < Controls, pFDR=0.004) – as well as for 359 

negatively valenced state 8 (Melancholia > Controls pFDR=0.03). We then asked whether 360 

group differences in the time spent in each state were attributable to changes in the likelihood 361 

of switching in to, or out of, specific facial states. Participants with melancholia were 362 

significantly less likely to switch from a low-frequency positive valence state (1, smiling) to 363 

high-frequency positive valence oscillations (state 2, giggling), but were more likely to 364 

switch to states associated with any other emotion (states 4, 5, 6, 7, and 8). From the high 365 

frequency positive valence state, they were more likely to switch to the deactivating “ennui” 366 

state 4 (all pFDR < 0.05).  367 

 368 

Discussion 369 

 370 

Facial expressions played a crucial role in the evolution of social intelligence in primates(2) 371 

and continue to mediate human interactions. Observations of facial affect, its range and 372 

reactivity play a central role in clinical settings. Quantitative analysis of facial expression has 373 

accelerated of late, driven by methods to automatically factorise expressions into action 374 

units(7) and the availability of large datasets of posed emotions(15). The dynamics of facial 375 

expression mediate emotional reciprocity, but have received less attention(3). Naturalistic 376 

stimuli offer distinct advantages to affective research for their ability to evoke these dynamic 377 

responses(33), but their incompressibility has made analysis problematic. By leveraging 378 

techniques in computer vision, we developed a pipeline to characterise facial dynamics 379 

during naturalistic video stimuli. Analysis of healthy adults watching emotionally salient 380 

videos showed that facial expression dynamics can be captured by a small number of 381 

spatiotemporal states. These states co-activate facial muscle groups with a distinct spectral 382 

fingerprint, and transition dynamically with the emotional context. Application of this 383 

approach to melancholia showed that the clinical gestalt of facial non-reactivity in 384 

melancholia(34) can be objectively identified not just with restrictions in spectral content, but 385 

also with anomalous facial responses, more frequent occurrence of an ennui affect, and more 386 

frequent state switching from transiently positive facial expressions to neutral and negative 387 

states. This approach provides a unique perspective on how facial affect is generated by the 388 

interplay between inner affective states and the sensorium. 389 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.08.490793doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.08.490793
http://creativecommons.org/licenses/by/4.0/


17 
 

 390 

Our pipeline first comprises automatic action unit extraction, then spectral wavelet-based 391 

analysis of the ensuing feature dynamics. Wavelet energy at a given time corresponds to the 392 

occurrence of a specific facial “event”, while energy in a given frequency reflects the 393 

associated facial dynamics, like laughing. Unlike temporal averaging methods, which require 394 

an arbitrary timescale, wavelets cover a range of timescales. The spectral approach also 395 

allows participant facial responses to be pooled, without the limitations of averaging 396 

responses whose phases are misaligned. We then inferred a hidden Markov model, 397 

identifying spatially and spectrally resolved modes of dynamic facial activity which occur 398 

sequentially with high consistency across participants viewing the same stimulus. States 399 

transitions aligned with intuitive notions of affective transitions – for example, the common 400 

transition between the low frequency and high frequency positive valence state, reflected 401 

transitions between smiling and laughing.  402 

 403 

Our method builds on the Emotion Facial Action Coding System (EMFACS)(8), where each 404 

canonical emotion label (happy, angry, etc) is defined on the basis of a sparse set of 405 

minimally necessary action units. The sparsity of this coding allows manual raters to find the 406 

minimal necessary combinations of action units in a facial video to reflect an emotion label, 407 

but may not include all action units that are involved in each affective state. Affective states 408 

inferred from our HMM reflected prototypical action unit combinations from EMFACS, but 409 

also provide a richer mapping across a broader range of action units. For example, while 410 

happiness has been previously associated with just two action units, “Cheek Raiser” and “Lip 411 

