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Abstract.
Motivations: Approximate membership query data structures (AMQ)
such as Cuckoo filters or Bloom filters are widely used for representing
and indexing large sets of elements. AMQ can be generalized for addition-
ally counting indexed elements, they are then called “counting AMQ”.
This is for instance the case of the “counting Bloom filters”. However,
counting AMQs suffer from false positive and overestimated calls.
Results: In this work we propose a novel computation method, called
fimpera, consisting of a simple strategy for reducing the false-positive
rate of any AMQ indexing all k-mers (words of length k) from a set of
sequences, along with their abundance information.
This method decreases the false-positive rate of a counting Bloom filter
by an order of magnitude while reducing the number of overestimated
calls, as well as lowering the average difference between the overestimated
calls and the ground truth. In addition, it slightly decreases the query run
time. fimpera does not require any modification of the original counting
Bloom filter, it does not generate false-negative calls, and it causes no
memory overhead. The unique drawback is that fimpera yields a new
kind of false positives and overestimated calls. However their amount is
negligible. fimpera requires a unique parameter, and its results are only
little impacted when using this parameter within recommended values.
As a side note, for the algorithmic needs of the method, we also propose
a novel generic algorithm for finding minimal values of a sliding window
over a vector of x integers in O(x) time with zero memory allocation.

Availability: https://github.com/lrobidou/fimpera
Keywords: data structure; indexation; k-mers; counting Bloom filters;
sequence data; abundance; AMQ

1 Introduction

Public data banks providing sequencing data or assembled genome sequences
are growing at an exponential rate [4], faster than computational power. Search-
ing a sequence of interest among datasets is a fundamental need. For instance it
enables to better understand genetic changes in the tumour, offering precious in-
formation about the diagnosis and treatment of cancer [14], or it enables to study
at a large scale the distribution and adaptation of life in oceans [13]). However no
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method scales to the dozens of petabytes of data already available today. Thus,
new computational methods are required to perform a search against datasets.

Querying datasets can be done precisely by aligning genome sequences (e.g.
using Blast-like [1] algorithms), however aligning sequences is computational-
resources intensive. Thus queries on large scale datasets are usually done through
k-mers presence / absence. Basically, datasets are represented as their set of k-
mers and queries are represented as their sequence of k-mers.

Methodological developments have thus been made to index every k-mers of
a dataset. Some methods use Approximate Membership Query data structures
(AMQ), e.g. bloom filters, to store presence / absence of k-mers, as SBT [12]
or HowDe-SBT [5]; see [9] for a survey of approaches to index large dataset.
However, very few methods tackle the issue of recording the abundance of the
indexed k-mers. The abundance information is however crucial for many biolog-
ical applications such as transcriptomics or metagenomics. Storing abundance
is costly with regard to space consumption. Conversely, adding abundance in-
formation in an AMQ, turning it into a counting AMQ, without allocating more
space increases drastically its false positive rate. As an example, BIGSI [3] relies
on Bloom filters with a high false-positive rate, e.g. 25% false-positive rate per k-
mer query. At constant memory usage, adding the abundance information would
yield an extremely high false-positive rate. As such, methods storing abundances
mostly rely on compression by clustering abundance with neighbouring k-mers
or across datasets, as Reindeer [10] or Counting de Bruijn graphs [6]. These
methods do not rely on counting AMQ, but rather on exact data structures.

In this paper, we do not propose a novel counting AMQ, but rather a wrap-
per to improve any existing counting AMQ, like a counting Bloom Filter. The
method we introduce is called fimpera. It generalises one of our previous contri-
bution [11]. In short, fimpera splits every k-mer into s-mers (with k ≥ s > 0) and
then associates the abundance of a k-mer to its constituent s-mers in a counting
AMQ. This allows us to retrieve the abundance of a k-mer at query time via its
s-mers count. Compared to the original counting AMQ indexing k-mers, we show
that fimpera improves the abundance correctness while reducing the false pos-
itives rate by an order of magnitude without generating false-negative calls nor
underestimation of the abundance of a k-mer.

