

1 **TITLE: COR27/28 Regulate the Evening Transcriptional Activity of the RVE8-LNK1/2**  
2 **Circadian Complex**

3

4 Maria L. Sorkin<sup>a,b</sup>, Shin-Cheng Tzeng<sup>a</sup>, Andrés Romanowski<sup>c,1</sup>, Nikolai Kahle<sup>d</sup>, Rebecca  
5 Bindbeutel<sup>a</sup>, Andreas Hiltbrunner<sup>d,e</sup>, Marcelo J. Yanovsky<sup>c</sup>, Bradley S. Evans<sup>a</sup>, and Dmitri A.  
6 Nusinow<sup>a,2</sup>

7 <sup>a</sup>Donald Danforth Plant Science Center, St. Louis, MO, USA.

8 <sup>b</sup>Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis,  
9 MO, USA

10 <sup>c</sup>Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo  
11 Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

12 <sup>d</sup>Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany

13 <sup>e</sup>Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany

14

15 <sup>1</sup>current address: Department of Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands

16 <sup>2</sup>to whom correspondence may be addressed. Email: [meter@danforthcenter.org](mailto:meter@danforthcenter.org)

17

18

19 Running title: Identification of the RVE8-LNK-COR27/28 regulatory complex

20

21

22

23

24

25

26

27

28 **Abstract**

29 The timing of many molecular and physiological processes in plants occurs at a specific time of  
30 day. These daily rhythms are driven by the circadian clock, a master timekeeper that uses daylength  
31 and temperature to maintain rhythms of approximately 24 hours in various clock-regulated  
32 phenotypes. The circadian MYB-like transcription factor REVEILLE 8 (RVE8) interacts with its  
33 transcriptional coactivators NIGHT LIGHT INDUCIBLE AND CLOCK REGULATED 1  
34 (LNK1) and LNK2 to promote the expression of evening-phased clock genes and cold tolerance  
35 factors. While genetic approaches have commonly been used to discover new connections within  
36 the clock and between other pathways, here we use affinity purification coupled with mass  
37 spectrometry to discover time-of-day-specific protein interactors of the RVE8-LNK1/2 complex.  
38 Among the interactors of RVE8/LNK1/LNK2 were COLD REGULATED GENE 27 (COR27)  
39 and COR28, which were coprecipitated in an evening-specific manner. In addition to COR27/28,  
40 we found an enrichment of temperature-related interactors that led us to establish a novel role for  
41 LNK1/2 in temperature entrainment of the clock. We established that RVE8, LNK1, and either  
42 COR27 or COR28 form a tripartite complex in yeast and that the effect of this interaction *in planta*  
43 serves to antagonize transcriptional activation of RVE8 target genes through mediating RVE8  
44 protein degradation in the evening. Together, these results illustrate how a proteomic approach  
45 identified time-of-day-specific protein interactions and a novel RVE8-LNK-COR protein complex  
46 that implicates a new regulatory mechanism for circadian and temperature signaling pathways.

47

48 **Introduction**

49 Daily and seasonal patterns in daylength and temperature cycles are two of the most  
50 dependable environmental cues an organism experiences. As such, lifeforms in every kingdom  
51 have evolved a mechanism to anticipate and synchronize their biology with the earth's predictable  
52 24-hour and 365-day cycles (Ouyang et al., 1998; Rosbash, 2009; Edgar et al., 2012). This  
53 mechanism is called the circadian clock, which in plants consists of approximately 20-30 genes  
54 that participate in transcription-translation feedback loops to produce rhythms with a period of  
55 about 24 hours (Creux and Harmer, 2019). These core oscillator genes respond to the environment  
56 by producing a physiological response appropriate for a particular time of day or year (Webb et  
57 al., 2019). In plants, the clock regulates a variety of phenotypic outputs, including the transition

58 from vegetative to reproductive growth, biotic defense responses, and protection from abiotic  
59 stressors such as extreme warm or cold temperature (Greenham and McClung, 2015).

60 Identification of circadian-associated genes has been critical in understanding the  
61 generation of biological rhythms. Core oscillator components often exhibit rhythmic gene  
62 expression with a period of ~24 hours and a set phase—or time of peak and trough expression. For  
63 example, two of the first genes to be defined as core oscillator components in the model plant  
64 *Arabidopsis thaliana* (Arabidopsis) are the morning-phased MYB-like transcription factors  
65 *CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)* and *LATE ELONGATED HYPOCOTYL (LHY)*  
66 (Schaffer et al., 1998; Wang and Tobin, 1998; Green and Tobin, 1999). These genes are highly  
67 expressed at dawn and repress the expression of the afternoon- and evening-phased *PSEUDO*  
68 *RESPONSE REGULATOR* genes *PRR1/TIMING OF CAB EXPRESSION 1 (TOC1)*, *PRR5*, *PRR7*,  
69 and *PRR9* (Alabadí et al., 2001; Farré et al., 2005; Kamioka et al., 2016). The *PRRs* reciprocally  
70 repress *CCA1/LHY*, completing one of the negative feedback loops that define the clock. In the  
71 evening, *EARLY FLOWERING 3 (ELF3)*, *ELF4*, and *LUX ARRHYTHMO (LUX)* interact in the  
72 nucleus to form a tripartite protein complex called the evening complex, which represses *PRR9*,  
73 *CCA1/LHY*, and other clock and growth-promoting factors (Dixon et al., 2011; Nusinow et al.,  
74 2011; Chow et al., 2012; Herrero et al., 2012). As we discover new connections within and between  
75 the clock, we enhance our understanding of this important system.

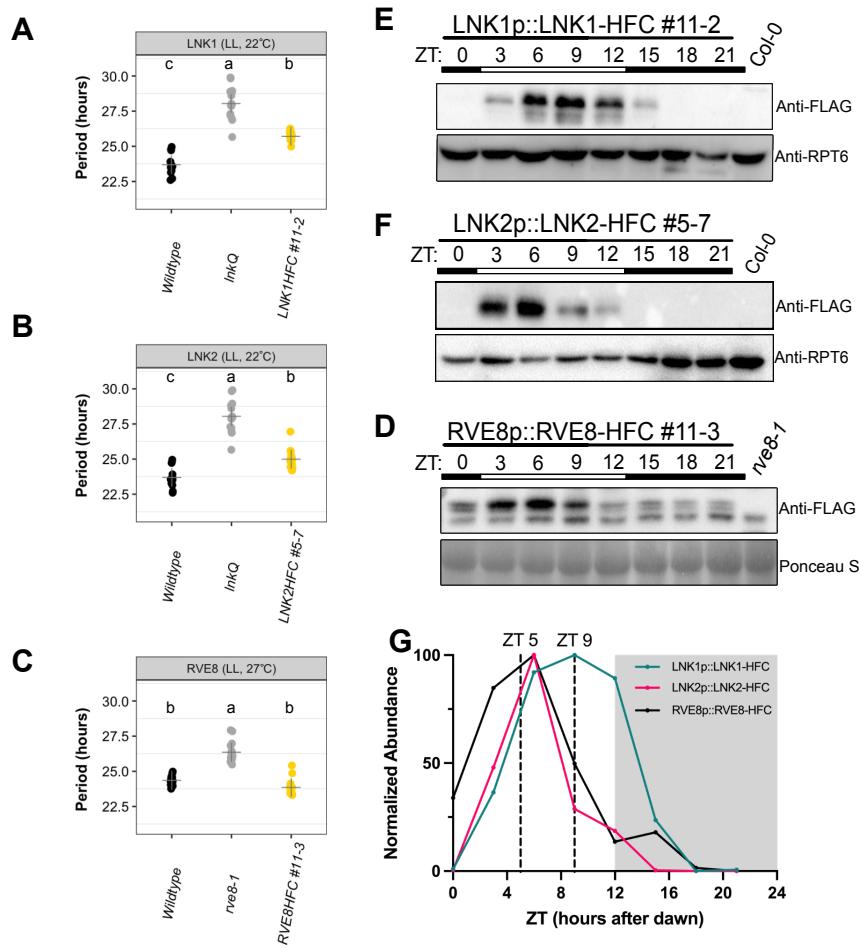
76 In this study, we used affinity purification coupled with mass spectrometry (APMS) to  
77 identify protein-protein interactions associated with the REVEILLE 8 (RVE8)-NIGHT LIGHT-  
78 INDUCIBLE AND CLOCK-REGULATED 1 (LNK1)/LNK2 circadian transcriptional complex.  
79 The RVEs are an 8-member family of CCA1/LHY-like transcription factors of which some  
80 members interact with the LNK proteins to coregulate target gene expression (Rawat et al., 2011;  
81 Rughone et al., 2013; Xie et al., 2014; Pérez-García et al., 2015; Gray et al., 2017). In the late  
82 morning, the RVE8-LNK1/2 transcriptional complex activates the expression of evening-  
83 expressed clock genes such as *TOC1* and *PRR5* via recruitment of the basal transcriptional  
84 machinery to these and other *RVE8* target promoters (Xie et al., 2014; Ma et al., 2018). Conversely,  
85 *LNK1/2* are also known to act as corepressors of other *RVE8* targets, such as the anthocyanin  
86 structural gene *UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UF3GT)*  
87 (Pérez-García et al., 2015). Additionally, LNK1/2 interact with another transcription factor,  
88 MYB3, as corepressors to inhibit the expression of the phenylpropanoid biosynthesis gene *C4H*

89 (Zhou et al., 2017). The mechanism behind the corepressive function of the LNKs and how they  
90 switch between an activating and a repressive role is unknown.

91 LNK1/2 bind to RVE8 and MYB3 via two conserved arginine/asparagine-containing  
92 motifs called R1/R2 located in the LNK C-terminus (Xie et al., 2014; Zhou et al., 2017).  
93 Additionally, the Extra N-terminal Tail (ENT) domain present in LNK1/2 but not LNK3/4 is  
94 required for their repressive activity with MYB3 (Zhou et al., 2017). The LNKs have no other  
95 known functional protein domains apart from these regions. RVE8 and the other RVEs are  
96 characterized by the presence of a LHY-/CCA1-LIKE (LCL) domain, which can directly bind the  
97 LNKs, presumably at the C-terminus (de Leone et al., 2018; Ma et al., 2018). RVE8 target gene  
98 promoters frequently contain the canonical *CCA1/LHY*-binding motif called the evening element  
99 (EE) as well as G-box-like and morning element (ME)-like motifs (Hsu et al., 2013a).

100 In addition to regulating circadian rhythms, *RVE4/8* regulate thermotolerance under both  
101 high and low temperatures (Li et al., 2019; Kidokoro et al., 2021). After exposure to heat shock,  
102 *RVE4/8* upregulate the expression of *ETHYLENE RESPONSIVE FACTOR 53 (ERF53)* and  
103 *ERF54*, boosting the plant's heat shock tolerance (Li et al., 2019). In another study, the authors  
104 found that *RVE4/8* also appear to promote freezing tolerance via activation of *DEHYDRATION-*  
105 *RESPONSIVE ELEMENT BINDING PROTEIN 1A (DREB1A*, also referred to as *C-REPEAT*  
106 *BINDING FACTOR 3, CBF3*) when grown at 4°C (Kidokoro et al., 2021). A corresponding  
107 association between temperature and the LNKs has not been well studied, although EC-mediated  
108 induction of *LNK1* expression under warm nights suggests a role for the LNKs in temperature  
109 responses (Mizuno et al., 2014).

110 Our proteomic approach presented here establishes novel protein interactions with the  
111 RVE8-LNK1/2 transcriptional complex at ZT5 and ZT9. Although these clock bait proteins exhibit  
112 peak mRNA expression in the early morning hours, we found that LNK1 and RVE8 interact with  
113 more protein partners at the later ZT9 timepoint than at ZT5. Temperature response related GO  
114 terms were significantly enriched among the coprecipitated proteins, prompting us to explore and  
115 establish a role for LNK1/2 in temperature entrainment of the clock. Among the temperature-  
116 related coprecipitated proteins were COLD REGULATED GENE 27 (COR27) and COR28, which  
117 only coprecipitated with RVE8/LNK1/LNK2 at ZT9. Furthermore, we found that the CORs  
118 interact with RVE8 and LNK1 in a tripartite complex in a yeast 3-hybrid system. By performing  
119 APMS using 35S::YFP-COR27 and 35S::GFP-COR28, we validated the interaction with LNK1,


120 LNK2, and RVE8, and identified additional novel interactions between the CORs and RVE5,  
121 RVE6, and several light signaling proteins. Further investigation into the role of the RVE8-  
122 LNK1/2-COR27/28 interaction suggested that the CORs antagonize activation of RVE8 target  
123 genes via regulation of RVE8 protein stability in the evening. Thus, by taking a proteomic  
124 approach to study a core circadian transcriptional complex, we identified a novel, evening-phased  
125 RVE8-LNK-COR protein complex that presents a new regulatory mechanism for circadian and  
126 temperature signaling pathways.

127

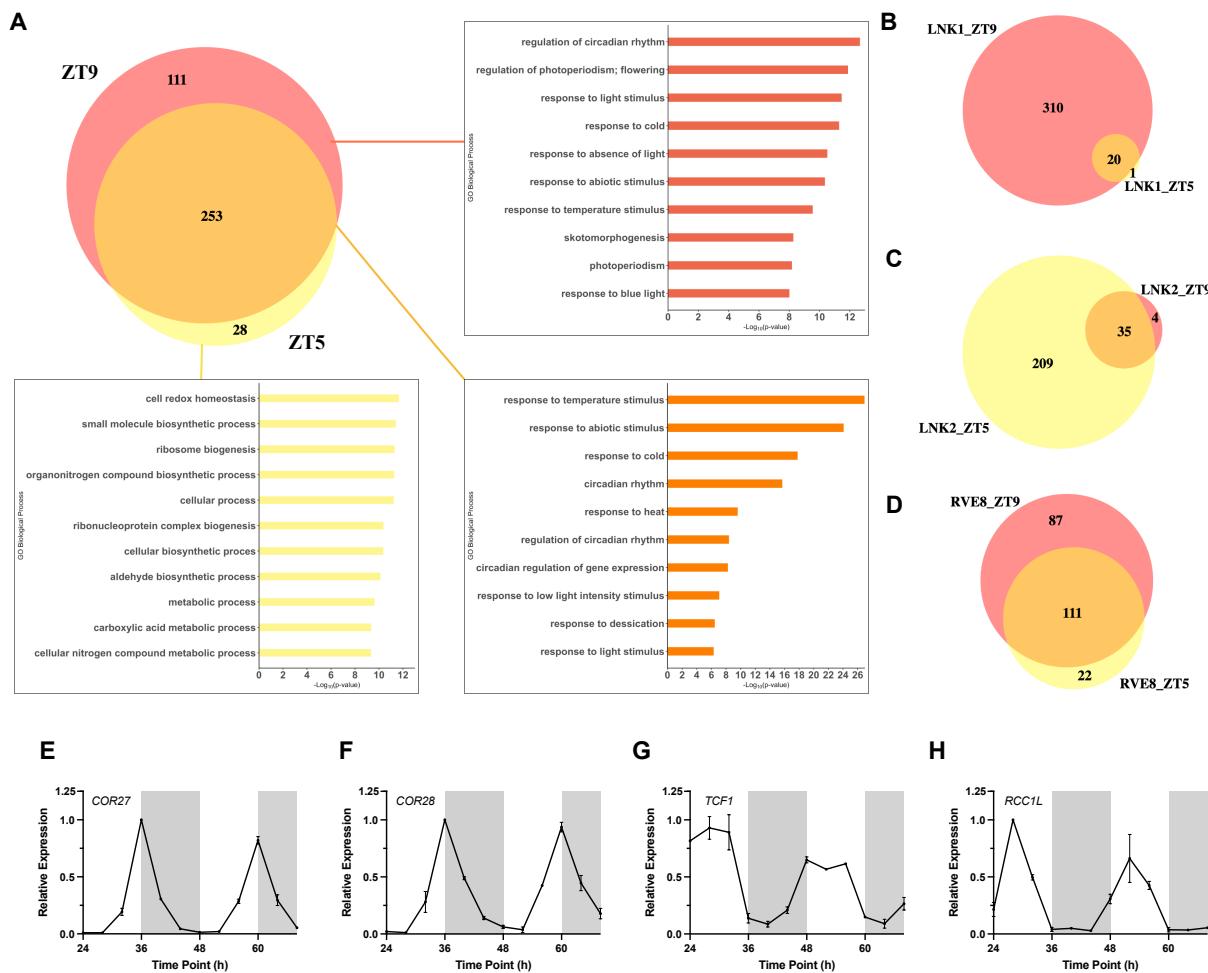
## 128 **Results**

### 129 **Characterization of affinity-tagged lines**

130 To identify new interactions with known clock proteins, we created endogenous promoter-  
131 driven, 3x-FLAG-6x-His C-terminal (HFC) affinity-tagged versions of RVE8, LNK1, and LNK2.  
132 RVE8-HFC was transformed into the *rve8-1 CCR2::LUC* mutant background while LNK1-HFC  
133 and LNK2-HFC were introduced into *lnk1/2/3/4* quadruple mutant (*lnkQ*) (de Leone et al., 2018)  
134 *CCA1::LUC*. By transforming our tagged LNKs into the *lnkQ* background, we could eliminate co-  
135 precipitating interactors that could be formed through a complex between our tagged LNKs and  
136 the endogenous LNKs. To ensure the tagged versions of our proteins of interest functioned  
137 similarly to their native counterparts, we selected T3 homozygous lines that rescued the long  
138 period mutant phenotype of *rve8-1* or *lnkQ* mutants (Rawat et al., 2011; Xie et al., 2014) (**Fig. 1A-C**). LNK1-HFC/LNK2-HFC did not fully restore the circadian period back to wild-type levels, but  
139 the lengthened period is consistent with the absence of the other three LNKs after the introduction  
140 of the tagged LNK into the *lnkQ* quadruple mutant (Xie et al., 2014; de Leone et al., 2018). We  
141 also determined that the HFC-tagged proteins exhibit rhythmic protein abundance patterns under  
142 12 hr light: 12 hr dark (LD) conditions, as would be expected for these proteins (**Fig. 1D-G**). While  
143 mRNA expression for *RVE8*, *LNK1*, and *LNK2* peaks at ZT1, ZT5, and ZT2, respectively, peak  
144 protein abundance occurred at ZT6, ZT9, and ZT6—about 4-5 hours after peak mRNA expression  
145 (Mockler et al., 2007) (**Fig. 1D-G**, **Fig. S1**). This lag in protein abundance after transcription is  
146 consistent with previously reported data showing a peak in RVE8-HA abundance three to six hours  
147 after dawn (Rawat et al., 2011). These experiments demonstrate that our affinity-tagged clock  
148 proteins behaved similarly to the native protein and are functional, making them ideal tools for  
149 capturing relevant protein interactions.



