
SWAMPy: Simulating SARS-CoV-2
Wastewater Amplicon Metagenomes with

Python
William Boulton 1,2,†, Fatma Rabia Fidan 1,3,†,‡, Nicola De Maio 1, Nick Goldman 1,∗

1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus,
Hinxton, Cambs. CB10 1SD, U.K.

2 Department of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K.
3 Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey

†The authors wish it to be known that these authors contributed equally.
∗To whom correspondence should be addressed.

‡Current address: Cancer Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, U.K.

Abstract
Motivation: Tracking SARS-CoV-2 variants through genomic sequencing
has been an important part of the global response to the pandemic. As well
as whole-genome sequencing of clinical samples, this surveillance effort
has been aided by amplicon sequencing of wastewater samples, which
proved effective in real case studies. Because of its relevance to public
healthcare decisions, testing and benchmarking wastewater sequencing
analysis methods is also crucial, which necessitates a simulator. Although
metagenomic simulators exist, none are fit for the purpose of simulating the
metagenomes produced through amplicon sequencing of wastewater.

Results: Our new simulation tool, SWAMPy (Simulating SARS-
CoV-2 Wastewater Amplicon Metagenomes with Python), is intended to
provide realistic simulated SARS-CoV-2 wastewater sequencing datasets
with which other programs that rely on this type of data can be evaluated
and improved.

Availability: The code for this project is available at https:
//github.com/goldman-gp-ebi/SWAMPy. It can be installed on
any Unix-based operating system and is available under the GPL-v3 license.

Correspondence: goldman@ebi.ac.uk

Introduction
Wastewater sequencing has proven useful in the genomic
surveillance of SARS-CoV-2 and can provide a less-biased
picture of the variants circulating in a population than
clinical surveillance (1). Amplicon sequencing is the
preferred method for this purpose since it is efficient in
terms of cost, labour and time, and is well-suited for heavily
contaminated samples — as may be found with biological
samples collected for SARS-CoV-2 sequencing — thanks
to its targeted nature (2). Such sequencing has typically
been done via multiplex PCR using a pre-defined primer
set with paired-end reads generated by an Illumina device (1).

A number of methods and software tools for wastewa-
ter SARS-CoV-2 sequencing data analysis are available such
as SAM Refiner (3), COJAC (4), LCS (5) and Freyja (6).
Evaluating the effectiveness of new methods on in vivo or
in vitro samples is often difficult or impossible, for example
because of the lack of availability of a wide range of real or
synthetic samples and the costs of repeated experiments (7).

However, simulated datasets can provide an efficient way of
benchmarking new methods’ performances (8).
There is a specific set of features characteristic to data
coming from wastewater amplicon sequencing. For ex-
ample, it has been shown that there is a high variation in
amplification across different amplicons of a given primer
set, resulting in a variation in read depth across the genome
(1, 2). Moreover, wastewater data is expected to represent
a mixture of different SARS-CoV-2 variants since the
biological matter in the sample comes from multiple people,
and will carry RNA degradation signatures resulting from the
environmental exposure of the viral RNAs in sewage as well
as PCR, sequencing library layout-specific and sequencing
device-specific errors (9–11).

Existing standard metagenomic simulators do not
attempt to capture all the characteristics seen in
the amplicon sequencing protocols used for SARS-
CoV-2 such as the ARTIC community protocols
(12; https://artic.network/ncov-2019;
https://artic.network/resources/ncov/
ncov-amplicon-v3.pdf) widely used to prepare
samples for Illumina sequencing platforms. For example, In-
SilicoSeq (13) is intended to produce shotgun metagenomic
sequences; and while Grinder (7) can simulate amplicon
sequencing, it cannot be tuned to produce a bespoke ampli-
con distribution and does not produce realistic sequencing
quality scores. The simulation tool ART (14) can also
generate reads for amplicons, but only in equal proportions.
Studies (5, 15) have demonstrated the need for a dedicated
wastewater SARS-CoV-2 sequencing simulator. Each study
performed its own simulations for its specific use case, omit-
ting important characteristics of real life data such as PCR
errors or only partially accounting for characteristics like
variable amplicon abundance by replicating one abundance
distribution seen in in vitro experiments.

