

1 **The single-cell atlas of the murine reproductive tissues during preterm labor**

2 Valeria Garcia-Flores^{1,2}, Roberto Romero^{1,3-7,*}, Azam Peyvandipour¹⁻³, Jose Galaz^{1,2},

3 Errile Pusod^{1,2}, Bogdan Panaitescu^{1,2}, Derek Miller^{1,2}, Yi Xu^{1,2}, Li Tao^{1,2}, Zhenjie Liu^{1,2},

4 Adi L. Tarca^{1,2,8}, Roger Pique-Regi^{1-3,*}, Nardhy Gomez-Lopez^{1,2,9,10,*}

5

6 ¹Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of
7 Intramural Research, *Eunice Kennedy Shriver* National Institute of Child Health and Human
8 Development, National Institutes of Health, U.S. Department of Health and Human Services
9 (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA.

10 ²Department of Obstetrics and Gynecology, Wayne State University School of Medicine;
11 Detroit, Michigan, USA.

12 ³Center for Molecular Medicine and Genetics, Wayne State University; Detroit, Michigan, USA.

13 ⁴Department of Obstetrics and Gynecology, University of Michigan; Ann Arbor, Michigan,
14 USA.

15 ⁵Department of Epidemiology and Biostatistics, Michigan State University; East Lansing,
16 Michigan, USA.

17 ⁶Center for Molecular Medicine and Genetics, Wayne State University; Detroit, Michigan, USA.

18 ⁷Detroit Medical Center; Detroit, Michigan, USA.

19 ⁸Department of Computer Science, Wayne State University College of Engineering; Detroit,
20 Michigan, USA.

21 ⁹Department of Biochemistry, Microbiology, and Immunology, Wayne State University School
22 of Medicine; Detroit, Michigan, USA.

23 ¹⁰Lead contact

24

25 ***Correspondence**

26 nardhy.gomez-lopez@wayne.edu

27 prbchiefstaff@med.wayne.edu

28 rpique@wayne.edu

29 **SUMMARY**

30 Preterm birth, the leading cause of perinatal morbidity and mortality worldwide,
31 frequently results from the syndrome of preterm labor. Intra-amniotic infection is the best-
32 established causal link to preterm labor, and involves premature activation of the parturition
33 cascade in the reproductive tissues. Herein, we utilized single-cell RNA-sequencing (scRNA-
34 seq) to generate a single-cell atlas of the murine uterus, decidua, and cervix in a model of
35 infection-induced preterm labor. We show that preterm labor affects the transcriptomic profiles
36 of specific immune and non-immune cell subsets. Shared and tissue-specific gene expression
37 signatures were identified among affected cells. Importantly, determination of intercellular
38 communications implicates specific cell types preterm labor-associated signaling pathways
39 across tissues. Last, *in silico* comparison of murine and human uterine cell-cell interactions
40 reveals conserved signaling pathways implicated in labor. Thus, scRNA-seq provides new
41 insights into the preterm labor-driven cellular landscape and communications in the reproductive
42 tissues.

43

44 **KEYWORDS:** single cell, scRNA-seq, decidua, uterus, cervix, mouse, human

45 **INTRODUCTION**

46 Preterm birth is a devastating clinical condition that affects 15 million infants each year
47 and is the leading cause of neonatal morbidity and mortality worldwide (Chawanpaiboon et al.,
48 2019; Liu et al., 2015b). Spontaneous preterm birth often results from preterm labor, a syndrome
49 for which multiple etiologies have been proposed (Goldenberg et al., 2008; Romero et al.,
50 2014a). Among these, the best-established causal link to preterm birth is intra-amniotic infection,
51 a clinical condition resulting from the invasion of microbes into the amniotic cavity (Agrawal
52 and Hirsch, 2012; Bastek et al., 2011; Combs et al., 2014; Gibbs et al., 1992; Gomez et al., 1995;
53 Gonçalves et al., 2002; Keelan et al., 2003; Romero et al., 2019; Theis et al., 2020). The most
54 frequently detected bacteria in amniotic fluid of women diagnosed with intra-amniotic infection
55 include genital mycoplasmas, *Streptococcus agalactiae*, *Gardnerella vaginalis*, and *Escherichia*
56 *coli*, among others (Burnham et al., 2020; DiGiulio et al., 2010; Gibbs et al., 1982; Gravett et al.,
57 1986; Oh et al., 2019; Romero et al., 2015a; Romero et al., 2014b; Romero et al., 2015b; Romero
58 et al., 2015c; Romero et al., 1989; Yoon et al., 1998; Yoon et al., 2019). Human descriptive
59 studies have consistently shown that such microbial invasion of the amniotic cavity is
60 accompanied by a local acute inflammatory response that includes the infiltration of leukocytes
61 into the amniotic cavity (inc. amniotic fluid (Galaz et al., 2020a; Galaz et al., 2020b; Gomez-
62 Lopez et al., 2019a; Gomez-Lopez et al., 2019b; Gomez-Lopez et al., 2021b; Gomez-Lopez et
63 al., 2017b; Gomez-Lopez et al., 2019c; Gomez-Lopez et al., 2018b; Gomez et al., 1994;
64 Martinez-Varea et al., 2017; Romero et al., 1991; Romero et al., 1993a; Romero et al., 1993b;
65 Yoon et al., 1996) and placental tissues (Gomez-Lopez et al., 2017a; Guzick and Winn, 1985;
66 Hillier et al., 1988; Kim et al., 2015a; Kim et al., 2009; Kim et al., 2015b; Odibo et al., 1999; Oh
67 et al., 2021; Oh et al., 2011; Olding, 1970; Pacora et al., 2002; Park et al., 2009; Redline, 2012;