Additionally, the fimpera algorithmic needs led us to propose a novel algo-
rithm for computing in O(x) time and with no memory allocation the sliding
window minimums (resp. maximums). These are the minimal (resp. maximums)
values of all sub-arrays of a fixed size over an array of x values. This contribution
may be useful independently from the fimpera context. Its novelty is that, while
being destructive for the input array, it uses no additional memory while other
approaches use memory linear with the size of the intervals.
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2 Methods

2.1 Background

Preliminary definitions
A k-mer is a word of length k over an alphabet Σ. Given a sequence S, |S|

denotes the length of S.
In the current framework, we consider a dataset as composed of one sequence

or a multisets of sequences. Given a dataset D, Dk denotes multiset of k-mers
extracted from D.

We denote the abundance of a k-mer d (the number of time d appears) in Dk

by abundance(Dk, d). We consider that a k-mer is “present” (resp. “absent”) in
D if abundance(Dk, d) > 0 (resp. abundance(Dk, d) = 0).

A counting AMQ data structure represents a multiset of elements Dk. It can
be queried with any element d; the query’s response on an counting AMQ, noted
n, is always either correct or overestimated, i.e. n ≥ abundance(Dk, d). If n =
abundance(Dk, d), the counting AMQ reported the correct abundance, otherwise
it reported an overestimation. Note that underestimation is not possible.

In particular, if abundance(Dk, d) = 0 and n > 0, then d is found in the
counting AMQ even if it is absent from D. This particular case is a false positive
call. The false-positive rate of a counting AMQ, denoted by FPRcAMQ, is defined

by FPRcAMQ = #FP
#FP+#TN with #FP and #TN denoting respectively the

number of false-positive calls and the number of true negative calls (n = 0).
FPRcAMQ depends on the used counting AMQ strategy and on the amount of
space used by this counting AMQ.

2.2 Overview of fimpera

In this work, we focus on decreasing the false positive rate of a counting Bloom

Filter (cBF for short). However, fimpera is a generic approach that may be
applied on any counting AMQ. A counting Bloom Filter is a generalization
of Bloom filters: each element is inserted along with its abundance instead of
its presence only. This requires a few bits per entry for storing this information.
Hence, either at constant size, a counting Bloom Filter has a higher false-
positive rate than a simple Bloom filter, or are counting Bloom Filter requires
more memory than a Bloom filter to achieve the same false-positive rate.

fimpera’s objectives are to reduce FPRcAMQ and to improve precision on
true positive calls, using a method based on splitting k-mers into smaller words
called s-mers.

Indexation overview At indexation time, fimpera takes a file of counted k-
mers, typically extracted from a genomic sequence dataset, and splits each k-mer
to be indexed into its k − s + 1 s-mers (k ≥ s). Each s-mer is then stored in a
cAMQ along with its sabundance. The sabundance of a s-mer is the maximum of the
abundance of the k-mers containing this s-mer. We explain this choice in the
following.

In the following, we set z = k − s, hence z ≥ 0.
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Query overview The query of fimpera consists of a set of sequences. For each
sequence S, fimpera extract s-mers, which are then queried against the cAMQ,
and the abundance of any k-mer of S is computed as the minimum of sabundance
of its s-mers. By default, fimpera prints each input sequence along with the
abundance of every of its consecutive k-mer. In the biological context, the input
file is a fasta/fastq file (or a gzipped fasta/fastq file) containing reads.

fimpera is built in a modular way. Changing the default output (e.g. stor-
ing results instead of printing, computing average abundance per sequence or
printing only sequences whose average k-mer abundances is above a user-defined
threshold) can be programmed via inheritance of an Abstract Class.

Overview of false positive calls of fimpera’s query Let’s consider a k-
mer d with an abundance of 0 and each of its s-mer has an sabundance of 0 as
well. With fimpera, wrongly reporting d as present requires that every s-mer of
that k-mer are wrongly found as present in the counting AMQ. The probability
of such an event is roughly FPRz+1

cAMQ, leading to a dramatic decrease in the
occurrences of false-positive calls with respect to z. For instance, with z=3 (which
is a recommended and default value), a counting AMQ having a false positive
rate of 25%, the probability of false-positive rate with fimpera for that setting
is ≈ 0.04%.

The fimpera approach may generate a novel kind of false-positives. A queried
k-mer, absent from the indexed dataset, may be composed of s-mers, all existing
in this indexed set. Querying such k-mer with fimpera returns a non-zero abun-
dance, so generating a false-positive, that we call a “construction false-positive”.
This new kind of false-positive call is specific to the fimpera approach.

