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Abstract. Experimental approaches for measuring single-cell gene expression can observe
each cell at only one time point, requiring computational approaches for reconstructing the
dynamics of gene expression during cell fate transitions. RNA velocity is a promising compu-
tational approach for this problem, but existing inference methods fail to capture key aspects
of real data, limiting their utility. To address these limitations, we developed VeloVAE, a
Bayesian model for RNA velocity inference. VeloVAE uses variational Bayesian inference to
estimate the posterior distribution of latent time, latent cell state, and kinetic rate parame-
ters for each cell. Our approach addresses key limitations of previous methods by inferring a
global time and cell state value for each cell; explicitly modeling the emergence of multiple
cell types; incorporating prior information such as time point labels; using scalable minibatch
optimization; and quantifying parameter uncertainty. We show that VeloVAE significantly
outperforms previous approaches in terms of data fit and accuracy of inferred differentiation
directions. VeloVAE can also capture qualitative features of expression dynamics neglected
by previous methods, including late induction, early repression, transcriptional boosts, and
bifurcations. These improvements allow VeloVAE to accurately model gene expression dy-
namics in complex biological systems, including hematopoiesis, induced pluripotent stem cell
reprogramming, neurogenesis, and organogenesis. We find that the latent time automatically
inferred using all cells can even outperform pseudotime inferred using manually chosen cell
subsets and root cells. We further use the inferred parameters to construct cell type transition
graphs and fit branching differential equation models that describe the effects of cell type
bifurcations on kinetic rate parameters.
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1 Introduction

The human body contains many cell types with distinct forms and functions, which arise from pro-
genitor cells in a sequential developmental process. A key question in molecular biology is what
regulates this process of cellular development. Therefore, understanding cellular development re-
quires modeling how mRNA expression changes over time. Such models are crucial for numerous
areas of biology and medicine, such as neuroscience, cancer research, and regenerative stem-cell
therapies.

Since its emergence, the single-cell RNA sequencing (scRNA-seq) technology [32] has been widely
used to study cell development. However, scRNA-seq measurement destroys the cell, making it
impossible to follow an individual cell longitudinally. Thus, computational approaches are required
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to assemble these static snapshots into a history of the gene expression changes occuring during a
developmental process.

Two main types of computational approaches have been developed for this problem: pseudotime
inference and RNA velocity. Pseudotime inference methods use distance from a manually-specified
starting cell to rank cells according to degree of development [33, 3]. Many pseudotime methods also
aim to infer a tree or graph structure that represents the underlying structure of the developmental
process [6,12,36,8,29]. In contrast, La Manno et al. [19] developed the concept of RNA velocity
based on the observation that both unspliced and spliced mRNA molecules appear in sequencing
outputs. The relative ratio of spliced and unspliced counts indicates whether the gene was being
turned on or turned off at the time the cell was sequenced. La Manno et al. introduced an ODE model
to describe the gene expression process, used a steady state assumption to estimate parameters,
and implemented the method in a package called velocyto. Later work [4] relaxed the steady-state
assumption, allowing all cells to be used in parameter estimation and inferring a latent time value
for each cell. Bergen et al. implemented their method in a package called scVelo [4]. We recently
extended the dynamical model of scVelo to incorporate chromatin accessibility data, packaged in
a tool called MultiVelo [20]. RNA velocity methods have been widely used by biologists to help
understand cellular development processes [26, 37, 21].

While they have proven useful for biological discovery in many cases, existing approaches for
pseudotime inference and RNA velocity inference have significant limitations. Pseudotime inference
requires manually specifying a starting cell, is based purely on pairwise cell similarity, and cannot
infer the directions or rates of cell development. RNA velocity addresses some of these limitations,
and is in principle able to infer the directions, rates, and origins of developmental processes. However,
current RNA velocity methods rely on numerous simplifying assumptions and fail to yield accurate
results in many cases [5].

In particular, scVelo suffers from several significant limitations. First, scVelo infers time sepa-
rately for each gene, which neglects crucial information about the covariance of related genes and
often leads to times that are inconsistent across genes. This gene-specific notion of time also makes
it hard to compare the switch-off time (time when a cell stops producing new RNA) across genes.
The lack of a common time scale, combined with the assumption that induction starts at ¢ = 0,
also leads to frequent errors in estimating the overall direction of a gene (increasing or decreasing).
Genes with a late, short, or missing induction phase are particularly prone to being fit incorrectly by
scVelo. Second, scVelo assumes a constant transcription rate « within the induction phase for each
gene. In a recent review paper, the scVelo developers note that this assumption is often violated in
real-world datasets, which leads to a variety of pathological behaviors [5]. Finally, scVelo’s model
does not account for cell type bifurcations, which frequently occur in cellular development and can
significantly reduce the accuracy of the scVelo model’s predictions.

To address these limitations, we developed VeloVAE, a Bayesian model that uses neural networks
to jointly infer the posterior distribution of cell times, cell states, and gene expression rate parameters
from scRNA-seq data. Our approach uses a simple, interpretable differential equation model to
describe the dynamics of gene expression, but allows the parameters to vary continuously with
cell state. The introduction of a cell state variable and a single latent time shared across all genes
allows VeloVAE to model qualitative features of expression dynamics neglected by previous methods,
including late induction, early repression, transcriptional boosts, and bifurcations. Consequently,
VeloVAE can be used as a general tool to reconstruct the orders and rates of gene expression
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changes across many complex biological systems, including hematopoiesis, induced pluripotent stem
cell reprogramming, neurogenesis, and organogenesis.

2 Results

2.1 VeloVAE Allows Bayesian Inference of Cell Times, Cell States, and Rate
Parameters

VeloVAE uses a Bayesian model for RNA velocity inference. We assume that we are given individual
scRNA-seq profiles that measure the amounts of spliced (s) and unspliced (u) transcripts at single
moments of a developmental process. Our goal is to use these observations to simultaneously infer
the posterior distributions of underlying latent variables that generated the data: cell time (t), cell
state (c), and rate parameters (6) describing the biochemical kinetics of gene expression. Our key
modeling assumption is that the observed time-varying (u(t), s(t)) levels are related by a system
of two ordinary differential equations (Fig. 1a). As with previous RNA velocity approaches, these
ODEs capture the simple insight that a gene must first be transcribed as nascent mRNA, then
spliced into mature mRNA, and then subsequently degraded (Fig. 1A). However, we make one
important change: rather than assuming a single fixed transcription rate parameter for each gene
across all cells, we allow each cell to have its own transcription rate p for each gene. This simple
change removes the need for discrete induction and repression phases and models continuous changes
in transcription rates, such as transcriptional boosts [5] and cell fate bifurcations. Note also that,
unlike scVelo, which places each gene on a separate time scale, the cell time parameter ¢ is shared
across all genes within a cell.

The VeloVAE model can be viewed from either an inference or a generative perspective (Fig.
1b). From an inference perspective, if we know (u(t), s(t)) values for cells, we can infer something
about the (¢,c,0) parameters that generated them (Fig. 1b, left). Each particular location ¢ in cell
state space has an associated transcription rate p for each gene; nearby cell state space locations
will have similar transcription rates (Fig. 1b, middle). From a generative perspective, if we know
the (¢,c,0) parameters for a cell, we can predict the distribution of their (u,s) values (Fig. 1b, right).
We can also incorporate prior information about the latent variables and rate parameters. If cell
capture times are known (e.g., if cells were isolated separately on days 7 and 14), we can use the
capture times as an informative prior for cell time.

