

1 **AI-guided screen identifies probucol-mediated mitophagy enhancement through
2 modulation of lipid droplets**

3 Natalia Moskal¹, Naomi P. Visanji², Olena Gorbenko¹, Vijay Narasimhan³, Hannah
4 Tyrrell¹, Jess Nash¹, Peter N. Lewis¹, G. Angus McQuibban^{1*}

5 1. Department of Biochemistry, University of Toronto, Toronto, ON, Canada

6 2. Edmund J Safra Program in Parkinson's Disease and Morton and Gloria

7 Shulman Movement Disorders Centre, Toronto Western Hospital, Toronto, ON,
8 Canada

9 3. Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for
10 Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and
11 Department of Medicine and Physiology, University of Toronto, ON, Canada

12 *Correspondence to:

13 angus.mcquibban@utoronto.ca (G.A.M.)

14

15

16 Abstract

17 Failures in mitophagy, a process by which damaged mitochondria are cleared, results in
18 neurodegeneration, while enhancing mitophagy promotes the survival of dopaminergic neurons.
19 Using an artificial intelligence platform, we employed a natural language processing approach to
20 evaluate the semantic similarity of candidate molecules to a set of well-established mitophagy
21 enhancers. Top candidates were screened in a cell-based mitochondrial clearance assay.
22 Probucol, a lipid-lowering drug, was validated across several orthogonal mitophagy assays. *In*
23 *vivo*, probucol improved survival, locomotor function and dopaminergic neuron loss in zebrafish
24 and fly models of mitochondrial damage. Probucol functioned independently of PINK1/Parkin
25 but its effects on mitophagy and *in vivo* depended on ABCA1, which negatively regulated
26 mitophagy following mitochondrial damage. Autophagosome and lysosomal markers were
27 elevated by probucol treatment in addition to increased contact between lipid droplets and
28 mitochondria. Conversely, lipid droplet expansion, which occurs following mitochondrial
29 damage was suppressed by probucol and probucol-mediated mitophagy enhancement required
30 lipid droplets. Probucol-mediated lipid droplet dynamics changes may prime the cell for a more
31 efficient mitophagic response to mitochondrial damage.

32 Introduction

33 Clearance of damaged mitochondria is important for the survival of dopaminergic neurons, the
34 loss of which is responsible for the classical motor symptoms of Parkinson disease (PD). PD is a
35 progressive neurodegenerative disease characterized by rigidity, akinesia and bradykinesia as
36 well as wide ranging non-motor symptoms such as anxiety, depression, sleep disturbances and
37 loss of smell¹. Current treatment options address symptoms but fail to disrupt the progression of
38 the disease, thus a disease-modifying treatment remains a major unmet need. Mitochondrial
39 dysfunction is clearly implicated in PD pathogenesis, so enhancing the removal of damaged
40 mitochondria (mitophagy) might have potential as a therapeutic intervention¹.

41 Evidence for the importance of mitophagy in PD pathogenesis comes from both sporadic and
42 genetic cases. Several disease-causing, loss-of-function mutations in genes encoding proteins
43 which mediate mitophagy have been identified, including PINK1 and PRKN^{2,3}. Additionally,
44 several disease-causing mutations in genes not directly associated with mitophagy, have
45 secondary negative effects on mitochondrial health or on the retrograde transport of damaged
46 mitochondria to axons, such as SNCA, GBA and LRRK2⁴⁻⁶. Besides genetic causes of PD,
47 mitochondrial damage and mitophagy impairment have also been widely implicated in sporadic
48 disease, including the inactivation of proteins which mediate mitophagy⁷⁻⁹. The clear connection
49 between this pathway and the health of dopaminergic neurons emboldened us to search for novel
50 mitophagy-enhancing compounds as potential disease-modifying therapeutics for PD.

51 A review by *Georgopoulos et al.*, describes several compounds currently known to stimulate and
52 potentiate mitophagy¹⁰. However, most of these compounds also induce mitochondrial damage
53 or apoptosis. While these are bona fide mitophagy enhancers, induction of mitochondrial damage
54 or apoptosis would likely preclude their clinical use as this may worsen PD pathogenesis. To
55 address the unmet need for mitophagy enhancers with therapeutic potential, we employed a

56 computational approach using artificial intelligence to identify previously uncharacterized
57 mitophagy enhancers. We have previously successfully used this strategy, that detects patterns
58 and associations across several large datasets to identify compounds which are similar to a user-
59 defined training set of positive controls, to identify drugs with disease modifying potential for
60 PD that target aggregation of alpha synuclein¹¹⁻¹³.

61 Here, using a similar approach, we screened a candidate list of molecules from the DrugBank
62 database for similarity to known mitophagy enhancers. Many of the drugs have already been
63 safely administered to humans. Repurposing drugs from other indications offers the opportunity
64 to accelerate the clinical trials pipeline, given the presence of pre-existing pharmacological and
65 toxicological information about candidate compounds¹⁴.

66 In a previous screen, we focused on compounds which accelerated the transition of the E3
67 ubiquitin ligase, Parkin, from the cytosol to the mitochondria-a step which is integral to this
68 mitophagy pathway¹⁵. While this step is highly amenable to microscopy-based phenotypic
69 screening, the limitations of this approach include possible omission of hits which function
70 downstream of Parkin or that target other mitophagy pathways¹⁶. In this present screening
71 iteration, we evaluated the clearance of damaged mitochondria from cells. Ultimately, if this
72 downstream step is improved, then the negative consequences of mitochondrial damage in the
73 dopaminergic neurons may be mitigated¹⁷. This effort led to the identification of a compound
74 which enhances mitophagy following mitochondrial damage and led us to elucidate its
75 mechanism of action, resulting in the identification of a newfound role for the ATP binding
76 cassette transporter A1 (ABCA1) in mitophagy, through its effects on lipid droplets dynamics.

77 Results

78 **Artificial intelligence (AI) simplifies mitochondrial clearance screen for mitophagy 79 enhancers**

80 We employed a computational approach using artificial intelligence (IBM Watson for Drug
81 Discovery) to identify drugs amenable to repurposing as PD therapeutics. To identify candidate
82 compounds, an *in silico* screen was performed to identify potential mitophagy enhancers from
83 the DrugBank database (www.drugbank.ca), based on their similarity to positive control
84 mitophagy enhancers. Positive controls were selected from a review article about
85 pharmacological enhancers of mitophagy¹⁰. Ultimately, our training set comprised of the
86 following 7 drugs: PTEN-induced putative kinase 1 (PINK1) activator kinetin; poly ADP-ribose
87 polymerase (PARP) inhibitor olaparib, p53 inhibitor pifithrin-alpha; nicotinamide (NAD⁺
88 accumulation) and sirtuin1 activators resveratrol, fisetin and SRT1720.

89 First, we validated our model with a leave-one-out cross validation where each of the 7 training
90 set compounds was excluded from the training set and re-ranked amongst the 3231 candidate
91 drugs (Figure 1A). A retrospective analysis of Medline abstracts published up to and including
92 2014 was performed as further validation of the model. In this analysis, olaparib was omitted
93 from the training set and placed in the candidate list for re-ranking. Using 194 available
94 abstracts, the model ranked olaparib 126th amongst the candidate drugs (top 3.9%, Figure 1A).

95 Taken together, this indicated that in the semantic model generated from Medline abstracts, the
96 training compounds had strong predictive power over each other. A Receiver Operating
97 Characteristics curve (ROC) was constructed using this data and an area under the curve (AUC)
98 was calculated to assess the predictive power of the model (Figure 1B). An AUC value of 1
99 indicates perfect predictive ability, while <0.5 indicates predictive ability worse than random
100 chance. The AUC for the model created by IBM Watson for Drug Discovery was 0.9513

101 Ultimately, we assessed 3231 candidate drugs from the DrugBank database for semantic
102 similarity to the training drugs (Figure 1C). IBM Watson for Drug Discovery creates text
103 fingerprints for all the training set molecules, in addition to the candidate molecules. The
104 candidate molecules consist of FDA-approved small molecules, protein/peptide drugs and
105 nutraceuticals. Many of the candidate molecules can be repurposed due to the lack of adverse
106 effects associated with their administration in other disease contexts. The fingerprints created by
107 IBM Watson for Drug Discovery encapsulate the words and phrases which are associated with a
108 particular chemical entity in abstracts published on Medline. IBM Watson for Drug Discovery
109 computed a similarity score for each candidate entity, and they were ranked from highest to
110 lowest accordingly (Data S1). Due to overlap between compounds which cause apoptosis and/or
111 mitochondrial damage and ones which induce mitophagy, two lists were cross-referenced to
112 filter out the candidate molecules with any association to either the term “apoptosis” or
113 “mitochondrial damage” (Data S2).

114 Next, the top 79 most similar candidate compounds identified by IBM Watson for Drug Discovery
115 were screened in HeLa cells stably expressing GFP Parkin and mito-DsRed. Cells treated with
116 the ionophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which depolarizes the
117 mitochondrial membrane potential, for 24 hours, undergo mitophagy resulting in loss of mito-
118 DsRed signal in a large percentage of cells (Figure 2C, S1B)¹⁸. By quantifying the percentage of
119 cells with low/no mito-DsRed signal, it is possible to assess mitochondrial turnover. Prior to
120 CCCP treatment, the cells are pre-treated with 1 μ M of the candidate small molecule (Figure
121 S1A). In cells pre-treated with DMSO instead of small molecules, $78 \pm 2.83\%$ of cells have
122 low/no mito-DsRed signal, which we henceforth refer to as mitochondrial clearance (Figure
123 S1B). MAD z-scores were calculated, as described in prior mitophagy screens for each of the 79
124 compounds (Figure 2A, Data S3)¹⁹.

125 Dichlorocopper ranked as 1/79 in our screen. Copper has known effects on mitophagy and
126 general autophagy, more broadly^{20,21}, so its recovery as a top hit was consistent with the goal of
127 the screen. 3 compounds were selected for re-testing based on MAD z-score values and lack of
128 evident toxicity in cells (Figure 2A), thereby producing a hit rate of 3.8%, which is higher than
129 the hit rate in most high throughput screening campaigns which typically ranges between 0.01-
130 0.14%²². Upon re-testing these compounds in an orthogonal mitochondrial clearance assay,
131 probucol increased the extent to which mitochondrial substrates were degraded following
132 induction of mitochondrial damage. Immunoblotting was performed to visualize levels of the
133 inner mitochondrial membrane substrate ATP synthase F1 subunit alpha (ATP5A) (Figure S2)
134 and the outer mitochondrial membrane protein voltage-dependent anion-selective channel
135 protein 1 (VDAC1) following induction of mitochondrial damage with CCCP treatment.
136 Predictably, VDAC1 levels declined over the CCCP time course. While probucol treatment does

137 not increase VDAC1 degradation under basal conditions, it promoted enhanced degradation of
138 VDAC1 over the CCCP time course (Figure 2D, E).

139 **Probucol augments later stages of mitophagy**

140 Upstream of the degradation of damaged mitochondria is the targeting of mitochondria to
141 lysosomes. The mitoQC assay can be used in both cells and *in vivo* to probe this precise step in
142 mitophagy. Briefly, cells were transfected with Cerulean-Parkin and RG-OMP25, a plasmid
143 containing mCherry and GFP in tandem with the mitochondrial targeting sequence of OMP25
144 (Figure 3A). Upon localization to acidic lysosomes, GFP signal is quenched, which distinguished
145 mitochondria localized to lysosomes because they appear as puncta with red-only signal. Less
146 than 5 red-only puncta are present in cells under normal conditions, but the number of puncta
147 increases following induction of mitochondrial damage²³. Cells with greater than 5 red-only
148 puncta corresponding to mito-lysosomes were classified as ‘mitophagic’ (Figure 3A). Following
149 6-hour CCCP treatment, $40.25 \pm 6.3\%$ cells are mitophagic compared to $13.32 \pm 4.83\%$ under
150 normal conditions. A higher percentage of probucol-treated cells were mitophagic ($66.29 \pm$
151 5.6% , Figure 3B), compared to all other treatments including with the other candidate
152 compounds.

153 To further substantiate these findings, the mitoQC reporter was expressed in the dopaminergic
154 neurons of flies fed food supplemented with DMSO or probucol alone or in combination with
155 paraquat, a mitochondrial toxin which causes PD in humans and PD-related phenotypes such as
156 loss of dopaminergic neurons and locomotor impairments in model organisms such as flies²⁴.
157 Paraquat induces a mitophagy response characterized by an increase in mito-lysosomes in
158 dopaminergic neurons²⁵. Mitophagy further increased in flies co-administered probucol along
159 with paraquat (Figure 3C, D). Basal mitophagy did not differ in the dopaminergic neurons of
160 flies fed either DMSO- or probucol-supplemented food.

161 To determine whether probucol’s canonical target, ABCA1, is involved in its effects on
162 mitophagy, we performed several genetic manipulations to change ABCA1 levels in cell culture
163 or in the dopaminergic neurons of flies. The same mitophagy assay used to characterize
164 probucol’s effects was also performed in this context.

165 Human ABCA1 and mitoQC transgenes were co-expressed or mitoQC was expressed alone in
166 the dopaminergic neurons of flies (Figure 3E, S4D). Once again, paraquat treatment increased
167 the percentage of red-only mitochondrial puncta, which represent mitochondria localized to
168 lysosomes (Figure 3E). Basal mitophagy was unaffected by overexpression of the transgene.
169 However, in flies fed paraquat, ABCA1 reduced the percentage of mitochondrial area localized
170 to lysosomes (Figure 3E). Immunoblotting was performed to confirm expression of human
171 ABCA1 (Figure S4A).

172 We also reduced ABCA1 levels with shRNA (Figure S4B) in cells expressing mitoQC and
173 Cerulean-Parkin and treated cells as in Figure 3A. While probucol increased the percentage of
174 red-only mitochondrial area indicative of mito-lysosomes in cells transfected with the control
175 pLKO1 vector, probucol no longer increased mitophagy in cells transfected with shABCA1
176 (Figure 3F).

177 Follow up experiments probed steps further upstream in the mitophagy cascade, including
178 PINK1-mediated phosphorylation of ubiquitin at S65 and recruitment of Parkin to damaged
179 mitochondria (Figure S3). Phosphorylation of mitochondrial ubiquitin S65 following
180 mitochondrial damage did not further increase following probucol treatment based on
181 immunostaining and immunoblotting experiments (Figure S3A, B and D). Parkin recruitment to
182 damaged mitochondria likewise was not increased by probucol treatment (Figure S3C),
183 indicating that this mitophagy enhancer likely exerts its effect on steps further downstream of
184 Parkin recruitment or through other Parkin-independent mitophagy pathways¹⁶.

185 **Probucol improves mitochondrial damage-induced phenotypes across several animal
186 models of PD**

187 *Drosophila* and *Danio rerio* serve as PD model systems, as they replicate much of human PD
188 pathogenesis and display phenotypes which reflect human disease presentation. Flies and
189 zebrafish exhibit loss of dopaminergic neurons resulting in impaired locomotion following
190 exposure to PD-causing toxins such as 1-methyl-4-phenylpyridinium (MPP⁺) and paraquat^{24,26}.
191 After replicating these features in the two model organisms, we tested probucol's disease-
192 modifying potential. The climbing ability and survival of flies declined following paraquat
193 administration (Figure 4A, B) but co-treatment with probucol improved locomotor function and
194 survival (Figure 4A, B).

