

Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology

Matthew I. Banks^{1,2*}, Bryan M. Krause¹, D. Graham Berger¹, Declan I. Campbell¹, Aaron D. Boes³,
Joel E. Bruss³, Christopher K. Kovach⁴, Hiroto Kawasaki⁴, Mitchell Steinschneider^{5,6},
Kirill V. Nourski^{4,7}

¹Department of Anesthesiology, University of Wisconsin, Madison, WI, USA

²Department of Neuroscience, University of Wisconsin, Madison, WI, USA

³Department of Neurology, The University of Iowa, Iowa City, IA 52242, USA

⁴Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA

⁵Department of Neurology, Albert Einstein College of Medicine, New York, NY 10461, USA

⁶Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA

⁷Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA

***Corresponding author:**

Matthew I. Banks, Ph.D.

Professor

Department of Anesthesiology

University of Wisconsin

1300 University Avenue, Room 4605

Madison, WI 53706

Tel.: (608)261-1143

E-mail: mibanks@wisc.edu

Keywords:

Functional connectivity, hierarchy, fMRI, diffusion map embedding, electrocorticography, iEEG,

ECoG

30

Acknowledgements

This work was supported by the National Institutes of Health (grant numbers R01-DC04290, R01-NS045111, and R01-NS045111).

33 R01-GM109086, S10-OD025025, UL1-RR024979). We are grateful to Jess Banks, Alex Billig,

34 Haiming Chen, Phillip Gander, Christopher Garcia, Matthew Howard, Ariane Rhone, and

35 Matthew Sutterer for help with data collection, analysis, and comments on the manuscript.

36 **Summary**

37 Understanding central auditory processing critically depends on defining underlying auditory
38 cortical networks and their relationship to the rest of the brain. We addressed these questions
39 using resting state functional connectivity derived from human intracranial
40 electroencephalography. Mapping recording sites into a low-dimensional space where
41 proximity represents functional similarity revealed a hierarchical organization. At fine scale, an
42 auditory cortical cluster excluded several higher order auditory areas and segregated maximally
43 from prefrontal cortex. On mesoscale, a cluster of limbic structures in proximity to the auditory
44 cortex suggested a limbic stream that parallels the classically described ventral and dorsal
45 auditory processing streams. Global hubs were identified within anterior temporal and
46 cingulate cortex, consistent with their respective roles in semantic and cognitive processing. On
47 a macro scale, observed hemispheric asymmetries were not specific for speech and language
48 networks. This approach can be applied to multivariate brain data with respect to development,
49 behavior, and disorders.

50 **Introduction**

51 The meso- and macroscopic organization of human neocortex has been investigated extensively
52 using resting state (RS) functional connectivity, primarily using functional magnetic resonance
53 imaging (fMRI) (Biswal et al., 2010; Yeo et al., 2011). RS data are advantageous as they avoid
54 the substantial confound of stimulus-driven correlations yet identify networks that overlap with
55 those obtained using event-related data (Smith et al., 2009), and thus are relevant to cognitive
56 and perceptual processing. RS fMRI has contributed greatly to our understanding of the
57 organization of the human auditory cortical hierarchy (Jackson et al., 2018; Scott, 2012; Woods
58 and Alain, 2009), but only a few complementary studies have been conducted using
59 electrophysiology in humans (e.g. Ko et al., 2013; Wang et al., 2021; Zhang et al., 2021).
60 Compared to fMRI, intracranial electroencephalography (iEEG) offers superior spatio-temporal
61 resolution and is free of methodological problems that affect MRI in key regions such as the
62 anterior temporal lobe (Lambon Ralph et al., 2017; Visser et al., 2010). However, variable
63 electrode coverage in human intracranial patients and small sample sizes are challenges to
64 generalizing results.

65 We overcome these limitations using a large cohort of subjects that together have coverage
66 over most of the cerebral cortex and leverage these data to address outstanding questions
67 about auditory networks. We address the organization of human auditory cortex at three
68 spatial scales: fine-scale organization of regions adjacent to canonical auditory cortex,
69 clustering of cortical regions into functional processing streams, and hemispheric (a)symmetry
70 associated with language dominance. We present a unified analytical framework applied to
71 resting state human iEEG data that embeds functional connectivity data into a Euclidean space
72 in which proximity represents functional similarity. We extend the analytical approach as
73 previously applied to RS fMRI (Margulies et al., 2016) and demonstrate methodology
74 appropriate for hypothesis testing at each of these spatial scales.

75 At the fine scale, though there is broad agreement that posteromedial Heschl's gyrus (HGPM)
76 represents core auditory cortex, functional relationships among HGPM and neighboring higher-
77 order areas are still a matter of debate. For example, the anterior portion of the superior
78 temporal gyrus (STGA) and planum polare (PP) are adjacent to auditory cortex on Heschl's
79 gyrus, yet diverge from it functionally (Angulo-Perkins et al., 2014; Friederici et al., 2000). The
80 posterior insula (InsP), on the other hand, has response properties similar to HGPM, yet is not
81 considered a canonical auditory area (Zhang et al., 2019). The superior temporal sulcus (STS) is
82 a critical node in speech and language networks (Abrams et al., 2020; Beauchamp, 2015; Chang
83 et al., 2015; Hickok, 2009; Price, 2012; Venezia et al., 2017), yet its functional relationships with
84 other auditory areas are difficult to distinguish with neuroimaging methods. Indeed, the
85 distinct roles of its upper and lower banks (STSU, STSL) have only been recently elucidated with
86 iEEG (Nourski et al., 2021).

87 Questions remain regarding mesoscale organization as well. While the auditory hierarchy is
88 posited to be organized along two processing streams (Friederici, 2012; Hickok and Poeppel,

89 2007; Rauschecker and Scott, 2009), the specific brain regions involved and the functional
90 relationships within each stream are vigorously debated (Cloutman, 2013; Hickok and Poeppel,
91 2015; Rauschecker, 2018; Saur et al., 2008). Furthermore, communication between auditory
92 cortex and hippocampus, amygdala, and anterior insula (InsA) (Muñoz-López et al., 2010) –
93 areas involved in auditory working memory and processing of emotional aspects of auditory
94 information (Husain and Schmidt, 2014; Kraus and Canlon, 2012; Kumar et al., 2021; Kumar et
95 al., 2016) – suggests a third “limbic” auditory processing stream, complementary to the dorsal
96 and ventral streams.

97 At a macroscopic scale, hemispheric lateralization of speech and language processing is a widely
98 accepted organizational feature (Geschwind, 1970; Hagoort, 2019). However, the degree to
99 which lateralization shapes the auditory hierarchy and is reflected in hemisphere-specific
100 connectivity profiles is unknown (Eisner et al., 2010; Hickok and Poeppel, 2015; Leaver and
101 Rauschecker, 2010; McGettigan and Scott, 2012; Rauschecker and Scott, 2009; Turkeltaub and
102 Coslett, 2010).

103 To address these questions, we applied diffusion map embedding (DME) (Coifman and Hirn,
104 2014; Coifman et al., 2005) to functional connectivity measured between cortical regions of
105 interest (ROIs). DME maps connectivity into functional geometry: relationships in a Euclidean
106 space where proximity of two ROIs reflects similarity in connectivity to the rest of the network.
107 The DME approach provides a low-dimensional representation convenient for display while also
108 facilitating quantitative comparisons on multiple spatial scales, including permutation-based
109 hypothesis testing of specific ROI relationships, hierarchical clustering to identify functional
110 processing streams, and contrasts of whole embeddings between participant cohorts.

111 **Results**

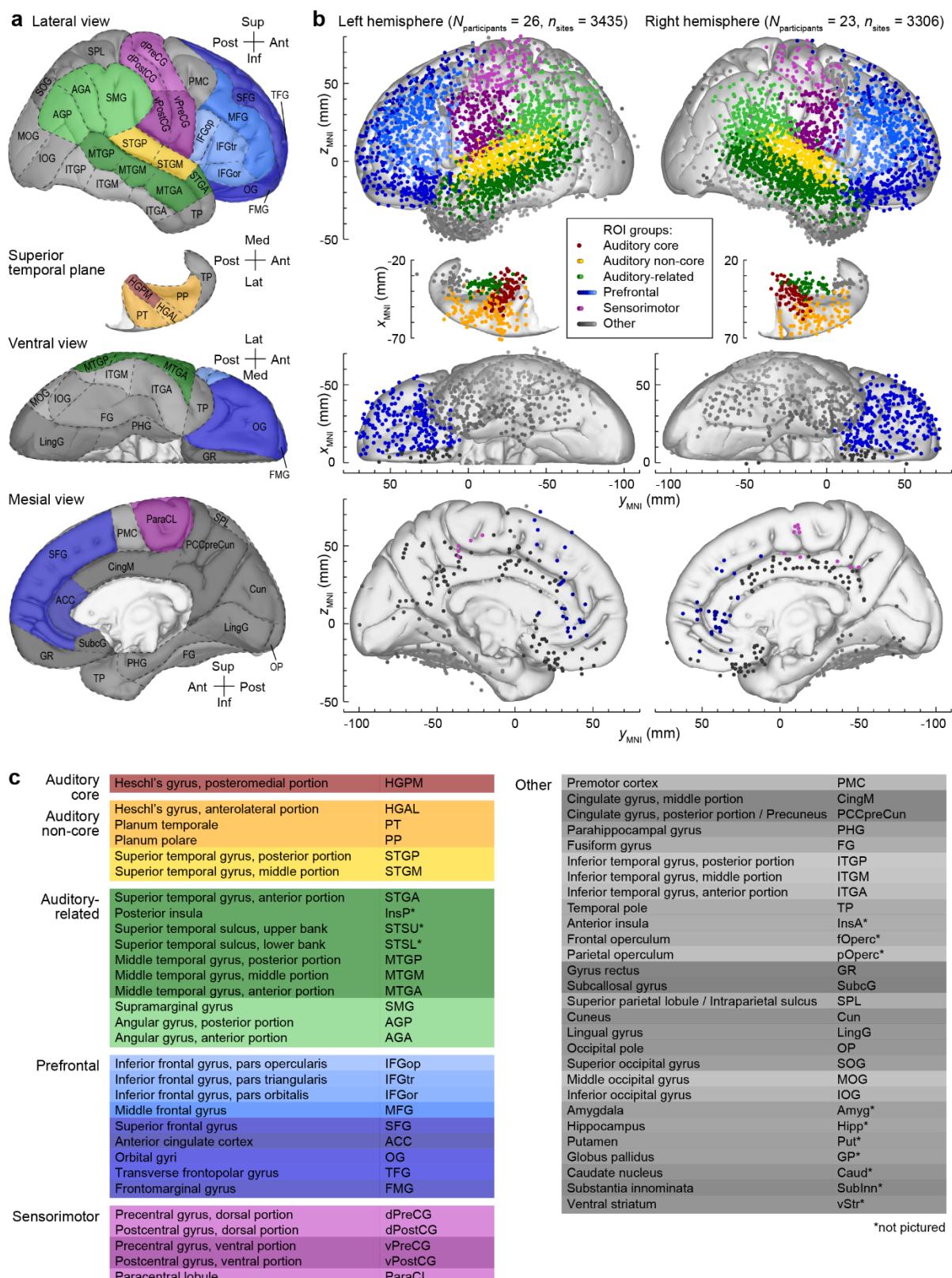
112 *DME applied to iEEG data*

113 Intracranial electrodes densely sampled cortical structures involved in auditory processing in
114 the temporal and parietal lobes, as well as prefrontal, sensorimotor, and other ROIs in 49
115 participants (22 female; 6741 recording sites; Fig. 1, Supplementary Tables 1, 2). On average,
116 each participant contributed 138 ± 54 recording sites, representing 28 ± 7.7 ROIs (mean \pm
117 standard deviation) (see example in Fig. 2a).

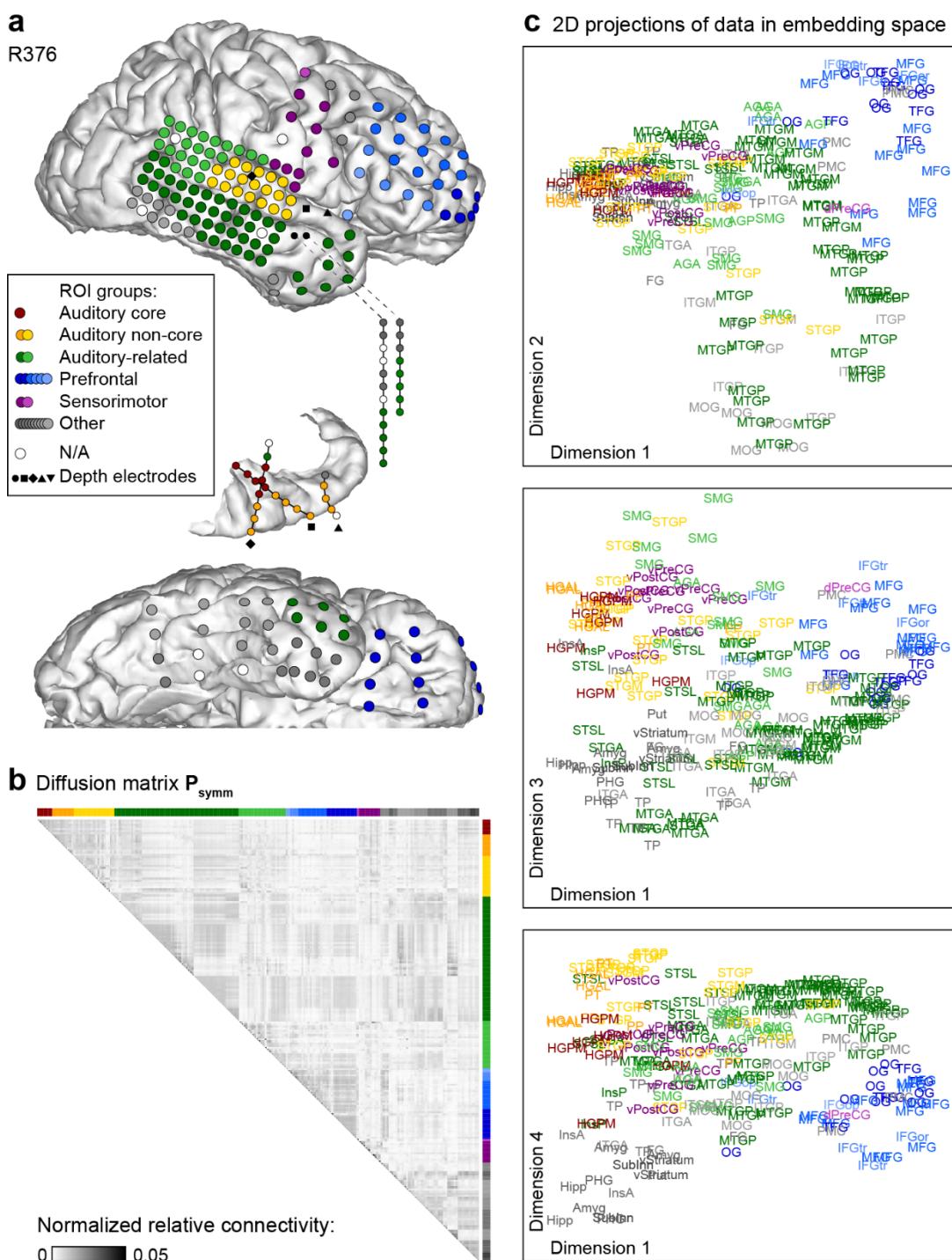
118 The brain parcellation scheme depicted in Figure 1A was developed based on a combination of
119 physiological and anatomical criteria, and has been useful in our previous analyses that were
120 largely focused on auditory processing. Below, we revisit this parcellation with a data-driven
121 scheme.

122 DME was applied to pairwise functional connectivity measured as orthogonalized power
123 envelope correlations (Hipp et al., 2012) computed between recording sites in each participant.
124 We focus primarily on gamma-band power envelope correlations, but supplement with results
125 from other bands for comparison. The functional connectivity matrix was normalized and
126 thresholded to yield a diffusion matrix \mathbf{P}_{symm} with an apparent community structure along the
127 horizontal and vertical dimensions (Fig. 2b). DME reveals the functional geometry of the
128 sampled cortical sites by using the structure of \mathbf{P}_{symm} and a free parameter t to map the
129 recording sites into an embedding space. In this space, proximity between nodes represents
130 similarity in their connectivity to the rest of the network (Fig. 2c; see Supplementary Fig. 1 for
131 additional views). The parameter t corresponds to diffusion time: larger values of t shift focus
132 from local towards global organization. DME exhibited superior signal-to noise characteristics
133 compared to direct analysis of functional connectivity in 43 out of 49 participants
134 (Supplementary Fig. 2).

135 Functionally distinct regions are isolated along principal dimensions in embedding space. For
136 example, in Figure 2c, tight clusters of auditory cortical sites (red/orange/yellow) and sites in
137 prefrontal cortex (blue) were maximally segregated along dimension 1 (see Fig. 1 and
138 Supplementary Table 3 for the list of abbreviations). Other regions (e.g., middle temporal gyrus)
139 had a more distributed representation within the embedding space, consistent with their
140 functional heterogeneity.