68 Redline et al., 2003; Svensson et al., 1986; van Hoeven et al., 1996; Yoon et al., 2001; Zhang et
69 al., 1985)) as well as the reproductive tissues (Keski-Nisula et al., 2003; Makieva et al., 2017).
70 More recently, animal models coupled with omics technologies have been utilized to strengthen
71 this concept and establish causality between intra-amniotic infection and the inflammatory
72 milieu observed in the reproductive tissues (e.g., uterus, decidua, and cervix) that serve to
73 orchestrate the premature activation of the common pathway of labor (Migale et al., 2016;
74 Motomura et al., 2020a; Toothaker et al., 2020; Willcockson et al., 2018). However, the
75 simultaneous investigation of the cellular landscape and interaction networks at single-cell
76 resolution in the reproductive tissues implicated in preterm parturition has not been undertaken.

77 Single-cell technology has emerged as a useful tool for evaluating cellular composition,
78 transcriptomic activity, and communication networks in gestational and reproductive tissues
79 (Huang et al., 2021; Nelson et al., 2016; Pavličev et al., 2017; Pique-Regi et al., 2019;
80 Suryawanshi et al., 2018; Tsang et al., 2017; Vento-Tormo et al., 2018). Indeed, we have applied
81 single-cell RNA-sequencing (scRNA-seq) to investigate the physiological and pathological
82 processes of labor in the placenta and extraplacental membranes (Pique-Regi et al., 2019). More
83 recently, we utilized scRNA-seq to unravel the myometrial cell types that participate in the
84 normal process of term parturition as well as key cell-cell interactions taking place in this
85 compartment (Pique-Regi et al., 2022). Importantly, the discovery of single-cell signatures
86 derived from the placental tissues and myometrium possesses translational value as these can
87 serve as potential non-invasive biomarkers of labor progression and/or obstetrical disease
88 (Gomez-Lopez et al., 2022; Pique-Regi et al., 2022; Pique-Regi et al., 2019; Tarca et al., 2021;
89 Tarca et al., 2019; Tsang et al., 2017).

90 In the current study, we utilized scRNA-seq coupled with an allogeneic murine model of
91 intra-amniotic infection to investigate the cellular landscape and cell-cell communications in the
92 reproductive tissues (uterus, decidua, and cervix) during the process of preterm labor. We
93 utilized a murine model of preterm labor and birth induced by the intra-amniotic inoculation of
94 *E. coli*, and assessed cervical shortening to establish the timing of active preterm labor. Next,
95 using scRNA-seq and computational approaches, we generated a single-cell atlas of the uterus,
96 decidua, and cervix during preterm labor as well as their cell type-specific transcriptomic
97 activity. In addition, we established the cell-cell communication networks between cell types in
98 each tissue during preterm labor and identified key signaling pathways implicated in this process.
99 Last, we integrated cell-cell signaling pathways derived from the murine uterus with those from
100 the human myometrium during the processes of preterm and term labor, respectively, to
101 demonstrate conserved labor-associated signaling.

