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Summary

Understanding central auditory processing critically depends on defining underlying auditory
cortical networks and their relationship to the rest of the brain. We addressed these questions
using resting state functional connectivity derived from human intracranial
electroencephalography. Mapping recording sites into a low-dimensional space where
proximity represents functional similarity revealed a hierarchical organization. At fine scale, an
auditory cortical cluster excluded several higher order auditory areas and segregated maximally
from prefrontal cortex. On mesoscale, a cluster of limbic structures in proximity to the auditory
cortex suggested a limbic stream that parallels the classically described ventral and dorsal
auditory processing streams. Global hubs were identified within anterior temporal and
cingulate cortex, consistent with their respective roles in semantic and cognitive processing. On
a macro scale, observed hemispheric asymmetries were not specific for speech and language
networks. This approach can be applied to multivariate brain data with respect to development,
behavior, and disorders.
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Introduction

The meso- and macroscopic organization of human neocortex has been investigated extensively
using resting state (RS) functional connectivity, primarily using functional magnetic resonance
imaging (fMRI) (Biswal et al., 2010; Yeo et al., 2011). RS data are advantageous as they avoid
the substantial confound of stimulus-driven correlations yet identify networks that overlap with
those obtained using event-related data (Smith et al., 2009), and thus are relevant to cognitive
and perceptual processing. RS fMRI has contributed greatly to our understanding of the
organization of the human auditory cortical hierarchy (Jackson et al., 2018; Scott, 2012; Woods
and Alain, 2009), but only a few complementary studies have been conducted using
electrophysiology in humans (e.g. Ko et al., 2013; Wang et al., 2021; Zhang et al., 2021).
Compared to fMRI, intracranial electroencephalography (iEEG) offers superior spatio-temporal
resolution and is free of methodological problems that affect MRl in key regions such as the
anterior temporal lobe (Lambon Ralph et al., 2017; Visser et al., 2010). However, variable
electrode coverage in human intracranial patients and small sample sizes are challenges to
generalizing results.

We overcome these limitations using a large cohort of subjects that together have coverage
over most of the cerebral cortex and leverage these data to address outstanding questions
about auditory networks. We address the organization of human auditory cortex at three
spatial scales: fine-scale organization of regions adjacent to canonical auditory cortex,
clustering of cortical regions into functional processing streams, and hemispheric (a)symmetry
associated with language dominance. We present a unified analytical framework applied to
resting state human iEEG data that embeds functional connectivity data into a Euclidean space
in which proximity represents functional similarity. We extend the analytical approach as
previously applied to RS fMRI (Margulies et al., 2016) and demonstrate methodology
appropriate for hypothesis testing at each of these spatial scales.

At the fine scale, though there is broad agreement that posteromedial Heschl’s gyrus (HGPM)
represents core auditory cortex, functional relationships among HGPM and neighboring higher-
order areas are still a matter of debate. For example, the anterior portion of the superior
temporal gyrus (STGA) and planum polare (PP) are adjacent to auditory cortex on Heschl’s
gyrus, yet diverge from it functionally (Angulo-Perkins et al., 2014; Friederici et al., 2000). The
posterior insula (InsP), on the other hand, has response properties similar to HGPM, yet is not
considered a canonical auditory area (Zhang et al., 2019). The superior temporal sulcus (STS) is
a critical node in speech and language networks (Abrams et al., 2020; Beauchamp, 2015; Chang
et al., 2015; Hickok, 2009; Price, 2012; Venezia et al., 2017), yet its functional relationships with
with other auditory areas are difficult to distinguish with neuroimaging methods. Indeed, the
distinct roles of its upper and lower banks (STSU, STSL) have only been recently elucidated with
iEEG (Nourski et al., 2021).

Questions remain regarding mesoscale organization as well. While the auditory hierarchy is
posited to be organized along two processing streams (Friederici, 2012; Hickok and Poeppel,
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89  2007; Rauschecker and Scott, 2009), the specific brain regions involved and the functional

90 relationships within each stream are vigorously debated (Cloutman, 2013; Hickok and Poeppel,
91  2015; Rauschecker, 2018; Saur et al., 2008). Furthermore, communication between auditory
92  cortex and hippocampus, amygdala, and anterior insula (InsA) (Munoz-Lopez et al., 2010) —

93  areas involved in auditory working memory and processing of emotional aspects of auditory
94  information (Husain and Schmidt, 2014; Kraus and Canlon, 2012; Kumar et al., 2021; Kumar et
95 al., 2016) — suggests a third “limbic” auditory processing stream, complementary to the dorsal
96 and ventral streams.

97 At a macroscopic scale, hemispheric lateralization of speech and language processing is a widely
98 accepted organizational feature (Geschwind, 1970; Hagoort, 2019). However, the degree to
99  which lateralization shapes the auditory hierarchy and is reflected in hemisphere-specific
100  connectivity profiles is unknown(Eisner et al., 2010; Hickok and Poeppel, 2015; Leaver and
101  Rauschecker, 2010; McGettigan and Scott, 2012; Rauschecker and Scott, 2009; Turkeltaub and
102  Coslett, 2010).

103  To address these questions, we applied diffusion map embedding (DME) (Coifman and Hirn,

104  2014; Coifman et al., 2005) to functional connectivity measured between cortical regions of

105 interest (ROls). DME maps connectivity into functional geometry: relationships in a Euclidean
106  space where proximity of two ROlIs reflects similarity in connectivity to the rest of the network.
107 The DME approach provides a low-dimensional representation convenient for display while also
108 facilitating quantitative comparisons on multiple spatial scales, including permutation-based
109  hypothesis testing of specific ROl relationships, hierarchical clustering to identify functional

110  processing streams, and contrasts of whole embeddings between participant cohorts.
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111 Results
112  DME applied to iEEG data

113  Intracranial electrodes densely sampled cortical structures involved in auditory processing in
114  the temporal and parietal lobes, as well as prefrontal, sensorimotor, and other ROls in 49
115  participants (22 female; 6741 recording sites; Fig. 1, Supplementary Tables 1, 2). On average,
116  each participant contributed 138+54 recording sites, representing 28+7.7 ROls (mean +

117  standard deviation) (see example in Fig. 2a).

118  The brain parcellation scheme depicted in Figure 1A was developed based on a combination of
119  physiological and anatomical criteria, and has been useful in our previous analyses that were
120 largely focused on auditory processing. Below, we revisit this parcellation with a data-driven
121 scheme.

122  DME was applied to pairwise functional connectivity measured as orthogonalized power

123  envelope correlations (Hipp et al., 2012) computed between recording sites in each participant.
124  We focus primarily on gamma-band power envelope correlations, but supplement with results
125  from other bands for comparison. The functional connectivity matrix was normalized and

126  thresholded to yield a diffusion matrix Psymm With an apparent community structure along the
127  horizontal and vertical dimensions (Fig. 2b). DME reveals the functional geometry of the

128  sampled cortical sites by using the structure of Psymm and a free parameter t to map the

129  recording sites into an embedding space. In this space, proximity between nodes represents
130  similarity in their connectivity to the rest of the network (Fig. 2c; see Supplementary Fig. 1 for
131  additional views). The parameter t corresponds to diffusion time: larger values of t shift focus
132 from local towards global organization. DME exhibited superior signal-to noise characteristics
133  compared to direct analysis of functional connectivity in 43 out of 49 participants

134  (Supplementary Fig. 2).

135  Functionally distinct regions are isolated along principal dimensions in embedding space. For
136  example, in Figure 2c, tight clusters of auditory cortical sites (red/orange/yellow) and sites in
137  prefrontal cortex (blue) were maximally segregated along dimension 1 (see Fig. 1 and

138  Supplementary Table 3 for the list of abbreviations). Other regions (e.g., middle temporal gyrus)
139  had a more distributed representation within the embedding space, consistent with their

140  functional heterogeneity.
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142 Figure 1. ROls and electrode coverage in all 49 participants. a: ROl parcellation scheme. b: Locations of
143 recording sites, color-coded according to the ROl group, are plotted in Montreal Neurological Institute
144  (MNI) coordinate space and projected onto the Freesurfer average template brain for spatial reference.
145  Color shades represent different ROls within a group. Projections are shown on the lateral, top-down
146  (superior temporal plane), ventral and mesial views (top to bottom). Recording sites over orbital,

147  transverse frontopolar, inferior temporal gyrus and temporal pole are shown in both the lateral and the
148  ventral view. Sites in fusiform, lingual, parahippocampal gyrus and gyrus rectus are shown in both the
149  ventral and medial view. Sites in the frontal operculum (n = 23), parietal operculum (n = 21), amygdala
150 (n = 80), hippocampus (n = 86), putamen (n = 15), globus pallidus (n = 1), caudate nucleus (n = 10),

151 substantia innominata (n = 5), and ventral striatum (n = 2) are not shown. See Supplementary Table 2 for
152  detailed information on electrode coverage. c: ROl groups, ROIs and abbreviations used in the present
153  study. See Supplementary Table 3 for alphabetized list of abbreviations.
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154

155  Figure 2. Functional geometry of cortical networks revealed by DME applied to gamma-band power

156  envelope correlations in a single participant (R376). a: Electrode coverage. b: Diffusion matrix Psymm. C:
157 Data plotted on the same scale in the 1st and 2nd, 1st and 3rd, and 1st and 4th dimensions of

158 embedding space (top to bottom). Two points that are close in embedding space are similarly connected
159 to the rest of the network, and thus assumed to be functionally similar.
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160  Functional geometry of cortical networks

161  To pool data across participants with variable electrode coverage, Psymm matrices were

162  computed at the ROl level and averaged across participants. The results for gamma-band data
163  are shown in Figure 3a. The eigenvalue spectrum |A;| of this averaged Ps,mm Showed a clear
164  separation between the first four and the remaining dimensions (Fig. 3a, inset), indicating that
165  the first four dimensions of embedding space accounted for much of the community structure
166  of the data. Indeed, these first four dimensions accounted for >80% of the diffusion distance
167  averaged across all pairwise distances in the space, a typical measure for deciding which

168  dimensions to retain when DME is used as a dimensionality reduction method (Coifman and
169  Hirn, 2014).