To fit this statistical model on real data, we use autoencoding variational Bayes, a powerful
statistical inference method in which neural networks approximate the posterior distribution of latent
variables that may be nonlinearly related to observed data. Intuitively, autoencoding variational
Bayes jointly trains the inference and generative models shown in Fig. 1b, so that after training we
can infer latent variables given observed data or predict new data given values of the latent variables.
VeloVAE implements the inference model of Fig. 1b using a neural network that takes (u,s) values as
input and outputs the posterior distribution of cell time and cell state parameters (Fig. 1c). VeloVAE
implements the generative model of Fig. 1b using a neural network that predicts the gene-specific
transcription rates p for each cell from the cell’s time and state values (Fig. 1c). The (u,s) values
for each cell can then be predicted using the analytical solution to the ODE, which describes how
spliced and unspliced counts vary over time (Fig. 1c). We previously described the underlying theory
and motivation of this approach in a machine learning conference paper [10]. Intuitively, VeloVAE
is like an autoencoder whose decoder network has been replaced with the solution to a differential


https://doi.org/10.1101/2022.07.08.499381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499381; this version posted July 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4 Y. Gu et al.
a
Nascent Mature
DNA MRNA (u) MRNA (s)
Transcription Splicing Degradation .
YOO —— — _ ~v
du _ ds
dt = pa Fri Bu, it = —Ys

ds
a0~ P

b

senerative Model

é @w\rm.n N

g(c; 6,) 10 001180770

ool

ODE Solution: F(t; p,0)

Inference Model

A7

h(u,s; @)

&é & Latent Cell State

t
\@@’@j 0 ——> tr °° )

Latent Cell Time

C
Inference Model Generative Model
(Neural Network) (Neural Network + Kinetic Functions)
1
Unspllced
Spllced t

Fig.1l. VeloVAE model. (a) Differential equation model of transcription used by VeloVAE. Nascent
mRNA molecules are transcribed at gene- and cell-specific rate pa. Next, nascent mRNA is spliced into
mature mRNA at gene-specific rate 8. Finally, mature mRNA is degraded at gene-specific rate 7. (b)
Graphical model for latent variable inference and data generative processes. Cell time and state are treated
as latent variables, which are inferred using variational Bayes. Note that, unlike previous approaches, latent
time (and state) is shared across all genes within each cell. The latent cell state lies on a smooth low-
dimensional manifold representing cell development. Each cell state has gene-specific transcription rates
p. RNA count data are generated based on an ODE system with known analytical solution. (¢) VAE
architecture. The encoder neural network learns estimates the posterior distribution of the latent variables,
while the decoder learns a mapping from cell state to cell-wise transcriptional rates and simulates the
generative process from an ODE system.
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equation. Importantly, we also take advantage of the little-known fact that autoencoding variational
Bayes allows inference of posterior distributions for parameters in the generative model (decoder
network). This allows us to infer distributional estimates of the ODE rate parameters as well.

We train the model by maximizing the evidence lower bound of the marginal likelihood using
mini-batch stochastic gradient descent [15]. Crucially, cells are loaded in batches during training,
which means that not every cell must be used in each training iteration, dramatically decreasing
both the time and memory requirements.

2.2 VeloVAE Significantly Improves Model Fit and Latent Time Accuracy

We evaluated our method on a variety of real scRNA-seq datasets of different sizes and complexity [2,
25,28,31,18,6] and compared our results with scVelo [4], the state-of-the-art method for RNA
velocity inference. We evaluated VeloVAE and scVelo in terms of both how well the models fit the
data and how accurately they recover latent time. To quantify model fit, we calculated mean squared
error (MSE), mean absolute error (MAE), and log likelihood (LL) as our metrics (Fig. 2a, S1). For
VeloVAE, we calculated these metrics on both the training dataset and a held-out test set not used
during training. Note that scVelo cannot perform out-of-sample prediction, so we were not able to
evaluate it on a held-out test set. Our results show that VeloVAE achieves much better data fit
than scVelo for all datasets in the evaluation. Furthermore, this better performance does not come
from overfitting the training dataset - VeloVAE shows similarly good performance on the held-out
datasets.

To evaluate the accuracy of latent time inference, we used scRNA-seq datasets with cells sampled
from multiple time points. These time points usually have rather coarse granularity (e.g., day 7 and
day 14), and cells captured at the same time may span a wide range of developmental stages.
Nevertheless, the inferred cell times should at least be correlated with the capture times. Thus, we
computed the Spearman correlation between the cell times inferred by each method and the capture
times (Fig. 2a). VeloVAE consistently and significantly outperforms scVelo in terms of latent time
accuracy, with scVelo often inferring latent time that is anticorrelated with real time (Fig. 2a,b).
VeloVAE achieves a significant improvement in latent time accuracy even without using the time
labels, though when the time labels are used as an informative prior, the time correlation improves
further (Fig. 2a, bottom). Although scVelo infers latent time separately for each gene, the tool
provides a post-hoc procedure for estimating a single global time for each cell. Using this global
time for comparison with our methods casts scVelo in the best possible light because the global
time is more robust than the gene-specific latent times. The low time correlation from scVelo may
be partly explained by inconsistency among the different notions of time fitted for each gene. To
investigate this further, we computed the average time correlation between scVelo’s gene-specific
and global latent time. As Figure S2 shows, the correlation between scVelo’s global latent time and
the latent time for each gene is indeed quite low; the latent time values for many genes are even
anticorrelated with global latent time.

We further assessed the relative importance of using a shared latent time and using a cell state
variable. To do this, we fit a version of VeloVAE that has only a shared latent time but no cell state
variable. The performance was better than scVelo in many cases due to the shared latent time, but
generally significantly worse than the model with the cell state variable (Fig. 2a). This indicates
that including a transcription rate that varies with cell state is crucial for the best performance.
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2.3 VeloVAE Better Captures Qualitative Properties of Complex Gene Expression
Dynamics

We designed the VeloVAE model to relax several of the restrictive assumptions of previous RNA
velocity approaches. Thus, we expect that the model should show increased expressiveness, allowing
it to capture qualitative properties of gene expression changes that previous approaches cannot.
To assess this, we fit both VeloVAE and scVelo on three representative datasets—mouse pancreas,
human blood, and mouse brain—and inspected the resulting model fits. We found three types of
qualitative behaviors that scVelo and previous approaches cannot accurately model, while VeloVAE
can.

Late Induction and Early Repression We observed that genes with a late, short, or missing
induction phase are particularly prone to being fit incorrectly by scVelo. The lack of a common time
scale, combined with the assumption that induction starts at ¢ = 0, also leads to frequent errors
in estimating the overall direction of a gene (increasing or decreasing). A dataset from the mouse
pancreas [2] illustrates this behavior.

VeloVAE and scVelo both yield latent time values and stream plots for the pancreas dataset
that are coherent with prior knowledge (Fig. 2¢). However, inspecting the fits for individual genes
shows that scVelo often rearranges the local time for each gene to try to force the genes to have
an induction phase starting at ¢ = 0. Figure 2c shows two sample genes, Nnat and Smocl. The
Nnat gene is not turned on until the pre-endocrine cells appear, whereas Smoc! is immediately
switched off at the beginning of the differentiation process. We can see that scVelo fails to detect
late induction in Nnat and assigns the latent time to zero for almost all cell types except for beta
cells. For Smocl, scVelo rearranges the order of progenitor and descendent cell types in an effort to
force the gene to have a induction phase. In contrast, VeloVAE is able to correctly infer the late
induction pattern for Nnat and the early repression pattern for Smoci.

