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Summary  36 

Understanding central auditory processing critically depends on defining underlying auditory 37 
cortical networks and their relationship to the rest of the brain. We addressed these questions 38 
using resting state functional connectivity derived from human intracranial 39 
electroencephalography. Mapping recording sites into a low-dimensional space where 40 
proximity represents functional similarity revealed a hierarchical organization. At fine scale, an 41 
auditory cortical cluster excluded several higher order auditory areas and segregated maximally 42 
from prefrontal cortex. On mesoscale, a cluster of limbic structures in proximity to the auditory 43 
cortex suggested a limbic stream that parallels the classically described ventral and dorsal 44 
auditory processing streams. Global hubs were identified within anterior temporal and 45 
cingulate cortex, consistent with their respective roles in semantic and cognitive processing. On 46 
a macro scale, observed hemispheric asymmetries were not specific for speech and language 47 
networks. This approach can be applied to multivariate brain data with respect to development, 48 
behavior, and disorders.  49 
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Introduction 50 

The meso- and macroscopic organization of human neocortex has been investigated extensively 51 
using resting state (RS) functional connectivity, primarily using functional magnetic resonance 52 
imaging (fMRI) (Biswal et al., 2010; Yeo et al., 2011). RS data are advantageous as they avoid 53 
the substantial confound of stimulus-driven correlations yet identify networks that overlap with 54 
those obtained using event-related data (Smith et al., 2009), and thus are relevant to cognitive 55 
and perceptual processing. RS fMRI has contributed greatly to our understanding of the 56 
organization of the human auditory cortical hierarchy (Jackson et al., 2018; Scott, 2012; Woods 57 
and Alain, 2009), but only a few complementary studies have been conducted using 58 
electrophysiology in humans (e.g. Ko et al., 2013; Wang et al., 2021; Zhang et al., 2021). 59 
Compared to fMRI, intracranial electroencephalography (iEEG) offers superior spatio-temporal 60 
resolution and is free of methodological problems that affect MRI in key regions such as the 61 
anterior temporal lobe (Lambon Ralph et al., 2017; Visser et al., 2010). However, variable 62 
electrode coverage in human intracranial patients and small sample sizes are challenges to 63 
generalizing results.  64 

We overcome these limitations using a large cohort of subjects that together have coverage 65 
over most of the cerebral cortex and leverage these data to address outstanding questions 66 
about auditory networks. We address the organization of human auditory cortex at three 67 
spatial scales: fine-scale organization of regions adjacent to canonical auditory cortex, 68 
clustering of cortical regions into functional processing streams, and hemispheric (a)symmetry 69 
associated with language dominance. We present a unified analytical framework applied to 70 
resting state human iEEG data that embeds functional connectivity data into a Euclidean space 71 
in which proximity represents functional similarity. We extend the analytical approach as 72 
previously applied to RS fMRI (Margulies et al., 2016) and demonstrate methodology 73 
appropriate for hypothesis testing at each of these spatial scales.  74 

At the fine scale, though there is broad agreement that posteromedial Heschl’s gyrus (HGPM) 75 
represents core auditory cortex, functional relationships among HGPM and neighboring higher-76 
order areas are still a matter of debate. For example, the anterior portion of the superior 77 
temporal gyrus (STGA) and planum polare (PP) are adjacent to auditory cortex on Heschl’s 78 
gyrus, yet diverge from it functionally (Angulo-Perkins et al., 2014; Friederici et al., 2000). The 79 
posterior insula (InsP), on the other hand, has response properties similar to HGPM, yet is not 80 
considered a canonical auditory area (Zhang et al., 2019). The superior temporal sulcus (STS) is 81 
a critical node in speech and language networks (Abrams et al., 2020; Beauchamp, 2015; Chang 82 
et al., 2015; Hickok, 2009; Price, 2012; Venezia et al., 2017), yet its functional relationships with 83 
with other auditory areas are difficult to distinguish with neuroimaging methods. Indeed, the 84 
distinct roles of its upper and lower banks (STSU, STSL) have only been recently elucidated with 85 
iEEG (Nourski et al., 2021). 86 

Questions remain regarding mesoscale organization as well. While the auditory hierarchy is 87 
posited to be organized along two processing streams (Friederici, 2012; Hickok and Poeppel, 88 
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2007; Rauschecker and Scott, 2009), the specific brain regions involved and the functional 89 
relationships within each stream are vigorously debated (Cloutman, 2013; Hickok and Poeppel, 90 
2015; Rauschecker, 2018; Saur et al., 2008). Furthermore, communication between auditory 91 
cortex and hippocampus, amygdala, and anterior insula (InsA) (Munoz-Lopez et al., 2010) – 92 
areas involved in auditory working memory and processing of emotional aspects of auditory 93 
information (Husain and Schmidt, 2014; Kraus and Canlon, 2012; Kumar et al., 2021; Kumar et 94 
al., 2016) – suggests a third “limbic” auditory processing stream, complementary to the dorsal 95 
and ventral streams. 96 

At a macroscopic scale, hemispheric lateralization of speech and language processing is a widely 97 
accepted organizational feature (Geschwind, 1970; Hagoort, 2019). However, the degree to 98 
which lateralization shapes the auditory hierarchy and is reflected in hemisphere-specific 99 
connectivity profiles is unknown(Eisner et al., 2010; Hickok and Poeppel, 2015; Leaver and 100 
Rauschecker, 2010; McGettigan and Scott, 2012; Rauschecker and Scott, 2009; Turkeltaub and 101 
Coslett, 2010).  102 

To address these questions, we applied diffusion map embedding (DME) (Coifman and Hirn, 103 
2014; Coifman et al., 2005) to functional connectivity measured between cortical regions of 104 
interest (ROIs). DME maps connectivity into functional geometry: relationships in a Euclidean 105 
space where proximity of two ROIs reflects similarity in connectivity to the rest of the network. 106 
The DME approach provides a low-dimensional representation convenient for display while also 107 
facilitating quantitative comparisons on multiple spatial scales, including permutation-based 108 
hypothesis testing of specific ROI relationships, hierarchical clustering to identify functional 109 
processing streams, and contrasts of whole embeddings between participant cohorts.  110 
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Results 111 

DME applied to iEEG data 112 

Intracranial electrodes densely sampled cortical structures involved in auditory processing in 113 
the temporal and parietal lobes, as well as prefrontal, sensorimotor, and other ROIs in 49 114 
participants (22 female; 6741 recording sites; Fig. 1, Supplementary Tables 1, 2). On average, 115 
each participant contributed 138±54 recording sites, representing 28±7.7 ROIs (mean ± 116 
standard deviation) (see example in Fig. 2a). 117 

The brain parcellation scheme depicted in Figure 1A was developed based on a combination of 118 
physiological and anatomical criteria, and has been useful in our previous analyses that were 119 
largely focused on auditory processing. Below, we revisit this parcellation with a data-driven 120 
scheme. 121 

DME was applied to pairwise functional connectivity measured as orthogonalized power 122 
envelope correlations (Hipp et al., 2012) computed between recording sites in each participant. 123 
We focus primarily on gamma-band power envelope correlations, but supplement with results 124 
from other bands for comparison. The functional connectivity matrix was normalized and 125 
thresholded to yield a diffusion matrix Psymm with an apparent community structure along the 126 
horizontal and vertical dimensions (Fig. 2b). DME reveals the functional geometry of the 127 
sampled cortical sites by using the structure of Psymm and a free parameter t to map the 128 
recording sites into an embedding space. In this space, proximity between nodes represents 129 
similarity in their connectivity to the rest of the network (Fig. 2c; see Supplementary Fig. 1 for 130 
additional views). The parameter t corresponds to diffusion time: larger values of t shift focus 131 
from local towards global organization. DME exhibited superior signal-to noise characteristics 132 
compared to direct analysis of functional connectivity in 43 out of 49 participants 133 
(Supplementary Fig. 2).  134 

Functionally distinct regions are isolated along principal dimensions in embedding space. For 135 
example, in Figure 2c, tight clusters of auditory cortical sites (red/orange/yellow) and sites in 136 
prefrontal cortex (blue) were maximally segregated along dimension 1 (see Fig. 1 and 137 
Supplementary Table 3 for the list of abbreviations). Other regions (e.g., middle temporal gyrus) 138 
had a more distributed representation within the embedding space, consistent with their 139 
functional heterogeneity.   140 
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  141 
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Figure 1. ROIs and electrode coverage in all 49 participants. a: ROI parcellation scheme. b: Locations of 142 
recording sites, color-coded according to the ROI group, are plotted in Montreal Neurological Institute 143 
(MNI) coordinate space and projected onto the Freesurfer average template brain for spatial reference. 144 
Color shades represent different ROIs within a group. Projections are shown on the lateral, top-down 145 
(superior temporal plane), ventral and mesial views (top to bottom). Recording sites over orbital, 146 
transverse frontopolar, inferior temporal gyrus and temporal pole are shown in both the lateral and the 147 
ventral view. Sites in fusiform, lingual, parahippocampal gyrus and gyrus rectus are shown in both the 148 
ventral and medial view. Sites in the frontal operculum (n = 23), parietal operculum (n = 21), amygdala 149 
(n = 80), hippocampus (n = 86), putamen (n = 15), globus pallidus (n = 1), caudate nucleus (n = 10), 150 
substantia innominata (n = 5), and ventral striatum (n = 2) are not shown. See Supplementary Table 2 for 151 
detailed information on electrode coverage. c: ROI groups, ROIs and abbreviations used in the present 152 
study. See Supplementary Table 3 for alphabetized list of abbreviations.  153 
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 154 