195 Zebrafish embryos were incubated in MPP⁺ in combination with probucol or DMSO. Following
196 6 days of incubation, the movement of adult zebrafish was captured using ZebraBox. The
197 distance travelled by the zebrafish exposed to DMSO in combination with MPP⁺ was visibly
198 reduced compared to zebrafish incubated in DMSO alone (Figure 4C, D) but, the addition of
199 probucol to the MPP⁺ increased the distance travelled by the zebrafish (Figure 4C, D). SR3677, a
200 chemical inhibitor of Rho-associated protein kinase 2 (ROCK2) was employed as a positive
201 control. We previously characterized this compound as a mitophagy enhancer and found that it
202 improved locomotor decline in flies fed paraquat²⁵.

203 In addition to toxin-based models of PD, we also tested probucol's effect in a genetic model of
204 mitochondrial dysfunction. Specifically, in heteroplasmic flies with approximately 90% of
205 mitochondrial DNA (mtDNA) that contained a temperature-sensitive mutation in mitochondrial
206 cytochrome c oxidase subunit I (*mt:ColI^{T300I}*). Shifting these flies to a non-permissive
207 temperature causes mitochondrial dysfunction resulting in climbing defects and significant
208 reduction of lifespan^{25,27,28}. Climbing and lifespan were improved in heteroplasmic *mt:ColI^{T300I}*
209 flies fed food containing probucol rather than DMSO (Figure S6). Much like paraquat, the
210 phenotypes displayed by these flies arise from mitochondrial dysfunction and probucol reduced
211 their severity, possibly by promoting mitophagy in this context as well, given that mitophagy has
212 previously been shown to remove mitochondria bearing deleterious mutations²⁹.

213 To directly probe the cell type impacted in PD, *Tg(dat:EGFP)* zebrafish embryos were co-
214 incubated with MPP⁺ and probucol or vehicle control. Dopaminergic neurons can easily be
215 visualized and counted in this transgenic model³⁰. Following 1 day of incubation in MPP⁺, the
216 number of dopaminergic neurons in the ventral diencephalon (vDC), which is analogous to the

217 human nigrostriatal region, was reduced. In contrast, probucol-fed zebrafish retained more of
218 their dopaminergic vDC neurons (Figure 4E, F). This reduced loss of dopaminergic neurons
219 likely led to the probucol-mediated improvements to PD-related phenotypes.

220 **ABCA transporter and its effects on lipid droplets mediate probucol's mitophagy
221 enhancement**

222 The extent of crosstalk between lipid homeostasis and autophagy reported in other studies and
223 ABCA1's role in lipid efflux led us to test whether probucol altered lipid droplets (LD). LDs
224 have been found to form in response to starvation-induced autophagy and deferiprone-induced
225 mitophagy^{31,32}. LDs similarly increased significantly in cells treated with CCCP for 24 hours
226 (Figure 5C, S5). Surprisingly, probucol treatment reduced the LD area expansion that occurred
227 following mitophagy induction but had no effect on LD area under basal conditions (Figure 5C,
228 S5). Lipid droplet area also increased in the dopaminergic neurons when flies consumed paraquat
229 in their food. Probucol supplementation decreased the lipid droplet area expansion to levels
230 comparable to those under basal conditions (Figure 5A, B).

231 LD-mitochondria contacts have been observed in several studies. Peridroplet mitochondria
232 localized to contact sites exhibit altered bioenergetic properties and serve as a source of ATP for
233 LD expansion³³. However, under conditions of high autophagic flux, LDs are thought to interact
234 with mitochondria to buffer the lipotoxic species that are produced as byproducts of autophagy³¹.
235 Interestingly, a greater proportion of lipid droplets colocalized with mitochondria in probucol-
236 treated cells under basal conditions where mitochondria appeared intact and visibly elongated
237 (Figure 5D, S5). Under the conditions in which this increased contact is observed, mitophagic
238 flux is not elevated (Figure 3C, D), so it is unlikely that the contacts facilitate buffering of
239 lipotoxic byproducts like in starvation-induced autophagy³¹.

240 Finally, to evaluate the importance of lipid droplets on the mitophagy enhancement conferred by
241 probucol treatment, diacylglycerol acyltransferases (DGAT)1 and DGAT2 inhibitor treatment
242 was added to suppress the lipid droplet expansion which occurred following prolonged
243 mitochondrial stress (Figure 5C, S5). The addition of DGAT inhibitors to probucol treatment in
244 the context of paraquat-induced mitochondrial dysfunction in flies attenuated probucol's
245 enhancement of mitophagy in the dopaminergic neurons of flies (Figure 5E). Mitophagy was no
246 longer elevated by probucol in the context of paraquat, when DGAT inhibitors are present. Since
247 DGAT inhibitors reduced LD area and attenuated probucol's effect on mitophagy, this suggests
248 probucol's effect on LDs may be responsible for its subsequent effects on mitophagy.

249 Since probucol no longer exerted effects on mitophagy without lipid droplets and when ABCA
250 levels are reduced, we probed whether ABCA1 affected probucol-mediated LD expansion. This
251 critical step in probucol's mechanism of action on mitophagy was no longer evident when
252 ABCA1 levels were reduced with shRNA (Figure 5F, S4A).

253 **Probucol increases LC3 lipidation and lysosome abundance**

254 Since early mitophagy steps were unaltered by probucol, downstream steps were assessed next.
255 Immunoblotting can be used to evaluate the lipidation status of LC3. The lower molecular

256 weight, lipidated form of LC3 (LC3-II) correlates with autophagosome levels and therefore
257 increases as autophagy proceeds. However, it is important to note that increased LC3-II levels
258 alone, in the absence of co-treatments with lysosome inhibitors, cannot directly indicate
259 increased autophagic flux³⁴. LC3-II levels increased following probucol treatment under basal
260 conditions (Figure S7) in HEK293 cells with endogenous Parkin present at low levels. LC3-II
261 levels were predictably higher upon mitophagy induction with CCCP treatment compared to
262 basal conditions, as other studies show. However, the difference in LC3-II between DMSO- and
263 probucol-treated cells did not persist under these conditions.

264 A recent report found that autophagy must be tuned to provide sufficient dynamic range to
265 resolve differences in LC3 lipidation following manipulations such as drug treatments³⁵. This
266 can be accomplished by employing bafilomycin, an inhibitor of lysosome-autophagosome fusion
267 at low doses so the effects of manipulations would be apparent. Experiments were repeated in
268 HeLa cells which lack endogenous Parkin with the addition of low dose bafilomycin treatment.
269 While the difference between DMSO and probucol treated groups under basal conditions was not
270 as robust as in HEK293 cells, the addition of bafilomycin revealed a difference in LC3 lipidation
271 between DMSO and probucol-treated cells in the CCCP group (Figure 6A, B).

272 An endogenously mCherry-tagged *Lamp* reporter fly line was employed to assess lysosomes *in*
273 *vivo*. *Lamp* is a lysosomal protein, which increases in abundance following paraquat treatment³⁶.
274 Dopaminergic neurons were segmented with TH immunostaining and the area occupied by
275 *Lamp*-positive lysosomes within dopaminergic neurons was measured. As expected, paraquat
276 addition to fly food increased abundance of *Lamp*-positive puncta (Figure 6C). Probucol
277 treatment increased the area of lysosomes in the dopaminergic neurons, under basal conditions
278 where no exogenous stimulus was added to trigger lysosome accumulation (Figure 6C, D).

279 To determine whether probucol's effect on mitophagy were responsible for its ability to improve
280 paraquat-induced climbing impairment, climbing assays were performed as described in Figure
281 4A, but the dopaminergic neuron-specific TH-GAL4 driver was used to drive expression of
282 RNAi targeting candidate genes. In this manner, we dissected which factors were dispensable for
283 probucol-mediated climbing improvements. Consistently with experiments in cells that showed
284 that probucol had no effect on Parkin subcellular distribution (Figure S3), *parkin* RNAi did not
285 abrogate the effects of probucol-mediated improvement of climbing impairment, which was
286 evident in both the mCherry^{RNAi} and *parkin*^{RNAi}-expressing flies (Figure 6E).

287 However, probucol treatment no longer improved climbing when *ABCA* RNAi was expressed in
288 dopaminergic neurons (Figure 6E). In sum, these findings show that probucol treatment
289 increased downstream autophagy steps such as autophagosome and lysosome biogenesis,
290 seemingly priming the cells for a more rapid and efficient mitophagy response when damage
291 strikes. *ABCA*, probucol's target likely facilitates this effect through alterations to LD dynamics.

292

293 Discussion

294 Using our screening approach, several previously characterized mitophagy enhancers were
295 recovered both *in silico* and in cells. *In silico* screening identified staurosporine amongst the top
296 hits (17/3231, top 0.5%), which is a well-characterized activator of mitophagy, but it was
297 excluded from further experiments as it induces apoptosis³⁷.

298 In our cell-based screen, dichlorocopper ranked as 1/79 in our screen. Copper binds to and
299 increases the kinase activity of autophagy regulatory kinases ULK1 and ULK2²¹. ULK1/2
300 mediate autophagosome formation downstream of PINK1/Parkin^{38,39}. Dichlorocopper would not
301 have been identified had our mitophagy screen focused on Parkin recruitment, but nevertheless
302 enhanced mitophagy, so the design of this screen may be superior to our previous screening
303 approach²⁵. The recovery of compounds with established mitophagy-promoting effects gave us
304 confidence in the predictive power and efficacy of our dual screen. By filtering out compounds
305 which induce mitochondrial damage or apoptosis, our effort was focused on identifying new
306 compounds and mechanisms leading to mitophagy enhancement.

307 Interestingly, the set of compounds used to train our *in silico* model to identify mitophagy
308 enhancers largely consisted of SIRT1 agonists (Figure 1C). SIRT1 affects mitophagy by
309 upregulating the mitophagy receptor BNIP3 in aged mouse kidney⁴⁰. Several compounds
310 function by increasing the cellular NAD⁺ pool, which is a cofactor for SIRT1. This bias led us to
311 speculate that our dual screen would identify several more mitophagy enhancers that function
312 through this common mechanism shared amongst the training set. Despite the bias, only 1 of the
313 3 final hits (3-methoxybenzamide) was a SIRT1 agonist. Interestingly, a recent phase I clinical
314 trial has demonstrated efficacy for nicotinamide, an NAD⁺ precursor, in PD, so the mechanism
315 of action encompassed in the training set is likely nevertheless a relevant disease target⁴¹.

316 Ultimately, the screen identified probucol, a drug used to treat hypercholesterolemia prior to the
317 advent of statins. The target which probucol inhibits is the ATP-binding cassette transporter
318 ABCA1 and diverse assays in cells and flies which involved genetically reducing ABCA levels
319 abolished probucol's effects on mitophagy in cells and climbing in flies, while expressing human
320 ABCA1 reduced mitophagy in dopaminergic neurons⁴². Experiments probing distinct steps in the
321 mitophagy pathway found that probucol impacted mitophagy and *in vivo* phenotypes
322 independent of PINK1/Parkin but required LDs, as pharmacological inhibition of LD
323 biosynthesis abrogated probucol's mitophagy enhancing effect.

324 Under normal conditions, probucol had several relevant effects: 1) it increased LD-mitochondria
325 contacts, 2) increased late endosomes/lysosomes and 3) increased autophagosome lipidation.
326 Importantly, probucol did not increase mitolysosome abundance under normal conditions but
327 does so following mitochondrial damage. LDs adjacent to mitochondria can supply fatty acids
328 during nutrient stress⁴³ and can interact with and transfer lipids and proteins to both lysosomes
329 and autophagosomes^{44,45}. LD mobilization by lipase PNPLA5 is required to facilitate the
330 formation of autophagic membranes, including in the context of mitochondrial damage⁴⁶. Given
331 that we observed increased abundance of late endosomes/lysosomes and mature autophagosomes
332 under basal conditions, we speculate that the latter is true and may occur adjacent to

333 mitochondria under basal conditions, but further investigation is required. Ultimately, the
334 increased abundance of two components which can subsequently fuse to form mito-lysosomes
335 when mitophagy is induced likely primes the cell for a more efficient and protective degradative
336 response.

337 Cells and flies were subjected to prolonged mitochondrial damage in the form of CCCP
338 treatment or paraquat feeding. Under these treatment conditions, we observed an increase in lipid
339 droplet abundance. This is consistent with studies by *Nguyen et al.* and by *Long et al.* which
340 demonstrate increase lipid droplet levels upon starvation-induced autophagy and deferiprone-
341 induced mitophagy^{31,32}. The two studies attribute different roles for LDs in these contexts. LDs
342 buffer lipotoxic species which are generated as a byproduct of autophagic degradation and
343 facilitate the subcellular transition endolysosomes undergo from the peripheries of the cell
344 towards damaged perinuclear mitochondria, respectively. We did not investigate the reason for
345 lipid droplet expansion occurs upon mitochondrial damage, but we did find that lipid droplets
346 were necessary for probucol's effects on mitophagy.

347 Lysosome position is critical for effective macroautophagy and found to be disrupted by
348 inhibition of LD biosynthesis in deferiprone-induced mitophagy^{32,47}. The increased abundance of
349 LDs at mitochondria may facilitate the positioning of lysosomes away from the peripheries
350 where they become active^{47,48}. *In vivo*, clear overlap between lipid droplets and lysosomes was
351 visible both in dopaminergic neurons and in other cells of the fly brain, supporting this
352 possibility.

353 Interestingly, lipid droplet expansion following mitochondrial damage was reduced in probucol-
354 treated cells and flies. This feature of probucol's mechanism may be particularly relevant, given
355 recent studies which found increased lipid droplet accumulation in the dopaminergic neurons of
356 PD patients⁴⁹. Likewise, the reduced accumulation supports the idea that LDs may be mobilized
357 by probucol treatment to facilitate mitophagy⁴⁶. Probucol mitigated both lipid droplet
358 accumulation and mitochondrial damage-two features of PD pathogenesis. Probucol's canonical
359 target, ABCA1, is required for both probucol's effects on mitophagy and on LD expansion.
360 Targeting a point of crosstalk between these two pathogenesis pathways may be advantageous.

361 ABCA1 R219K gene polymorphisms impacts PD progression, as measured using the Hoehn and
362 Yahr scale⁵⁰. The K allele, which is associated with slower PD progression, also affects the lipid
363 profile of those who carry the genotype. Compared to individuals carrying ABCA1 R219K RR
364 or RK, ABCA1 R219K K genotype carriers have elevated high density lipoprotein cholesterol
365 and lower triglyceride levels⁵¹. It remains to be determined whether the differences in lipid
366 profiles are responsible for clinical differences between these groups.

367 Across toxin-based and genetic models of mitochondrial damage and PD in two different
368 species, probucol improved survival, locomotor function and reduced the loss of dopaminergic
369 neurons. A prior paper also found improvements to phenotypes caused by mitochondrial
370 dysfunction in *C. elegans*. In this study, how probucol facilitates these improvements was not
371 examined⁵². Given probucol's promising effects in several preclinical animal models, it might be
372 fruitful to mine human epidemiologic data for any associations between probucol treatment and

373 reduced risk of PD, since it is still in use in Japan and China. Statins also increase mitophagy, but
374 in a Parkin-dependent manner, unlike probucol⁵³. Whether statins impact lipid droplet expansion
375 following mitochondrial damage may represent an interesting avenue for future inquiry.