Overview of overestimations of fimpera’s query To overestimate the abun-
dance of a queried k-mer, overestimations are required to happen on the abun-
dance of every s-mer of that k-mer. The more s-mer per k-mer, the more s-mer
abundance overestimations need to happen to overestimate a k-mer abundance.
s-mer abundance overestimations come from two sources:

– a collision occurs in the counting Bloom filter, leading to the overestimation
of the less abundant colliding s-mer; and/or:

– a s-mer is shared among two different k-mers having different abundances.
This overestimates the abundance of this s-mer of the least abundant k-mer.
This happens not matter the false positive rate of the counting Bloom filter.
We call those overestimations “construction overestimation”; this new kind
of overestimation is specific to fimpera.

Observe a case of interest: consider two k-mers a and b overlapping over k−1
characters. If b has an abundance greater than a, then the correct abundance
of a is retrievable through a unique s-mer (the unique s-mer of a that does not
appear in the k-mer b). In such case, a is likely to be overestimated.

Consequently, fimpera’s overestimations are not uniformly distributed ran-
dom events. Overestimations tend to be close to a change in abundance along
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queried sequences. Furthermore, overestimations tend to raise k-mer’s abundance
close to the abundance of their neighbor k-mers, mitigating the impact of those
overestimated calls. In the results, we show that the erroneous abundance calls
are closer to the ground truth with fimpera compared to those obtained with
the original cBF.

We now describe in more details both indexing step and querying step of
fimpera, as well as two optimisations, allowing querying in constant time and
skipping unnecessary queries.

2.3 Indexing with fimpera

As stated in Section 2.2, fimpera’s indexation is a two-step process:

– k-mers’ abundances are computed from the input dataset (e.g. using KMC [7]);

– s-mers from these k-mers are stored in a counting AMQ together with their
sabundance. The sabundance of a s-mer is formally defined as the maximal
abundance of the indexed k-mers in which this s-mer occurs.

Note that the sabundance of a s-mer α is lower or equal to the abundance
of α in the input dataset. For instance consider a s-mer α that occurs in two
k-mers respectively with an abundance of one and two. Then, the abundance
of α is three (= 1 + 2), while the sabundance of α is two (= max(1, 2)). Storing
the sabundance of α instead of its abundance, enables to lower the abundance
overestimations, as it avoids to accumulate the abundances of distinct k-mers it
belongs to.

2.4 Querying with fimpera

fimpera’s query consists in querying all consecutive, overlapping k-mers from
a sequence of size greater than k through their constituent s-mers. fimpera’s
query is a two-step process:

– for every position in the query except the last s − 1 ones, s-mers starting
at these positions are queried in the counting AMQ and stored in a array of
integers sabundances;

– The abundance any k-mer starting position p is the minimum value of the
sub-array of length (z + 1) starting at the position p: sabundances[p; p+ z].

This non-optimised algorithm version of fimpera’s query is shown in algo-
rithm 1, in supplementary material, Section S1.1.

This approach can be improved in two ways, in one way avoiding to recom-
pute the minimal value of an array of length z + 1 for each position p, and in
an other way by skipping some unnecessary s-mer queries. The two following
Sections present these two optimisations.
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2.5 Optimisations

Optimisation 1: sliding window minimums algorithm
The problem, independent of fimpera, is as follows: given a vector of values

(integers of floats) v and an integer size window, give an array r such that
∀i ∈ [0, |v| − size window], r[i] = min(v[i], v[i + 1], ..., v[i + size window − 1]).
The naive approach is to compute every window and search for the minimum
in those windows. This algorithm is in O(size window × |v|) time. We propose
a solution in O(|v|) time. Note that this is a classical problem for which non-
published solutions can be found. However, the novelty of our proposed solution
is that it does not require allocating any memory from the heap (which is slow
for most systems).