Figure 2. Functional geometry of cortical networks revealed by DME applied to gamma-band power 155 
envelope correlations in a single participant (R376). a: Electrode coverage. b: Diffusion matrix Psymm. c: 156 
Data plotted on the same scale in the 1st and 2nd, 1st and 3rd, and 1st and 4th dimensions of 157 
embedding space (top to bottom). Two points that are close in embedding space are similarly connected 158 
to the rest of the network, and thus assumed to be functionally similar.   159 
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Functional geometry of cortical networks 160 

To pool data across participants with variable electrode coverage, Psymm matrices were 161 
computed at the ROI level and averaged across participants. The results for gamma-band data 162 
are shown in Figure 3a. The eigenvalue spectrum |λi| of this averaged Psymm showed a clear 163 
separation between the first four and the remaining dimensions (Fig. 3a, inset), indicating that 164 
the first four dimensions of embedding space accounted for much of the community structure 165 
of the data. Indeed, these first four dimensions accounted for >80% of the diffusion distance 166 
averaged across all pairwise distances in the space, a typical measure for deciding which 167 
dimensions to retain when DME is used as a dimensionality reduction method (Coifman and 168 
Hirn, 2014).  169 

The data are plotted in the first four dimensions of embedding space in Figure 3b (see also 170 
Supplementary Fig. 3 and Supplementary Movies 1 and 2), providing a graphical representation 171 
of the functional geometry of all sampled brain regions. Functionally related ROIs clustered 172 
together, and these clusters segregated within embedding space. For example, auditory cortical 173 
and prefrontal ROIs were at opposite ends of dimension 1, as were visual cortical (ITGP, ITGM, 174 
LinG, FG) and prefrontal ROIs. Parietal and limbic ROIs were at opposite ends of dimension 2, 175 
and auditory and visual ROIs were maximally segregated along dimension 4. By contrast, some 176 
ROIs [e.g., STGA, anterior and middle portions of middle temporal gyrus (MTGA, MTGM), 177 
middle cingulate (CingM)] were situated in the interior of the data cloud. 178 

 179 

DME elucidates fine-scale functional organization beyond anatomical proximity 180 

The connectivity metric employed here discards components exactly in phase between two 181 
brain regions, mitigating the influence of volume conduction (Hipp et al., 2012). However, brain 182 
areas that are anatomically close to each other are often densely interconnected (Cavada et al., 183 
2000; Jones et al., 1978; Kaas and Hackett, 1998; Kaas and Hackett, 2000; Morel et al., 1993). 184 
Thus, anatomical proximity is expected to contribute to the observed functional geometry. 185 
Overall, however, anatomical proximity explained only 14% of the variance in embedding 186 
distance (mean adjusted r2 = 0.14 for regressions between anatomical and embedding 187 
Euclidean distance, calculated separately for each ROI). Anatomically adjacent ROIs that were 188 
separated in embedding space included STGA and STGM, temporal pole (TP) and the rest of the 189 
anterior temporal lobe (ATL), and InsA and InsP. Thus, the embedding representation elucidates 190 
organizational features beyond anatomical proximity. 191 

 192 

Planum polare (PP) and posterior insula (InsP) are functionally distinct from other auditory 193 
cortical ROIs 194 

The grouping of canonical auditory ROIs is apparent in Figure 3b, as PT, HGAL, and middle and 195 
posterior portions of the superior temporal gyrus (STGM, STGP) were all close to HGPM in 196 
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embedding space. One notable exception, planum polare (PP), located immediately anterior to 197 
anterolateral Heschl’s gyrus (HGAL), segregated from the rest of auditory cortical ROIs along 198 
dimension 2 in embedding space (Fig. 3b, upper panel, lower left corner). This result is 199 
consistent with PP being a higher order auditory area. 200 

In contrast, InsP is a region that is anatomically distant from HGPM yet responds robustly to 201 
acoustic stimuli (Zhang et al., 2019), suggesting that a portion of this area could be considered 202 
an auditory region (Remedios et al., 2009). For example, InsP can track relatively fast (>100 Hz) 203 
temporal modulations, similar to HGPM (Steinschneider et al., 2013; Zhang et al., 2019), 204 
possibly due to direct inputs from the auditory thalamus. However, InsP was functionally 205 
segregated from HGPM and was situated between auditory and limbic ROIs, consistent with the 206 
broader role of InsP in polysensory exteroceptive processing and interoception (Craig, 2003; 207 
Kuehn et al., 2016). 208 

 209 

Hierarchical distinction of STSU and STSL 210 

Unlike InsP and PP, STSU clustered with early auditory regions, and was significantly closer to 211 
auditory cortex (core and non-core ROIs; see Fig. 1) in embedding space compared to STSL (test 212 
by permutation of STSU/STSL labels, p<0.001). This distinction between STSL and STSU is 213 
consistent with differences in their response properties reported recently (Nourski et al., 2021). 214 
Particularly, responses in STSL, but not STSU, were predictive of performance in a semantic 215 
categorization task. Those results suggest that STSL would likely be closer in embedding space 216 
to regions involved in semantic processing compared to STSU. Indeed, STSL was significantly 217 
closer to ROIs reported to contribute to semantic processing [inferior frontal gyrus (IFG) pars 218 
operculum/triangularis/orbitalis (IFGop, IFGtri, IFGor), TP, STGA, MTGA, MTGP, anterior and 219 
posterior portions of inferior temporal gyrus (ITGA, ITGP), anterior and posterior angular gyrus 220 
(AGA, AGP), supramarginal gyrus (SMG)] (Binder et al., 2009; Humphreys et al., 2015; Jackson et 221 
al., 2016) compared to STSU (test by permutation of STSU/STSL labels, p<0.001).   222 
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 223 

Figure 3. Summary of functional geometry of cortical networks via DME applied to gamma-band power 224 
envelope correlations. a: Average diffusion matrix. Inset: Eigenvalue spectrum. b: Data plotted on the 225 
same scale in the 1st and 2nd, 1st and 3rd, and 1st and 4th dimensions of embedding space (top to 226 
bottom). Variance estimates on the locations of each ROI in embedding space were obtained via 227 
bootstrapping and are represented by the size of the ellipsoid for each ROI.   228 
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Organization of ROIs outside auditory cortex  229 

Figure 3b also characterizes the temporal and parietal ROIs outside auditory cortex that are 230 
nonetheless part of the extended auditory network, including components of the dorsal and 231 
ventral processing streams. These ‘auditory-related’ ROIs (shades of green in Fig. 3b), were 232 
distributed along a considerable extent of all four dimensions, consistent with functional 233 
heterogeneity of these regions and their involvement in multimodal integration (Bernstein and 234 
Liebenthal, 2014).  235 

This heterogeneity, as well as the embedding locations of PP and STSU, suggests that the brain 236 
parcellation scheme from Figure 1 is suboptimal. Indeed, there were no quantitative criteria in 237 
this scheme for designating ROIs as ‘Auditory-related’ versus ‘Auditory non-core’. Similarly, the 238 
‘Other’ group contains a large and diverse collection of ROIs whose relationship to auditory 239 
structures and speech and language processing is unclear. To facilitate arranging these and 240 
other ROIs into functional groups or streams and develop a data-driven parcellation scheme, 241 
we turned to a quantitative hierarchical clustering approach. 242 

 243 

Hierarchical clustering identifies mesoscale-level organizational features: ROI groups and 244 
processing streams 245 

Hierarchical clustering applied to the first four dimensions of the embedded data shown in 246 
Figure 3 elucidated the mesoscale organization of cortical ROIs (Fig. 4) in agreement with the 247 
qualitative observations discussed above. Auditory cortical ROIs (excluding PP) formed an 248 
‘Auditory’ cluster with STSU. Another major cluster (labeled ‘Limbic’) included ROIs traditionally 249 
considered part of the limbic system [parahippocampal gyrus (PHG), amygdala and 250 
hippocampus], as well as TP and the insula. ROIs typically considered part of the ventral and 251 
dorsal auditory streams segregated into two clusters. Additional clusters included ROIs in the 252 
ventral visual stream and those involving sensorimotor functions (labeled ‘Visual’ and ‘Action’, 253 
respectively in Fig. 4), and several clusters of prefrontal and medial cortical ROIs involved in 254 
executive function. Thus, the hierarchical clustering analysis revealed a segregation of ROIs in 255 
embedding space that aligned with known functional differentiation of brain regions. Further, 256 
we can use this analysis to expand our understanding of hierarchical relationships among 257 
clusters. For example, the ‘Auditory’ cluster is distinct from other clusters primarily in the 258 
temporal lobe, but is closer to the ‘Limbic’ cluster than ‘Ventral’ or ‘Visual’. 259 

In addition to these resting state recordings, most participants engaged in additional 260 
experiments investigating representation of acoustic stimuli in the brain (Nourski et al., 2017; 261 
Nourski et al., 2021; Nourski et al., 2022; Steinschneider et al., 2014). We used these data to 262 
evaluate auditory responsiveness of each recording site (Fig. 4b) and compare these response 263 
profiles to the clustering results of Figure 4a. As expected, ROIs in the auditory cluster exhibited 264 
consistently high responsiveness to auditory stimuli, while visual ROIs did not. By contrast, 265 
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some clusters exhibited mixed responsiveness (e.g. InsP in the limbic cluster), possibly 266 
indicating ROIs that serve as nodes bridging auditory and other brain networks. 267 

A new brain parcellation scheme based on these clustering results is illustrated in Figure 4c.  268 

 269 

 270 

Figure 4. Hierarchical clustering of embedding data shown in Figure 3. a: Linkages between ROI groups 271 
identified using agglomerative clustering. b: Percentages of sites with early (50-350 ms after stimulus 272 
onset; black bars) and late (350-650 ms; white bars) high gamma responses to 300 ms monosyllabic 273 
words. c: Brain parcellation based on hierarchical clustering.   274 
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Embedding and hierarchical clustering in the theta band 275 