Cell Type Bifurcations Many cell differentiation processes produce multiple descendant cell types
from a single progenitor type, but previous RNA velocity approaches model only a single cell type.
By including a cell-specific latent state, VeloVAE can model the continuous emergence of multiple
cell types from a single progenitor type. For example, in the pancreas dataset, the Nnat gene is
upregulated as cells differentiate towared the beta cell fate, but not in any other cell type (Fig. 2c).

As another example, we fit both scVelo and VeloVAE on a developing mouse brain atlas [18].
For clarity, we subsampled the dataset to include only cell types arising from the neural tube (see
below for an analysis of the full dataset). In this system, neural tube cells develop into radial glia.
Some of the radial glia cells differentiate into neuronal cell types, while the others give rise to the
glial lineage, including glioblasts, oligodendrocytes, astrocytes, and ependymal cells. In short, this
is a complex system with many distinct lineages emerging. Nevertheless, VeloVAE can accurately
model the complex, multi-lineage dynamics of genes in this system. For example, VeloVAE accurately
models the behavior of the Tmsb10 gene (Fig. 2d), which is turned on in the fibroblast and neuronal
cells at different times and remains off in the non-neuronal cells differentiated from radial glia. In
contrast, scVelo rearranges the latent time values of the cells in a vain attempt to fit the Tmsb10
gene into a single induction and repression cycle.
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Fig.2. VeloVAE Significantly Improves Model Fit and Latent Time Accuracy and Models
Complex Gene Expression Dynamics (a) Quantitative performance comparison. We report the mean
squared error (MSE) and mean absolute error (MAE) between the observed and predicted (u,s) counts,
as well as correlation between inferred latent time and true capture time (when available). MSE and MAE
are reported relative to scVelo. (b) UMAP plots colored by true capture time and inferred latent time for
erythroid, iPSC, and subsampled mouse brain datasets. (c)-(e) UMAP plots and examples of individual
genes fit by scVelo and VeloVAE for pancreas (c), subsampled mouse brain (d), and erythroid (e) datasets.
UMAP plots are colored by published cluster assignments with inferred velocity streams overlaid. Gene
fits are shown for both u and s values, with inferred latent time on the x-axis. Fitted values from scVelo
are shown as lines, with observed data values shown as points. Only fitted values are shown for VeloVAE,
because the VeloVAE fit is a point cloud (rather than a line) that would completely cover the observed data.
Points are colored by published cluster assignments, with the same colors as in the corresponding UMAP
plots. Note that the x-axis values are different for scVelo and VeloVAE because they infer different latent
times. The arrow length and direction indicate the velocity inferred for each cell.
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Transcriptional Boosts In addition to bifurcation, cell differentiation can involve gradual or
abrupt increases in transcription rate within a cell type. Several recent papers reported that ery-
throid cell differentiation involves abrupt “transcriptional boosts” [5,1]. Previous RNA velocity
approaches assumed a constant transcription rate, and thus could not model this behavior. Indeed,
when we fit scVelo on an erythroid dataset, we find that scVelo infers latent time that is strongly
anticorrelated with true time (Fig. 2b,e). Similarly, scVelo predicts that the Hba-z gene, which shows
a transcriptional boost, is repressed rather than induced. In contrast, VeloVAE is able to model the
transcriptional boost in Hba-z levels (Fig. 2e) because the transcription rate p is cell-specific.

2.4 Cell Type Transition Graph Inference and Branching Differential Equation
Model

Understanding cell differentiation processes requires discovering which progenitor types give rise to
which differentiated types. In addition, we want to know how the expression of key fate determining
genes changes during cell type bifurcation. We reasoned that the VeloVAE results provide several
opportunities to investigate these questions.

Although VeloVAE accurately models bifurcations using a continuous cell state variable, the
resulting parameters are not readily interpretable in terms of discrete cell types. Thus, we developed
a model extension that aids in interpreting how the kinetic parameters of gene expression change
across cell types. We extended the simple differential equation model shown in Fig. 1 to a system of
equations that we refer to as a branching ODE model (Fig. 3a). Instead of a cell-specific transcription
rate and fixed splicing and degradation rates, the branching ODE model assigns each cell type a
unique ODE with cell-type-specific transcription, splicing, and degradation rates and an initial
condition determined by the progenitor cell type (Methods). The model relies on a directed graph
relationship among discrete cell types. The graph can be inferred directly from the data, as we
did here; if some aspects of the cell type transition graph are known, these can also be manually
specified. We constrain the branching ODE model so that each cell type emerges at a specific time
and the initial conditions of each cell type match the ODE prediction of its parent cell type at the
time the child cell type emerges. This provides a qualitative view of the change of kinetic rates
during cell development. We use the branching ODE model to replace the decoder of the VeloVAE,
giving an alternative, more interpretable generative model.

Having established the accuracy of the results from VeloVAE, we used these results to infer cell
type transition graphs. To infer the transition probability between cell types A and B, we used
the cell times to simply count how often cells of type A and B occur in two immediately adjacent
short time intervals (see Methods for details). We show three examples of these graphs (Fig. 3b-d),
inferred from the pancreas, iPS reprogramming, and mouse brain datasets from Fig. 2. The inferred
cell type transition graphs match closely with biological expectations for these systems, even for the
complex mouse brain dataset.

To train the model, we first obtain the time and state assignments for each cell by training
VeloVAE. Next, we infer a transition graph describing the progenitor-descendant relations among
cell types (Methods). Finally, we fix the encoder of VeloVAE (so that latent time and cell state
estimates are fixed) and estimate the parameters of the branching ODE model. We perform this
parameter estimation by maximizing the Gaussian likelihood of all genes under the branching ODE
model, which is equivalent to minimizing the Mahalanobis distance between model fit and observed
data.
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Fig. 3. Cell Type Transition Graph Inference and Branching Differential Equation Model. (a)
Schematic of branching ODE solutions. The example shows the output prediction of u and s versus time for
a process with a single progenitor, an intermediate and three distinct descendant cell types. (b)-(d) Inferred
cell type transition graphs from pancreas (b), iPSC (c¢) and subsampled mouse brain (d) datasets. In each
graph, a vertex represents a cell type and a directed edge points from a progenitor cell type to its immediate
descendant(s). (e)-(g) Examples of individual genes fit by the branching ODE model for pancreas (e), iPSC
(f) and subsampled mouse brain (g) datasets. Each column represents a gene and plots the unspliced count,
spliced count and RNA velocity versus time from top to bottom. The branching ODE fits are shown as solid
lines. (h)-(j) cell-type-specific rate parameters inferred by branching ODE model for pancreas (h), iPSC
(i) and subsampled mouse brain (j) datasets. Each column represents a gene and plots the transcription
(), splicing (8) and degradation (v) rates from top to bottom. Each point represents a cell type, the types
are arranged in chronological order, and progenitor-descendant relationships are indicated with lines.
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We trained branching ODEs on pancreas, iPSC and subsampled mouse brain datasets. The cell type
transition graphs are all consistent with prior knowledge (Fig. 3b-d). For example, our computational
method successfully finds the expected cell differentiation path in pancreatic development, starting
from ductal cells and branching into «, 3, 0 and € cells (Fig. 3b). Importantly, we achieved these
accurate results from simply training VeloVAE using default parameters without any parameter
tuning; we used the same parameters for all three of these datasets.