376 In conclusion, our study showcased a dual *in silico*/cell-based screening methodology which
377 identified known and new mechanisms leading to mitophagy enhancement. ABCA1, which
378 localizes to endolysosomes in cells, and regulates lipid homeostasis may serve as a mediator of
379 crosstalk between lipid droplet dynamics and mitophagy since lipid droplets are required for the
380 mitophagy enhancement conferred by probucol⁵⁴.

381 **Methods**

382 Cells and tissue culture

383 All cell lines and sources are compiled in the Materials table. Cells were cultured in Dulbecco's
384 Modified Eagle Media supplemented with 10% fetal bovine serum. Cells were routinely tested
385 for mycoplasma using the e-myco VALID mycoplasma testing kit (FroggaBio, 25239). Cells
386 were maintained at 37°C temperature and 5% CO₂ in a humidified atmosphere.

387 Immunoblotting

388 Lysates were harvested with lysis buffer (0.1M Tris HCl, 0.01% SDS, pH 9) containing protease
389 inhibitor cocktail (BioShop, PIC002.1) followed by 20 minutes of boiling and vortexing at 95°C.
390 Lysates were then pelleted by high-speed centrifugation for 20 minutes at 4°C and supernatant
391 was transferred into a new microcentrifuge tube for BCA assays to standardize protein loading
392 across each experiment (Pierce, 23227).

393 Immunoblotting for VDAC1, ATP5A, ABCA1 was performed with 10% SDS-PAGE gels to
394 separate proteins followed by transfer onto PVDF membrane (Immobilon, IPVH00010) at 110V
395 for 80 minutes or 8-hour 38V transfer in the cold room. Samples to be probed for LC3 were
396 separated on 15% SDS-PAGE gels instead. The transfer apparatus set up included an ice pack
397 and a stir bar.

398 After Ponceau staining and imaging to assess overall protein loading, membranes were washed
399 with TBST and blocked in 5% skim milk diluted in TBST for 30 minutes at room temperature.
400 Incubation in primary antibodies diluted in 2.5% skim milk was performed overnight at 4°C. 3 5-
401 minute TBST washes were performed prior to incubation of blots in secondary antibody diluted
402 in 2.5% milk for 2 hours. 3 final 10-minute TBST washes were followed by visualization of
403 proteins with ECL (BioRad, 11705062). Densitometry analysis was performed using ImageLab
404 6.0 software (BioRad) and the protein of interest was normalized to either Ponceau staining or
405 loading controls such as GAPDH or tubulin. Antibodies used in this study are compiled in
406 Materials table.

407 Immunofluorescence

408 Cells grown on coverslips (1.5H thickness) were fixed with 4% PFA for 15 minutes, followed by
409 3 PBS washes. Permeabilization was performed with 0.1% Tx-100 incubation for 15 minutes,
410 followed by 3 more PBS washes. Blocking with 10% goat serum diluted in PBS was performed

411 for 30 minutes at room temperature, or overnight at 4°C. Coverslips were then incubated in
412 primary antibody diluted in 1% goat serum (1:500) overnight at 4°C. The next day, following 3
413 PBS washes, coverslips were incubated in secondary antibody diluted in 1% goat serum (1:500)
414 for 1-2 hours at room temperature. 3 10-minute PBS washes were followed by mounting onto
415 slides with Fluoromount containing DAPI (Invitrogen 00495952).

416 Immunofluorescence of fly brains began with 20-minute fixation with 4% PFA, followed by 3x
417 washes with 0.1% PBST (Tween-20 diluted in PBS) washes. Permeabilization was performed
418 with 1% PBST (Triton-X-100 diluted in PBS) for 1 hour, followed by 3x washes in PBS.
419 Blocking of fly brains in 10% goat serum for 1 hour was followed with overnight incubation at
420 4°C in primary antibody diluted in 1% goat serum. The next day, 10 minute 0.1% PBST (Tween-
421 20 diluted in PBS) washes were followed by incubation in secondary antibody diluted in 1% goat
422 serum for 2 hours. 3 more 10 minute 0.1% PBST washes and a final 10-minute PBS wash were
423 performed prior to overnight incubation of fly brains in Fluoromount (Invitrogen 00495802) and
424 mounting the next day onto slides. Coverslips (1.5H thickness) were sealed to the slide with clear
425 nail polish. Antibodies used in this study are compiled in Materials table.

426 Fly husbandry

427 Fly lines used in this study are compiled in Materials table. *Drosophila* were maintained at 25°C
428 and at 70% relative humidity in 12-hour light/dark cycles and were fed standard yeast-molasses-
429 sugar-agar formula. In the case of drug treatments, low melt agar fly food formula was composed
430 as previously described⁵⁵. Probuclol was added to low melt agar fly food at 250 µM concentration
431 and the equivalent volume of DMSO was used in control vials. DMSO concentration never
432 exceeded 1% in experiments. Fly stocks used in the study and sources are listed in Materials
433 Table.

434 *In silico* screen for mitophagy enhancers in Drugbank

435 We have previously described the natural language processing methodology employed by IBM
436 Watson for Drug discovery predictive analytics^{11,12}. In brief, a set of candidate drugs were
437 ranked according to semantic similarity to a training set of drugs known to have the desirable
438 biological effect using natural language processing applied to published abstracts obtained from
439 Medline.

440 **Training set:** A training set consisting of compounds listed in Figure 1A was composed with
441 reference to a review about pharmacological modulators of mitophagy². This list was curated to
442 filter out any that were associated with mitochondrial damage or apoptosis (Data S2).
443 Compounds associated with key words such as apoptosis, depolarization and mitochondrial
444 damage were excluded. The result was a set of 7 compounds with proven ability to induce
445 mitophagy without an association with mitochondrial damage or apoptosis; Olaparib (PARP
446 inhibitor), nicotinamide (NAD⁺ accumulation), pifithrin- α (p53 inhibitor), kinetin (PINK1 neo-
447 substrate) and the SIRT1 activators resveratrol, fisetin and SRT1720.

448 **Candidate set:** 3231 final candidates were filtered from the entire DrugBank
449 database (www.drugbank.ca). Candidates with less than 5 published abstracts were removed.

450 **Model Validation**

451 **1. Leave one out cross validation:** Leave one out cross validation was performed. The
452 ranking was run 7 times, with each training drug in turn removed from the training set
453 and ranked among the other 3231 candidate drugs. Receiver Operating Characteristics
454 curves were generated across the range of possible ranks to assess the model's
455 performance in a binary classification task. Data were analyzed in Python using the
456 scikit-learn library.

457 **2. Retrospective analysis:** Olaparib was first published as having a mitophagy inducing
458 effect in 2015⁵⁶. To further validate our methodology, a ranking was performed restricted
459 to abstracts published up to and including 2014. Olaparib was omitted from the known
460 set and placed in the candidate list.

461 **Ranking of candidate set and selection of candidates for validation:** The final ranking was
462 applied resulting in a list of 3231 candidate drugs rank ordered according to semantic similarity
463 to the training set.

464 Following post-hoc analysis, the top 79 molecules ranked as bearing highest semantic similarity
465 to the training set molecules, were purchased from Sigma. The identities of the compounds in
466 our custom library are described in Data S3. These molecules were arrayed in a 96-well format at
467 10 mM concentration in DMSO.

468 **Screening**

469 20 000 HeLa cells stably expressing mito-DsRed and GFP Parkin were seeded into clear, flat
470 bottom, black polystyrene 96-well plates (Corning, CLS3603) and incubated at 37°C with 5%
471 CO₂ overnight. A final concentration of 1 μM of the compound in media was added to the cells
472 for 2 hours prior to the addition of CCCP to a final concentration of 10 μM. CCCP treatment was
473 stopped after 24-hour incubation by washing cells with PBS followed by fixation in 4% PFA.
474 Imaging was performed on the Cytell Cell Imaging System at 10X magnification. 8 fields were
475 captured with the same ROI positions in each well.

476 **Image Analysis for Mitochondrial Clearance**

477 The mitochondrial clearance screen was quantified first by segmenting every cell in each image.
478 Cells were stained with DAPI to visualize nuclei and whole-cell segmentation was also
479 performed in the GFP channel, based on Parkin distribution. Cells were categorized into two
480 groups, based on mito-DsRed intensity, a matrix-targeted fluorophore which serves as a
481 mitochondrial marker. Cells were classified as either positive or negative for mito-DsRed signal
482 based on a fluorescence intensity cutoff determined by assessing the fluorescence intensity signal
483 for both the negative and positive controls for the screen, DMSO pre-treated cells treated with
484 DMSO (negative) or CCCP (positive) for 24 hours.

485 The average mitochondrial clearance (% of cells with low/no mito-DsRed signal) for the positive
486 control (DMSO+24 hour CCCP) and negative control (DMSO+24 hour DMSO) wells was
487 determined and used to calculate the Z-factor, which is a metric indicative of screening

488 robustness⁵⁷. Normalized MAD z-scores were calculated for each of the compounds, as
489 implemented in other mitophagy-related screens⁵⁸, across two independent screening replicates.
490 Molecules with the highest z-scores had the strongest effect on mitochondrial clearance.

491 mitoQC assay to assess mitochondria-to-lysosome targeting in cells

492 HeLa cells were seeded onto coverslips in 6-well plates. The next day, they were transfected
493 with Flag-Parkin using lipofectamine 2000 (Invitrogen, 11668019). 24 hours later, cells were
494 treated with 10 μ M CCCP (or DMSO as a control) in combination with 0.5 mM leupeptin and 2
495 μ M E-64 in combination with 1 μ M of the indicated small molecule treatments or DMSO for 6
496 hours prior to fixation.

497 Images were acquired on the Leica SP8 microscope. All image settings were kept consistent
498 throughout imaging for each experiment. The ImageJ Plug-In developed by *Garriga et al.* was
499 used to analyze the percentage of mitochondria which appear red-only⁵⁹:

500 https://github.com/graemeball/mQC_counter. At least 40 cells were quantified per treatment
501 group in each replicate. Cells with at least 5 red-only puncta representing mito-lysosomes were
502 classified mitophagic, similar to the analysis described by *Allen et al*⁶⁰.

503 *In vivo* mito-QC assay to assess mitochondria-to-lysosome targeting

504 7-day old flies were placed into vials containing low-melt agar in combination with the indicated
505 treatments. Following 24-hour incubation, flies were incubated in whole-fly fixation reagent
506 containing 1% PFA and 0.1% PBST (Tween-20 diluted in PBS) overnight at 4°C. Fly brains
507 were dissected following PBS wash and subsequently fixed in 4% PFA for 20 minutes. After a 5-
508 minute PBST wash and 5-minute PBS wash, fly brains were incubated in Fluoromount.
509 Following tissue dissection, all steps were performed protected from light. Brains were mounted
510 onto slides and covered with #1.5 coverslips and sealed with nail polish. At least 3 independent
511 biological trials were performed for each experiment and at least 2 fly brains were imaged for
512 each treatment.

513 Zebrafish locomotor and dopaminergic neuron assays

514 Zebrafish locomotion was evaluated in 96-well plate format using Zebrabox video tracking
515 system. The Tg(*dat:EGFP*) zebrafish model and pertinent details to the quantification of
516 dopaminergic neurons in the ventral diencephalon region of the brain has previously been
517 described in detail³⁰. For confocal microscopy of dopaminergic neurons, embryos were cleaned
518 and housed in a 28°C incubator. 24 hours later, 1 mM MPP⁺ was administered with probucol at
519 50 μ M concentration and DMSO control. Microscopy was performed the next day. For
520 locomotor assays, instead of performing microscopy, media was changed to fresh MPP⁺ and
521 drug for 2 additional days, then on the final day, the movement trajectory of the zebrafish
522 was tracked using ZebraBox.

523 Measuring LD and lysosome area

524 ImageJ was used to create maximum intensity projections of image z-stacks. The object counter
525 Plugin was then employed to identify circular objects in the images and measure the area of

526 puncta. Since variation in cell size was evident across experiments, the area of the cell structure
527 of interest was normalized to the total cell area. TH staining was used to determine total area of
528 dopaminergic neurons, while the brightfield was used to define cell area in culture.

529 Statistical analysis and figures

530 Unpaired student' t-tests were performed to make pairwise comparisons. Where multiple
531 comparisons were made, ANOVA statistical analysis was performed with Dunnett's multiple
532 comparison correction. Independent biological replicates were used to compute statistics using
533 GraphPad Prism v 9.0 software. Where possible, each independent biological replicate is
534 displayed in the graphs. Error bars on graphs represent the SEM, as several technical replicates
535 were averaged to obtain each independent replicate value. BioRender (www.biorender.com) was
536 used to make Figure 1C, 6F and Figure S1A.

537 Materials

MATERIAL	SOURCE	IDENTIFIER
Antibodies		
mouse monoclonal anti-ATP5A	Abcam	14748
mouse monoclonal anti-ABCA1	Abcam	18180
mouse monoclonal anti-VDAC1	Abcam	14734
rabbit polyclonal anti-phospho ubiquitin S65	Sigma Aldrich	1513-I
mouse monoclonal anti-tubulin	Santa Cruz	sc-5286
mouse monoclonal anti-actin	Abcam	ab8226
rabbit polyclonal anti-LC3B	Cell Signaling	2775
mouse monoclonal anti-GAPDH	Invitrogen	398600
polyclonal rabbit horseradish peroxidase-conjugated secondary antibody	Jackson Immunoresearch Laboratories	111035144
polyclonal mouse horseradish peroxidase-conjugated secondary antibody	Jackson Immunoresearch Laboratories	115035003
Alexa Fluor 647 donkey anti-rabbit	Invitrogen	A31573
Alexa Fluor 594 goat anti-mouse	Invitrogen	A11004
Chemicals		
probucol (cells: 1 μ M, flies: 0.25 mM, zebrafish: 2 μ M)	Tocris	2775
CCCP (10 μ M)	Sigma Aldrich	2759
T863 (20 μ M)	Cayman Chemical Co.	258007
PF-06424439 (10 μ M)	Tocris	6348
leupeptin (0.5 mM)	Bioshop	LEU001
E-64 (2 μ M)	Bioshop	EEL640
Paraquat (0.5 mM)	Sigma Aldrich	36541
SR-3677 (2 μ M)	Tocris	3677
BODIPY (1 μ g/mL)	Invitrogen	D3922
Bafilomycin (2.5 nM)	Cell Signaling Technology	54645
MPP ⁺ (1 mM)	Sigma Aldrich	D048
Cell lines		
Human: HeLa	Peter Kim lab	N/A

Human: HeLa cells stably expressing GFP Parkin and mito-DsRed	Richard Youle lab	N/A
Human: HEK293	Peter Kim lab	N/A
Organisms		
<i>Drosophila</i> : TH-Gal4	BDSC	8848
<i>Drosophila</i> : UAS-park shRNA	BDSC	31259
<i>Drosophila</i> : heteroplasmic <i>mt:ColI^{T300I}</i>	Thomas Hurd lab	N/A
<i>Drosophila</i> : Canton(S)	Thomas Hurd lab	N/A
<i>Drosophila</i> : UAS-hABCA1/CyO	BDSC	84758
<i>Drosophila</i> : UAS-ABCA shRNA	BDSC	38353
<i>Drosophila</i> : UAS-mitoQCattP2	Alex Whitworth lab	N/A
<i>Drosophila</i> : UAS-mitoQCattP16	Alex Whitworth lab	N/A
<i>Drosophila</i> : UAS-mCherry shRNA	BDSC	35785
<i>Drosophila</i> : dLamp-3xmCherry	Gabor Juhasz lab	N/A
Zebrafish: Tg(<i>dat:EGFP</i>)	Wen lab	N/A
Zebrafish: WT Tuebingen	Zebrafish International Resource Center	ZL57
Recombinant DNA		
Plasmid: pLKO1	Sigma Aldrich	SHC001
Plasmid: shABCA1	Sigma Aldrich	TRCN0000029093
Plasmid: Cerulean-Parkin	Peter Kim, Sick Kids Hospital	N/A
Plasmid: mitoQC	Peter Kim, Sick Kids Hospital	N/A
Software and algorithms		
ImageJ	NIH	https://imagej.net/software/fiji/
Cell Profiler	Carpenter-Singh lab, Broad Institute	https://cellprofiler.org/
Cell Profiler Analyst	Carpenter-Singh lab, Broad Institute	https://cellprofileranalyst.org/
Watson Drug Discovery	IBM	N/A
GraphPad Prism v9		https://www.graphpad.com/
BioRender		https://biorender.com/

538

539 Data availability statement

540 The authors confirm that the data supporting the findings of this study are available within the
541 article and its supplementary materials.