Our simulator, SWAMPy (Simulating SARS-CoV-2
Wastewater Amplicon Metagenomes with Python), is
intended to produce a realistic set of reads that might be
generated through multiplex PCR of a wastewater sample,
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and sequenced by an Illumina sequencer. We model the
following scenario:

1. Different viral genomes coming from a human pop-
ulation contaminate wastewater systems, creating a
mixture of virus variants which is then captured in a
wastewater sample. At this stage, viral RNAs are ex-
posed to RNA degradation and there is a variation in
variant abundance in the mixture.

2. After sample collection, PCR amplification of whole
viral genomes in segments using a pre-defined primer
set results in an amplicon population. At this stage,
amplicons gain PCR errors and there is further varia-
tion in amplicon abundance due to differential amplifi-
cation success of the primers of a given primer-set.

3. These amplicons are then sequenced on an Illumina de-
vice, creating paired-end reads of a fixed length. At
this stage, sequencing errors appear.

Methods
The overall workflow of SWAMPy can be seen in Fig. 1. The
four basic steps of our software pipeline are detailed as fol-
lows:

1. Create an initial amplicon population

2. Simulate the number of DNA fragments (copies) per
amplicon

3. Simulate high-frequency errors by mutating amplicons
in the amplicon population

4. Simulate sequencing reads using ART

A. Create an initial amplicon population. The software
assumes that the user has supplied a set of SARS-CoV-2
genomes, which we refer to as source genomes, and has se-
lected a primer set among the supported primer sets in the
program. The default primer set is ARTIC version 1. On
the basis of this selection, amplicons are extracted from each
genome as follows. First, we use Bowtie 2 (16) to align
the primers (forward and reverse complement) to each virus
genome to detect primer binding positions on the source
genomes. Next, we slice the source genomes from the primer
binding positions to obtain individual amplicons of each
source genome, including the primer sequences. During the
alignment step, some primers may not align well with the
viral genome, and in those cases, the corresponding ampli-
con is not produced. While this is a strict penalty for primer
misalignment, it approximates the observation that some am-
plicons can be dropped due to mutations in the target regions
(17).

B. Simulate numbers of copies per amplicon. To
simulate numbers of copies per amplicon and genome,
we offer two versions of a combined Multinomial and
Dirichlet model. For either of these models, the user must

supply three parameters: total target number of reads N ,
a vector of genome abundances pg indexed over genomes
g, and a Dirichlet parameter c. The choice of c roughly
equates to a measure of sample quality: a higher value of
c (e.g. 200) corresponds to high quality samples (roughly
uniform abundances of amplicons between simulation runs)
and a lower value (e.g. 10) to low quality samples (highly
variable amplicon abundances between simulations, with
higher rates of amplicon dropout). For the supported primer
sets SWAMPy provides an experimentally derived prior on
the amplicon proportions πa indexed over amplicons a.

Model 1 (equal expected amplicon proportions across
genomes):

1. Sample genome read counts Ng from
Multinomial(N,pg)

2. Sample amplicon proportions pa from Dirichlet(c ×
πa) to be shared across all genomes

3. For each genome, sample numbers of reads per ampli-
con per genome as xa,g ∼ Multinomial(Ng,pa)

Model 2 (different amplicon proportions across genomes):

1. Sample genome read counts Ng from
Multinomial(N,pg)

2. For each genome, independently sample amplicon pro-
portions pa,g from Dirichlet(c×πa)

3. For each genome, sample numbers of reads per ampli-
con per genome as xa,g ∼ Multinomial(Ng,pa,g)

One subtlety in this process is that the numbers of reads do
not account for amplicons dropped in the alignment step,
which leads to some missing reads. For example, if the model
assigns 100 reads to amplicon 1 in genome A, yet a mutation
at the primer site of this amplicon causes it to drop out, then
the total number of reads produced would be 100 fewer than
expected. Hence the actual total number of reads may be less
than the target, N .