142 **Figure 1.** ROIs and electrode coverage in all 49 participants. **a:** ROI parcellation scheme. **b:** Locations of
143 recording sites, color-coded according to the ROI group, are plotted in Montreal Neurological Institute
144 (MNI) coordinate space and projected onto the Freesurfer average template brain for spatial reference.
145 Color shades represent different ROIs within a group. Projections are shown on the lateral, top-down
146 (superior temporal plane), ventral and mesial views (top to bottom). Recording sites over orbital,
147 transverse frontopolar, inferior temporal gyrus and temporal pole are shown in both the lateral and the
148 ventral view. Sites in fusiform, lingual, parahippocampal gyrus and gyrus rectus are shown in both the
149 ventral and medial view. Sites in the frontal operculum ($n = 23$), parietal operculum ($n = 21$), amygdala
150 ($n = 80$), hippocampus ($n = 86$), putamen ($n = 15$), globus pallidus ($n = 1$), caudate nucleus ($n = 10$),
151 substantia innominata ($n = 5$), and ventral striatum ($n = 2$) are not shown. See Supplementary Table 2 for
152 detailed information on electrode coverage. **c:** ROI groups, ROIs and abbreviations used in the present
153 study. See Supplementary Table 3 for alphabetized list of abbreviations.



154

155 **Figure 2.** Functional geometry of cortical networks revealed by DME applied to gamma-band power
 156 envelope correlations in a single participant (R376). **a:** Electrode coverage. **b:** Diffusion matrix P_{symm} . **c:**
 157 Data plotted on the same scale in the 1st and 2nd, 1st and 3rd, and 1st and 4th dimensions of
 158 embedding space (top to bottom). Two points that are close in embedding space are similarly connected
 159 to the rest of the network, and thus assumed to be functionally similar.

160 *Functional geometry of cortical networks*

161 To pool data across participants with variable electrode coverage, \mathbf{P}_{symm} matrices were
162 computed at the ROI level and averaged across participants. The results for gamma-band data
163 are shown in Figure 3a. The eigenvalue spectrum $|\lambda_i|$ of this averaged \mathbf{P}_{symm} showed a clear
164 separation between the first four and the remaining dimensions (Fig. 3a, inset), indicating that
165 the first four dimensions of embedding space accounted for much of the community structure
166 of the data. Indeed, these first four dimensions accounted for >80% of the diffusion distance
167 averaged across all pairwise distances in the space, a typical measure for deciding which
168 dimensions to retain when DME is used as a dimensionality reduction method (Coifman and
169 Hirn, 2014).

170 The data are plotted in the first four dimensions of embedding space in Figure 3b (see also
171 Supplementary Fig. 3 and Supplementary Movies 1 and 2), providing a graphical representation
172 of the functional geometry of all sampled brain regions. Functionally related ROIs clustered
173 together, and these clusters segregated within embedding space. For example, auditory cortical
174 and prefrontal ROIs were at opposite ends of dimension 1, as were visual cortical (ITGP, ITGM,
175 LinG, FG) and prefrontal ROIs. Parietal and limbic ROIs were at opposite ends of dimension 2,
176 and auditory and visual ROIs were maximally segregated along dimension 4. By contrast, some
177 ROIs [e.g., STGA, anterior and middle portions of middle temporal gyrus (MTGA, MTGM),
178 middle cingulate (CingM)] were situated in the interior of the data cloud.

179

180 *DME elucidates fine-scale functional organization beyond anatomical proximity*

181 The connectivity metric employed here discards components exactly in phase between two
182 brain regions, mitigating the influence of volume conduction (Hipp *et al.*, 2012). However, brain
183 areas that are anatomically close to each other are often densely interconnected (Cavada *et al.*,
184 2000; Jones *et al.*, 1978; Kaas and Hackett, 1998; Kaas and Hackett, 2000; Morel *et al.*, 1993).
185 Thus, anatomical proximity is expected to contribute to the observed functional geometry.
186 Overall, however, anatomical proximity explained only 14% of the variance in embedding
187 distance (mean adjusted $r^2 = 0.14$ for regressions between anatomical and embedding
188 Euclidean distance, calculated separately for each ROI). Anatomically adjacent ROIs that were
189 separated in embedding space included STGA and STGM, temporal pole (TP) and the rest of the
190 anterior temporal lobe (ATL), and InsA and InsP. Thus, the embedding representation elucidates
191 organizational features beyond anatomical proximity.

192

193 *Planum polare (PP) and posterior insula (InsP) are functionally distinct from other auditory*
194 *cortical ROIs*

195 The grouping of canonical auditory ROIs is apparent in Figure 3b, as PT, HGAL, and middle and
196 posterior portions of the superior temporal gyrus (STGM, STGP) were all close to HGPM in

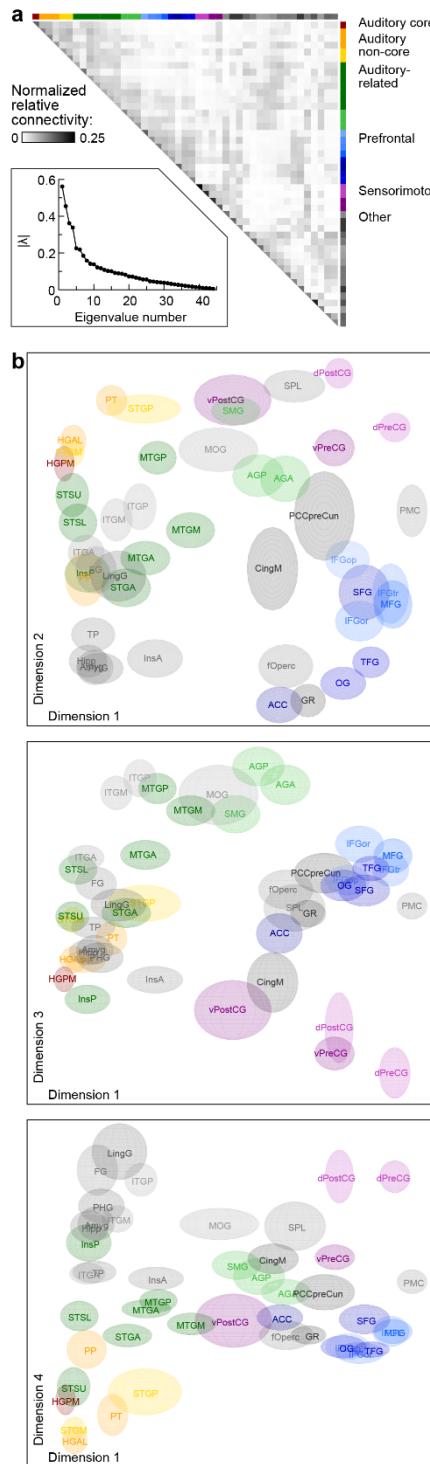
197 embedding space. One notable exception, planum polare (PP), located immediately anterior to
198 anterolateral Heschl's gyrus (HGAL), segregated from the rest of auditory cortical ROIs along
199 dimension 2 in embedding space (Fig. 3b, upper panel, lower left corner). This result is
200 consistent with PP being a higher order auditory area.

201 In contrast, InsP is a region that is anatomically distant from HGPM yet responds robustly to
202 acoustic stimuli (Zhang *et al.*, 2019), suggesting that a portion of this area could be considered
203 an auditory region (Remedios *et al.*, 2009). For example, InsP can track relatively fast (>100 Hz)
204 temporal modulations, similar to HGPM (Steinschneider *et al.*, 2013; Zhang *et al.*, 2019),
205 possibly due to direct inputs from the auditory thalamus. However, InsP was functionally
206 segregated from HGPM and was situated between auditory and limbic ROIs, consistent with the
207 broader role of InsP in polysensory exteroceptive processing and interoception (Craig, 2003;
208 Kuehn *et al.*, 2016).

209

210 *Hierarchical distinction of STSU and STSL*

211 Unlike InsP and PP, STSU clustered with early auditory regions, and was significantly closer to
212 auditory cortex (core and non-core ROIs; see Fig. 1) in embedding space compared to STSL (test
213 by permutation of STSU/STSL labels, $p<0.001$). This distinction between STSL and STSU is
214 consistent with differences in their response properties reported recently (Nourski *et al.*, 2021).
215 Particularly, responses in STSL, but not STSU, were predictive of performance in a semantic
216 categorization task. Those results suggest that STSL would likely be closer in embedding space
217 to regions involved in semantic processing compared to STSU. Indeed, STSL was significantly
218 closer to ROIs reported to contribute to semantic processing [inferior frontal gyrus (IFG) pars
219 operculum/triangularis/orbitalis (IFGop, IFGtri, IFGor), TP, STGA, MTGA, MTGP, anterior and
220 posterior portions of inferior temporal gyrus (ITGA, ITGP), anterior and posterior angular gyrus
221 (AGA, AGP), supramarginal gyrus (SMG)] (Binder *et al.*, 2009; Humphreys *et al.*, 2015; Jackson *et*
222 *al.*, 2016) compared to STSU (test by permutation of STSU/STSL labels, $p<0.001$).



223

224 **Figure 3.** Summary of functional geometry of cortical networks via DME applied to gamma-band power
225 envelope correlations. **a:** Average diffusion matrix. **Inset:** Eigenvalue spectrum. **b:** Data plotted on the
226 same scale in the 1st and 2nd, 1st and 3rd, and 1st and 4th dimensions of embedding space (top to
227 bottom). Variance estimates on the locations of each ROI in embedding space were obtained via
228 bootstrapping and are represented by the size of the ellipsoid for each ROI.

229 *Organization of ROIs outside auditory cortex*

230 Figure 3b also characterizes the temporal and parietal ROIs outside auditory cortex that are
231 nonetheless part of the extended auditory network, including components of the dorsal and
232 ventral processing streams. These ‘auditory-related’ ROIs (shades of green in Fig. 3b), were
233 distributed along a considerable extent of all four dimensions, consistent with functional
234 heterogeneity of these regions and their involvement in multimodal integration (Bernstein and
235 Liebenthal, 2014).

236 This heterogeneity, as well as the embedding locations of PP and STSU, suggests that the brain
237 parcellation scheme from Figure 1 is suboptimal. Indeed, there were no quantitative criteria in
238 this scheme for designating ROIs as ‘Auditory-related’ versus ‘Auditory non-core’. Similarly, the
239 ‘Other’ group contains a large and diverse collection of ROIs whose relationship to auditory
240 structures and speech and language processing is unclear. To facilitate arranging these and
241 other ROIs into functional groups or streams and develop a data-driven parcellation scheme,
242 we turned to a quantitative hierarchical clustering approach.

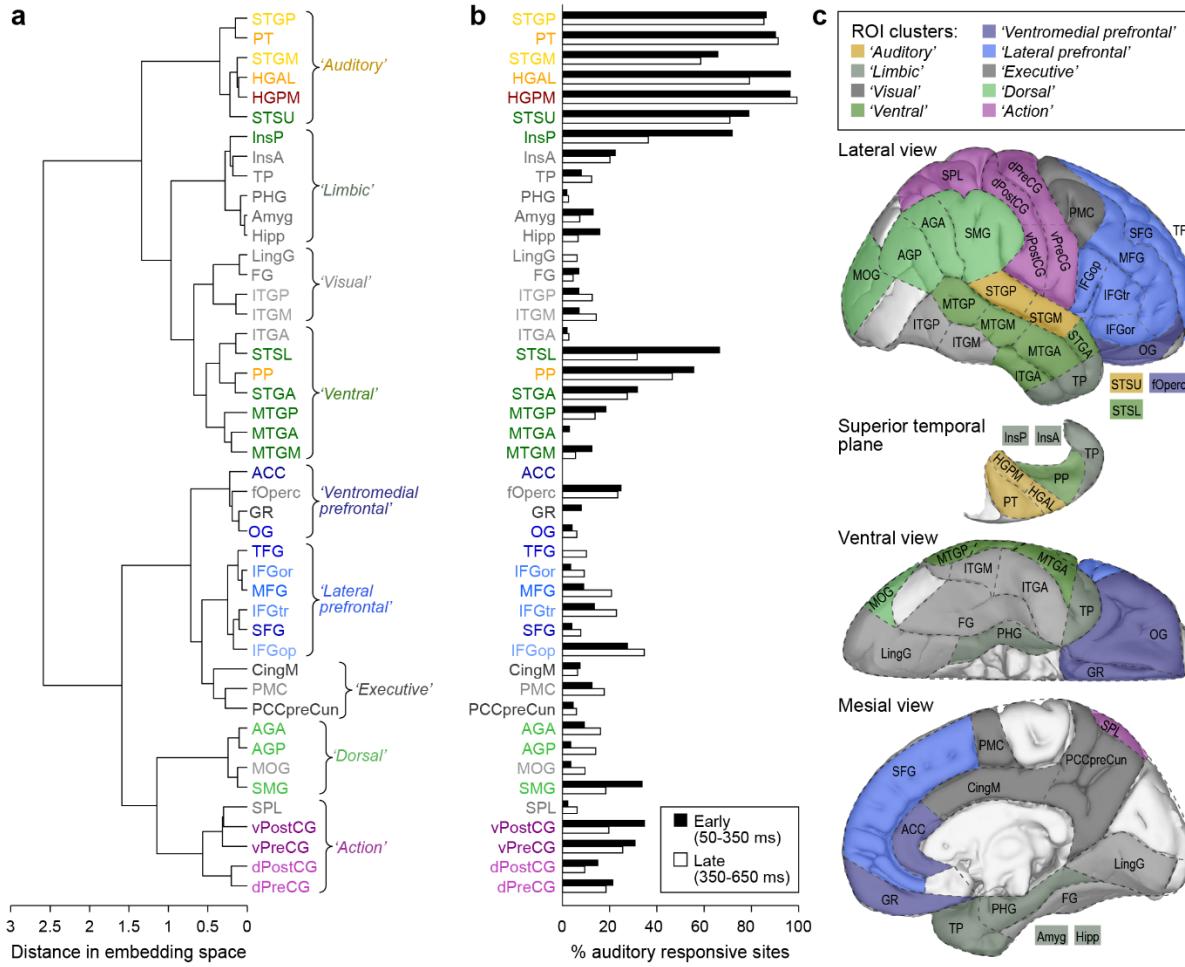
243

244 *Hierarchical clustering identifies mesoscale-level organizational features: ROI groups and*
245 *processing streams*

246 Hierarchical clustering applied to the first four dimensions of the embedded data shown in
247 Figure 3 elucidated the mesoscale organization of cortical ROIs (Fig. 4) in agreement with the
248 qualitative observations discussed above. Auditory cortical ROIs (excluding PP) formed an
249 ‘Auditory’ cluster with STSU. Another major cluster (labeled ‘Limbic’) included ROIs traditionally
250 considered part of the limbic system [parahippocampal gyrus (PHG), amygdala and
251 hippocampus], as well as TP and the insula. ROIs typically considered part of the ventral and
252 dorsal auditory streams segregated into two clusters. Additional clusters included ROIs in the
253 ventral visual stream and those involving sensorimotor functions (labeled ‘Visual’ and ‘Action’,
254 respectively in Fig. 4), and several clusters of prefrontal and medial cortical ROIs involved in
255 executive function. Thus, the hierarchical clustering analysis revealed a segregation of ROIs in
256 embedding space that aligned with known functional differentiation of brain regions. Further,
257 we can use this analysis to expand our understanding of hierarchical relationships among
258 clusters. For example, the ‘Auditory’ cluster is distinct from other clusters primarily in the
259 temporal lobe, but is closer to the ‘Limbic’ cluster than ‘Ventral’ or ‘Visual’.

260 In addition to these resting state recordings, most participants engaged in additional
261 experiments investigating representation of acoustic stimuli in the brain (Nourski et al., 2017;
262 Nourski et al., 2021; Nourski et al., 2022; Steinschneider et al., 2014). We used these data to
263 evaluate auditory responsiveness of each recording site (Fig. 4b) and compare these response
264 profiles to the clustering results of Figure 4a. As expected, ROIs in the auditory cluster exhibited
265 consistently high responsiveness to auditory stimuli, while visual ROIs did not. By contrast,

266 some clusters exhibited mixed responsiveness (e.g. InsP in the limbic cluster), possibly
 267 indicating ROIs that serve as nodes bridging auditory and other brain networks.
 268 A new brain parcellation scheme based on these clustering results is illustrated in Figure 4c.
 269



270

271 **Figure 4.** Hierarchical clustering of embedding data shown in Figure 3. **a:** Linkages between ROI groups
 272 identified using agglomerative clustering. **b:** Percentages of sites with early (50-350 ms after stimulus
 273 onset; black bars) and late (350-650 ms; white bars) high gamma responses to 300 ms monosyllabic
 274 words. **c:** Brain parcellation based on hierarchical clustering.

275 *Embedding and hierarchical clustering in the theta band*

276 DME applied to theta-band power envelope correlations yielded results broadly similar to the
277 gamma band, especially in the first two dimensions of embedding space (Supplementary Figure
278 4). Auditory cortical ROIs other than PP clustered together and with STSU, and were maximally
279 segregated from PFC ROIs along dimension 1. In addition, auditory-related ROIs were dispersed
280 in embedding space, consistent with their functional heterogeneity.