542 Disclosure statement

543 The authors do not report any potential competing interest.

544 Funding

545 This study was supported by grant from the Canadian Institutes of Health Research (PJT-
546 156186) to G.A.M.

547 Acknowledgements

548 The authors would like to thank Dr. Guang Shi for performing microscopy for the mitochondrial
549 clearance screen. We also thank the following labs for supplying critical tools: Dr. Richard
550 Youle (GFP Parkin mito-DsRed HeLa cells), Dr. Thomas Hurd (heteroplasmic mt:*ColI^{T300I}* flies)
551 and Dr. Yan Wei Xi [Tg(*dat:EGFP*)].

552

553

554 References

- 555 1. Poewe, W. *et al.* Parkinson disease. *Nat. Rev. Dis. Prim.* **3**, 1–21 (2017).
- 556 2. Kitada, T. *et al.* Mutations in the parkin gene cause autosomal recessive juvenile
557 parkinsonism. *Nature* **392**, 605–608 (1998).
- 558 3. Valente, E. M. *et al.* Hereditary Early-Onset Parkinson ' s Disease Caused by Mutations in
559 PINK1. *Science (80-)* **304**, 1158–1161 (2004).
- 560 4. Ordonez, D. G., Lee, M. K. & Feany, M. B. α -synuclein Induces Mitochondrial
561 Dysfunction through Spectrin and the Actin Cytoskeleton. *Neuron* **97**, 108–124.e6 (2018).
- 562 5. Li, H. *et al.* Mitochondrial dysfunction and mitophagy defect triggered by heterozygous
563 GBA mutations. *Autophagy* **15**, 113–130 (2019).
- 564 6. Wauters, F. *et al.* LRRK2 mutations impair depolarization-induced mitophagy through
565 inhibition of mitochondrial accumulation of RAB10. *Autophagy* **16**, 203–222 (2020).
- 566 7. LaVoie, M. J., Ostaszewski, B. L., Weihofen, A., Schlossmacher, M. G. & Selkoe, D. J.
567 Dopamine covalently modifies and functionally inactivates parkin. *Nat. Med.* **11**, 1214–
568 1221 (2005).
- 569 8. Chung, K. K. K. *et al.* S-nitrosylation of parkin regulates ubiquitination and compromises
570 parkin's protective function. *Science (80-)* **304**, 1328–1331 (2004).
- 571 9. Tokarew, J. M. *et al.* Age-associated insolubility of parkin in human midbrain is linked to
572 redox balance and sequestration of reactive dopamine metabolites. *Acta Neuropathol.* **141**,
573 725–754 (2021).
- 574 10. Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of
575 cellular mitophagy. *Nat Chem Biol* **13**, 136–146 (2017).
- 576 11. MacLagan, L. C. *et al.* Identifying drugs with disease-modifying potential in Parkinson's
577 disease using artificial intelligence and pharmacoepidemiology. *Pharmacoepidemiol.*
578 *Drug Saf.* **29**, 864–872 (2020).
- 579 12. Visanji, N. P. *et al.* Using artificial intelligence to identify anti-hypertensives as possible
580 disease modifying agents in Parkinson's disease. *Pharmacoepidemiol. Drug Saf.* **30**, 201–
581 209 (2021).
- 582 13. Chen, K. S. *et al.* Small molecule inhibitors of α -synuclein oligomers identified by
583 targeting early dopamine-mediated motor impairment in *C. elegans*. *Mol. Neurodegener.*
584 **16**, 1–25 (2021).
- 585 14. Ashburn, T. T. & Thor, K. B. Drug repositioning: Identifying and developing new uses for
586 existing drugs. *Nat. Rev. Drug Discov.* **3**, 673–683 (2004).
- 587 15. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to
588 impaired mitochondria and promotes their autophagy. *J. Cell Biol.* **183**, 795–803 (2008).
- 589 16. Villa, E., Marchetti, S. & Ricci, J. E. No Parkin Zone: Mitophagy without Parkin. *Trends*
590 *Cell Biol.* **28**, 882–895 (2018).

591 17. Pickrell, A. M. & Youle, R. J. The roles of PINK1, Parkin, and mitochondrial fidelity in
592 parkinson's disease. *Neuron* **85**, 257–273 (2015).

593 18. Wang, Y. *et al.* Deubiquitinating enzymes regulate PARK2- mediated mitophagy
594 Deubiquitinating enzymes regulate PARK2- mediated mitophagy. *Autophagy* **8**:27,
595 (2015).

596 19. Hasson, S. A. *et al.* High-content genome-wide RNAi screens identify regulators of parkin
597 upstream of mitophagy. *Nature* **504**, 291–295 (2013).

598 20. Ruiz, L. M. *et al.* Non-cytotoxic copper overload boosts mitochondrial energy metabolism
599 to modulate cell proliferation and differentiation in the human erythroleukemic cell line
600 K562. *Mitochondrion* **29**, 18–30 (2016).

601 21. Tsang, T. *et al.* Copper is an essential regulator of the autophagic kinases ULK1/2 to drive
602 lung adenocarcinoma. *Nat. Cell Biol.* **22**, 412–424 (2020).

603 22. Zhu, T. *et al.* Hit identification and optimization in virtual screening: Practical
604 recommendations based on a critical literature analysis. *J. Med. Chem.* **56**, 6560–6572
605 (2013).

606 23. Allen, G. F. G., Toth, R., James, J. & Ganley, I. G. Loss of iron triggers PINK1/Parkin-
607 independent mitophagy. *EMBO Rep.* **14**, 1127–1135 (2013).

608 24. Chaudhuri, A. *et al.* Interaction of genetic and environmental factors in a Drosophila
609 parkinsonism model. *J. Neurosci.* **27**, 2457–67 (2007).

610 25. Moskal, N. *et al.* ROCK inhibitors upregulate the neuroprotective Parkin-mediated
611 mitophagy pathway. *Nat. Commun.* **11**, 1–14 (2020).

612 26. Wen, L. *et al.* Visualization of monoaminergic neurons and neurotoxicity of MPTP in live
613 transgenic zebrafish. *Dev. Biol.* **314**, 84–92 (2008).

614 27. Chen, Z. *et al.* Genetic mosaic analysis of a deleterious mitochondrial DNA mutation in
615 Drosophila reveals novel aspects of mitochondrial regulation and function. *Mol. Biol. Cell*
616 **26**, 674–684 (2015).

617 28. Ma, H., Xu, H. & O'Farrell, P. H. Transmission of mitochondrial mutations and action of
618 purifying selection in Drosophila melanogaster. *Nat. Genet.* **46**, 393–397 (2014).

619 29. Kandul, N. P., Zhang, T., Hay, B. A. & Guo, M. Selective removal of deletion-bearing
620 mitochondrial DNA in heteroplasmic Drosophila. *Nat. Commun.* **7**, 1–11 (2016).

621 30. Xi, Y. *et al.* Transgenic zebrafish expressing green fluorescent protein in dopaminergic
622 neurons of the ventral diencephalon. *Dev. Dyn.* **240**, 2539–2547 (2011).

623 31. Nguyen, T. B. *et al.* HHS Public Access. **42**, 9–21 (2018).

624 32. Long, M. *et al.* DGAT 1 activity synchronises with mitophagy to protect cells from
625 metabolic rewiring by iron depletion. 1–25 (2022) doi:10.15252/embj.2021109390.

626 33. Benador, I. Y., Veliova, M., Liesa, M. & Shirihi, O. S. Mitochondria Bound to Lipid
627 Droplets: Where Mitochondrial Dynamics Regulate Lipid Storage and Utilization. *Cell*

628 *Metab.* **29**, 827–835 (2019).

629 34. Mizushima, N. & Yoshimori, T. How to interpret LC3 immunoblotting. *Autophagy* **3**,
630 542–545 (2007).

631 35. Liebl, M. P. *et al.* Robust LC3B lipidation analysis by precisely adjusting autophagic flux.
632 *Sci. Rep.* **12**, 1–14 (2022).

633 36. Mak, S. K., McCormack, A. L., Manning-Bog, A. B., Cuervo, A. M. & Di Monte, D. A.
634 Lysosomal degradation of α -synuclein in vivo. *J. Biol. Chem.* **285**, 13621–13629 (2010).

635 37. Zhu, J. H. *et al.* Impaired mitochondrial biogenesis contributes to depletion of functional
636 mitochondria in chronic MPP β toxicity : dual roles for ERK1 / 2. *Cell Death Dis.* **3**, e312–
637 10 (2012).

638 38. Laker, R. C. *et al.* Ampk phosphorylation of Ulk1 is required for targeting of
639 mitochondria to lysosomes in exercise-induced mitophagy. *Nat. Commun.* **8**, (2017).

640 39. Wang, C. *et al.* Phosphorylation of ULK1 affects autophagosome fusion and links
641 chaperone-mediated autophagy to macroautophagy. *Nat. Commun.* **9**, (2018).

642 40. Kume, S. *et al.* Calorie restriction enhances cell adaptation to hypoxia through Sirt1-
643 dependent mitochondrial autophagy in mouse aged kidney. **120**, 1043–1055 (2010).

644 41. Brakedal, B. *et al.* The NADPARK study: A randomized phase I trial of nicotinamide
645 riboside supplementation in Parkinson’s disease. *Cell Metab.* **34**, 396–407.e6 (2022).

646 42. Wu, C. A., Tsujita, M., Hayashi, M. & Yokoyama, S. Probucol inactivates ABCA1 in the
647 plasma membrane with respect to its mediation of apolipoprotein binding and high density
648 lipoprotein assembly and to its proteolytic degradation. *J. Biol. Chem.* **279**, 30168–30174
649 (2004).

650 43. Stone, S. J. *et al.* The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-
651 associated membranes and has a mitochondrial targeting signal that promotes its
652 association with mitochondria. *J. Biol. Chem.* **284**, 5352–5361 (2009).

653 44. Singh, R. *et al.* Autophagy regulates lipid metabolism. *Nature* **458**, 1131–1135 (2009).

654 45. Schulze, R. J. *et al.* Direct lysosome-based autophagy of lipid droplets in hepatocytes.
655 *Proc. Natl. Acad. Sci. U. S. A.* **117**, 32443–32452 (2020).

656 46. Thazar-Poulot, N. *et al.* Neutral lipid stores and lipase PNPLA5 contribute to
657 autophagosome biogenesis. *Curr. Biol.* **24**, 4158–63 (2015).

658 47. Korolchuk, V. I. *et al.* Lysosomal positioning coordinates cellular nutrient responses. *Nat.*
659 *Cell Biol.* **13**, 453–462 (2011).

660 48. Johnson, D. E., Ostrowski, P., Jaumouillé, V. & Grinstein, S. The position of lysosomes
661 within the cell determines their luminal pH. *J. Cell Biol.* **212**, 677–692 (2016).

662 49. Brekk, O. R., Honey, J. R., Lee, S., Hallett, P. J. & Isacson, O. Cell type-specific lipid
663 storage changes in Parkinson’s disease patient brains are recapitulated by experimental
664 glycolipid disturbance. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 27646–27654 (2020).

665 50. Ya, L. & Lu, Z. Differences in ABCA1 R219K polymorphisms and serum indexes in
666 alzheimer and parkinson diseases in Northern China. *Med. Sci. Monit.* **23**, 4591–4600
667 (2017).

668 51. Shi, Z. *et al.* Association between the ABCA1 (R219K) polymorphism and lipid profiles:
669 a meta-analysis. *Sci. Rep.* **11**, 1–10 (2021).

670 52. Ray, A., Martinez, B. A., Berkowitz, L. A., Caldwell, G. A. & Caldwell, K. A.
671 Mitochondrial dysfunction , oxidative stress , and neurodegeneration elicited by a
672 bacterial metabolite in a C . elegans Parkinson ' s model. *Cell Death Dis.* **5**, e984-12
673 (2014).

674 53. Andres, A. M. *et al.* Mitophagy is required for acute cardioprotection by simvastatin.
675 *Antioxidants Redox Signal.* **21**, 1960–1973 (2014).

676 54. Neufeld, E. B. *et al.* Cellular Localization and Trafficking of the Human ABCA1
677 Transporter. *J. Biol. Chem.* **276**, 27584–27590 (2001).

678 55. Neumuller, R. A. *et al.* Systematic screen of chemotherapeutics in Drosophila stem cell
679 tumors. *Proc. Natl. Acad. Sci.* **111**, 4530–4535 (2014).

680 56. Arun, B., Akar, U., Gutierrez-Barrera, A. M., Hortobagyi, G. N. & Ozpolat, B. The PARP
681 inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2
682 mutant breast cancer cells. *Int. J. Oncol.* **47**, 262–268 (2015).

683 57. Zhang, J., Chung, T. D. Y. & Oldenburg, K. R. Journal of Biomolecular Screening. (1999)
684 doi:10.1177/108705719900400206.

685 58. Hasson, S. A. *et al.* Chemogenomic Profiling of Endogenous PARK2 Expression Using a
686 Genome-Edited Coincidence Reporter. *ACS Chem. Biol.* **10**, 1188–1197 (2015).

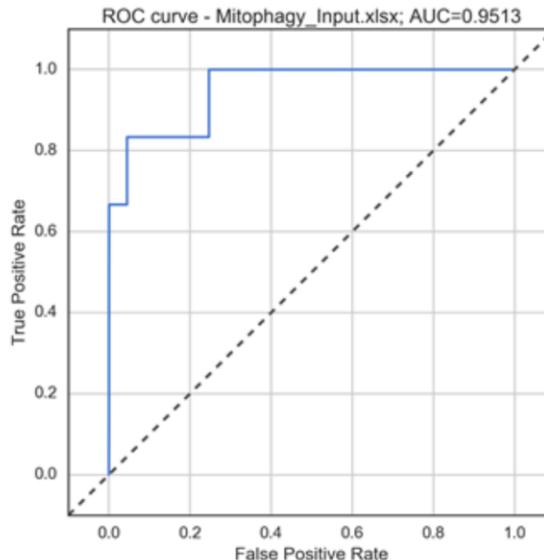
687 59. Montava-Garriga, L., Singh, F., Ball, G. & Ganley, I. G. Semi-automated quantitation of
688 mitophagy in cells and tissues. *Mech. Ageing Dev.* **185**, 111196 (2020).