In addition, the branching ODE is able to infer different and asynchronous gene expression
kinetics in multiple branches and successfully captures different rates in different branches in these
datasets. For example, PppIrla has almost all transcription activity in 5 cells (Fig. 3e), which was
verified by previous studies [14, 7]. The Rnf130 and 1500009L16Rik genes similarly show significant
branching trends that are accurately modeled by the branching ODE (Fig. 3e). The branching
ODE model also accurately fits genes that show differential kinetics among lineages that emerge
during induced pluripotent stem cell reprogramming. For example, Vim is strongly upregulated
as epithelial-like cells transition to stromal-like cells (Fig. 3f). The Nrf21 gene is strongly and
specifically upregulated in neural-like cells (Fig. 3f). The Krt7 gene is upregulated in epithelial-like
and trophoblast-like cells with differing expression levels (Fig. 3f).

Another example is the Mapt gene from the mouse brain dataset (Fig. 3g). The gene is upreg-
ulated strongly in neurons and subsequently transcribed at much lower levels in oligodendrocytes,
which coheres with previous studies [17]. The Napl15 gene shows the opposite trend, with high tran-
scription in oligodendrocytes and low but detectable transcription in glioblasts and neurons (Fig.
3g). As another example, the Anza2 gene is most highly transcribed in the early transition from
mesenchyme to fibroblast, with some later transcription in glioblasts and ependymal cells (Fig. 3g).
The cell-type-specific rate parameters inferred by fitting the branching ODE describe the differences
in transcription, splicing, and degradation that cells undergo as they differentiate (Fig. 3h-j).

2.5 VeloVAE Accurately Models Human Hematopoiesis.

Previous papers have noted that hematopoiesis is a particularly difficult system for existing RNA
velocity methods [5]. Latent time and velocity inferences often seem to point in the opposite direction
of the known blood cell differentiation hierarchy. Two aspects in particular likely make this system
challenging. First, many distinct cell types emerge simultaneously from the hematopoietic stem cell
(HSC). Recent studies suggest that hematopoietic progenitors are more like a continuum of primed
states than a set of discrete states neatly organized in a tree structure [35]. Second, blood cells
are produced exceptionally rapidly compared with other cell types; a recent study estimated that
about 2 million new red blood cells per second enter the bloodstream [13]. Thus, blood cells may
use special gene regulatory mechanisms such as “transcriptional boosts” (see discussion above) and
other time-varying rate parameters.

To investigate whether VeloVAE can resolve these difficulties, we analyzed a recent human bone
marrow dataset [31]. Our stream plot shows that VeloVAE correctly identifies HSCs as the start
of differentiation and predicts that they differentiate into megakaryocytes, platelets, dendritic cells,
monocytes, and B-cells (Figure 4a). In contrast, the scVelo stream plot predicts incorrect differenti-
ation vectors that point backward for the B-cell, dendritic cell, platelet, and megakaryocyte lineages
(Fig. 4b). Inspecting the fits of individual genes revealed that scVelo fails to capture the complexity
of multiple lineages simultaneously emerging, as well as time-varying transcription rates (Fig. 4c).
For example, the TCF/ gene is upregulated strongly in pDCs and moderately in B cell progenitors,
but scVelo incorrectly infers that the gene is globally downregulated, while VeloVAE correctly
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Fig. 4. VeloVAE Models Complex Kinetics in Bone Marrow Cells. UMAP plots colored by pub-
lished cell types overlaid with velocity inferred by (a) VeloVAE or (b) scVelo. (¢) Examples of individual
genes fit by scVelo and VeloVAE. Gene fits are shown for both u and s values, with inferred latent time
on the x-axis. Fitted values from scVelo are shown as lines, with observed data values shown as points.
Only fitted values are shown for VeloVAE, because the VeloVAE fit is a point cloud (rather than a line)
that would completely cover the observed data. Points are colored by published cluster assignments, with
the same colors as in the corresponding UMAP plots. Note that the x-axis values are different for scVelo
and VeloVAE because they infer different latent times. The arrow length and direction indicate the velocity
inferred for each cell. (d) UMAP plots colored by latent time inferred by VeloVAE and scVelo.
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models the expression dynamics (Fig. 4c). This reversed trend predicted by scVelo matches the
reversed scVelo streamplot observed for pDCs and B cell progenitors, suggesting that multiple
genes are likely fit in a similarly incorrect manner. As another example, the FHIT gene shows
complex, multi-lineage kinetics with distinct expression levels in T- and B-cell lineages. VeloVAE
can accurately model this behavior, while scVelo tries to collapse the expression levels into a single
global trend by rearranging cell times (Fig. 4c). Latent time from both methods is similar for many
cells, but VeloVAE is clearly more accurate for the rare differentiated populations, such as dendritic
cells, platelets, and plasmablasts (Fig. 4d).

2.6 VeloVAE Accurately Models Cell Differentiation Across the Whole Mouse Brain.

Single-cell technologies now enable large-scale measurement of differentiating cells across whole
organs or organisms, but modeling the emergence of cell fates at that scale remains extremely
challenging with existing computational approaches. For example, La Manno et al. recently published
an atlas of the entire developing mouse brain, but did not perform any RNA velocity analysis [18].
The dataset contains 292,495 cells of 22 major types and 798 subtypes, extracted between embryonic
days 7 and 18. Starting from late gastrulation, the neuronal lineage develops from neural tube and
neural crest cells. Neural crest cells differentiate into fibroblasts, while neural tube cells differentiate
into radial glia cells, which then branch into both neuronal and glial cell types.

As Figure 5a and b show, VeloVAE captured the cellular dynamics in all major lineages, while
the dynamical model from scVelo failed to capture the correct dynamics in the neuronal lineage.
This is also manifested in the gene expression dynamics (Fig. 5¢). Furthermore, the latent time from
VeloVAE is qualitatively close to the cell capture times, reflecting the true time order of the cells
(Fig. 5d).

In addition to the velocity and latent time inferred by VeloVAE, we also analyzed the inferred cell
states. Recall that the latent cell state inferred by VeloVAE is a low-dimensional embedding of mRNA
counts of each cell. To visualize these cell states, we generated 3D plots where the x-y plane is the 2D
UMAP [23] coordinates of cell states and z axis corresponds to the cell time (Supplementary Figure
S3f). As a comparison, we generated a 3D quiver plot whose x-y plane is 2D t-SNE [22] coordinates
provided by the authors and z axis is still the cell time (Supplementary Figure S4f). In this way, we
can visualize the whole differentiation process. In addition, our variational posterior also contains
the variance of the cell state. We define the cell state uncertainty as the multi-variate coefficient of
variation (CV) [34] of the cell state and visualize it in a t-SNE plot (Fig. e, Supplementary Figure
S5f). Similarly, we obtained time variance for each cell (Fig. 5f, Supplementary Figure S6f).

From these plots, we noticed an interesting phenomenon: multi-potent progenitor cells often
have very high cell state uncertainty. For example, radial glia cells in mouse brain development can
differentiate into both neuronal and non-neuronal types, so they have high cell state uncertainty. In
contrast, the more differentiated cell types show relatively lower cell state uncertainty. This suggests
that the cell state distributions learned by VeloVAE can capture biologically meaningful uncertainty
in the states of cells undergoing fate decisions.
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Fig. 5. VeloVAE Resolves Cellular Dynamics of Multiple Lineages Across the Entire Devel-
oping Mouse Brain. t-SNE plots colored by published cell types overlaid with velocity inferred by (a)
VeloVAE or (b) scVelo. (¢) Examples of individual genes fit by scVelo and VeloVAE. Gene fits are shown
for both v and s values, with inferred latent time on the x-axis. Fitted values from scVelo are shown as
lines, with observed data values shown as points. Only fitted values are shown for VeloVAE, because the
VeloVAE fit is a point cloud (rather than a line) that would completely cover the observed data. Points
are colored by published cluster assignments, with the same colors as in the corresponding UMAP plots.
Note that the x-axis values are different for scVelo and VeloVAE because they infer different latent times.
The arrow length and direction indicate the velocity inferred for each cell. (d) t-SNE plots colored by true
capture time and latent time inferred by VeloVAE and scVelo. (e)-(f) t-SNE plots colored by the cell state
uncertainty (e) and cell time variance (f) from VeloVAE.
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2.7 VeloVAE Accurately Models Organ Development in Whole Mouse Embryos.