281 Hierarchical clustering of data from theta-band power envelope correlations (Supplementary
282 Figure 5) yielded several clusters that overlapped with those from gamma-band data. These
283 included a cluster of auditory cortical ROIs, the bulk of lateral prefrontal cortex, and most of the
284 'action' cluster. Other clusters were less consistent, suggesting the temporal scale of neuronal
285 signaling contributes to establishing distinct functional networks (Hacker et al., 2017; Keitel and
286 Gross, 2016; Kiebel et al., 2008).

287

288 *DME identifies mesoscale topological features of cortical networks*

289 Identification of 'global hubs' within brain networks is critical for understanding their topology
290 (Bullmore and Sporns, 2009). These nodes integrate and regulate information flow in the
291 network by virtue of their centrality and strong connectivity, yet a precise method for
292 identifying these hubs is yet to be established.

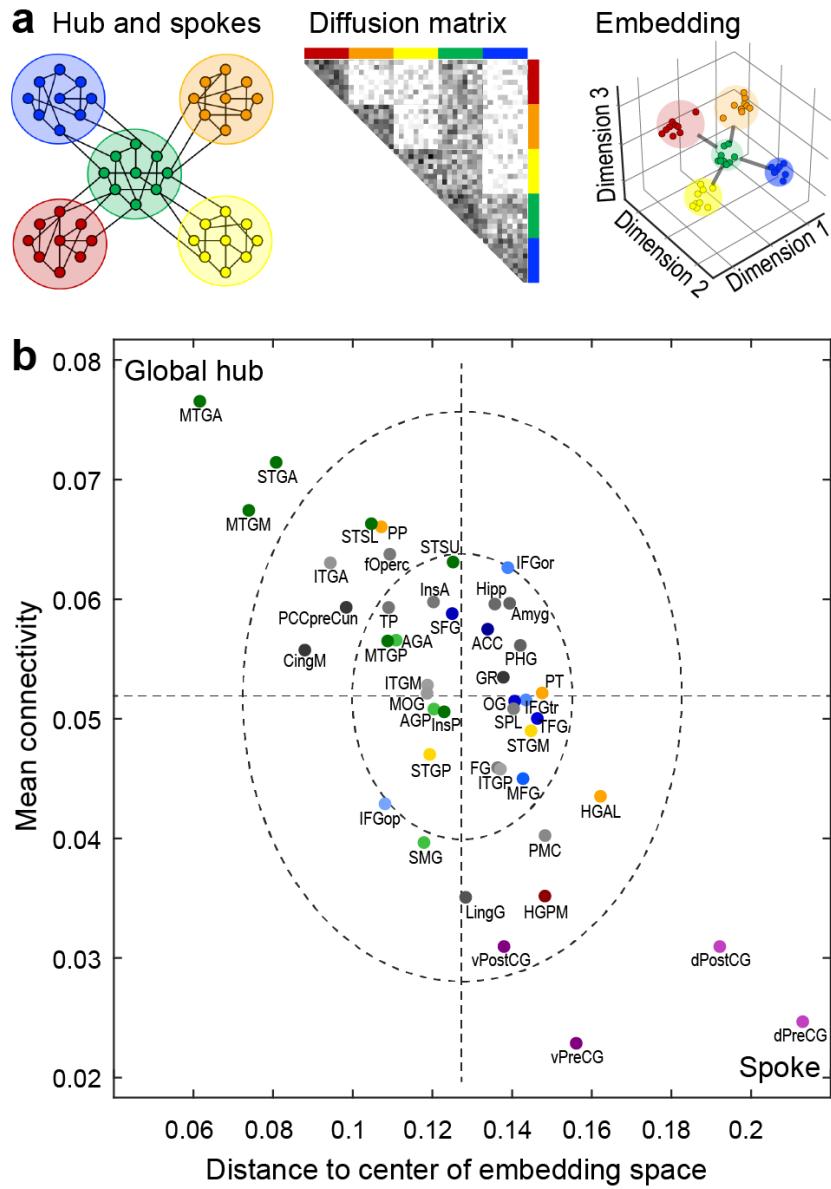
293 DME can identify global hubs, as the closer an ROI is to the center of the data cloud in
294 embedding space, the more equal is its connectivity to the rest of the network. A simulated
295 example is illustrated in Figure 5a, which depicts a network of five ROIs, with one serving as a
296 global hub (Fig. 5a, left panel, green). The network structure can also be represented as an
297 adjacency matrix, wherein the hub ROI has strong connectivity with other ROIs (Fig. 5a, middle
298 panel). In embedding space, this ROI occupies a central location, with the other four serving as
299 spokes, i.e., nodes that interact with each other through the central hub (Fig. 5a, right panel).

300 We computed distance from the center of embedding space for all of the ROIs in Figure 3b. We
301 also computed mean functional connectivity for each ROI and show in Figure 5b an overall
302 inverse relationship between these two measures. ROIs close to the center of embedding space
303 also exhibited strong mean connectivity, suggesting their roles as global hubs. These ROIs
304 included MTGA, STGA, and MTGM, which all lie in the upper left quadrant of the plot >2
305 standard deviations from the center of the data cloud (outer dashed ellipse). ITGA, CingM,
306 posterior cingulate/precuneus (PCC/preCun), PP, fOperc, and STSL also exhibited hub-like
307 properties, i.e., were located in the upper left quadrant of Figure 5b. ROIs far from the center of
308 embedding space, mostly unimodal sensory and motor regions, exhibited weak overall
309 connectivity, consistent with their roles as spokes in the network.

310 In contrast to the gamma-band data, the same analysis applied to theta-band data identified
311 CingM and ACC as two prominent global hubs, along with MTGM (Supplementary Figure 6).

312 These results are consistent with network organization depending on temporal scale, and
313 suggests that mesial cortical structures regulate information flow on slower time scales. Thus,
314 DME can identify topological features critical to information flow within cortical networks.

315



316

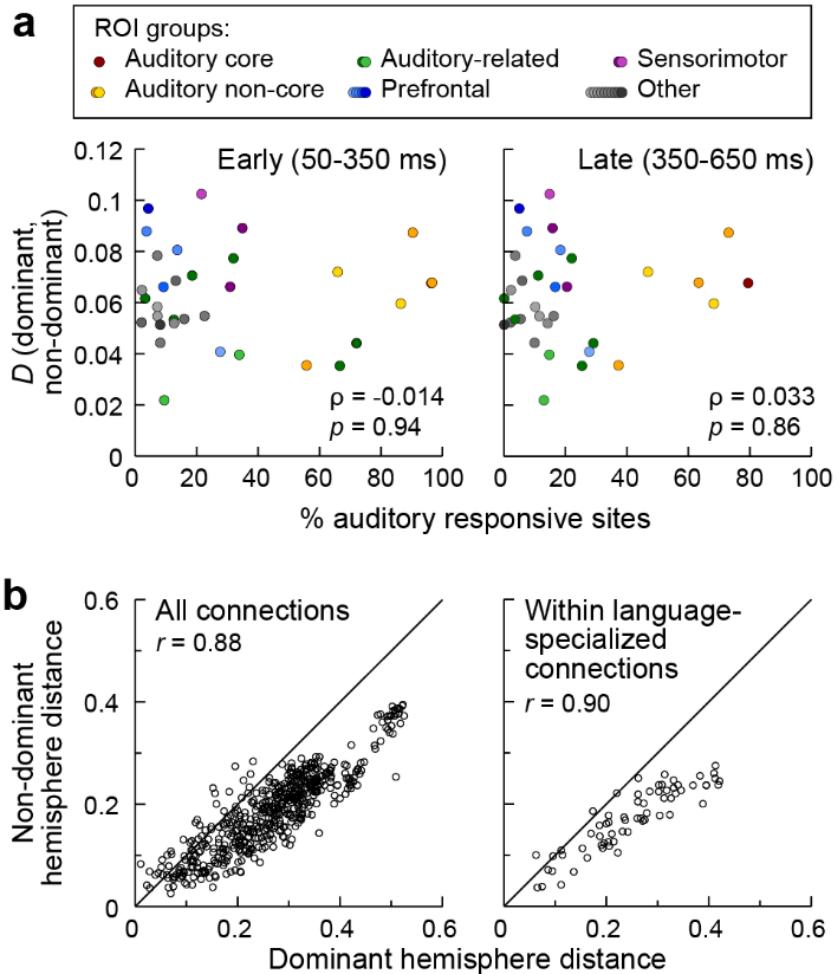
317 **Figure 5.** Identification of network hubs. **a:** Schematic example illustrating the central positioning of
318 global hubs in embedding space. **b:** ROIs from average embedding are plotted according to their mean
319 connectivity to the rest of the network versus their distance to the centroid of the data cloud in the first
320 four dimensions of embedding space. Dashed lines denote across-ROI means. Dashed ellipses represent
321 1 and 2 standard deviations from the mean.

322 *Differences between language-dominant and non-dominant hemispheres are not specific to*
323 *speech and language ROIs*

324 On a macroscopic scale, speech and language networks are lateralized in the human brain, with
325 nearly all right-handed and most left-handed individuals left hemisphere language-dominant
326 (Knecht et al., 2000). However, both hemispheres are activated during speech processing
327 (Hickok and Poeppel, 2007; Price, 2012; Schirmer et al., 2012; Turkeltaub and Coslett, 2010),
328 and the extent to which lateralization is reflected in asymmetries in the organization of resting
329 state auditory networks is unclear. We investigated this issue by comparing the functional
330 geometry of cortical networks derived from participants with electrode coverage in the
331 language-dominant ($N = 24$) versus non-dominant ($N = 22$) hemisphere. ROIs in the two
332 hemispheres exhibited a similar functional organization in embedding space (Supplementary
333 Fig. 7). Permutation analysis indicated that the positions of ROIs in embedding space were not
334 significantly different between dominant and non-dominant hemispheres (all p -values > 0.05).
335 Furthermore, there was no significant correlation between the change in position in embedding
336 space and either early or late auditory responsiveness (early: $p = 0.94$; late: $p = 0.86$; Fig. 6a).

337 We also analyzed inter-ROI distances to determine whether functional interactions between
338 ROIs were different in the two hemispheres. Pairwise inter-ROI distances in embedding space,
339 calculated separately for dominant versus non-dominant hemisphere, were highly correlated (r
340 = 0.88), with no obvious outliers (Fig. 6b, left panel). The data shown in Figure 6a have a slope
341 < 1 , indicating that inter-ROI distances are consistently longer in the dominant hemisphere
342 compared to the non-dominant hemisphere ($p = 0.0052$). This multiplicative scaling of the
343 distances is consistent with the data occupying a larger volume in embedding space for the
344 dominant versus non-dominant hemisphere, suggesting a greater functional heterogeneity for
345 the language-dominant side of the brain. After accounting for this multiplicative scaling effect,
346 following FDR correction, there were no specific inter-ROI distances that were significantly
347 different between the two hemispheres.

348 When considering ROIs specifically involved in speech and language comprehension and
349 production [PT, PP, STSL, STGP, STGM, STGA, SMG, AGA, premotor cortex (PMC), precentral
350 gyrus (PreCG), IFGop, IFGtr] (Ardila et al., 2016; Chang et al., 2015; Hickok and Poeppel, 2015),
351 the correlation in pairwise inter-ROI distances in embedding space was also high ($r = 0.90$;
352 Figure 6b). Furthermore, the data in Figure 6b exhibit a similar multiplicative scaling as
353 observed for all the ROIs shown in Figure 6a. Indeed, the slope for the data in Figure 6b was
354 indistinguishable from the slope for the data in Figure 6a ($p = 0.92$). Thus, hemispheric
355 asymmetry of functional organization specific to speech and language networks was not
356 detectable in RS connectivity.



368 *Stability of functional geometry across frequency bands*

369 Other bands (alpha, beta, high gamma) produced similar embeddings to those from gamma and
370 theta. Inter-ROI distances were highly similar for adjacent bands ($r \geq 0.82$), and even for non-
371 adjacent bands ($r \geq 0.67$; Supplementary Fig. 8). Thus, DME identified overall, rather than band-
372 specific, organizational features of cortical networks.

373 However, a particular band might be preferred if it produced narrower estimation margins in
374 the functional geometry. An overall relative uncertainty was calculated as the correlation
375 between inter-ROI embedding distances in the original data versus bootstrapped data.
376 Correlation values were uniformly high across bands ($r = 0.91, 0.85, 0.87, 0.88$, and 0.86 for
377 high gamma, gamma, beta, alpha, and theta, respectively). These analyses suggest that DME
378 offers a robust approach to exploring functional geometry.

379

380 *Comparison to embeddings derived from RS-fMRI data*

381 So far, we've presented results at multiple spatial scales based on intracranial
382 electrophysiology. However, these intracranial recordings sample the brain non-uniformly and
383 sparsely as dictated by clinical considerations. This feature presents problems at two spatial
384 scales: first, cortical regions are not sampled uniformly (with some not sampled at all). Second,
385 ROIs are not sampled uniformly across their volume. To examine the impact of these sampling
386 issues, we compared iEEG-based DME to DME applied to RS-fMRI data available in a subset of
387 ten participants.

388 We first tested the consistency of functional geometry derived from the two modalities in the
389 same participants (Fig. 7). Connectivity matrices were constructed based on RS-fMRI data from
390 voxels located at iEEG recording sites and grouped into the same ROIs as in Figure 1. The iEEG
391 and fMRI embeddings averaged across participants were qualitatively similar (Fig. 7a, b), and
392 the overall organization derived from this subset was consistent with that observed in the full
393 iEEG dataset (cf. Fig. 3b). Inter-ROI distances in the fMRI and iEEG embedding spaces were
394 correlated (Fig. 7c), with highest correlations for gamma- and high gamma-band envelopes ($r >$
395 0.45 ; Fig. 7d, line and symbols).

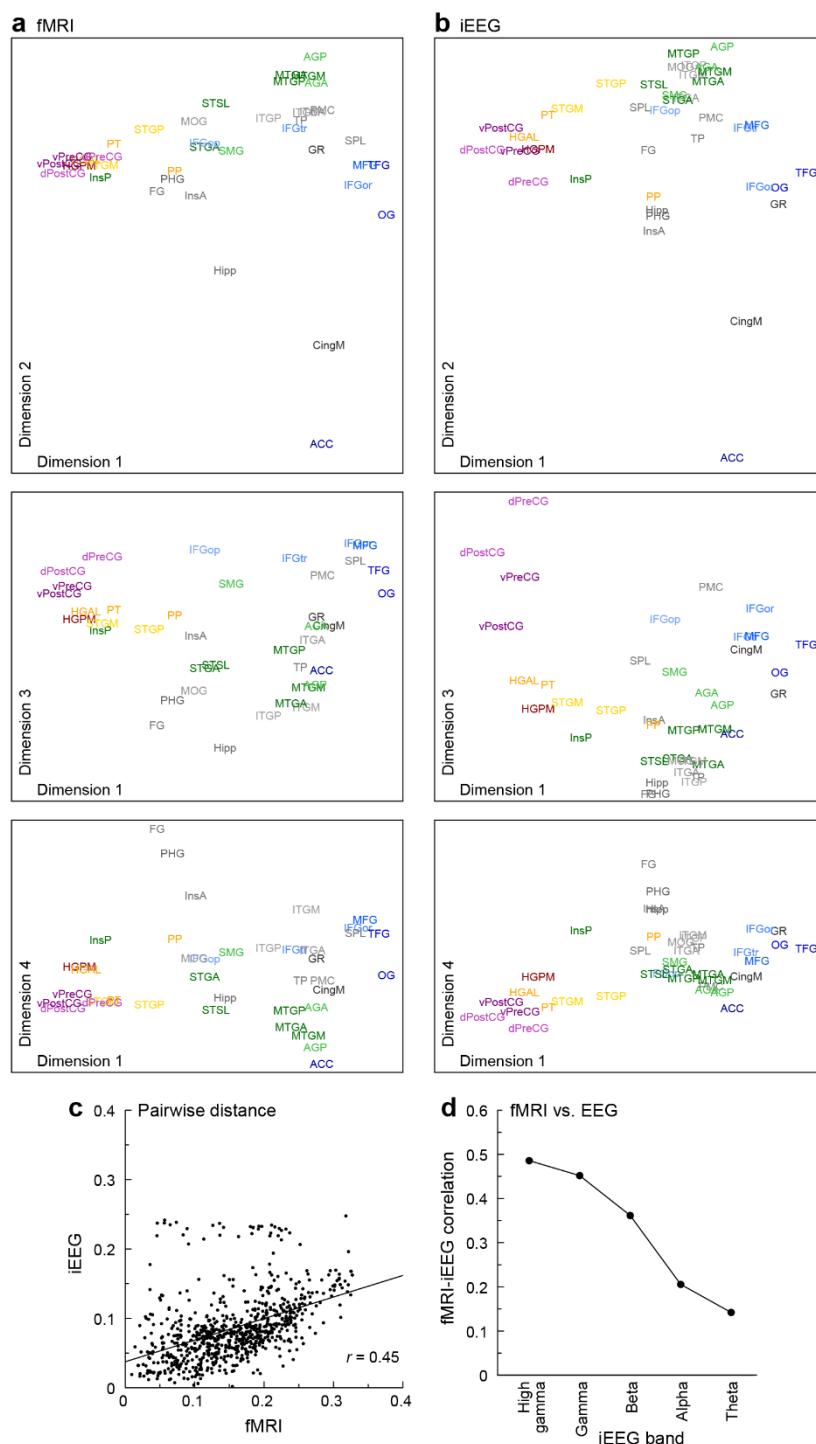
396 The analysis presented in Figure 7 provide a context for using fMRI data to address questions
397 regarding the effects of limited, non-uniform sampling. We used a standard parcellation
398 scheme developed for fMRI data (Schaefer-Yeo 400 ROIs; (Schaefer et al., 2018)) rather than
399 the iEEG parcellation scheme introduced in Figure 1.