170  The data are plotted in the first four dimensions of embedding space in Figure 3b (see also

171 Supplementary Fig. 3 and Supplementary Movies 1 and 2), providing a graphical representation
172 of the functional geometry of all sampled brain regions. Functionally related ROlIs clustered

173  together, and these clusters segregated within embedding space. For example, auditory cortical
174  and prefrontal ROIs were at opposite ends of dimension 1, as were visual cortical (ITGP, ITGM,
175  LinG, FG) and prefrontal ROIs. Parietal and limbic ROls were at opposite ends of dimension 2,
176  and auditory and visual ROls were maximally segregated along dimension 4. By contrast, some
177  ROls [e.g., STGA, anterior and middle portions of middle temporal gyrus (MTGA, MTGM),

178  middle cingulate (CingM)] were situated in the interior of the data cloud.

179
180  DME elucidates fine-scale functional organization beyond anatomical proximity

181  The connectivity metric employed here discards components exactly in phase between two

182  brain regions, mitigating the influence of volume conduction (Hipp et al., 2012). However, brain
183  areas that are anatomically close to each other are often densely interconnected (Cavada et al.,
184  2000; Jones et al., 1978; Kaas and Hackett, 1998; Kaas and Hackett, 2000; Morel et al., 1993).
185  Thus, anatomical proximity is expected to contribute to the observed functional geometry.

186  Overall, however, anatomical proximity explained only 14% of the variance in embedding

187  distance (mean adjusted r? = 0.14 for regressions between anatomical and embedding

188  Euclidean distance, calculated separately for each ROI). Anatomically adjacent ROls that were
189  separated in embedding space included STGA and STGM, temporal pole (TP) and the rest of the
190 anterior temporal lobe (ATL), and InsA and InsP. Thus, the embedding representation elucidates
191  organizational features beyond anatomical proximity.

192

193  Planum polare (PP) and posterior insula (InsP) are functionally distinct from other auditory
194  cortical ROIs

195  The grouping of canonical auditory ROIs is apparent in Figure 3b, as PT, HGAL, and middle and
196  posterior portions of the superior temporal gyrus (STGM, STGP) were all close to HGPM in
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197 embedding space. One notable exception, planum polare (PP), located immediately anterior to
198  anterolateral Heschl’s gyrus (HGAL), segregated from the rest of auditory cortical ROls along
199  dimension 2 in embedding space (Fig. 3b, upper panel, lower left corner). This result is

200 consistent with PP being a higher order auditory area.

201  In contrast, InsP is a region that is anatomically distant from HGPM yet responds robustly to
202  acoustic stimuli (Zhang et al., 2019), suggesting that a portion of this area could be considered
203  an auditory region (Remedios et al., 2009). For example, InsP can track relatively fast (>100 Hz)
204  temporal modulations, similar to HGPM (Steinschneider et al., 2013; Zhang et al., 2019),

205  possibly due to direct inputs from the auditory thalamus. However, InsP was functionally

206  segregated from HGPM and was situated between auditory and limbic ROIs, consistent with the
207 broader role of InsP in polysensory exteroceptive processing and interoception (Craig, 2003;
208  Kuehn et al., 2016).

209
210  Hierarchical distinction of STSU and STSL

211 Unlike InsP and PP, STSU clustered with early auditory regions, and was significantly closer to
212 auditory cortex (core and non-core ROIs; see Fig. 1) in embedding space compared to STSL (test
213 by permutation of STSU/STSL labels, p<0.001). This distinction between STSL and STSU is

214  consistent with differences in their response properties reported recently (Nourski et al., 2021).
215  Particularly, responses in STSL, but not STSU, were predictive of performance in a semantic

216  categorization task. Those results suggest that STSL would likely be closer in embedding space
217  toregions involved in semantic processing compared to STSU. Indeed, STSL was significantly
218  closer to ROIs reported to contribute to semantic processing [inferior frontal gyrus (IFG) pars
219  operculum/triangularis/orbitalis (IFGop, IFGtri, IFGor), TP, STGA, MTGA, MTGP, anterior and
220  posterior portions of inferior temporal gyrus (ITGA, ITGP), anterior and posterior angular gyrus
221 (AGA, AGP), supramarginal gyrus (SMG)] (Binder et al., 2009; Humphreys et al., 2015; Jackson et
222 al., 2016) compared to STSU (test by permutation of STSU/STSL labels, p<0.001).
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Figure 3. Summary of functional geometry of cortical networks via DME applied to gamma-band power
envelope correlations. a: Average diffusion matrix. Inset: Eigenvalue spectrum. b: Data plotted on the
same scale in the 1st and 2nd, 1st and 3rd, and 1st and 4th dimensions of embedding space (top to
bottom). Variance estimates on the locations of each ROl in embedding space were obtained via
bootstrapping and are represented by the size of the ellipsoid for each ROI.
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229  Organization of ROIs outside auditory cortex

230  Figure 3b also characterizes the temporal and parietal ROls outside auditory cortex that are
231  nonetheless part of the extended auditory network, including components of the dorsal and
232 ventral processing streams. These ‘auditory-related’ ROls (shades of green in Fig. 3b), were
233 distributed along a considerable extent of all four dimensions, consistent with functional

234  heterogeneity of these regions and their involvement in multimodal integration (Bernstein and
235 Liebenthal, 2014).

236  This heterogeneity, as well as the embedding locations of PP and STSU, suggests that the brain
237  parcellation scheme from Figure 1 is suboptimal. Indeed, there were no quantitative criteria in
238  this scheme for designating ROIs as ‘Auditory-related’ versus ‘Auditory non-core’. Similarly, the
239  ‘Other’ group contains a large and diverse collection of ROIs whose relationship to auditory
240  structures and speech and language processing is unclear. To facilitate arranging these and

241  other ROIs into functional groups or streams and develop a data-driven parcellation scheme,
242  we turned to a quantitative hierarchical clustering approach.

243

244  Hierarchical clustering identifies mesoscale-level organizational features: ROl groups and
245  processing streams

246  Hierarchical clustering applied to the first four dimensions of the embedded data shown in
247  Figure 3 elucidated the mesoscale organization of cortical ROIs (Fig. 4) in agreement with the
248  qualitative observations discussed above. Auditory cortical ROIs (excluding PP) formed an

249  ‘Auditory’ cluster with STSU. Another major cluster (labeled ‘Limbic’) included ROIs traditionally
250 considered part of the limbic system [parahippocampal gyrus (PHG), amygdala and

251  hippocampus], as well as TP and the insula. ROls typically considered part of the ventral and
252  dorsal auditory streams segregated into two clusters. Additional clusters included ROls in the
253  ventral visual stream and those involving sensorimotor functions (labeled ‘Visual’ and ‘Action’,
254  respectively in Fig. 4), and several clusters of prefrontal and medial cortical ROls involved in
255  executive function. Thus, the hierarchical clustering analysis revealed a segregation of ROIs in
256  embedding space that aligned with known functional differentiation of brain regions. Further,
257  we can use this analysis to expand our understanding of hierarchical relationships among

258  clusters. For example, the ‘Auditory’ cluster is distinct from other clusters primarily in the

259  temporal lobe, but is closer to the ‘Limbic’ cluster than ‘Ventral’ or ‘Visual’.

260 In addition to these resting state recordings, most participants engaged in additional

261  experiments investigating representation of acoustic stimuli in the brain (Nourski et al., 2017;
262  Nourski et al., 2021; Nourski et al., 2022; Steinschneider et al., 2014). We used these data to
263  evaluate auditory responsiveness of each recording site (Fig. 4b) and compare these response
264  profiles to the clustering results of Figure 4a. As expected, ROls in the auditory cluster exhibited
265  consistently high responsiveness to auditory stimuli, while visual ROIs did not. By contrast,
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some clusters exhibited mixed responsiveness (e.g. InsP in the limbic cluster), possibly
indicating ROls that serve as nodes bridging auditory and other brain networks.

A new brain parcellation scheme based on these clustering results is illustrated in Figure 4c.
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words. c: Brain parcellation based on hierarchical clustering.
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275  Embedding and hierarchical clustering in the theta band

276  DME applied to theta-band power envelope correlations yielded results broadly similar to the
277  gamma band, especially in the first two dimensions of embedding space (Supplementary Figure
278  4). Auditory cortical ROls other than PP clustered together and with STSU, and were maximally
279  segregated from PFC ROls along dimension 1. In addition, auditory-related ROIs were dispersed
280 in embedding space, consistent with their functional heterogeneity.