102 **RESULTS**

103 **A single-cell atlas of the murine reproductive tissues during preterm labor induced by *E.***
104 ***coli***

105 Intra-amniotic infection has been documented as inducing inflammatory changes in the
106 tissues surrounding the amniotic cavity (Faro et al., 2019; Motomura et al., 2021; Motomura et
107 al., 2020b; Senthamaraikannan et al., 2016). To investigate such changes at single-cell
108 resolution, we first established a murine model of preterm labor and birth induced by the intra-
109 amniotic inoculation with *E. coli*, one of the microorganisms commonly identified in the
110 amniotic fluid of women with intra-amniotic infection (Gibbs et al., 1982; Romero et al., 2015c;
111 Romero et al., 1989; Yoneda et al., 2016a). Mice with an allogeneic pregnancy underwent
112 ultrasound-guided intra-amniotic injection of *E. coli* or vehicle control on 16.5 days *post coitum*
113 (dpc) (Figure 1A). Intra-amniotic inoculation with *E. coli* reduced gestational length in the
114 majority of dams (Figure 1B), resulting in an 83.3% (5/6) rate of preterm birth (Figure 1C). We
115 then intra-amniotically injected a second cohort of mice with *E. coli* or PBS to perform tissue
116 collection for single-cell analyses. To ensure that the *E. coli*-injected mice were undergoing
117 preterm labor at the time of tissue collection, we utilized ultrasound to evaluate cervical length
118 just prior to intra-amniotic injection and again 24 h later as a readout of cervical effacement
119 (Figure 1D). Cervical shortening was observed in all dams that received intra-amniotic *E. coli* at
120 24 h post-injection, indicating that these dams were in active preterm labor at the time of tissue
121 collection, whereas no cervical shortening was observed in controls (Figure 1E). Therefore,
122 intra-amniotic inoculation with *E. coli* represents a translational model that resembles the clinical
123 scenario of intra-amniotic infection leading to preterm labor and birth.

124 Preterm parturition includes the activation of the common pathway of labor that
125 comprises increased uterine contractility, the triggering of local immune response in the decidual
126 tissues, and cervical dilatation (Lopez Bernal, 2003; Norwitz et al., 1999; Romero et al., 2014a;
127 Romero et al., 2006; Romero et al., 1994; Smith, 2007). Therefore, to establish a single-cell atlas
128 of the murine reproductive tissues in preterm labor, we utilized the uterus, decidua, and cervix of
129 dams that received intra-amniotic inoculation with *E. coli* in the active phase of parturition (17.5
130 dpc) for single-cell RNA-sequencing (scRNA-seq) (Figure 1F). We identified 31 cell clusters
131 across the uterus, decidua, and cervix that corresponded to multiple cell types: smooth muscle (2
132 clusters), epithelial (10 clusters), fibroblast (3 clusters), stromal (3 clusters), Endothelial,
133 Neutrophil, Monocyte, macrophage (2 clusters), Dendritic Cell, T cell, B cell, NK cell (2
134 clusters), Erythroid, Plasmocyte, and Trophoblast (Figure 1G). The heterogeneous and distinct
135 cellular composition of the uterus, decidua, and cervix was highlighted by assigning tissue
136 identity to each cell cluster (Figure 1H). In control dams, the uterus, decidua, and cervix each
137 displayed a distinct basal cellular repertoire: the uterus showed a predominance of fibroblast
138 (clusters 0 and 1) and non-decidual stromal (clusters 2 and 12) cell types, and the decidua also
139 included a unique subset of stromal cells (cluster 4) (likely corresponding to conventional
140 decidual stromal cells) (Figure S1A). The uterus and decidua of control mice also included
141 modest populations of innate immune cells such as Monocyte and macrophage subsets as well as
142 lymphocytes such as T cell, NK cell-1, NK cell-2, and B cell (Figure S1A), likely representing
143 the resident immune populations that have been characterized in human and murine tissues
144 (Bartmann et al., 2014; Li et al., 2018; Pique-Regi et al., 2022; Pique-Regi et al., 2019; Trundley
145 and Moffett, 2004; Vento-Tormo et al., 2018). By contrast with the uterus and decidua, the
146 cervix of control mice comprised a diverse compartment of epithelial subsets (clusters 5, 7, 8, 10,

147 11, 14) and other major cell types (Figure S1A), as previously shown (Chumduri et al., 2021;
148 Koh et al., 2019; Zhao et al., 2021). Immune cells were scarce in the cervix, although a modest
149 Macrophage-1 population was observed (Figure S1A) that is consistent with prior reports of
150 cervical cell composition in late gestation (Dobyns et al., 2015; Dubicke et al., 2016; Osman et
151 al., 2003; Timmons et al., 2009). Together, these data provide an overview of the single-cell
152 composition and diversity in the murine uterus, decidua, and cervix in late murine pregnancy.
153 Moreover, by dissecting the cellular repertoire of the cervix we demonstrate the
154 underappreciated heterogeneity of this compartment.