400 The first question we addressed was the effect of non-uniformly sampling only a subset of brain
401 regions. For each participant, embeddings were derived from RS-fMRI connectivity matrices
402 computed from all cortical ROIs (Fig. 8a, "Full fMRI", first column). From these embeddings, we
403 selected only points in embedding space corresponding to ROIs sampled with iEEG (Fig. 8a, "Full
404 fMRI (iEEG subset)", second column). We also computed embeddings for each subject from

405 only the fMRI ROIs sampled with iEEG in that subject [“Partial fMRI (ROI level)”, Fig. 8a, 3rd
406 column]. We compared these embeddings to the “Full fMRI (iEEG subset)” embeddings by
407 computing the correlation between inter-ROI distances (Fig. 8b). Although the scale of the
408 embeddings was different for the full fMRI versus partial fMRI data (because the number of
409 dimensions was different), the two were highly correlated (median $r = 0.90$; Fig. 8c). Thus,
410 embeddings constructed from the portion of the brain sampled by iEEG were quite similar to
411 embeddings derived from the whole brain.

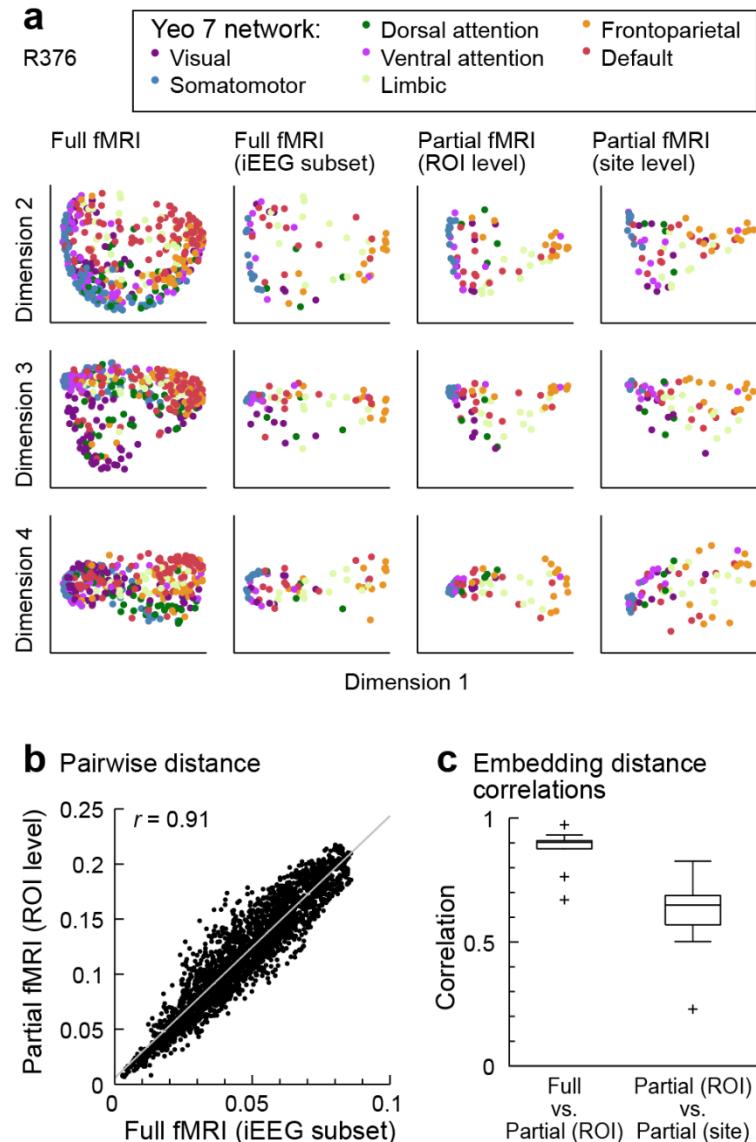
412 The second question we addressed was the effect of representing an entire ROI by sparse
413 sampling with a limited number of electrodes. We computed embeddings from the voxel
414 averages across entire ROIs in each participant [“Partial fMRI (ROI level)”, Fig. 8a, 3rd column]
415 and from averages of the voxels in grey-matter spheres around iEEG recording sites [“Partial
416 fMRI (site level)”, Fig. 8a, rightmost column]. ROI- and site-level embedding distances were
417 strongly correlated (median $r = 0.65$; Fig. 8c).

418 Thus, sparse sampling within an ROI had a greater impact on estimates of functional geometry
419 than limited sampling of the complete set of ROIs. Overall, however, ROIs were faithfully
420 represented in embedding space even when DME was based on a small number of locations
421 within ROIs. Taken together, these results indicate broad consistency between functional
422 organization derived from iEEG and fMRI and the robustness of this approach to sparse
423 sampling afforded by iEEG recordings.



424

425 **Figure 7.** Comparison of iEEG and fMRI connectivity data in embedding space. **a:** Participant-averaged
 426 embeddings for iEEG (gamma band power envelope correlations). **b:** Participant-averaged embeddings
 427 for fMRI. Scale bar: 0.1. **c:** Inter-ROI embedding distances computed from the data in **a** and **b**. **d:**
 428 Summary of distance correlations at each frequency band. $t = 1$ for all embeddings.



429

430 **Figure 8.** Comparison of embeddings derived from full fMRI connectivity matrices and connectivity
 431 matrices computed using only ROIs sampled with iEEG. **a:** Data in the first four dimensions of embedding
 432 space for a single participant. Shown are embeddings of all derived from the full RS-fMRI connectivity
 433 matrix (1st column); the subset of the data points in the 1st column corresponding to ROIs sampled via
 434 iEEG (2nd column); and embeddings derived from connectivity matrices including *only* the ROIs sampled
 435 via iEEG, calculated by averaging across the entire ROI (3rd column), and calculated based on the specific
 436 recording sites in that participant (4th column). **b:** Comparison of embedding distances calculated from
 437 the full fMRI embedding (i.e., data in **a**, 2nd column) versus distances calculated from the partial fMRI
 438 embedding (i.e., data in **a**, 3rd column). **c:** Summary across participants of distance correlations between
 439 full fMRI embeddings versus partial embeddings calculated based on the entire ROI (*left*, “Full vs. Partial
 440 (ROI)”) and between partial embeddings calculated based on the entire ROI versus those calculated
 441 based on recording sites [*right*, “Partial (ROI) vs. Partial (site)”].

442 **Discussion**

443 *Organization of auditory cortical networks*

444 We have shown that DME applied to iEEG data can be used to characterize the organization of
445 the human auditory cortical hierarchy at multiple spatial scales. We demonstrate methodology
446 for testing specific hypotheses at each of these scales using DME. We also generate data-driven
447 hypotheses for study using future data sets.

448

449 *Fine scale: Organization of auditory cortex*

450 At a fine spatial scale, previous work in macaque has defined over a dozen auditory cortical
451 fields based on cytoarchitectonics, connectivity, and response properties (Hackett et al., 2001).
452 By contrast, there is no consensus on how auditory cortex is organized in humans, with multiple
453 candidate parcellations based on cytoarchitectonics, tonotopy or myeloarchitecture (Barton et
454 al., 2012; Hackett, 2015; Moerel et al., 2014; Woods et al., 2010). Our results contribute to this
455 body of knowledge by showing that several superior temporal ROIs including core auditory
456 cortex (HGPM) and putative auditory belt and parabelt areas (PT, HGAL, STGP, STGM) (Hackett,
457 2015; Moerel et al., 2014) cluster together in embedding space. Thus, in spite of their diversity
458 in processing of specific features of acoustic signals, these ROIs are positioned at a similar level
459 in the auditory processing hierarchy. Proximity of STGP and STGM to HGPM in embedding
460 space is consistent with previous studies that interpret these regions as relatively early non-
461 core auditory cortex (Hamilton et al., 2021; Howard et al., 2000; Nourski et al., 2014). By
462 contrast, PP is anatomically close and connected to HGPM (Upadhyay et al., 2008), yet it is
463 distinguished among auditory cortical regions for its syntactic-level language processing
464 (Friederici et al., 2000) and its preferential activation by music, which has a strong affective
465 component (Angulo-Perkins et al., 2014). This functional differentiation is reflected in its
466 segregation from the auditory cluster in embedding space.

467

468 *Fine scale: Functional differentiation between STSU and STSL*

469 The superior temporal sulcus is a critical node in speech and language networks linking
470 canonical auditory cortex with higher order temporal, parietal, and frontal areas (Abrams et al.,
471 2020; Beauchamp, 2015; Chang et al., 2015; Hickok, 2009; Price, 2012; Venezia et al., 2017).
472 Previous studies have shown that STSU and STSL differ in cytoarchitecture (Zachlod et al., 2020)
473 and have distinct responses to speech (Belin et al., 2000; Deen et al., 2015; Leaver and
474 Rauschecker, 2010; Wilson et al., 2018). A recent iEEG study demonstrated enhanced, shorter-
475 latency, responses to speech syllables in STSU compared to STSL (Nourski et al., 2021). STSU is
476 traditionally not considered part of canonical auditory cortex (but see (Woods et al., 2010)), yet
477 it clustered with auditory cortical ROIs. STSL, by contrast, was closer in embedding space to
478 semantic ROIs. This is consistent with iEEG evidence that responses in STSL, but not STSU,

479 correlated with performance on a semantic categorization task (Nourski *et al.*, 2021). The
480 regions specifically involved in semantic processing is a current topic of debate, with multiple
481 competing models (Binder *et al.*, 2009; Humphreys *et al.*, 2015; Jackson *et al.*, 2016; Lambon
482 Ralph *et al.*, 2017). We defined a list of semantic processing regions by combining across these
483 models.-STS1 was positioned closer in embedding space to these regions compared to STS1.
484 Taken together, the results firmly place STS1 and STS1 at different levels of the auditory cortical
485 hierarchy.

486

487 *Mesoscale: Functional and theoretical framework of a limbic auditory pathway*

488 Multiple lines of evidence support a pathway linking auditory cortical and limbic structures
489 (Kahn *et al.*, 2008; Michelmann *et al.*, 2021; Rocchi *et al.*, 2021; Wang *et al.*, 2016) that
490 subserves auditory memory (Kumar *et al.*, 2021; Kumar *et al.*, 2016; Munoz-Lopez *et al.*, 2010)
491 and affective sound processing (Fruhholz *et al.*, 2016). The data presented here contribute to
492 our understanding of this pathway. Clustering analysis identified a set of ROIs including
493 structures classically labeled as limbic (PHG, Amy, Hipp) as well as insula (InsP, InsA) and TP
494 positioned close to the auditory cluster in embedding space (Fig. 4). This suggests a close
495 functional relationship that could form the basis for a limbic stream. InsP, with strong auditory
496 responsiveness and overlapping response properties with HGPM, is likely involved in the
497 transformation of auditory information in auditory cortex to affective representations in InsA
498 (Zhang *et al.*, 2019). Thus InsP could serve as critical linking node between auditory and limbic
499 structures.

500 TP is involved in semantic processing (Friederici *et al.*, 2000; Lambon Ralph *et al.*, 2017) and
501 auditory memory (Munoz-Lopez *et al.*, 2015), in particular the representation and retrieval of
502 memories for people, social language, and behaviors ('social knowledge') (Olson *et al.*, 2013).
503 Tight clustering of TP with limbic ROIs in embedding space is consistent with its previously
504 reported functional association with limbic cortex (Chanes and Barrett, 2016; Mesulam, 2000),
505 with which TP shares key features of laminar cytoarchitecture and strong connectivity (Maller
506 *et al.*, 2019). We suggest that the organization depicted in Figures 3 and 4, combined with
507 evidence for bidirectional information sharing between auditory cortex and limbic areas, merits
508 the identification of a third auditory processing stream alongside the dorsal and ventral streams
509 (Hickok, 2012; Rauschecker and Scott, 2009). This 'limbic stream' would underlie auditory
510 contributions to affective and episodic memory processing.

511

512 *Mesoscale: Ventral and dorsal streams linking auditory and frontal cortex*

513 Current models of speech and language processing posit the existence of ventral and dorsal
514 processing streams linking non-core auditory cortex with PMC and inferior frontal gyrus via
515 several distinct anatomical pathways encompassing temporal, parietal, and frontal cortex

516 (Chang *et al.*, 2015; Friederici, 2012; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009).
517 Despite substantial experimental evidence supporting these models, there is a lack of
518 consensus on the specific functions subserved by the two streams. For example, the dorsal
519 stream has been envisioned to subserve spatial processing (“where” (Rauschecker and Scott,
520 2009)), sensorimotor integration (“how” (Hickok and Poeppel, 2007)), and syntactic processing
521 (Friederici, 2012). There is a parallel debate about the specific cortical regions comprising the
522 two streams.

523 As broadly predicted by these models, temporal and parietal ROIs segregated in embedding
524 space in the analysis presented here (Fig. 3b, 4). We observed a cluster that included STL,
525 middle and inferior temporal gyrus ROIs, in conformity with the ventral auditory stream
526 proposed by Hickok and Poeppel (Hickok and Poeppel, 2007) and Friederici (Friederici, 2012).
527 By contrast, the cluster that included SMG, AGP, and AGA aligned with the dorsal processing
528 stream as proposed by Rauschecker and Scott (Rauschecker and Scott, 2009). Association of FG
529 and MOG with the ventral and dorsal clusters, respectively, likely represents the sharing of
530 information across sensory modalities.

531 A previous fMRI-based DME study found that primary sensory and default mode ROIs
532 segregated along the first dimension in embedding space (Margulies *et al.*, 2016). Coverage of
533 mesial cortex in our dataset was limited, precluding a direct comparison. However, the striking
534 separation between auditory and prefrontal cortex in embedding space shown here, and its
535 robustness to the choice of the parameter t , indicate that the current results align well with the
536 previous report. This separation places auditory and frontal regions at opposite ends of the
537 auditory processing hierarchy, linked by ventral and dorsal processing streams (Friederici, 2012;
538 Hickok and Poeppel, 2007; Rauschecker and Scott, 2009).

539

540 *Mesoscale: Network hubs*

541 Hubs in brain networks play a critical role in integrating distributed neural activity (Bullmore
542 and Sporns, 2009; van den Heuvel and Sporns, 2013). In the present analysis, global hubs were
543 characterized by their central location within embedding space and high mean connectivity (Fig.
544 5). In the gamma band, these hubs included STGA and MTGA, both components of the ATL.
545 Previous reports indicate that ATL serves as a transmodal hub, transforming sensory domain-
546 specific to domain-general representations (Abel *et al.*, 2015; Lambon Ralph *et al.*, 2017;
547 Simmons and Martin, 2009) and playing a central role in semantic processing and social
548 memory (Lambon Ralph *et al.*, 2017; Olson *et al.*, 2013; Patterson *et al.*, 2007). MTGM also
549 appears as a global hub, even though it is not formally part of the ATL. Interestingly, patients
550 with semantic dementia have ATL degeneration (Scott *et al.*, 2000; Spitsyna *et al.*, 2006), but
551 the damage is often more widespread and can include MTGM (Gorno-Tempini *et al.*, 2004).

552 Cingulate cortical ROIs (CingM, ACC) were identified as hubs in theta-band data. These areas
553 are described as transmodal and are active during a wide array of emotional and cognitive

554 processes (Mesulam, 1998; Rolls, 2019), both consistent with their previous characterization as
555 network hubs (van den Heuvel and Sporns, 2013). The identification of hubs specific to each
556 frequency band supports the model in which the temporal scale of communication in the brain
557 supports distinct functional networks (Hacker *et al.*, 2017; Keitel and Gross, 2016; Kiebel *et al.*,
558 2008).

559 Unlike other ATL structures, TP does not appear as a global hub in either gamma or theta
560 bands (Fig. 5b, Supplementary Figure 6). The close association of TP with limbic structures in
561 embedding space suggests that TP mediates interactions between multimodal integration
562 centers in the ATL and structures subserving memory functions. More broadly, the
563 heterogeneity of ATL ROIs in terms of their global hub-like connectivity profiles conforms to the
564 observation that the terminal fields of white matter tracts converging in the ATL only partially
565 overlap (Binney *et al.*, 2012; Lambon Ralph *et al.*, 2017; Makris *et al.*, 2009).