281  Hierarchical clustering of data from theta-band power envelope correlations (Supplementary
282  Figure 5) yielded several clusters that overlapped with those from gamma-band data. These

283  included a cluster of auditory cortical ROls, the bulk of lateral prefrontal cortex, and most of the
284  ‘action’ cluster. Other clusters were less consistent, suggesting the temporal scale of neuronal
285  signaling contributes to establishing distinct functional networks (Hacker et al., 2017; Keitel and
286  Gross, 2016; Kiebel et al., 2008).

287
288  DME identifies mesoscale topological features of cortical networks

289 Identification of ‘global hubs’ within brain networks is critical for understanding their topology
290  (Bullmore and Sporns, 2009). These nodes integrate and regulate information flow in the

291  network by virtue of their centrality and strong connectivity, yet a precise method for

292  identifying these hubs is yet to be established.

293  DME can identify global hubs, as the closer an ROl is to the center of the data cloud in

294  embedding space, the more equal is its connectivity to the rest of the network. A simulated
295 example isillustrated in Figure 5a, which depicts a network of five ROIs, with one serving as a
296  global hub (Fig. 5a, left panel, green). The network structure can also be represented as an

297  adjacency matrix, wherein the hub ROI has strong connectivity with other ROIs (Fig. 5a, middle
298  panel). In embedding space, this ROl occupies a central location, with the other four serving as
299  spokes, i.e., nodes that interact with each other through the central hub (Fig. 5a, right panel).

300 We computed distance from the center of embedding space for all of the ROls in Figure 3b. We

301 also computed mean functional connectivity for each ROl and show in Figure 5b an overall

302 inverse relationship between these two measures. ROls close to the center of embedding space
303 also exhibited strong mean connectivity, suggesting their roles as global hubs. These ROls

304 included MTGA, STGA, and MTGM, which all lie in the upper left quadrant of the plot >2

305 standard deviations from the center of the data cloud (outer dashed ellipse). ITGA, CingM,

306  posterior cingulate/precuneus (PCC/preCun), PP, fOperc, and STSL also exhibited hub-like

307 properties, i.e., were located in the upper left quadrant of Figure 5b. ROIs far from the center of
308 embedding space, mostly unimodal sensory and motor regions, exhibited weak overall

309 connectivity, consistent with their roles as spokes in the network.

310 In contrast to the gamma-band data, the same analysis applied to theta-band data identified
311  CingM and ACC as two prominent global hubs, along with MTGM (Supplementary Figure 6).


https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/

312
313
314

315

316

317
318
319
320
321

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.06.479292; this version posted October 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

These results are consistent with network organization depending on temporal scale, and
suggests that mesial cortical structures regulate information flow on slower time scales. Thus,
DME can identify topological features critical to information flow within cortical networks.
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Figure 5. Identification of network hubs. a: Schematic example illustrating the central positioning of
global hubs in embedding space. b: ROIs from average embedding are plotted according to their mean
connectivity to the rest of the network versus their distance to the centroid of the data cloud in the first

four dimensions of embedding space. Dashed lines denote across-ROlI means. Dashed ellipses represent
1 and 2 standard deviations from the mean.
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Differences between language-dominant and non-dominant hemispheres are not specific to
speech and language ROIs

On a macroscopic scale, speech and language networks are lateralized in the human brain, with
nearly all right-handed and most left-handed individuals left hemisphere language-dominant
(Knecht et al., 2000). However, both hemispheres are activated during speech processing
(Hickok and Poeppel, 2007; Price, 2012; Schirmer et al., 2012; Turkeltaub and Coslett, 2010),
and the extent to which lateralization is reflected in asymmetries in the organization of resting
state auditory networks is unclear. We investigated this issue by comparing the functional
geometry of cortical networks derived from participants with electrode coverage in the
language-dominant (N = 24) versus non-dominant (N = 22) hemisphere. ROIs in the two
hemispheres exhibited a similar functional organization in embedding space (Supplementary
Fig. 7). Permutation analysis indicated that the positions of ROls in embedding space were not
significantly different between dominant and non-dominant hemispheres (all p-values > 0.05).
Furthermore, there was no significant correlation between the change in position in embedding
space and either early or late auditory responsiveness (early: p = 0.94; late: p = 0.86; Fig. 6a).

We also analyzed inter-ROI distances to determine whether functional interactions between
ROIs were different in the two hemispheres. Pairwise inter-ROIl distances in embedding space,
calculated separately for dominant versus non-dominant hemisphere, were highly correlated (r
= 0.88), with no obvious outliers (Fig. 6b, left panel). The data shown in Figure 6a have a slope
<1, indicating that inter-ROI distances are consistently longer in the dominant hemisphere
compared to the non-dominant hemisphere (p = 0.0052). This multiplicative scaling of the
distances is consistent with the data occupying a larger volume in embedding space for the
dominant versus non-dominant hemisphere, suggesting a greater functional heterogeneity for
the language-dominant side of the brain. After accounting for this multiplicative scaling effect,
following FDR correction, there were no specific inter-ROIl distances that were significantly
different between the two hemispheres.

When considering ROIs specifically involved in speech and language comprehension and
production [PT, PP, STSL, STGP, STGM, STGA, SMG, AGA, premotor cortex (PMC), precentral
gyrus (PreCG), IFGop, IFGtr] (Ardila et al., 2016; Chang et al., 2015; Hickok and Poeppel, 2015),
the correlation in pairwise inter-ROl distances in embedding space was also high (r = 0.90;
Figure 6b). Furthermore, the data in Figure 6b exhibit a similar multiplicative scaling as
observed for all the ROIs shown in Figure 6a. Indeed, the slope for the data in Figure 6b was
indistinguishable from the slope for the data in Figure 6a (p = 0.92). Thus, hemispheric
asymmetry of functional organization specific to speech and language networks was not
detectable in RS connectivity.
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357
358  Figure 6. RS connectivity is symmetric between hemispheres. Inter-ROI distances in embedding space

359  for non-dominant versus dominant hemisphere participants. a: Comparison between the change in

360  position in embedding space from dominant to non-dominant hemisphere and the auditory

361 responsiveness of individual ROls. Two-tailed Spearman’s rank tests did not reveal a significant

362  correlation between ROl asymmetry and percentage of either early or late auditory responsive sites

363  within the ROI (left and right panel, respectively). b: Pairwise distances between all ROIs and between
364 ROIs involved in speech and language perception and production (PT, PP, STSL, STGP, STGM, STGA, SMG,
365 AGA, PMC, PreCG, IFGop, IFGtr) are shown in the left and right panel, respectively. Note that after

366  splitting the data into the two subsets (dominant and non-dominant) STSU did not meet the inclusion
367 criteria for analysis presented in the right panel (see Methods, Supplementary Table 2).
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368  Stability of functional geometry across frequency bands

369  Other bands (alpha, beta, high gamma) produced similar embeddings to those from gamma and
370 theta. Inter-ROI distances were highly similar for adjacent bands (r > 0.82), and even for non-
371  adjacent bands (r > 0.67; Supplementary Fig. 8). Thus, DME identified overall, rather than band-
372  specific, organizational features of cortical networks.

373  However, a particular band might be preferred if it produced narrower estimation margins in
374  the functional geometry. An overall relative uncertainty was calculated as the correlation
375 between inter-ROl embedding distances in the original data versus bootstrapped data.

376  Correlation values were uniformly high across bands (r =0.91, 0.85, 0.87, 0.88, and 0.86 for
377 high gamma, gamma, beta, alpha, and theta, respectively). These analyses suggest that DME
378  offers a robust approach to exploring functional geometry.

379

380 Comparison to embeddings derived from RS-fMRI data

381  Sofar, we've presented results at multiple spatial scales based on intracranial

382  electrophysiology. However, these intracranial recordings sample the brain non-uniformly and
383  sparsely as dictated by clinical considerations. This feature presents problems at two spatial
384  scales: first, cortical regions are not sampled uniformly (with some not sampled at all). Second,
385  ROls are not sampled uniformly across their volume. To examine the impact of these sampling
386 issues, we compared iEEG-based DME to DME applied to RS-fMRI data available in a subset of
387 ten participants.

388  We first tested the consistency of functional geometry derived from the two modalities in the
389  same participants (Fig. 7). Connectivity matrices were constructed based on RS-fMRI data from
390 voxels located at iEEG recording sites and grouped into the same ROls as in Figure 1. The iEEG
391 and fMRI embeddings averaged across participants were qualitatively similar (Fig. 7a, b), and
392  the overall organization derived from this subset was consistent with that observed in the full
393  iEEG dataset (cf. Fig. 3b). Inter-ROI distances in the fMRI and iEEG embedding spaces were

394  correlated (Fig. 7c), with highest correlations for gamma- and high gamma-band envelopes (r >
395  0.45; Fig. 7d, line and symbols).

396  The analysis presented in Figure 7 provide a context for using fMRI data to address questions
397 regarding the effects of limited, non-uniform sampling. We used a standard parcellation

398 scheme developed for fMRI data (Schaefer-Yeo 400 ROIs; (Schaefer et al., 2018)) rather than
399  theiEEG parcellation scheme introduced in Figure 1.