The main idea is to split the input vector of values in fixed, non-overlapping
windows of size size window. Then, for each so called “fixed window”, compute
two vectors:

– min left j: min left j[i] contains the minimum value encountered in the j-th
fixed window up to the position i

– min right j: min right j[i] contains the minimum value from the position i
up to the end of the j-th fixed window

All min left j and min right j vectors are then concatenated into two vectors
(min left andmin right). The minimum of a sliding window starting at position
i is thereupon the minimum between:

– min left[i + size window − 1] (the minimum of the left part of the next
fixed window)

– min right[i] (the minimum of the right part of the current fixed window)

An example is provided in Table 1.

i 0 1 2 3 4 5 6 7 8 9
v 5 3 7 1 4 5 3 2 2 3
j 0 1 2 3

min left 5 3 3 1 1 1 3 2 2 3
min right 3 3 7 1 4 5 2 2 8 3

min sliding 3 1 1 1 3 2 2 2
Table 1. Computation example of the min sliding vector, with a window of size 3.
Tables min left and min right are represented for helping the comprehension, but
are not implicitly created in practice. The j row indicates the starting positions of
the fixed windows. As a example, the minimal value of the sliding window of size 3
starting position i = 1 is min sliding[1] = 1 (bold underlined value), being equal to
min(min left[1 + 3− 1],min right[1]) = min(1, 3) (underlined values).

Note that, as described previously, this approach would require allocating
memory for two vectors per call. This memory need may appear negligible in
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theory as those vectors are limited by the query size which is a few hundred
to few thousands. However, in practice, allocating memory for these vectors is
time consuming, and may increase significantly the practical running time. We
overcame this memory need thanks to these three following tricks. 1/ we compute
min left[i] on the fly (min left[i] = min(min left[i − 1], v[i])). 2/ min right
is computed directly in the queried vector. This does not impact the correctness
of the algorithm, as min sliding ≤ minright[i] ≤ v[i]. 3/ the response (minimal
value per sliding window) can be stored directly in the input queried vector as
well. At the price of modifying the input vector, this allows the algorithm to be
run in O(size query) time and to avoid any time consuming heap allocation.

A complete description of the optimised solution is provided in supplementary
materials, Section S1.2, algorithm 2.

This algorithm offers a generic solution for computing the minimal value of a
sliding window in constant memory and linear time. Its usefulness is not limited
to fimpera. Note also that it can be straightforwardly modified for computing
the maximal value instead of the minimal value of each window.

Optimisation 2: skip unnecessary s-mers queries
Observe that knowing the absence of a s-mer allows not only to deduce the

absence of the k-mer starting with it: all k-mers containing this s-mer are absents
as well. This allows to infer the existence of a stretch of consecutive absent k-
mers.

We exploit this simple idea further. If one detects that two absents s-mers
are z + 1 positions away in the query, then any k-mer starting at any position
between them is also absent. In the fimpera algorithm, if a s-mer is not found
during the query, an optimisation consists of searching for the abundance of the
s-mer z + 1 positions further away in the query. If that s-mer is also absent,
there is no need to query any s-mer in between.

Thus, fimpera only needs to query one s-mer every z + 1 position as long
as the queried s-mers are absent in the counting AMQ, effectively saving time.
This optimised algorithm is described in supplementary materials, algorithm 3.

2.6 Implementation of fimpera

An implementation of fimpera is available at https://github.com/lrobidou/
fimpera. This implementation is specialised for genomic data (i.e. with an al-
phabet consisting of A, T, C, G) and uses a counting Bloom filter as cAMQ. A
template mechanism allows the use of any other cAMQ provided by the user. In
the genomic context, queries consist of fasta or fastq files (gzipped or not), and
an option is provided to index and query canonical k-mers only, i.e. the lexi-
cographic minimum between each k-mer and its reverse complements. Options
include the k and z values, the size of the filter, and b, the number of bits per
abundance count.

As b has a major impact on the final size of the data structure, it is recom-
mended to use low b values (say b ≤ 5). This limits the maximal stored abun-
dance value to 2b. In practice fimpera includes an option to use any abundance
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function provided by the user (identity, ⌊log2⌋, ⌊log10⌋, range of values, etc. . . )
to compute ranges of abundance per encoded value.

Storing abundances as their ⌊log2⌋ values leads to a gain of space (for in-
stance storing up to 64 abundances requires 8 bits, but storing up to ⌊log2(64)⌋
abundances requires only 3 bits). This is at the cost of a loss of precision for
abundances with identical ⌊log2(64)⌋ values, as this is for instance the case for
abundances 5 and 6.