566

567 *Macroscale: Hemispheric lateralization*

568 Although speech and language networks are classically described as highly lateralized, imaging
569 studies have demonstrated widespread bilateral activation during speech and language tasks
570 (Binder *et al.*, 2000; Cogan *et al.*, 2014; de Heer *et al.*, 2017). We found evidence for
571 hemispheric differences in cortical functional organization based on analysis of all sampled
572 brain regions, with inter-ROI distances being systematically greater in embedding space for the
573 language-dominant hemisphere (Fig. 6b). This is consistent with greater inter-regional
574 heterogeneity in that hemisphere compared to the non-dominant side. Importantly, ROIs
575 involved in speech and language processing did show any additional asymmetry (Fig. 6b), nor
576 was the difference in position in embedding space related to auditory responsiveness (Fig. 6a).
577 Recent studies that identified interhemispheric differences in RS connectivity for the STS
578 (Abrams *et al.*, 2020) and semantic networks more broadly (Gonzalez Alam *et al.*, 2021) may
579 reflect this broader asymmetry observed here. Our results are also consistent with a recent fMRI study
580 showing RS connectivity patterns in lateral temporal cortex that were comparable between left
581 and right hemispheres (Jackson *et al.*, 2018). This does not exclude the possibility of
582 asymmetries specific to auditory regions emerging during sensory tasks, for example reflecting
583 hemispheric biases in spectral and temporal processing (Hickok and Poeppel, 2007; 2015).

584

585 *Caveats & limitations*

586 A key concern regarding all human iEEG studies is that participants may not be representative
587 of a healthy population. In the present study, results were consistent across participants
588 despite differences in seizure disorder histories, medications, and seizure foci, and aligned with
589 results obtained previously in healthy participants (Margulies *et al.*, 2016). Another caveat is
590 that our dataset, however extensive, did not sample the entire brain, and it was not possible to

591 infer connectivity with unsampled regions. To address this, we applied DME analysis to fMRI
592 data to establish that the organization of ROIs in embedding space was robust to the exclusion
593 of unsampled ROIs. Although there was a greater effect of sparse, non-uniform sampling within
594 an ROI, there was still considerable similarity in functional organization to embeddings derived
595 from averages across the entire ROI.

596 While subcortical structures (e.g., thalamus) that link sensory and higher order networks
597 (Sherman and Guillery, 2011) were not sampled, the functional organization presented here
598 was likely influenced indirectly by thalamo-cortical pathways (Hamilton *et al.*, 2021; Hu, 2003).
599 Previous fMRI studies of RS networks focused exclusively on cortical ROIs and did not consider
600 the role of the thalamus and other subcortical structures. Despite this limitation, these studies
601 have yielded valuable insights into the functional organization of the human cortical networks
602 (Biswal *et al.*, 2010; Seitzman *et al.*, 2019).

603

604 *Concluding remarks and future directions*

605 This study extends the DME approach to characterize functional relationships between cortical
606 regions investigated using iEEG recordings. These data help resolve several outstanding issues
607 regarding the functional organization of human auditory cortical networks and stress the
608 importance of a limbic pathway complementary to the dorsal and ventral streams. These
609 results lay the foundation for future work investigating network organization during active
610 speech and language processing. While the current work focused on auditory cortical networks,
611 this approach can be readily generalized to advance our understanding of changes in brain
612 organization during sleep and anesthesia, disorders of consciousness, as well as reorganization
613 of cortical functional geometry secondary to lesions.

614 **Online Methods**

615 *Participants*

616 The study was carried out in 49 neurosurgical patients (22 females) diagnosed with medically
617 refractory epilepsy. The patients were undergoing chronic invasive electrophysiological
618 monitoring to identify seizure foci prior to resection surgery (Supplementary Table 1). Research
619 protocols aligned with best practices recently aggregated in (Feinsinger et al., 2022) and were
620 approved by the University of Iowa Institutional Review Board and the National Institutes of
621 Health; written informed consent was obtained from all participants. Research participation did
622 not interfere with acquisition of clinically necessary data, and participants could rescind
623 consent for research without interrupting their clinical management.

624 All participants except two were native English speakers. The participants were predominantly
625 right-handed (42 out of 49); six participants were left-handed, and one had bilateral
626 handedness. The majority of participants (35 out of 49) were left language-dominant, as
627 determined by Wada test. Two participants were right hemisphere-dominant, and one had
628 bilateral language dominance. The remaining 11 participants were not evaluated for language
629 dominance; 9 of them were right-handed and thus were assumed left language-dominant for
630 the purposes of the analysis of lateralization (see below). The participant with bilateral
631 dominance, and the remaining two participants who did not undergo Wada test and who were
632 left-handed were not included in the analysis of hemispheric asymmetry in Figure 6.
633 All participants underwent audiological and neuropsychological assessment prior to electrode
634 implantation, and none had auditory or cognitive deficits that would impact the results of this
635 study. The participants were tapered off their antiepileptic drugs during chronic monitoring
636 when RS data were collected.

637

638 *Experimental procedures*

639 *Pre-implantation neuroimaging.* All participants underwent whole-brain high-resolution T1-
640 weighted structural MRI scans before electrode implantation. In a subset of ten participants
641 (Supplementary Table 2), RS-fMRI data were used for estimates of functional connectivity. The
642 scanner was a 3T GE Discovery MR750W with a 32-channel head coil. The pre-electrode
643 implantation anatomical T1 scan (3D FSPGR BRAVO sequence) was obtained with the following
644 parameters: FOV = 25.6 cm, flip angle = 12 deg., TR = 8.50 ms, TE = 3.29 ms, inversion time =
645 450 ms, voxel size = 1.0 × 1.0 × 0.8 mm. For RS-fMRI, 5 blocks of 5-minute gradient-echo EPI
646 runs (650 volumes) were collected with the following parameters: FOV = 22.0 cm, TR = 2260
647 ms, TE = 30 ms, flip angle = 80 deg., voxel size = 3.45 × 3.45 × 4.0 mm. In some cases, fewer RS
648 acquisition sequences were used in the final analysis due to movement artifact or because the
649 full scanning session was not completed. For each participant, RS-fMRI runs were acquired in
650 the same session but non-contiguously (dispersed within an imaging session to avoid

651 habituation). Participants were asked to keep their eyes open, and a fixation cross was
652 presented through a projector.

653 *iEEG recordings.* iEEG recordings were obtained using either subdural and depth electrodes, or
654 depth electrodes alone, based on clinical indications. Electrode arrays were manufactured by
655 Ad-Tech Medical (Racine, WI). Subdural arrays, implanted in 36 participants out of 46, consisted
656 of platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a
657 silicon membrane. Stereotactically implanted depth arrays included between 4 and 12
658 cylindrical contacts along the electrode shaft, with 5-10 mm inter-electrode distance. A
659 subgaleal electrode, placed over the cranial vertex near midline, was used as a reference in all
660 participants. All electrodes were placed solely on the basis of clinical requirements, as
661 determined by the team of epileptologists and neurosurgeons (Nourski and Howard, 2015).

662 No-task RS data were recorded in the dedicated, electrically shielded suite in The University of
663 Iowa Clinical Research Unit while the participants lay in the hospital bed. RS data were collected
664 6.4 +/- 3.5 days (mean ± standard deviation; range 1.5 – 20.9) after electrode implantation
665 surgery. In the first 15 participants (L275 through L362), data were recorded using a TDT RZ2
666 real-time processor (Tucker-Davis Technologies, Alachua, FL). In the remaining 34 participants
667 (R369 through L585), data acquisition was performed using a Neuralynx Atlas System
668 (Neuralynx Inc., Bozeman, MT). Recorded data were amplified, filtered (0.1–500 Hz bandpass, 5
669 dB/octave rolloff for TDT-recorded data; 0.7–800 Hz bandpass, 12 dB/octave rolloff for
670 Neuralynx-recorded data) and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000 Hz
671 (Neuralynx). The durations of recordings were 13 +/- 11 min. In all but two participants,
672 recording durations were between 10 and 22 min.; in one participant duration was 6 min., and
673 in one participant the duration was 81 min.

674

675 *Data analysis*

676 *Anatomical reconstruction and ROI parcellation.* Localization of recording sites and their
677 assignment to ROIs relied on post-implantation T1-weighted anatomical MRI and post-
678 implantation computed tomography (CT). All images were initially aligned with pre-operative T1
679 scans using linear coregistration implemented in FSL (FLIRT) (Jenkinson et al., 2002). Electrodes
680 were identified in the post-implantation MRI as magnetic susceptibility artifacts and in the CT as
681 metallic hyperdensities. Electrode locations were further refined within the space of the pre-
682 operative MRI using three-dimensional non-linear thin-plate spline warping (Rohr et al., 2001),
683 which corrected for post-operative brain shift and distortion. The warping was constrained with
684 50-100 control points, manually selected throughout the brain, which were visually aligned to
685 landmarks in the pre- and post-implantation MRI.

686 To pool data across participants, the dimensionality of connectivity matrices was reduced by
687 assigning electrodes to one of 58 ROIs organized into 6 ROI groups (see Fig. 1; Supplementary
688 Table 2, 3) based upon anatomical reconstructions of electrode locations in each participant.

689 For subdural arrays, ROI assignment was informed by automated parcellation of cortical gyri
690 (Destrieux et al., 2010; Destrieux et al., 2017) as implemented in the FreeSurfer software
691 package. For depth arrays, it was informed by MRI sections along sagittal, coronal, and axial
692 planes. For recording sites in Heschl's gyrus, delineation of the border between core auditory
693 cortex adjacent non-core areas (HGPM and HGAL, respectively) was performed in each
694 participant using physiological criteria (Brugge et al., 2009; Nourski et al., 2016). Specifically,
695 recording sites were assigned to HGPM if they exhibited phase-locked (frequency-following)
696 responses to 100 Hz click trains and if the averaged evoked potentials to these stimuli featured
697 short-latency (<20 ms) peaks. Such response features are characteristic for HGPM and are not
698 present within HGAL (Brugge et al., 2009). Additionally, correlation coefficients between
699 average evoked potential waveforms recorded from adjacent sites were examined to identify
700 discontinuities in response profiles along Heschl's gyrus that could be interpreted as reflecting a
701 transition from HGPM to HGAL. Superior temporal gyrus was subdivided into posterior and
702 middle non-core auditory cortex ROIs (STGP and STGM), and auditory-related anterior ROI
703 (STGA) using the transverse temporal sulcus and ascending ramus of the Sylvian fissure as
704 macroanatomical boundaries. The insula was subdivided into posterior and anterior ROIs, with
705 the former considered within the auditory-related ROI group (Zhang et al., 2019). Middle and
706 inferior temporal gyrus were each divided into posterior, middle, and anterior ROIs by dividing
707 the gyrus into three approximately equal-length thirds. Angular gyrus was divided into posterior
708 and anterior ROIs using the angular sulcus as a macroanatomical boundary. Anterior cingulate
709 cortex was identified by automatic parcellation in FreeSurfer and was considered as part of the
710 prefrontal ROI group, separately from the rest of the cingulate gyrus. Postcentral and
711 precentral gyri were each divided into ventral and dorsal portions using the y_{MNI} coordinate (see
712 below) of 40 mm as a boundary. Recording sites identified as seizure foci or characterized by
713 excessive noise, and depth electrode contacts localized to the white matter or outside brain,
714 were excluded from analyses and are not listed in Supplementary Table 2. Electrode coverage
715 was largely restricted to a single hemisphere in individual participants, and contacts on the
716 contralateral hemisphere were excluded from analysis (and are not listed in Supplementary
717 Table 2) such that all connections represent intra-hemisphere functional connectivity.

718 *Preprocessing of fMRI data.* Standard preprocessing was applied to the RS-fMRI data acquired
719 in the pre-implantation scan using FSL's FEAT pipeline, including spatial alignment and nuisance
720 regression. White matter, cerebrospinal fluid and global ROIs were created using deep white
721 matter, lateral ventricles and a whole brain mask, respectively. Regression was performed using
722 the time series of these three nuisance ROIs as well as 6 motion parameters (3 rotations and 3
723 translations) and their derivatives, detrended with second order polynomials. Temporal
724 bandpass filtering was 0.008–0.08 Hz. Spatial smoothing was applied with a Gaussian kernel (6
725 mm full-width at half maximum). The first two images from each run were discarded. Frame
726 censoring was applied when the Euclidean norm of derivatives of motion parameters exceeded
727 0.5 mm (Power et al., 2012). All runs were processed in native EPI space, then the residual data
728 were transformed to MNI152 and concatenated.

729 *Preprocessing of iEEG data.* Analysis of iEEG data was performed using custom software written
730 in MATLAB Version 2020a programming environment (MathWorks, Natick, MA, USA). After
731 initial rejection of recording sites identified as seizure foci, several automated steps were taken
732 to exclude recording channels and time intervals contaminated by noise. First, channels were
733 excluded if average power in any frequency band [broadband, delta (1-4 Hz), theta (4-8 Hz),
734 alpha (8-13Hz), beta (13-30 Hz), gamma (30-50 Hz), or high gamma (70-110 Hz); see below]
735 exceeded 3.5 standard deviations of the average power across all channels for that participant.
736 Next, transient artifacts were detected by identifying voltage deflections exceeding 10 standard
737 deviations on a given channel. A time window was identified extending before and after the
738 detected artifact until the voltage returned to the zero-mean baseline plus an additional 100 ms
739 buffer before and after. High-frequency artifacts were also removed by masking segments of
740 data with high gamma power exceeding 5 standard deviations of the mean across all segments.
741 Only time bins free of these artifact masks were considered in subsequent analyses. Artifact
742 rejection was applied across all channels simultaneously so that all connectivity measures were
743 derived from the same time windows. Occasionally, particular channels survived the initial
744 average power criteria yet had frequent artifacts that led to loss of data across all the other
745 channels. There is a tradeoff in rejecting artifacts (losing time across all channels) and rejecting
746 channels (losing all data for that channel). If artifacts occur on many channels, there is little
747 benefit to excluding any one channel. However, if frequent artifacts occur on one or
748 simultaneously on up to a few channels, omitting these can save more data from other
749 channels than those channels contribute at all other times. We chose to optimize the total data
750 retained, channels \times time windows, and omitted some channels when necessary. To remove
751 shared signals unlikely to derive from brain activity, data from retained channels were high-pass
752 filtered above 200 Hz, and a spatial filter was derived from the singular value decomposition
753 omitting the first singular vector. This spatial filter was then applied to the broadband signal to
754 remove this common signal.

755 *Connectivity analysis.* For RS-fMRI data, BOLD signals were averaged across voxel groupings and
756 functional connectivity was calculated as Pearson correlation coefficients. Voxel groupings were
757 either based on the Schaefer-Yeo 400 parcellation scheme (Schaefer *et al.*, 2018) in MNI-152
758 space, or were based on iEEG electrode location in participant space (see Fig. 1). For the latter,
759 fMRI voxels were chosen to represent comparable regions of the brain recorded by iEEG
760 electrodes. For each electrode, the anatomical coordinates of the recording site were mapped
761 to the closest valid MRI voxel, E , and a sphere of 25 voxels (25 mm^3) centered on E used as the
762 corresponding recording site. This process was repeated for all N electrodes in the same ROI,
763 and a single time series computed as the average of the fMRI BOLD signal in these $N \times 25$ voxels.
764 These averages were used to compute an ROI-by-ROI connectivity matrix for RS-fMRI data. For
765 comparisons between iEEG and fMRI embeddings, voxels were processed in participant space
766 and ROI labels from the parcellation scheme illustrated in Figure 1 and Supplementary Table 2
767 were applied to the fMRI data. For comparisons between fMRI embeddings derived from all
768 cortical ROIs versus fMRI embeddings derived from just ROIs sampled in the iEEG experiments,

769 electrode locations were transformed from participant space to MNI-152 space, then assigned
770 to ROIs within the Schaefer-Yeo 400 scheme.

771 For iEEG data, envelope correlations were estimated within 60-second data segments using
772 orthogonalized band power envelope correlations as in (Hipp *et al.*, 2012), except time-
773 frequency decomposition was performed using the demodulated band transform (Kovach and
774 Gander, 2016) rather than wavelets. This measure avoids artifacts due to volume conduction by
775 discounting connectivity near zero phase lag. For each frequency band (theta: 4-8 Hz, alpha: 8-
776 13 Hz, beta: 13-30 Hz, gamma: 30-70 Hz; high gamma: 70-120 Hz), the power at each time bin
777 was calculated as the average (across frequencies) log of the squared amplitude. For each pair
778 of signals X and Y , one was orthogonalized to the other by taking the magnitude of the
779 imaginary component of the product of one signal with the normalized complex conjugate of
780 the other:

781
$$Y_{orth} = |\text{Im}\{Y \times X^*/|X|\}|$$

782 Both signals were band-pass filtered (0.2 – 1 Hz), and the Pearson correlation calculated
783 between signals. The process was repeated by orthogonalizing in the other direction and the
784 overall envelope correlation for a pair of recording sites was the average of the two Pearson
785 correlations. Lastly, correlations were averaged across segments.