400 The first question we addressed was the effect of non-uniformly sampling only a subset of brain
401  regions. For each participant, embeddings were derived from RS-fMRI connectivity matrices
402 computed from all cortical ROIs (Fig. 8a, “Full fMRI”, first column). From these embeddings, we
403  selected only points in embedding space corresponding to ROIs sampled with iEEG (Fig. 8a, “Full
404  fMRI (iEEG subset)”, second column). We also computed embeddings for each subject from
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only the fMRI ROIs sampled with iEEG in that subject [“Partial fMRI (ROI level)”, Fig. 8a, 3rd
column]. We compared these embeddings to the “Full fMRI (iEEG subset)” embeddings by
computing the correlation between inter-ROI distances (Fig. 8b). Although the scale of the
embeddings was different for the full fMRI versus partial fMRI data (because the number of
dimensions was different), the two were highly correlated (median r = 0.90; Fig. 8c). Thus,
embeddings constructed from the portion of the brain sampled by iEEG were quite similar to
embeddings derived from the whole brain.

The second question we addressed was the effect of representing an entire ROl by sparse
sampling with a limited number of electrodes. We computed embeddings from the voxel
averages across entire ROls in each participant [“Partial fMRI (ROI level)”, Fig. 8a, 3™ column]
and from averages of the voxels in grey-matter spheres around iEEG recording sites [“Partial
fMRI (site level)”, Fig. 8a, rightmost column]. ROI- and site-level embedding distances were
strongly correlated (median r = 0.65; Fig. 8c).

Thus, sparse sampling within an ROl had a greater impact on estimates of functional geometry
than limited sampling of the complete set of ROls. Overall, however, ROIs were faithfully
represented in embedding space even when DME was based on a small number of locations
within ROls. Taken together, these results indicate broad consistency between functional
organization derived from iEEG and fMRI and the robustness of this approach to sparse
sampling afforded by iEEG recordings.
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425 Figure 7. Comparison of iEEG and fMRI connectivity data in embedding space. a: Participant-averaged
426  embeddings for iEEG (gamma band power envelope correlations). b: Participant-averaged embeddings
427  for fMRI. Scale bar: 0.1. c: Inter-ROlI embedding distances computed from the datain a and b. d:

428  Summary of distance correlations at each frequency band. t = 1 for all embeddings.
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430  Figure 8. Comparison of embeddings derived from full fMRI connectivity matrices and connectivity

431 matrices computed using only ROls sampled with iEEG. a: Data in the first four dimensions of embedding
432 space for a single participant. Shown are embeddings of all derived from the full RS-fMRI connectivity
433 matrix (1°* column); the subset of the data points in the 1% column corresponding to ROIs sampled via
434  JEEG (2" column); and embeddings derived from connectivity matrices including only the ROIs sampled
435  viaiEEG, calculated by averaging across the entire ROI (3™ column), and calculated based on the specific
436  recording sites in that participant (4™ column). b: Comparison of embedding distances calculated from
437 the full fMRI embedding (i.e, data in a, 2" column) versus distances calculated from the partial fMRI
438  embedding (i.e., data in a, 3" column). ¢: Summary across participants of distance correlations between
439  full fMRI embeddings versus partial embeddings calculated based on the entire ROI (left, “Full vs. Partial
440 (ROI)”) and between partial embeddings calculated based on the entire ROl versus those calculated

441 based on recording sites [right, “Partial (ROI) vs. Partial (site)”].


https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.06.479292; this version posted October 27, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

442

443

444
445
446
447

448

449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

467

468

469
470
471
472
473
474
475
476
477
478

available under aCC-BY-NC 4.0 International license.

Discussion
Organization of auditory cortical networks

We have shown that DME applied to iEEG data can be used to characterize the organization of

the human auditory cortical hierarchy at multiple spatial scales. We demonstrate methodology
for testing specific hypotheses at each of these scales using DME. We also generate data-driven
hypotheses for study using future data sets.

Fine scale: Organization of auditory cortex

At a fine spatial scale, previous work in macaque has defined over a dozen auditory cortical
fields based on cytoarchitectonics, connectivity, and response properties (Hackett et al., 2001).
By contrast, there is no consensus on how auditory cortex is organized in humans, with multiple
candidate parcellations based on cytoarchitectonics, tonotopy or myeloarchitecture (Barton et
al., 2012; Hackett, 2015; Moerel et al., 2014; Woods et al., 2010). Our results contribute to this
body of knowledge by showing that several superior temporal ROIs including core auditory
cortex (HGPM) and putative auditory belt and parabelt areas (PT, HGAL, STGP, STGM) (Hackett,
2015; Moerel et al., 2014) cluster together in embedding space. Thus, in spite of their diversity
in processing of specific features of acoustic signals, these ROls are positioned at a similar level
in the auditory processing hierarchy. Proximity of STGP and STGM to HGPM in embedding
space is consistent with previous studies that interpret these regions as relatively early non-
core auditory cortex (Hamilton et al., 2021; Howard et al., 2000; Nourski et al., 2014). By
contrast, PP is anatomically close and connected to HGPM (Upadhyay et al., 2008), yet it is
distinguished among auditory cortical regions for its syntactic-level language processing
(Friederici et al., 2000) and its preferential activation by music, which has a strong affective
component (Angulo-Perkins et al., 2014). This functional differentiation is reflected in its
segregation from the auditory cluster in embedding space.

Fine scale: Functional differentiation between STSU and STSL

The superior temporal sulcus is a critical node in speech and language networks linking
canonical auditory cortex with higher order temporal, parietal, and frontal areas (Abrams et al.,
2020; Beauchamp, 2015; Chang et al., 2015; Hickok, 2009; Price, 2012; Venezia et al., 2017).
Previous studies have shown that STSU and STSL differ in cytoarchitecture (Zachlod et al., 2020)
and have distinct responses to speech (Belin et al., 2000; Deen et al., 2015; Leaver and
Rauschecker, 2010; Wilson et al., 2018). A recent iEEG study demonstrated enhanced, shorter-
latency, responses to speech syllables in STSU compared to STSL (Nourski et al., 2021). STSU is
traditionally not considered part of canonical auditory cortex (but see (Woods et al., 2010)), yet
it clustered with auditory cortical ROls. STSL, by contrast, was closer in embedding space to
semantic ROls. This is consistent with iEEG evidence that responses in STSL, but not STSU,


https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.06.479292; this version posted October 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

479  correlated with performance on a semantic categorization task (Nourski et al., 2021). The

480 regions specifically involved in semantic processing is a current topic of debate, with multiple
481  competing models (Binder et al., 2009; Humphreys et al., 2015; Jackson et al., 2016; Lambon
482  Ralphetal., 2017). We defined a list of semantic processing regions by combining across these
483  models.-STSL was positioned closer in embedding space to these regions compared to STSU.
484  Taken together, the results firmly place STSU and STSL at different levels of the auditory cortical
485  hierarchy.

486
487  Mesoscale: Functional and theoretical framework of a limbic auditory pathway

488  Multiple lines of evidence support a pathway linking auditory cortical and limbic structures
489  (Kahn et al., 2008; Michelmann et al., 2021; Rocchi et al., 2021; Wang et al., 2016) that

490  subserves auditory memory (Kumar et al., 2021; Kumar et al., 2016; Munoz-Lopez et al., 2010)
491  and affective sound processing (Fruhholz et al., 2016). The data presented here contribute to
492  our understanding of this pathway. Clustering analysis identified a set of ROls including

493  structures classically labeled as limbic (PHG, Amy, Hipp) as well as insula (InsP, InsA) and TP
494  positioned close to the auditory cluster in embedding space (Fig. 4). This suggests a close

495  functional relationship that could form the basis for a limbic stream. InsP, with strong auditory
496  responsiveness and overlapping response properties with HGPM, is likely involved in the

497  transformation of auditory information in auditory cortex to affective representations in InsA
498  (Zhangetal., 2019). Thus InsP could serve as critical linking node between auditory and limbic
499  structures.

500 TPisinvolved in semantic processing (Friederici et al., 2000; Lambon Ralph et al., 2017) and

501  auditory memory (Munoz-Lopez et al., 2015), in particular the representation and retrieval of
502 memories for people, social language, and behaviors (‘social knowledge’) (Olson et al., 2013).
503  Tight clustering of TP with limbic ROls in embedding space is consistent with its previously

504 reported functional association with limbic cortex (Chanes and Barrett, 2016; Mesulam, 2000),
505  with which TP shares key features of laminar cytoarchitecture and strong connectivity (Maller
506 et al., 2019). We suggest that the organization depicted in Figures 3 and 4, combined with

507 evidence for bidirectional information sharing between auditory cortex and limbic areas, merits
508 the identification of a third auditory processing stream alongside the dorsal and ventral streams
509  (Hickok, 2012; Rauschecker and Scott, 2009). This ‘limbic stream’ would underlie auditory

510 contributions to affective and episodic memory processing.

511
512  Mesoscale: Ventral and dorsal streams linking auditory and frontal cortex

513  Current models of speech and language processing posit the existence of ventral and dorsal
514  processing streams linking non-core auditory cortex with PMC and inferior frontal gyrus via
515  several distinct anatomical pathways encompassing temporal, parietal, and frontal cortex
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516  (Changet al., 2015; Friederici, 2012; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009).
517  Despite substantial experimental evidence supporting these models, there is a lack of

518 consensus on the specific functions subserved by the two streams. For example, the dorsal

519 stream has been envisioned to subserve spatial processing (“where” (Rauschecker and Scott,
520 2009)), sensorimotor integration (“how” (Hickok and Poeppel, 2007)), and syntactic processing
521  (Friederici, 2012). There is a parallel debate about the specific cortical regions comprising the
522  two streams.