689 60. Allen, G. F. G., Toth, R., James, J. & Ganley, I. G. Loss of iron triggers PINK1/Parkin-
690 independent mitophagy. *EMBO Rep.* **14**, 1127–1135 (2013).

691

692

A


leave one out cross validation

chemical	similarity score	rank/3231
NICOTINAMIDE	0.002995589	1
SRT1720	0.002521317	2
PIFITHRIN ALPHA	0.002929496	1
RESVERATROL	0.002306876	4
Fisetin	0.00251808	3
OLAPARIB	0.001209273	131
KINETIN	1.40327E-05	777

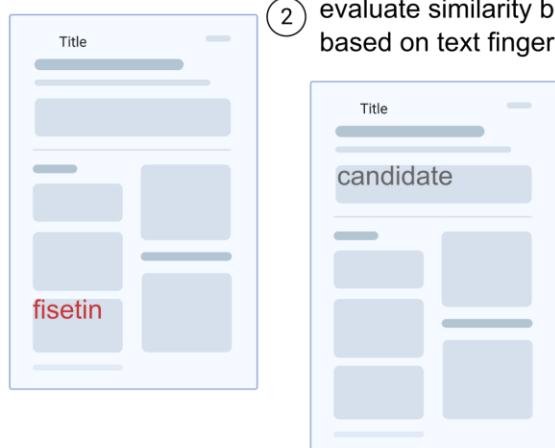
retrospective analysis

chemical	similarity score	rank/3231
OLAPARIB	0.001274202	126

B

C

① Curate training set and candidate list


mitophagy enhancer training set:

- fisetin
- resveratrol
- olaparib
- pifithrin-alpha
- SRT1720
- kinetin
- nicotinamide

DrugBank candidates

② evaluate similarity between candidates and training set
based on text fingerprints

③ rank candidates based on similarity
to training set molecules

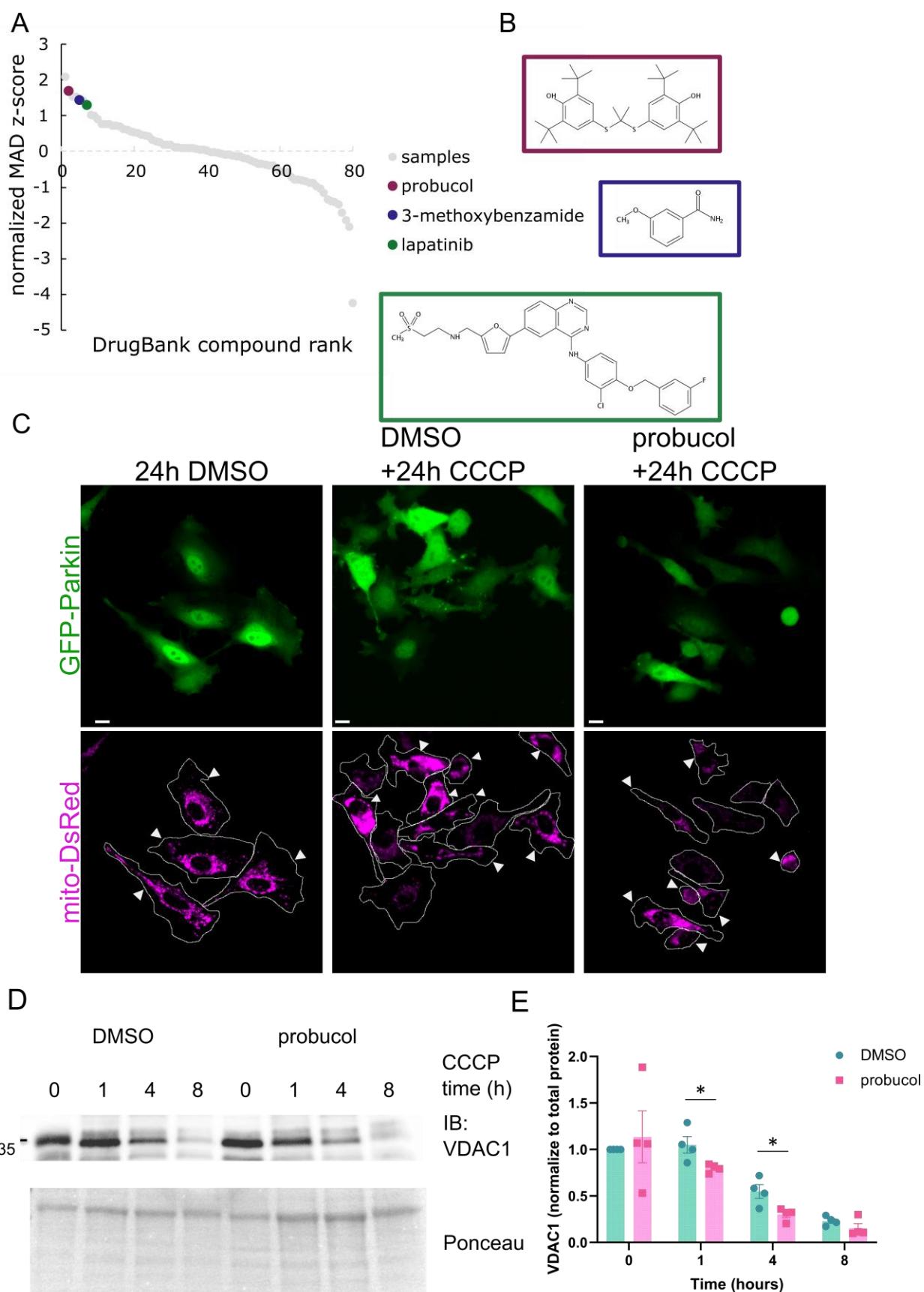
Candidates ranked

rank	drug	score
1	WWWW	
2	XXXX	
3	YYYYYY	
4	ZZZZZZ	

693

694 **Figure 1.** *in silico* screen to identify candidate mitophagy enhancers in DrugBank
695 database of drugs amenable to repurposing

696 (A) Leave one out cross validation and retrospective analyses were performed to evaluate the
697 ability of the model to identify bona fide mitophagy enhancers. Similarity scores between each


698 chemical assessed and the mitophagy enhancer training set were calculated and used to assign
699 a rank out of 3231 DrugBank molecules from most to least similar in ascending order.

700 **(B)** Leave-one-out cross validation results were used to construct a receiver operating
701 characteristic curve which demonstrates the predictive performance of the model. The area
702 under the curve for the ROC curve is 0.9513.

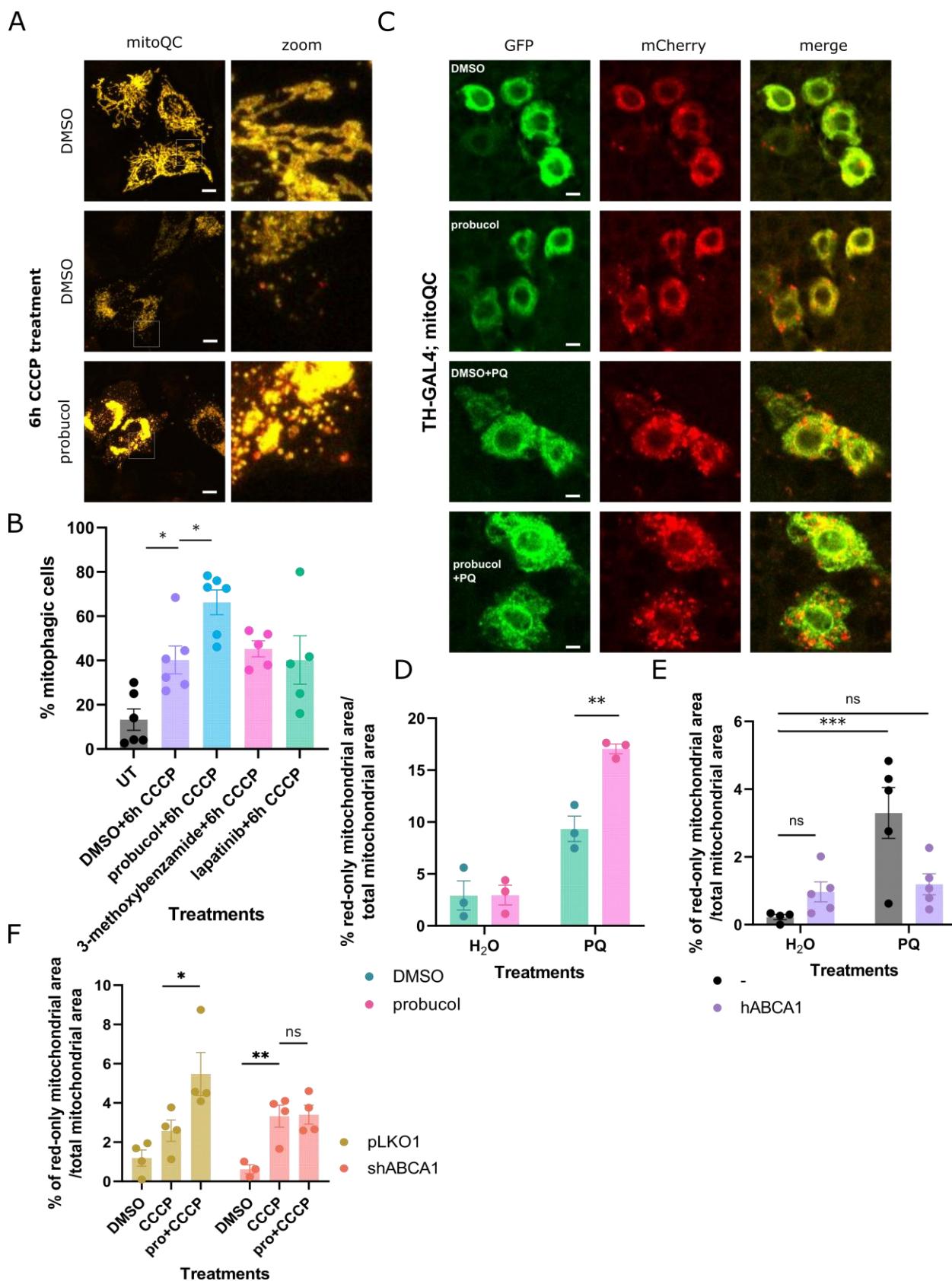
703 **(C)** Following validation, the model was deployed to identify new mitophagy enhancers from the
704 DrugBank candidates based on information from a wide array of sources including PubMed
705 literature, patent filings and biological databases.

706

707

709 **Figure 2.** Cell-based mitochondrial clearance screen to evaluate candidates identified *in*
710 *silico*

711 **A)** Normalized MAD z-scores of 79 candidate DrugBank molecules screened in the
712 mitochondrial clearance screen. Probucol, 3-methoxybenzamide and lapatinib are highlighted
713 amongst other compounds in descending order of rank.


714 **B)** Chemical structures of hit molecules highlighted in A).

715 **C)** HeLa cells expressing GFP-Parkin and mito-DsRed. Cells were pre-treated with small
716 molecules (1 μ M) for 2 hours followed by 24-hour treatment with CCCP (10 μ M) to induce
717 prolonged mitophagy, resulting in loss of mito-DsRed signal from many cells (mitochondrial
718 clearance). Arrows denote cells which retained mitochondrial signal. The percentage of
719 remaining cells with no/low mito-DsRed signal was calculated as the screening readout.

720 **D)** Immunoblotting using antibodies for outer mitochondrial membrane protein VDAC1 was
721 performed on lysates from cells pre-treated with small molecule (1 μ M) prior to CCCP (10 μ M)
722 time course.

723 **E)** Quantification of VDAC1 levels normalized to Ponceau staining to assess protein loading.
724 Data information: Normalized MAD z-score values were calculated based on two independent
725 screening replicates in A). 4 independent biological replicates were performed for E). Bars
726 represent mean values and error bars represent SEM. * indicates p-value <0.05. Statistical
727 analysis was performed using an unpaired two-sided student's t-test to compare DMSO and
728 probucol at each time point.

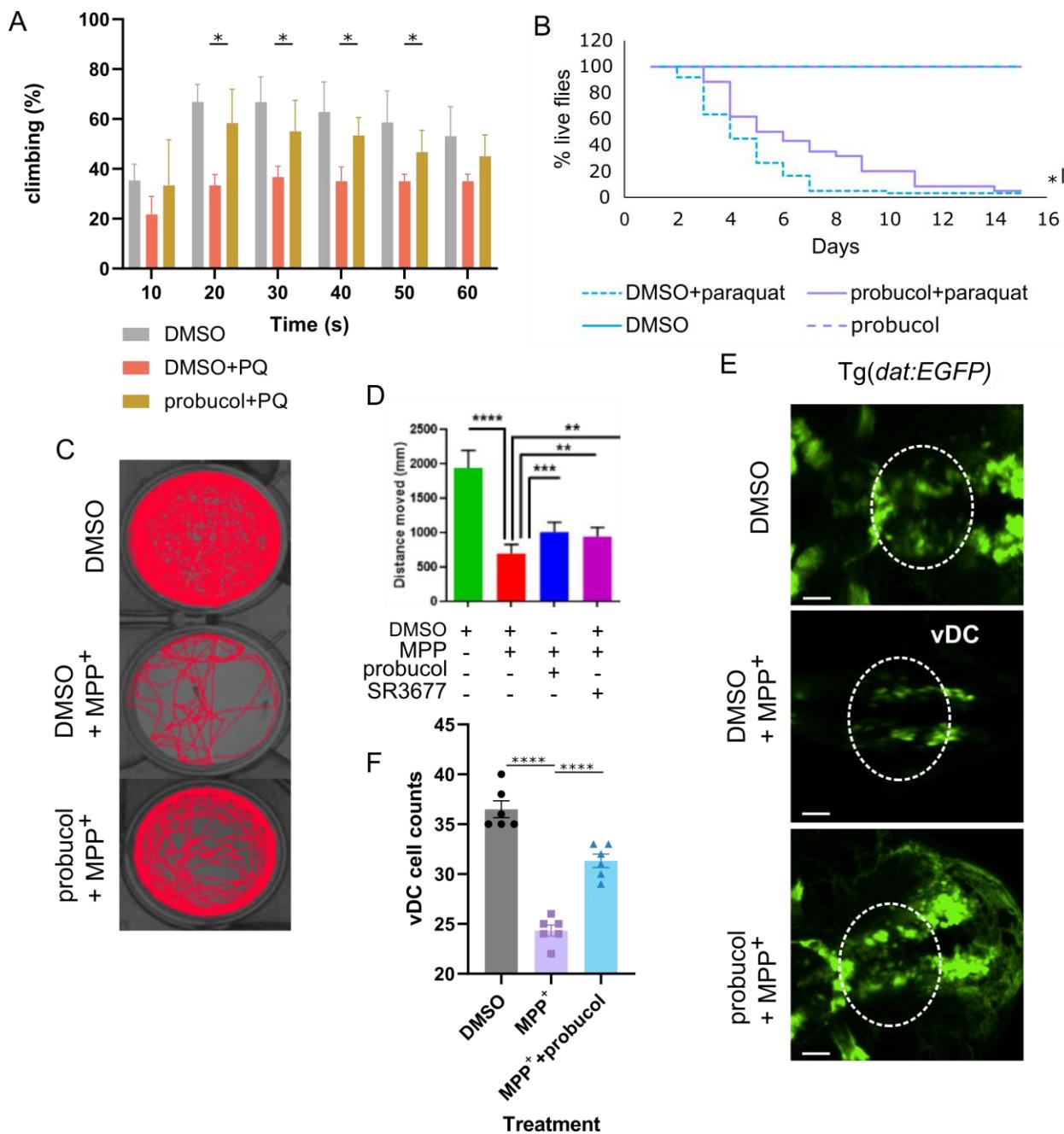
729

731 **Figure 3.** Probumol increased the targeting of mitochondria to lysosomes through
732 ABCA1.