The challenges of studying cell differentiation with single-cell data become particularly acute at the
scale of an entire organism. For example, Cao et al. performed single-cell RN A-seq on 61 entire mouse
embryos sampled from E9.5-E13.5, the developmental period when mouse organogenesis occurs [6].
The dataset contains 1,380,824 cells after preprocessing, which fall into 38 major cell types and can
divided into 10 major lineages. Pseudotime analysis and RNA velocity analysis have been performed
on this dataset, but both analyses were highly manual processes that required separate curation of
dozens of cell subsets [6, 27].

In principle, the continuous cell state variable of VeloVAE is sufficiently expressive to provide a
single model of the differentiation potential for an entire organism. To investigate this, we trained
VeloVAE on the mouse organogenesis dataset. Because of the large size and cellular diversity of this
dataset, we used a larger batch size of 2048 and increased the dimension of ¢ from 5 to 10. Our
results show that VeloVAE discovered a meaningful latent cell state space representing the whole
development process (Fig. 6a). To examine the results in more detail, we ran UMAP individually
on the same 10 broad cell lineages that were identified in the initial paper. Importantly, we per-
formed this subset analysis purely for visualization purposes—the cell time, cell state, and kinetic
rate parameters were estimated only once using all cells jointly (Supplementary Figure S7-S12).

These visualizations indicate that latent time and velocity estimates are highly consistent with
cell capture times and biological prior knowledge (Fig. 6b-e, Supplementary Figure S7,58). Re-
markably, the latent time estimates are even more accurate than the authors’ reported pseudotime
values in several cases. For example, the VeloVAE latent time estimates for the two lineages with
the most cells, mesenchyme and neural tube, both show a higher correlation with capture time
than the pseudotime estimates reported by Cao et al [6]. In particular, the pseudotime estimates
for the oligodendrocyte and neural progenitor cells are essentially uncorrelated with capture time,
whereas the VeloVAE results proceed in the direction of increasing embryonic stage (Fig. 6d). Simi-
larly, the pseudotime estimates for skeletal muscle cells are actually anticorrelated with cell capture
times, and the pseudotimes of developing connective tissue cells substantially underestimate their
developmental progress (Fig. Ge).

These results are remarkable because the pseudotime values were generated by the developers of
Monocle3—one of the most popular pseudotime methods—on their own data using their own tool in
a highly manual process. Cao et al. used expert knowledge to group cells into “subtrajectories” and
choose root cells for each. In contrast, we obtained the VeloVAE results by simply running the model
jointly on all cells with no manual curation. The accuracy of the VeloVAE latent time estimates
underscores the power of this approach for studying cell differentiation in large, complex, multi-
lineage single-cell datasets. This comparison also highlights the inherent difficulty of pseudotime
analysis in such complex datasets, particularly when the continuous nature of differentiation and
the presence of multiple “root cell” populations make it very challenging to divide the cells into
discrete subtrajectories.

In comparing latent time and pseudotime values, we realized that the latent time values offer
another advantage: they can be assigned real time units. Because we use the capture times as prior
information, this places the inferred latent time on the same scale as the capture times. That is, with
appropriate normalization, we can report the latent times in units of days or hours. Consequently,
the rate parameters can also be assigned units, such as transcripts per minute. To explore this,
we converted the latent time values into units of minutes and normalized the transcription rate
parameters to the absolute number of transcripts in a typical mammalian cell. This shows that the
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transcription rates are roughly on the order of 1-10 transcripts per minute for most genes (Fig. S13),
in accordance with previous estimates from single-molecule FISH experiments [11]. The splicing rates
are predicted to be slightly lower, on the order of 0.1-1 transcripts per minute. This is consistent with
a previous study that estimated the elongation rate in human cells at 3.8 kb/min and found that
splicing begins within 10 min [30]. Our estimated degradation rates are similar to the transcription
rates, on the order of 1-10 transcripts per minute. Though these estimates should not be taken as
definitive, we find it reassuring that our estimated rate parameters are on roughly the correct order
of magnitude compared with prior knowledge.

3 Discussion

The VeloVAE model uses variational Bayesian inference to estimate cell differentiation progress,
cell state, and kinetic rate parameters in a statistically principled fashion. Our approach not only
improves gene fitting in many cases, but also resolves some of the key limitations of previous RNA
velocity methods. The expressiveness of neural networks makes it possible to adapt the model to
various types of gene expression kinetics in biological differentiation systems of varying complexity.
Moreover, this model expressiveness does not come at the cost of interpretability; we still learn a
set of rate parameters with direct biophysical interpretations. Another key advantage of VeloVAE is
that it can perform inference using only the unspliced and spliced mRNA counts from a set of cells,
but is also able to incorporate additional prior information such as cell capture times when available.
Additionally, the use of mini-batch stochastic gradient descent allows the method to process large
datasets without loading all cells into memory at once.

These advantages of VeloVAE make the RNA velocity results much more useful and interpretable
in several ways. First, the latent times inferred by the model are sufficiently accurate that they can be
used to order cells according to differentiation progress—with even higher accuracy than pseudotime
inference in some cases. Second, the ability to use cell capture times as a prior distribution places
the inferred cell times on a time scale with known units (e.g., hours or days). Knowing the time
units also gives the kinetic rate parameters a more direct interpretation. Furthermore, the fitted
and extrapolated values are now qualitatively accurate for individual genes—in contrast to results
from previous RNA velocity methods, where the individual gene fits are often poor even when
the global latent time and stream plots are reasonable. This opens up many new applications in
which knowing the direction and rate of change for an individual gene is important, rather than
simply a qualitative, global visualization. For example, one could now perform direct comparison of
the times at which different genes are transcribed, revealing the relative order in which genes are
activated. Additionally, we showed that the latent time results and future cell state predictions are
sufficiently accurate that they can be used to infer transition graphs among cell types in many cases.
Finally, our branching ODE model provides important insights into how transcription, splicing, and
degradation rates change during cell type bifurcations, which holds promise for understanding the
factors regulating cell fate decisions.

4 Code and Data Availability

Our code is available at https://github.com/welch-lab/VeloVAE. All datasets analyzed in the paper
are previously published and freely available.
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7 Methods

7.1 Problem Setup

We are interested in the following problem that arises in the context of modeling cellular gene expres-
sion changes. Each sample (cell), indexed by i, is represented by a vector X;(¢) € R? parametrized by
time t. The trajectory X;(t) is governed by some differential equation plus random noise. However,
for each 4, only the vector x; := X;(¢;) is observed at some unknown time ¢;. Our goal is two-fold:
recover the latent time ¢; for each sample and predict future states, i.e., X;(¢t) for t > ;.

The key biochemical insight underlying our approach is that to express a gene, two types of RNA,
nascent unspliced and mature spliced RNA, are produced sequentially. Increases in the unspliced
count (u) for a gene must precede increases in the spliced count (s). This simple insight makes it
possible to recover the ordering of cells lacking time labels.

We assume that a dynamical system F'(¢;0) generates scRNA count data. Here, 0 is a set of
parameters describing the system, such as the transcription, splicing and degradation rates. Our
goal is to use observed scRNA data to simultaneously estimate the parameters 8 of F' and infer the
unknown cell times .