C. Add high-frequency errors. While we model sequenc-
ing error with standard bioinformatics tools, we developed a
new model for the effects of RNA degradation, PCR muta-
tions, and other library preparation artefacts, which we col-
lectively refer to as high-frequency errors. We define high-
frequency errors as non-naturally occurring insertions, dele-
tions and substitutions that non-independently affect multiple
reads. We further classify high-frequency errors as unique
or recurrent with respect to their appearance across differ-
ent source genomes in the mixture. Recurrent errors are the
ones that are present in all source genomes in the simulated
mixture, consistent with our observation of individual errors
affecting multiple real wastewater sequencing experiments.
These might originate for example from genomic positions
particularly susceptible to degradation, or context-dependent
PCR errors (18, 19). In contrast, unique high frequency er-
rors are present in only one of the genomes in the mixture,
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Fig. 1. Summary of the SWAMPy workflow. Clockwise from top left, SWAMPy takes as input the genomes of the variants to be represented in the simulated wastewater
sample, as well as information on the relative abundances of the variants in the simulated mixture. Source or input genomes are sliced according to a primer set to create a
reference amplicon population, and amplicon read depths are adjusted to fit the amplicon abundance distribution of the given primer set (see supplementary material) while
taking into account a user-defined parameter which reflects the quality of the samples. The amplicon population is then further diversified by the addition of PCR mutants
bearing different kinds of high-frequency errors, using parameters estimated from real data (see supplementary material). The resulting reference and mutant amplicons,
with corresponding read counts, are passed to the art_illumina program of ART (14) to model the Illumina sequencing step, where sequencing errors and base qualities are
simulated. Finally, reads are merged and shuffled to create mixed-variant forward and reverse FASTQ files.

corresponding for example to PCR errors that are not context-
dependent, and low-rate RNA degradation errors.

C.1. Sampling high-frequency errors. To simulate high-
frequency errors in SWAMPy, we first create a table like that
shown in Table 1 containing all the sampled high-frequency
errors to be introduced.

1. The number of each type of error to be introduced is
sampled from Poisson(L×R) where L = 29903 is the
length of the Wuhan reference genome Wuhan-Hu-1
(20) and R is the error rate of the given type of error
(insertion, deletion, or substitution, each either unique
or recurrent). This Poisson distribution approximates
the Binomial(L,R) distribution since error rates are
typically low. Error rates are user-definable for each
of the six types of error, with default values estimated
from real wastewater experiments (see supplementary
material).

2. A genomic position for each error is sampled ran-
domly without replacement from Wuhan-Hu-1. For
unique errors, one of the source genomes is randomly
assigned with sampling weights equal to the genome
abundances in the mixture. Moreover, if more than one
amplicon spans the previously determined error posi-
tion, a unique error is assigned only one of them. Re-
current errors are assigned to all source genomes and

overlapping amplicons.

3. An error length is assigned to each error. The error
length is always 1 for substitutions, while for deletions
it is sampled from a geometric distribution with param-
eter n; higher n will result in shorter deletions. For in-
sertions, the error length is sampled from Uniform(m)
where m is the maximum insertion length. Error length
parameters n and m can be defined by the user, with
their default values obtained from real data (see sup-
plementary material).

4. An alternative allele is created for each error. For sub-
stitutions, it is a random single nucleotide that is dif-
ferent from the reference genome, and for insertions, it
is a sequence of randomly sampled nucleotides of the
previously determined error length.

5. A variant allele frequency, f , is sampled for each er-
ror from a Beta(α,β) distribution. The Beta distribu-
tion parameters are similarly user-definable, separately
for unique and recurrent substitutions, insertions and
deletions. Assigned VAF values are the expected VAF
of the recurrent errors in the final mixture, while for
unique errors, the expected value of the VAF in the fi-
nal mixture will be the product of the assigned VAF f
and the corresponding amplicon abundance πa.
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type rec/u genome len pos ref alt VAF amp
subs rec g1,g2,g3 1 20,000 A T 0.1 70,71
subs u g2 1 530 T G 0.2 3
ins rec g1,g2,g3 7 245 A AGCG 0.9 2
del u g3 3 230 AGCT A 0.6 2

Table 1. Example simulated high-frequency errors. Abbreviations: rec: recurrent, u: unique, subs: substitution, del: deletion, ins: insertion, amp: amplicon number, len:
length, alt: alternative allele, pos: genomic position, gX: SARS-CoV-2 variant genome

C.2. Apply sampled errors to simulated amplicons. After we
compile the table that contains all simulated errors, we pro-
cess each source genome g and each amplicon a in the am-
plicon population that we previously created. For each a, g:

1. Errors that affect genome g and amplicon a are selected
from the error table.

2. Because simulated error positions are based on the
Wuhan-Hu-1 reference and a variant amplicon in a
wastewater sample may contain indels, the amplicon
sequences are aligned to Wuhan-Hu-1 using Bowtie 2
(16) and the positions of the errors within the amplicon
are determined.