733 **A)** The mitoQC reporter was expressed in HeLa cells along with Cerulean-Parkin. Mitophagy was
734 stimulated by treating cells with CCCP for 6 hours along with either DMSO or candidate molecules
735 from the screen. Mitochondria appear as red-only puncta when localized to acidic cellular
736 compartments.

737 **B)** Cells with >5 red-only puncta were defined as mitophagic and the mean percentage of
738 mitophagic cells in each treatment condition is displayed.

739 **C)** 7-day old flies expressing the mitoQC reporter in dopaminergic neurons were fed food
740 supplemented with probumol in combination with either paraquat or water.


741 **D)** Immunostaining using antibody against tyrosine hydroxylase (TH) segmented and defined
742 dopaminergic neurons. The mean percentage of red-only mitochondrial area in each
743 dopaminergic neuron is displayed.

744 **E)** Control flies and flies co-expressing the human ABCA1 transgene and the mitoQC reporter
745 were administered probumol in the presence and absence of paraquat. The mean percentage of
746 red-only mitochondrial area in TH-positive neurons is displayed. See Appendix Figure S4D for
747 corresponding images.

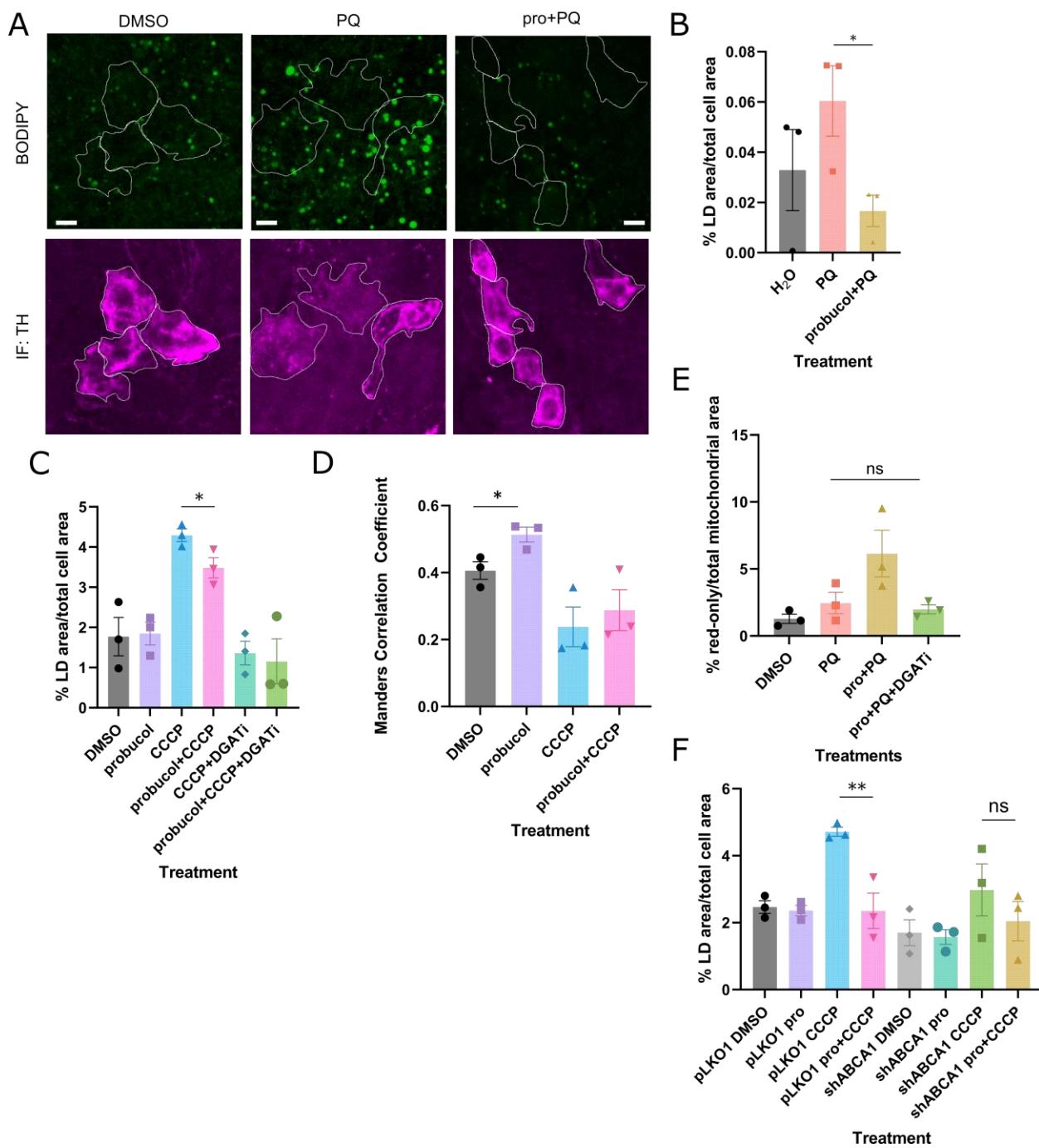
748 **F)** Mitophagy was assessed in HeLa cells stably expressing mitoQC and Cerulean-Parkin which
749 were transfected with either pLKO1 vector or with shABCA1. The mean percentage of red-only
750 mitochondrial area per cell is displayed. See Appendix Figure S4C for corresponding images.

751 Data information: Results are representative of at least 3 biological replicates, each indicated by
752 data points in B, D, E and F. Bars represent mean values and error bars represent SEM. *, **
753 and *** indicative p-values <0.05, 0.01 and 0.005, respectively. At least 40 cells were assessed
754 for B, D, E and F respectively. Dopaminergic neurons from at least 2 fly brains were analyzed
755 for each treatment with at least 10 ROI per brain. Statistical analysis was performed using
756 ANOVA and Dunnett's multiple comparison correction.

757

758

759 **Figure 4:** Probucol alleviated PD-related phenotypes which arose from mitochondrial
760 dysfunction *in vivo*.


761 **A)** Effect of probucol administration on paraquat-induced climbing defect. The percentage of
762 flies to climb across a height of 12.5 cm.

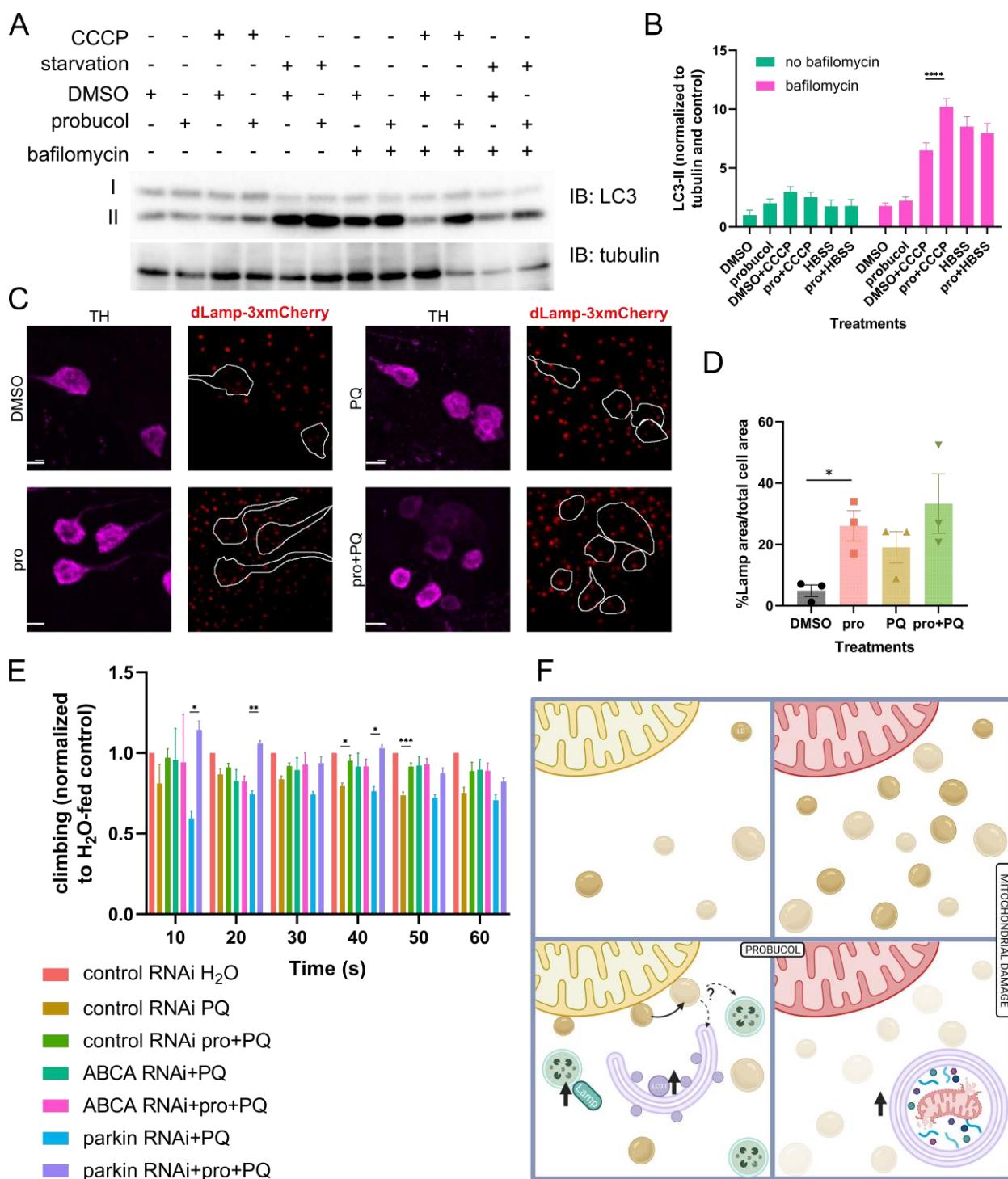
763 **B)** Effect of probucol administration on survival, in the presence and absence of paraquat co-
764 treatments.

765 **C)** Single particle tracking traces to visualize distance travelled by zebrafish in wells following
766 administration of DMSO, probucol and MPP⁺, as indicated.

767 **D)** Distance travelled by zebrafish in each treatment group in C, in addition to following
768 treatment with positive control compound SR3677.

769 **E)** *Tg(dat:EGFP)* zebrafish brains were imaged following treatment with DMSO, probucol and
770 MPP⁺. Dashed lines highlight the vDC region of interest.
771 **F)** The number of vDC neurons in each treatment group in E was quantified. Data information:
772 At least 3 independent biological replicates were performed for each experiment, with individual
773 replicates depicted by data points in F. Bars and error bars represent mean and SEM values,
774 respectively. Unpaired student's t-tests were performed to analyze data in A, log-rank tests were
775 used to analyze survival data and one-way ANOVA analysis was performed to analyze data in
776 D and F along with Dunnett's multiple comparison correction. *, **, *** and **** indicate p-values
777 <0.05, <0.01, <0.005 and <0.001, respectively.
778

779


780 **Figure 5:** ABCA-mediated effects of probucol on mitophagy depended on lipid droplets,
 781 which increased proximity to mitochondria upon probucol treatment

782 A) TH-positive dopaminergic neurons were segmented in BODIPY-stained brains from flies fed
 783 food supplemented with the indicated combinations of probucol and paraquat.

784 B) The percentage of LD area over the total TH-positive cell area is quantified from A.

785 C) The percentage of LD area over total cell area in HeLa cells treated with either DMSO or
 786 probucol alone or in the presence of CCCP with and without DGAT inhibitors.

787 **D)** The overlap between BODIPY-stained LDs and mitochondria was assessed using the
788 Manders Correlation Coefficient in HeLa cells treated as described in C).
789 **E)** Probucol treatment was co-administered along with paraquat in the presence and absence of
790 DGAT inhibitors. The percentage of red-only mitochondrial area was measured.
791 **F)** HeLa cells were transfected with pLKO1 and shABCA1 plasmids and treated with the
792 indicated combination of probucol and CCCP for 24 hours. BODIPY staining was used to
793 quantify the percentage of cell area occupied by LDs.
794 Data information: Results are representative of at least 3 independent biological replicates, as
795 indicated by the data points. Mean values are displayed with error bars which represent the
796 SEM. * and *** represent p-values <0.05 and 0.005, respectively. Statistical analysis was
797 performed using ANOVA analysis, with multiple comparison correction for E and F. Unpaired
798 student's t-test analysis was performed to compare DMSO and probucol groups in B, C and D.
799

801 **Figure 6:** LC3 lipidation and lysosome area increased following probucol treatment and
802 ABCA was necessary for probucol-mediated climbing improvements.

803 **A)** HeLa cells were either incubated in DMEM, DMEM with CCCP or HBSS media for 6 hours in
804 the presence or absence of baflomycin. Lysates were separated by SDS-PAGE and
805 immunoblotting was performed using antibodies which recognize LC3 and tubulin, as a loading
806 control.

807 **B)** Densitometry was performed to measure the levels of lipidated LC3-II, which were
808 normalized to the tubulin loading control.
809 **C)** Endogenously tagged *Lamp*-3xmCherry flies were fed food supplemented with DMSO or
810 probucol in the presence and absence of paraquat.
811 **D)** The Lamp area in each cell was measured as a percentage of total cell area, as defined by
812 segmentation of TH-positive dopaminergic neurons.
813 **E)** RNAi targeting either *parkin* or *ABCA* was expressed in the dopaminergic neurons with the
814 TH-Gal4 driver. The effect of probucol on paraquat-induced climbing impairment was assessed
815 in flies from the various genotypes. Climbing as a percentage of flies to cross 12.5 cm height is
816 displayed.
817 **F)** Hypothetical mechanism of mitophagy enhancement by probucol may involve upregulation of
818 Lamp positive late endosomes/lysosomes and LC3-II positive mature autophagosomes,
819 possibly arising from mobilization of lipid droplets adjacent to mitochondria. Lipid droplet
820 expansion occurs following mitochondrial damage, but in the presence of probucol the
821 abundance of lipid droplets is reduced, resulting in increased abundance of mito-lysosomes.
822 Data information: Bars represent mean values and error bars correspond to SEM from at least 3
823 independent biological replicates, which are indicated with data points in graphs B and D.
824 Statistical analysis to assess differences between DMSO and probucol within the same
825 treatment condition or genotype group was performed using one-way ANOVA tests with multiple
826 comparison correction in B and E, while unpaired t-tests were used to compare DMSO and
827 probucol in D. *, * and *** indicate p-value <0.05, <0.01 and <0.005, respectively.
828

829 Appendix Table of Contents

830 Appendix Figure S1: Mitochondrial clearance assay screening workflow

831 Appendix Figure S2: Effect of screening hits on ATP5A levels following mitochondrial

832 depolarization

833 Appendix Figure S3: PINK1-mediated phosphorylation of mitochondrial ubiquitin and

834 Parkin recruitment are not affected by probucol treatment

835 Appendix Figure S4: Effects of ABCA1 manipulations on mitophagy

836 Appendix Figure S5: Lipid droplet area expansion following CCCP treatment is reduced

837 by probucol treatment

838 Appendix Figure S6: Probuclol improves climbing defects and survival decline which

839 arise from mtDNA mutation *mt:Coll^{T300I}*

840 Appendix Figure S7: Effect of probucol on LC3 lipidation under basal conditions,

841 following mitochondrial depolarization and starvation.