155

156 **Preterm labor induced by *E. coli* dysregulates the repertoire of immune and non-immune
157 cell types in the reproductive tissues**

158 We then examined the effects of preterm labor on the abundance of each cell type
159 identified across all tissues (Figure 2A) as well as within the uterus, decidua, and cervix (Figure
160 2B-D, Figure S1B, and Table S1). During preterm labor, a relative increase in innate immune
161 cell clusters such as Monocytes, macrophages, Dendritic cells, and Neutrophils (clusters 3, 6, 9,
162 and 18) was observed in the uterus, decidua, and, to a lesser extent, the cervix (Figure 2B-D and
163 Figure S1B). The NK cell-2 and Plasmocyte subsets in the uterus and decidua also showed
164 changes with preterm labor (Figure 2B-C and Figure S1B). Moreover, Dendritic cells were
165 increased in the decidua (Figure 2C and Figure S1B), with a similar tendency observed in the
166 uterus (Figure 2B and Figure S1B). Interestingly, the Macrophage-1 cell type was decreased in
167 the uterus with preterm labor (Figure 2B and Figure S1B). Notably, the T-cell population (cluster
168 16) also appeared to increase in the uterus and decidua with preterm labor (Figure 2B&C and
169 Figure S1B), which is consistent with prior studies implicating T-cell infiltration and activation

170 as a component of parturition (Arenas-Hernandez et al., 2019; Gomez-Lopez et al., 2009;
171 Gomez-Lopez et al., 2011a; Gomez-Lopez et al., 2011b; Gomez-Lopez et al., 2013; Sindram-
172 Trujillo et al., 2003; Slutsky et al., 2019; Vargas et al., 1993). Although not visually apparent
173 from the UMAP plots (Figure S1B), both the uterus and decidua showed a substantial decrease in
174 non-immune subsets such as Fibroblast-1, -2, and Stromal-3 with preterm labor (Figure 2B&C),
175 with Stromal-2 also showing modest changes in the uterus (Figure 2B). Interestingly, a subset of
176 epithelial cells (cluster 11, Epithelial-10) that was largely absent in the uterus and decidua of
177 controls became apparent in preterm labor (Figure S1B), suggesting labor-induced differentiation
178 or activation of these cells. By contrast with the uterus and decidua, the cervix only showed
179 changes in two cell types: Neutrophil and Epithelial-8 were both increased with preterm labor
180 (Figure 2D), indicating that a modest cellular response to intra-amniotic infection occurs in this
181 tissue. We also evaluated whether cells of fetal origin were represented among the populations of
182 the uterus, decidua, and cervix during preterm labor (Figure S1C-E). A small population of fetal
183 cells (Trophoblasts) was detected in the uterus and decidua, which is consistent with prior single-
184 cell studies of the human myometrium (Pique-Regi et al., 2022) and may represent residual
185 placental cells attached to the uterus and decidua.

186 To validate the leukocyte infiltration of the uterus, decidua, and cervix indicated by our
187 single-cell data, we undertook a series of histological and immunohistochemistry analyses
188 (Figure S2). We observed collagen degradation in the uterine and cervical tissues with preterm
189 labor, and mucin production by cervical cells appeared to increase compared to control tissues
190 (Figure S2A-C). Histological changes in preterm labor were accompanied by increased CD45+
191 leukocyte infiltration in the uterus and decidua (Figure S2D-F). Uterine leukocytes were more
192 evenly distributed among neutrophils, monocytes, and macrophages, whereas decidual

193 leukocytes were predominantly neutrophils and, to a lesser extent, monocytes (Figure S2G-I).
194 Similar to our scRNA-seq results, the leukocyte abundance in the cervical tissues was largely
195 comparable between the control and preterm labor groups (Figure S2I).

196 Taken together, our scRNA-seq indicate a shift in the cellular composition of the murine
197 uterus, decidua, and cervix that accompanies preterm labor.

198

199 **Preterm labor induced by *E. coli* dysregulates the gene expression of immune and non-
200 immune cell types in the reproductive tissues**

201 Given that preterm labor altered the cellular composition of the uterus, decidua, and
202 cervix, we next explored whether this inflammatory process also resulted in transcriptomic
203 changes to the identified cell types. Consistent with their altered abundance, multiple fibroblast,
204 stromal, and epithelial cell types in the uterus and decidua displayed upregulated gene expression
205 with preterm labor (Figure 2E&F and Table S2), while the cervical non-immune cells with
206 upregulated gene expression were exclusively epithelial (Figure 2G and Table S2). Interestingly,
207 innate immune cell types showed strong dysregulation of gene expression in both directions that
208 was inconsistent among tissues: while Monocyte showed more downregulated differentially
209 expressed genes (DEGs) in the uterus (Figure 2E) and cervix (Figure 2G), this cell type showed
210 more upregulated DEGs in the decidua (Figure 2F). Neutrophil showed stronger downregulation
211 of DEGs in the uterus and decidua (Figure 2E&F), whereas in the cervix DEGs were primarily
212 upregulated in this cell type (Figure 2G). Macrophage-1, Dendritic cell, and NK cell-1
213 consistently displayed predominantly upregulated DEGs in the uterus and decidua (Figure
214 2E&F), and were not represented in the cervix as previously noted. In addition, the uterine
215 Macrophage-2 and NK cell-2 populations displayed upregulated DEGs (Figure 2E), which was