Corner Puller”, such sparse activations are rare, particularly during intense emotional 412 

displays. We demonstrated that laughing during stand-up comedy activated eyebrow-related 413 

action units, some of which are traditionally associated with sadness. Conversely, negatively 414 

valenced stimuli dampened facial movements, with a relative sparing of those action units 415 

typically associated with sadness.  416 

 417 

Ensembles of HMMs have previously been used to improve emotion classification accuracy 418 

when benchmarked against manually coded datasets. In these studies, one HMM models the 419 

temporal dynamics of one action unit(35,36) or one universal basic emotion(13,37), with 420 

HMM states corresponding to expression onset/offset. Given a video frame, the HMM with 421 

the greatest evidence determines the decoded expression. Nested HMMs have also been 422 

employed, with a second level HMM predicted transitions between the basic emotions(38). In 423 
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contrast, the present method uses a single HMM to describe facial expressions without prior 424 

emotion categories, capturing the dynamic co-occurrence of facial actions that together 425 

comprise distinct affective states. By taking the spectral activity of action units as input 426 

features into the HMM, our approach uniquely captures the spatiotemporal texture of 427 

naturally occurring facial affect. This enables, for example, the disambiguation of a smile 428 

from a giggle. The importance of the spectral characterization is highlighted by our finding 429 

that in melancholia, smile states were more likely to transition to ennui, and less likely to the 430 

laughter state. Our use of dynamic spectra as inputs into a HMM is similar to their recent use 431 

in neuroimaging research(39). Using the raw time series is also possible – hence additionally 432 

capturing phase relationships, although this comes with an additional computational burden 433 

and reduced interpretability of states(40). 434 

 435 

Dynamic facial patterns were influenced by the affective properties of the stimulus video. For 436 

the DISFA dataset, the HMM inferred two disgust-associated states, in low and high 437 

frequency bands respectively. These states occurred predominantly during two disgusting 438 

video clips. For the melancholia dataset, the inferred HMM states over-represented happiness 439 

and sadness, and under-represented disgust. This is ostensibly because the stimulus had 440 

prominent positive and negatively valenced sections without disgusting content. The co-441 

occurrence of the states and the state transitions across participants speaks to the influence of 442 

the video content on affective responses and hence, more broadly, the dynamic exchange 443 

between facial affect and the social environment. 444 

 445 

We found that participants with melancholia exhibited broad reductions in facial activity, as 446 

well as specific reductions in high frequency activity in response to specific events such as 447 

joke punchlines, reflecting the clinical gestalt of impaired affective reactivity(30). Viewing 448 

affect as a dynamic process provided two further insights into facial responses in 449 

melancholia. First, decreased between-subject consistency and more anomalous facial 450 

responses suggest that their facial activity is less likely to be driven by a common external 451 

stimulus. Ambiguous facial responses are also seen in schizophrenia(41), suggesting the 452 

possibility of a common underlying mechanism with melancholia. Second, participants with 453 

melancholia were less likely to enter high frequency positive valence states like laughing, and 454 

once there, transitioned out quickly to the “ennui” state. This reflects the clinical impression 455 

that positive mood states persist in healthy controls, but such states are fleeting in those with 456 

melancholia, who tend to get “stuck” in negative mood states instead. The results are 457 
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commensurate with the proposal that depressed states relate to persistent firing in non-reward 458 

functional areas mediated by attractor dynamics(42). Additionally, these findings accord with 459 

neurobiological models of melancholia whereby dysfunctional cortical-basal ganglia circuitry 460 

underlie the disturbances in volition and psychomotor activity that characterise the 461 

disorder(30). More generally, the notion of affect as a sequence of spatiotemporal states 462 

aligns with the proposal that instabilities in brain network activity generate adaptive 463 

fluctuations in mood and affect, with these being either over- or under-damped in affective 464 

disorders(43). Our paradigm also raises clinical questions predicated on dynamics – for 465 

example, do biological or psychological treatments for melancholia work by increasing the 466 

probability of entering positive affective states, or reducing the probability of exiting such 467 

states? 468 

 469 

Several caveats bear mention. First, a small number of participants with constant zero 470 

activation in one or more action units were excluded from analysis, because this produces an 471 

ill-defined spectral transform. Excluded participants, of whom 1 was a control and 4 had 472 

melancholia, may have had the greatest impairments in facial affect. This issue could be 473 

addressed with a lower detectable limit of action unit activation. Second, time-frequency 474 

maps were standardised in mean and variance before HMM inference. This ensures that states 475 

occur sequentially across time, but reduces the differences in state sequences across groups. 476 