3 Results

3.1 Experimental setup

To the best of our knowledge, no other tool focuses on reducing the false positive
rate of existing cAMQ, thus we compare fimpera results applied on a counting
Bloom filter indexing s-mers with the original counting Bloom filter results in-
dexing k-mers. Both methods are using a single hash function. We propose results
on biological marine metagenomic data. Parameters used are the default ones:
k = 31, size of filter of 3.48 × 109 bits, as discussed in section 3.3, using b = 5
bits per abundance count, and abundances are stored as their ⌊log2⌋ values. We
use the default z = 3 parameter (unless otherwise stated).

A list of commands for reproducing the results is available here: https://
github.com/lrobidou/fimpera/blob/paper/paper_companion/Readme.md along
with a step-by-step explanation of the output. Executions were performed on the
GenOuest platform on a node with 4x8cores Xeon E5-2660 2,20 GHz with 200
Go of memory.

3.2 Metagenomic dataset

We used two fastq files from the TARA ocean metagenomic dataset to show ad-
vantages offered by fimpera on metagenomic samples. The index was computed
from the 2.38× 108 31−mers present at least twice in an arctic station (acces-
sion number ERR1726642) and the query sample was the first 3×106 reads from
a sample in another arctic station (accession number ERR4691696). Canonical
k-mers were considered for this experiment.

3.3 Choice of filters parameters

We propose an experiment in which we apply the fimpera approach on top of a
counting Bloom Filter designed to have 25% of false-positive calls, while using
5 bits per hash value for storing the abundance of indexed k-mers. For indexing
2.38×108 31−mers this structure requires 3.48×109 bits. Note that when storing
the presence/absence of those k-mers in a Bloom filter using the optimal number
of hash functions, the expected false positive rate would be 8.7%. We chose to
consider a counting Bloom Filter that uses a unique hash function. Even if
this choice is independent of the fimpera approach, it is motivated by the fact
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that major tools indexing large sets of k-mers as BIGSI [3], COBS [2], HowDe-
SBT [5] as well as generic methods for preprocessing k-mers like kmtricks [8] are
based on Bloom filters using a unique hash function for performances purposes.

Hence, we propose to index k-mers along with their abundance in a cBF of
3.48 × 109 bits using one hash function and storing abundance on 5 bits. We
compare the results of queries made against this counting Bloom Filter with
results of queries made against fimpera wrapping that same counting Bloom

Filter. Unless otherwise specified, all results shown were obtained using z = 3.
This implies that we compare results of a cBF indexing 31-mers, with results
of fimpera used on a cBF with the same sizing, but indexing s-mers of size 28
(31-3).

3.4 Used metrics

To measure the quality of the fimpera results and the cBF results, we propose
three metrics:

– the false positive rate, that provides the probability that the method returns
an abundance call > 0 for a k-mer absent from the indexed set.

– the proportion of incorrect abundance, that provides the probability that the
method returns the incorrect abundance for a k-mer actually in the indexed
set.

– statistics of responses for incorrect abundances calls, that estimate the re-
ported abundance of k-mers whose abundance are incorrectly reported.

3.5 False positive rate analyses

Fig. 1. Proportion of false positive calls without fimpera (on a classical counting

Bloom Filter) and with fimpera (z = 3).

Results about false-positives obtained with the proposed experiment are shown
in Fig. 1. Results about the cBF simply confirm the setup, and shows a false
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positive rate of 25%. When applying fimpera, the false positive rate drops to
0.56%. Among all these fimpera false positives, 4.8 % are due to the so-called
“construction false positives” (see Section 2.2), thus representing 0.0027% of the
total k-mer calls.

It is important to recall that these comparative results were obtained using
the exact same amount of space. Hence the fimpera approach enabled to yield
about 45 times fewer false-positive calls, with no drawback and even saving query
time (see Section 3.8).

3.6 Correctness of the reported abundances

In this section, we focus only on true positive calls. Hence, these results do not
concern the 25% false-positive calls obtained with the original cBF, nor the 0.56
% ones using fimpera.

Fig. 2. Proportion of incorrect abundance calls with the original cBF, and with fimpera

Results comparing the proportion of calls reported with an incorrect abun-
dance among the true positives are shown in Fig. 2. These results show that 1.54
% of true-positive calls are overestimated in the cBF, while 1.33 % of true-positive
calls are overestimated with fimpera. Among the fimpera calls estimating an
incorrect abundance among the true positives, 83 % are due to the so-called
“reconstruction overestimation”.