3. For each error e, the number of reads in which e is
present is determined by sampling a read count ne

from Binomial(xa,g,fe), where xa,g is the total read
count of amplicon a for genome g as described in Sec-
tion B, and fe is the VAF of the error as determined in
Section C.1.

4. For each possible combination i of high frequency er-
rors affecting genome g and amplicon a, a read count
ni is randomly sampled respecting individual read
counts of the errors. We make no attempt to simulate
correlations among the errors on amplicons as simu-
lating error inheritance for each amplicon is compu-
tationally too expensive and we assume errors on an
amplicon are independent.

5. Finally, for each combination i of errors affecting a and
g, a new corresponding modified amplicon sequence is
created.

D. Simulate read sequencing using ART. To create
a set of simulated paired-end Illumina reads from each
amplicon, each with a given read count, we use the program
ART (14). We use ART’s paired-end amplicon mode, as
well as the noALN and maskN flags. These settings create
150bp paired-end reads, and faithfully transcribe any “N”
characters appearing within the amplicons. We use a set of
default error rates and quality score profiles tuned for the
Illumina MiSeq V3 sequencer, though the ART package has
options available for other platforms and read lengths. A full
list of the flags used is in the supplementary material.

Finally, we use a custom script based on ubiquitous
bash utilities to concatenate all of the FASTQ read files,
and shuffle their order to avoid potential biases in case any
downstream application software can be influenced by read
ordering.

Results
The source code of our python implementation of SWAMPy,
together with the program documentation and exemplar
files is available under the GPL-v3 license at https://
github.com/goldman-gp-ebi/SWAMPy.

E. SWAMPy Implementation. SWAMPy takes as input
a multi-FASTA file containing the SARS-CoV-2 variant
genomes that will be present in the simulated wastew-
ater sample, as well as a file that contains the relative
abundances of these variants in the mixture. For ease of
use, other input files (primer-set-specific sequence files,
and primer-set-specific amplicon distribution files) were
wrapped with a single --primer-set parameter which loads
the corresponding input files for the specified primer set.
As of December 2022, there are three supported primer
sets: ARTIC V1, ARTIC V4 (12) and Nimagen V2 (21).
There are many command line parameters that allows fine
control of the program such as the parameter c that reflects
the quality of the wastewater sample as described in Section
B, target number of simulated reads, and error rates, VAF
and lengths of high frequency errors as described in Section
C.1. The full list of command line interface arguments
and their explanations are available on the GitHub wiki
page: https://github.com/goldman-gp-ebi/
SWAMPy/wiki/CLI-arguments.

An example SWAMPy run takes 300 seconds to com-
plete and reaches 700MB of max memory when run with
default parameters (three SARS-CoV-2 variants and default
error rates and 100.000 total read counts) on a single thread
of an Intel Xeon Gold 6336Y 2.40GHz CPU.

SWAMPy produces five output files by default:

• FASTQ files of the simulated forward and reverse
reads, matching Illumina standards

• A table that shows the abundance of each wild-type
amplicon after the randomness in amplicon copy num-
ber sampling (as described in Section B) was applied

• A VCF file that contains all the intended high-
frequency errors from the error table described in Sec-
tion C.1

• A log file

Alignment images of simulation outputs illustrate that the
major characteristics of wastewater data are present in the
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Fig. 2. IGV (22) images of SWAMPy simulated reads. Red and blue bars are forward and reverse reads respectively in “link supplementary alignments” mode of IGV. A) A
real SNP between different SARS-CoV-2 variants. B) Sequencing errors added by ART. This image is from a read end where the sequencing error density is higher. C) A
unique high-frequency error. This only appears in one read direction and, despite this exemplar being chosen to be in an amplicon overlap region, only one of the amplicons
carries the error. D) Recurrent high-frequency error appearing in both read directions, and in both amplicons covering the chosen region.

simulated data (Fig. 2) such as overlapping amplicons, dif-
ferent kinds of errors and read depth variation across the
genome.