DME applied to theta-band power envelope correlations yielded results broadly similar to the 276 
gamma band, especially in the first two dimensions of embedding space (Supplementary Figure 277 
4). Auditory cortical ROIs other than PP clustered together and with STSU, and were maximally 278 
segregated from PFC ROIs along dimension 1. In addition, auditory-related ROIs were dispersed 279 
in embedding space, consistent with their functional heterogeneity.  280 

Hierarchical clustering of data from theta-band power envelope correlations (Supplementary 281 
Figure 5) yielded several clusters that overlapped with those from gamma-band data. These 282 
included a cluster of auditory cortical ROIs, the bulk of lateral prefrontal cortex, and most of the 283 
‘action’ cluster. Other clusters were less consistent, suggesting the temporal scale of neuronal 284 
signaling contributes to establishing distinct functional networks (Hacker et al., 2017; Keitel and 285 
Gross, 2016; Kiebel et al., 2008). 286 

 287 

DME identifies mesoscale topological features of cortical networks 288 

Identification of ‘global hubs’ within brain networks is critical for understanding their topology 289 
(Bullmore and Sporns, 2009). These nodes integrate and regulate information flow in the 290 
network by virtue of their centrality and strong connectivity, yet a precise method for 291 
identifying these hubs is yet to be established. 292 

DME can identify global hubs, as the closer an ROI is to the center of the data cloud in 293 
embedding space, the more equal is its connectivity to the rest of the network. A simulated 294 
example is illustrated in Figure 5a, which depicts a network of five ROIs, with one serving as a 295 
global hub (Fig. 5a, left panel, green). The network structure can also be represented as an 296 
adjacency matrix, wherein the hub ROI has strong connectivity with other ROIs (Fig. 5a, middle 297 
panel). In embedding space, this ROI occupies a central location, with the other four serving as 298 
spokes, i.e., nodes that interact with each other through the central hub (Fig. 5a, right panel).  299 

We computed distance from the center of embedding space for all of the ROIs in Figure 3b. We 300 
also computed mean functional connectivity for each ROI and show in Figure 5b an overall 301 
inverse relationship between these two measures. ROIs close to the center of embedding space 302 
also exhibited strong mean connectivity, suggesting their roles as global hubs. These ROIs 303 
included MTGA, STGA, and MTGM, which all lie in the upper left quadrant of the plot >2 304 
standard deviations from the center of the data cloud (outer dashed ellipse). ITGA, CingM, 305 
posterior cingulate/precuneus (PCC/preCun), PP, fOperc, and STSL also exhibited hub-like 306 
properties, i.e., were located in the upper left quadrant of Figure 5b. ROIs far from the center of 307 
embedding space, mostly unimodal sensory and motor regions, exhibited weak overall 308 
connectivity, consistent with their roles as spokes in the network. 309 

In contrast to the gamma-band data, the same analysis applied to theta-band data identified 310 
CingM and ACC as two prominent global hubs, along with MTGM (Supplementary Figure 6). 311 
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These results are consistent with network organization depending on temporal scale, and 312 
suggests that mesial cortical structures regulate information flow on slower time scales. Thus, 313 
DME can identify topological features critical to information flow within cortical networks.  314 

 315 

 316 

Figure 5. Identification of network hubs. a: Schematic example illustrating the central positioning of 317 
global hubs in embedding space. b: ROIs from average embedding are plotted according to their mean 318 
connectivity to the rest of the network versus their distance to the centroid of the data cloud in the first 319 
four dimensions of embedding space. Dashed lines denote across-ROI means. Dashed ellipses represent 320 
1 and 2 standard deviations from the mean.321 
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Differences between language-dominant and non-dominant hemispheres are not specific to 322 
speech and language ROIs 323 

On a macroscopic scale, speech and language networks are lateralized in the human brain, with 324 
nearly all right-handed and most left-handed individuals left hemisphere language-dominant 325 
(Knecht et al., 2000). However, both hemispheres are activated during speech processing 326 
(Hickok and Poeppel, 2007; Price, 2012; Schirmer et al., 2012; Turkeltaub and Coslett, 2010), 327 
and the extent to which lateralization is reflected in asymmetries in the organization of resting 328 
state auditory networks is unclear. We investigated this issue by comparing the functional 329 
geometry of cortical networks derived from participants with electrode coverage in the 330 
language-dominant (N = 24) versus non-dominant (N = 22) hemisphere. ROIs in the two 331 
hemispheres exhibited a similar functional organization in embedding space (Supplementary 332 
Fig. 7). Permutation analysis indicated that the positions of ROIs in embedding space were not 333 
significantly different between dominant and non-dominant hemispheres (all p-values > 0.05). 334 
Furthermore, there was no significant correlation between the change in position in embedding 335 
space and either early or late auditory responsiveness (early: p = 0.94; late: p = 0.86; Fig. 6a). 336 

We also analyzed inter-ROI distances to determine whether functional interactions between 337 
ROIs were different in the two hemispheres. Pairwise inter-ROI distances in embedding space, 338 
calculated separately for dominant versus non-dominant hemisphere, were highly correlated (r 339 
= 0.88), with no obvious outliers (Fig. 6b, left panel). The data shown in Figure 6a have a slope 340 
<1, indicating that inter-ROI distances are consistently longer in the dominant hemisphere 341 
compared to the non-dominant hemisphere (p = 0.0052). This multiplicative scaling of the 342 
distances is consistent with the data occupying a larger volume in embedding space for the 343 
dominant versus non-dominant hemisphere, suggesting a greater functional heterogeneity for 344 
the language-dominant side of the brain. After accounting for this multiplicative scaling effect, 345 
following FDR correction, there were no specific inter-ROI distances that were significantly 346 
different between the two hemispheres. 347 

When considering ROIs specifically involved in speech and language comprehension and 348 
production [PT, PP, STSL, STGP, STGM, STGA, SMG, AGA, premotor cortex (PMC), precentral 349 
gyrus (PreCG), IFGop, IFGtr] (Ardila et al., 2016; Chang et al., 2015; Hickok and Poeppel, 2015), 350 
the correlation in pairwise inter-ROI distances in embedding space was also high (r = 0.90; 351 
Figure 6b). Furthermore, the data in Figure 6b exhibit a similar multiplicative scaling as 352 
observed for all the ROIs shown in Figure 6a. Indeed, the slope for the data in Figure 6b was 353 
indistinguishable from the slope for the data in Figure 6a (p = 0.92). Thus, hemispheric 354 
asymmetry of functional organization specific to speech and language networks was not 355 
detectable in RS connectivity. 356 
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 357 
Figure 6. RS connectivity is symmetric between hemispheres. Inter-ROI distances in embedding space 358 
for non-dominant versus dominant hemisphere participants. a: Comparison between the change in 359 
position in embedding space from dominant to non-dominant hemisphere and the auditory 360 
responsiveness of individual ROIs. Two-tailed Spearman’s rank tests did not reveal a significant 361 
correlation between ROI asymmetry and percentage of either early or late auditory responsive sites 362 
within the ROI (left and right panel, respectively). b: Pairwise distances between all ROIs and between 363 
ROIs involved in speech and language perception and production (PT, PP, STSL, STGP, STGM, STGA, SMG, 364 
AGA, PMC, PreCG, IFGop, IFGtr) are shown in the left and right panel, respectively. Note that after 365 
splitting the data into the two subsets (dominant and non-dominant) STSU did not meet the inclusion 366 
criteria for analysis presented in the right panel (see Methods, Supplementary Table 2).   367 
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Stability of functional geometry across frequency bands 368 

Other bands (alpha, beta, high gamma) produced similar embeddings to those from gamma and 369 
theta. Inter-ROI distances were highly similar for adjacent bands (r ³ 0.82), and even for non-370 
adjacent bands (r ³ 0.67; Supplementary Fig. 8). Thus, DME identified overall, rather than band-371 
specific, organizational features of cortical networks. 372 

However, a particular band might be preferred if it produced narrower estimation margins in 373 
the functional geometry. An overall relative uncertainty was calculated as the correlation 374 
between inter-ROI embedding distances in the original data versus bootstrapped data. 375 
Correlation values were uniformly high across bands (r = 0.91, 0.85, 0.87, 0.88, and 0.86 for 376 
high gamma, gamma, beta, alpha, and theta, respectively). These analyses suggest that DME 377 
offers a robust approach to exploring functional geometry. 378 

 379 

Comparison to embeddings derived from RS-fMRI data 380 

So far, we’ve presented results at multiple spatial scales based on intracranial 381 
electrophysiology. However, these intracranial recordings sample the brain non-uniformly and 382 
sparsely as dictated by clinical considerations. This feature presents problems at two spatial 383 
scales: first, cortical regions are not sampled uniformly (with some not sampled at all). Second, 384 
ROIs are not sampled uniformly across their volume. To examine the impact of these sampling 385 
issues, we compared iEEG-based DME to DME applied to RS-fMRI data available in a subset of 386 
ten participants. 387 

We first tested the consistency of functional geometry derived from the two modalities in the 388 
same participants (Fig. 7). Connectivity matrices were constructed based on RS-fMRI data from 389 
voxels located at iEEG recording sites and grouped into the same ROIs as in Figure 1. The iEEG 390 
and fMRI embeddings averaged across participants were qualitatively similar (Fig. 7a, b), and 391 
the overall organization derived from this subset was consistent with that observed in the full 392 
iEEG dataset (cf. Fig. 3b). Inter-ROI distances in the fMRI and iEEG embedding spaces were 393 
correlated (Fig. 7c), with highest correlations for gamma- and high gamma-band envelopes (r > 394 
0.45; Fig. 7d, line and symbols).  395 