786 Prior to diffusion map embedding, connectivity matrices were thresholded by saving at least
787 the top third (rounded up) connections for every row, as well as their corresponding columns
788 (to preserve symmetry). We also included any connections making up the minimum spanning
789 tree of the graph represented by the elementwise reciprocal of the connectivity matrix to
790 ensure the graph is connected.

791 *ROI-based connectivity analysis.* Connectivity between ROIs was computed as the average
792 envelope correlation between all pairs of recording sites in the two ROIs. For analyses in which
793 connectivity was summarized across participants (Fig. 3-8), we used only a subset of ROIs such
794 that every possible pair of included ROIs was represented in at least two participants
795 (Supplementary Table 2). This list of ROIs was obtained by iteratively removing ROIs with the
796 worst cross-coverage with other ROIs until every ROI remaining had sufficient coverage with all
797 remaining ROIs.

798 *Diffusion map embedding.* See the Appendix for details about DME.

799 In brief, the connectivity matrix $\mathbf{K} = [k(i,j)]$ (here orthogonalized power envelope correlations) is
800 normalized by degree to yield a matrix $\mathbf{P} = \mathbf{D}^{-1}\mathbf{K}$, where \mathbf{D} is the degree matrix, i.e. the diagonal
801 elements of $\mathbf{D} = \sum_{j=1}^N k(i,j)$, where N is the number of recording sites, and the off-diagonal
802 elements of \mathbf{D} are zero. If the recording sites are conceptualized as nodes on a graph with edges
803 defined by \mathbf{K} , then \mathbf{P} can be understood as the transition probability matrix for a ‘random walk’
804 or a ‘diffusion’ on the graph (see Appendix; (Coifman and Hirn, 2014; Coifman *et al.*, 2005)).

805 DME consists of mapping the recording sites into an embedding space using an
806 eigendecomposition of \mathbf{P} ,

807
$$\Psi^{(t)}(x_i) = [\lambda_1^t \psi_1(x_i), \lambda_2^t \psi_2(x_i), \dots, \lambda_M^t \psi_M(x_i)]^\top,$$

808 where ψ_j are the eigenvectors of \mathbf{P} . The parameter t is the number of time steps in that random
809 walk; larger values of t shift focus from local to global features of the data. Here, we present
810 data for $t = 1$. In the analyses presented here, \mathbf{K} is a matrix of orthogonalized power envelope
811 correlations transformed by applying cosine similarity (Margulies *et al.*, 2016).

812 DME can be implemented alternatively based on a symmetric version of diffusion matrix \mathbf{P}_{symm}
813 $= \mathbf{D}^{-0.5} \mathbf{K} \mathbf{D}^{-0.5}$. Basing DME on \mathbf{P}_{symm} has the advantage that the eigenvectors of \mathbf{P}_{symm} form an
814 orthogonal basis set (unlike the eigenvectors of \mathbf{P}), providing some additional convenience
815 mathematically that is beyond the scope of this paper (Coifman and Hirn, 2014). Additionally,
816 the eigenvalues of \mathbf{P} and \mathbf{P}_{symm} are identical.

817 In two sets of analyses presented here, pairs of embeddings were compared to each other: in
818 the analysis of lateralization of speech and language networks, and in the comparison between
819 iEEG and fMRI data. To do that, we used a change of basis operator to map embeddings into a
820 common embedding space using the method described in Coifman *et al* 2014 (Coifman and
821 Hirn, 2014).

822 *Dimensionality reduction via low rank approximations to \mathbf{P}_{symm} .* Diffusion map embedding offers
823 an opportunity to reduce the dimensionality of the underlying data by considering only those
824 dimensions that contribute importantly to the structure of the data, as manifested in the
825 structure of the transition probability matrix \mathbf{P} , or, equivalently, of the diffusion matrix \mathbf{P}_{symm} .
826 We used the eigenvalue spectrum of \mathbf{P}_{symm} to determine its ideal low rank approximation,
827 balancing dimensionality reduction and information loss. The basis for this is most easily
828 understood in terms of the eigenvalue spectrum of \mathbf{P} , whose spectrum is identical to that of
829 \mathbf{P}_{symm} (Coifman and Hirn, 2014). Because \mathbf{P} is real and symmetric, the magnitude of the
830 eigenvalues is identical to the singular values of \mathbf{P} . The singular values tell us about the fidelity
831 of low rank approximations to \mathbf{P} . Specifically, if \mathbf{P} has a set of singular values $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n$, then
832 for any integer $k \geq 1$,

833
$$\min_{\widetilde{\mathbf{P}}_k} \|\mathbf{P} - \widetilde{\mathbf{P}}_k\|_2 = \sigma_{k+1},$$

834 where $\widetilde{\mathbf{P}}_k$ is the rank- k approximation to \mathbf{P} . Thus, the magnitude of the eigenvalues corresponds
835 to the fidelity of the lower dimensional approximation, and the difference in the magnitude of
836 successive eigenvalues represents the improvement in that approximation as the
837 dimensionality increases. The spectrum of \mathbf{P} invariably has an inflection point (“elbow”),
838 separating two sets of eigenvalues λ_i : those whose magnitude decreases more quickly with
839 increasing i , and those beyond the inflection point whose magnitude decreases more slowly
840 with increasing i . The inflection point thus delineates the number of dimensions that are most

841 important for approximating \mathbf{P} or \mathbf{P}_{symm} . The inflection point k_{infl} was identified algorithmically
842 (Satopaa et al., 2011), and the number of dimensions retained set equal to $k_{\text{infl}} - 1$.

843 *Comparing distances in embedding space.* The relative distance between points in embedding
844 space provides insight into the underlying functional geometry. In several analyses presented
845 here, two embeddings of identical sets of ROIs were compared as ROI distances within the two
846 embeddings. After mapping to a common space and reducing dimensionality as described
847 above, the two embeddings A and B were used to create the pairwise distance matrices \mathbf{A}' and
848 \mathbf{B}' . The Pearson correlation coefficient r was then computed between the upper triangles
849 (excluding the diagonal) of the corresponding elements in the distance matrices. To compare
850 anatomical distance and distance in embedding space, inter-ROI anatomical distances were
851 calculated for each participant by computing the centroid of each ROI in MNI space, then
852 calculating Euclidean distances between centroids, followed by averaging distances across
853 participants.

854 *Signal to noise (SNR) characteristics.* To measure the robustness of the embedding analysis to
855 variability over time, an SNR was computed as follows. For each participant, a channel \times
856 channel \mathbf{P}_{symm} matrix was calculated for each 60 s segment of data. For each segment, DME
857 analysis was applied and a channel \times channel distance matrix calculated. These distance
858 matrices were averaged across segments. The ‘signal’ of interest was defined as the variability
859 (standard deviation) of this averaged distance matrix (ignoring the diagonals). The ‘noise’ was
860 defined as the variability across time, estimated for each element of the distance matrix as the
861 standard deviation across segments, then averaged across the elements of the matrix. The SNR
862 for functional connectivity itself was computed in an analogous manner, using the original
863 channel \times channel connectivity matrix rather than the matrix of embedding distances.

864 *Estimating precision in position and distances in embedding space.* To obtain error estimates for
865 both ROI locations in embedding space and embedding distance between ROIs, average ROI \times
866 ROI adjacency matrices were calculated. This was done by drawing each edge from an averaged
867 bootstrap sample across participants, obtaining 10,000 such adjacency matrices, and
868 performing diffusion map embedding for each. For locations in embedding space, these
869 embeddings were then mapped via the change of basis procedure described above to the
870 original group average embedding space. For each ROI, the mapped bootstrap iterations
871 produced a cloud of locations in embedding space that were summarized by the standard
872 deviation in each dimension. For embedding distances, no change of basis was necessary
873 because distances were preserved across bases.

874 To compare the positions of STSL versus STSU relative to canonical auditory cortical ROIs
875 (HGPM, HGAL, PT, PP, STGP, and STGM) or ROIs involved in semantic processing (STGA, MTGA,
876 MTGP, ITGA, ITGP, TP, AGA, AGP, SMG, IFGop, IFGtr, IFGor (Binder et al., 2009; Humphreys et
877 al., 2015; Jackson et al., 2016; Lambon Ralph et al., 2017)), we calculated the average pairwise
878 distance from STSL or STSU to each such ROI. The difference between these averages was
879 compared to a null distribution obtained by Monte Carlo sampling of the equivalent statistic

880 obtained by randomly exchanging STSL/STSU labels by participant. The specific comparisons
881 performed were chosen *a priori* to constrain the number of possible hypotheses to test;
882 pairwise comparisons of all possible ROI pairs (let alone comparisons of all higher-order
883 groupings) would not have had sufficient statistical power under appropriate corrections for
884 multiple comparisons. Though different choices could have been made for inclusion in the
885 “semantic processing” category, exchanging one or two of these ROIs would not strongly
886 influence the average distance in a group of twelve ROIs.

887 *Hierarchical clustering.* Agglomerative hierarchical clustering was done using the *linkage*
888 function in MATLAB, with Euclidean distance as the distance metric and Ward’s linkage
889 (minimum variance algorithm) as the linkage method. The ordering of ROIs along the horizontal
890 axis in the dendrogram was determined using the *optimalleaforder* function in MATLAB, with
891 the optimization criterion set to ‘group’.

892 *Auditory responsiveness.* In a subset of 37 participants, auditory responsiveness was evaluated
893 as percentage of sites within each ROI that exhibited high gamma responses to monosyllabic
894 word stimuli. The stimuli were 300 ms words “cat”, “dog”, “five”, “ten”, “red”, “white”,
895 presented in semantic categorization and tone target detection tasks (Nourski *et al.*, 2017;
896 Nourski *et al.*, 2021; Nourski *et al.*, 2022; Steinschneider *et al.*, 2014). Mean high gamma (70-
897 110 Hz) power within early (50 to 350 ms) and late (350 to 650 ms) poststimulus time windows
898 was compared with that in a prestimulus window (-200 to -100 ms). Significance of high gamma
899 responses was established at a $p = 0.05$ level using one-tailed Mann-Whitney U tests with false
900 discovery rate correction.

901 *Comparing language dominant/non-dominant hemispheres.* To test for differences in functional
902 geometry between language dominant and non-dominant hemispheres, two measures were
903 considered: differences in the location of individual ROIs in embedding space, and different
904 pairwise distances between ROIs in embedding space. To calculate differences in location of
905 individual ROIs, dominant/non-dominant average embeddings were mapped to a common
906 space (from an embedding using the average across all participants regardless of language
907 dominance) using the change of basis operator. The language-dominant location difference for
908 a specific ROI was calculated as the Euclidean distance between the two locations of each ROI
909 in this common space. To examine whether there was a consistent relationship between
910 hemispheric asymmetry in a given ROI’s location in embedding space and the percentage of
911 either early or late auditory responsive sites within that ROI, two-tailed Spearman’s rank tests
912 were used. To calculate differences in pairwise distances between ROIs, Euclidean distances
913 were calculated in embedding space for each hemisphere and then subtracted to obtain a
914 difference matrix. To determine whether the differences in location or pairwise distances were
915 larger than expected by chance, random permutations of the dominant/non-dominant labels
916 were used to generate empirical null distributions. Since this approach produces a p -value for
917 every pair of connections, p -values were adjusted using false discovery rate (FDR) to account
918 for multiple comparisons.

919 *Analyses of fMRI connectivity in embedding space.* Two sets of analyses were performed using
920 fMRI data. First, iEEG and fMRI data were compared in embedding space. In this analysis,
921 connectivity based on RS-fMRI data from voxels located at electrode recording sites was
922 compared with the corresponding connectivity matrix derived from iEEG data. The embedding
923 analysis was applied to the two connectivity matrices, all pairwise inter-ROI distances
924 computed, and iEEG and fMRI data compared using the correlation of the pairwise ROI
925 distances. The second analysis was to compare embeddings derived from all ROIs in the RS-
926 fMRI scans to those derived from just ROIs sampled with iEEG electrodes. Here, ROI \times ROI
927 connectivity matrices were computed for all ROIs, then embeddings created from the full
928 matrices or from matrices containing just rows and columns corresponding to the ROIs sampled
929 with iEEG.

930 **Author contributions**

931 Conceptualization: M.I.B., K.V.N.

932 Methodology: M.I.B., B.M.K., A.D.B., J.E.B., C.K.K., M.S., K.V.N.

933 Software: M.I.B., B.M.K, D.B.G., D.I.C., C.K.K.

934 Validation: B.M.K.

935 Formal Analysis: M.I.B., B.M.K, D.B.G., D.I.C., K.V.N.

936 Investigation: H.K., K.V.N.

937 Data Curation: B.M.K., C.K.K., J.E.B., H.K., K.V.N.

938 Writing – Original Draft: M.I.B., B.M.K., K.V.N.

939 Writing – Review & Editing: M.I.B., B.M.K., D.B.G., D.I.C., A.D.B., J.E.B., C.K.K., M.S., K.V.N.

940 Visualization: B.M.K., K.V.N.

941 Supervision: M.I.B., K.V.N.

942 Project Administration: K.V.N.

943 Funding Acquisition: M.I.B., K.V.N.

944

945

946 **Declaration of interest**

947 The authors declare no competing interests.

948

949

950 **Data and code availability**

951 Software and data used to generate figures are freely available at
952 <https://zenodo.org/record/7200024> or DOI 10.5281/zenodo.7200024 . Complete data set is
953 available via a request to the Authors pending establishment of a formal data sharing
954 agreement and submission of a formal project outline. Please contact Bryan Krause
955 (bmkrause@wisc.edu) for details.

956 **Appendix: Diffusion Map Embedding**

957 In the framework of DME, we consider a space X that is the set of N recording sites. We
958 compute the similarity between those sites based on the time varying signals recorded at each
959 site, defining similarity $k(x_i, x_j)$ as the cosine similarity between functional connectivity of nodes
960 x_i and x_j .

961 Define the matrix \mathbf{K} whose i, j^{th} element is $k(x_i, x_j)$. $k(x_i, x_j)$ is required to be symmetric, i.e., $k(x_i, x_j) = k(x_j, x_i)$, and positivity preserving, i.e. $k(x_i, x_j) > 0$ for all $[i, j]$, to allow for spectral analysis of a
962 normalized version of \mathbf{K} .

963 From X and \mathbf{K} we can construct a weighted graph Γ in which the vertices are the nodes and the
964 edge weights are $k(x_i, x_j)$. We take random walks on the graph at time steps $t = 1, 2, \dots$, jumping
965 from node x_i to node x_j at each time step, with the (stochastic) decision as to which node should
966 be visited next depending on $k(x_i, x_j)$.

967 Define

968

$$p(x_i, x_j) = k(x_i, x_j) / d(x_i),$$

969 where

970

$$d(x_i) = \sum_j [k(x_i, x_j)]$$

971 is the degree of node x_i . Normalizing $k(x_i, x_j)$ in this way allows us to interpret it as the
972 probability $p(x_i, x_j)$ that we'll jump from vertex x_i to vertex x_j in a single time step of our random
973 walk.

974 If we consider a single time step, we only capture the structure in X on a very local scale, since
975 we can only jump between vertices that are directly connected. As we run the random walk
976 forward in time, we begin to explore more of our neighborhood, and we begin to explore other
977 neighborhoods as well. Two vertices x_i and x_j that have similar connectivity to the rest of the
978 network have a high probability of being connected during these longer walks because they
979 themselves are connected to similar groups of vertices, and so there are many possible paths
980 between x_i and x_j .

981 The diffusion operator (matrix) $\mathbf{P} = [p(x_i, x_j)]$ describes how signals diffuse from node to node in
982 the graph. If \mathbf{v} is a $N \times 1$ vector (i.e., a value assigned to each vertex, for example representing an
983 input to each node), then \mathbf{P} describes what will happen to that input as time goes on.

984

$$\mathbf{Pv} = [p(x_1, x_1)\mathbf{v}[x_1] + p(x_1, x_2)\mathbf{v}[x_2] + \dots; p(x_2, x_1)\mathbf{v}[x_1] + p(x_2, x_2)\mathbf{v}[x_2] + \dots; \dots]^T$$

985 If, for example, all the nodes were insular, with $p(x_i, x_i) = 1$ for all i , and otherwise $p(x_i, x_j) = 0$, $\mathbf{Pv} =$
986 \mathbf{v} , i.e., no diffusion occurs. If the probabilities are more distributed, \mathbf{Pv} would reveal how much
987 signals diffuse out from each node given the starting condition of \mathbf{v} . Importantly, $\mathbf{P}^k \mathbf{v}$ would
988 reveal what that distribution looks like after k time steps.