**Figure 1 Characterization of affinity-tagged lines used for APMS** (A-C) Circadian luciferase reporter period analysis of selected T3 homozygous lines expressing (A) LNK1-HFC, (B) LNK2-HFC, or (C) RVE8-HFC in their respective mutant backgrounds (*rve8-1* or *lnkQ*). Each point represents the circadian period of an individual plant and the + symbol shows the average period for that genotype. Letters correspond to significantly different periods as determined by ANOVA with a Tukey's post-hoc test. LNK1 and LNK2 luciferase assays were performed together and include the same wildtype and *lnkQ* data. Environmental conditions during imaging are included at the top of the plot (LL = constant light). (D-F) Time course Western blots showing cyclic protein abundance patterns of 10-day-old affinity tagged lines under 12 hr light: 12 hr dark 22 °C conditions. Affinity tagged lines are detected with anti-FLAG antibody. RPT5 or Ponceau S staining was used to show loading. Col-0 CCA1::LUC (Col-0) or *rve8-1* CCR2::LUC (*rve8-1*) were used as negative controls. White and black bars indicate lights-on and lights-off, respectively (D) 24-hour protein expression patterns of affinity tagged lines normalized to Ponceau S or RPT5 quantified by densitometry of Western blots shown in D-F. Vertical dotted lines indicate time of tissue collection for APMS. White and grey shading indicates lights-on and lights-off, respectively. Western blots and luciferase reporter assays were repeated at least 2 times. ZT= Zeitgeber Time.


153 **Affinity purification-mass spectrometry (APMS) identifies novel time-of-day-specific**  
154 **interacting partners for RVE8, LNK1, and LNK2**

155 We selected two timepoints for APMS based on the protein abundance patterns for RVE8-  
156 HFC, LNK1-HFC, and LNK2-HFC (**Fig. 1G**). RVE8-HFC and LNK2-HFC exhibited the highest  
157 protein abundance between ZT3 and ZT6, while LNK1-HFC protein was highest between ZT6  
158 and ZT9. Considering this, we chose to examine protein-protein interactions at ZT5 and ZT9.

159 We identified a total of 392 proteins that coprecipitated with either RVE8-HFC, LNK1-  
160 HFC, or LNK2-HFC at ZT5 or ZT9 but did not coprecipitate in our GFP-HFC nor Col-0 negative  
161 controls (**Fig. 2A, Dataset S1**). Consistent with the time of peak LNK1-HFC and LNK2-HFC  
162 protein abundance (ZT9 and ZT5, respectively; **Fig. 1G**), we saw higher total spectra mapping to  
163 LNK1-HFC at ZT9 (621) and LNK2-HFC at ZT5 (497) compared to the other timepoint (**Tables**  
164 **1 and 2**). Similarly, the number of coprecipitated proteins was greatest at ZT9 for LNK1-HFC and  
165 at ZT5 for LNK2-HFC (**Fig. 2B-C, Dataset S1**). Total spectra mapping to the bait protein RVE8-  
166 HFC were similar between the two timepoints (**Tables 1 and 2**). Despite the similarity in RVE8-  
167 HFC total spectra between timepoints, we precipitated more ZT9-specific interactors than ZT5-  
168 specific interactors with RVE8-HFC (**Fig. 2D**). Overall, we identified more RVE8/LNK1/LNK2-  
169 binding partners at ZT9 (364) versus the earlier timepoint of ZT5 (281) (**Fig. 2A**) and found that  
170 111 out of 392 (28.3%) total proteins coprecipitated were ZT9-specific; these proteins were not  
171 coprecipitated in any APMS experiment performed at ZT5. In summary, the enrichment of  
172 coprecipitated proteins at ZT9 suggests an important post-translational role for the RVE8-LNK1/2  
173 complex in the evening.

174 We used gene ontology (GO) analysis to categorize coprecipitated proteins at ZT5, ZT9,  
175 and ZT5/9 (**Fig. 2A**). Proteins coprecipitated at ZT5 only were mostly assigned GO biological  
176 process terms associated with homeostasis and general metabolism while proteins found at ZT9  
177 only or ZT5/ZT9 fell into relevant categories such as ‘regulation of circadian rhythm’, ‘response  
178 to light stimulus’, and ‘photoperiodism’ (**Fig. 2A**). We also noted that GO terms associated with  
179 temperature response were enriched in our interactor dataset (‘response to cold’, ‘response to  
180 temperature stimulus’, and ‘response to heat’) (**Fig. 2A**). This analysis suggested that we identified  
181 biologically relevant interacting partners involved in circadian rhythms in our APMS experiments  
182 and that there is an enrichment of temperature-related factors among these interactors. We also  
183 cross-referenced our lists of coprecipitated proteins with known cycling genes (Romanowski et

184 al., 2020) and found that 71.0% of ZT5 and 71.1% of ZT9 proteins exhibited cyclic mRNA  
 185 expression (**Dataset S1**), demonstrating that our bait circadian clock proteins mostly interacted  
 186 with proteins whose expression also cycles.



**Figure 2 Analysis of proteins coprecipitated with RVE8/LNK1/LNK2-HFC by time-of-day affinity purification-mass spectrometry** (A) Venn diagram showing number of proteins coprecipitated with RVE8/LNK1/LNK2 at ZT5, ZT9, or at both timepoints. Corresponding bar charts show enriched GO biological process terms with  $-\text{Log}_{10}(\text{p-value})$ . (B-D) Venn diagrams of coprecipitated proteins at ZT5 and ZT9 separated by bait protein (B, LNK1-HFC, C, LNK2-HFC, or D, RVE8-HFC). (E-H) mRNA expression profiles in constant light of four cold-response proteins identified as RVE8/LNK1/LNK2 interactors. RNA-seq data for E-H taken from Romanowski et al. (2020) *The Plant Journal*. ZT= Zeitgeber Time

187 Among the top interactors for LNK1-HFC, LNK2-HFC, and RVE8-HFC were four cold-  
 188 response proteins: COLD REGULATED GENE 27 (COR27), COR28, and two regulator of  
 189 chromosome condensation family proteins, TOLERANT TO CHILLING/FREEZING 1 (TCF1),  
 190 and a homolog of TCF1 that we named REGULATOR OF CHROMOSOME CONDENSATION  
 191 1-LIKE (RCC1L, AT3G53830) (**Tables 1-2**). We characterized these as high-priority interactors  
 192 based on their subcellular localization prediction and mRNA expression patterns; all four proteins

193 are predicted to be nuclear localized according to the SUBACon subcellular localization consensus  
194 algorithm (Hooper et al., 2014), which stands in agreement with being interactors of the nuclear-  
195 localized RVE8/LNK1/LNK2 proteins; additionally, the mRNA expression for these genes is  
196 rhythmic under constant light conditions, suggesting circadian regulation of their expression (Fig.  
197 **2E-H**). TCF1 and RCC1L were coprecipitated with RVE8/LNK1/LNK2 at both ZT5 and ZT9  
198 while COR27/28 were ZT9-specific interactors (**Tables 1-2**).  
199

200 *TCF1* and *RCC1L* are homologs of the regulator of chromosome condensation (RCC)  
201 family protein, RCC1 (Ji et al., 2015) and share 49.7% identity in an amino acid alignment (Fig.  
202 **S2**). RCC1 is a highly conserved guanine nucleotide exchange factor (GEF) for the GTP-binding  
203 protein RAN and is involved in nucleocytoplasmic export along with regulation of the cell cycle  
204 via chromosome condensation during mitosis (Ren et al., 2020). While there are no previous  
205 publications characterizing *RCC1L*, its sister gene *TCF1* is a known negative regulator of cold  
206 tolerance in *Arabidopsis* via the lignin biosynthesis pathway (Ji et al., 2015). *RCC1L* expression  
207 is downregulated upon cold treatment (**Table S1**), but no formal studies have been made into its  
208 role in cold tolerance nor chromatin biology.

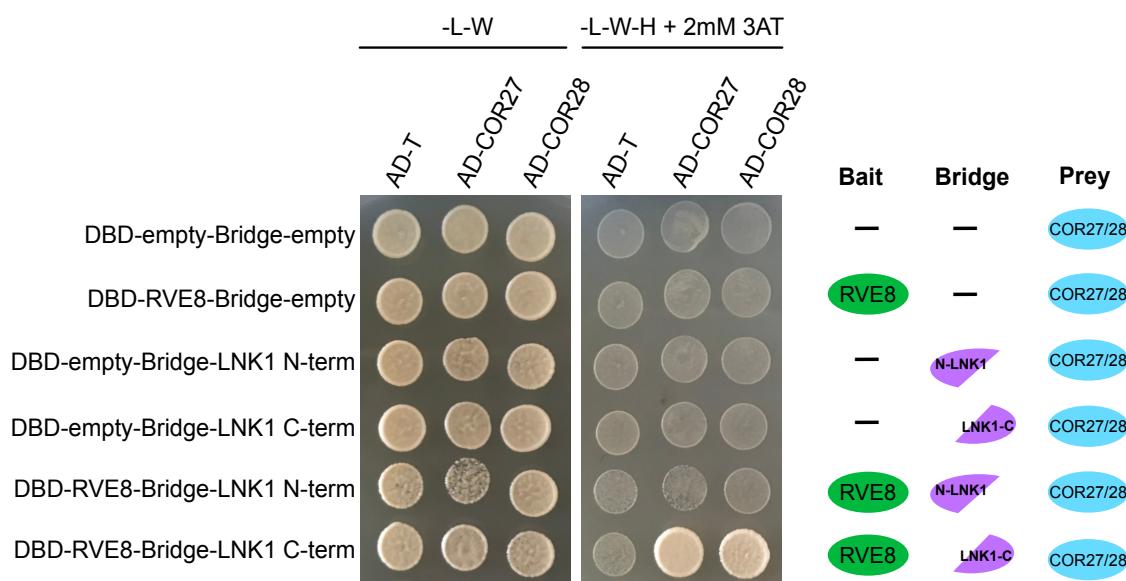
209 COR27/28 have no known protein domains and are repressors of genes involved in cold  
210 tolerance, circadian rhythms and photomorphogenesis (Li et al., 2016; Wang et al., 2017; Kahle et  
211 al., 2020; Li et al., 2020; Zhu et al., 2020). Notably, COR27/28 repress the same clock and cold  
212 tolerance genes that are activated by RVE8; *PRR5*, *TOC1*, and *DREB1A* are repressed by the CORs  
213 and activated by RVE8 (Rawat et al., 2011; Kidokoro et al., 2021). Null or knock-down mutants  
214 of *cor27/cor28* exhibit a long period mutant phenotype, similar to that observed for *lnk* and *rve8*  
215 mutants (Rawat et al., 2011; Ruggnone et al., 2013; Li et al., 2016). As the CORs do not contain a  
216 known DNA-binding domain, it is not understood how, mechanistically, these factors alter  
217 transcription.

218 Among the 111 evening-specific interactors were COR27, COR28, CONSTITUTIVELY  
219 PHOTOMORPHOGENIC 1 (COP1), and SUPPRESSOR OF PHYA-105 (SPA1) (**Table 2**).  
220 COP1 and SPA1 were RVE8-HFC-specific interactors while COR27/28 coprecipitated at ZT9  
221 with LNK1/LNK2/RVE8-HFC. We hypothesized that this time-of-day-specific coprecipitation  
222 could be explained by the relative abundance of these proteins at ZT5 versus ZT9 due to diurnal  
223 changes in gene expression over the course of the day. To investigate this hypothesis, we overlayed

224 the LD mRNA expression patterns of these ZT9-specific interactors on top of the protein  
225 abundance levels of RVE8-HFC, LNK1-HFC, and LNK2-HFC that were determined by time  
226 course Western blots shown in **Figure 1D-F (Fig. S3)**. There is very little overlap in expression  
227 between the *CORs* and *RVE8/LNK1/LNK2* at ZT5 (**Fig. S3**), indicating that COR27/28 may have  
228 only coprecipitated at ZT9 due to increased expression at that timepoint. In contrast, there was not  
229 a clear time-of-day distinction in expression overlap between COP1/SPA1 and the clock bait  
230 proteins, suggesting the ZT9-specific interaction between COP1/SPA1 and RVE8-HFC is possibly  
231 due to a factor other than expression level, such as recruitment through other proteins (such as  
232 COR27 or COR28) (**Fig. S3**).

233

#### 234 **COR27 and COR28 interact with circadian and light signaling proteins**


235 To better understand the role of COR27/28 at the protein level, we performed APMS using  
236 35S::YFP-COR27 and 35S::GFP-COR28 lines (Li et al., 2016) collected at ZT9. Through this  
237 experiment, we validated the interactions between the CORs and RVE8/LNK1/LNK2 and  
238 additionally coprecipitated RVE5 and RVE6, further supporting the connection between  
239 COR27/28 and the RVE/LNK proteins (**Table 3, Dataset S1**). Previous studies have shown an  
240 interaction between COR27/28 and PHYTOCHROME B (PHYB), COP1, and SPA1 (Kahle et al.,  
241 2020; Li et al., 2020; Zhu et al., 2020). Our affinity purification captured these known interactions  
242 and additionally identified PHYD and SPA2/3/4, supporting the previously demonstrated role for  
243 the CORs in photomorphogenesis (**Table 3**) (Kahle et al., 2020; Li et al., 2020; Zhu et al., 2020).  
244 TCF1, one of the cold-tolerance proteins (Ji et al., 2015) to coprecipitate with RVE8/LNK1/LNK2,  
245 was also captured with COR27 (**Table 3**), which further implicates the CORs in freezing tolerance.  
246 In total, we identified 268 proteins that coprecipitated with YFP-COR27 or GFP-COR28 (**Dataset**  
247 **S1**). Of these, we found 58.9% exhibited circadian-regulated mRNA (Romanowski et al., 2020)  
248 (**Dataset S1**). Together, the COR27/28 APMS provides strong evidence that these proteins are  
249 important factors in circadian and light signaling networks.