523  As broadly predicted by these models, temporal and parietal ROls segregated in embedding
524  space in the analysis presented here (Fig. 3b, 4). We observed a cluster that included STSL,

525 middle and inferior temporal gyrus ROIs, in conformity with the ventral auditory stream

526  proposed by Hickok and Poeppel (Hickok and Poeppel, 2007) and Friederici (Friederici, 2012).
527 By contrast, the cluster that included SMG, AGP, and AGA aligned with the dorsal processing
528 stream as proposed by Rauschecker and Scott (Rauschecker and Scott, 2009). Association of FG
529 and MOG with the ventral and dorsal clusters, respectively, likely represents the sharing of

530 information across sensory modalities.

531 A previous fMRI-based DME study found that primary sensory and default mode ROls

532  segregated along the first dimension in embedding space (Margulies et al., 2016). Coverage of
533  mesial cortex in our dataset was limited, precluding a direct comparison. However, the striking
534  separation between auditory and prefrontal cortex in embedding space shown here, and its
535 robustness to the choice of the parameter t, indicate that the current results align well with the
536  previous report. This separation places auditory and frontal regions at opposite ends of the

537  auditory processing hierarchy, linked by ventral and dorsal processing streams (Friederici, 2012;
538 Hickok and Poeppel, 2007; Rauschecker and Scott, 2009).

539
540 Mesoscale: Network hubs

541  Hubs in brain networks play a critical role in integrating distributed neural activity (Bullmore
542  and Sporns, 2009; van den Heuvel and Sporns, 2013). In the present analysis, global hubs were
543  characterized by their central location within embedding space and high mean connectivity (Fig.
544  5).In the gamma band, these hubs included STGA and MTGA, both components of the ATL.
545  Previous reports indicate that ATL serves as a transmodal hub, transforming sensory domain-
546  specific to domain-general representations (Abel et al., 2015; Lambon Ralph et al., 2017;

547  Simmons and Martin, 2009) and playing a central role in semantic processing and social

548 memory (Lambon Ralph et al., 2017; Olson et al., 2013; Patterson et al., 2007). MTGM also
549  appears as a global hub, even though it is not formally part of the ATL. Interestingly, patients
550  with semantic dementia have ATL degeneration (Scott et al., 2000; Spitsyna et al., 2006), but
551  the damage is often more widespread and can include MTGM (Gorno-Tempini et al., 2004).

552  Cingulate cortical ROIs (CingM, ACC) were identified as hubs in theta-band data. These areas
553  are described as transmodal and are active during a wide array of emotional and cognitive
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554  processes (Mesulam, 1998; Rolls, 2019), both consistent with their previous characterization as
555  network hubs (van den Heuvel and Sporns, 2013). The identification of hubs specific to each
556  frequency band supports the model in which the temporal scale of communication in the brain
557  supports distinct functional networks (Hacker et al., 2017; Keitel and Gross, 2016; Kiebel et al.,
558  2008).

559  Unlike other ATL structures, TP does not appear as a global hub in in either gamma or theta

560 bands (Fig. 5b, Supplementary Figure 6). The close association of TP with limbic structures in
561 embedding space suggests that TP mediates interactions between multimodal integration

562  centers in the ATL and structures subserving memory functions. More broadly, the

563  heterogeneity of ATL ROIs in terms of their global hub-like connectivity profiles conforms to the
564  observation that the terminal fields of white matter tracts converging in the ATL only partially
565 overlap (Binney et al., 2012; Lambon Ralph et al., 2017; Makris et al., 2009).

566
567  Macroscale: Hemispheric lateralization

568  Although speech and language networks are classically described as highly lateralized, imaging
569 studies have demonstrated widespread bilateral activation during speech and language tasks
570  (Binder et al., 2000; Cogan et al., 2014; de Heer et al., 2017). We found evidence for

571  hemispheric differences in cortical functional organization based on analysis of all sampled

572  brain regions, with inter-ROI distances being systematically greater in embedding space for the
573  language-dominant hemisphere (Fig. 6b). This is consistent with greater inter-regional

574  heterogeneity in that hemisphere compared to the non-dominant side. Importantly, ROls

575 involved in speech and language processing did show any additional asymmetry (Fig. 6b), nor
576  was the difference in position in embedding space related to auditory responsiveness (Fig. 6a).
577  Recent studies that identified interhemispheric differences in RS connectivity for the STS

578  (Abrams et al., 2020) and semantic networks more broadly (Gonzalez Alam et al., 2021) may
579  reflect this broader asymmetry observed here. Our are also consistent with a recent fMRI study
580 showing RS connectivity patterns in lateral temporal cortex that were comparable between left
581 and right hemispheres (Jackson et al., 2018). This does not exclude the possibility of

582  asymmetries specific to auditory regions emerging during sensory tasks, for example reflecting
583  hemispheric biases in spectral and temporal processing (Hickok and Poeppel, 2007; 2015).

584
585  Caveats & limitations

586 A key concern regarding all human iEEG studies is that participants may not be representative
587  of a healthy population. In the present study, results were consistent across participants

588 despite differences in seizure disorder histories, medications, and seizure foci, and aligned with
589  results obtained previously in healthy participants (Margulies et al., 2016). Another caveat is
590 that our dataset, however extensive, did not sample the entire brain, and it was not possible to
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infer connectivity with unsampled regions. To address this, we applied DME analysis to fMRI
data to establish that the organization of ROIs in embedding space was robust to the exclusion
of unsampled ROIs. Although there was a greater effect of sparse, non-uniform sampling within
an ROI, there was still considerable similarity in functional organization to embeddings derived
from averages across the entire ROI.

While subcortical structures (e.g., thalamus) that link sensory and higher order networks
(Sherman and Guillery, 2011) were not sampled, the functional organization presented here
was likely influenced indirectly by thalamo-cortical pathways (Hamilton et al., 2021; Hu, 2003).
Previous fMRI studies of RS networks focused exclusively on cortical ROls and did not consider
the role of the thalamus and other subcortical structures. Despite this limitation, these studies
have yielded valuable insights into the functional organization of the human cortical networks
(Biswal et al., 2010; Seitzman et al., 2019).

Concluding remarks and future directions

This study extends the DME approach to characterize functional relationships between cortical
regions investigated using iEEG recordings. These data help resolve several outstanding issues
regarding the functional organization of human auditory cortical networks and stress the
importance of a limbic pathway complementary to the dorsal and ventral streams. These
results lay the foundation for future work investigating network organization during active
speech and language processing. While the current work focused on auditory cortical networks,
this approach can be readily generalized to advance our understanding of changes in brain
organization during sleep and anesthesia, disorders of consciousness, as well as reorganization
of cortical functional geometry secondary to lesions.
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614  Online Methods
615  Participants

616  The study was carried out in 49 neurosurgical patients (22 females) diagnosed with medically
617 refractory epilepsy. The patients were undergoing chronic invasive electrophysiological

618 monitoring to identify seizure foci prior to resection surgery (Supplementary Table 1). Research
619  protocols aligned with best practices recently aggregated in (Feinsinger et al., 2022) and were
620 approved by the University of lowa Institutional Review Board and the National Institutes of
621  Health; written informed consent was obtained from all participants. Research participation did
622 not interfere with acquisition of clinically necessary data, and participants could rescind

623  consent for research without interrupting their clinical management.

624  All participants except two were native English speakers. The participants were predominantly
625 right-handed (42 out of 49); six participants were left-handed, and one had bilateral

626  handedness. The majority of participants (35 out of 49) were left language-dominant, as

627 determined by Wada test. Two participants were right hemisphere-dominant, and one had
628 bilateral language dominance. The remaining 11 participants were not evaluated for language
629 dominance; 9 of them were right-handed and thus were assumed left language-dominant for
630 the purposes of the analysis of lateralization (see below). The participant with bilateral

631 dominance, and the remaining two participants who did not undergo Wada test and who were
632 left-handed were not included in the analysis of hemispheric asymmetry in Figure 6.

633  All participants underwent audiological and neuropsychological assessment prior to electrode
634 implantation, and none had auditory or cognitive deficits that would impact the results of this
635 study. The participants were tapered off their antiepileptic drugs during chronic monitoring
636  when RS data were collected.

637
638  Experimental procedures

639  Pre-implantation neuroimaging. All participants underwent whole-brain high-resolution T1-
640  weighted structural MRI scans before electrode implantation. In a subset of ten participants
641  (Supplementary Table 2), RS-fMRI data were used for estimates of functional connectivity. The
642  scanner was a 3T GE Discovery MR750W with a 32-channel head coil. The pre-electrode

643 implantation anatomical T1 scan (3D FSPGR BRAVO sequence) was obtained with the following
644  parameters: FOV = 25.6 cm, flip angle = 12 deg., TR = 8.50 ms, TE = 3.29 ms, inversion time =
645 450 ms, voxel size = 1.0 x 1.0 x 0.8 mm. For RS-fMRI, 5 blocks of 5-minute gradient-echo EPI
646  runs (650 volumes) were collected with the following parameters: FOV =22.0 cm, TR = 2260
647 ms, TE =30 ms, flip angle = 80 deg., voxel size = 3.45 x 3.45 x 4.0 mm. In some cases, fewer RS
648  acquisition sequences were used in the final analysis due to movement artifact or because the
649  full scanning session was not completed. For each participant, RS-fMRI runs were acquired in
650 the same session but non-contiguously (dispersed within an imaging session to avoid
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651  habituation). Participants were asked to keep their eyes open, and a fixation cross was
652  presented through a projector.