990 The eigenvector expansion of \mathbf{P} based on its eigenvectors ψ_j and eigenvalues $, \lambda_j, j = 1...N$, is a
991 natural method for uncovering structure in \mathbf{P} because each eigenvector of \mathbf{P} is a dimension
992 along which relevant organizational features emerge. That is, clusters of related points
993 (communities) tend to be distinct and ordered along these dimensions. In fact, we could
994 preserve a lot of information about \mathbf{P} by keeping just a subset of M of these vectors and
995 discarding the rest. The information we want to preserve in the context of diffusion map
996 embedding is the functional distance between the data at two nodes given t time steps to
997 meander through the graph. We can define the diffusion map

998
$$\Psi^{(t)}(x_i) = [\lambda_1^t \psi_1(x_i), \lambda_2^t \psi_2(x_i), \dots, \lambda_M^t \psi_M(x_i)]^T,$$

999 which maps each point x in X to a point in an embedding space of dimension $M \leq N$. In this
1000 space, the diffusion distance D , which is the Euclidean distance between points, is the
1001 difference in the probability distributions linking x_i to the rest of the network and x_j to the rest
1002 of the network:

1003
$$D^{(t)}(x_i, x_j)^2 = ||\Psi^{(t)}(x_i) - \Psi^{(t)}(x_j)||_{l2} = ||p^{(t)}(x_i, :) - p^{(t)}(x_j, :)||^2_{l2}.$$

1004 We return now to the parameter t , which corresponds to the time scale of the diffusion process
1005 (i.e., the number of steps in the random walk on the graph). As t progresses, the coordinates of
1006 the data in embedding space are scaled according to λ_i^t , where λ_i is the eigenvalue of the i^{th}
1007 dimension being scaled. Thus, the value of t sets the spatial scale of the analysis, with higher
1008 values de-emphasizing smaller eigenvalues. Because $|\lambda_i| < 1 \forall i$, at higher values of t each
1009 dimension will be scaled down ('collapse'), with the dimension corresponding to $\max(|\lambda_i|)$ (i.e.,
1010 λ_1) scaled the least.

1011 To compare embeddings across groups of participants, or modalities of measurements, it is
1012 necessary to map embeddings to a common space. To do so, consider two sets of data α and β ,
1013 and the data spaces X_α and X_β . The problem is that X_α and X_β are different spaces with different
1014 kernels k_α and k_β . This means that the eigenvectors for \mathbf{P}_α and \mathbf{P}_β will be different, and data
1015 projected into a space defined by some subset of the eigenvectors cannot be compared
1016 directly. The solution is to apply a change of basis operator to one set of the eigenvectors to get
1017 the data into the same embedding space (Coifman and Hirn, 2014):

1018
$$D^{(t)}(x_i|_\alpha, x_i|_\beta) = ||\Psi^{(t)}_\alpha(x) - O_{\beta \rightarrow \alpha} \Psi^{(t)}_\beta(x)||_{l2}.$$

1019 Where the change of basis operator $O_{\beta \rightarrow \alpha}$ is defined as

1020
$$O_{\beta \rightarrow \alpha} \mathbf{v} = \sum_j [\mathbf{v}(j) \langle \psi^{(j)}_\alpha, \psi^{(j)}_\beta \rangle]_{j=1},$$

1021 Where $\langle \mathbf{a}, \mathbf{b} \rangle$ is the inner product of \mathbf{a} and \mathbf{b} .

1022

REFERENCES CITED

1023

1024 Abel, T.J., Rhone, A.E., Nourski, K.V., Kawasaki, H., Oya, H., Griffiths, T.D., Howard, M.A., 3rd, and Tranel,
1025 D. (2015). Direct physiologic evidence of a heteromodal convergence region for proper naming in human
1026 left anterior temporal lobe. *J Neurosci* 35, 1513-1520. 10.1523/JNEUROSCI.3387-14.2015.

1027

1028 Abrams, D.A., Kochalka, J., Bhide, S., Ryali, S., and Menon, V. (2020). Intrinsic functional architecture of

1029

1030 Angulo-Perkins, A., Aube, W., Peretz, I., Barrios, F.A., Armony, J.L., and Concha, L. (2014). Music listening
1031 engages specific cortical regions within the temporal lobes: differences between musicians and non-
musicians. *Cortex* 59, 126-137. 10.1016/j.cortex.2014.07.013.

1032

1033 Ardila, A., Bernal, B., and Rosselli, M. (2016). How Localized are Language Brain Areas? A Review of
1034 Brodmann Areas Involvement in Oral Language. *Arch Clin Neuropsychol* 31, 112-122.
10.1093/arclin/acv081.

1035

1036 Barton, B., Venezia, J.H., Saberi, K., Hickok, G., and Brewer, A.A. (2012). Orthogonal acoustic dimensions
1037 define auditory field maps in human cortex. *Proc Natl Acad Sci U S A* 109, 20738-20743.
10.1073/pnas.1213381109.

1038

1039 Beauchamp, M.S. (2015). The social mysteries of the superior temporal sulcus. *Trends Cogn Sci* 19, 489-
490. 10.1016/j.tics.2015.07.002.

1040

1041 Belin, P., Zatorre, R.J., Lafaille, P., Ahad, P., and Pike, B. (2000). Voice-selective areas in human auditory
cortex. *Nature* 403, 309-312.

1042

1043 Bernstein, L.E., and Liebenthal, E. (2014). Neural pathways for visual speech perception. *Front Neurosci*

1044

1045 Binder, J.R., Desai, R.H., Graves, W.W., and Conant, L.L. (2009). Where is the semantic system? A critical
1046 review and meta-analysis of 120 functional neuroimaging studies. *Cereb Cortex* 19, 2767-2796.
10.1093/cercor/bhp055.

1047

1048 Binder, J.R., Frost, J.A., Hammeke, T.A., Bellgowan, P.S., Springer, J.A., Kaufman, J.N., and Possing, E.T.
1049 (2000). Human temporal lobe activation by speech and nonspeech sounds. *Cereb Cortex* 10, 512-528.
10.1093/cercor/10.5.512.

1050

1051 Binney, R.J., Parker, G.J., and Lambon Ralph, M.A. (2012). Convergent connectivity and graded
1052 specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging
probabilistic tractography. *J Cogn Neurosci* 24, 1998-2014. 10.1162/jocn_a_00263.

1053

1054 Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F., Adelstein, J.S.,
1055 Buckner, R.L., Colcombe, S., et al. (2010). Toward discovery science of human brain function. *Proc Natl
Acad Sci U S A* 107, 4734-4739. 10.1073/pnas.0911855107.

1056

1057 Brugge, J.F., Nourski, K.V., Oya, H., Reale, R.A., Kawasaki, H., Steinschneider, M., and Howard, M.A., 3rd
1058 (2009). Coding of repetitive transients by auditory cortex on Heschl's gyrus. *J Neurophysiol* 102, 2358-
2374. 10.1152/jn.91346.2008.

1059 Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and
1060 functional systems. *Nat.Rev.Neurosci.* **10**, 186-198. nrn2575 [pii];10.1038/nrn2575 [doi].

1061 Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R.J., and Reinoso-Suarez, F. (2000). The anatomical
1062 connections of the macaque monkey orbitofrontal cortex. A review. *Cereb Cortex* **10**, 220-242.
1063 10.1093/cercor/10.3.220.

1064 Chanes, L., and Barrett, L.F. (2016). Redefining the Role of Limbic Areas in Cortical Processing. *Trends
1065 Cogn Sci* **20**, 96-106. 10.1016/j.tics.2015.11.005.

1066 Chang, E.F., Raygor, K.P., and Berger, M.S. (2015). Contemporary model of language organization: an
1067 overview for neurosurgeons. *J Neurosurg* **122**, 250-261. 10.3171/2014.10.JNS132647.

1068 Cloutman, L.L. (2013). Interaction between dorsal and ventral processing streams: where, when and
1069 how? *Brain Lang* **127**, 251-263. 10.1016/j.bandl.2012.08.003.

1070 Cogan, G.B., Thesen, T., Carlson, C., Doyle, W., Devinsky, O., and Pesaran, B. (2014). Sensory-motor
1071 transformations for speech occur bilaterally. *Nature* **507**, 94-98. 10.1038/nature12935.

1072 Coifman, R.R., and Hirn, M.J. (2014). Diffusion maps for changing data. *Applied and Computational
1073 Harmonic Analysis* **36**, 79-107. <https://doi.org/10.1016/j.acha.2013.03.001>.

1074 Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., and Zucker, S.W. (2005).
1075 Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps.
1076 *Proc Natl Acad Sci U S A* **102**, 7426-7431. 10.1073/pnas.0500334102.

1077 Craig, A.D. (2003). Interoception: the sense of the physiological condition of the body. *Curr Opin
1078 Neurobiol* **13**, 500-505. 10.1016/s0959-4388(03)00090-4.

1079 de Heer, W.A., Huth, A.G., Griffiths, T.L., Gallant, J.L., and Theunissen, F.E. (2017). The Hierarchical
1080 Cortical Organization of Human Speech Processing. *J Neurosci* **37**, 6539-6557. 10.1523/jneurosci.3267-
1081 16.2017.

1082 Deen, B., Koldewyn, K., Kanwisher, N., and Saxe, R. (2015). Functional Organization of Social Perception
1083 and Cognition in the Superior Temporal Sulcus. *Cereb Cortex* **25**, 4596-4609. 10.1093/cercor/bhv111.

1084 Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic parcellation of human cortical gyri
1085 and sulci using standard anatomical nomenclature. *Neuroimage* **53**, 1-15.
1086 10.1016/j.neuroimage.2010.06.010.

1087 Destrieux, C., Terrier, L.M., Andersson, F., Love, S.A., Cottier, J.P., Duvernoy, H., Velut, S., Janot, K., and
1088 Zemmoura, I. (2017). A practical guide for the identification of major sulcogyrical structures of the human
1089 cortex. *Brain Struct Funct* **222**, 2001-2015. 10.1007/s00429-016-1320-z.

1090 Eisner, F., McGettigan, C., Faulkner, A., Rosen, S., and Scott, S.K. (2010). Inferior frontal gyrus activation
1091 predicts individual differences in perceptual learning of cochlear-implant simulations. *J Neurosci* **30**,
1092 7179-7186. 10.1523/JNEUROSCI.4040-09.2010.

1093 Feinsinger, A., Pouratian, N., Ebadi, H., Adolphs, R., Andersen, R., Beauchamp, M.S., Chang, E.F., Crone, N.E., Collinger, J.L., Fried, I., et al. (2022). Ethical commitments, principles, and practices guiding intracranial neuroscientific research in humans. *Neuron* *110*, 188-194. 10.1016/j.neuron.2021.11.011.

1096 Friederici, A.D. (2012). The cortical language circuit: from auditory perception to sentence comprehension. *Trends Cogn Sci* *16*, 262-268. 10.1016/j.tics.2012.04.001.

1098 Friederici, A.D., Meyer, M., and von Cramon, D.Y. (2000). Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. *Brain Lang* *75*, 289-300.

1100 Fruhholz, S., Trost, W., and Kotz, S.A. (2016). The sound of emotions-Towards a unifying neural network perspective of affective sound processing. *Neurosci Biobehav Rev* *68*, 96-110. 10.1016/j.neubiorev.2016.05.002.

1103 Geschwind, N. (1970). The organization of language and the brain. *Science* *170*, 940-944. 10.1126/science.170.3961.940.

1105 Gonzalez Alam, T., McKeown, B.L.A., Gao, Z., Bernhardt, B., Vos de Wael, R., Margulies, D.S., Smallwood, J., and Jefferies, E. (2021). A tale of two gradients: differences between the left and right hemispheres predict semantic cognition. *Brain Struct Funct*. 10.1007/s00429-021-02374-w.

1108 Gorno-Tempini, M.L., Dronkers, N.F., Rankin, K.P., Ogar, J.M., Phengrasamy, L., Rosen, H.J., Johnson, J.K., Weiner, M.W., and Miller, B.L. (2004). Cognition and anatomy in three variants of primary progressive aphasia. *Ann Neurol* *55*, 335-346. 10.1002/ana.10825.

1111 Hacker, C.D., Snyder, A.Z., Pahwa, M., Corbetta, M., and Leuthardt, E.C. (2017). Frequency-specific electrophysiologic correlates of resting state fMRI networks. *Neuroimage* *149*, 446-457. 10.1016/j.neuroimage.2017.01.054.

1114 Hackett, T.A. (2015). Anatomic organization of the auditory cortex. *Handb Clin Neurol* *129*, 27-53. 10.1016/B978-0-444-62630-1.00002-0.

1116 Hackett, T.A., Preuss, T.M., and Kaas, J.H. (2001). Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. *J Comp Neurol* *441*, 197-222.

1118 Hagoort, P. (2019). The neurobiology of language beyond single-word processing. *Science* *366*, 55-58. 10.1126/science.aax0289.

1120 Hamilton, L.S., Oganian, Y., Hall, J., and Chang, E.F. (2021). Parallel and distributed encoding of speech across human auditory cortex. *Cell* *184*, 4626-4639 e4613. 10.1016/j.cell.2021.07.019.

1122 Hickok, G. (2009). The functional neuroanatomy of language. *Phys Life Rev* *6*, 121-143. 10.1016/j.plrev.2009.06.001.

1124 Hickok, G. (2012). Computational neuroanatomy of speech production. *Nat Rev Neurosci* *13*, 135-145. 10.1038/nrn3158.

1126 Hickok, G., and Poeppel, D. (2007). The cortical organization of speech processing. *Nat Rev Neurosci* *8*, 393-402. 10.1038/nrn2113.

1128 Hickok, G., and Poeppel, D. (2015). Neural basis of speech perception. *Handb Clin Neurol* **129**, 149-160.
1129 10.1016/B978-0-444-62630-1.00008-1.

1130 Hipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M., and Engel, A.K. (2012). Large-scale cortical correlation
1131 structure of spontaneous oscillatory activity. *Nat Neurosci* **15**, 884-890. 10.1038/nn.3101.

1132 Howard, M.A., Volkov, I.O., Mirsky, R., Garell, P.C., Noh, M.D., Granner, M., Damasio, H., Steinschneider,
1133 M., Reale, R.A., Hind, J.E., and Brugge, J.F. (2000). Auditory cortex on the human posterior superior
1134 temporal gyrus. *J Comp Neurol*. **416**, 79-92.

1135 Hu, B. (2003). Functional organization of lemniscal and nonlemniscal auditory thalamus. *Exp Br Res* **153**,
1136 543-549.

1137 Humphreys, G.F., Hoffman, P., Visser, M., Binney, R.J., and Lambon Ralph, M.A. (2015). Establishing task-
1138 and modality-dependent dissociations between the semantic and default mode networks. *Proc Natl
1139 Acad Sci U S A* **112**, 7857-7862. 10.1073/pnas.1422760112.

1140 Husain, F.T., and Schmidt, S.A. (2014). Using resting state functional connectivity to unravel networks of
1141 tinnitus. *Hear Res* **307**, 153-162. 10.1016/j.heares.2013.07.010.

1142 Jackson, R.L., Bajada, C.J., Rice, G.E., Cloutman, L.L., and Lambon Ralph, M.A. (2018). An emergent
1143 functional parcellation of the temporal cortex. *Neuroimage* **170**, 385-399.
1144 10.1016/j.neuroimage.2017.04.024.

1145 Jackson, R.L., Hoffman, P., Pobric, G., and Lambon Ralph, M.A. (2016). The Semantic Network at Work
1146 and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions. *J Neurosci* **36**, 1490-1501.
1147 10.1523/JNEUROSCI.2999-15.2016.

1148 Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved optimization for the robust and
1149 accurate linear registration and motion correction of brain images. *Neuroimage* **17**, 825-841.

1150 Jones, E.G., Coulter, J.D., and Hendry, S.H. (1978). Intracortical connectivity of architectonic fields in the
1151 somatic sensory, motor and parietal cortex of monkeys. *J Comp Neurol* **181**, 291-347.
1152 10.1002/cne.901810206.

1153 Kaas, J.H., and Hackett, T.A. (1998). Subdivisions of auditory cortex and levels of processing in primates.
1154 *Audiol Neurotol* **3**, 73-85. 10.1159/000013783.

1155 Kaas, J.H., and Hackett, T.A. (2000). Subdivisions of auditory cortex and processing streams in primates.
1156 *Proc Natl Acad Sci USA* **97**, 11793-11799.

1157 Kahn, I., Andrews-Hanna, J.R., Vincent, J.L., Snyder, A.Z., and Buckner, R.L. (2008). Distinct cortical
1158 anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. *J
1159 Neurophysiol* **100**, 129-139. 10.1152/jn.00077.2008.

1160 Karolis, V.R., Corbetta, M., and Thiebaut de Schotten, M. (2019). The architecture of functional
1161 lateralisation and its relationship to callosal connectivity in the human brain. *Nat Commun* **10**, 1417.
1162 10.1038/s41467-019-09344-1.

1163 Keitel, A., and Gross, J. (2016). Individual Human Brain Areas Can Be Identified from Their Characteristic
1164 Spectral Activation Fingerprints. *PLoS Biol* 14, e1002498. 10.1371/journal.pbio.1002498.

1165 Kiebel, S.J., Daunizeau, J., and Friston, K.J. (2008). A hierarchy of time-scales and the brain. *PLoS Comput
1166 Biol* 4, e1000209. 10.1371/journal.pcbi.1000209.

1167 Knecht, S., Drager, B., Deppe, M., Bobe, L., Lohmann, H., Floel, A., Ringelstein, E.B., and Henningsen, H.
1168 (2000). Handedness and hemispheric language dominance in healthy humans. *Brain* 123 Pt 12, 2512-
1169 2518. 10.1093/brain/123.12.2512.