250

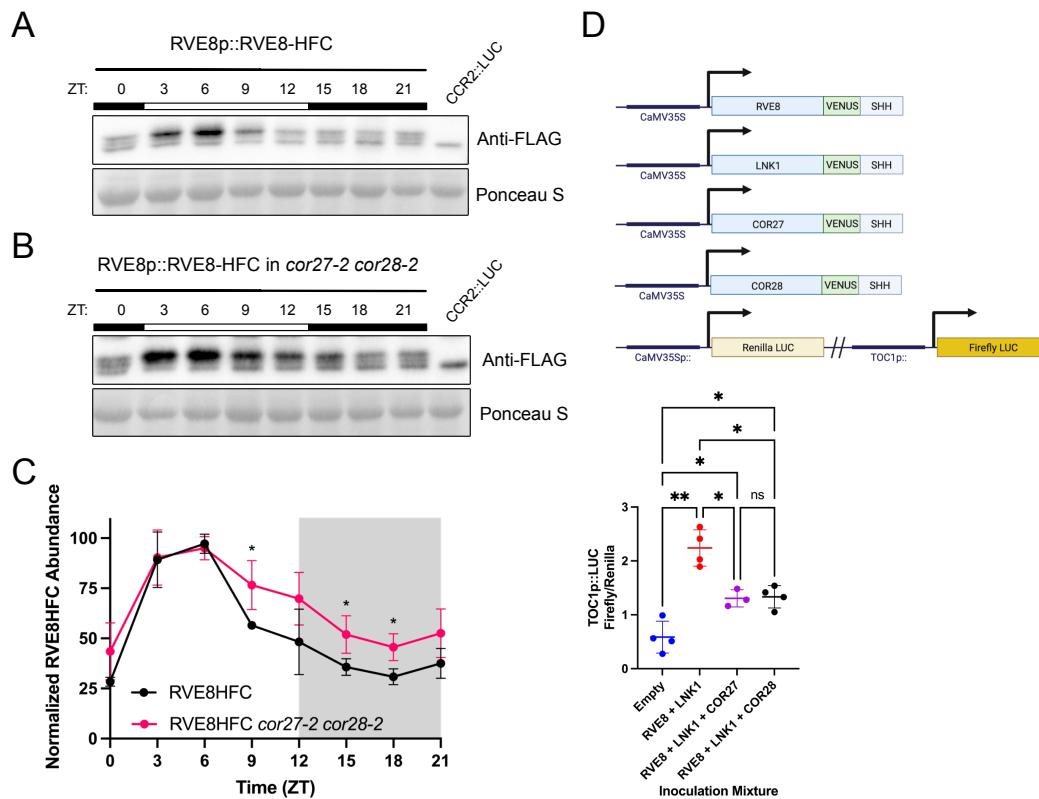
#### 251 **RVE8, LNK1, and COR27/28 form a protein complex**

252 We used a yeast 2-hybrid system to validate the interactions identified in our APMS  
253 between RVE8/LNK1/LNK2 with COR27/28. Surprisingly, we did not see a positive interaction  
254 between these components when using a binary yeast 2-hybrid (**Fig. S4**). Since APMS can identify

255 both direct and indirect protein-protein interactions, we hypothesized that RVE8-LNK1/2-  
256 COR27/28 could be forming a protein complex where the CORs can only bind when both RVE8  
257 and LNK1 are present. To test this, we used a yeast 3-hybrid system in which a linker protein is  
258 expressed in addition to the bait and prey proteins. We used N- and C-terminal truncations of  
259 LNK1 since full-length LNK1 autoactivates in yeast, as has been shown previously and here (Fig.  
260 S5) (Xie et al., 2014). Using this method, we found that yeast expressing RVE8, the C-terminus  
261 of LNK1, and COR27 or COR28 were able to grow on selective media in a higher order complex  
262 (Fig. 3). Yeast strains where COR27 or COR28 was paired with either LNK1 or RVE8 alone were  
263 unable to grow on selective media, indicating that indeed all three components must be present for  
264 the CORs to bind (Fig. 3, S4). We also confirmed that RVE8 interacts with the C-terminus of  
265 LNK1 (Fig. S4), in agreement with previous studies (Xie et al., 2014). In combination with our  
266 time-of-day APMS, these results show the CORs interact with RVE8/LNK1 in a complex that is  
267 present at ZT9.



**Figure 3 COR27/28 interact with RVE8/LNK1 in a yeast 3-hybrid system** Yeast strains Y2H Gold or Y187 expressing pBridge (GAL4-DBD and a Bridge protein) or pGADT7 (GAL4-AD), respectively, were mated and plated onto selective media. Successful matings can grow on -Leucine/-Tryptophan media (-L-W) while positive interactors can grow on -Leucine/-Tryptophan/-Histidine + 2mM 3-amino-1,2,4-triazole (3AT) (-L-W-H + 2mM 3AT). A graphical depiction of different combinations is shown to the right. AD-T (large T-antigen protein) is a negative control for prey interactions. Experiment was repeated at least twice.


268 **COR27/28 alter diurnal RVE8 protein abundance patterns and antagonize activation of the**  
269 **RVE8 target gene *TOC1***

270 We next sought to determine the biological relevance of the RVE8-LNK1/2-COR27/28  
271 interaction. COR27/28 are post-translationally regulated via degradation by 26S proteasome  
272 (Kahle et al., 2020; Li et al., 2020; Zhu et al., 2020). As COR27/28 were identified as ZT9-specific  
273 RVE8-HFC interactors (Table 2), we hypothesized that COR27/28 target the RVE8-LNK  
274 complex for degradation in the evening, thus blocking expression of RVE8 target genes late in the  
275 day. To determine if RVE8-HFC abundance patterns are driven by a post-translational mechanism,  
276 we examined protein abundance of RVE8-HFC in seedlings treated with either the 26S proteasome  
277 inhibitor bortezomib (bortz) or DMSO (mock). The mock treated seedlings showed the typical  
278 pattern for RVE8-HFC protein abundance (Fig. 1F) with decreasing RVE8-HFC from ZT6 to  
279 ZT15 (Fig. S6). Treatment with bortz led to increased RVE8-HFC accumulation during this time  
280 frame, indicating 26S-proteasome degradation is involved in the observed decrease of RVE8-HFC  
281 from ZT6 to ZT15 (Fig. S6).

282 Next, we tested if COR27 and COR28 regulate RVE8 protein abundance by examining  
283 cyclic protein abundance in RVE8p::RVE8-HFC versus RVE8p::RVE8-HFC in *cor27-2 cor28-2*.  
284 While RVE8-HFC abundance in the wild-type background exhibits rhythmic protein abundance  
285 with peak protein levels at ZT6, RVE8-HFC abundance is significantly higher in the *cor27-2*  
286 *cor28-2* background during the evening and nighttime hours (Fig. 4A-C). This result is consistent  
287 with the hypothesis that in the absence of COR27/28, RVE8-HFC should be stabilized specifically  
288 in the evening—when it would normally be degraded through its interaction with the CORs. As  
289 the circadian rhythm of *RVE8* mRNA expression under LD cycles was shown to be unchanged in  
290 the *cor27-2 cor28-2* background (Wang et al., 2017), our results indicate that COR27/28 regulate  
291 RVE8-HFC protein abundance at the post-translational level.

292 We then tested the effect of the CORs on RVE8/LNK1 transcriptional activity using a  
293 transactivation assay in *Nicotiana benthamiana* (Fig. 4D). RVE8 binds to the evening element cis-  
294 regulatory motif in the *TOC1* promoter to activate its expression (Rawat et al., 2011). When LNK1  
295 and RVE8 were transiently expressed together in *N. benthamiana* along with a *TOC1* promoter-  
296 driven luciferase reporter, we observed activation of the reporter, as expected (Fig. 4D). When  
297 COR27 or COR28 was added to the inoculation cocktail, activation of the reporter was reduced,  
298 indicating that the CORs antagonize RVE8/LNK1 transcriptional activity *in vivo* (Fig 4D). Taken

299 together, our results indicate that the RVE8-COR27/28-LNK1/2 interaction serves to block  
 300 activation of RVE8 target genes via degradation of RVE8 in the evening.



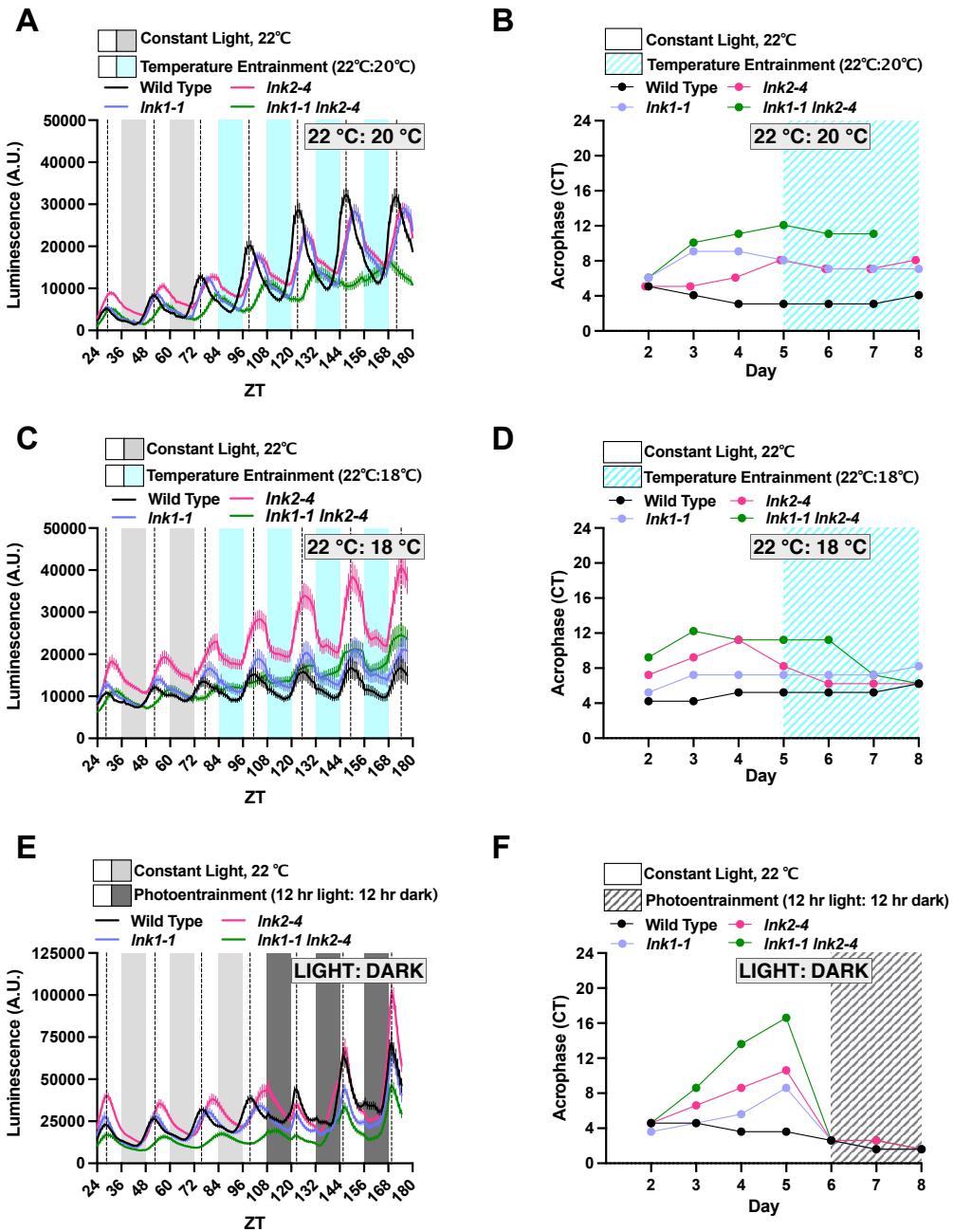
**Figure 4 COR27/28 alter RVE8-HFC protein abundance patterns and inhibit RVE8/LNK1-mediated activation of TOC1** (A-B) 24-hour protein expression patterns of RVE8-HFC in wild type (A) or *cor27-2 cor28-2* (B) backgrounds analyzed by Western blot. Tissue was collected every 3 hours from 12-day-old plants grown under 12 hr light: 12 hr dark 22 °C conditions. Anti-FLAG antibody was used to detect RVE8-HFC and Ponceau S staining was used to show loading. White and black bars indicate lights-on and lights-off, respectively. Col-0 CCR2::LUC was used as the negative control. (C) Densitometry quantification of (A) and (B) RVE8-HFC 24-hour abundance normalized to Ponceau S in wild type and *cor27-2 cor28-2* backgrounds. Points represent the average normalized RVE8-HFC abundance from 3 (WT) or 4 (*cor27-2 cor28-2*) independent bioreps. Asterisks indicate significant differences between genotypes based on Welch's t-test (\* p< 0.05). Error bars = SD. (D) Dual luciferase assay in 3–4-week-old *Nicotiana benthamiana*. Schematic of expression constructs infiltrated are shown at the top (SHH = 2X-StrepII-HA-His<sub>6</sub> tag). Luminescence from a dual firefly/renilla luciferase reporter was measured after coinfection with 35S::RVE8-VENUS-SHH, 35S::LNK1-VENUS-SHH, 35S::COR27-VENUS-SHH, or 35S::COR28-VENUS-SHH. Luminescence was normalized to constitutively expressed renilla luciferase luminescence to control for infection efficiency. Points represent the normalized luminescence from 3-4 independent experiments with N=12. Mean normalized luminescence is indicated by the crosshair symbol and error bars = SD. Asterisks indicate significant differences by unpaired t-test with Welch correction (ns= not significant, \* p< 0.05, \*\* p< 0.01). ZT= Zeitgeber Time. Empty = reporter alone.

301 **The RVEs are important for cold temperature induction of COR27/28**

302 *COR27/28* contain evening elements in their promoters that are important for their cold  
303 induction and could be targets of RVE8 transcriptional regulation (Mikkelsen and Thomashow,  
304 2009; Wang et al., 2017). Additionally, *COR27/28* are significantly upregulated in an inducible  
305 RVE8:GR line according to a previously published RNA-seq dataset (Hsu et al., 2013b). Both  
306 *COR27/28* and RVE4/8 regulate cold tolerance in *Arabidopsis*; *COR27/28* expression is induced  
307 by cold temperature (16 °C and 4 °C) within 3 hours and the *cor27-1 cor28-2* loss-of-function  
308 mutant shows increased freezing tolerance, suggesting these genes are negative regulators of the  
309 plant's response to freezing temperatures (Li et al., 2016). In contrast, RVE4/8 are activators of  
310 cold tolerance (Kidokoro et al., 2021). Upon cold treatment (4°C for 3 hours), RVE4/8 localize to  
311 the nucleus and upregulate *DREB1A* to promote freezing tolerance (Kidokoro et al., 2021).

312 To determine if the RVE transcription factors are regulators of *COR27/28* cold-induction,  
313 we examined *COR27/28* expression at 22 °C and 4 °C in Col-0, *rve8-1*, *rve34568*, and *lnkQ*  
314 mutants. We found that *COR27/28* cold-induction was greatly attenuated in *rve34568* and *lnkQ*  
315 mutants, consistent with the *CORs* being targets of the RVE-LNK transcriptional complex (**Fig.**  
316 **S7A-B**). The absence of an effect in the *rve8-1* single mutant suggests there is redundancy among  
317 the *RVE* family in the regulation of *COR27/28*. Indeed, we found that the LNKs coprecipitated  
318 RVE3/4/5/6/8 in our APMS (**Tables 1 and 2**), suggesting multiple RVE/LNK complexes could  
319 influence the regulation of the *CORs*. Interestingly, we saw little effect of RVEs/LNKs on  
320 *COR27/28* expression at 22 °C at ZT12 (**Fig. S7C-D**), suggesting these clock factors only have an  
321 effect under cold stress or that there may be a greater effect on expression at 22 °C at a different  
322 time of day.

323


324 **LNK1 and LNK2 are important for temperature entrainment of the clock**

325 The enrichment of temperature response GO terms among the list of coprecipitated proteins  
326 in our APMS (**Fig. 2A**), as well as the existing evidence linking RVE8 to temperature regulation  
327 (Blair et al., 2019; Kidokoro et al., 2021) prompted us to investigate whether *LNK1/2* are important  
328 for temperature input to the clock. While light is the primary entrainment cue for the plant clock,  
329 daily temperature cycles are known to be another major environmental input cue (Devlin and Kay,  
330 2001; Salomé and Robertson McClung, 2005; Avello et al., 2019). To examine temperature  
331 entrainment, we examined rhythms from a CCA1::LUC reporter in wild type and *lnk1-1*, *lnk2-4*,

332 and *lnk1-1 lnk2-4* mutant plants that were first grown under constant light and then transferred into  
333 a temperature entrainment condition. Under constant light, the *lnk* mutants exhibited their  
334 canonical long period mutant phenotype (Rugnone et al., 2013) (**Fig. 5**). Upon entering a  
335 temperature entrainment condition of 12 hr 20 °C: 12 hr 22 °C, the *lnk1/2* mutants were unable to  
336 resynchronize their circadian rhythms to that of wild type (**Fig. 5A-B**). This defect was ameliorated  
337 when the difference between the minimum and maximum temperature was increased from 2 °C to  
338 4 °C; when provided temperature cycles of 12 hr 18 °C: 12 hr 22 °C, most *lnk* mutants were able  
339 to realign with the wild-type acrophase (peak reporter expression) by the third day of temperature  
340 entrainment (**Fig. 5 C-D**). However, this resynchronization was still slower than when the *lnk*  
341 mutants were provided with photocycles—upon the transition from constant light to LD cycles, all  
342 mutants were able to immediately re-align their rhythms to wild type, indicating that the *lnk*  
343 mutants are specifically impaired in their ability to use temperature as an entrainment cue (**Fig.**  
344 **5E-F**).