Omitting this standardisation step yields states that are biased towards group differences 477 

rather than temporal differences (see Supplementary Figure 7). Future work could consider 478 

methods that are less susceptible to this trade-off. Finally, the utility of our approach is likely 479 

to be improved by multimodal fusion of facial, head pose, vocal and body language 480 

behaviour, each of which independently improve classification(44–47). 481 

 482 

Human emotion and affect are inherently dynamic. Our work demonstrates that momentary 483 

affective responses, such as laughing or grimacing, traditionally viewed from a qualitative 484 

standpoint, can be understood within a quantitative framework. These tools provide a 485 

translational platform for mental health research to understand the dynamics of facial affect - 486 

for example in clinical states such as melancholia with its distinctive sign of psychomotor 487 

disturbance, the masked facies of Parkinson’s disease, emotional incongruence and affective 488 

blunting in schizophrenia, and emotional lability integral to bipolar disorder. 489 

 490 
 491 
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 492 

 493 
 494 
 495 

 496 
Materials and Methods 497 

Data 498 

The Denver Intensity of Spontaneous Facial Action (DISFA) dataset contains facial videos 499 

recorded at 20 frames per second from 27 participants who viewed a 4 minute video 500 

consisting of short emotive clips from Youtube(19) (Supplementary Table 1).  501 

 502 

The melancholia dataset comprises 30 participants with major depressive disorder, who were 503 

recruited from the specialist depression clinic at the Black Dog Institute in Sydney, Australia. 504 

These participants met criteria for a current major depressive episode, were diagnosed as 505 

having the melancholic subtype by previously detailed criteria(48), and did not have lifetime 506 

(hypo)mania or psychosis (Table 1). 38 matched healthy controls were recruited from the 507 

community. All participants were screened for psychotic and mood conditions with the Mini 508 

International Neuropsychiatric Interview (MINI). Exclusion criteria were current or past 509 

substance dependence, recent electroconvulsive therapy, neurological disorder, brain injury, 510 

invasive neurosurgery, or an estimated full scale IQ score (WAIS-III) below 80. Participants 511 

provided informed consent for the study. Participants watched 3 video clips consecutively – 512 

stand-up comedy (120 seconds), a sad movie clip (152 seconds), and a German weather 513 

report video depicting a weather reporter laughing uncontrollably (56 seconds). Facial video 514 

was recorded at a resolution of 800 x 600 pixels at 25 frames per second using an AVT Pike 515 

F-100 FireWire camera. The camera was mounted on a tripod, which was placed behind the 516 

monitor so as to record the front of the face. The height of the camera was adjusted with 517 

respect to the participant’s height when seated. 518 

 519 

Table 1. Demographics and clinical characteristics  520 

 521 

 Healthy controls Melancholia Group comparison,  

t or χ2, p-value 

Number of participants 38 30 - 

Age, mean (SD) 46.5 (20.0) 46.2 (15.5) 0.95 
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Sex (M:F) 13:19 17:13 0.21 

Medication, % yes (n)  

 Any psychiatric 

medication 

7% (1) 85% (23) - 

 Nil medication 93% (13) 15% (4) - 

 Selective serotonin 

reuptake inhibitor 

7% (1) 15% (4) - 

 Dual-action 

antidepressanta 

0% (0) 48% (13) - 

 Tricyclic or 

monoamine oxidase 

inhibitor 

0% (0) 19% (5) - 

 Mood stabilizerb 0% (0) 11% (3) - 

 Antipsychotic 0% (0) 33% (9) - 

a For example, serotonin noradrenaline reuptake inhibitor 522 
b For example, lithium or valproate 523 