Definition 1. Let uy and sy denote the unspliced and spliced mRNA count of the g-th gene. Let
G =1{1,2,...,G} be a set of genes measured in an scRNA-seq experiment. The feature vector of
a cell is defined as x = [u1,uz, ..., ug, 51,52 -.,5c|" .

Definition 2. The kinetic equation of gene g is defined as a system of ordinary differential
equations relating changes in u and s over time. If there exists a solution F'(t;0) to the initial value
problem with u(0) = ug, $(0) = sg, we call this solution the kinetic function for g.

Definition 3. Given a kinetic function u(t) and s(t) of a gene, the RNA wvelocity of the gene is
d

defined as .

7.2 Modeling Gene Expression Kinetics

In previous work [19], the kinetic equation is modeled by a system of two linear ODEs:

du ds

P :Oéf{t<toff} — Bu, at = fu — s, (1)
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where Iy is an indicator function for the condition in brackets. The model parameters «, 3 and
~ correspond to the RNA transcription, splicing and degradation rates, respectively. The model
assumes that two discrete phases can occur in the gene expression process: (1) induction, when new
unspliced RNA molecules are being transcribed (2) repression, when the transcription process stops
and no new unspliced molecules are made. The induction phase is assumed to start at t,, = 0
and the transition from induction to repression occurs at time t,¢¢. Given an initial condition
u(0) = ug, $(0) = sp, the analytical solution to the ODE is

ult) = ug exp(—B7) + % (1 - exp(—B7)) (2)

s(t) = spexp(=17) + = (1 = exply7)) + L0 (expl—7) ~ exp(~67)) 3)

o= alpper, ) 7= e, + (= topr) Ie>t,, )

7.3 Variational Mixture of ODE Model

ODE Formulation. We adopt an ODE formulation similar to (1), except that the transcription
rate for each gene is not a single constant o anymore. Instead, we assume that the kinetic equation is
a continuous mixture of ODEs with transcription rate parameters a = pa. The relative transcription
rate p € [0,1] is a function of latent cell state ¢, and thus may be slightly different in each cell. The

new kinetic equation is:
%:pa—ﬂu, %zﬁu—vs (4)
Note that there are no longer discrete induction and repression phases. This can be viewed as
a generalization of (1), since p = 1 and p = 0 correspond to the discrete induction and repression
phases, respectively, used in the simpler formulation. Because p is constant with respect to time,
we can still solve the kinetic equation analytically to obtain a closed form for the kinetic function
F(t;0) in terms of «, B, v, and p. The solution is the same as (2) and (3) except that & = pa.
Note also that for each gene, «, 3, and « are still shared across cells. This model can now capture

continuous transcription changes such as those in a bifurcating developmental process.

Generative Process. The generative process for the variational mixture of ODE model is as
follows:

t ~ N(ty,0), ¢ ~ N(0,1)

a=poa, p=yg(c;b,)

x ~N(F(;0),X,)
Here, g(-) is a neural network with parameters 6,, © is the elementwise product, F' is the kinetic
function of all genes, and X, is a diagonal covariance matrix. This generative process relies on a
function g mapping latent cell states ¢ to relative transcription rates p. Intuitively, the cell states
can model continuous and bifurcating developmental paths, allowing the entire set of cells to be
described as a family of ODEs whose parameters vary smoothly over the cell state manifold. Even
though the mapping function g is unknown and the posterior of ¢ and ¢ is intractable, we can apply
variational inference to fit a variational mixture of ODEs.
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Parameter Inference and Neural Network Architecture. We train VeloVAE using the stan-
dard mini-batch stochastic gradient descent. The training objective function is the evidence lower
bound (ELBO):

N

ELBO = ZEq(c,t\x;) [log p(xilc,t)] — K L(gq(c,t|x;i)||p(c, t)) (5)

i=1
We assume the prior p(c,t) = p(c)p(t) is a multi-variate Gaussian distribution where p(c) is isotropic
Gaussian and p(t) ~ N(to,03). However, the model can take an informative time prior p/(t) ~
N (teap, 0?) if a cell-wise capture time tcqp is available. In this case, og is proportional to the time
interval between two adjacent capture time points.

The encoder of VeloVAE is a multi-layer perceptron (MLP) with 2 hidden layers and 4 output
layers representing the variational posterior mean and standard deviation of ¢ and t. We use an
MLP that is the mirror image of h (two layers with 250 and 500 neurons, respectively) to learn the
mapping g from c to p.

Note that we use stochastic gradient descent (SGD) to estimate the ODE rate parameters, unlike
scVelo, which used the Nelder-Mead simplex algorithm [24]. The use of SGD instead of Nelder-Mead
allows us to use a unified optimization strategy for neural network and ODE parameters, as well as
to avoid using all cells at each iteration by loading individual minibatches.

Initial Conditions. Because each cell potentially has different ODE parameters, determining the
initial conditions is more complex than in the scVelo model. Thus, instead of making the initial con-
ditions trainable parameters, we simply train the model with uy = sg = 0 in all of our experiments.
This still yields excellent data reconstruction and latent time inference. However, the initial condi-
tions are important for accurately predicting the future state of each cell. To improve the accuracy
of future state prediction, we first train the VeloVAE to convergence using ug = sg = 0 so that
latent times and cell states are accurate, then determine the initial conditions for a cell at time ¢ by
simply averaging the (u, s) values observed in an immediately preceding time interval [t — §1,t — d2].
We then fine-tune the ODE parameters using these updated initial conditions, keeping latent time
and cell state fixed.

Estimating ODE Parameter Uncertainty The VAE model can be extended [16] to account
for uncertainty in the parameters of the generative model, which in our case are the kinetic rate
parameters of the ODE system. Let 0 be the set of all ODE parameters. We assume that some prior
distribution px (@) generates the parameters. Similar to the (intractable) problem of inferring the
latent cell time and state variables, we can use a variational approximation of the posterior ¢4(8).
The marginal likelihood of the input features can be bounded by

logy(X) > Ey, (0) [log (po(X))] — KL (4(8)Ipx(8))

> B,y 0) [ELBO(X: 0)] — KL (44(6)|[pA(9))

For the prior px(8), we choose a factorized log-normal distribution, i.e. each rate parameter «,
or v is a random variable drawn from a log-normal distribution. By default, the logarithm of rate
parameters has a mean of zero and a standard deviation of 1 for a and 0.5 for 8 and ~y. The posterior
mean is initialized using the same method described in the previous paragraph. Again, we can apply
the reparameterization trick to take samples of 8 and estimate the expectation of ELBO with a
sample mean. The KL divergence between ¢, (0) and px (@) can be viewed as a regularization of the
ODE parameters.
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This statistical approach also has a nice intuition in our case: it prevents the “vanishing velocity”
problem. If we don’t regularize («, 8,7), optimizing the evidence lower bound may lead to large rate
parameters, so that e #7 ~ e~7" ~ 1. This in turn causes the velocity to vanish so that each cell
will be approximately at the steady state, with u ~ % and s = %. Because p is given by a neural
network g, we can achieve good reconstruction if g is expressive enough, but the velocity will be
close to zero. This issue is resolved by placing a prior distribution on the rates and including them
in the variational approximation. This has the effect of regularizing the posterior distribution of the
rates toward their prior, avoiding the vanishing velocity problem.