The analysis presented in Figure 7 provide a context for using fMRI data to address questions 396 
regarding the effects of limited, non-uniform sampling. We used a standard parcellation 397 
scheme developed for fMRI data (Schaefer-Yeo 400 ROIs; (Schaefer et al., 2018)) rather than 398 
the iEEG parcellation scheme introduced in Figure 1.  399 

The first question we addressed was the effect of non-uniformly sampling only a subset of brain 400 
regions. For each participant, embeddings were derived from RS-fMRI connectivity matrices 401 
computed from all cortical ROIs (Fig. 8a, “Full fMRI”, first column). From these embeddings, we 402 
selected only points in embedding space corresponding to ROIs sampled with iEEG (Fig. 8a, “Full 403 
fMRI (iEEG subset)”, second column). We also computed embeddings for each subject from 404 
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only the fMRI ROIs sampled with iEEG in that subject [“Partial fMRI (ROI level)”, Fig. 8a, 3rd 405 
column]. We compared these embeddings to the “Full fMRI (iEEG subset)” embeddings by 406 
computing the correlation between inter-ROI distances (Fig. 8b). Although the scale of the 407 
embeddings was different for the full fMRI versus partial fMRI data (because the number of 408 
dimensions was different), the two were highly correlated (median r = 0.90; Fig. 8c). Thus, 409 
embeddings constructed from the portion of the brain sampled by iEEG were quite similar to 410 
embeddings derived from the whole brain. 411 

The second question we addressed was the effect of representing an entire ROI by sparse 412 
sampling with a limited number of electrodes. We computed embeddings from the voxel 413 
averages across entire ROIs in each participant [“Partial fMRI (ROI level)”, Fig. 8a, 3rd column] 414 
and from averages of the voxels in grey-matter spheres around iEEG recording sites [“Partial 415 
fMRI (site level)”, Fig. 8a, rightmost column]. ROI- and site-level embedding distances were 416 
strongly correlated (median r = 0.65; Fig. 8c). 417 

Thus, sparse sampling within an ROI had a greater impact on estimates of functional geometry 418 
than limited sampling of the complete set of ROIs. Overall, however, ROIs were faithfully 419 
represented in embedding space even when DME was based on a small number of locations 420 
within ROIs. Taken together, these results indicate broad consistency between functional 421 
organization derived from iEEG and fMRI and the robustness of this approach to sparse 422 
sampling afforded by iEEG recordings. 423 
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  424 

Figure 7. Comparison of iEEG and fMRI connectivity data in embedding space. a: Participant-averaged 425 
embeddings for iEEG (gamma band power envelope correlations). b: Participant-averaged embeddings 426 
for fMRI. Scale bar: 0.1. c: Inter-ROI embedding distances computed from the data in a and b. d: 427 
Summary of distance correlations at each frequency band. t = 1 for all embeddings.  428 
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 429 

Figure 8. Comparison of embeddings derived from full fMRI connectivity matrices and connectivity 430 
matrices computed using only ROIs sampled with iEEG. a: Data in the first four dimensions of embedding 431 
space for a single participant. Shown are embeddings of all derived from the full RS-fMRI connectivity 432 
matrix (1st column); the subset of the data points in the 1st column corresponding to ROIs sampled via 433 
iEEG (2nd column); and embeddings derived from connectivity matrices including only the ROIs sampled 434 
via iEEG, calculated by averaging across the entire ROI (3rd column), and calculated based on the specific 435 
recording sites in that participant (4th column). b: Comparison of embedding distances calculated from 436 
the full fMRI embedding (i.e, data in a, 2nd column) versus distances calculated from the partial fMRI 437 
embedding (i.e., data in a, 3rd column). c: Summary across participants of distance correlations between 438 
full fMRI embeddings versus partial embeddings calculated based on the entire ROI (left, “Full vs. Partial 439 
(ROI)”) and between partial embeddings calculated based on the entire ROI versus those calculated 440 
based on recording sites [right, “Partial (ROI) vs. Partial (site)”].  441 
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Discussion 442 

Organization of auditory cortical networks 443 

We have shown that DME applied to iEEG data can be used to characterize the organization of 444 
the human auditory cortical hierarchy at multiple spatial scales. We demonstrate methodology 445 
for testing specific hypotheses at each of these scales using DME. We also generate data-driven 446 
hypotheses for study using future data sets. 447 

 448 

Fine scale: Organization of auditory cortex 449 

At a fine spatial scale, previous work in macaque has defined over a dozen auditory cortical 450 
fields based on cytoarchitectonics, connectivity, and response properties (Hackett et al., 2001). 451 
By contrast, there is no consensus on how auditory cortex is organized in humans, with multiple 452 
candidate parcellations based on cytoarchitectonics, tonotopy or myeloarchitecture (Barton et 453 
al., 2012; Hackett, 2015; Moerel et al., 2014; Woods et al., 2010). Our results contribute to this 454 
body of knowledge by showing that several superior temporal ROIs including core auditory 455 
cortex (HGPM) and putative auditory belt and parabelt areas (PT, HGAL, STGP, STGM) (Hackett, 456 
2015; Moerel et al., 2014) cluster together in embedding space. Thus, in spite of their diversity 457 
in processing of specific features of acoustic signals, these ROIs are positioned at a similar level 458 
in the auditory processing hierarchy. Proximity of STGP and STGM to HGPM in embedding 459 
space is consistent with previous studies that interpret these regions as relatively early non-460 
core auditory cortex (Hamilton et al., 2021; Howard et al., 2000; Nourski et al., 2014). By 461 
contrast, PP is anatomically close and connected to HGPM (Upadhyay et al., 2008), yet it is 462 
distinguished among auditory cortical regions for its syntactic-level language processing 463 
(Friederici et al., 2000) and its preferential activation by music, which has a strong affective 464 
component (Angulo-Perkins et al., 2014). This functional differentiation is reflected in its 465 
segregation from the auditory cluster in embedding space. 466 

 467 

Fine scale: Functional differentiation between STSU and STSL 468 

The superior temporal sulcus is a critical node in speech and language networks linking 469 
canonical auditory cortex with higher order temporal, parietal, and frontal areas (Abrams et al., 470 
2020; Beauchamp, 2015; Chang et al., 2015; Hickok, 2009; Price, 2012; Venezia et al., 2017). 471 
Previous studies have shown that STSU and STSL differ in cytoarchitecture (Zachlod et al., 2020) 472 
and have distinct responses to speech (Belin et al., 2000; Deen et al., 2015; Leaver and 473 
Rauschecker, 2010; Wilson et al., 2018). A recent iEEG study demonstrated enhanced, shorter-474 
latency, responses to speech syllables in STSU compared to STSL (Nourski et al., 2021). STSU is 475 
traditionally not considered part of canonical auditory cortex (but see (Woods et al., 2010)), yet 476 
it clustered with auditory cortical ROIs. STSL, by contrast, was closer in embedding space to 477 
semantic ROIs. This is consistent with iEEG evidence that responses in STSL, but not STSU, 478 
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correlated with performance on a semantic categorization task (Nourski et al., 2021). The 479 
regions specifically involved in semantic processing is a current topic of debate, with multiple 480 
competing models (Binder et al., 2009; Humphreys et al., 2015; Jackson et al., 2016; Lambon 481 
Ralph et al., 2017). We defined a list of semantic processing regions by combining across these 482 
models. STSL was positioned closer in embedding space to these regions compared to STSU. 483 
Taken together, the results firmly place STSU and STSL at different levels of the auditory cortical 484 
hierarchy.  485 

 486 

Mesoscale: Functional and theoretical framework of a limbic auditory pathway 487 

Multiple lines of evidence support a pathway linking auditory cortical and limbic structures 488 
(Kahn et al., 2008; Michelmann et al., 2021; Rocchi et al., 2021; Wang et al., 2016) that 489 
subserves auditory memory (Kumar et al., 2021; Kumar et al., 2016; Munoz-Lopez et al., 2010) 490 
and affective sound processing (Fruhholz et al., 2016). The data presented here contribute to 491 
our understanding of this pathway. Clustering analysis identified a set of ROIs including 492 
structures classically labeled as limbic (PHG, Amy, Hipp) as well as insula (InsP, InsA) and TP 493 
positioned close to the auditory cluster in embedding space (Fig. 4). This suggests a close 494 
functional relationship that could form the basis for a limbic stream. InsP, with strong auditory 495 
responsiveness and overlapping response properties with HGPM, is likely involved in the 496 
transformation of auditory information in auditory cortex to affective representations in InsA 497 
(Zhang et al., 2019). Thus InsP could serve as critical linking node between auditory and limbic 498 
structures.  499 

TP is involved in semantic processing (Friederici et al., 2000; Lambon Ralph et al., 2017) and 500 
auditory memory (Munoz-Lopez et al., 2015), in particular the representation and retrieval of 501 
memories for people, social language, and behaviors (‘social knowledge’) (Olson et al., 2013). 502 
Tight clustering of TP with limbic ROIs in embedding space is consistent with its previously 503 
reported functional association with limbic cortex (Chanes and Barrett, 2016; Mesulam, 2000), 504 
with which TP shares key features of laminar cytoarchitecture and strong connectivity (Maller 505 
et al., 2019). We suggest that the organization depicted in Figures 3 and 4, combined with 506 
evidence for bidirectional information sharing between auditory cortex and limbic areas, merits 507 
the identification of a third auditory processing stream alongside the dorsal and ventral streams 508 
(Hickok, 2012; Rauschecker and Scott, 2009). This ‘limbic stream’ would underlie auditory 509 
contributions to affective and episodic memory processing.  510 