 524 

Facial action units 525 

For the melancholia dataset, facial video recordings of different participants were aligned 526 

with FaceSync(49). For both datasets, facial action unit intensities were extracted with 527 

OpenFace(31). OpenFace uses a convolutional neural network architecture, Convolutional 528 

Experts Constrained Local Model (CE-CLM), to detect and track facial landmark points. 529 

After face images are aligned to a common 112 x 112 pixel image, histogram of oriented 530 

gradients features are extracted. A linear kernel support vector machine was then trained on 6 531 

facial expression datasets with manually coded action unit occurrence times. 532 

 533 

Action unit time series from OpenFace for each participant were not normalised, as we were 534 

interested in between-subjects differences. Recordings with more than 0.5% missing frames 535 

were excluded, and any remaining missing frames were linearly interpolated. Action unit 45 536 

“Blink” was not used as it is not directly relevant to emotion. Action units 2 “Outer Brow 537 

Raiser” and 5 “Upper Lid Raiser” were not used as they had constant zero value throughout 538 

the recording for most participants. Participants with any other action units with zero value 539 

through the recording were also excluded, as the time-frequency representation is undefined 540 

for these time series. This comprised 1 control and 4 participants with melancholia. 541 
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 542 

Time-frequency representation 543 

For each participant, each facial action unit time series was transformed into a time-frequency 544 

representation, using the amplitude of the continuous wavelet transform. An analytic Morse 545 

wavelet was used with symmetry parameter 3, time-bandwidth product 60, and 12 voices per 546 

octave. Mean time-frequency maps were visualised with a cone of influence – outside which 547 

edge effects produce artefact (Supplementary Figure 2 for DISFA, Supplementary Figure 6 548 

for melancholia dataset). To determine information lost by averaging raw time series across 549 

participants, the amplitude of the continuous wavelet transform for the group mean time 550 

series was calculated. At each point in time-frequency space, the distribution of individual 551 

participants’ amplitude was compared with the amplitude of the group mean, with a two-552 

sided t-test (p=0.05) (Figure 1). 553 

 554 

Hidden Markov model 555 

A Hidden Markov model (HMM), implemented in the HMM-MAR MATLAB toolbox 556 

(https://github.com/OHBA-analysis/HMM-MAR)(50), was used to identify states 557 

corresponding to oscillatory activity localised to specific action units and frequency bands. A 558 

HMM specifies state switching probabilities which arise from a time-invariant transition 559 

matrix. Each state is described by a multivariate Gaussian observation model with distinct 560 

mean and covariance in (action unit x frequency) space. Input data were 110 frequency bins 561 

in 0-5Hz, for each of 14 facial action units. Individual participants’ time series were 562 

standardised to zero mean and unit variance before temporal concatenation to form a single 563 

time series. This time series was downsampled to 10Hz, and the top 10 principal components 564 

were used (for DISFA). Other HMM parameters are listed in Supplementary Table 4. 565 

 566 

The initialisation algorithm used 10 optimisation cycles per repetition. Variational model 567 

inference optimised free energy, a measure of model accuracy penalised by model 568 

complexity, and stopped after the relative decrement in free energy dropped below 10-5. Free 569 

energy did not reach a minimum even beyond n=30 states (Supplementary Figure 3). 570 

Previous studies have chosen between 5 and 12 states(51,52). We chose an 8-state model as 571 

done in previous work(39), as visual inspection of the states showed trivial splitting of states 572 

beyond this value. However, the analyses were robust to variations in the exact number of 573 

states. 574 

 575 
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HMM state observation models were visualised with FACSHuman(53). The contribution of 576 

each action unit to each state was calculated by summing across all frequency bands. For 577 

each state, positive contributions were rescaled to the interval [0,1] and visualised on an 578 

avatar face (Figure 2a). State sequences for individual subjects were calculated with the 579 