345 The temperature entrainment programs used in **Figure 5A-D** are non-ramping, meaning  
346 the temperature shifts immediately from the cool to warm temperatures. To better simulate  
347 environmental conditions, we also employed a ramping, natural temperature entrainment which  
348 gradually oscillates between a low temperature of 16 °C and a high of 22 °C. We observed a similar  
349 delay in the ability of the *lnk* mutants to assimilate to wild-type acrophase under natural  
350 temperature cycles, demonstrating that this defect is not a byproduct of non-ramping temperature  
351 changes (**Fig. S8**).

352 As the LNKs form a four-member family, we also examined whether LNK3/4 play a role  
353 in temperature entrainment. The *lnk3-1 lnk4-1* double mutant showed little difference from wild-  
354 type rhythms under constant light nor temperature entrainment, indicating LNK1/2 are the primary  
355 family members important for temperature entrainment (**Fig. S9**). In summary, we have  
356 demonstrated a previously unknown role for LNK1/2 in temperature entrainment of the clock.



**Figure 5 LNK1/2 are important for temperature entrainment of the clock. (A,C,E)**  
 Plants were grown for 7 days under 12 hr light: 12 hr dark 22 °C conditions for initial entrainment. On day 7, seedlings were transferred to imaging chamber and luminescence was measured for at least 3 days in continuous light and temperature (22 °C) before the chamber was switched to either a temperature- (A,C) or photo- (E) entrainment program. Temperature entrainment consisted of a day temperature of 22 °C and nighttime temperature of 20 °C (A) or 18 °C (C). Photoentrainment consisted of 12 hr light followed by 12 hr darkness (22 °C). Lines represent the average luminescence from n=16 seedlings with errors bars = SEM. Vertical dotted lines correspond to the acrophase, or time of peak reporter expression, of the CCA1::LUC reporter in wild type plants. (B,D,F) Acrophase is plotted for each genotype for each day of imaging in constant light and the temperature entrainment condition (B, D) or under photoentrainment (F). Each point represents the acrophase of the averaged luminescence trace shown in (A,C,E). CT = Circadian Time. A.U. = Arbitrary Units. ZT=Zeitgeber Time.

358 **Discussion**

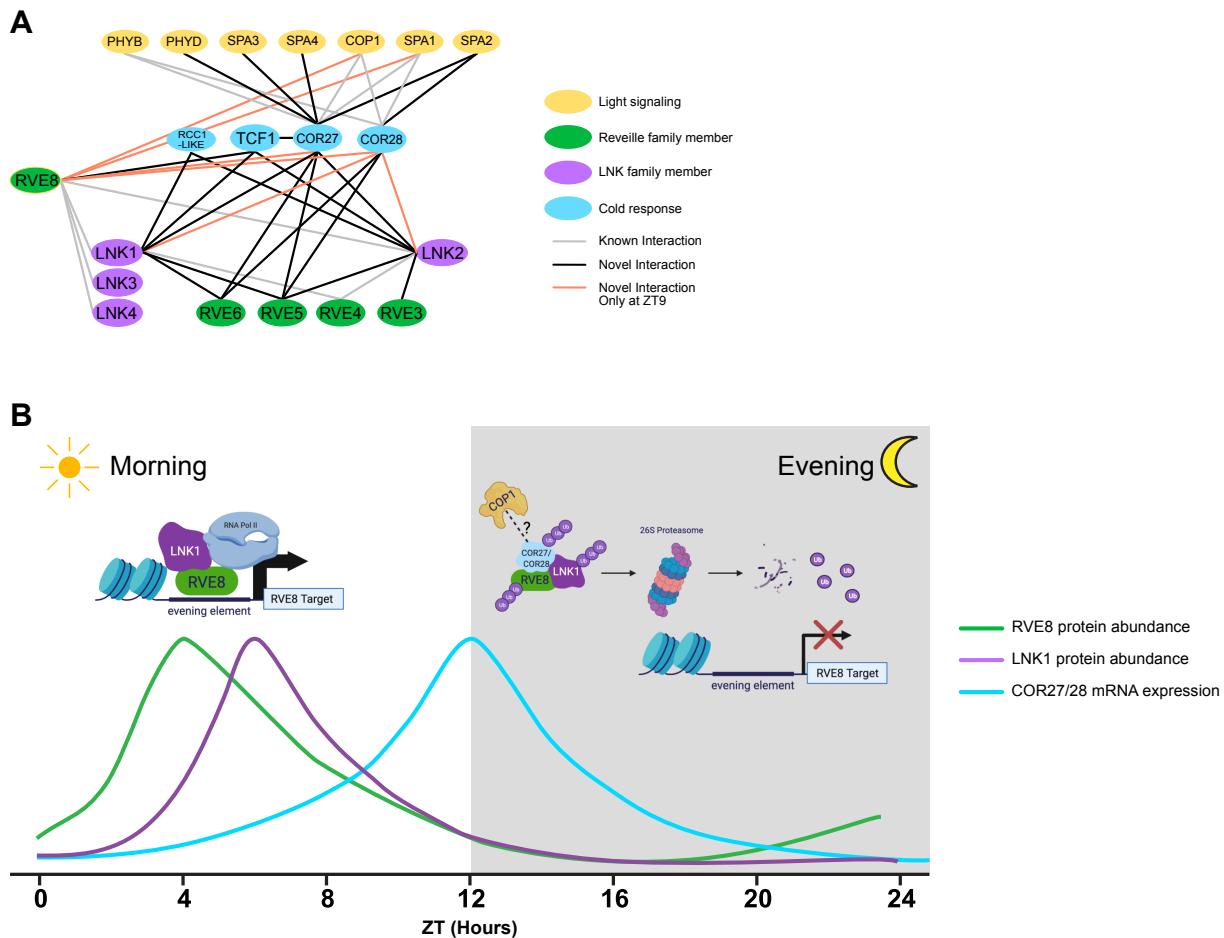
359 Daily and seasonal temperature cycles are important cues for the entrainment of the plant  
360 circadian clock (Salomé and Clung, 2005). In parallel to this, the clock is essential for proper  
361 response to temperature stimuli (Salomé and Robertson McClung, 2005; Thines and Harmon,  
362 2010). In this study, we have identified a novel, time-of-day-specific interaction between two  
363 established components of the circadian and temperature response pathways: the circadian clock  
364 transcriptional activation complex containing RVE8 and LNK1/LNK2 and the cold response  
365 proteins COR27/COR28. Previous studies have demonstrated that RVE8 and COR27/COR28 both  
366 regulate the transcription of the master cold response regulator *DREB1A* and the core circadian  
367 oscillator genes *PRR5* and *TOC1*; however, RVE8 acts as a transcriptional activator of these targets  
368 while the CORs act as repressors (Rawat et al., 2011; Li et al., 2016; Wang et al., 2017; Kidokoro  
369 et al., 2021). In addition to sharing transcriptional targets, RVE8 and COR27/COR28 also affect  
370 similar phenotypes, including period lengthening in the null or knock-down mutants and regulation  
371 of photoperiodic flowering time (Rawat et al., 2011; Li et al., 2016). Despite these established  
372 overlaps in function between the RVE8-LNK1/LNK2 complex and the CORs, a mechanistic  
373 connection between these factors has until now been lacking. In this study, we have demonstrated  
374 that COR27/COR28 physically interact with and regulate the protein stability of the RVE8-  
375 LNK1/LNK2 complex in the evening and that the CORs antagonize RVE8/LNK1-mediated  
376 activation of *TOC1* expression.

377 Our time-of-day-specific APMS experiments demonstrated that RVE8, LNK1, and LNK2  
378 interact with different protein partners at ZT5 versus four hours later at ZT9 (**Fig. 2A-D**). LNK1  
379 and RVE8 interacted with more protein partners at the later timepoint, ZT9, while LNK2  
380 coprecipitated more interactors at ZT5 (**Fig. 2B-D**). For LNK1 and LNK2, their time of peak  
381 protein abundance (**Fig. 1D**) aligned with the time of day when they coprecipitated the most  
382 interactors (**Fig. 2B-C**), suggesting that increased abundance of these clock bait proteins led to an  
383 increased number of captured interactions. Interestingly, while our 24-hour time course Western  
384 blots showed a higher abundance of RVE8-HFC at ZT5, we coprecipitated more interactors at ZT9  
385 than at ZT5. This might indicate that even though protein levels of RVE8-HFC are lower at ZT9,  
386 perhaps there is an important bridge protein expressed in the evening that links in RVE8-HFC  
387 interactors only in the evening. Alternatively, perhaps there are more RVE8-HFC protein  
388 interacting partners expressed at ZT9 than at ZT5. By performing APMS at two different time

389 points, we have established that these circadian clock proteins interact with different partners  
390 depending on the time of day.

391 For example, COR27, COR28, COP1, and SPA1 were coprecipitated with  
392 RVE8/LNK1/LNK2 at ZT9 but not ZT5 (**Tables 1-2**). We have considered the following  
393 hypotheses for what is driving this time-of-day-specific interaction: 1) The diurnal expression  
394 patterns of these components produces high gene expression overlap at ZT9 but not ZT5, 2) There  
395 is a third protein component that is expressed at ZT9 that allows for the interaction between these  
396 factors via bridging or by inducing a conformational change in one of the participating proteins,  
397 or 3) APMS is not an exclusionary method and could simply have not detected a low abundance  
398 peptide that was coprecipitated at ZT5. When we examined the LD mRNA expression patterns for  
399 *COR27*, *COR28*, *COP1*, and *SPA1*, we found that COR27 and COR28 are most likely ZT9-specific  
400 interactors due to their mRNA expression levels having a higher overlap with  
401 RVE8/LNK1/LNK2-HFC protein abundance at ZT9 (**Fig. S3**). Indeed, the *CORs* have very low  
402 mRNA expression at ZT5 and thus are likely absent from the cell and not interacting with the  
403 RVE8-LNK1/2 proteins (**Fig. S3**). COP1 and SPA1, in contrast, do not show higher expression  
404 overlap with RVE8-HFC at ZT9 over ZT5 (**Fig. S3**). We instead think it is possible that  
405 COP1/SPA1 could be recruited to RVE8 via COR27/COR28 and thus can only be coprecipitated  
406 at ZT9 (hypothesis #2). However, future studies are needed to validate this possibility.

407 As COR27/28 are post-translationally regulated by 26S proteasome-mediated degradation  
408 (Kahle et al., 2020; Li et al., 2020; Zhu et al., 2020), we predicted that the interaction between  
409 RVE8/LNK1/LNK2 and COR27/28 could function to target the circadian transcriptional module  
410 for degradation in the evening. We found that RVE8-HFC cyclic protein abundance patterns were  
411 disrupted in a *cor27-2 cor28-2* mutant background, with higher RVE8-HFC levels observed  
412 specifically during the evening and nighttime hours (**Fig. 4A-C**). This suggests that COR27/28 are  
413 important for degradation of RVE8 in the evening. As COP1/SPA1 were also identified as ZT9-  
414 specific RVE8 binding proteins, we suggest that the CORs recruit the COP1-SPA1 E3 ubiquitin  
415 ligase complex to RVE8-LNK1/2 to target it for degradation by the proteasome, though this has  
416 yet to be directly tested. We also coprecipitated *UBIQUITIN-SPECIFIC PROTEASE 12* (*UBP12*)  
417 and *UBP13* and the E3 ubiquitin ligases *PLANT U-BOX 12* (*PUB12*) and *PUB13* in  
418 RVE8/LNK1/LNK2 APMS experiments and these factors may also play a role in time-of-day-  
419 specific complex degradation (**Tables 1-2, Dataset S1**) (Zhou et al., 2021). In tobacco


420 transactivation assays, we observed that presence of COR27/28 reduced the ability of RVE8-  
421 LNK1 to activate the expression of a *TOC1* promoter-driven reporter, demonstrating that the CORs  
422 have an antagonistic effect on the transcriptional activity of this circadian module (**Fig. 4D**).

423 The CORs do not have identifiable DNA-binding domains and do not bind to DNA *in vitro*  
424 (Li et al., 2020); therefore, the CORs must work with a DNA-binding protein to affect transcription  
425 of their target genes. Previous work supported this hypothesis by showing that COR27/28 interact  
426 with the major photomorphogenic transcription factor ELONGATED HYPOCOTYL 5 (HY5) and  
427 regulate some of the same HY5 target loci (Li et al., 2020). Perhaps a similar mechanism is at work  
428 here, with the CORs interacting with the RVE-LNK complex to alter its transcriptional activity.  
429 The mechanism behind how the CORs change or potentially change the activity of these  
430 transcription factors is an open question.

431 Finally, as *COR27/28* expression is induced under cold stress and RVE8 accumulates in  
432 the nucleus upon cold treatment, this presents an interesting possibility that the interaction between  
433 RVE8 and the CORs could serve to connect cold temperature response and the circadian clock.  
434 Notably, COR27/28 and RVE8 oppositely regulate freezing tolerance; the CORs repress  
435 expression of *DREB1A* to decrease freezing tolerance while RVE4/8 activate *DREB1A* expression  
436 (Li et al., 2016; Kidokoro et al., 2021). Thus, we anticipate that the interaction between the CORs  
437 and the RVE8-LNK complex is antagonistic in its nature.

438 In summary, we used affinity purification-mass spectrometry (APMS) to identify novel  
439 circadian-associated proteins using the RVE8/LNK1/LNK2 core circadian oscillator proteins as  
440 baits. By performing APMS at two time points during the 24-hour cycle, we identified time-of-  
441 day-specific interactors, including COR27 and COR28, which only coprecipitated with these three  
442 clock baits at the later timepoint, ZT9 (**Fig. 6A, Tables 1 and 2**). The obligate higher order nature  
443 of this complex that we established using a yeast 3-hybrid demonstrates a powerful advantage of  
444 using an *in vivo* method like APMS over another screening system—screens such as the yeast 2-  
445 hybrid library system can only identify binary interactions and thus would never have identified  
446 the interaction described here between RVE8, the C-terminus of LNK1, and COR27/28. Taken  
447 together, we propose the following model (**Fig. 6B**): In the morning–early afternoon, when the  
448 CORs are not expressed, the RVE8-LNK1/2 complex is free to perform its canonical duty as an  
449 activating force in the circadian oscillator and in cold tolerance. As evening approaches, *COR27/28*  
450 expression rises and the RVE8-LNK1/2-COR27/28 complex is formed, which antagonizes RVE8-

451 LNK1/2 transcriptional activity via regulating RVE8 protein abundance. Future studies examining  
452 this complex's role in circadian and cold tolerance phenotypes will be of great interest.



**Figure 6 The RVE8-LNK1/2-COR27/28 complex is a novel post-translational regulatory mechanism in the circadian clock.** (A) Protein interaction network compiled from APMS experiments using RVE8-HFC, LNK1-HFC, LNK2-HFC, YFP-COR27, and GFP-COR28 as bait proteins at ZT5 and ZT9. Black lines indicate novel interactions identified in this study, grey lines show previously published interactions validated in this study, and orange lines show novel interactions that were identified only at ZT9. (B) Model of hypothesized role of the RVE-LNK-COR interaction during a 24-hour period. In the morning, RVE8-LNK1/2 interact to coactivate the expression of target genes such as evening-phased circadian clock genes and cold-response genes. Towards the evening, COR27/28 are expressed and interact with the RVE8-LNK1/2 complex, potentially recruiting a ubiquitin E3 ligase such as COP1 to target the entire complex for degradation by the 26S proteasome, thus blocking activation of RVE8 targets in the evening. Green and purple lines show approximate protein abundance patterns of RVE8 and LNK1, respectively, while the blue line shows approximate COR27/28 mRNA expression.