 511 

Mesoscale: Ventral and dorsal streams linking auditory and frontal cortex 512 

Current models of speech and language processing posit the existence of ventral and dorsal 513 
processing streams linking non-core auditory cortex with PMC and inferior frontal gyrus via 514 
several distinct anatomical pathways encompassing temporal, parietal, and frontal cortex 515 
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(Chang et al., 2015; Friederici, 2012; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009). 516 
Despite substantial experimental evidence supporting these models, there is a lack of 517 
consensus on the specific functions subserved by the two streams. For example, the dorsal 518 
stream has been envisioned to subserve spatial processing (“where” (Rauschecker and Scott, 519 
2009)), sensorimotor integration (“how” (Hickok and Poeppel, 2007)), and syntactic processing 520 
(Friederici, 2012). There is a parallel debate about the specific cortical regions comprising the 521 
two streams.  522 

As broadly predicted by these models, temporal and parietal ROIs segregated in embedding 523 
space in the analysis presented here (Fig. 3b, 4). We observed a cluster that included STSL, 524 
middle and inferior temporal gyrus ROIs, in conformity with the ventral auditory stream 525 
proposed by Hickok and Poeppel (Hickok and Poeppel, 2007) and Friederici (Friederici, 2012). 526 
By contrast, the cluster that included SMG, AGP, and AGA aligned with the dorsal processing 527 
stream as proposed by Rauschecker and Scott (Rauschecker and Scott, 2009). Association of FG 528 
and MOG with the ventral and dorsal clusters, respectively, likely represents the sharing of 529 
information across sensory modalities. 530 

A previous fMRI-based DME study found that primary sensory and default mode ROIs 531 
segregated along the first dimension in embedding space (Margulies et al., 2016). Coverage of 532 
mesial cortex in our dataset was limited, precluding a direct comparison. However, the striking 533 
separation between auditory and prefrontal cortex in embedding space shown here, and its 534 
robustness to the choice of the parameter t, indicate that the current results align well with the 535 
previous report. This separation places auditory and frontal regions at opposite ends of the 536 
auditory processing hierarchy, linked by ventral and dorsal processing streams (Friederici, 2012; 537 
Hickok and Poeppel, 2007; Rauschecker and Scott, 2009).  538 

 539 

Mesoscale: Network hubs 540 

Hubs in brain networks play a critical role in integrating distributed neural activity (Bullmore 541 
and Sporns, 2009; van den Heuvel and Sporns, 2013). In the present analysis, global hubs were 542 
characterized by their central location within embedding space and high mean connectivity (Fig. 543 
5). In the gamma band, these hubs included STGA and MTGA, both components of the ATL. 544 
Previous reports indicate that ATL serves as a transmodal hub, transforming sensory domain-545 
specific to domain-general representations (Abel et al., 2015; Lambon Ralph et al., 2017; 546 
Simmons and Martin, 2009) and playing a central role in semantic processing and social 547 
memory (Lambon Ralph et al., 2017; Olson et al., 2013; Patterson et al., 2007). MTGM also 548 
appears as a global hub, even though it is not formally part of the ATL. Interestingly, patients 549 
with semantic dementia have ATL degeneration (Scott et al., 2000; Spitsyna et al., 2006), but 550 
the damage is often more widespread and can include MTGM (Gorno-Tempini et al., 2004).  551 

Cingulate cortical ROIs (CingM, ACC) were identified as hubs in theta-band data. These areas 552 
are described as transmodal and are active during a wide array of emotional and cognitive 553 
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processes (Mesulam, 1998; Rolls, 2019), both consistent with their previous characterization as 554 
network hubs (van den Heuvel and Sporns, 2013). The identification of hubs specific to each 555 
frequency band supports the model in which the temporal scale of communication in the brain 556 
supports distinct functional networks (Hacker et al., 2017; Keitel and Gross, 2016; Kiebel et al., 557 
2008). 558 

Unlike other ATL structures, TP does not appear as a global hub in in either gamma or theta 559 
bands (Fig. 5b, Supplementary Figure 6). The close association of TP with limbic structures in 560 
embedding space suggests that TP mediates interactions between multimodal integration 561 
centers in the ATL and structures subserving memory functions. More broadly, the 562 
heterogeneity of ATL ROIs in terms of their global hub-like connectivity profiles conforms to the 563 
observation that the terminal fields of white matter tracts converging in the ATL only partially 564 
overlap (Binney et al., 2012; Lambon Ralph et al., 2017; Makris et al., 2009).  565 

 566 

Macroscale: Hemispheric lateralization 567 

Although speech and language networks are classically described as highly lateralized, imaging 568 
studies have demonstrated widespread bilateral activation during speech and language tasks 569 
(Binder et al., 2000; Cogan et al., 2014; de Heer et al., 2017). We found evidence for 570 
hemispheric differences in cortical functional organization based on analysis of all sampled 571 
brain regions, with inter-ROI distances being systematically greater in embedding space for the 572 
language-dominant hemisphere (Fig. 6b). This is consistent with greater inter-regional 573 
heterogeneity in that hemisphere compared to the non-dominant side. Importantly, ROIs 574 
involved in speech and language processing did show any additional asymmetry (Fig. 6b), nor 575 
was the difference in position in embedding space related to auditory responsiveness (Fig. 6a). 576 
Recent studies that identified interhemispheric differences in RS connectivity for the STS 577 
(Abrams et al., 2020) and semantic networks more broadly (Gonzalez Alam et al., 2021) may 578 
reflect this broader asymmetry observed here. Our are also consistent with a recent fMRI study 579 
showing RS connectivity patterns in lateral temporal cortex that were comparable between left 580 
and right hemispheres (Jackson et al., 2018). This does not exclude the possibility of 581 
asymmetries specific to auditory regions emerging during sensory tasks, for example reflecting 582 
hemispheric biases in spectral and temporal processing (Hickok and Poeppel, 2007; 2015). 583 

 584 

Caveats & limitations 585 

A key concern regarding all human iEEG studies is that participants may not be representative 586 
of a healthy population. In the present study, results were consistent across participants 587 
despite differences in seizure disorder histories, medications, and seizure foci, and aligned with 588 
results obtained previously in healthy participants (Margulies et al., 2016). Another caveat is 589 
that our dataset, however extensive, did not sample the entire brain, and it was not possible to 590 
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infer connectivity with unsampled regions. To address this, we applied DME analysis to fMRI 591 
data to establish that the organization of ROIs in embedding space was robust to the exclusion 592 
of unsampled ROIs. Although there was a greater effect of sparse, non-uniform sampling within 593 
an ROI, there was still considerable similarity in functional organization to embeddings derived 594 
from averages across the entire ROI.  595 

While subcortical structures (e.g., thalamus) that link sensory and higher order networks 596 
(Sherman and Guillery, 2011) were not sampled, the functional organization presented here 597 
was likely influenced indirectly by thalamo-cortical pathways (Hamilton et al., 2021; Hu, 2003). 598 
Previous fMRI studies of RS networks focused exclusively on cortical ROIs and did not consider 599 
the role of the thalamus and other subcortical structures. Despite this limitation, these studies 600 
have yielded valuable insights into the functional organization of the human cortical networks 601 
(Biswal et al., 2010; Seitzman et al., 2019). 602 

 603 

Concluding remarks and future directions 604 

This study extends the DME approach to characterize functional relationships between cortical 605 
regions investigated using iEEG recordings. These data help resolve several outstanding issues 606 
regarding the functional organization of human auditory cortical networks and stress the 607 
importance of a limbic pathway complementary to the dorsal and ventral streams. These 608 
results lay the foundation for future work investigating network organization during active 609 
speech and language processing. While the current work focused on auditory cortical networks, 610 
this approach can be readily generalized to advance our understanding of changes in brain 611 
organization during sleep and anesthesia, disorders of consciousness, as well as reorganization 612 
of cortical functional geometry secondary to lesions.   613 
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Online Methods 614 

Participants 615 

The study was carried out in 49 neurosurgical patients (22 females) diagnosed with medically 616 
refractory epilepsy. The patients were undergoing chronic invasive electrophysiological 617 
monitoring to identify seizure foci prior to resection surgery (Supplementary Table 1). Research 618 
protocols aligned with best practices recently aggregated in (Feinsinger et al., 2022) and were 619 
approved by the University of Iowa Institutional Review Board and the National Institutes of 620 
Health; written informed consent was obtained from all participants. Research participation did 621 
not interfere with acquisition of clinically necessary data, and participants could rescind 622 
consent for research without interrupting their clinical management.  623 

All participants except two were native English speakers. The participants were predominantly 624 
right-handed (42 out of 49); six participants were left-handed, and one had bilateral 625 
handedness. The majority of participants (35 out of 49) were left language-dominant, as 626 
determined by Wada test. Two participants were right hemisphere-dominant, and one had 627 
bilateral language dominance. The remaining 11 participants were not evaluated for language 628 
dominance; 9 of them were right-handed and thus were assumed left language-dominant for 629 
the purposes of the analysis of lateralization (see below). The participant with bilateral 630 
dominance, and the remaining two participants who did not undergo Wada test and who were 631 
left-handed were not included in the analysis of hemispheric asymmetry in Figure 6. 632 
All participants underwent audiological and neuropsychological assessment prior to electrode 633 
implantation, and none had auditory or cognitive deficits that would impact the results of this 634 
study. The participants were tapered off their antiepileptic drugs during chronic monitoring 635 
when RS data were collected.  636 