216 not observed in other tissues (Figure 2F&G). Although not as abundant as innate immune cells,
217 the T cell population also displayed upregulated DEGs with preterm labor in the uterus and
218 decidua (Figure 2E&F). Moreover, quantile-quantile plots of DEGs from enriched cell types
219 indicate that the uterus is the tissue most affected by the process of labor (Figure 2H-J). Thus,
220 preterm labor primarily induces gene expression in the dominant cell types from each tissue; yet,
221 the substantial amount of downregulated gene expression in innate immune cells may indicate an
222 immunological switch from one transcriptomic program to another to combat infection.

223

224 **Preterm labor induced by *E. coli* involves conserved cell types that display distinct**
225 **processes in the reproductive tissues**

226 The transcriptomic profiling of cell types suggested that specific subsets show conserved
227 responses with preterm labor across the reproductive tissues. Therefore, we next focused on the
228 shared preterm labor-specific gene expression among the uterus, decidua, and cervix. The Venn
229 diagram displayed in Figure 3A highlights the overlap in DEGs across tissues, particularly the
230 uterus and decidua. Correlation analyses indicated stronger relationships between preterm labor
231 and gene expression changes in the uterus and decidua than in the cervix (Figure S3A), which
232 was reflective of the total preterm labor-associated DEGs in each tissue. This observation was
233 further confirmed by the correlation between the gene expression profiles of the uterus and
234 decidua, which was stronger than the correlations between the decidua and cervix or the uterus
235 and cervix (Figure S3B). Given that the uterus, decidua, and cervix all displayed some degree of
236 correlation for preterm labor-associated gene expression, we evaluated the cell type-specific
237 transcriptomic changes that were conserved across all three tissues. We found that innate
238 immune cell types (Monocyte and Neutrophil) as well as non-immune cell types (Epithelial-3, -

239 4, -6 and Endothelial) showed conserved gene expression changes associated with preterm labor
240 across the uterus, decidua, and cervix (Figure 3B). We reasoned that, although the transcriptome
241 profiles of specific cell types were affected across all tissues, such cells may display distinct
242 biological processes according to their location. Gene Ontology (GO) analysis of the Neutrophil
243 cell type in the uterus, decidua, and cervix revealed that, while these cells shared some processes
244 such as “response to bacterium” and “response to lipopolysaccharide”, processes specific to
245 Neutrophils in each tissue were also observed (Figure 3C). Uterine Neutrophils showed
246 enrichment of processes related to cytokine signaling and anti-viral response, whereas decidual
247 Neutrophils showed enrichment of cellular activation-associated processes (Figure 3C). In the
248 cervix, unique enriched Neutrophil processes were primarily associated with response to external
249 stimuli and bacteria (Figure 3C). Uterine and decidual Monocyte and Macrophage-1 cells also
250 shared enriched processes related to cytokine production and response to
251 bacteria/lipopolysaccharide, with decidual Monocytes also showing enrichment of activation-
252 associated processes (Figure 3D). By contrast, cervical Monocytes displayed highly distinct
253 processes related to protein synthesis and humoral immune response (Figure 3D), suggesting that
254 such cells may functionally differ from their counterparts in the uterus and decidua. Epithelial-6,
255 which had sufficient DEGs to perform GO analysis in all three tissues, displayed largely
256 consistent processes across the uterus, decidua, and cervix that were related to inflammation,
257 anti-bacterial response, and cytokine production (Figure 3E). The uterine Epithelial-4 cell type
258 displayed enrichment of several chemotaxis-associated processes, suggesting involvement in
259 leukocyte recruitment to this tissue, whereas the cervical Epithelial-4 showed enrichment of
260 effector functions such as production of NO, IL-1, and IFN γ (Figure 3E). Epithelial-3, which
261 only displayed sufficient DEGs for GO analysis in the cervix, showed enrichment of multiple

262 processes related to promotion of B-cell and antibody responses (Figure 3E). Thus, the
263 conserved cell types affected by preterm labor in the uterus, decidua, and cervix each display
264 distinct enrichment of biological processes, suggesting that similar cell types display tissue-
265 specific functions in the context of intra-amniotic infection leading to preterm labor. Together
266 with the observed increase in cervical Epithelial-8 cell counts with preterm labor, it is possible
267 that the upregulation of inflammatory gene expression represents an infection-induced
268 differentiation of cervical epithelial cells to better participate in host defense mechanisms in this
269 compartment.