3.7 Distribution of errors in overestimated calls

In this section, we focus only on the wrongly estimated calls among true positives
Results presented Fig. 3 show that, as stated Section 2.2, the erroneous abun-

dance calls are closer to the ground truth with fimpera compared to those ob-
tained with the original cBF. As seen Fig. 3-right, with fimpera, almost all
(excepted a few outliers) overestimations are only one value apart from the cor-
rect range (the average difference with the correct abundance range is 1.07).
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Fig. 3. For true-positive calls with an incorrect abundance estimation: reported abun-
dance with respect to the correct abundance. Left: using the original cBF, right: using
fimpera.

With the original cBF, as seen Fig. 3-left, overestimations are more important
(1.33 range in average from the ground truth).

3.8 Influence of the z parameter.

The proposed approach requires to set up a unique parameter z that defines the
size of the indexed s-mers (recall that z = k − s). We propose in this section to
assess the impact of this unique additional parameter needed for using fimpera.

z 0 3 5 7 9 20
False positive rate (%) 25.00 0.56 0.08 0.02 0.03 99.70

Among which: construction FP (%) 0 0.49 9.64 46.32 67.26 99.99
Incorrect abundance calls (%) 1.55 1.33 1.93 2.99 4.27 42.73

Among which: constr. overestimation (%) 0 83.02 88.65 94.24 94.34 99.85
Query time (s) 808.31 789.56 784.11 785.09 779.42 1596

Table 2. Influence of the z parameter on the quality of the results and on the com-
putation time. “constr.” stands for “construction”. z = 0 is equivalent to the original
cBF results.

Quality of results As shown in Table 3.8, the false positive rate decreases with
regard to z and stays low for a wide range of z values (at least from 3 to 9). When
using an extreme z value, for instance s = 20, the false positive rate is increased
up to almost 100%. With z = 20, as we use k = 31, the size of the s-mers is
s = 11. When indexing as little as few hundred millions characters, each 11-mer
has a great chance to appears by chance in the indexed dataset (it does not
occurs with a probability of 10−11 when indexing a hundred million characters
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on an alphabet of size four). This quasi-random existence of all s-mers generates
a huge amount of construction false positives, as seen in the last column. This
has also an impact on the running time that nearly doubles, certainly because
all queried s-mers are positives, annihilating the s-mer skipping optimisation.

Query time. As mentioned Section 2.5, the fimpera approach does not increase
the query running. On the contrary, it allows to slightly decrease the running
time when z increases as seen Table 3.8.

Default z parameter. Presented results highlight the fact that fimpera per-
formances are little impacted by the choice of this parameter. The default z
parameter is set to z = 3.

4 Conclusion

We presented fimpera, a novel computational method to reduce the false positive
rate and increase the precision of any counting Approximate Membership Query
data structure with no modification of the original data structure. This reduction
is obtained without any memory overhead, with no modification of the original
data structure, and even with a slight improvement over the query computation
time.

Our results showed that when applied on top of a counting Bloom Filter,
fimpera enabled to yields about 45 times fewer false-positive calls than when
querying directly a counting Bloom Filter of identical size. Moreover, using
fimpera, abundance errors were slightly less frequent on true positive calls, and
finally, those abundance errors were on average 1.07 apart from the ground truth
with fimpera while they are on average 1.33 apart from the ground truth with
the original cBF.

Independently from parameters of the used cAMQ, fimpera requires to set up
a unique parameter, z. Fortunately results are highly robust with the choice of
z, unless extreme values are chosen. Future work will include a formal analysis
of the theoretical limits on the choice of z usage ranges.

We provide a C++ implementation of fimpera which enabled us to validate
the approach. This implementation can also be used as a stand-alone tool for
indexing and querying genomic datasets, and it can be tuned with user-defined
parameters and ranges of abundances. The provided github project also proposes
all necessary instructions and links to genomic data to reproduce the results.
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S1 Supplementary Materials

These supplementary materials propose a detailed description of the proposed
algorithms.

S1.1 query algorithm

A non-optimised algorithm of fimpera’s query is shown in Algorithm 1. This
algorithm takes a queried sequence q, a counting AMQ indexing s-mers, and
parameters k and z. It returns a vector of integers such that: ∀i ∈ [0, |response|],
response[i] is the abundance of the k-mer starting at position i in the query.