 637 

Experimental procedures 638 

Pre-implantation neuroimaging. All participants underwent whole-brain high-resolution T1-639 
weighted structural MRI scans before electrode implantation. In a subset of ten participants 640 
(Supplementary Table 2), RS-fMRI data were used for estimates of functional connectivity. The 641 
scanner was a 3T GE Discovery MR750W with a 32-channel head coil. The pre-electrode 642 
implantation anatomical T1 scan (3D FSPGR BRAVO sequence) was obtained with the following 643 
parameters: FOV = 25.6 cm, flip angle = 12 deg., TR = 8.50 ms, TE = 3.29 ms, inversion time = 644 
450 ms, voxel size = 1.0 × 1.0 × 0.8 mm. For RS-fMRI, 5 blocks of 5-minute gradient-echo EPI 645 
runs (650 volumes) were collected with the following parameters: FOV = 22.0 cm, TR = 2260 646 
ms, TE = 30 ms, flip angle = 80 deg., voxel size = 3.45 × 3.45 × 4.0 mm. In some cases, fewer RS 647 
acquisition sequences were used in the final analysis due to movement artifact or because the 648 
full scanning session was not completed. For each participant, RS-fMRI runs were acquired in 649 
the same session but non-contiguously (dispersed within an imaging session to avoid 650 
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habituation). Participants were asked to keep their eyes open, and a fixation cross was 651 
presented through a projector. 652 

iEEG recordings. iEEG recordings were obtained using either subdural and depth electrodes, or 653 
depth electrodes alone, based on clinical indications. Electrode arrays were manufactured by 654 
Ad-Tech Medical (Racine, WI). Subdural arrays, implanted in 36 participants out of 46, consisted 655 
of platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a 656 
silicon membrane. Stereotactically implanted depth arrays included between 4 and 12 657 
cylindrical contacts along the electrode shaft, with 5-10 mm inter-electrode distance. A 658 
subgaleal electrode, placed over the cranial vertex near midline, was used as a reference in all 659 
participants. All electrodes were placed solely on the basis of clinical requirements, as 660 
determined by the team of epileptologists and neurosurgeons (Nourski and Howard, 2015).  661 

No-task RS data were recorded in the dedicated, electrically shielded suite in The University of 662 
Iowa Clinical Research Unit while the participants lay in the hospital bed. RS data were collected 663 
6.4 +/- 3.5 days (mean ± standard deviation; range 1.5 – 20.9) after electrode implantation 664 
surgery. In the first 15 participants (L275 through L362), data were recorded using a TDT RZ2 665 
real-time processor (Tucker-Davis Technologies, Alachua, FL). In the remaining 34 participants 666 
(R369 through L585), data acquisition was performed using a Neuralynx Atlas System 667 
(Neuralynx Inc., Bozeman, MT). Recorded data were amplified, filtered (0.1–500 Hz bandpass, 5 668 
dB/octave rolloff for TDT-recorded data; 0.7–800 Hz bandpass, 12 dB/octave rolloff for 669 
Neuralynx-recorded data) and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000 Hz 670 
(Neuralynx). The durations of recordings were 13 +/- 11 min. In all but two participants, 671 
recording durations were between 10 and 22 min.; in one participant duration was 6 min., and 672 
in one participant the duration was 81 min.  673 

 674 

Data analysis 675 

Anatomical reconstruction and ROI parcellation. Localization of recording sites and their 676 
assignment to ROIs relied on post-implantation T1-weighted anatomical MRI and post-677 
implantation computed tomography (CT). All images were initially aligned with pre-operative T1 678 
scans using linear coregistration implemented in FSL (FLIRT) (Jenkinson et al., 2002). Electrodes 679 
were identified in the post-implantation MRI as magnetic susceptibility artifacts and in the CT as 680 
metallic hyperdensities. Electrode locations were further refined within the space of the pre-681 
operative MRI using three-dimensional non-linear thin-plate spline warping (Rohr et al., 2001), 682 
which corrected for post-operative brain shift and distortion. The warping was constrained with 683 
50-100 control points, manually selected throughout the brain, which were visually aligned to 684 
landmarks in the pre- and post-implantation MRI. 685 

To pool data across participants, the dimensionality of connectivity matrices was reduced by 686 
assigning electrodes to one of 58 ROIs organized into 6 ROI groups (see Fig. 1; Supplementary 687 
Table 2, 3) based upon anatomical reconstructions of electrode locations in each participant. 688 
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For subdural arrays, ROI assignment was informed by automated parcellation of cortical gyri 689 
(Destrieux et al., 2010; Destrieux et al., 2017) as implemented in the FreeSurfer software 690 
package. For depth arrays, it was informed by MRI sections along sagittal, coronal, and axial 691 
planes. For recording sites in Heschl’s gyrus, delineation of the border between core auditory 692 
cortex adjacent non-core areas (HGPM and HGAL, respectively) was performed in each 693 
participant using physiological criteria (Brugge et al., 2009; Nourski et al., 2016). Specifically, 694 
recording sites were assigned to HGPM if they exhibited phase-locked (frequency-following) 695 
responses to 100 Hz click trains and if the averaged evoked potentials to these stimuli featured 696 
short-latency (<20 ms) peaks. Such response features are characteristic for HGPM and are not 697 
present within HGAL (Brugge et al., 2009). Additionally, correlation coefficients between 698 
average evoked potential waveforms recorded from adjacent sites were examined to identify 699 
discontinuities in response profiles along Heschl’s gyrus that could be interpreted as reflecting a 700 
transition from HGPM to HGAL. Superior temporal gyrus was subdivided into posterior and 701 
middle non-core auditory cortex ROIs (STGP and STGM), and auditory-related anterior ROI 702 
(STGA) using the transverse temporal sulcus and ascending ramus of the Sylvian fissure as 703 
macroanatomical boundaries. The insula was subdivided into posterior and anterior ROIs, with 704 
the former considered within the auditory-related ROI group (Zhang et al., 2019). Middle and 705 
inferior temporal gyrus were each divided into posterior, middle, and anterior ROIs by diving 706 
the gyrus into three approximately equal-length thirds. Angular gyrus was divided into posterior 707 
and anterior ROIs using the angular sulcus as a macroanatomical boundary. Anterior cingulate 708 
cortex was identified by automatic parcellation in FreeSurfer and was considered as part of the 709 
prefrontal ROI group, separately from the rest of the cingulate gyrus. Postcentral and 710 
precentral gyri were each divided into ventral and dorsal portions using the yMNI coordinate (see 711 
below) of 40 mm as a boundary. Recording sites identified as seizure foci or characterized by 712 
excessive noise, and depth electrode contacts localized to the white matter or outside brain, 713 
were excluded from analyses and are not listed in Supplementary Table 2. Electrode coverage 714 
was largely restricted to a single hemisphere in individual participants, and contacts on the 715 
contralateral hemisphere were excluded from analysis (and are not listed in Supplementary 716 
Table 2) such that all connections represent intra-hemisphere functional connectivity. 717 

Preprocessing of fMRI data. Standard preprocessing was applied to the RS-fMRI data acquired 718 
in the pre-implantation scan using FSL’s FEAT pipeline, including spatial alignment and nuisance 719 
regression. White matter, cerebrospinal fluid and global ROIs were created using deep white 720 
matter, lateral ventricles and a whole brain mask, respectively. Regression was performed using 721 
the time series of these three nuisance ROIs as well as 6 motion parameters (3 rotations and 3 722 
translations) and their derivatives, detrended with second order polynomials. Temporal 723 
bandpass filtering was 0.008–0.08 Hz. Spatial smoothing was applied with a Gaussian kernel (6 724 
mm full-width at half maximum). The first two images from each run were discarded. Frame 725 
censoring was applied when the Euclidean norm of derivatives of motion parameters exceeded 726 
0.5 mm (Power et al., 2012). All runs were processed in native EPI space, then the residual data 727 
were transformed to MNI152 and concatenated.  728 
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Preprocessing of iEEG data. Analysis of iEEG data was performed using custom software written 729 
in MATLAB Version 2020a programming environment (MathWorks, Natick, MA, USA). After 730 
initial rejection of recording sites identified as seizure foci, several automated steps were taken 731 
to exclude recording channels and time intervals contaminated by noise. First, channels were 732 
excluded if average power in any frequency band [broadband, delta (1-4 Hz), theta (4-8 Hz), 733 
alpha (8-13Hz), beta (13-30 Hz), gamma (30-50 Hz), or high gamma (70-110 Hz); see below] 734 
exceeded 3.5 standard deviations of the average power across all channels for that participant. 735 
Next, transient artifacts were detected by identifying voltage deflections exceeding 10 standard 736 
deviations on a given channel. A time window was identified extending before and after the 737 
detected artifact until the voltage returned to the zero-mean baseline plus an additional 100 ms 738 
buffer before and after. High-frequency artifacts were also removed by masking segments of 739 
data with high gamma power exceeding 5 standard deviations of the mean across all segments. 740 
Only time bins free of these artifact masks were considered in subsequent analyses. Artifact 741 
rejection was applied across all channels simultaneously so that all connectivity measures were 742 
derived from the same time windows. Occasionally, particular channels survived the initial 743 
average power criteria yet had frequent artifacts that led to loss of data across all the other 744 
channels. There is a tradeoff in rejecting artifacts (losing time across all channels) and rejecting 745 
channels (losing all data for that channel). If artifacts occur on many channels, there is little 746 
benefit to excluding any one channel. However, if frequent artifacts occur on one or 747 
simultaneously on up to a few channels, omitting these can save more data from other 748 
channels than those channels contribute at all other times. We chose to optimize the total data 749 
retained, channels × time windows, and omitted some channels when necessary. To remove 750 
shared signals unlikely to derive from brain activity, data from retained channels were high-pass 751 
filtered above 200 Hz, and a spatial filter was derived from the singular value decomposition 752 
omitting the first singular vector. This spatial filter was then applied to the broadband signal to 753 
remove this common signal.  754 