F. Use Case. We used SWAMPy to simulate 73 time points
throughout the course of a hypothetical SARS-CoV-2 pan-
demic where the Alpha (B.1.1.7) variant starts out domi-
nant before Delta (AY.4) rises in frequency and then Omi-
cron (BA.1.1) emerges and takes over (Fig. 3; see the sup-
plementary material for the SWAMPy options used; for the
exact abundances at each time point, see supplementary ma-
terial). Then we used a downstream application program,
Freyja, which is designed to detect SARS-CoV-2 variants
and their relative abundances from sequencing data obtained
from wastewater samples (6). We observe that Freyja is quite
successful in demixing the simulated data overall in this rel-
atively complex scenario, though it sometimes inferred the
presence of variants that are not specified in the simulated
mixture potentially with high frequencies. This probably
stems from some high-frequency errors in the simulated data
as described in Section C.

Conclusions
We have shown that SWAMPy is a viable simulation tool
for SARS-CoV-2 wastewater metagenomes, building on
the simulator ART but much better suited to the modelling
challenges idiosyncratic to SARS-CoV-2 metagenomes such
as high-frequency errors and irregular amplicon abundance
profiles. Both of these models are based on real abundance
and error data, from a large number of in vitro whole-genome
amplicon sequencing experiments, detailed in the supple-
mentary material. Our simulator supports two versions of

the ARTIC protocol, which at present is the most prevalent
sequencing protocol for SARS-CoV-2 metagenomes, and
the Nimagen V2 protocol. We will strive to support future
iterations of these, as well as new superseding protocols as
they arise in the future. There are other areas where we hope
to make improvements to modelling and usability, such as
supporting a greater range of sequencing platforms, ensuring
that amplicon dropout rates match closely with experimental
findings and accounting for some additional parameters
in high-frequency error models, which requires a deeper
understanding of error mechanisms through controlled
experiments.

We hope that this simulation tool will prove valuable
by providing non-trivial test cases especially for strain-
resolving SARS-CoV-2 metagenomics algorithms, and
for creating control case data for researchers working on
SARS-CoV-2 wastewater studies. Wastewater surveillance
can provide a cheaper alternative to widespread sequencing
of clinical SARS-CoV-2 samples, and it is our hope that
through appropriate modelling and simulation of the pro-
cesses involved in amplicon sequencing of wastewater, these
data can be leveraged to their full potential in aiding public
health.
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Fig. 3. Progression of a simulated pandemic with 73 time points at which sequencing of wastewater samples was simulated with SWAMPy, and corresponding Freyja
estimations of SARS-CoV-2 variant abundances. Background colors represent the simulated values and lines represent the Freyja estimations. Lines generally follow the
boundaries between the shaded areas, suggesting broadly accurate variant proportion estimates from Freyja. The region above the black line shows the sum of non-simulated
variants (i.e. false positive variant detection) that Freyja erroneously inferred.
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Supplementary Note 1: Parameter Estimation and Simulation Experiment Parameters

A. Amplicon abundance estimation. To estimate Dirichlet parameters for amplicon abundances of the AR-
TIC v3 and Nimagen v2 primer schemes, we summed amplicon counts over a number of experiments, us-
ing results from both synthetic SARS-CoV-2 sequences and real wastewater data. In either case, viral RNA
was reverse transcribed before being amplified using each of these two primer schemes. The spreadsheets at
https://github.com/goldman-gp-ebi/SWAMPy/tree/main/supplementary_files provides a sum-
mary of amplicon counts through a number of experiments. We excluded amplicon counts in experiments where there was
an obvious systematic bias: in some experiments one of the two primer pools failed, and we discarded these results. Other
amplicons failed to amplify in the synthetic virus genomes; this was due to the synthetic genomes being produced in 5 kbp
chunks. We again discarded these amplicon counts. Finally we normalised our counts values so that they summed to 1.

For the Artic v4 primer scheme, we used an amplicon abundance profile based on a single experiment (Joshua Quick, personal
correspondence). The coverage file for this experiment is again provided at https://github.com/goldman-gp-ebi/
SWAMPy/tree/main/supplementary_files.