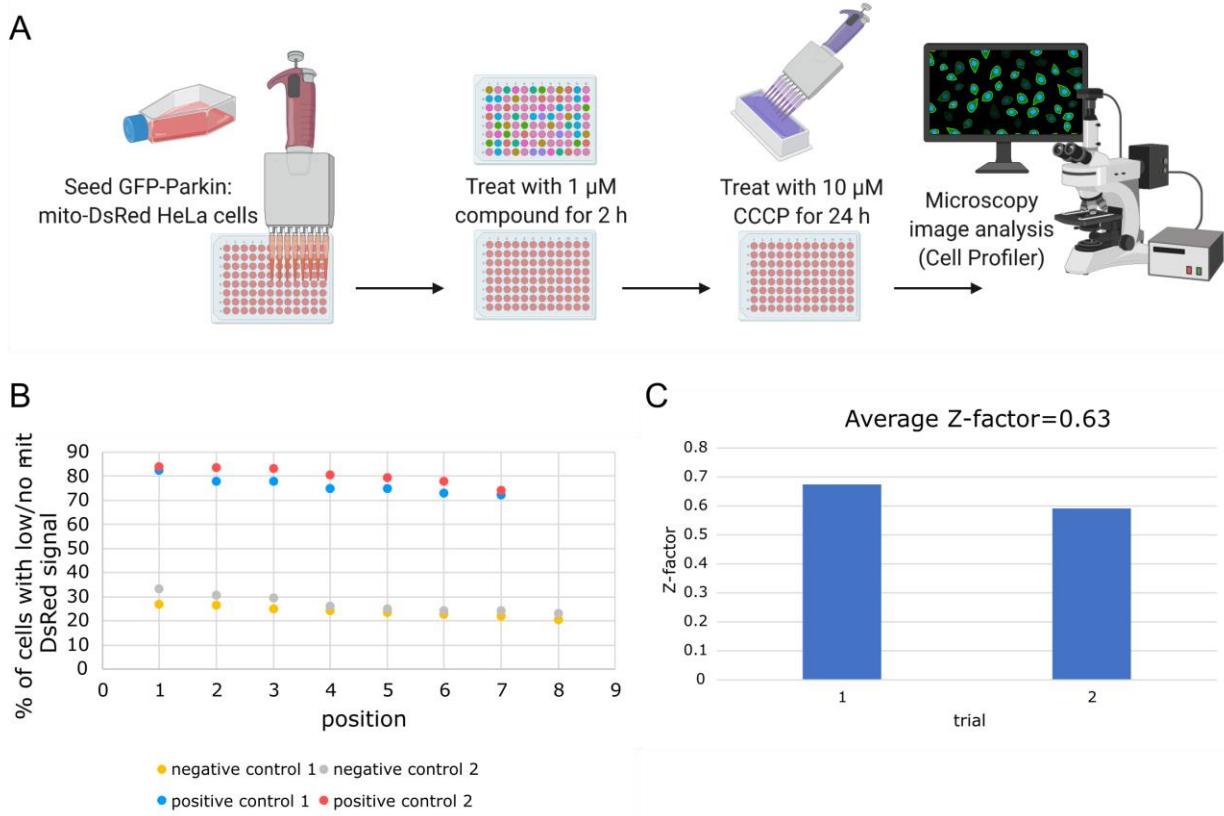
842 Data S1: *in silico* candidates from DrugBank ranked in order of similarity to mitophagy

843 enhancer training set

844 Data S2: *in silico* candidate molecules associated with terms 'mitochondrial damage'

845 and 'apoptosis'

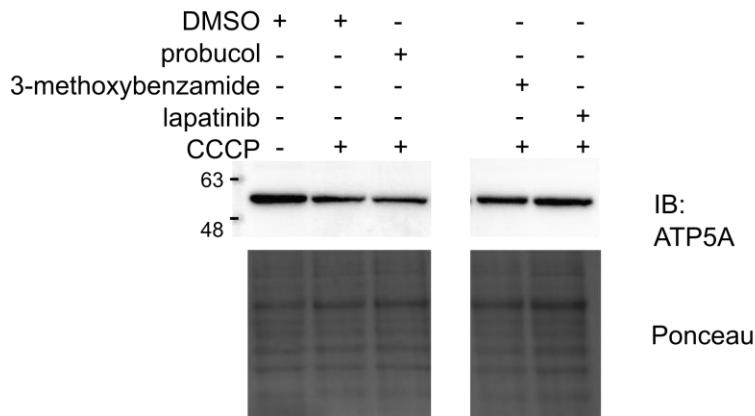
846 Data S3: Results of cell-based mitochondrial clearance screen

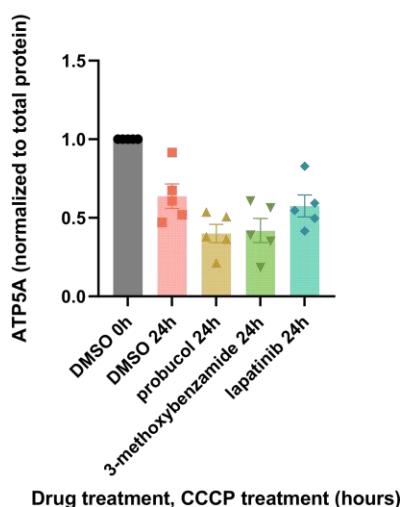

847 Data S3: source data

848

849

850

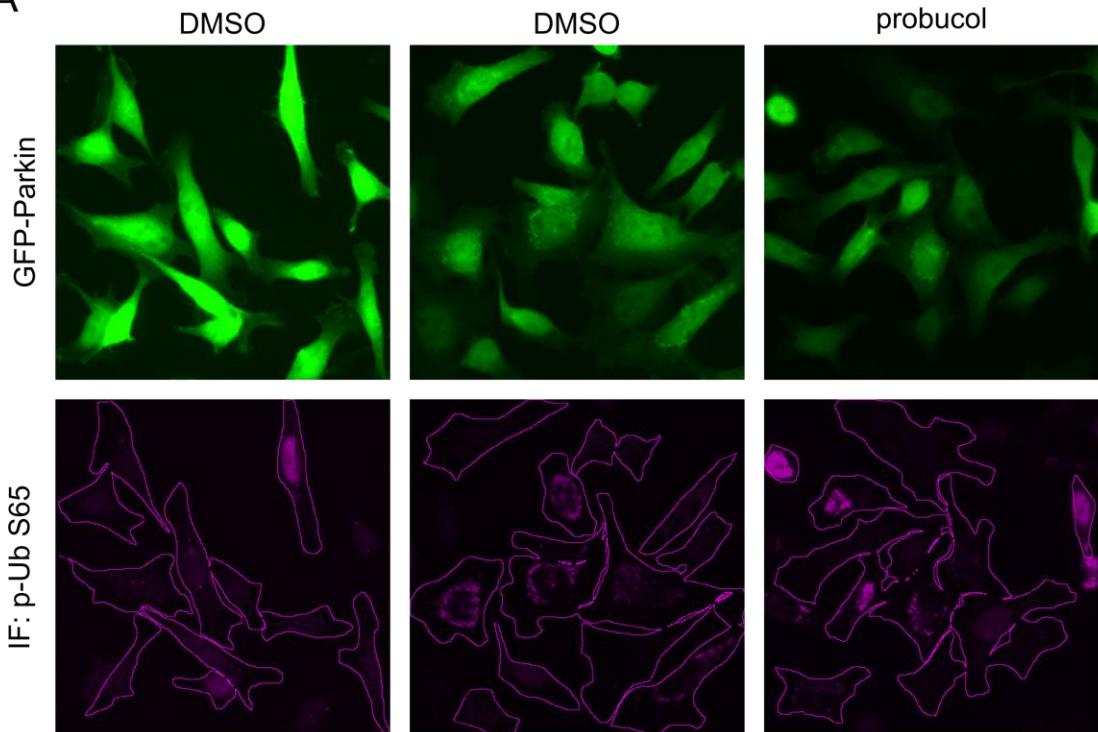

851


852

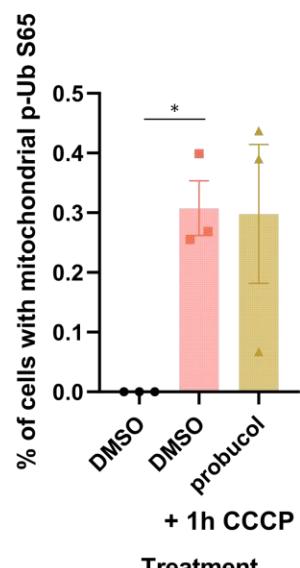
853 Appendix Figure S1: Mitochondrial clearance screening workflow. **(A)** On Day 1, GFP-Parkin
854 mito-DsRed HeLa cells are seeded in 96-well plates. On Day 2 cells are pre-treated with 1 μ M
855 concentration of the small molecule library for 2 hours prior to the addition of 10 μ M CCCP for
856 24 hours. Cells are then fixed and DAPI staining is performed to visualize nuclei. Cell Profiler
857 and Cell Profiler Analyst tools are used to differentiate cells which retain mito-DsRed signal and
858 ones with no/low mito-DsRed signal. **(B)** Mitochondrial clearance values for positive control
859 wells pre-treated with DMSO for 2 hours in place of small molecules and followed by 24-hour
860 treatment with CCCP to induce mitophagy and negative control wells containing cells treated
861 with DMSO alone. **(C)** Z-factor values calculated from the positive and negative control replicate
862 wells in each of the independent biological screening replicates.

A

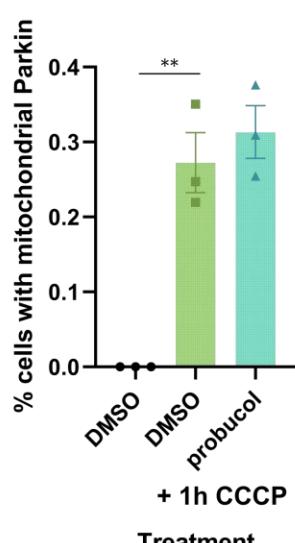
B

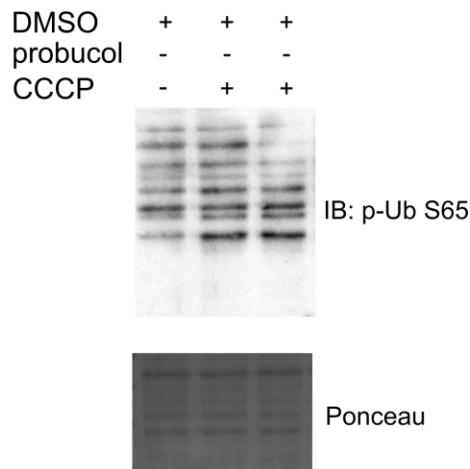


863

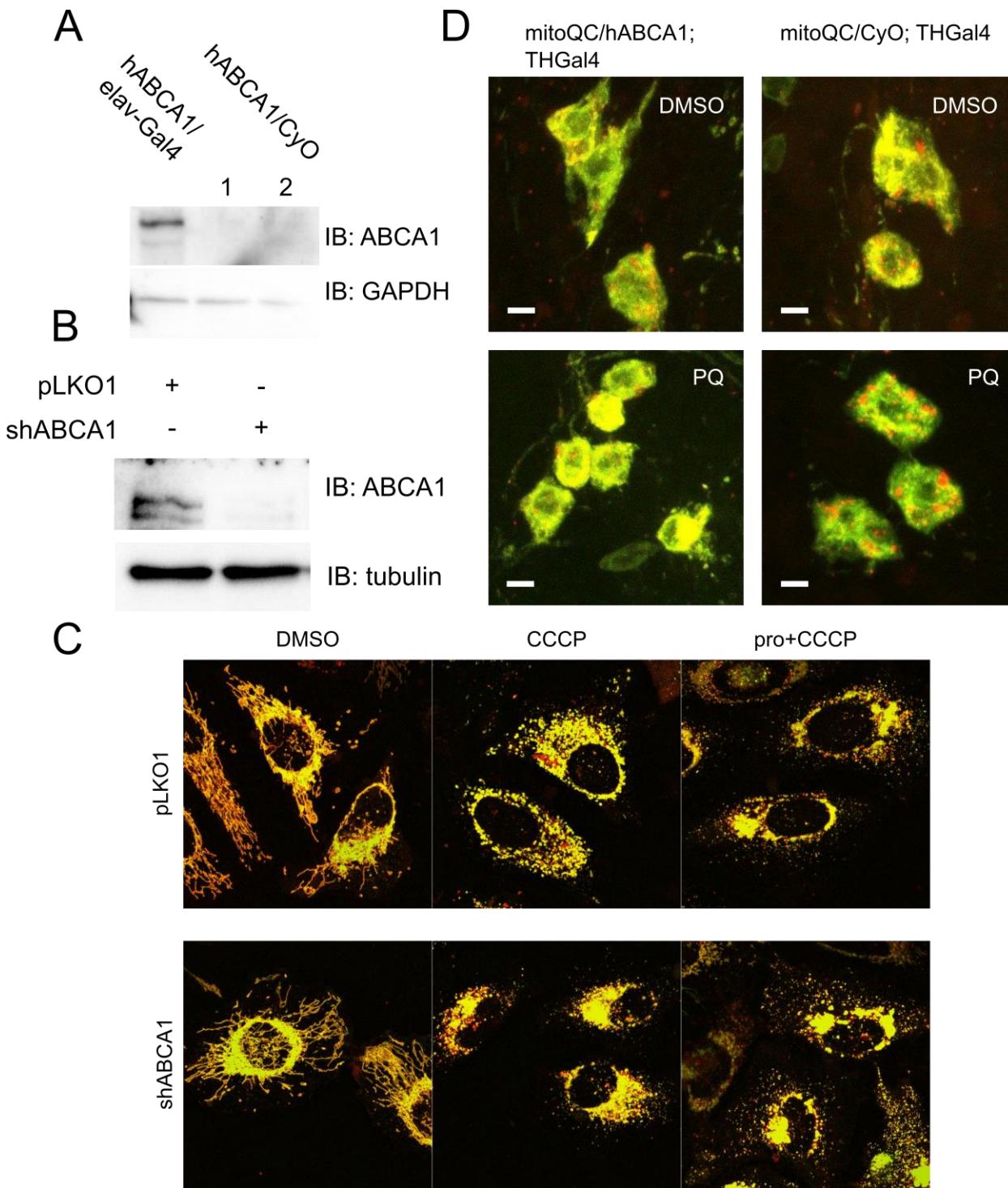

864 Appendix Figure S2: Immunoblotting to assess ATP5A levels following prolonged mitochondrial
865 damage. (A) Immunoblotting whole cell lysates using antibodies for inner mitochondrial
866 membrane protein ATP5A. HeLa cells stably expressing GFP-Parkin were treated with the
867 indicated drugs at 1 μ M concentration in combination with 10 μ M CCCP. Irrelevant lane in the
868 center of the blot was removed for clarity, but both right and left side of blot and Ponceau
869 correspond to the same image from the same membrane. Ponceau staining was used to
870 visualize protein loading. (B) Densitometry analysis was performed to assess ATP5A levels
871 normalized to Ponceau loading.