270 To further infer cellular functionality in preterm labor, we then utilized the Kyoto
271 Encyclopedia of Genes and Genomes database to evaluate the pathways enriched in labor-
272 associated DEGs in each cell type (Figure S3C). Strikingly, both immune and non-immune cell
273 types with altered gene expression in preterm labor showed enrichment of immunological
274 pathways such as “cytokine-cytokine receptor interaction”, “NOD-like receptor signaling
275 pathway”, and “viral protein interaction with cytokine and its receptor” across the three tissues
276 (Figure S3C). Such findings are consistent with previous studies showing the upregulation of
277 immune-related pathways in decidual endothelial (Huang et al., 2020) and stromal cells (Huang
278 et al., 2021) from women with labor. Additional inflammatory pathways such as “NF-kappa B
279 signaling pathway” and “Toll-like receptor signaling pathway” were also represented, to a lesser
280 extent, by immune cells (e.g., NK cells and Neutrophil) as well as non-immune cells such as
281 epithelial cells, including in the cervix (Figure S3C).

282 We also investigated the biological processes enriched in several non-immune cell
283 subsets that were conserved between the uterus and decidua with preterm labor (Figure S4).
284 Interestingly, Stromal-1 and Stromal-2 in the uterus showed largely similar enrichment of

285 biological processes, as did the Stromal-1 and Stromal-2 cell types in the decidua (Figure S4A).
286 Yet, these cell types differed between tissues, given that the decidual stromal cells were enriched
287 for leukocyte migration and chemotaxis whereas the uterine stromal cells showed enrichment for
288 response to immune signaling (Figure S4A). The Fibroblast-1 and Stromal-3 cell types showed
289 less diversity in their enriched processes compared between the uterus and decidua, with the
290 former being associated with host defense against infection and the latter associated with
291 immune activation, including adaptive immunity (Figure S4B). Fibroblast-2 and Fibroblast-3
292 were also comparable between the uterus and decidua; however, the decidual Fibroblast-3
293 showed more striking enrichment of responses to microorganisms and cytokine signaling (Figure
294 S4C). Finally, the uterine and decidual Endothelial cell types displayed similar enrichment of
295 processes related to host defense, innate immunity, and cytokine signaling, with the decidual
296 subset showing modestly higher enrichment for processes related to neutrophil migration (Figure
297 S4D).

298 Taken together, these data indicate that the uterus, decidua, and cervix contain cell types
299 that display distinct tissue-specific gene expression profiles in preterm labor, pointing to
300 differing functional roles for these cells in the host response to intra-amniotic infection. Yet,
301 there is an overall tendency for the enrichment of similar immunological pathways in both
302 immune and non-immune cell types across tissues, likely as part of the common host response to
303 intra-amniotic infection.

304

305 **Preterm labor influences cell-cell communications in the reproductive tissues**

306 Having established that preterm labor drives distinct transcriptomic changes in specific
307 cell types in the uterus, decidua, and cervix, we next leveraged our single-cell data to elucidate
308 cell-cell communication networks in these tissues.

309

310 *Cell-cell communications in the uterus*

311 The uterus is a highly heterogeneous organ with multiple described regions that differ in
312 cellular composition and function (Bukowski et al., 2006; Danforth and Ivy, 1949; Liu et al.,
313 2015a; Mosher et al., 2013; Patwardhan et al., 2015; Pollard et al., 2000; Schwalm and
314 Dubrauszky, 1966; Sooranna et al., 2006; Sparey et al., 1999; Wikland et al., 1982). To unravel
315 the intercellular communications taking place in the murine uterus with preterm labor, we
316 performed a correlation analysis across preterm labor-associated genes for each pair of identified
317 cell types (Figure S5A). The strongest correlations were observed for non-immune cell types,
318 such as stromal, epithelial, fibroblast, smooth muscle, and Endothelial cell types (Figure S5A),
319 suggesting that these cells exhibit similar changes in gene expression with preterm labor. Innate
320 and adaptive immune cell types also showed moderate correlations; namely, T cell, NK-cell-1,
321 NK-cell-2, Macrophage-1, Macrophage-2, Monocyte, and Dendritic cell (Figure S5A). The cell
322 types with the weakest correlations were primarily epithelial subsets as well as Neutrophil,
323 Erythroid, Stromal-3, and SMC-2 (Figure S5A), indicating that such cells show more distinct
324 gene expression changes with preterm labor.