B. ART Parameters. To simulate sequencing errors we used the program art_illumina (part of the ART suite of simulation
tools (14)), with the following command-line parameters:
-amplicon
-paired
-noALN
-maskN 0
-seqSys SEQ_SYS
-len READ_LENGTH
-rcount NUMBER_OF_READS
-rndSeed SEED
-in INPUT_AMPLICON_FASTA
-out OUTPUT_FASTQ_FILENAME

The variables SEQ_SYS, READ_LENGTH, and NUMBER_OF_READS are set by the user. SEED, IN-
PUT_AMPLICON_FASTA, and OUTPUT_FASTQ_FILENAME are changed for each amplicon of each genome that is being
simulated.
To define the default high-frequency error rates in SWAMPy, we performed an error characterisation analysis on 121 real
wastewater sequencing datasets. Wastewater sequencing experiments were conducted by members of JBC-led Wastewater
Genomics collaboration. 12 of the 121 samples are mixtures of synthetically produced SARS-CoV-2 variant genomes, which
mimic wastewater samples. Their ENA accessions are: ERR10084556, ERR10084565, ERR10084558, ERR10084543,
ERR10084590, ERR10084581, ERR10084585, ERR10084577, ERR10084594, ERR10084592, ERR10084549,
ERR10084547, ERR10084599, ERR10084595, ERR10084586, ERR10084579, ERR10084589, ERR10084564,
ERR10084588, ERR10084562. 109 of them were sampled from wastewater in the UK and the data will be publicly
available soon.

For each sample of these datasets, we mapped raw reads to the Wuhan-Hu-1 (20) reference genome using Bowtie 2.4.4
(16). We then used bcftools mpileup 1.13 (23) to obtain VCF files. We did not perform a separate variant calling as we are
interested in errors as opposed to SNPs and needed every discrepancy between the reference genome and our sample reads;
henceforth will refer to such differences as “variants”. We filtered out positions with a read depth (DP) < 10 and with < 5
reads supporting the alternative allele (AD). The remaining variants are classified into different categories as summarised in
Fig. 4. First, if the variant allele frequency (VAF) of a variant is low, in particular lower than 0.02, we filtered out that variant
since such low frequency variants might be the result of standard sequencing errors (24) and are unlikely to affect downstream
analyses. The remaining variants included real polymorphisms between different SARS-CoV-2 variants, as well as possible
high-frequency errors, which is the group of errors of interest. To identify likely high-frequency errors, we focused on putative
nonviable mutations, since nonviable mutations cannot be real polymorphisms.

C. High-frequency errors parameter estimation. We define putative nonviable mutations as nonsense (stop codon) substi-
tutions or indels of length not a multiple of three found on ORF1ab and S open reading frames. We excluded other smaller
and less characterized genes from the analysis since these can present viable nonsense mutations (25, 26). To further eliminate
possible real polymorphisms, we also excluded a portion from the 3’ ends of the ORF1ab and S open reading frames since
nonsense mutations could be tolerable there. The exact positions included are 266-12000, 13465-20000 and 21563-25000. We
further divided the high-frequency errors as either recurrent or unique based on if they appeared in more than one wastewater
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Fig. 4. Variant classification criteria.

sample. We subdivided both recurrent and unique errors into insertions, deletions and substitutions subclasses, and estimated
default rates of these events by counting the observed variants in each class and normalizing by the number of genome positions
with sufficient coverage and correcting for the expected proportions of high-frequency errors that would not have been identi-
fied (indels with length multiple of three and non-stop codon substitutions). A more exhaustive description of the approach to
infer high-frequency error rates and lengths is given in the following subsections.

C.1. Indel error length distributions. Following the length distributions observed in our putative high-frequency indel errors
(see figure 5), we model high-frequency indel error lengths as

Fig. 5. Histograms of putative indel error lengths observed in real data. A) Deletions; B) Insertions.

• Insertions: uniform distribution with minimum length 1 and maximum 14 (the minimum and maximum lengths found in
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real data) U(1,14).

• Deletions: geometric distribution with parameter p, Geometric(p).

We could not use a standard distribution fitting technique to estimate the indel length geometric distribution parameter p because
we cannot observe putative high-frequency error deletions with length multiple of three. Instead, to avoid potential biases due
to the missing data, we estimate p using only the counts of putative high-frequency deletion errors of length one and two. Since
under Geometric(p) the ratio of the probability of lengths l = 2 and l = 1 is

P (l = 2)
P (l = 1) = (1−p)p

p
= 1−p (1)

We use the estimator

p̂ = 1− C2
C1

(2)

where C2 and C1 are the observed counts of putative high-frequency deletion errors of length 2 and 1 respectively.