872


A

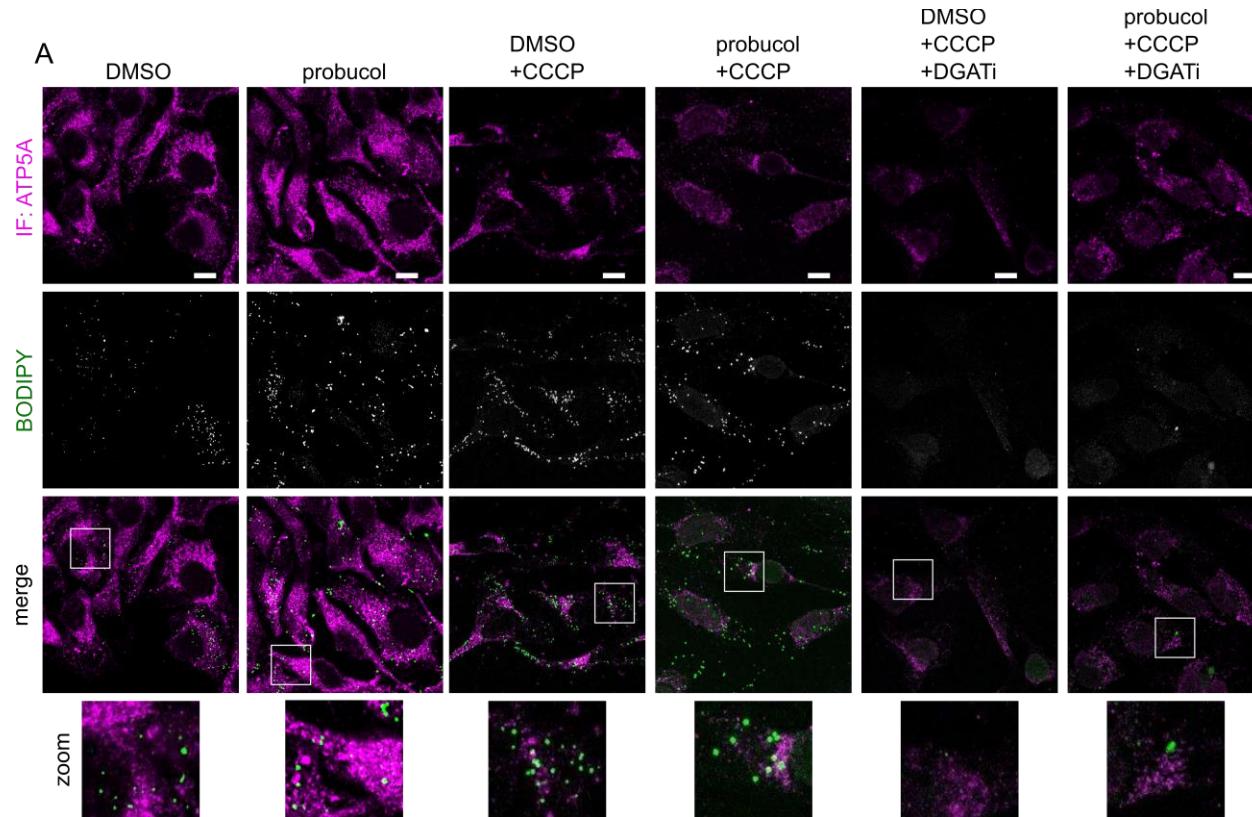

B

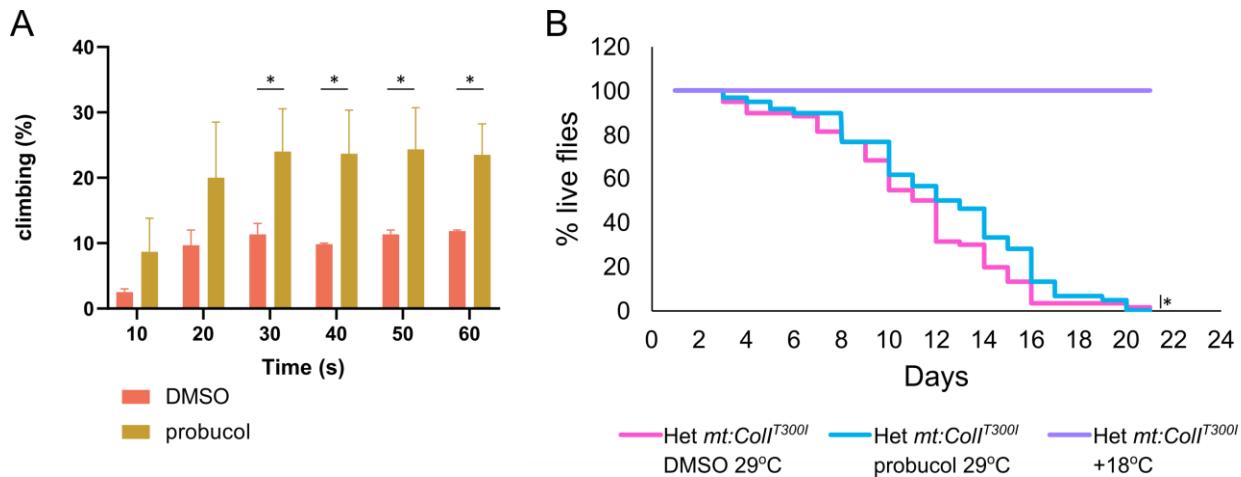
C


D

873

874 Appendix Figure S3: PINK1-mediated phosphorylation of mitochondrial ubiquitin and Parkin
875 recruitment are not affected by probucol treatment. (A) HeLa cells expressing GFP-Parkin were
876 pre-treated with probucol or DMSO for 2 hours prior to 1 hour treatment with CCCP.
877 Immunostaining with antibody specific for phospho-Ubiquitin S65 (p-Ub S65) was performed on
878 cells. (B) The percentage of cells which are positive for mitochondrial p-Ub S65 signal and in
879 which (C) Parkin distribution is mitochondrial was calculated for each treatment. (D) Whole cell
880 lysates from treatments as described in A) were probed with antibody against p-Ub S65.
881 Ponceau staining was used to assess protein loading. Three independent biological replicates

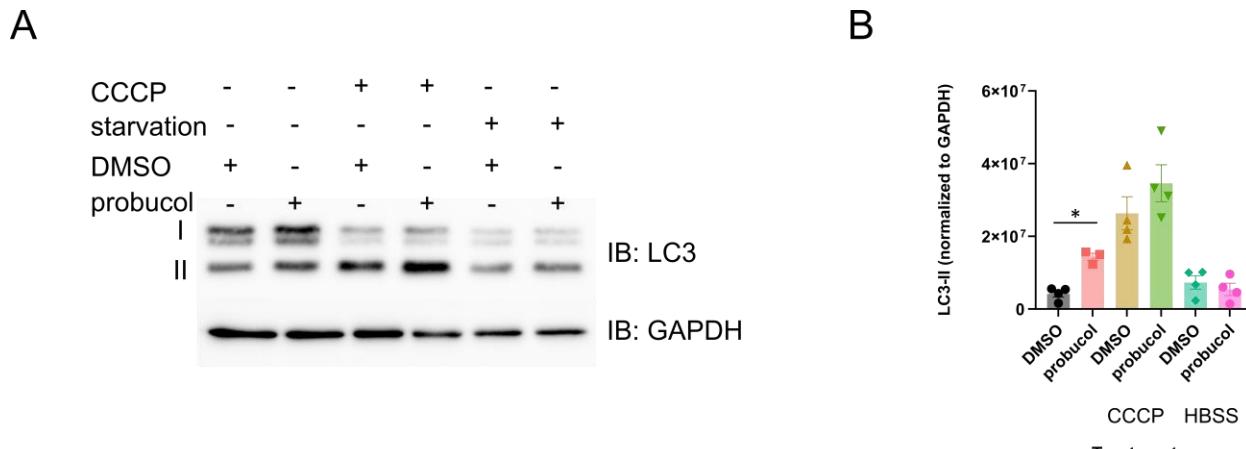

882 were performed for all experiments and are represented by data points and bars depict means.
883 Error bars display SEM. ANOVA statistical analysis with Dunnett's multiple comparison
884 correction was performed, * and ** indicate p-value<0.05 and 0.01, respectively.



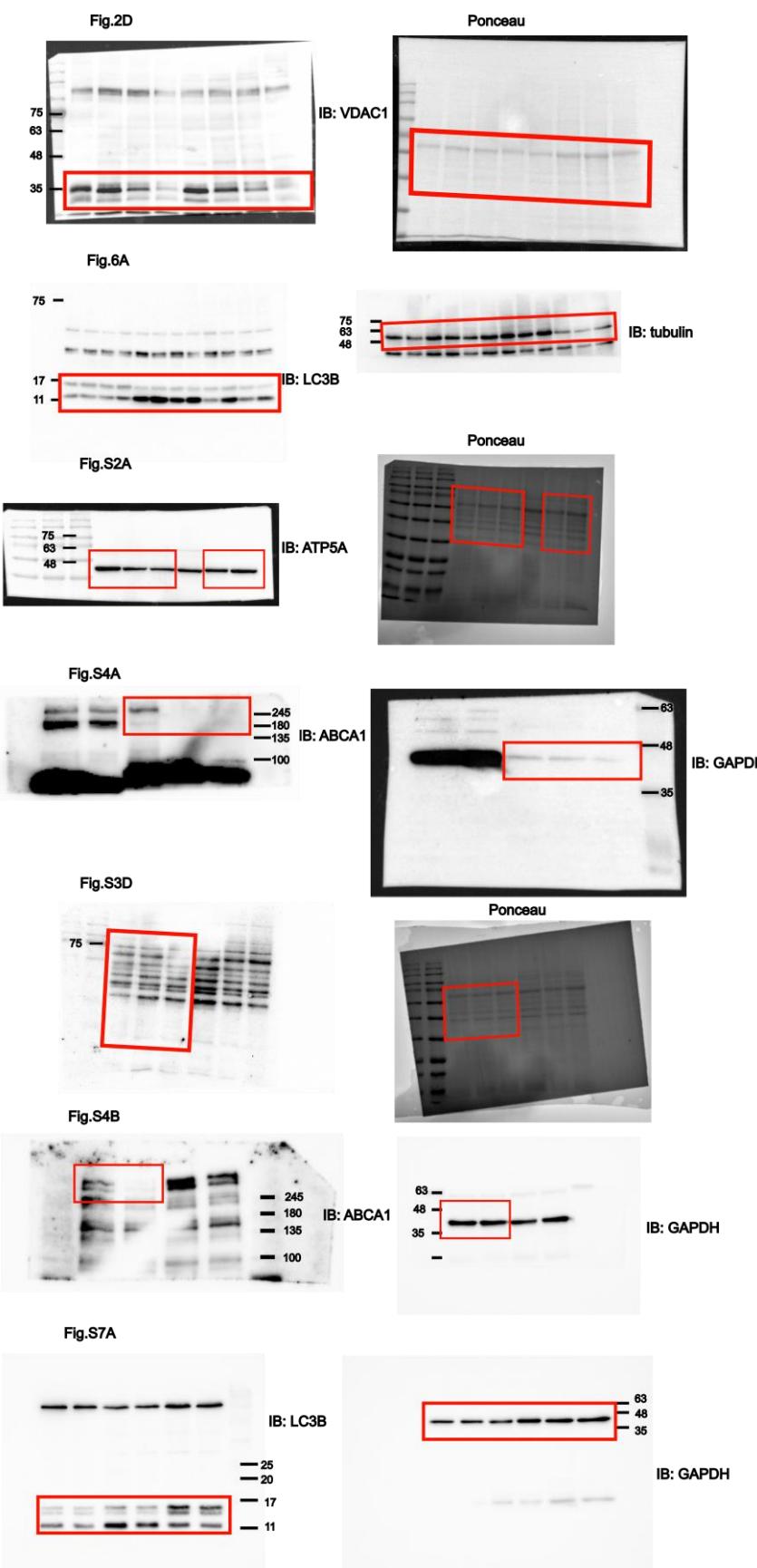
885

886 Appendix Figure S4: Effects of ABCA1 manipulations on mitophagy. (A) Immunoblotting was
887 performed to assess ABCA1 levels in lysates derived from the brains of flies in which human
888 ABCA1 transgene expression is driven by pan-neuronal elav-Gal4. (B) Immunoblotting was
889 performed using antibodies against ABCA1 and tubulin as a loading control on HeLa cells
890 lysates from cells transfected with either pLKO1 control or shABCA1 vectors. The blots pictured
891 in A and B) are representative of 3 independent biological replicates. (C) HeLa cells expressing

892 the mitoQC reporter and Cerulean-Parkin were transfected with pLKO1 or shABCA1 and treated
893 with CCCP for 6 hours. **(D)** Mitophagy was assessed in flies with expression of the mitoQC
894 reporter in the presence and absence of the human ABCA1 transgene induced by the TH-Gal4
895 driver. Food containing the indicated combinations of probucol and paraquat was administered.



902


903 Appendix Figure S6: Probucol improves climbing defects and survival decline which arise from
904 mtDNA mutation *mt:Coll^{T300I}*. Heteroplasmic flies with *mt:Coll^{T300I}* in approximately 90% of their
905 mtDNA were fed food supplemented with either DMSO or probucol. (A) The percentage of flies
906 climbing beyond a height of 12.5 cm is displayed, in addition to (B) the survival of the flies in
907 both groups. As a control, heteroplasmic *mt:Coll^{T300I}* were maintained at permissive temperature
908 of 18°C. Three independent biological replicates were performed for both A) and B) and at least
909 20 flies were included in each replicate. Bars represent mean values in A and error bars
910 represent SEM. For A), unpaired student's t-tests were performed to evaluate differences
911 between DMSO and probucol. For B) log-rank test analysis was performed to compare the
912 survival of the two treatment groups housed at 29°C. * indicate p-value<0.05.

913

914

915 Appendix Figure S7: Effect of probucol on LC3 lipidation under basal conditions, following
916 mitochondrial depolarization and starvation. A) HEK293 cells were either incubated in DMEM,
917 DMEM with CCCP or HBSS media for 6 hours. Lysates were separated by SDS-PAGE and
918 immunoblotting was performed using antibodies which recognize LC3 and GAPDH, as a loading
919 control. B) Densitometry was performed to measure the levels of lipidated LC3-II, which were
920 normalized to the GAPDH loading control. Unpaired t-tests were used to evaluate differences
921 between DMSO and probucol. * indicate p-value<0.05.