1170 Ko, A.L., Weaver, K.E., Hakimian, S., and Ojemann, J.G. (2013). Identifying functional networks using
1171 endogenous connectivity in gamma band electrocorticography. *Brain Connect* 3, 491-502.
1172 10.1089/brain.2013.0157.

1173 Kovach, C.K., and Gander, P.E. (2016). The demodulated band transform. *J Neurosci Methods* 261, 135-
1174 154. 10.1016/j.jneumeth.2015.12.004.

1175 Kraus, K.S., and Canlon, B. (2012). Neuronal connectivity and interactions between the auditory and
1176 limbic systems. Effects of noise and tinnitus. *Hear Res* 288, 34-46. 10.1016/j.heares.2012.02.009.

1177 Kuehn, E., Mueller, K., Lohmann, G., and Schuetz-Bosbach, S. (2016). Interoceptive awareness changes
1178 the posterior insula functional connectivity profile. *Brain Struct Funct* 221, 1555-1571. 10.1007/s00429-
1179 015-0989-8.

1180 Kumar, S., Gander, P.E., Berger, J.I., Billig, A.J., Nourski, K.V., Oya, H., Kawasaki, H., Howard, M.A., 3rd,
1181 and Griffiths, T.D. (2021). Oscillatory correlates of auditory working memory examined with human
1182 electrocorticography. *Neuropsychologia* 150, 107691. 10.1016/j.neuropsychologia.2020.107691.

1183 Kumar, S., Joseph, S., Gander, P.E., Barascud, N., Halpern, A.R., and Griffiths, T.D. (2016). A Brain System
1184 for Auditory Working Memory. *J Neurosci* 36, 4492-4505. 10.1523/jneurosci.4341-14.2016.

1185 Lambon Ralph, M.A., Jefferies, E., Patterson, K., and Rogers, T.T. (2017). The neural and computational
1186 bases of semantic cognition. *Nat Rev Neurosci* 18, 42-55. 10.1038/nrn.2016.150.

1187 Leaver, A.M., and Rauschecker, J.P. (2010). Cortical representation of natural complex sounds: effects of
1188 acoustic features and auditory object category. *J Neurosci* 30, 7604-7612. 10.1523/jneurosci.0296-
1189 10.2010.

1190 Makris, N., Papadimitriou, G.M., Kaiser, J.R., Sorg, S., Kennedy, D.N., and Pandya, D.N. (2009).
1191 Delineation of the middle longitudinal fascicle in humans: a quantitative, *in vivo*, DT-MRI study. *Cereb
1192 Cortex* 19, 777-785. 10.1093/cercor/bhn124.

1193 Maller, J.J., Welton, T., Middione, M., Callaghan, F.M., Rosenfeld, J.V., and Grieve, S.M. (2019). Revealing
1194 the Hippocampal Connectome through Super-Resolution 1150-Direction Diffusion MRI. *Sci Rep* 9, 2418.
1195 10.1038/s41598-018-37905-9.

1196 Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., Bezgin, G., Eickhoff,
1197 S.B., Castellanos, F.X., Petrides, M., et al. (2016). Situating the default-mode network along a principal

1198 gradient of macroscale cortical organization. *Proc Natl Acad Sci U S A* **113**, 12574-12579.
1199 10.1073/pnas.1608282113.

1200 McGettigan, C., and Scott, S.K. (2012). Cortical asymmetries in speech perception: what's wrong, what's
1201 right and what's left? *Trends Cogn Sci* **16**, 269-276. 10.1016/j.tics.2012.04.006.

1202 Mesulam, M.M. (1998). From sensation to cognition. *Brain* **121** (Pt 6), 1013-1052.

1203 Mesulam, M.M. (2000). Paralimbic (mesocortical) areas. In *Principles of behavioral and cognitive*
1204 *neurology*, (Oxford University Press), pp. 49-54.

1205 Michelmann, S., Price, A.R., Aubrey, B., Strauss, C.K., Doyle, W.K., Friedman, D., Dugan, P.C., Devinsky,
1206 O., Devore, S., Flinck, A., et al. (2021). Moment-by-moment tracking of naturalistic learning and its
1207 underlying hippocampo-cortical interactions. *Nat Commun* **12**, 5394. 10.1038/s41467-021-25376-y.

1208 Moerel, M., De Martino, F., and Formisano, E. (2014). An anatomical and functional topography of
1209 human auditory cortical areas. *Front Neurosci* **8**, 225. 10.3389/fnins.2014.00225.

1210 Morel, A., Garraghty, P.E., and Kaas, J.H. (1993). Tonotopic organization, architectonic fields, and
1211 connections of auditory cortex in macaque monkeys. *J Comp Neurol* **335**, 437-459.
1212 10.1002/cne.903350312.

1213 Munoz-Lopez, M., Insausti, R., Mohedano-Moriano, A., Mishkin, M., and Saunders, R.C. (2015).
1214 Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to
1215 dorsolateral temporal pole and medial temporal cortex. *Front Neurosci* **9**, 158.
1216 10.3389/fnins.2015.00158.

1217 Munoz-Lopez, M.M., Mohedano-Moriano, A., and Insausti, R. (2010). Anatomical pathways for auditory
1218 memory in primates. *Front Neuroanat* **4**, 129. 10.3389/fnana.2010.00129.

1219 Nourski, K.V., and Howard, M.A., 3rd (2015). Invasive recordings in the human auditory cortex. *Handb*
1220 *Clin Neurol* **129**, 225-244. 10.1016/B978-0-444-62630-1.00013-5.

1221 Nourski, K.V., Steinschneider, M., Oya, H., Kawasaki, H., Jones, R.D., and Howard, M.A. (2014). Spectral
1222 organization of the human lateral superior temporal gyrus revealed by intracranial recordings. *Cereb*
1223 *Cortex* **24**, 340-352. 10.1093/cercor/bhs314.

1224 Nourski, K.V., Steinschneider, M., and Rhone, A.E. (2016). Electrocorticographic Activation within Human
1225 Auditory Cortex during Dialog-Based Language and Cognitive Testing. *Front Hum Neurosci* **10**, 202.
1226 10.3389/fnhum.2016.00202.

1227 Nourski, K.V., Steinschneider, M., Rhone, A.E., and Howard Iii, M.A. (2017). Intracranial
1228 Electrophysiology of Auditory Selective Attention Associated with Speech Classification Tasks. *Front*
1229 *Hum Neurosci* **10**, 691. 10.3389/fnhum.2016.00691.

1230 Nourski, K.V., Steinschneider, M., Rhone, A.E., Kovach, C.K., Banks, M.I., Krause, B.M., Kawasaki, H., and
1231 Howard, M.A. (2021). Electrophysiology of the Human Superior Temporal Sulcus during Speech
1232 Processing. *Cereb Cortex* **31**, 1131-1148. 10.1093/cercor/bhaa281.

1233 Nourski, K.V., Steinschneider, M., Rhone, A.E., Kovach, C.K., Kawasaki, H., and Howard, M.A., 3rd (2022).
1234 Gamma Activation and Alpha Suppression within Human Auditory Cortex during a Speech Classification
1235 Task. *J Neurosci* 42, 5034-5046. 10.1523/JNEUROSCI.2187-21.2022.

1236 Olson, I.R., McCoy, D., Klobusicky, E., and Ross, L.A. (2013). Social cognition and the anterior temporal
1237 lobes: a review and theoretical framework. *Soc Cogn Affect Neurosci* 8, 123-133. 10.1093/scan/nss119.

1238 Patterson, K., Nestor, P.J., and Rogers, T.T. (2007). Where do you know what you know? The
1239 representation of semantic knowledge in the human brain. *Nat Rev Neurosci* 8, 976-987.
1240 10.1038/nrn2277.

1241 Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., and Petersen, S.E. (2012). Spurious but systematic
1242 correlations in functional connectivity MRI networks arise from subject motion. *Neuroimage* 59, 2142-
1243 2154. 10.1016/j.neuroimage.2011.10.018.

1244 Price, C.J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech,
1245 spoken language and reading. *Neuroimage* 62, 816-847. 10.1016/j.neuroimage.2012.04.062.

1246 Rauschecker, J.P. (2018). Where, When, and How: Are they all sensorimotor? Towards a unified view of
1247 the dorsal pathway in vision and audition. *Cortex* 98, 262-268. 10.1016/j.cortex.2017.10.020.

1248 Rauschecker, J.P., and Scott, S.K. (2009). Maps and streams in the auditory cortex: nonhuman primates
1249 illuminate human speech processing. *Nat Neurosci* 12, 718-724. 10.1038/nn.2331.

1250 Remedios, R., Logothetis, N.K., and Kayser, C. (2009). An auditory region in the primate insular cortex
1251 responding preferentially to vocal communication sounds. *J Neurosci* 29, 1034-1045.
1252 10.1523/JNEUROSCI.4089-08.2009.

1253 Rocchi, F., Oya, H., Balezeau, F., Billig, A.J., Kocsis, Z., Jenison, R.L., Nourski, K.V., Kovach, C.K.,
1254 Steinschneider, M., Kikuchi, Y., et al. (2021). Common fronto-temporal effective connectivity in humans
1255 and monkeys. *Neuron* 109, 852-868 e858. 10.1016/j.neuron.2020.12.026.

1256 Rohr, K., Stiehl, H.S., Sprengel, R., Buzug, T.M., Weese, J., and Kuhn, M.H. (2001). Landmark-based
1257 elastic registration using approximating thin-plate splines. *IEEE Trans Med Imaging* 20, 526-534.
1258 10.1109/42.929618.

1259 Rolls, E.T. (2019). The cingulate cortex and limbic systems for emotion, action, and memory. *Brain Struct
1260 Funct* 224, 3001-3018. 10.1007/s00429-019-01945-2.

1261 Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B. (2011). Finding a "Kneedle" in a Haystack: Detecting
1262 Knee Points in System Behavior. 20-24 June 2011. pp. 166-171.

1263 Saur, D., Kreher, B.W., Schnell, S., Kummerer, D., Kellmeyer, P., Vry, M.S., Umarova, R., Musso, M.,
1264 Glauche, V., Abel, S., et al. (2008). Ventral and dorsal pathways for language. *Proc Natl Acad Sci U S A*
1265 105, 18035-18040. 10.1073/pnas.0805234105.

1266 Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.N., Holmes, A.J., Eickhoff, S.B., and Yeo,
1267 B.T.T. (2018). Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional
1268 Connectivity MRI. *Cereb Cortex* 28, 3095-3114. 10.1093/cercor/bhx179.

1269 Schirmer, A., Fox, P.M., and Grandjean, D. (2012). On the spatial organization of sound processing in the
1270 human temporal lobe: a meta-analysis. *Neuroimage* 63, 137-147. 10.1016/j.neuroimage.2012.06.025.

1271 Scott, S.K. (2012). The neurobiology of speech perception and production--can functional imaging tell us
1272 anything we did not already know? *J Commun Disord* 45, 419-425. 10.1016/j.jcomdis.2012.06.007.

1273 Scott, S.K., Blank, C.C., Rosen, S., and Wise, R.J. (2000). Identification of a pathway for intelligible speech
1274 in the left temporal lobe. *Brain* 123 Pt 12, 2400-2406. 10.1093/brain/123.12.2400.

1275 Seitzman, B.A., Snyder, A.Z., Leuthardt, E.C., and Shimony, J.S. (2019). The State of Resting State
1276 Networks. *Top Magn Reson Imaging* 28, 189-196. 10.1097/RMR.0000000000000214.

1277 Sherman, S.M., and Guillory, R.W. (2011). Distinct functions for direct and transthalamic corticocortical
1278 connections. *J Neurophysiol* 106, 1068-1077. jn.00429.2011 [pii];10.1152/jn.00429.2011 [doi].

1279 Simmons, W.K., and Martin, A. (2009). The anterior temporal lobes and the functional architecture of
1280 semantic memory. *J Int Neuropsychol Soc* 15, 645-649. 10.1017/S1355617709990348.

1281 Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Watkins, K.E., Toro,
1282 R., Laird, A.R., and Beckmann, C.F. (2009). Correspondence of the brain's functional architecture during
1283 activation and rest. *Proc Natl Acad Sci U S A* 106, 13040-13045. 10.1073/pnas.0905267106.

1284 Spitsyna, G., Warren, J.E., Scott, S.K., Turkheimer, F.E., and Wise, R.J. (2006). Converging language
1285 streams in the human temporal lobe. *J Neurosci* 26, 7328-7336. 10.1523/JNEUROSCI.0559-06.2006.

1286 Steinschneider, M., Nourski, K.V., and Fishman, Y.I. (2013). Representation of speech in human auditory
1287 cortex: is it special? *Hear Res* 305, 57-73. 10.1016/j.heares.2013.05.013.

1288 Steinschneider, M., Nourski, K.V., Rhone, A.E., Kawasaki, H., Oya, H., and Howard, M.A., 3rd (2014).
1289 Differential activation of human core, non-core and auditory-related cortex during speech categorization
1290 tasks as revealed by intracranial recordings. *Front Neurosci* 8, 240. 10.3389/fnins.2014.00240.

1291 Turkeltaub, P.E., and Coslett, H.B. (2010). Localization of sublexical speech perception components.
1292 *Brain Lang* 114, 1-15. 10.1016/j.bandl.2010.03.008.

1293 Upadhyay, J., Silver, A., Knaus, T.A., Lindgren, K.A., Ducros, M., Kim, D.S., and Tager-Flusberg, H. (2008).
1294 Effective and structural connectivity in the human auditory cortex. *J Neurosci* 28, 3341-3349.
1295 10.1523/JNEUROSCI.4434-07.2008.

1296 van den Heuvel, M.P., and Sporns, O. (2013). Network hubs in the human brain. *Trends Cogn Sci* 17, 683-
1297 696. 10.1016/j.tics.2013.09.012.

1298 Venezia, J.H., Vaden, K.I., Jr., Rong, F., Maddox, D., Saberi, K., and Hickok, G. (2017). Auditory, Visual and
1299 Audiovisual Speech Processing Streams in Superior Temporal Sulcus. *Front Hum Neurosci* 11, 174.
1300 10.3389/fnhum.2017.00174.

1301 Visser, M., Jefferies, E., and Lambon Ralph, M.A. (2010). Semantic processing in the anterior temporal
1302 lobes: a meta-analysis of the functional neuroimaging literature. *J Cogn Neurosci* 22, 1083-1094.
1303 10.1162/jocn.2009.21309.

1304 Wang, J., Tao, A., Anderson, W.S., Madsen, J.R., and Kreiman, G. (2021). Mesoscopic physiological
1305 interactions in the human brain reveal small-world properties. *Cell Rep* 36, 109585.
1306 10.1016/j.celrep.2021.109585.

1307 Wang, S.F., Ritchey, M., Libby, L.A., and Ranganath, C. (2016). Functional connectivity based parcellation
1308 of the human medial temporal lobe. *Neurobiol Learn Mem* 134 Pt A, 123-134.
1309 10.1016/j.nlm.2016.01.005.

1310 Wilson, S.M., Bautista, A., and McCarron, A. (2018). Convergence of spoken and written language
1311 processing in the superior temporal sulcus. *Neuroimage* 171, 62-74. 10.1016/j.neuroimage.2017.12.068.

1312 Woods, D.L., and Alain, C. (2009). Functional imaging of human auditory cortex. *Curr Opin Otolaryngol*
1313 *Head Neck Surg* 17, 407-411. 10.1097/MOO.0b013e3283303330.

1314 Woods, D.L., Herron, T.J., Cate, A.D., Yund, E.W., Stecker, G.C., Rinne, T., and Kang, X. (2010). Functional
1315 properties of human auditory cortical fields. *Front Syst Neurosci* 4, 155. 10.3389/fnsys.2010.00155.

1316 Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller,
1317 J.W., Zollei, L., Polimeni, J.R., et al. (2011). The organization of the human cerebral cortex estimated by
1318 intrinsic functional connectivity. *J Neurophysiol* 106, 1125-1165. 10.1152/jn.00338.2011.

1319 Zachlod, D., Rüttgers, B., Bludau, S., Mohlberg, H., Langner, R., Zilles, K., and Amunts, K. (2020). Four
1320 new cytoarchitectonic areas surrounding the primary and early auditory cortex in human brains. *Cortex*
1321 128, 1-21. 10.1016/j.cortex.2020.02.021.

1322 Zhang, Y., Ding, Y., Huang, J., Zhou, W., Ling, Z., Hong, B., and Wang, X. (2021). Hierarchical cortical
1323 networks of "voice patches" for processing voices in human brain. *Proc Natl Acad Sci U S A* 118.
1324 10.1073/pnas.2113887118.

1325 Zhang, Y., Zhou, W., Wang, S., Zhou, Q., Wang, H., Zhang, B., Huang, J., Hong, B., and Wang, X. (2019).
1326 The Roles of Subdivisions of Human Insula in Emotion Perception and Auditory Processing. *Cereb Cortex*
1327 29, 517-528. 10.1093/cercor/bhx334.
1328