Connectivity analysis. For RS-fMRI data, BOLD signals were averaged across voxel groupings and 755 
functional connectivity was calculated as Pearson correlation coefficients. Voxel groupings were 756 
either based on the Schaefer-Yeo 400 parcellation scheme (Schaefer et al., 2018) in MNI-152 757 
space, or were based on iEEG electrode location in participant space (see Fig. 1). For the latter, 758 
fMRI voxels were chosen to represent comparable regions of the brain recorded by iEEG 759 
electrodes. For each electrode, the anatomical coordinates of the recording site were mapped 760 
to the closest valid MRI voxel, E, and a sphere of 25 voxels (25 mm3) centered on E used as the 761 
corresponding recording site. This process was repeated for all N electrodes in the same ROI, 762 
and a single time series computed as the average of the fMRI BOLD signal in these N×25 voxels. 763 
These averages were used to compute an ROI-by-ROI connectivity matrix for RS-fMRI data. For 764 
comparisons between iEEG and fMRI embeddings, voxels were processed in participant space 765 
and ROI labels from the parcellation scheme illustrated in Figure 1 and Supplementary Table 2 766 
were applied to the fMRI data. For comparisons between fMRI embeddings derived from all 767 
cortical ROIs versus fMRI embeddings derived from just ROIs sampled in the iEEG experiments, 768 
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electrode locations were transformed from participant space to MNI-152 space, then assigned 769 
to ROIs within the Schaefer-Yeo 400 scheme.  770 

For iEEG data, envelope correlations were estimated within 60-second data segments using 771 
orthogonalized band power envelope correlations as in (Hipp et al., 2012), except time-772 
frequency decomposition was performed using the demodulated band transform (Kovach and 773 
Gander, 2016) rather than wavelets. This measure avoids artifacts due to volume conduction by 774 
discounting connectivity near zero phase lag. For each frequency band (theta: 4-8 Hz, alpha: 8-775 
13 Hz, beta: 13-30 Hz, gamma: 30-70 Hz; high gamma: 70-120 Hz), the power at each time bin 776 
was calculated as the average (across frequencies) log of the squared amplitude. For each pair 777 
of signals X and Y, one was orthogonalized to the other by taking the magnitude of the 778 
imaginary component of the product of one signal with the normalized complex conjugate of 779 
the other:  780 

𝑌!"#$ =	 |Im{𝑌 × 𝑋∗/|𝑋|}| 781 

Both signals were band-pass filtered (0.2 – 1 Hz), and the Pearson correlation calculated 782 
between signals. The process was repeated by orthogonalizing in the other direction and the 783 
overall envelope correlation for a pair of recording sites was the average of the two Pearson 784 
correlations. Lastly, correlations were averaged across segments. 785 

Prior to diffusion map embedding, connectivity matrices were thresholded by saving at least 786 
the top third (rounded up) connections for every row, as well as their corresponding columns 787 
(to preserve symmetry). We also included any connections making up the minimum spanning 788 
tree of the graph represented by the elementwise reciprocal of the connectivity matrix to 789 
ensure the graph is connected. 790 

ROI-based connectivity analysis. Connectivity between ROIs was computed as the average 791 
envelope correlation between all pairs of recording sites in the two ROIs. For analyses in which 792 
connectivity was summarized across participants (Fig. 3-8), we used only a subset of ROIs such 793 
that every possible pair of included ROIs was represented in at least two participants 794 
(Supplementary Table 2). This list of ROIs was obtained by iteratively removing ROIs with the 795 
worst cross-coverage with other ROIs until every ROI remaining had sufficient coverage with all 796 
remaining ROIs. 797 

Diffusion map embedding. See the Appendix for details about DME.  798 

In brief, the connectivity matrix K = [k(i,j)] (here orthogonalized power envelope correlations) is 799 
normalized by degree to yield a matrix P = D-1K, where D is the degree matrix, i.e. the diagonal 800 
elements of D = ∑ 𝑘(𝑖, 𝑗)&

'() , where N is the number of recording sites, and the off-diagonal 801 
elements of D are zero. If the recording sites are conceptualized as nodes on a graph with edges 802 
defined by K, then P can be understood as the transition probability matrix for a ‘random walk’ 803 
or a ‘diffusion’ on the graph (see Appendix; (Coifman and Hirn, 2014; Coifman et al., 2005)). 804 
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DME consists of mapping the recording sites into an embedding space using an 805 
eigendecomposition of P,  806 

Ψ(t)(xi) = [λ1
tψ1(xi), λ2

tψ2(xi), …, λM
tψM(xi)]T , 807 

where ψj are the eigenvectors of P. The parameter t is the number of time steps in that random 808 
walk; larger values of t shift focus from local to global features of the data. Here, we present 809 
data for t = 1. In the analyses presented here, K is a matrix of orthogonalized power envelope 810 
correlations transformed by applying cosine similarity (Margulies et al., 2016).  811 

DME can be implemented alternatively based on a symmetric version of diffusion matrix Psymm 812 
= D-0.5KD-0.5. Basing DME on Psymm has the advantage that the eigenvectors of Psymm form an 813 
orthogonal basis set (unlike the eigenvectors of P), providing some additional convenience 814 
mathematically that is beyond the scope of this paper (Coifman and Hirn, 2014). Additionally, 815 
the eigenvalues of P and Psymm are identical. 816 

In two sets of analyses presented here, pairs of embeddings were compared to each other: in 817 
the analysis of lateralization of speech and language networks, and in the comparison between 818 
iEEG and fMRI data. To do that, we used a change of basis operator to map embeddings into a 819 
common embedding space using the method described in Coifman et al 2014 (Coifman and 820 
Hirn, 2014).  821 

Dimensionality reduction via low rank approximations to Psymm. Diffusion map embedding offers 822 
an opportunity to reduce the dimensionality of the underlying data by considering only those 823 
dimensions that contribute importantly to the structure of the data, as manifested in the 824 
structure of the transition probability matrix P, or, equivalently, of the diffusion matrix Psymm. 825 
We used the eigenvalue spectrum of Psymm to determine its ideal low rank approximation, 826 
balancing dimensionality reduction and information loss. The basis for this is most easily 827 
understood in terms of the eigenvalue spectrum of P, whose spectrum is identical to that of 828 
Psymm (Coifman and Hirn, 2014). Because P is real and symmetric, the magnitude of the 829 
eigenvalues is identical to the singular values of P. The singular values tell us about the fidelity 830 
of low rank approximations to P. Specifically, if P has a set of singular values s1≥ s1≥…≥ sn, then 831 
for any integer k ≥ 1, 832 

min
𝐏𝒌"
$𝐏 −	𝐏#($$ =	𝜎#%&, 833 

where 𝐏*4 is the rank-k approximation to P. Thus, the magnitude of the eigenvalues corresponds 834 
to the fidelity of the lower dimensional approximation, and the difference in the magnitude of 835 
successive eigenvalues represents the improvement in that approximation as the 836 
dimensionality increases. The spectrum of P invariably has an inflection point (“elbow”), 837 
separating two sets of eigenvalues li: those whose magnitude decreases more quickly with 838 
increasing i, and those beyond the inflection point whose magnitude decreases more slowly 839 
with increasing i. The inflection point thus delineates the number of dimensions that are most 840 
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important for approximating P or Psymm. The inflection point kinfl was identified algorithmically 841 
(Satopaa et al., 2011), and the number of dimensions retained set equal to kinfl – 1.  842 

Comparing distances in embedding space. The relative distance between points in embedding 843 
space provides insight into the underlying functional geometry. In several analyses presented 844 
here, two embeddings of identical sets of ROIs were compared as ROI distances within the two 845 
embeddings. After mapping to a common space and reducing dimensionality as described 846 
above, the two embeddings A and B were used to create the pairwise distance matrices A` and 847 
B`. The Pearson correlation coefficient r was then computed between the upper triangles 848 
(excluding the diagonal) of the corresponding elements in the distance matrices. To compare 849 
anatomical distance and distance in embedding space, inter-ROI anatomical distances were 850 
calculated for each participant by computing the centroid of each ROI in MNI space, then 851 
calculating Euclidean distances between centroids, followed by averaging distances across 852 
participants. 853 

Signal to noise (SNR) characteristics. To measure the robustness of the embedding analysis to 854 
variability over time, an SNR was computed as follows. For each participant, a channel × 855 
channel Psymm matrix was calculated for each 60 s segment of data. For each segment, DME 856 
analysis was applied and a channel × channel distance matrix calculated. These distance 857 
matrices were averaged across segments. The ‘signal’ of interest was defined as the variability 858 
(standard deviation) of this averaged distance matrix (ignoring the diagonals). The ‘noise’ was 859 
defined as the variability across time, estimated for each element of the distance matrix as the 860 
standard deviation across segments, then averaged across the elements of the matrix. The SNR 861 
for functional connectivity itself was computed in an analogous manner, using the original 862 
channel × channel connectivity matrix rather than the matrix of embedding distances. 863 

Estimating precision in position and distances in embedding space. To obtain error estimates for 864 
both ROI locations in embedding space and embedding distance between ROIs, average ROI × 865 
ROI adjacency matrices were calculated. This was done by drawing each edge from an averaged 866 
bootstrap sample across participants, obtaining 10,000 such adjacency matrices, and 867 
performing diffusion map embedding for each. For locations in embedding space, these 868 
embeddings were then mapped via the change of basis procedure described above to the 869 
original group average embedding space. For each ROI, the mapped bootstrap iterations 870 
produced a cloud of locations in embedding space that were summarized by the standard 871 
deviation in each dimension. For embedding distances, no change of basis was necessary 872 
because distances were preserved across bases. 873 