Algorithm 1 fimpera’s query

1: procedure query(q ∈ Σ∗; cAMQ indexing s-mers; k and z in N+ (|q| ≥ k, z ≤ k))
2: s← k − z ▷ may be zero
3: smer sabundances ← emptyV ector(0)
4: # Store sabundance of all s-mers:
5: for i in [0; |q| − s] do
6: ab← sabundance of the s-mer starting pos i in q (using the counting AMQ).
7: add ab in the smer sabundances vector
8: end for
9: # Compute all k-mers abundances from s-mer sabundances:

10: response← emptyV ector(|q| − k + 1)
11: for i in [0; |q| − k] do
12: add minj∈[i,i+z](smer sabundances[j]) in the response vector
13: end for
14: return response
15: end procedure

Algorithm 1 is not optimal. Line 12 it computes the minimal value of a range
of z consecutive integers taken from a vector of integers. At each iteration of
a for loop this range is shifted by one. An optimization, presented in the next
Section, enables to compute all these minimal values in linear time and with zero
memory allocation.

S1.2 Sliding window minimums

Algorithm 2 sliding minimum window

1: procedure sliding minimum window(vector v of positive integers; length of win-
dow w (|v| ≥ w,w > 1))

2: nbWin← ⌊size(v)/w⌋
3: nb elem last window ← |v| mod w
4: min left← v[0] ▷ start computation of min left (See Section 2.5)
5: for i in [0;w − 1] do
6: min left← min(min left, v[i])
7: end for
8: for i in [0;nbWin− 2] do ▷ for every window excluding the last one
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9: start window ← i ∗ w
10: for index in [start window + w − 2; start window] (decreasing order) do
11: v[index]← min(v[index + 1], v[index]) ▷ compute min right, directly

in v
12: end for
13: for j in [0; w-1] do
14: #sliding minimum is min(min left, min right(=v)):
15: v[start window + j]← min(v[start window + j],min left)
16: #update min left (if a new fixed window starts, reset min left):
17: if j == 0 then
18: min left← v[start window + w]
19: else
20: min left← min(min left, v[start window + w + j])
21: end if
22: end for
23: end for
24: # Computation for the last window is not described here for the sake of sim-

plicity
25: # remove last w − 1 elements from v:
26: for i in [0;w − 2] do
27: v.pop back()
28: end for
29: return v
30: end procedure

S1.3 Skip streches

In this section we show the entire algorithm of fimpera (algorithm 3), including
the optimisation consisting in skipping stretches of absent k-mers. The skip
optimisation occurs line 32: if a negative s-mer is called, the algorithm jumps
z+1 position away in the sequence, probing for another absent s-mer. A positive
answer will trigger line 18, backtracking z positions backward. We keep track of
the fact that we are currently skipping s-mers via the extending stretch flag.

Algorithm 3 fimpera’s query

1: procedure query(q ∈ Σ∗; cAMQ indexing s-mers; k and z in N+ (|q| ≥ k, z ≤ k))
2: s← k − z
3: response← emptyV ector(size−K + 1)
4: stretchLength← 0
5: j ← 0 ▷ Current position in the query
6: extending stretch← true
7: previous answers← emptyV ector(0)
8: while j < |q| − k + 1 do
9: smer ← smer starting at position j in q

10: amq answer ← sabundance of smer in cAMQ
11: if amq answer > 0 then
12: if extending stretch then
13: previous answers.push back(amq answer)
14: stretchLength← stretchLength + 1
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15: j ← j + 1
16: else
17: extending stretch← True
18: j ← j − z
19: end if
20: else
21: if stretchLength > z then
22: start of stretch← j − stretchLength
23: offset← 0
24: forminimum : sliding window minimum(previous answers, z+1)

do
25: response[start of stretch + offset]← minimum
26: offset← offset + 1
27: end for
28: end if
29: previous answers← emptyV ector(0)
30: stretchLength← 0
31: extending stretch← false
32: j ← j + z + 1
33: end if
34: end while
35: if stretchLength > z then
36: start of stretch← |q| − k + 1− stretchLength;
37: offset← 0
38: for minimum : sliding window minimum(previous answers, z + 1) do
39: response[start of stretch + offset]← minimum
40: offset← offset + 1
41: end for
42: end if
43: return response
44: end procedure
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