453  
454 **Methods**  
455 **Plant Materials**  
456 T-DNA disrupted lines used in this study: rve8-1 (SALK\_053482C), lnk1-1  
457 (SALK\_024353), lnk2-1 (GK\_484F07), lnk2-4 (GK\_484F07), lnk3-1 (SALK\_085551C), lnk4-1

458 (GK\_846C06), cor27-2 (SALK\_042072C), and cor28-2 (SALK\_137155C) (Alonso et al., 2003).  
459 The *lnkQ* CCA1::LUC line was generated by transforming the *lnkQ* mutant background (de Leone  
460 et al., 2020) with a binary vector containing CCA1::LUC and Basta resistance (from Harmer Lab).  
461 The *lnk3-1 lnk4-1* CCA1::LUC line was generated by crossing *lnk3-1 lnk4-1* to the CCA1::Luc  
462 reporter. The 35S::YFP-COR27 and 35S::GFP-COR28 lines were described previously (Li et al.,  
463 2016) and generously shared with us by Dr. Hongtao Liu. The rve8-1 CCR2::LUC line was  
464 described previously (Rawat et al., 2011) and generously shared with us by Dr. Stacey Harmer.  
465 The *lnk1-1* CCA1::LUC, *lnk2-4* CCA1::LUC, and *lnk1-1 lnk2-4* CCA1::LUC lines were a  
466 generous gift from Dr. Xiaodong Xu (Xie et al., 2014). All plants used were in the Col-0  
467 background.

468 Seeds were gas sterilized and plated on 1/2X Murashige and Skoog basal salt medium with  
469 0.8% agar + 1% (w/v) sucrose. After stratification for 2 days, plates were transferred to a Percival  
470 incubator (Percival-Scientific, Perry, IA) set to a constant temperature of 22 °C. Light entrainment  
471 was 12 hr light/12 hr dark (LD) cycles, with light supplied at 80  $\mu$ mol/m<sup>2</sup>/s. 24-hour tissue  
472 collections were performed under white light during the daytime timepoints and under dim green  
473 light during the nighttime timepoints.

474

#### 475 **Generation of Epitope-tagged Lines and Plasmid Construction**

476 To generate pB7-RVE8p::RVE8-HFC, RVE8 was cloned from genomic DNA without the stop  
477 codon using primers pDAN1127 and pDAN1128 (**Table S2**) and cloned into NotI/AscI-digested  
478 pENTR-MCS through In-Fusion HD cloning (Clontech, Mountain View, California). pENTR-  
479 RVE8-no stop was then recombined using LR Clonase (Thermo Fisher Scientific, Waltham,  
480 Massachusetts) into pB7-HFC (Huang et al., 2016a), which contains the 6X-HIS 3X-FLAG C-  
481 terminal tag, to generate pB7-RVE8-HFC. To generate the endogenous promoter driven line, the  
482 sequence upstream of the RVE8 transcription start site to the stop codon of the upstream gene was  
483 cloned (945 bases) using primers pDAN1129 and pDAN1130 (**Table S2**). The 35S Cauliflower  
484 Mosaic Virus (CaMV35S) promoter was excised from pB7-RVE8-HFC via PmeI/SpeI digest and  
485 replaced with the RVE8 promoter fragment through In-Fusion HD cloning (Clontech, Mountain  
486 View, California) to generate pB7-RVE8P::RVE8-HFC. pB7 RVE8p::RVE8-HFC binary vector  
487 was transformed into rve8-1 CCR2::LUC (Rawat et al., 2011) by agrobacterium mediated

488 transformation and positive transformants were identified through basta resistance (Clough and  
489 Bent, 1998).

490 To generate pH7WG2-LNK1p::LNK1-HFC and pH7WG2-LNK2p::LNK2-HFC, LNK1 and  
491 LNK2 coding sequences were cloned from cDNA without the stop codon using primers  
492 pDAN0990/pDAN0991 (LNK1) and pDAN1066/pDAN1067 (LNK2) (**Table S2**) and recombined  
493 into pENTR-MCS through dTOPO cloning or In-Fusion HD cloning (Clontech, Mountain View,  
494 California), respectively. pENTR-LNK1-no stop and pENTR-LNK2-no stop were then  
495 recombined using LR Clonase (Thermo Fisher Scientific, Waltham, Massachusetts) into pB7-HFC  
496 to generate pB7-LNK1-HFC and pB7-LNK2-HFC. To make the endogenous promoter driven  
497 construct, the LNK1 promoter was cloned from the LNK1 transcription start site to the upstream  
498 gene's 5' UTR (1709 bp) using primers pDAN1016 and pDAN1017 (**Table S2**). This promoter  
499 fragment was swapped with CaMV35S via PmeI/SpeI digest and In-Fusion HD cloning (Clontech,  
500 Mountain View, California) to generate pB7-LNK1p::LNK1-HFC. Similarly, the LNK2 promoter  
501 was cloned from just before the start of the upstream gene through 142 bases into exon 4 from  
502 genomic DNA using primers pDAN1018 and pDAN1019 (**Table S2**) and inserted into pB7-HFC  
503 PmeI/BglII digest and In-Fusion HD cloning (Clontech, Mountain View, California) to generate  
504 pB7-LNK2p::LNK2-HFC. To make pH7WG2-LNK1p::LNK1-HFC and pH7WG2-  
505 LNK2p::LNK2-HFC, pB7-LNK1p::LNK1-HFC, pB7-LNK2p::LNK2-HFC, and pH7WG2-  
506 (Karimi et al., 2002) were digested with KpnI and AgeI and the resulting fragments were ligated.  
507 pH7-LNK1p::LNK1-HFC and pH7-LNK2p::LNK2-HFC binary vector were transformed into  
508 *lncQ CCA1::LUC* by agrobacterium mediated transformation and positive transformants were  
509 identified through hygromycin resistance (Clough and Bent, 1998).

510 To make LNK1 truncations, the N-terminus of LNK1 from the start codon through amino acid  
511 296 was cloned using primers pDAN1954/pDAN2010 (**Table S2**), adding a stop codon. The  
512 LNK1 C-terminal fragment was cloned using primers pDAN2011/pDAN1955 (**Table S2**) with the  
513 first amino acid starting at amino acid number 297. Gene fragments were recombined into pENTR-  
514 MCS through In-Fusion HD cloning (Clontech, Mountain View, California) to make pENTR-  
515 LNK1-N-term-STOP and pENTR-LNK1-C-term-STOP.

516 To generate pK7-VENUS (VEN)-2x-StrepII-HA-6X-His-C-terminus (SHHc), we first made  
517 pK7-SHHc by PCR amplifying the 2X-SII-HA-6X-His C-terminal (SHHc) tag from pB7-SHHc  
518 (Huang et al., 2016b) and digesting pK7FWG2 (Karimi et al., 2002) with BstXI and KpnI. The

519 PCR fragment containing the SHHc tag was combined with the digested backbone using In-Fusion  
520 HD cloning (Clontech, Mountain View, California) to make pK7-SHHc. Venus was cloned from  
521 plasmid mVENUS C1 (Koushik et al., 2006) using primers pDAN0869 and pDAN0870 and  
522 recombined with pK7SHHc digested with AvrII using In-Fusion HD cloning (Clontech, Mountain  
523 View, California) to generate pK7-VEN-SHHc.

524 pENTR-no stop clones of COR27 and COR28 were generated by amplifying the coding  
525 sequences of COR27 (AT5G24900.1) and COR28 (AT4G33980.1) using primers  
526 pDAN1906/pDAN1908, and pDAN1909/pDAN1911, respectively (**Table S2**). The resulting  
527 amplicons were cloned into NotI/Ascl-digested pENTR-MCS through In-Fusion HD cloning  
528 (Clontech, Mountain View, California) to make pENTR-COR27-no stop and pENTR-COR28-no  
529 stop. To generate pK7-RVE8-VEN-SHHc, pK7-LNK1-VEN-SHHc, pK7-COR27-VEN-SHHc,  
530 and pK7-COR28-VEN-SHHc, the pENTR-no stop versions of these genes were recombined to the  
531 pK7-VEN-SHHc binary vector using LR Clonase (Thermofisher). These C-terminally tagged  
532 proteins are driven from the CaMV35S promoter. To generate the dual luciferase reporter pGreenII  
533 0800-LUC-TOC1p, 2098 bp of the TOC1 promoter was cloned using primers  
534 pDAN2735/pDAN2736 (**Table S2**) and inserted via In-Fusion HD cloning (Clontech, Mountain  
535 View, California) into the pGreenII 0800-LUC plasmid (Hellens et al., 2005) digested with  
536 BamHI. The resulting vector (pGreenII 0800-LUC-TOC1p) constitutively expresses renilla  
537 luciferase from the CaMV35S promoter and contains the gene for firefly luciferase driven by the  
538 TOC1 promoter.

539 To generate yeast 2/3-hybrid vectors, the gene of interest was cloned from its pENTR-STOP  
540 template using primers pDAN2349/pDAN2350 (**Table S2**) and recombined into pGADT7  
541 digested with EcoRI using In-Fusion HD cloning (Clontech, Mountain View, California). For  
542 cloning into pGBK7, primers pDAN2347/pDAN2348 (**Table S2**) were used to clone off the  
543 pENTR-STOP template and recombine into BamHI-digested pGBK7 using In-Fusion HD  
544 cloning (Clontech, Mountain View, California). For cloning into the pBridge vector (Clontech,  
545 Mountain View, California), the gene of interest was cloned from its pENTR-STOP template using  
546 primers pDAN2441/pDAN2442 (**Table S2**) and recombined into the first MCS of pBridge  
547 digested with EcoRI using In-Fusion HD cloning (Clontech, Mountain View, California) or using  
548 primers pDAN2443/pDAN2444 (**Table S2**) to recombine into the second MCS of pBridge  
549 digested with BglII using In-Fusion HD cloning (Clontech, Mountain View, California).

550

551

552 **Affinity Purification**

553       Affinity purification was performed as detailed in Sorkin and Nusinow (2022). Briefly,  
554 affinity-tagged lines were plated on 1/2x MS + 1% Sucrose and grown for 10 days under LD 22  
555 °C conditions. On day 10 of growth, tissue was harvested at either ZT5 or ZT9. To extract protein,  
556 powdered tissue was resuspended in SII buffer (100 mM sodium phosphate, pH 8.0, 150 mM NaCl,  
557 5 mM EDTA, 5 mM EGTA, 0.1% Triton X-100, 1 mM PMSF, 1x protease inhibitor mixture  
558 (Roche, Basel, Switzerland), 1x Phosphatase Inhibitors II & III (Sigma- Aldrich), and 5 µM  
559 MG132 (Peptides International, Louisville, KY)) and sonicated using a duty cycle of 20 s (2 s on,  
560 2 s off, total of 40 s) at 50% power. Extracts were clarified of cellular debris through 2x  
561 centrifugation for 10 min at  $\geq 20,000 \times g$  at 4 °C.

562       For HFC-tagged samples, clarified extracts were incubated with FLAG-M2-conjugated  
563 Protein G Dynabeads (Thermo Fisher Scientific, Waltham, Massachusetts) for one hour. Captured  
564 proteins were eluted off FLAG beads using 500 µg/mL 3x-FLAG peptide (Sigma-Aldrich). Eluted  
565 proteins were then incubated with Dynabeads His-Tag Isolation and Pulldown (Thermo Fisher  
566 Scientific, Waltham, Massachusetts) for 20 minutes and then washed 5 x 1 minute in His-tag  
567 Isolation Buffer (100 mM Na-phosphate, pH 8.0, 150 mM NaCl, 0.025% Triton X-100). Washed  
568 bead pellet was washed 4x in 25mM ammonium bicarbonate and flash frozen in liquid N<sub>2</sub>.

569       For YFP-COR27 and GFP-COR28, clarified extracts were incubated with GFP-TRAP  
570 Magnetic Agarose affinity beads (ChromoTek GmbH, Planegg-Martinsried, Germany) for one  
571 hour. Captured proteins were washed 3 x 1 minute in His-tag Isolation Buffer (100 mM Na-  
572 phosphate, pH 8.0, 150 mM NaCl, 0.025% Triton X-100) and 4x in 25mM ammonium bicarbonate  
573 and then flash frozen in liquid N<sub>2</sub>.

574

575 **LC-MS/MS analysis of AP samples**

576       Samples on affinity beads were resuspended in 50 mM ammonium bicarbonate, reduced  
577 (10 mM TCEP) and alkylated (25 mM Iodoacetamide) followed by digestion with Trypsin at 37°C  
578 overnight. Digest was separated from beads using a magnetic stand and acidified with 1%TFA  
579 before cleaned up with C18 tip (Thermo Fisher Scientific, Waltham, Massachusetts). The extracted  
580 peptides were dried down and each sample was resuspended in 10 µL 5% ACN/0.1% FA. 5 µL

581 was analyzed by LC-MS with a Dionex RSLCnano HPLC coupled to a Orbitrap Fusion Lumos  
582 mass spectrometer (Thermo Fisher Scientific, Waltham, Massachusetts) using a 2h gradient.  
583 Peptides were resolved using 75  $\mu$ m x 50 cm PepMap C18 column (Thermo Fisher Scientific,  
584 Waltham, Massachusetts).

585 Peptides were eluted at 300 nL/min from a 75  $\mu$ m x 50 cm PepMap C18 column (Thermo  
586 Scientific) using the following gradient: Time = 0–4 min, 2% B isocratic; 4–8 min, 2–10% B; 8–  
587 83 min, 10–25% B; 83–97 min, 25–50% B; 97–105 min, 50–98%. Mobile phase consisted of A,  
588 0.1% formic acid; mobile phase B, 0.1% formic acid in acetonitrile. The instrument was operated  
589 in the data-dependent acquisition mode in which each MS1 scan was followed by Higher-energy  
590 collisional dissociation (HCD) of as many precursor ions in 2 second cycle (Top Speed method).  
591 The mass range for the MS1 done using the FTMS was 365 to 1800 m/z with resolving power set  
592 to 60,000 @ 400 m/z and the automatic gain control (AGC) target set to 1,000,000 ions with a  
593 maximum fill time of 100 ms. The selected precursors were fragmented in the ion trap using an  
594 isolation window of 1.5 m/z, an AGC target value of 10,000 ions, a maximum fill time of 100 ms,  
595 a normalized collision energy of 35 and activation time of 30 ms. Dynamic exclusion was  
596 performed with a repeat count of 1, exclusion duration of 30 s, and a minimum MS ion count for  
597 triggering MS/MS set to 5000 counts.

598

## 599 AP-MS Data Analysis

600 MS data were converted into mgf. Database searches were done using Mascot (Matrix  
601 Science, London, UK; v.2.5.0) using the TAIR10 database (20101214, 35,386 entries) and the  
602 cRAP database (<http://www.thegpm.org/cRAP/>) and assuming the digestion enzyme trypsin and  
603 2 missed cleavages. Mascot was searched with a fragment ion mass tolerance of 0.60 Da and a  
604 parent ion tolerance of 10 ppm. Oxidation of methionine and carbamidomethyl of cysteine were  
605 specified in Mascot as variable modifications. Scaffold (Proteome Software Inc., Portland, OR;  
606 v.4.8) was used to validate MS/MS based peptide and protein identifications. Peptide  
607 identifications were accepted if they could be established at greater than 95.0% probability by the  
608 Peptide Prophet algorithm (Keller et al., 2002) with Scaffold delta-mass correction. The Scaffold  
609 Local FDR was used and only peptides probabilities with FDR <1% were used for further analysis.  
610 Protein identifications were accepted if they could be established at greater than 99.9% probability  
611 as assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained

612 similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to  
613 satisfy the principles of parsimony. Proteins sharing significant peptide evidence were grouped  
614 into clusters. Only the proteins identified with  $\geq 2$  unique peptides were further used in the analysis,  
615 except when proteins with only one peptide were identified in more than one replicate.

616

## 617 **Yeast 2-Hybrid (Y2H) and Yeast 3-Hybrid Assays**

618 We used the GAL4-based Matchmaker Gold Yeast 2-Hybrid System (Clontech, Mountain  
619 View, California) for all Y2H and Y3H assays. All transformations were performed as detailed in  
620 the Yeast Protocols Handbook (Clontech, Mountain View, California). For Y2H, bait proteins  
621 were cloned into the pGBKT7 vector which encodes the GAL4 DNA binding domain and then  
622 transformed into the Y2H Gold strain (Clontech, Mountain View, California) and plated on SD/-  
623 Trp to select for positive transformants. Prey proteins were cloned into the pGADT7 vector which  
624 encodes the GAL4 activation domain, transformed into the Y187 strain (Clontech, Mountain View,  
625 California), and plated on SD/-Leu to select for positive transformants. All matings were  
626 performed as detailed in the Yeast Protocols Handbook (Clontech, Mountain View, California)  
627 using the 96-well plate format. Mated diploids were selected for on SD/-Leu/-Trp media. Single  
628 colonies of mated bait + prey strains were resuspended in YPDA and plated on SD/-Leu-Trp or  
629 SD/-Leu-Trp-His plates.