653  iEEG recordings. iEEG recordings were obtained using either subdural and depth electrodes, or
654  depth electrodes alone, based on clinical indications. Electrode arrays were manufactured by
655 Ad-Tech Medical (Racine, WI). Subdural arrays, implanted in 36 participants out of 46, consisted
656  of platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a
657  silicon membrane. Stereotactically implanted depth arrays included between 4 and 12

658 cylindrical contacts along the electrode shaft, with 5-10 mm inter-electrode distance. A

659  subgaleal electrode, placed over the cranial vertex near midline, was used as a reference in all
660 participants. All electrodes were placed solely on the basis of clinical requirements, as

661 determined by the team of epileptologists and neurosurgeons (Nourski and Howard, 2015).

662  No-task RS data were recorded in the dedicated, electrically shielded suite in The University of
663  lowa Clinical Research Unit while the participants lay in the hospital bed. RS data were collected
664 6.4 +/- 3.5 days (mean * standard deviation; range 1.5 — 20.9) after electrode implantation

665  surgery. In the first 15 participants (L275 through L362), data were recorded using a TDT RZ2
666  real-time processor (Tucker-Davis Technologies, Alachua, FL). In the remaining 34 participants
667  (R369 through L585), data acquisition was performed using a Neuralynx Atlas System

668  (Neuralynx Inc., Bozeman, MT). Recorded data were amplified, filtered (0.1-500 Hz bandpass, 5
669  dB/octave rolloff for TDT-recorded data; 0.7-800 Hz bandpass, 12 dB/octave rolloff for

670  Neuralynx-recorded data) and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000 Hz

671  (Neuralynx). The durations of recordings were 13 +/- 11 min. In all but two participants,

672  recording durations were between 10 and 22 min.; in one participant duration was 6 min., and
673  in one participant the duration was 81 min.

674
675  Data analysis

676  Anatomical reconstruction and ROI parcellation. Localization of recording sites and their

677  assignment to ROIs relied on post-implantation T1-weighted anatomical MRI and post-

678 implantation computed tomography (CT). All images were initially alighed with pre-operative T1
679  scans using linear coregistration implemented in FSL (FLIRT) (Jenkinson et al., 2002). Electrodes
680 were identified in the post-implantation MRI as magnetic susceptibility artifacts and in the CT as
681  metallic hyperdensities. Electrode locations were further refined within the space of the pre-
682  operative MRI using three-dimensional non-linear thin-plate spline warping (Rohr et al., 2001),
683  which corrected for post-operative brain shift and distortion. The warping was constrained with
684  50-100 control points, manually selected throughout the brain, which were visually aligned to
685 landmarks in the pre- and post-implantation MRI.

686  To pool data across participants, the dimensionality of connectivity matrices was reduced by
687  assigning electrodes to one of 58 ROIs organized into 6 ROI groups (see Fig. 1; Supplementary
688 Table 2, 3) based upon anatomical reconstructions of electrode locations in each participant.
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689  For subdural arrays, ROl assignment was informed by automated parcellation of cortical gyri
690 (Destrieux et al., 2010; Destrieux et al., 2017) as implemented in the FreeSurfer software

691  package. For depth arrays, it was informed by MRI sections along sagittal, coronal, and axial

692  planes. For recording sites in Heschl’s gyrus, delineation of the border between core auditory
693  cortex adjacent non-core areas (HGPM and HGAL, respectively) was performed in each

694  participant using physiological criteria (Brugge et al., 2009; Nourski et al., 2016). Specifically,
695 recording sites were assigned to HGPM if they exhibited phase-locked (frequency-following)
696 responses to 100 Hz click trains and if the averaged evoked potentials to these stimuli featured
697  short-latency (<20 ms) peaks. Such response features are characteristic for HGPM and are not
698  present within HGAL (Brugge et al., 2009). Additionally, correlation coefficients between

699  average evoked potential waveforms recorded from adjacent sites were examined to identify
700 discontinuities in response profiles along Heschl’s gyrus that could be interpreted as reflecting a
701  transition from HGPM to HGAL. Superior temporal gyrus was subdivided into posterior and

702  middle non-core auditory cortex ROIs (STGP and STGM), and auditory-related anterior ROI

703  (STGA) using the transverse temporal sulcus and ascending ramus of the Sylvian fissure as

704  macroanatomical boundaries. The insula was subdivided into posterior and anterior ROls, with
705  the former considered within the auditory-related ROl group (Zhang et al., 2019). Middle and
706  inferior temporal gyrus were each divided into posterior, middle, and anterior ROls by diving
707  the gyrus into three approximately equal-length thirds. Angular gyrus was divided into posterior
708  and anterior ROIs using the angular sulcus as a macroanatomical boundary. Anterior cingulate
709  cortex was identified by automatic parcellation in FreeSurfer and was considered as part of the
710  prefrontal ROl group, separately from the rest of the cingulate gyrus. Postcentral and

711 precentral gyri were each divided into ventral and dorsal portions using the ymni coordinate (see
712 below) of 40 mm as a boundary. Recording sites identified as seizure foci or characterized by
713  excessive noise, and depth electrode contacts localized to the white matter or outside brain,
714  were excluded from analyses and are not listed in Supplementary Table 2. Electrode coverage
715  was largely restricted to a single hemisphere in individual participants, and contacts on the

716  contralateral hemisphere were excluded from analysis (and are not listed in Supplementary

717  Table 2) such that all connections represent intra-hemisphere functional connectivity.

718  Preprocessing of fMRI data. Standard preprocessing was applied to the RS-fMRI data acquired
719  inthe pre-implantation scan using FSL’s FEAT pipeline, including spatial alignment and nuisance
720  regression. White matter, cerebrospinal fluid and global ROIs were created using deep white
721  matter, lateral ventricles and a whole brain mask, respectively. Regression was performed using
722  the time series of these three nuisance ROIs as well as 6 motion parameters (3 rotations and 3
723  translations) and their derivatives, detrended with second order polynomials. Temporal

724  bandpass filtering was 0.008—0.08 Hz. Spatial smoothing was applied with a Gaussian kernel (6
725  mm full-width at half maximum). The first two images from each run were discarded. Frame
726  censoring was applied when the Euclidean norm of derivatives of motion parameters exceeded
727 0.5 mm (Power et al., 2012). All runs were processed in native EPI space, then the residual data
728  were transformed to MNI152 and concatenated.
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729  Preprocessing of iEEG data. Analysis of iEEG data was performed using custom software written
730  in MATLAB Version 2020a programming environment (MathWorks, Natick, MA, USA). After

731  initial rejection of recording sites identified as seizure foci, several automated steps were taken
732  to exclude recording channels and time intervals contaminated by noise. First, channels were
733  excluded if average power in any frequency band [broadband, delta (1-4 Hz), theta (4-8 Hz),
734  alpha (8-13Hz), beta (13-30 Hz), gamma (30-50 Hz), or high gamma (70-110 Hz); see below]

735 exceeded 3.5 standard deviations of the average power across all channels for that participant.
736  Next, transient artifacts were detected by identifying voltage deflections exceeding 10 standard
737  deviations on a given channel. A time window was identified extending before and after the
738  detected artifact until the voltage returned to the zero-mean baseline plus an additional 100 ms
739  buffer before and after. High-frequency artifacts were also removed by masking segments of
740  data with high gamma power exceeding 5 standard deviations of the mean across all segments.
741 Only time bins free of these artifact masks were considered in subsequent analyses. Artifact
742  rejection was applied across all channels simultaneously so that all connectivity measures were
743  derived from the same time windows. Occasionally, particular channels survived the initial

744  average power criteria yet had frequent artifacts that led to loss of data across all the other

745  channels. There is a tradeoff in rejecting artifacts (losing time across all channels) and rejecting
746  channels (losing all data for that channel). If artifacts occur on many channels, there is little

747  benefit to excluding any one channel. However, if frequent artifacts occur on one or

748  simultaneously on up to a few channels, omitting these can save more data from other

749  channels than those channels contribute at all other times. We chose to optimize the total data
750 retained, channels x time windows, and omitted some channels when necessary. To remove
751  shared signals unlikely to derive from brain activity, data from retained channels were high-pass
752  filtered above 200 Hz, and a spatial filter was derived from the singular value decomposition
753  omitting the first singular vector. This spatial filter was then applied to the broadband signal to
754  remove this common signal.

755  Connectivity analysis. For RS-fMRI data, BOLD signals were averaged across voxel groupings and
756  functional connectivity was calculated as Pearson correlation coefficients. Voxel groupings were
757  either based on the Schaefer-Yeo 400 parcellation scheme (Schaefer et al., 2018) in MNI-152
758  space, or were based on iEEG electrode location in participant space (see Fig. 1). For the latter,
759  fMRI voxels were chosen to represent comparable regions of the brain recorded by iEEG

760  electrodes. For each electrode, the anatomical coordinates of the recording site were mapped
761  to the closest valid MRI voxel, E, and a sphere of 25 voxels (25 mm?) centered on E used as the
762  corresponding recording site. This process was repeated for all N electrodes in the same ROI,
763  and a single time series computed as the average of the fMRI BOLD signal in these Nx25 voxels.
764  These averages were used to compute an ROI-by-ROI connectivity matrix for RS-fMRI data. For
765  comparisons between iEEG and fMRI embeddings, voxels were processed in participant space
766  and ROI labels from the parcellation scheme illustrated in Figure 1 and Supplementary Table 2
767  were applied to the fMRI data. For comparisons between fMRI embeddings derived from all
768  cortical ROIs versus fMRI embeddings derived from just ROIs sampled in the iEEG experiments,
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769  electrode locations were transformed from participant space to MNI-152 space, then assigned
770  to ROIs within the Schaefer-Yeo 400 scheme.