Viterbi algorithm (Figure 2). To calculate between-subjects consistency of state sequences 580 

over time, we used an 8s sliding window. Within this window, for each state, we counted the 581 

number of participants who expressed this state at least once, and found the most commonly 582 

expressed state. Uncertainty in this consistency measure at each time point was estimated 583 

from the 5 and 95 percentiles of 100 bootstrap samples. The null distribution for consistency 584 

was obtained by randomly circular shifting the Viterbi time series for each subject 585 

independently (n=100). Consistency values exceeding the 95th percentile (59% consistency) 586 

were deemed significant.  587 

 588 

Analysis of melancholia dataset 589 

Mean action unit activations were calculated for each group, and uncertainty visualised with 590 

the 5th and 95th percentiles of 100 bootstrap samples (Figure 3, Supplementary Figure 5). A 591 

3-way ANOVA for activation was conducted with group, stimulus video, and facial valence 592 

as regressors. To avoid redundancy between the two positive valence videos, we limited the 593 

ANOVA to two stimulus videos – the stand-up comedy and sad movie clips. In keeping with 594 

previous work(8), we defined happiness as the sum of action units 6 “Cheek Raiser” and 12 595 

“Lip Corner Puller”, and sadness as the sum of action units 1 “Inner Brow Raiser”, 4 “Brow 596 

Lowerer”, and 15 “Lip Corner Depressor”. Post-hoc comparisons used Tukey’s honestly 597 

significant difference criterion (Supplementary Figure 4). 598 

 599 

Time-frequency representations were computed as the amplitude of the continuous wavelet 600 

transform. Group differences in wavelet power, localised in time and frequency, were 601 

calculated by subtracting the mean time-frequency representation of each clinical group 602 

(Figure 4). To confirm that these effects were not due to movement-related noise in action 603 

unit encoding having different effects depending on the frequency and time window 604 

considered, the null distribution of the effect was obtained by resampling 100 surrogate 605 

cohorts from the list of all participants. Time-frequency points with effect size inside 2.5 – 606 

97.5 percentile were considered non-significant and excluded from visualisation. 607 

 608 
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To compare classification accuracy with action unit time series or time-frequency data, a 609 

support vector machine with Gaussian kernel was used. All tests used mean accuracy over 5 610 

repetitions of 5-fold cross validation, but varied in the input features. Inputs to the first model 611 

were mean action unit activations for each action unit (n=14) and each stimulus video (n=3). 612 

For the time-frequency model, inputs were mean wavelet amplitude in each frequency bin 613 

(n=10) in each stimulus video, for each action unit. For the third set of models, input features 614 

were mean action unit activation within discrete time chunks of 2, 10, and 30 seconds 615 

(Supplementary Table 3).  616 

 617 

The HMM was inferred as described above (Figure 5). Supplementary Figure 7 shows the 618 

results when input data were not standardised. Local transition probabilities were then 619 

inferred for each participant separately. Two-sided significance testing for group differences 620 

in fractional occupancy was implemented within the HMM-MAR toolbox by permuting 621 

between subjects as described previously(54). Next, we considered only those state 622 

transitions that could explain the group differences in fractional occupancy and tested these 623 

transitions for group differences with t-tests (one-sided in the direction that could explain 624 

fractional occupancy findings). Group differences in fractional occupancy and transition 625 

probability were corrected to control the false discovery rate(55). 626 

 627 

Results were consistent across repetitions of HMM inference with different initial random 628 

seeds. In addition, all analyses were repeated with time-frequency amplitudes normalised by 629 

the standard deviation of the time series, to ensure that results were not solely due to group 630 

differences in variance for each action unit time. This was motivated by previous work 631 

showing that the square of wavelet transform amplitude increases with variance for white 632 

noise sources(56). Results were consistent with and without normalisation, including 633 

differences between clinical groups, the distributions and time courses of HMM states.  634 
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Data availability 643 

The DISFA dataset is publically available at http://mohammadmahoor.com/disfa/. The 644 

melancholia dataset is not publically available due to ethical and privacy considerations for 645 

patients.  646 

 647 

 648 

Code availability 649 

Code to replicate the analysis of healthy controls in the DISFA dataset is available at 650 

https://github.com/jaysonjeg/FacialDynamicsHMM 651 
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