630 For Y3H, bait and linker proteins were cloned into the appropriate position of the pBridge  
631 vector (Clontech, Mountain View, California), which encodes a GAL4 DNA binding domain and  
632 a linker protein, transformed into the Y2H Gold strain, and plated on SD/-Trp to select for positive  
633 transformants. pBridge strains were mated with pGADT7 prey strains and plated on SD/-Trp/-Leu  
634 to select for diploids. Single colonies of mated strains were resuspended in YPDA plated on SD/-  
635 Leu-Trp or SD/-Leu-Trp-His plates.

636

## 637 **Luciferase Reporter Assays**

638 Individual 6-day-old seedlings expressing a CCA1::LUC reporter grown under LD cycles  
639 at 22°C were arrayed on 1/2x MS + 1% Sucrose plates and sprayed with 5mM luciferin (GoldBio,  
640 Olivette, MO) prepared in 0.01% (v/v) Triton X-100 (Millipore Sigma-Aldrich, St. Louis, MO).  
641 Plants were transferred to an imaging chamber set to the appropriate free-run or entrainment  
642 program and images were taken every 60 minutes with an exposure of 10 minutes after a 3-minute

643 delay after lights-off to diminish signal from delayed fluorescence using a Pixis 1024 CCD camera  
644 (Princeton Instruments, Trenton, NJ). Images were processed to measure luminescence from each  
645 plant using the Metamorph imaging software (Molecular Devices, Sunnyvale, CA). Circadian  
646 period was calculated using fast Fourier transformed nonlinear least squares (FFT-NLLS) (Plautz  
647 et al., 1997) using the Biological Rhythms Analysis Software System 3.0 (BRASS) available at  
648 <http://www.amillar.org>.

649

#### 650 ***N. benthamiana* Transient Transformation**

651 Transient transformation of 3-4 week-old *N. benthamiana* plants was performed as in  
652 (Lasierra and Prat, 2018). Briefly, overnight saturated cultures of *Agrobacterium tumefaciens*  
653 strain GV3101 carrying pGreenII 0800-LUC-TOC1p, pK7-RVE8-VEN-SHHc, pK7-LNK1-VEN-  
654 SHHc, pK7-COR27-VEN-SHHc, pK7-COR28-VEN-SHHc, or 35S::P19-HA (Chapman et al.,  
655 2004) were pelleted and resuspended in 5 mL of resuspension buffer (10mM MgSO<sub>4</sub>, 10mM MES  
656 (pH 5.8), 150 µM Acetosyringone) for 2-3 hours. Cultures were diluted to OD<sub>600</sub>= 0.4 in  
657 resuspension buffer and inoculation mixtures were prepared by mixing the selected constructs  
658 together with the volume of 35S::P19-HA being varied to ensure that an equal amount of  
659 agrobacteria was added to each mixture relative to the reporter, regardless of the total number of  
660 effectors being introduced. Mixtures were inoculated into one quadrant of a mature leaf per one  
661 mixture. Four different mixtures could be inoculated into a single leaf. Three leaves per plant were  
662 inoculated and four plants were used for a total of 12 biological replicates per mixture.

663

#### 664 **Dual-Luciferase Assay**

665 The dual luciferase assay was performed using the Dual-Glo Luciferase Assay System  
666 (Promega, Madison, Wisconsin). Briefly, 3-4 week-old tobacco plants were inoculated with  
667 *Agrobacterium tumefaciens* expressing pGreenII 0800-LUC-TOC1p and a combination of other  
668 proteins: pK7-RVE8-VEN-2x-StrepII-HA-6X-His-C-terminus (SHHc), pK7-LNK1-VEN-SHHc,  
669 pK7-COR27-VEN-SHHc, or pK7-COR28-VEN-SHHc. This reporter firefly luciferase driven by  
670 the 3 leaf disks were collected per infiltration site from 3-day-post-infiltrated tobacco plants and  
671 frozen in liquid N<sub>2</sub>. Tissue was homogenized and resuspended in 200 µL of Cell Culture Lysis  
672 Reagent (100 mM potassium phosphate, pH 7.8, 1 mM EDTA, 7mM 2-mercaptoethanol, 1%  
673 Triton X-100, 10% glycerol). Lysates were centrifuged at max speed for 5 minutes and 5 µL of

674 undiluted extract was used for the Dual Luciferase Assay input. 40  $\mu$ L of Luciferase Assay Buffer  
675 was added to undiluted extract in a black 96-well plate and incubated for at least 10 minutes.  
676 Luminescence was measured over a 10-minute exposure using a Pixis 1024 CCD camera  
677 (Princeton Instruments, Trenton, NJ). 40  $\mu$ L of Stop & Glo Reagent was added to wells to quench  
678 the firefly luciferase signal and provide the substrate for renilla luciferase. After at least 10 minutes  
679 incubation, luminescence was measured over a 10-minute exposure using the CCD camera. Firefly  
680 luciferase signal was divided by renilla signal to calculate normalized luminescence.

681

## 682 **Densitometry Analysis**

683 Densitometry analysis was performed in FIJI (<https://imagej.net/software/fiji/>) on high  
684 resolution (600 dpi), greyscale images of Western blots captured with the same exposure time.  
685 Mean grey value was measured from ROIs of equal area for each protein band and for background  
686 regions as well as for loading controls (Ponceau S stain) and loading control background regions.  
687 Inverted pixel density of background regions was subtracted from the inverted pixel density of  
688 protein bands and loading controls to generate the net pixel density value. To calculate normalized  
689 abundance, the ratio of the net protein band value over the net loading control value was taken.

690

## 691 **Quantitative RT-PCR**

692 Seedlings were gas sterilized and grown on 1/2x MS + 1% Sucrose plates with Whatman  
693 filter paper under 12 hr light: 12 hr dark, 22 °C conditions. On day 7 of growth at ZT10, plates  
694 were transferred to a different chamber set to either 22 °C or 4 °C for two hours. Tissue was  
695 collected at ZT12. Total RNA was extracted from powdered tissue using the RNeasy Plant Mini  
696 kit (Qiagen, Hilden, Germany). 1  $\mu$ g of total RNA was used as the template to synthesize cDNA  
697 using the iScript RT-PCR kit (Bio-Rad, Carlsbad, CA). qPCR was performed with the SYBR  
698 Green I nucleic acid gel stain (Sigma-Aldrich) using a QuantStudio 5 Real-Time PCR System  
699 (ThermoFisher). PCR was set up as follows: 3 min at 95°C, followed by 40 cycles of 10 s at 95°C,  
700 10 s at 55°C and 20 s at 72°C. A melting curve analysis was conducted right after all PCR cycles  
701 are done. APA1 (At1g11910), expression of which remain stable during the diurnal cycle, was  
702 used as the normalization control. Primers for qPCR are listed in **Table S2**.

703

## 704 **Acknowledgements**

705 We acknowledge support by the National Science Foundation under Grant No. DBI-1827534 for  
706 acquisition of the Orbitrap Fusion Lumos LC-MS/MS and from the NIH award 5R01GM141374  
707 to DAN. MLS was supported by NSF GRF award DGE-1745038 and by the William H. Danforth  
708 Plant Science Fellowship from the Donald Danforth Plant Science Center. This study was also  
709 supported by the German Research Foundation (DFG) under Germany's Excellence Strategy  
710 (CIBSS - EXC 2189 – Project ID 390939984) and DFG grant HI 1369/6-1 to AH and by Agencia  
711 Nacional de Promoción Científica y Tecnológica (ANPCyT) to MJY.

712

### 713 **Author Contributions**

714 MLS, NK, AH, MJY, AR, BSE and DAN designed the research project. The research was  
715 performed by MLS, ST, and RB. AR contributed new analysis to the paper. MLS, ST, and DAN  
716 wrote the paper.

717

### 718 **Figure Legends**

719 **Figure 1 Characterization of affinity-tagged lines used for APMS (A-C)** Circadian luciferase  
720 reporter period analysis of selected T3 homozygous lines expressing (A) LNK1-HFC, (B) LNK2-HFC,  
721 or (C) RVE8-HFC in their respective mutant backgrounds (*rve8-1* or *lnkQ*). Each point  
722 represents the circadian period of an individual plant and the + symbol shows the average period  
723 for that genotype. Letters correspond to significantly different periods as determined by ANOVA  
724 with a Tukey's post-hoc test. LNK1 and LNK2 luciferase assays were performed together and  
725 include the same wildtype and *lnkQ* data. Environmental conditions during imaging are included  
726 at the top of the plot (LL = constant light). (D-F) Time course Western blots showing cyclic protein  
727 abundance patterns of 10-day-old affinity tagged lines under 12 hr light: 12 hr dark 22 °C  
728 conditions. Affinity tagged lines are detected with anti-FLAG antibody. RPT5 or Ponceau S  
729 staining was used to show loading. Col-0 CCA1::LUC (Col-0) or *rve8-1* CCR2::LUC (*rve8-1*)  
730 were used as negative controls. White and black bars indicate lights-on and lights-off, respectively  
731 (D) 24-hour protein expression patterns of affinity tagged lines normalized to Ponceau S or RPT5  
732 quantified by densitometry of Western blots shown in D-F. Vertical dotted lines indicate time of  
733 tissue collection for APMS. White and grey shading indicates lights-on and lights-off, respectively.  
734 Western blots and luciferase reporter assays were repeated at least 2 times. ZT= Zeitgeber Time.  
735

736 **Figure 2 Analysis of proteins coprecipitated with RVE8/LNK1/LNK2-HFC by time-of-day**  
737 **affinity purification-mass spectrometry** (A) Venn diagram showing number of proteins  
738 coprecipitated with RVE8/LNK1/LNK2 at ZT5, ZT9, or at both timepoints. Corresponding bar  
739 charts show enriched GO biological process terms with  $-\text{Log}_{10}(\text{p-value})$ . (B-D) Venn diagrams of  
740 coprecipitated proteins at ZT5 and ZT9 separated by bait protein (B, LNK1-HFC, C, LNK2-HFC,  
741 or D, RVE8-HFC). (E-H) mRNA expression profiles in constant light of four cold-response  
742 proteins identified as RVE8/LNK1/LNK2 interactors. RNA-seq data for E-H taken from  
743 Romanowski et al. (2020) *The Plant Journal*. ZT= Zeitgeber Time

744

745 **Figure 3 COR27/28 interact with RVE8/LNK1 in a yeast 3-hybrid system** Yeast strains Y2H  
746 Gold or Y187 expressing pBridge (GAL4-DBD and a Bridge protein) or pGADT7 (GAL4-AD),  
747 respectively, were mated and plated onto selective media. Successful matings can grow on -  
748 Leucine/-Tryptophan media (-L-W) while positive interactors can grow on -Leucine/-Tryptophan/-  
749 Histidine + 2mM 3-amino-1,2,4-triazole (3AT) (-L-W-H + 2mM 3AT). A graphical depiction of  
750 different combinations is shown to the right. AD-T (large T-antigen protein) is a negative control  
751 for prey interactions. Experiment was repeated at least twice.  
752

753 **Figure 4 COR27/28 alter RVE8-HFC protein abundance patterns and inhibit RVE8/LNK1-  
754 mediated activation of TOC1** (A-B) 24-hour protein expression patterns of RVE8-HFC in wild  
755 type (A) or *cor27-2 cor28-2* (B) backgrounds analyzed by Western blot. Tissue was collected  
756 every 3 hours from 12-day-old plants grown under 12 hr light: 12 hr dark 22 °C conditions. Anti-  
757 FLAG antibody was used to detect RVE8-HFC and Ponceau S staining was used to show loading.  
758 White and black bars indicate lights-on and lights-off, respectively. Col-0 CCR2::LUC was used  
759 as the negative control. (C) Densitometry quantification of (A) and (B) RVE8-HFC 24-hour  
760 abundance normalized to Ponceau S in wild type and *cor27-2 cor28-2* backgrounds. Points  
761 represent the average normalized RVE8-HFC abundance from 3 (WT) or 4 (*cor27-2 cor28-2*)  
762 independent bioreps. Asterisks indicate significant differences between genotypes based on  
763 Welch's t-test (\* p< 0.05). Error bars = SD. (D) Dual luciferase assay in 3-4-week-old *Nicotiana*  
764 *benthamiana*. Schematic of expression constructs infiltrated are shown at the top (SHH = 2X-  
765 StrepII-HA-His<sub>6</sub> tag). Luminescence from a dual firefly/renilla luciferase reporter was measured  
766 after coinfection with 35S::RVE8-VENUS-SHH, 35S::LNK1-VENUS-SHH, 35S::COR27-  
767 VENUS-SHH, or 35S::COR28-VENUS-SHH. Luminescence was normalized to constitutively  
768 expressed renilla luciferase luminescence to control for infection efficiency. Points represent the  
769 normalized luminescence from 3-4 independent experiments with N=12. Mean normalized  
770 luminescence is indicated by the crosshair symbol and error bars = SD. Asterisks indicate  
771 significant differences by unpaired t-test with Welch correction (ns= not significant, \* p< 0.05, \*\*  
772 p< 0.01). ZT= Zeitgeber Time. Empty = reporter alone.  
773

774 **Figure 5 LNK1/2 are important for temperature entrainment of the clock.** (A,C,E) Plants  
775 were grown for 7 days under 12 hr light: 12 hr dark 22 °C conditions for initial entrainment. On  
776 day 7, seedlings were transferred to imaging chamber and luminescence was measured for at least  
777 3 days in continuous light and temperature (22 °C) before the chamber was switched to either a  
778 temperature- (A,C) or photo- (E) entrainment program. Temperature entrainment consisted of a  
779 day temperature of 22 °C and nighttime temperature of 20 °C (A) or 18 °C (C). Photoentrainment  
780 consisted of 12 hr light followed by 12 hr darkness (22 °C). Lines represent the average  
781 luminescence from n=16 seedlings with errors bars = SEM. Vertical dotted lines correspond to the  
782 acrophase, or time of peak reporter expression, of the CCA1::LUC reporter in wild type plants.  
783 (B,D,F) Acrophase is plotted for each genotype for each day of imaging in constant light and the  
784 temperature entrainment condition (B, D) or under photoentrainment (F). Each point represents  
785 the acrophase of the averaged luminescence trace shown in (A,C,E). CT = Circadian Time. A.U.  
786 = Arbitrary Units. ZT=Zeitgeber Time.  
787

788 **Figure 6 The RVE8-LNK1/2-COR27/28 complex is a novel post-translational regulatory  
789 mechanism in the circadian clock.** (A) Protein interaction network compiled from APMS

790 experiments using RVE8-HFC, LNK1-HFC, LNK2-HFC, YFP-COR27, and GFP-COR28 as bait  
791 proteins at ZT5 and ZT9. Black lines indicate novel interactions identified in this study, grey lines  
792 show previously published interactions validated in this study, and orange lines show novel  
793 interactions that were identified only at ZT9. (B) Model of hypothesized role of the RVE-LNK-  
794 COR interaction during a 24-hour period. In the morning, RVE8-LNK1/2 interact to coactivate the  
795 expression of target genes such as evening-phased circadian clock genes and cold-response genes.  
796 Towards the evening, COR27/28 are expressed and interact with the RVE8-LNK1/2 complex,  
797 potentially recruiting a ubiquitin E3 ligase such as COP1 to target the entire complex for  
798 degradation by the 26S proteasome, thus blocking activation of RVE8 targets in the evening. Green  
799 and purple lines show approximate protein abundance patterns of RVE8 and LNK1, respectively,  
800 while the blue line shows approximate *COR27/28* mRNA expression.  
801

802 **Supplemental Figure 1 mRNA expression patterns of *RVE8*, *LNK1*, or *LNK2* under**

803 photocycles (12 hr light: 12 hr dark).

804 White and dark grey shading indicates lights-on and lights-off, respectively. Microarray data from diurnal.mocklerlab.com.