C.2. High-frequency error rate estimation. We estimated six separate high-frequency error rates, one for each of the six classes
of high-frequency errors. For each high-frequency error class i, we call Ci its putative error count observed in the real data, and
we estimate its rate ri as

r̂i = fi
Ci

L
(3)

where fi is the missing data correction factor for class i, and L is the total number of genome positions, across all real
datasets, that we considered when looking for putative high-frequency errors. For substitutions, fi corrects for the fact that
only nonsense variants could be identified as putative high-frequency errors, while high-frequency errors causing other types
of substitutions were not counted as they could not be distinguished from real polymorphisms. Consequently, we defined the
correction factor fi for substitutions as M/Mn, where M is the number of all possible substitutions across the considered
portion of the reference SARS-CoV-2 genome (Wuhan-Hu-1, 20), so M = 3L where L is the length of the considered portion
of reference genome; and Mn is the number of possible nonsense mutations across the same portion of the reference genome.

For insertions, the correction factor fi is simply 3/2 because we assume a uniform high frequency insertion length dis-
tribution and because we did not count insertion with length multiple of three among putative high-frequency insertion errors.

For the deletion correction factor we took a similar approach, but accounting for the assumed geometric distribution of
lengths. In a geometric distribution with parameter p, the total probability of all multiples of three is given by

∞∑
i=1

p(1−p)3i−1 = p(1−p)2
∞∑

i=1
(1−p)3i−3

= p(1−p)2
∞∑

i=1
((1−p)3)

i−1
= p(1−p)2

1− (1−p)3

(4)

where for the last step we used the identity
∑

x≥0 xi = 1
1−x . Therefore, the total probability of the lengths that we do observe

is p(1−p)2

1−(1−p)3 , and therefore we use as correction factor fi of high-frequency deletions its reverse:

1

1− p(1−p)2

1−(1−p)3

= p2 −3p+3
2−p

(5)

C.3. High-frequency error frequency distributions. To model the default variant allele frequencies (VAF) of high-frequency
errors of each type, we use the Beta distribution (see e.g. 27) whose default parameters were estimated from the frequencies of
putative high-frequency errors using the method of moments.

D. Use-case. The exact concentrations of the SARS-CoV-2 variants at the 73 time points in our simulations are shown in table
2.
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Table 2. Simulated genome proportions

time f(Alpha) f(Delta) f(Omicron) time f(Alpha) f(Delta) f(Omicron)
0 1000 0 0 37 617 357 26
1 990 10 0 38 574 391 35
2 989 11 0 39 526 426 47
3 988 12 0 40 474 464 63
4 986 14 0 41 420 497 83
5 985 15 0 42 370 521 109
6 983 17 0 43 324 535 141
7 982 18 0 44 280 538 182
8 980 20 0 45 239 530 231
9 978 22 0 46 201 511 288
10 975 25 0 47 166 481 353
11 973 27 0 48 134 441 425
12 970 30 0 49 106 395 499
13 967 33 0 50 82 344 574
14 963 37 0 51 62 293 645
15 959 41 0 52 46 244 710
16 955 45 0 53 34 198 768
17 950 50 0 54 24 159 817
18 945 55 0 55 17 125 858
19 939 61 0 56 12 97 891
20 933 67 0 57 8 75 917
21 926 74 0 58 6 57 937
22 918 82 0 59 4 44 952
23 909 90 0 60 3 33 964
24 900 100 1 61 2 25 973
25 889 110 1 62 1 19 980
26 877 122 1 63 1 14 985
27 864 135 1 64 1 10 989
28 849 149 2 65 0 8 992
29 833 164 2 66 0 6 994
30 815 181 3 67 0 4 995
31 795 200 4 68 0 3 997
32 773 221 6 69 0 2 998
33 748 244 8 70 0 2 998
34 721 269 11 71 0 1 999
35 690 296 15 72 0 0 1000
36 655 325 20

The non-default SWAMPy options used to simulate these 73 time points are:
-ins 0.0002
-del 0.00115
-subs 0.005
-rins 0.0002
-rdel 0.00115
-subs 0.005
-amplicon_distribution dirichlet_2
-amplicon_pseudocounts 200
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