325 We next used CellChat to infer cell-cell communications within the uterus using our
326 single-cell gene expression data and a database of established interactions between signaling
327 ligands, receptors, and their cofactors (Jin et al., 2021). Signaling pathways that were enriched or
328 diminished in preterm labor, as well as those that were unaffected by this process, are shown in

329 Figure S5B and Table S3. The alluvial plots shown in Figure 4A&B display the major cell-cell
330 communication processes taking place in the uterus as well as the cell types that participate as
331 senders or receivers in each process. Both innate and adaptive immune cell subsets (Neutrophil,
332 Macrophage-1, Monocyte, Dendritic cell, NK cell-1, T-cell) contribute to the top signaling
333 pathways implicated in preterm labor, such as CCL, CXCL, complement, IFN-I and IFN-II, IL-
334 1, and IL-6 (Figure 4A&B). Notably, multiple non-immune subsets also participate in these
335 processes; namely, fibroblast, stromal, epithelial, SMC, and Endothelial cell types (Figure
336 4A&B). While both immune and non-immune cell types served as receivers of preterm labor-
337 associated signaling, specific responders to each pathway could be distinguished (Figure 4B).
338 For example, the signaling pathway of IL-6, which is commonly utilized as a biomarker of intra-
339 amniotic inflammation (Yoon et al., 2001), was primarily driven by immune cell types (Figure
340 4A); yet, the receiver cells for this pathway were non-immune subsets (Figure 4B). Conversely,
341 the primary senders for the Annexin signaling pathway were non-immune cell types (Figure 4A),
342 with the downstream receivers being predominantly immune cells (Figure 4B). The changes in
343 cell-cell communication occurring as a result of preterm labor were visualized using the arrow
344 plot in Figure 4C, where the directionality of each cell type arrow reflects the propensity for
345 increased outgoing and/or incoming interaction strength. Cell types such as Macrophage-2,
346 Stromal-2, Stromal-3, and Fibroblast-3 showed primarily even increases in incoming and
347 outgoing signaling with preterm labor (Figure 4C). Other cell types were more biased towards
348 incoming interactions, such as Macrophage-1, Neutrophil, Dendritic cell, Plasmocyte, Monocyte,
349 and Epithelial-6, or outgoing interactions, such as Stromal-1, Fibroblast-1, and Fibroblast-2
350 (Figure 4C). Interestingly, several cell types showed a net decrease in signaling with preterm
351 labor; namely, T cell and SMC-1 (Figure 4C).

352 The top 25% of aggregated cellular interactions in the uterus were then contrasted
353 between the control and preterm labor groups, emphasizing the overall increase in cell-cell
354 signaling with preterm labor as well as the incorporation of new signaling pathways from cell
355 types that were rarely present in control tissues, such as Neutrophil (Figure 4D). Interestingly,
356 while Macrophage-1 signaling was increased, Macrophage-2 signaling decreased, which could
357 indicate a homeostatic role for the latter subset that is diminished in preterm labor, as previously
358 reported (Gomez-Lopez et al., 2021a). Next, we examined the top contributors within uterine
359 cell-cell signaling pathways enriched with preterm labor (Figure 4E). We found that macrophage
360 subsets and Dendritic cells were primary contributors to CCL signaling between control uterine
361 cell types, and such signaling was further strengthened in preterm labor (Figure 4E). By contrast,
362 the Galectin signaling pathway, already enriched in control uterine tissues, was upregulated in
363 new cell types in preterm labor (e.g., Epithelial-6) and diminished in others (e.g., Macrophage-2)
364 (Figure 4E).

365 We also explored the changes in cell type-specific expression of genes related to
366 progesterone and prostaglandin signaling in the uterus (Figure S5C and Figure S6A). As
367 expected, progesterone-related gene expression was consistently downregulated across uterine
368 cell types in preterm labor (Figure S5C). Prostaglandin-related gene expression showed more
369 activity in the uterus than in other tissues (Figure S6); yet, preterm labor-associated changes in
370 each gene were consistent across uterine cell types (Figure S6A), further supporting the
371 involvement of multiple immune and non-immune cell populations in labor-mediator signaling
372 pathways.

373 Taken together, these findings highlight the complex cell-cell communication network
374 taking place in the murine uterus and how such interactions are modulated by the inflammatory
375 process of preterm labor in both immune and non-immune cell types.