Interpreting Rate Parameters. Although the model accepts any notion of time and rates, the
units can be converted to match the actual units of cell developmental time, usually in days. Suppose
the cell time from the model ranges from ¢y to t;, in a hypothetical time unit, and we have prior
knowledge about the entire duration of m days. From the mathematical property of our ODE system,
we know that scaling time by k and rate parameters («,3,7) by % results in the same u and s. Thus,
we can perform unit analysis to convert the rates into units of minutes as follows:

N molecule W ty —to (molecule 1440(t1—t0)a molecule
time unit / m day N m minute

.. 1 _ 1440(t1—to) 1 1 _ 1440(t1—to) 1
Similarly, 8 (time unit) = oo B (minute) and (time unit) = m v (minute)

We can then scale the rate parameters to account for the fact that scRNA-seq captures only
a fraction of the transcripts in a cell. A typical mammalian cell contains about 360000 mRNAs*.
Therefore, we can scale o by %, where Ziotq; is the median total mRNA count number. We
analyzed rate parameters learned from our model, converted the units and computed the histograms
(Supplementary Figure S13). For «, we analyzed the peak transcription rate by considering the case
of highest transcription (p = 1). For § and +, we multiplied them by w,, and s, respectively to
obtain the same units as «. Here, us,, and s;,, are the 95-percentile v and s values, representing

cells with high expression levels.

7.4 Data Preprocessing

We loaded all datasets from AnnData (hb5ad) format. We first used scanpy [38] to select highly
variable genes, normalize and scale the gene expression counts. Next, we followed the scVelo prepro-
cessing pipeline by performing principal component analysis on the normalized and scaled expression
data, then smoothing the unspliced and spliced expression levels among k-nearest neighbors identi-
fied from the principal components.

7.5 Parameter Initialization

The neural network weights are randomly initialized with Xavier uniform distributions. The only
exception is the output layer of the decoder network, which is initialized with Xavier normal distri-
butions, to prevent gradient vanishing of the sigmoid activation. VeloVAE applies the same initial-
ization method as scVelo by applying the steady-state assumption and the dynamical model. Next,
a global cell time is estimated as the median of locally initialized time across all genes.

* https://www.qiagen.com/us/resources/faq?id=06a192c2-e72d-42e8-9b40-3171elebdchs
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If capture times are available, VeloVAE initializes a unique cell time by directly sampling from
a distribution centered at the real time. Whether the initial global time is estimated by the steady-
state model or directly sampling from capture time, rate parameters are always re-estimated based
on the dynamical model. We still make the assumption that g = 1. First, switch-off time is estimated
as the average global cell time of the steady-state cells. Next, we estimate o and the switch-on time
ton Dy solving a set of equations using two cells with their initialized cell time (u1,t1), (us2,t2):

ul — g (1 _ e_ﬂ(tl_ton))

g
U2 — % (1 _ e_ﬂ(t2—ton))
log(uy — u2) _ Buy

= top =

ujetz — UQ€_t1 = (1 — e~ B(t1 —ton))

Note that u; and wuy are chosen as the sample average around the median and top quantile of u
values to promote robustness against noise. Finally, v is estimated by % where s, is the estimated
steady-state s value.

7.6 Branching ODE

Model Description A variational mixture of ODEs provides sufficient flexibility to account for
complex kinetics, but only describes cell-wise kinetics. In order to distill qualitative knowledge about
gene expression kinetics and reveal cell-type relations, we propose a new ODE model called branching
ODE.

The fundamental assumptions we make about branching ODE include:

1. Each cell belongs to exactly one of the cell types y1, ..., yk-

2. At least one of the cell types is a stem cell type. Each non-stem-cell type is a descendant of exactly
one other cell type. (Note that we could relax this assumption to allow multiple progenitors, but
we choose not to purely for simplicity.) Each cell type has an initial time ¢y when it emerges in
the differentiation process.

3. Cells of the same type, y, share identical transcription, splicing and degradation rates (v, By, vy )-

With these assumptions, we can summarize differentiation with directed cell type transition graph
G=(V={v1,...,u:},E), called a transition graph. Each cell type corresponds to a vertex in G,
and each edge (u,v) represents the relation of u differentiating into v. By our second assumption, G
is composed of one or multiple trees. The kinetic functions retain the same analytical form, except
for type-specific rate parameters and initial conditions. Furthermore, the equations are defined
recursively because the initial condition of any non-stem-cell type depends on its progenitor cell

type.
s, Q Bl
ult,y) = uo(y)e™7 + T (1 - 7007 (6)
By
s(t,y) = soy)e W™ 4 ¥ (1—e ) + ay — Byuo(y) (677 — e 7) (7)
Yy Yy — By
] uinae y is a stem cell type
uo(y) = {u(to(y),par(y)) otherwise (8)

| Sinat y is a stem cell type
so(y) = {s(to(y),par(y)) otherwise (9)
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Here, par(-) refers to the parent vertex in the transition graph. Note that 7 is redefined as 7 :=
t — to(y) for each cell type y, i.e. 7 is the time duration starting from the initial time of each cell

type.

Inferring the Transition Graph. A challenging problem for applying branching ODE is the
absence of the transition graph. In many cases, we do have some prior knowledge of the transition
graph, but it is more desirable to simply infer the graph directly from the data when possible.
Therefore, we apply a computational method to infer the transition graph based on cell time and
states. Because the transition graph is a collection of arborescences, i.e. rooted trees in a directed
graph, we can solve the problem with simple graph algorithms.

First, we partition the cells into distinct cluster(s). In particular, we perform Leiden clustering
with a low resolution on the UMAP coordinates of the data.

Next, we build a complete subgraph in each partition. Let Z be the set of all cells and Z(y) be
the set of all cells of type y in a partition. For each cell i € 7 with time t;, we take a time window
[t; — 01, t; — 2] and find k nearest neighbors based on cell state c. Denote J; as the set of neighbors
of 7. Then, for any two cell types y and z, the empirical transition probability from y to z is defined

as
Ply,2) = Yiez(z) [T NZ(y)]
’ Liez(z il
In other words, we group cells into the cell types and count the number of transitions from any cell
type to any other type.

Finally, we apply Edmond’s algorithm [9] to find the maximum spanning arborescence in each
partition. The earliest cell type is choosen to be the root. The algorithm starts by picking the parent
y of each non-root vertex z greedily, i.e. y = argmax, P(v, z). Next, it checks loops, collapses loops
into super-vertices and is recursively applied to the new graph until no loop exists. Finally, it breaks
the loops after each level of recursion.

(10)

Training the Branching ODE. We assume that the cell time has already been inferred from
VeloVAE. Thus, the branching ODE is a regression model with an analytical form shown in equation
(6), (7). To train the model, we find the cell-type-specific rate parameters @ that maximize the
Gaussian likelihood, which is equivalent to minimizing a Mahalanobis distance:

min D (®(t:0) — x)"B(k(t;0) — x) (11)
i=1

Here, % is predicted expression level. We train using mini-batch stochastic gradient descent with the
ADAM optimizer.
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Fig. S1. Comparison of fitted gene log likelihood. We compared VeloVAE with fixed rate (only time
in the latent space), VeloVAE and scVelo. The gene total likelihood assumes Gaussian likelihood and is
computed by taking the mean of the sum of gene log likelihood. The y-axis is truncated to better show the
difference between VeloVAE (fixed rate) and VeloVAE. Note that we only compared the genes which scVelo
fitted with a positive likelihood, as there are genes scVelo didn’t fit or fitted with zero likelihood.
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Fig. S2. Histogram of scVelo time correlation. We computed the the Spearman correlation between
scVelo locally fitted (gene-specific) time and scVelo global latent time for six datasets. This gives a correlation
value for each fitted gene. The figures shows a histogram of these correlations for pancreas (a), erythroid
(b), subsampled mouse brain (c), iPSC (d), human bone marrow (e) and full mouse brain (f).
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Fig. S3. Cell state-time plot. 2D UMAP embeddings of the latent cell state ¢ plotted versus inferred
latent time. Each plot has the 2D UMAP embedding as the x-y plane and cell time as the z axis. The plots
can be interpreted as time evolution of the cell state space. The seven panels correspond to pancreas (a),
erythroid (b), subsampled mouse brain (c), iPSC (d), human bone marrow (e), full mouse brain (f) and
mouse embryo (g).
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d