805 **Supplemental Figure 2 Protein alignment of TCF1 (AT3G55580) and RCC1L (AT3G53830).**  
806 Protein sequences were aligned using the needle algorithm using the EBLOSUM62 matrix, a gap  
807 penalty of 10.0, and an extend penalty of 0.5. Sequences share 49.7% identity.  
808

809 **Supplemental Figure 3 Comparison of HFC-tagged protein abundance with *COR27/28*,  
810 *COP1*, and *SPA1* mRNA expression profiles.** 24-hour (12 hr light: 12 hr dark, 22 °C (LDHH))  
811 protein abundance (dark blue) is quantified from Western blots shown in Figure 1D-F. LDHH  
812 mRNA data from diurnal.mocklerlab.com (light blue) is overlaid. Vertical dotted lines show the  
813 time of day when tissue was collected for APMS. White and grey shading indicated lights-on and  
814 lights-off, respectively.  
815

816 **Supplemental Figure 4 COR27/28 do not interact with RVE8 or LNK1 in a binary Y2H  
817 system** Yeast strains Y2H Gold or Y187 expressing pGBT7 (Gal4-DBD) or pGADT7 (Gal4-  
818 AD), respectively, were mated and plated onto selective media. Successful matings were able to  
819 grow on -Leucine/-Tryptophan media (-L-W) while positive interactors can grow on -Leucine/-  
820 Tryptophan-Histidine + 2mM 3-amino-1,2,4-triazole (3AT) (-L-W-H +3AT). Only the positive  
821 controls DBD-53 (p53) + AD-T (large T-antigen protein) and DBD-RVE8 + AD-LNK1 C-term  
822 show an interaction.  
823

824 **Supplemental Figure 5 Full-length LNK1 auto-activates in yeast when paired with a DBD-  
825 containing protein** Yeast strains Y2H Gold or Y187 expressing pBridge (Gal4-DBD and a Bridge  
826 protein) or pGADT7 (Gal4-AD), respectively, were mated and plated onto selective media.  
827 Successful matings were able to grow on -Leucine/-Tryptophan media (-L-W). Full length LNK1  
828 (bridge protein, no AD domain) paired with the transcription factor RVE8 (\*) can aberrantly  
829 activate the expression of the histidine biosynthesis reporter, allowing it to grow on -Leucine/-  
830 Tryptophan-Histidine (-L-W-H) when paired with the negative control large T-antigen protein  
831 (T). LNK1 N- and C-terminal truncations do not autoactivate.  
832

833 **Supplemental Figure 6 RVE8-HFC protein abundance patterns are regulated by the 26S  
834 proteasome** (A) Representative Western blot showing protein expression patterns of RVE8-HFC

836 plants treated with DMSO or 100  $\mu$ M bortezomib. At ZT5, 12-day-old seedlings growing under  
837 12 hr light: 12 hr dark, 22 °C conditions were immersed in 1/2X MS media containing either 100  
838  $\mu$ M bortezomib or DMSO. Tissue was collected every 3 hours starting at ZT6. RVE8-HFC was  
839 detected with anti-FLAG and Ponceau S staining was used to show loading. (B) Densitometry  
840 quantification of RVE8-HFC abundance in (A) normalized to Ponceau S. Points represent the  
841 average normalized RVE8-HFC abundance from 3 independent bioreps. Asterisks indicate  
842 significant differences between genotypes based on Welch's t-test (\* p<0.05). Error bars = SD.  
843 White and grey shading indicate lights-on and lights-off, respectively. ZT= Zeitgeber Time.  
844

845 **Supplemental Figure 7 The RVEs and LNKs are important for cold induction of *COR27/28*.**  
846 Seedlings were grown on 1/2X MS + 1% sucrose for seven days under 12 hr light; 12 hr dark 22  
847 °C conditions and then transferred at ZT10 to either 22 °C or 4 °C for two hours and tissue was  
848 collected at ZT12. (A-B) show the induction of *COR27/28* expression at 4 °C compared to 22 °C.  
849 Figures (C-D) show *COR27/28* expression levels at 22 °C. Expression was normalized to the  
850 endogenous control gene APA1. Bars show average expression with error bars = SD from 3  
851 independent bioreps (points) for each genotype. Asterisks indicate significant differences as  
852 determined by Welch's t-test (\*\* p<0.01, \*\*\* P<0.001).  
853

854 **Supplemental Figure 8 LNK1/2 mutants are also impaired in temperature entrainment**  
855 **under ramping temperature cycles** (A) Luminescence from 7-day-old plants entrained under 12  
856 hr light: 12 hr dark, 22 °C conditions expressing a CCA1p::LUC reporter was imaged for at least  
857 3 days in continuous light and temperature (22 °C) before the chamber was switched to a ramping  
858 temperature entrainment program that gradually oscillated between a low temperature of 16 °C at  
859 ZT16 and a high of 22 °C at ZT4. Lines represent the average luminescence from n=16 seedlings  
860 with errors bars = SEM. Vertical dotted lines correspond to the peak expression time (acrophase)  
861 of the CCA1p::LUC reporter in wild type plants. (B) Acrophase, or time of peak reporter  
862 expression, is plotted for each genotype for each day of imaging in constant light and the  
863 temperature entrainment condition. Each point represents the acrophase of the averaged  
864 luminescence trace shown in (A). CT = Circadian Time. A.U. = Arbitrary Units. ZT= Zeitgeber  
865 Time.  
866

867 **Supplemental Figure 9 *Ink3/4* mutants are not impaired in temperature entrainment** (A)  
868 Luminescence from 7-day-old plants expressing a CCA1p::LUC reporter were grown for at least  
869 3 days in continuous light and temperature (22 °C) before the chamber was switched to a ramping  
870 temperature entrainment program that gradually oscillates between a low temperature of 16 °C at  
871 ZT16 and a high of 22 °C at ZT4. Lines represent the average luminescence from n=16 seedlings  
872 with errors bars = SEM. Vertical dotted lines correspond to the peak expression time of the  
873 CCA1p::LUC reporter in wild type plants. (B) Acrophase, or time of peak reporter expression, is  
874 plotted for each genotype for each day of imaging in constant light and the temperature entrainment  
875 condition. Each point represents the acrophase of the averaged luminescence trace shown on the  
876 right. CT = Circadian Time. A.U. = Arbitrary Units. ZT=Zeitgeber Time.  
877

878 **Table 1 Proteins coprecipitated with RVE8/LNK1/LNK2-HFC at ZT5.** Total spectra for a  
879 given coprecipitated protein is shown for each independent ZT5 sample. The curated table  
880 excludes coprecipitated proteins that were identified in the GFP-HFC or Col-0 negative control  
881 APMS experiments, see Dataset S1 for all identifications.

882

883 **Table 2 Identified proteins coprecipitated with RVE8/LNK1/LNK2-HFC at ZT9.** Total  
884 spectra for a given coprecipitated protein is shown for each independent ZT9 sample. The curated  
885 table excludes coprecipitated proteins that were identified in the GFP-HFC or Col-0 negative  
886 control APMS experiments, see Dataset S1 for all identifications.

887

888 **Table 3 Identified proteins coprecipitated with YFP-COR27/GFP-COR28 at ZT9.** Total  
889 spectra for a given coprecipitated protein is shown for each independent ZT9 sample. The curated  
890 table excludes coprecipitated proteins that were identified in the GFP-HFC or Col-0 negative  
891 control APMS experiments, see Dataset S1 for all identifications.

892

893 **Supplemental Table 1 AT3G53830 (RCC1L) is downregulated at 4 °C.** Data taken from  
894 Kidokoro et al. (2021) PNAS. Wild-type (Col-0) plants were transferred to 4 °C at LL2 (T=0; 2  
895 hours after dawn) and tissue for RNA sequencing was collected at 3 hours and 12 hours after  
896 transfer to cold conditions. *RCC1L* is significantly downregulated after 12 hours under 4 °C  
897 treatment.

898

899 **Supplemental Table 2 Oligonucleotides used in this study.**

900

## 901 **References**

902 **Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK,**  
903 **Zimmerman J, Barajas P, Cheuk R, et al** (2003) Genome-wide insertional mutagenesis  
904 of *Arabidopsis thaliana*. *Science* (80- ) **301**: 653–657

905 **Avello PA, Davis SJ, Ronald J, Pitchford JW** (2019) Heat the Clock: Entrainment and  
906 Compensation in *Arabidopsis* Circadian Rhythms. *J Circadian Rhythms* **17**: 5

907 **Blair EJ, Bonnot T, Hummel M, Hay E, Marzolino JM, Quijada IA, Nagel DH** (2019)  
908 Contribution of time of day and the circadian clock to the heat stress responsive  
909 transcriptome in *Arabidopsis*. *Sci Rep* **9**: 4814

910 **Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja V V., Carrington JC** (2004) Viral RNA  
911 silencing suppressors inhibit the microRNA pathway at an intermediate step. *Genes Dev* **18**:  
912 1179

913 **Clough SJ, Bent AF** (1998) Floral dip: A simplified method for Agrobacterium-mediated  
914 transformation of *Arabidopsis thaliana*. *Plant J* **16**: 735–743

915 **Devlin PF, Kay SA** (2001) CIRCADIAN PHOTOPERCEPTION. *Annu Rev Physiol* **63**: 677–  
916 694

917 **Gray JA, Shalit-Kaneh A, Chu DN, Yingshan Hsu P, Harmer SL** (2017) The REVEILLE  
918 Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size. *Plant*

919 Physiol **173**: 2308–2322

920 **Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA** (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. doi: 10.1186/1746-4811-1-13

924 **Hooper CM, Tanz SK, Castleden IR, Vacher MA, Small ID, Millar AH** (2014) Data and text mining SUBAcon: a consensus algorithm for unifying the subcellular localization data of the *Arabidopsis* proteome. **30**: 3356–3364

927 **Hsu PY, Devisetty UK, Harmer SL** (2013a) Accurate timekeeping is controlled by a cycling activator in *Arabidopsis*. *Elife* **2**: e00473

929 **Hsu PY, Devisetty UK, Harmer SL** (2013b) Accurate timekeeping is controlled by a cycling activator in *Arabidopsis*. *Elife*. doi: 10.7554/eLife.00473

931 **Huang H, Alvarez S, Bindbeutel R, Shen Z, Naldrett MJ, Evans BS, Briggs SP, Hicks LM, Kay SA, Nusinow DA, et al** (2016a) Identification of Evening Complex Associated Proteins in *Arabidopsis* by Affinity Purification and Mass Spectrometry. *Mol Cell Proteomics* **15**: 201–217

935 **Huang H, Yoo CY, Bindbeutel R, Goldsworthy J, Tielking A, Alvarez S, Naldrett MJ, Evans BS, Chen M, Nusinow DA** (2016b) PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in *Arabidopsis*. *Elife* **5**: 1–27

938 **Ji H, Wang Y, Cloix C, Li K, Jenkins GI, Wang S, Shang Z, Shi Y, Yang S, Li X** (2015) The *Arabidopsis* RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. *PLOS Genet* **11**: e1005471

941 **Kahle N, Sheerin DJ, Fischbach P, Koch LA, Schwenk P, Lambert D, Rodriguez R, Kerner K, Hoecker U, Zurbriggen MD, et al** (2020) COLD REGULATED 27 and 28 are targets of CONSTITUTIVELY PHOTOMORPHOGENIC 1 and negatively affect phytochrome B signalling. *Plant J* **104**: 1038–1053

945 **Karimi M, Inzé D, Depicker A** (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. *Trends Plant Sci* **7**: 193–195

947 **Keller A, Nesvizhskii AI, Kolker E, Aebersold R** (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. *Anal Chem* **74**: 5383–5392

950 **Kidokoro S, Hayashi K, Haraguchi H, Ishikawa T, Soma F, Konoura I, Toda S, Mizoi J, Suzuki T, Shinozaki K, et al** (2021) Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in *Arabidopsis*. *Proc Natl Acad Sci.* doi: 10.1073/PNAS.2021048118

954 **Koushik S V, Chen H, Thaler C, Puhl HL 3rd, Vogel SS** (2006) Cerulean, Venus, and 955 VenusY67C FRET reference standards. *Biophys J* **91**: L99–L101

956 **Lasierra P, Prat S** (2018) Transient Transactivation Studies in *Nicotiana benthamiana* Leaves. 957 *In* L Oñate-Sánchez, ed, *Two-Hybrid Syst. Methods Protoc.* Springer New York, New 958 York, NY, pp 311–322

959 **de Leone MJ, Hernando CE, Romanowski A, García-Hourquet M, Careno D, Casal J, Rugnone M, Mora-García S, Yanovsky MJ, De Leone MJ, et al** (2018) The LNK Gene 960 Family: At the Crossroad between Light Signaling and the Circadian Clock. *Genes (Basel)* 961 **10**: 2

963 **de Leone MJ, Hernando CE, Vázquez M, Schneeberger K, Yanovsky MJ** (2020) Bacterial 964 Infection Disrupts Clock Gene Expression to Attenuate Immune Responses. *Curr Biol* **30**: 965 1–8

966 **Li B, Gao Z, Liu X, Sun D, Tang W** (2019) Transcriptional Profiling Reveals a Time-of-Day- 967 Specific Role of REVEILLE 4/8 in Regulating the First Wave of Heat Shock-Induced Gene 968 Expression in *Arabidopsis*. *Plant Cell* **31**: 2353–2369

969 **Li X, Liu C, Zhao Z, Ma D, Zhang J, Yang Y, Liu Y, Liu H** (2020) COR27 and COR28 are 970 Novel Regulators of the COP1-HY5 Regulatory Hub and Photomorphogenesis in 971 *Arabidopsis*. *Plant Cell Adv Publ.* doi: 10.1105/tpc.20.00195

972 **Li X, Ma D, Lu SX, Hu X, Huang R, Liang T, Xu T, Tobin EM, Liu H** (2016) Blue Light- 973 and Low Temperature-Regulated COR27 and COR28 Play Roles in the *Arabidopsis* 974 Circadian Clock. *Plant Cell* **28**: 2755–2769

975 **Ma Y, Gil S, Grasser KD, Mas P** (2018) Targeted Recruitment of the Basal Transcriptional 976 Machinery by LNK Clock Components Controls the Circadian Rhythms of Nascent RNAs 977 in *Arabidopsis*. *Plant Cell* **30**: 907–924

978 **Mikkelsen MD, Thomashow MF** (2009) A role for circadian evening elements in cold- 979 regulated gene expression in *Arabidopsis*. *Plant J* **60**: 328–339

980 **Mizuno T, Takeuchi A, Nomoto Y, Nakamichi N, Yamashino T** (2014) The LNK1 night

981 light-inducible and clock-regulated gene is induced also in response to warm-night through  
982 the circadian clock nighttime repressor in *Arabidopsis thaliana*. *Plant Signal Behav.* doi:  
983 10.4161/psb.28505

984 **Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J** (2007) The diurnal project: Diurnal and circadian expression profiling, model-based pattern matching, and promoter analysis. *Cold Spring Harb Symp Quant Biol* **72**: 353–363

988 **Nesvizhskii AI, Keller A, Kolker E, Aebersold R** (2003) A statistical model for identifying  
989 proteins by tandem mass spectrometry. *Anal Chem* **75**: 4646–4658

990 **Pérez-García P, Ma Y, Yanovsky MJ, Mas P** (2015) Time-dependent sequestration of RVE8  
991 by LNK proteins shapes the diurnal oscillation of anthocyanin biosynthesis. *Proc Natl Acad  
992 Sci U S A* **112**: 5249–53

993 **Plautz JD, Kaneko M, Hall JC, Kay SA** (1997) Independent photoreceptive circadian clocks  
994 throughout *Drosophila*. *Science* **278**: 1632–1635

995 **Rawat R, Takahashi N, Hsu PY, Jones MA, Schwartz J, Salemi MR, Phinney BS, Harmer  
996 SL** (2011) REVEILLE8 and PSEUDO-RESPONSE REGULATOR5 Form a Negative  
997 Feedback Loop within the *Arabidopsis* Circadian Clock. *PLoS Genet* **7**: e1001350

998 **Ren X, Jiang K, Zhang F** (2020) The Multifaceted Roles of RCC1 in Tumorigenesis. *Front Mol  
999 Biosci* **7**: 225

1000 **Romanowski A, Schlaen RG, Perez-Santangelo S, Mancini E, Yanovsky MJ** (2020) Global  
1001 transcriptome analysis reveals circadian control of splicing events in *Arabidopsis thaliana*.  
1002 *Plant J* **103**: 889–902

1003 **Rugnone ML, Soverna AF, Sanchez SE, Schlaen RG, Hernando CE, Seymour DK, Mancini  
1004 E, Chernomoretz A, Weigel D, Mas P, et al** (2013) LNK genes integrate light and clock  
1005 signaling networks at the core of the *Arabidopsis* oscillator. *Proc Natl Acad Sci U S A* **110**:  
1006 12120–12125

1007 **Salomé PA, Clung C** (2005) What makes the *Arabidopsis* clock tick on time? A review on  
1008 entrainment. *Plant, Cell Environ* **28**: 21–38

1009 **Salomé PA, Robertson Meclung C** (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 Are  
1010 Partially Redundant Genes Essential for the Temperature Responsiveness of the  
1011 *Arabidopsis* Circadian Clock. *Plant Cell* **17**: 791–803