771  For iEEG data, envelope correlations were estimated within 60-second data segments using

772  orthogonalized band power envelope correlations as in (Hipp et al., 2012), except time-

773  frequency decomposition was performed using the demodulated band transform (Kovach and
774  Gander, 2016) rather than wavelets. This measure avoids artifacts due to volume conduction by
775  discounting connectivity near zero phase lag. For each frequency band (theta: 4-8 Hz, alpha: 8-
776 13 Hz, beta: 13-30 Hz, gamma: 30-70 Hz; high gamma: 70-120 Hz), the power at each time bin
777  was calculated as the average (across frequencies) log of the squared amplitude. For each pair
778  of signals X and Y, one was orthogonalized to the other by taking the magnitude of the

779  imaginary component of the product of one signal with the normalized complex conjugate of
780  the other:

781 Yoren = [Im{Y x X*/|X|}|

782  Both signals were band-pass filtered (0.2 — 1 Hz), and the Pearson correlation calculated

783  between signals. The process was repeated by orthogonalizing in the other direction and the
784  overall envelope correlation for a pair of recording sites was the average of the two Pearson
785  correlations. Lastly, correlations were averaged across segments.

786  Prior to diffusion map embedding, connectivity matrices were thresholded by saving at least
787  the top third (rounded up) connections for every row, as well as their corresponding columns
788  (to preserve symmetry). We also included any connections making up the minimum spanning
789  tree of the graph represented by the elementwise reciprocal of the connectivity matrix to
790 ensure the graph is connected.

791  ROI-based connectivity analysis. Connectivity between ROls was computed as the average

792  envelope correlation between all pairs of recording sites in the two ROls. For analyses in which
793  connectivity was summarized across participants (Fig. 3-8), we used only a subset of ROIs such
794  that every possible pair of included ROIs was represented in at least two participants

795  (Supplementary Table 2). This list of ROls was obtained by iteratively removing ROls with the
796  worst cross-coverage with other ROIs until every ROl remaining had sufficient coverage with all
797  remaining ROls.

798  Diffusion map embedding. See the Appendix for details about DME.

799  In brief, the connectivity matrix K = [k(i,j)] (here orthogonalized power envelope correlations) is
800 normalized by degree to yield a matrix P = D'K, where D is the degree matrix, i.e. the diagonal
801 elementsof D= Z?’zl k(i,j), where N is the number of recording sites, and the off-diagonal

802 elements of D are zero. If the recording sites are conceptualized as nodes on a graph with edges
803 defined by K, then P can be understood as the transition probability matrix for a ‘random walk’
804  or a ‘diffusion’ on the graph (see Appendix; (Coifman and Hirn, 2014; Coifman et al., 2005)).
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805 DME consists of mapping the recording sites into an embedding space using an
806 eigendecomposition of P,

807 PO(x) = Mtwalx), Mabwa(xi), .., Abwm(x)]T,

808  where yj; are the eigenvectors of P. The parameter t is the number of time steps in that random
809  walk; larger values of t shift focus from local to global features of the data. Here, we present
810 datafort=1.In the analyses presented here, K is a matrix of orthogonalized power envelope
811  correlations transformed by applying cosine similarity (Margulies et al., 2016).

812 DME can be implemented alternatively based on a symmetric version of diffusion matrix Psymm
813 =DU0°KD?>. Basing DME on Psymm has the advantage that the eigenvectors of Psymm form an
814  orthogonal basis set (unlike the eigenvectors of P), providing some additional convenience
815 mathematically that is beyond the scope of this paper (Coifman and Hirn, 2014). Additionally,
816  the eigenvalues of P and Psymm are identical.

817 Intwo sets of analyses presented here, pairs of embeddings were compared to each other: in
818  the analysis of lateralization of speech and language networks, and in the comparison between
819 iEEG and fMRI data. To do that, we used a change of basis operator to map embeddings into a
820 common embedding space using the method described in Coifman et al 2014 (Coifman and
821  Hirn, 2014).

822  Dimensionality reduction via low rank approximations to Psymm. Diffusion map embedding offers
823  an opportunity to reduce the dimensionality of the underlying data by considering only those
824  dimensions that contribute importantly to the structure of the data, as manifested in the

825  structure of the transition probability matrix P, or, equivalently, of the diffusion matrix Psymm.
826  We used the eigenvalue spectrum of Psymm to determine its ideal low rank approximation,

827  balancing dimensionality reduction and information loss. The basis for this is most easily

828 understood in terms of the eigenvalue spectrum of P, whose spectrum is identical to that of
829  Psymm (Coifman and Hirn, 2014). Because P is real and symmetric, the magnitude of the

830 eigenvalues is identical to the singular values of P. The singular values tell us about the fidelity
831  of low rank approximations to P. Specifically, if P has a set of singular values 61> 61>...2 &y, then
832 foranyintegerk=>1,

833 nl%n"P - f’;"z = Opi1r

834  where f’; is the rank-k approximation to P. Thus, the magnitude of the eigenvalues corresponds
835 to the fidelity of the lower dimensional approximation, and the difference in the magnitude of
836  successive eigenvalues represents the improvement in that approximation as the

837 dimensionality increases. The spectrum of P invariably has an inflection point (“elbow”),

838  separating two sets of eigenvalues A;: those whose magnitude decreases more quickly with

839 increasing i, and those beyond the inflection point whose magnitude decreases more slowly
840  with increasing i. The inflection point thus delineates the number of dimensions that are most
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841 important for approximating P or Psymm. The inflection point kins was identified algorithmically
842  (Satopaa et al., 2011), and the number of dimensions retained set equal to kinsi — 1.

843  Comparing distances in embedding space. The relative distance between points in embedding
844  space provides insight into the underlying functional geometry. In several analyses presented
845  here, two embeddings of identical sets of ROIs were compared as ROl distances within the two
846 embeddings. After mapping to a common space and reducing dimensionality as described

847  above, the two embeddings A and B were used to create the pairwise distance matrices A" and
848  B". The Pearson correlation coefficient r was then computed between the upper triangles

849  (excluding the diagonal) of the corresponding elements in the distance matrices. To compare
850 anatomical distance and distance in embedding space, inter-ROI anatomical distances were
851 calculated for each participant by computing the centroid of each ROl in MNI space, then

852  calculating Euclidean distances between centroids, followed by averaging distances across

853  participants.

854  Signal to noise (SNR) characteristics. To measure the robustness of the embedding analysis to
855  variability over time, an SNR was computed as follows. For each participant, a channel x

856  channel Psymm matrix was calculated for each 60 s segment of data. For each segment, DME
857  analysis was applied and a channel x channel distance matrix calculated. These distance

858  matrices were averaged across segments. The ‘signal’ of interest was defined as the variability
859  (standard deviation) of this averaged distance matrix (ignoring the diagonals). The ‘noise’ was
860 defined as the variability across time, estimated for each element of the distance matrix as the
861  standard deviation across segments, then averaged across the elements of the matrix. The SNR
862  for functional connectivity itself was computed in an analogous manner, using the original

863  channel x channel connectivity matrix rather than the matrix of embedding distances.

864  Estimating precision in position and distances in embedding space. To obtain error estimates for
865  both ROl locations in embedding space and embedding distance between ROls, average ROI x
866 ROl adjacency matrices were calculated. This was done by drawing each edge from an averaged
867  bootstrap sample across participants, obtaining 10,000 such adjacency matrices, and

868  performing diffusion map embedding for each. For locations in embedding space, these

869 embeddings were then mapped via the change of basis procedure described above to the

870  original group average embedding space. For each ROI, the mapped bootstrap iterations

871  produced a cloud of locations in embedding space that were summarized by the standard

872  deviation in each dimension. For embedding distances, no change of basis was necessary

873  because distances were preserved across bases.

874  To compare the positions of STSL versus STSU relative to canonical auditory cortical ROls

875 (HGPM, HGAL, PT, PP, STGP, and STGM) or ROlIs involved in semantic processing (STGA, MTGA,
876  MTGP, ITGA, ITGP, TP, AGA, AGP, SMG, IFGop, IFGtr, IFGor (Binder et al., 2009; Humphreys et
877  al., 2015; Jackson et al., 2016; Lambon Ralph et al., 2017)), we calculated the average pairwise
878  distance from STSL or STSU to each such ROI. The difference between these averages was

879  compared to a null distribution obtained by Monte Carlo sampling of the equivalent statistic
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880 obtained by randomly exchanging STSL/STSU labels by participant. The specific comparisons
881 performed were chosen a priori to constrain the number of possible hypotheses to test;

882  pairwise comparisons of all possible ROI pairs (let alone comparisons of all higher-order

883  groupings) would not have had sufficient statistical power under appropriate corrections for
884  multiple comparisons. Though different choices could have been made for inclusion in the
885  “semantic processing” category, exchanging one or two of these ROIs would not strongly
886 influence the average distance in a group of twelve ROls.

887  Hierarchical clustering. Agglomerative hierarchical clustering was done using the linkage

888  function in MATLAB, with Euclidean distance as the distance metric and Ward’s linkage

889  (minimum variance algorithm) as the linkage method. The ordering of ROls along the horizontal
890  axis in the dendrogram was determined using the optimalleaforder function in MATLAB, with
891 the optimization criterion set to ‘group’.