Fig. S4. 3D velocity plot. 3D plots computed as described in Fig. S3, with velocity vectors added. The
x-y plane is either UMAP (a-e) or t-SNE (f-g) coordinates. The 3D embedding is computed by averaging
displacement vectors towards k neareast neighbors in the immediate future, i.e. arrows point upwards along
the z axis. The seven panels correspond to pancreas (a), erythroid (b), subsampled mouse brain(c), iPSC
(d), human bone marrow (e), full mouse brain (f) and mouse embryo (g).
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Fig. S5. Inferred cell state uncertainty. Each panel shows a UMAP or t-SNE plot colored by the
multi-variate coefficient of variation of the cell state. Cell state is a continuous identification of cell type,
so conceptually it should have high uncertainty in progenitor cell types, as cell fate is undetermined. Our
results verified this intuition as well as the capability of learning meaningful representations using VeloVAE.
The 7 panels correspond to pancreas (a), erythroid (b), subsampled mouse brain (c), iPSC (d), human
bone marrow (e), full mouse brain (f) and mouse embryo (g).
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Fig.S6. Time variance in test datasets. Each panel shows a UMAP or t-SNE plot colored by the
coefficient of variation of the inferred cell time. The 7 panels correspond to pancreas (a), erythroid (b),
subsampled mouse brain(c), iPSC (d), human bone marrow (e), full mouse brain (f) and mouse embryo
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Fig. S7. Latent time of major trajectories from the mouse embryo. We compare the capture time,
monocle 3 pseudotime and VeloVAE latent time by showing the UMAP plots colored by latent time of
ten major trajectories in the embryo dataset: endothelial(a), epithelial (b), haematopoiesis (c¢), hepatic
(d), mesenchymal (e), melanocyte (f), PNS glia (g), PNS neuron (h) and neural tube and notochord (i)
trajectories.
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Fig. S8. Velocity stream plots for major trajectories from the mouse embryo. We plotted the
velocity embedding on UMAP coordinates of ten major trajectories in the embryo dataset: endothelial (a),
epithelial (b), haematopoiesis (c), hepatic (d), mesenchymal (e), melanocyte (f), PNS glia(g), PNS neuron
(h) and neural tube and notochord (i) trajectories.
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Fig. S9. Cell state uncertainty in major mouse embryo trajectories. Each panel shows a UMAP plot
colored by the multi-variate coefficient of variation of the cell state. The 10 panels correspond to endothelial
(a), epithelial (b), haematopoiesis (c), hepatic (d), mesenchymal (e), melanocyte (f), PNS glia (g), PNS
neuron (h) and neural tube and notochord(i) trajectories in the mouse embryo dataset.
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Fig. S10. Cell time variance in major mouse embryo trajectories. Each panel shows a UMAP plot
colored by the coefficient of variation of the cell time. The 10 panels correspond to endothelial (a), epithelial
(b), haematopoiesis (c), hepatic (d), mesenchymal (e), melanocyte (f), PNS glia (g), PNS neuron (h) and
neural tube and notochord (i) trajectories in the mouse embryo dataset.
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Fig.S11. Cell state-time plot. We computed 2D UMAP embeddings of the latent cell state ¢ and
plot it versus inferred latent time. Following the setting of the original work, we used cosine distance and
15 neighbors. The 10 panels correspond to endothelial (a), epithelial (b), haematopoiesis (c), hepatic

(d), mesenchymal (e), melanocyte (f), PNS glia(g), PNS neuron (h) and neural tube and notochord (i)
trajectories in the mouse embryo dataset.
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Fig. S12. 3D velocity plot. 3D velocity plot computed as described in Fig. S4. The 10 panels correspond
to endothelial (a), epithelial (b), haematopoiesis (c), hepatic (d), mesenchymal (e), melanocyte (f), PNS
glia (g), PNS neuron (h) and neural tube and notochord (i) trajectories in the mouse embryo dataset.
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Fig. S13. Rate parameter histograms. Histograms of transcription, splicing and degradation rates es-
timated by VeloVAE. The histogram is computed across genes within each dataset. Transcription rates are
reported for rho = 1. For splicing and degradation, we report Su and 7s to match the unit of « (mRNA /
minute). Here, u and s are chosen to be half of the 95th-percentile count number. The 5 panels correspond to
erythroid (a), iPSC (b), subsampled mouse brain (c), full mouse brain (d), and mouse embryo (i) datasets.
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Parameter Name Value Notes
h1 500 Width of the first hidden encoder layer/second decoder layer
ha 250 Width of the second hidden encoder layer/first decoder layer
n_epochs 1000 Number of (maximum) training epochs
n_epochs_post 1000 Number of (maximum) refining epochs
batch_size 128 Number of samples in a mini-batch
learning_rate 2 x 10™* |Gradient descent learning rate of neural network parameters

learning rate_ode| 5 x 10™*  |Gradient descent learning rate of ODE parameters

A 1x1073 L2 regularization coefficient of the encoder network.
Ap 1x107* |L2 regularization coefficient of the decoder p-network
kl_t 1.0 time KL divergence coefficient
klc 1.0 cell state KL divergence coefficient
test_iter 2 number of epochs between two consecutive tests on the validation data
n_warmup 5 number of initial epochs when only the neural network parameters are updated
early_stop 5 number of consecutive epochs in the early stopping criteria

early_stop_thred |# gene x 10~3|ELBO change threshold in the early stopping criteria

train_test_split 0.7 proportion of training samples out of the entire dataset
k_alt 1 number of iterations before each update of the ODE parameters

train_scaling False whether to train the scaling parameter of unspliced counts

train_std False whether to train the standard deviation of Gaussian noise

train_ton True whether to train the switch-on time of each gene
time_overlap 0.5 overlap proportion between two informative time prior distributions
n_neighbors 10 number of neighbors in time-window KNN initial condition estimation

dt (0.03,0.06) |coefficient of the edges of the time window in KNN initial condition estimation

Table S1. Default Hyperparameters of VeloVAE. We trained our model with minimal change to the
default hyperparameters. The only changes we made include (1) setting early_stop to 9 and train_ton to
False for the erythroid dataset (2) increasing the batch size to 2048 and n_neighbors to 30 for the mouse
embryo dataset.


https://doi.org/10.1101/2022.07.08.499381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.08.499381; this version posted July 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Bayesian Inference of RNA Velocity from Multi-Lineage Single-Cell Data 39
Parameter Name Value Notes
n_epochs 500 Number of (maximum) training epochs
batch_size 128 Number of samples in a mini-batch
learning_rate 2x107% |Gradient descent learning rate of ODE parameters
n_updaet_noise 25 number of epochs before each update of the noise variance
test_iter 2 number of epochs between two consecutive tests on the validation data
early_stop 5 number of consecutive epochs in the early stopping criteria
early_stop_thred |# gene x 10~3|ELBO change threshold in the early stopping criteria
train_test_split 0.7 proportion of training samples out of the entire dataset
train_scaling False whether to train the scaling parameter of unspliced counts

Table S2. Default Hyperparameters of Branching ODE.
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