To compare the positions of STSL versus STSU relative to canonical auditory cortical ROIs 874 
(HGPM, HGAL, PT, PP, STGP, and STGM) or ROIs involved in semantic processing (STGA, MTGA, 875 
MTGP, ITGA, ITGP, TP, AGA, AGP, SMG, IFGop, IFGtr, IFGor (Binder et al., 2009; Humphreys et 876 
al., 2015; Jackson et al., 2016; Lambon Ralph et al., 2017)), we calculated the average pairwise 877 
distance from STSL or STSU to each such ROI. The difference between these averages was 878 
compared to a null distribution obtained by Monte Carlo sampling of the equivalent statistic 879 
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obtained by randomly exchanging STSL/STSU labels by participant. The specific comparisons 880 
performed were chosen a priori to constrain the number of possible hypotheses to test; 881 
pairwise comparisons of all possible ROI pairs (let alone comparisons of all higher-order 882 
groupings) would not have had sufficient statistical power under appropriate corrections for 883 
multiple comparisons. Though different choices could have been made for inclusion in the 884 
“semantic processing” category, exchanging one or two of these ROIs would not strongly 885 
influence the average distance in a group of twelve ROIs. 886 

Hierarchical clustering. Agglomerative hierarchical clustering was done using the linkage 887 
function in MATLAB, with Euclidean distance as the distance metric and Ward’s linkage 888 
(minimum variance algorithm) as the linkage method. The ordering of ROIs along the horizontal 889 
axis in the dendrogram was determined using the optimalleaforder function in MATLAB, with 890 
the optimization criterion set to ‘group’. 891 

Auditory responsiveness. In a subset of 37 participants, auditory responsiveness was evaluated 892 
as percentage of sites within each ROI that exhibited high gamma responses to monosyllabic 893 
word stimuli. The stimuli were 300 ms words ”cat”, “dog”, “five”, “ten”, “red”, “white”, 894 
presented in semantic categorization and tone target detection tasks (Nourski et al., 2017; 895 
Nourski et al., 2021; Nourski et al., 2022; Steinschneider et al., 2014). Mean high gamma (70-896 
110 Hz) power within early (50 to 350 ms) and late (350 to 650 ms) poststimulus time windows 897 
was compared with that in a prestimulus window (-200 to -100 ms). Significance of high gamma 898 
responses was established at a p = 0.05 level using one-tailed Mann-Whitney U tests with false 899 
discovery rate correction. 900 

Comparing language dominant/non-dominant hemispheres. To test for differences in functional 901 
geometry between language dominant and non-dominant hemispheres, two measures were 902 
considered: differences in the location of individual ROIs in embedding space, and different 903 
pairwise distances between ROIs in embedding space. To calculate differences in location of 904 
individual ROIs, dominant/non-dominant average embeddings were mapped to a common 905 
space (from an embedding using the average across all participants regardless of language 906 
dominance) using the change of basis operator. The language-dominant location difference for 907 
a specific ROI was calculated as the Euclidean distance between the two locations of each ROI 908 
in this common space. To examine whether there was a consistent relationship between 909 
hemispheric asymmetry in a given ROI's location in embedding space and the percentage of 910 
either early or late auditory responsive sites within that ROI, two-tailed Spearman’s rank tests 911 
were used. To calculate differences in pairwise distances between ROIs, Euclidean distances 912 
were calculated in embedding space for each hemisphere and then subtracted to obtain a 913 
difference matrix. To determine whether the differences in location or pairwise distances were 914 
larger than expected by chance, random permutations of the dominant/non-dominant labels 915 
were used to generate empirical null distributions. Since this approach produces a p-value for 916 
every pair of connections, p-values were adjusted using false discovery rate (FDR) to account 917 
for multiple comparisons.  918 
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Analyses of fMRI connectivity in embedding space. Two sets of analyses were performed using 919 
fMRI data. First, iEEG and fMRI data were compared in embedding space. In this analysis, 920 
connectivity based on RS-fMRI data from voxels located at electrode recording sites was 921 
compare with the corresponding connectivity matrix derived from iEEG data. The embedding 922 
analysis was applied to the two connectivity matrices, all pairwise inter-ROI distances 923 
computed, and iEEG and fMRI data compared using the correlation of the pairwise ROI 924 
distances. The second analysis was to compare embeddings derived from all ROIs in the RS-925 
fMRI scans to those derived from just ROIs sampled with iEEG electrodes. Here, ROI × ROI 926 
connectivity matrices were computed for all ROIs, then embeddings created from the full 927 
matrices or from matrices containing just rows and columns corresponding to the ROIs sampled 928 
with iEEG.   929 
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Appendix: Diffusion Map Embedding 956 

In the framework of DME, we consider a space X that is the set of N recording sites. We 957 
compute the similarity between those sites based on the time varying signals recorded at each 958 
site, defining similarity k(xi,xj) as the cosine similarity between functional connectivity of nodes 959 
xi and xj.  960 

Define the matrix K whose i,jth element is k(xi,xj). k(xi,xj) is required to be symmetric, i.e., k(xi,xj) 961 
= k(xj,xi), and positivity preserving, i.e. k(xi,xj) > 0 for all [i,j], to allow for spectral analysis of a 962 
normalized version of K. 963 

From X and K we can construct a weighted graph Γ in which the vertices are the nodes and the 964 
edge weights are k(xi,xj). We take random walks on the graph at time steps t = 1, 2, …, jumping 965 
from node xi to node xj at each time step, with the (stochastic) decision as to which node should 966 
be visited next depending on k(xi,xj).  967 

Define  968 

p(xi,xj) = k(xi,xj)/d(xi), 969 

where 970 

d(xi) = Σj[k(xi,xj)] 971 

is the degree of node xi. Normalizing k(xi,xj) in this way allows us to interpret it as the 972 
probability p(xi,xj) that we'll jump from vertex xi to vertex xj in a single time step of our random 973 
walk.  974 

If we consider a single time step, we only capture the structure in X on a very local scale, since 975 
we can only jump between vertices that are directly connected. As we run the random walk 976 
forward in time, we begin to explore more of our neighborhood, and we begin to explore other 977 
neighborhoods as well. Two vertices xi and xj that have similar connectivity to the rest of the 978 
network have a high probability of being connected during these longer walks because they 979 
themselves are connected to similar groups of vertices, and so there are many possible paths 980 
between xi and xj.  981 

The diffusion operator (matrix) P = [p(xi,xj)] describes how signals diffuse from node to node in 982 
the graph. If v is a N×1 vector (i.e., a value assigned to each vertex, for example representing an 983 
input to each node), then P describes what will happen to that input as time goes on.  984 

Pv = [p(x1,x1)v[x1]+p(x1,x2)v[x2]+…; p(x2,x1)v[x1]+p(x2,x2)v[x2]+…;…]T 985 

If, for example, all the nodes were insular, with p(xi,xi)=1 for all i, and otherwise p(xi,xj)=0, Pv = 986 
v, i.e., no diffusion occurs. If the probabilities are more distributed, Pv would reveal how much 987 
signals diffuse out from each node given the starting condition of v. Importantly, Pkv would 988 
reveal what that distribution looks like after k time steps. 989 
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The eigenvector expansion of P based on its eigenvectors ψj and eigenvalues , λj, j = 1...N, is a 990 
natural method for uncovering structure in P because each eigenvector of P is a dimension 991 
along which relevant organizational features emerge. That is, clusters of related points 992 
(communities) tend to be distinct and ordered along these dimensions. In fact, we could 993 
preserve a lot of information about P by keeping just a subset of M of these vectors and 994 
discarding the rest. The information we want to preserve in the context of diffusion map 995 
embedding is the functional distance between the data at two nodes given t time steps to 996 
meander through the graph. We can define the diffusion map  997 

Ψ(t)(xi) = [λ1
tψ1(xi), λ1

tψ1(xi), …, λM
tψM(xi)]T, 998 

which maps each point x in X to a point in an embedding space of dimension M ≤ N. In this 999 
space, the diffusion distance D, which is the Euclidean distance between points, is the 1000 
difference in the probability distributions linking xi to the rest of the network and xj to the rest 1001 
of the network: 1002 

D(t)(xi,xj)2 = ||Ψ(t)(xi) - Ψ(t)(xj)||l2.= ||p(t)(xi,:)- p(t)(xj,:)||2
l2. 1003 

We return now to the parameter t, which corresponds to the time scale of the diffusion process 1004 
(i.e., the number of steps in the random walk on the graph). As t progresses, the coordinates of 1005 
the data in embedding space are scaled according to λi

t, where λi is the eigenvalue of the ith 1006 
dimension being scaled. Thus, the value of t sets the spatial scale of the analysis, with higher 1007 
values de-emphasizing smaller eigenvalues. Because |λi|<1 ∀ i, at higher values of t each 1008 
dimension will be scaled down (‘collapse’), with the dimension corresponding to max(|λi|) (i.e., 1009 
λ1) scaled the least.  1010 

To compare embeddings across groups of participants, or modalities of measurements, it is 1011 
necessary to map embeddings to a common space. To do so, consider two sets of data α and β, 1012 
and the data spaces Xα and Xβ. The problem is that Xα and Xβ are different spaces with different 1013 
kernels kα and kβ. This means that the eigenvectors for Pα and Pβ will be different, and data 1014 
projected into a space defined by some subset of the eigenvectors cannot be compared 1015 
directly. The solution is to apply a change of basis operator to one set of the eigenvectors to get 1016 
the data into the same embedding space (Coifman and Hirn, 2014): 1017 

D(t)(xi|α,xi|β) = ||Ψ(t)
α(x) − Oβ→ αΨ(t)

β(x)||l2. 1018 

Where the change of basis operator Oβ→α is defined as  1019 

Oβ→α v = Σj[v(j)<ψ(i)
α ,ψ(j)

β>]i>=1, 1020 

Where <a,b> is the inner product of a and b.  1021 
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