892  Auditory responsiveness. In a subset of 37 participants, auditory responsiveness was evaluated
893  as percentage of sites within each ROI that exhibited high gamma responses to monosyllabic
894  word stimuli. The stimuli were 300 ms words “cat”, “dog”, “five”, “ten”, “red”, “white”,

895 presented in semantic categorization and tone target detection tasks (Nourski et al., 2017;

896  Nourskietal., 2021; Nourski et al., 2022; Steinschneider et al., 2014). Mean high gamma (70-
897 110 Hz) power within early (50 to 350 ms) and late (350 to 650 ms) poststimulus time windows
898  was compared with that in a prestimulus window (-200 to -100 ms). Significance of high gamma
899  responses was established at a p = 0.05 level using one-tailed Mann-Whitney U tests with false
900 discovery rate correction.

901  Comparing language dominant/non-dominant hemispheres. To test for differences in functional
902 geometry between language dominant and non-dominant hemispheres, two measures were
903 considered: differences in the location of individual ROls in embedding space, and different
904  pairwise distances between ROls in embedding space. To calculate differences in location of
905 individual ROIs, dominant/non-dominant average embeddings were mapped to a common

906  space (from an embedding using the average across all participants regardless of language

907 dominance) using the change of basis operator. The language-dominant location difference for
908  a specific ROl was calculated as the Euclidean distance between the two locations of each ROI
909 in this common space. To examine whether there was a consistent relationship between

910  hemispheric asymmetry in a given ROl's location in embedding space and the percentage of
911  either early or late auditory responsive sites within that ROI, two-tailed Spearman’s rank tests
912  were used. To calculate differences in pairwise distances between ROls, Euclidean distances
913  were calculated in embedding space for each hemisphere and then subtracted to obtain a

914  difference matrix. To determine whether the differences in location or pairwise distances were
915 larger than expected by chance, random permutations of the dominant/non-dominant labels
916  were used to generate empirical null distributions. Since this approach produces a p-value for
917  every pair of connections, p-values were adjusted using false discovery rate (FDR) to account
918  for multiple comparisons.
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Analyses of fMRI connectivity in embedding space. Two sets of analyses were performed using
fMRI data. First, iEEG and fMRI data were compared in embedding space. In this analysis,
connectivity based on RS-fMRI data from voxels located at electrode recording sites was
compare with the corresponding connectivity matrix derived from iEEG data. The embedding
analysis was applied to the two connectivity matrices, all pairwise inter-ROI distances
computed, and iEEG and fMRI data compared using the correlation of the pairwise ROI
distances. The second analysis was to compare embeddings derived from all ROIs in the RS-
fMRI scans to those derived from just ROls sampled with iEEG electrodes. Here, ROI x ROI
connectivity matrices were computed for all ROIs, then embeddings created from the full
matrices or from matrices containing just rows and columns corresponding to the ROls sampled
with iEEG.


https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.06.479292; this version posted October 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

930  Author contributions

931  Conceptualization: M.1.B., K.V.N.

932  Methodology: M.I.B., B.M.K., A.D.B., J.E.B., C.K.K., M.S., K.V.N.
933  Software: M.1.B., B.M.K, D.B.G., D.I.C., C.K.K.

934  Validation: B.M.K.

935  Formal Analysis: M.I.B., B.M.K, D.B.G., D.I.C., K.V.N.
936 Investigation: H.K., K.V.N.

937 Data Curation: B.M.K., C.K.K., J.E.B., H.K., K.V.N.
938  Writing — Original Draft: M.1.B., B.M.K., K.V.N.

939  Writing — Review & Editing: M.I.B., B.M.K,, D.B.G., D.I.C., A.D.B., J.E.B., C.K.K., M.S., K.V.N.
940  Visualization: B.M.K., K.V.N.

941  Supervision: M.1.B., K.V.N.

942  Project Administration: K.V.N.

943  Funding Acquisition: M.1.B., K.V.N.

944

945

946  Declaration of interest

947  The authors declare no competing interests.

948

949

950 Data and code availability

951  Software and data used to generate figures are freely available at

952  https://zenodo.org/record/7200024 or DOI 10.5281/zenodo0.7200024 . Complete data set is
953  available via a request to the Authors pending establishment of a formal data sharing

954  agreement and submission of a formal project outline. Please contact Bryan Krause

955  (bmkrause@wisc.edu) for details.


https://doi.org/10.1101/2022.02.06.479292
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.06.479292; this version posted October 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

956  Appendix: Diffusion Map Embedding

957 Inthe framework of DME, we consider a space X that is the set of N recording sites. We

958  compute the similarity between those sites based on the time varying signals recorded at each
959  site, defining similarity k(x;x;) as the cosine similarity between functional connectivity of nodes
960  x;jand x;.

961  Define the matrix K whose ij" element is k(x;x;). k(x;,X;) is required to be symmetric, i.e., k(x; X))
962 = k(x;x;), and positivity preserving, i.e. k(x;x;) > 0 for all [i,j], to allow for spectral analysis of a
963  normalized version of K.

964  From X and K we can construct a weighted graph I' in which the vertices are the nodes and the
965 edge weights are k(x;x;). We take random walks on the graph at time stepst=1, 2, ..., jumping
966 from node x; to node x; at each time step, with the (stochastic) decision as to which node should
967  be visited next depending on k(x;x;).

968  Define

969 p(x;x)) = k(xi,x;)/d(xi),
970  where

971 d(xi) = Z;[k(x; x;)]

972  isthe degree of node xi. Normalizing k(x; x;) in this way allows us to interpret it as the
973  probability p(x;x;) that we'll jump from vertex x; to vertex x; in a single time step of our random
974  walk.

975 If we consider a single time step, we only capture the structure in X on a very local scale, since
976  we can only jump between vertices that are directly connected. As we run the random walk
977  forward in time, we begin to explore more of our neighborhood, and we begin to explore other
978 neighborhoods as well. Two vertices x; and x; that have similar connectivity to the rest of the
979  network have a high probability of being connected during these longer walks because they
980 themselves are connected to similar groups of vertices, and so there are many possible paths
981  between xjand x;.

982  The diffusion operator (matrix) P = [p(x; x)] describes how signals diffuse from node to node in
983  the graph. If vis a Nx1 vector (i.e., a value assigned to each vertex, for example representing an
984  input to each node), then P describes what will happen to that input as time goes on.

985 Pv = [p(x1,x1)v[x1]+p(x1,x2)V[x2]+...; p(x2,x1)v[x1]+p(x2,x2)Vv[x2]+...;...]T

986 If, for example, all the nodes were insular, with p(xi,xi)=1 for all i, and otherwise p(x;,x;)=0, Pv =
987 v, i.e., nodiffusion occurs. If the probabilities are more distributed, Pv would reveal how much
988  signals diffuse out from each node given the starting condition of v. Importantly, Pv would
989 reveal what that distribution looks like after k time steps.
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990 The eigenvector expansion of P based on its eigenvectors y; and eigenvalues , Aj, j=1...N, is a
991  natural method for uncovering structure in P because each eigenvector of P is a dimension
992 along which relevant organizational features emerge. That is, clusters of related points

993  (communities) tend to be distinct and ordered along these dimensions. In fact, we could

994  preserve a lot of information about P by keeping just a subset of M of these vectors and

995 discarding the rest. The information we want to preserve in the context of diffusion map

996 embedding is the functional distance between the data at two nodes given t time steps to
997  meander through the graph. We can define the diffusion map

998 PO (x;) = Matyalxi), Mbya(xi), ..., Amtwm(x)]T,

999  which maps each point x in X to a point in an embedding space of dimension M < N. In this
1000 space, the diffusion distance D, which is the Euclidean distance between points, is the
1001  difference in the probability distributions linking x; to the rest of the network and x; to the rest
1002  of the network:

1003 DO(x;x7)? = | [PO(x:) - PO) | | 12.= | | pD(x5,:)- pOUxi2) | | %o

1004  We return now to the parameter t, which corresponds to the time scale of the diffusion process
1005 (i.e., the number of steps in the random walk on the graph). As t progresses, the coordinates of
1006  the data in embedding space are scaled according to Aif, where A; is the eigenvalue of the ™"
1007 dimension being scaled. Thus, the value of t sets the spatial scale of the analysis, with higher
1008  values de-emphasizing smaller eigenvalues. Because |Ai|<1 V i, at higher values of t each

1009  dimension will be scaled down (‘collapse’), with the dimension corresponding to max(|Ail) (i.e.,
1010 A1) scaled the least.

1011  To compare embeddings across groups of participants, or modalities of measurements, it is
1012  necessary to map embeddings to a common space. To do so, consider two sets of data a and B,
1013  and the data spaces X, and Xp. The problem is that X, and Xj are different spaces with different
1014  kernels ky and kg. This means that the eigenvectors for P, and Pg will be different, and data

1015  projected into a space defined by some subset of the eigenvectors cannot be compared

1016  directly. The solution is to apply a change of basis operator to one set of the eigenvectors to get
1017  the data into the same embedding space (Coifman and Hirn, 2014):

1018 DO(xija,Xiip) = | | WWa(x) = Op> aWWp(x)| | 2.
1019  Where the change of basis operator O is defined as
1020 Op>a v = Ziv(j)<dq ,b>]j>-1,

1021  Where <a,b> is the inner product of a and b.
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