1012 **Sorkin ML, Nusinow DA** (2022) Using Tandem Affinity Purification to Identify Circadian  
1013 Clock Protein Complexes from Arabidopsis. *In* D Staiger, S Davis, AM Davis, eds, Plant  
1014 Circadian Networks Methods Protoc. Springer US, New York, NY, pp 189–203  
1015 **Thines B, Harmon FG** (2010) Ambient temperature response establishes ELF3 as a required  
1016 component of the core Arabidopsis circadian clock. *Proc Natl Acad Sci* **107**: 3257–3262  
1017 **Wang P, Cui X, Zhao C, Shi L, Zhang G, Sun F, Cao X, Yuan L, Xie Q, Xu X** (2017)  
1018 *COR27* and *COR28* encode nighttime repressors integrating *Arabidopsis* circadian clock  
1019 and cold response. *J Integr Plant Biol* **59**: 78–85  
1020 **Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z, et al** (2014)  
1021 LNK1 and LNK2 Are Transcriptional Coactivators in the Arabidopsis Circadian Oscillator.  
1022 *Plant Cell* **26**: 2843–2857  
1023 **Zhou M, Zhang K, Sun Z, Yan M, Chen C, Zhang X, Tang Y, Wu Y** (2017) LNK1 and  
1024 LNK2 Corepressors Interact with the MYB3 Transcription Factor in Phenylpropanoid  
1025 Biosynthesis 1. *Plant Physiol* **174**: 1348–1358  
1026 **Zhou Y, Park SH, Soh MY, Chua NH** (2021) Ubiquitin-specific proteases UBP12 and UBP13  
1027 promote shade avoidance response by enhancing PIF7 stability. *Proc Natl Acad Sci U S A.*  
1028 doi: 10.1073/PNAS.2103633118/SUPPL\_FILE/PNAS.2103633118.SAPP.PDF  
1029 **Zhu W, Zhou H, Lin F, Zhao X, Jiang Y, Xu D, Deng XW** (2020) COLD-REGULATED  
1030 GENE 27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl  
1031 Growth in Arabidopsis. *Plant Cell Adv* Publ. doi: 10.1105/tpc.20.00192  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042

**Table 1. Proteins coprecipitated with RVE8/LNK1/LNK2-HFC at ZT5.** Total spectra for a given coprecipitated protein is shown for each independent ZT5 sample. The curated table excludes coprecipitated proteins that were identified in the GFP-HFC or Col-0 negative control APMS experiments, see Dataset S1 for all identifications.

| Protein Name                               | AGI Locus Number       | M.W. (kDa) | LNK1HFC_Z<br>T5_1 | LNK1HFC_Z<br>T5_2 | LNK2HFC_Z<br>T5_1 | LNK2HFC_Z<br>T5_2 | RVE8HFC_Z<br>T5_1 | RVE8HFC_Z<br>T5_2 |
|--------------------------------------------|------------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| LNK1                                       | AT5G64170 <sup>‡</sup> | 70         | 173               | 56                | 0                 | 0                 | 107               | 87                |
| LNK2                                       | AT3G54500 <sup>‡</sup> | 81         | 0                 | 0                 | 468               | 497               | 154               | 149               |
| RVE8                                       | AT3G09600 <sup>‡</sup> | 40         | 22                | 13                | 206               | 223               | 272               | 267               |
| RVE6                                       | AT5G52660              | 36         | 28                | 14                | 79                | 87                | 0                 | 0                 |
| TCF1                                       | AT3G55580 <sup>‡</sup> | 51         | 16                | 8                 | 37                | 39                | 7                 | 4                 |
| RVE5                                       | AT4G01280 <sup>‡</sup> | 34         | 16                | 8                 | 27                | 33                | 0                 | 0                 |
| RCC1L                                      | AT3G53830 <sup>‡</sup> | 49         | 4                 | 2                 | 8                 | 8                 | 0                 | 0                 |
| RVE4                                       | AT5G02840 <sup>‡</sup> | 31         | 4                 | 0                 | 85                | 84                | 0                 | 0                 |
| CCR16                                      | AT1G02150 <sup>‡</sup> | 60         | 1                 | 0                 | 0                 | 0                 | 0                 | 0                 |
| RVE3                                       | AT1G01520 <sup>‡</sup> | 33         | 0                 | 0                 | 10                | 11                | 0                 | 0                 |
| GRXS17                                     | AT4G04950              | 53         | 0                 | 0                 | 10                | 9                 | 0                 | 0                 |
| UBP12                                      | AT5G06600              | 131        | 0                 | 0                 | 8                 | 9                 | 0                 | 0                 |
| UBP13                                      | AT3G11910              | 131        | 0                 | 0                 | 6                 | 7                 | 1                 | 0                 |
| RACK1A                                     | AT1G18080 <sup>‡</sup> | 36         | 0                 | 0                 | 2                 | 4                 | 0                 | 0                 |
| DGR2                                       | AT5G25460 <sup>‡</sup> | 40         | 0                 | 0                 | 4                 | 3                 | 1                 | 0                 |
| PICALM3                                    | AT5G35200 <sup>‡</sup> | 61         | 0                 | 0                 | 4                 | 2                 | 0                 | 0                 |
| TRA1A                                      | AT2G17930              | 436        | 0                 | 0                 | 0                 | 2                 | 0                 | 0                 |
| CAB4                                       | AT3G47470 <sup>‡</sup> | 28         | 0                 | 0                 | 1                 | 1                 | 0                 | 0                 |
| BT11                                       | AT4G23630 <sup>‡</sup> | 31         | 0                 | 0                 | 1                 | 1                 | 0                 | 0                 |
| PUB12                                      | AT2G28830 <sup>‡</sup> | 107        | 0                 | 0                 | 0                 | 1                 | 0                 | 0                 |
| ABA1                                       | AT5G67030 <sup>‡</sup> | 74         | 0                 | 0                 | 0                 | 1                 | 0                 | 0                 |
| FLL2                                       | AT1G01320 <sup>‡</sup> | 199        | 0                 | 0                 | 1                 | 0                 | 0                 | 0                 |
| WLIM1                                      | AT1G10200 <sup>‡</sup> | 21         | 0                 | 0                 | 1                 | 0                 | 0                 | 0                 |
| FINS1                                      | AT1G43670 <sup>‡</sup> | 37         | 0                 | 0                 | 1                 | 0                 | 0                 | 0                 |
| PP2A-3                                     | AT2G42500              | 36         | 0                 | 0                 | 1                 | 0                 | 0                 | 0                 |
| Nucleic acid-binding, OB-fold-like protein | AT3G10090              | 7          | 0                 | 0                 | 1                 | 0                 | 0                 | 0                 |
| CPNB2                                      | AT3G13470 <sup>‡</sup> | 63         | 0                 | 0                 | 0                 | 0                 | 31                | 26                |
| LNK3                                       | AT3G12320 <sup>‡</sup> | 30         | 0                 | 0                 | 0                 | 0                 | 24                | 25                |
| SAG24                                      | AT1G66580 <sup>‡</sup> | 25         | 0                 | 0                 | 0                 | 0                 | 4                 | 0                 |
| LNK4                                       | AT5G06980              | 32         | 0                 | 0                 | 0                 | 0                 | 3                 | 3                 |
| ATRH3                                      | AT5G26742              | 81         | 0                 | 0                 | 0                 | 0                 | 1                 | 0                 |

<sup>‡</sup>Indicates mRNA is circadian regulated in constant light according to analysis in Romanowski et al. (2020) The Plant Journal

**Table 2. Identified proteins coprecipitated with RVE8/LNK1/LNK2-HFC at ZT9.** Total spectra for a given coprecipitated protein is shown for each independent ZT9 sample. The curated table excludes coprecipitated proteins that were identified in the GFP-HFC or Col-0 negative control APMS experiments, see Dataset S1 for all identifications.

| Protein Name                               | AGI Locus Number       | M.W. (kDa) | LNK1HFC_Z<br>T9_1 | LNK1HFC_Z<br>T9_2 | LNK2HFC_Z<br>T9_1 | LNK2HFC_Z<br>T9_2 | RVE8HFC_Z<br>T9_1 | RVE8HFC_Z<br>T9_2 |
|--------------------------------------------|------------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| LNK1                                       | AT5G64170 <sup>‡</sup> | 70         | 435               | 621               | 0                 | 0                 | 66                | 90                |
| LNK2                                       | AT3G54500 <sup>‡</sup> | 81         | 0                 | 0                 | 140               | 151               | 109               | 137               |
| RVE8                                       | AT3G09600 <sup>‡</sup> | 40         | 71                | 101               | 33                | 52                | 285               | 317               |
| RVE6                                       | AT5G52660              | 36         | 86                | 113               | 21                | 22                | 4                 | 3                 |
| RVE5                                       | AT4G01280 <sup>‡</sup> | 34         | 32                | 51                | 12                | 12                | 0                 | 0                 |
| TCF1                                       | AT3G55580 <sup>‡</sup> | 51         | 32                | 49                | 20                | 30                | 13                | 13                |
| RVE4                                       | AT5G02840 <sup>‡</sup> | 31         | 31                | 43                | 0                 | 7                 | 0                 | 0                 |
| RCC1L                                      | AT3G53830 <sup>‡</sup> | 49         | 20                | 25                | 3                 | 10                | 0                 | 0                 |
| COR28                                      | AT4G33980 <sup>‡</sup> | 26         | 11                | 15                | 6                 | 6                 | 26                | 29                |
| RVE3                                       | AT1G01520 <sup>‡</sup> | 33         | 8                 | 10                | 0                 | 0                 | 0                 | 0                 |
| CCR16                                      | AT1G02150 <sup>‡</sup> | 60         | 3                 | 8                 | 0                 | 0                 | 0                 | 1                 |
| TRA1A                                      | AT2G17930              | 436        | 3                 | 7                 | 0                 | 0                 | 0                 | 0                 |
| DGR2                                       | AT5G25460 <sup>‡</sup> | 40         | 3                 | 4                 | 0                 | 0                 | 2                 | 5                 |
| ENTH/ANTH/VHS superfamily protein          | AT5G35200 <sup>‡</sup> | 61         | 2                 | 3                 | 0                 | 0                 | 0                 | 0                 |
| FLL2                                       | AT1G01320 <sup>‡</sup> | 199        | 0                 | 3                 | 0                 | 0                 | 0                 | 1                 |
| Nucleic acid-binding, OB-fold-like protein | AT2G40660 <sup>‡</sup> | 42         | 3                 | 2                 | 0                 | 0                 | 0                 | 0                 |
| UBP12                                      | AT5G06600              | 131        | 0                 | 1                 | 0                 | 0                 | 0                 | 0                 |
| PHOT2                                      | AT5G58140              | 102        | 1                 | 2                 | 0                 | 0                 | 0                 | 0                 |
| MLK4                                       | AT3G13670 <sup>‡</sup> | 79         | 0                 | 2                 | 0                 | 0                 | 6                 | 6                 |
| UBP13                                      | AT3G11910              | 131        | 0                 | 2                 | 0                 | 0                 | 1                 | 4                 |
| COR27                                      | AT5G42900              | 27         | 2                 | 1                 | 0                 | 1                 | 4                 | 7                 |
| WLIM1                                      | AT1G10200 <sup>‡</sup> | 21         | 1                 | 1                 | 0                 | 0                 | 1                 | 2                 |
| CAB4                                       | AT3G47470 <sup>‡</sup> | 28         | 1                 | 1                 | 0                 | 0                 | 1                 | 1                 |
| MLK2                                       | AT3G03940              | 78         | 0                 | 0                 | 1                 | 1                 | 6                 | 7                 |
| GRXS17                                     | AT4G04950              | 53         | 0                 | 0                 | 0                 | 0                 | 1                 | 2                 |
| CPNB2                                      | AT3G13470 <sup>‡</sup> | 63         | 0                 | 0                 | 0                 | 0                 | 35                | 41                |
| LNK3                                       | AT3G12320 <sup>‡</sup> | 31         | 0                 | 0                 | 0                 | 0                 | 18                | 23                |
| LNK4                                       | AT5G06980              | 32         | 0                 | 0                 | 0                 | 0                 | 2                 | 6                 |
| COP1                                       | AT2G32950 <sup>‡</sup> | 76         | 0                 | 0                 | 0                 | 0                 | 3                 | 4                 |
| MLK1                                       | AT5G18190              | 77         | 0                 | 0                 | 0                 | 0                 | 3                 | 4                 |
| SPA1                                       | AT2G46340 <sup>‡</sup> | 115        | 0                 | 0                 | 0                 | 0                 | 1                 | 4                 |
| MLK3                                       | AT2G25760              | 76         | 0                 | 0                 | 0                 | 0                 | 3                 | 0                 |

<sup>‡</sup>Indicates mRNA is circadian regulated in constant light according to analysis in Romanowski et al. (2020) *The Plant Journal*

**Table 3. Identified proteins coprecipitated with YFP-COR27/GFP-COR28 at ZT9.** Total spectra for a given coprecipitated protein is shown for each independent ZT9 sample. The curated table excludes coprecipitated proteins that were identified in the GFP-HFC or Col-0 negative control APMS experiments, see Dataset S1 for all identifications.

| Protein Name | AGI Locus Number       | M.W. (kDa) | YFP-COR27_ZT9_1 | YFP-COR27_ZT9_2 | YFP-COR27_ZT9_3 | YFP-COR27_ZT9_4 | GFP-COR28_ZT9_1 | GFP-COR28_ZT9_2 | GFP-COR28_ZT9_3 | GFP-COR28_ZT9_4 |
|--------------|------------------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| COR27        | AT5G42900              | 27         | 89              | 85              | 95              | 80              | 0               | 0               | 0               | 0               |
| COR28        | AT4G33980 <sup>†</sup> | 26         | 0               | 0               | 0               | 0               | 22              | 18              | 8               | 10              |
| COP1         | AT2G32950 <sup>†</sup> | 76         | 16              | 12              | 19              | 16              | 6               | 6               | 1               | 2               |
| SPA1         | AT2G46340 <sup>†</sup> | 115        | 16              | 12              | 16              | 13              | 4               | 6               | 1               | 0               |
| MLK4         | AT3G13670 <sup>†</sup> | 79         | 16              | 11              | 15              | 12              | 0               | 0               | 0               | 0               |
| MLK2         | AT3G03940              | 78         | 13              | 12              | 15              | 12              | 0               | 0               | 0               | 0               |
| PHYD         | AT4G16250              | 129        | 8               | 7               | 13              | 11              | 0               | 0               | 0               | 0               |
| MLK1         | AT5G18190              | 77         | 10              | 10              | 12              | 10              | 0               | 0               | 0               | 0               |
| SPA4         | AT1G53090              | 89         | 8               | 4               | 11              | 7               | 0               | 0               | 0               | 0               |
| SPA2         | AT4G11110              | 115        | 8               | 6               | 10              | 6               | 0               | 1               | 0               | 0               |
| SF1          | AT5G51300              | 87         | 7               | 12              | 7               | 5               | 0               | 0               | 0               | 0               |
| RVE8         | AT3G09600 <sup>†</sup> | 40         | 7               | 5               | 7               | 6               | 3               | 4               | 0               | 3               |
| LNK2         | AT3G54500 <sup>†</sup> | 81         | 6               | 5               | 6               | 3               | 0               | 1               | 0               | 0               |
| MLK3         | AT2G25760              | 76         | 5               | 6               | 6               | 8               | 0               | 0               | 0               | 0               |
| LNK1         | AT5G64170 <sup>†</sup> | 70         | 4               | 4               | 5               | 4               | 4               | 3               | 1               | 0               |
| SPA3         | AT3G15354 <sup>†</sup> | 93         | 4               | 4               | 4               | 4               | 0               | 0               | 0               | 0               |
| RVE6         | AT5G52660              | 36         | 3               | 3               | 4               | 1               | 1               | 0               | 0               | 0               |
| RVE5         | AT4G01280 <sup>†</sup> | 34         | 1               | 1               | 2               | 0               | 1               | 0               | 0               | 0               |
| CCR2         | AT2G21660 <sup>†</sup> | 17         | 1               | 0               | 1               | 1               | 0               | 0               | 0               | 0               |
| TCF1         | AT3G55580 <sup>†</sup> | 51         | 0               | 0               | 1               | 0               | 0               | 0               | 0               | 0               |
| PHYE         | AT4G18130 <sup>†</sup> | 123        | 1               | 0               | 0               | 0               | 0               | 0               | 0               | 0               |

<sup>†</sup>Indicates mRNA is circadian regulated in constant light according to analysis in Romanowski et al. (2020) The Plant Journal

1045

1046

1047