376

377 *Cell-cell communication in the decidua*

378 We next examined the correlations across preterm labor-associated changes in gene
379 expression for each pair of cell types identified in the decidua (Figure S7A). Similar to the
380 uterine tissues, the strongest correlations were observed for non-immune cell types (e.g., stromal,
381 epithelial, fibroblast, smooth muscle, and Endothelial), followed by innate and adaptive immune
382 cells, of which the macrophage and Monocyte clusters were best correlated (Figure S7A).
383 Similarly, the weakest correlations were observed for some epithelial cell types and Neutrophils
384 (Figure S7A). Thus, decidual cells display preterm labor-associated changes in gene expression
385 with varying magnitude of sharing among cell types, which resemble those observed in the
386 uterine tissues.

387 The inferred cell-cell signaling pathways that were enriched or diminished in the decidua
388 with preterm labor are shown in Figure S7B and Table S3. From among these, the top pathways
389 are displayed with their participating sender and receiver cell types in Figure 5A&B. Similar to
390 the uterine tissues, key cell-cell communication pathways were primarily related to immune
391 functions such as cytokine and chemokine signaling (Figure 5A&B). Unique among the three
392 compared tissues, the IL-17 pathway was most prominent in the decidua (Figure 5A&B), which
393 was consistent with a previous report of IL-17 signaling in endothelial cells derived from the
394 human peripartum decidua (Huang et al., 2020) and suggests that decidual T cells participate in
395 the local inflammatory response to intra-amniotic infection. Among other identified signaling

396 pathways, both immune and non-immune cell subsets contributed as senders or receivers,
397 including the NK-cell-2 subset that was not implicated in uterine cell-cell signaling (Figure
398 5A&B). The decidual Epithelial-5 cell type appeared to be primarily functioning as a receiver of
399 cell-cell signaling in this tissue (Figure 5A&B). We then visualized the preterm labor-driven
400 changes in incoming and outgoing signaling, and observed that subsets such as Monocyte,
401 Macrophage-1, Neutrophil, NK cells, and Dendritic cells showed predominantly incoming
402 interactions (Figure 5C). On the other hand, stromal and fibroblast subsets as well as T cells
403 tended towards increased outgoing signaling, while SMC-1 and Endothelial cells showed an
404 overall reduction in interaction strength (Figure 5C). Interestingly, outgoing interaction strength
405 was greater in decidual T cells compared to uterine T cells (Figure 5C vs. Figure 4C), which
406 further emphasizes a role for T cell-derived signals in the pathophysiology of preterm labor
407 associated with intra-amniotic infection (Gershater et al., 2022). Consistent with enhanced cell-
408 cell signaling in preterm labor, aggregated cellular interaction plots demonstrated an overall net
409 increase in decidual intercellular interactions compared to controls (Figure 5D). Similar to the
410 uterine tissues, enriched signaling pathways such as CCL and Galectin were primarily driven by
411 Macrophage-1, Monocyte, and Dendritic cell in preterm labor, with overall interactions among
412 cell types increasing compared to controls (Figure 5E).

413 Similar to the changes observed in the uterus, decidual expression of progesterone-related
414 genes was consistently downregulated across cell types with preterm labor (Figure S7C). The
415 patterns of change in prostaglandin-related gene expression were also similar between the
416 decidua and uterus; yet, some difference in the magnitude of change between compartments were
417 observed for multiple genes, potentially indicating a stronger upregulation of preterm labor-
418 associated prostaglandin signaling in the uterus relative to the decidua (Figure S6B).

419 These data provide insight into the distinct cellular interactions taking place in the
420 decidua during the process of preterm labor, including the involvement of cell types and
421 signaling pathways not observed in other tissues. Yet, the decidua and uterus also share cell type-
422 specific communications that are affected by preterm labor.

423

424 *Cell-cell communication in the cervix*

425 Our investigation of the cell type-specific changes taking place in the cervix with preterm
426 labor had indicated that the Neutrophil and Monocyte subsets were most affected, in tandem with
427 previous studies showing labor-associated infiltration of immune cells (Gonzalez et al., 2011;
428 Osman et al., 2003; Payne et al., 2012; Sakamoto et al., 2005; Timmons et al., 2009), as well as
429 multiple epithelial cell subsets (Figures 2 and 3). Consistently, correlation analysis of these cell
430 types showed that the strongest associations in gene expression changes driven by preterm labor
431 were observed among epithelial cell types (Figure S8A), while Neutrophils and Monocytes
432 showed modest correlation of genes affected by preterm labor (Figure S8A). Inferred cell-cell
433 signaling pathways were noticeably fewer compared to the other tissues and included multiple
434 processes unique to the cervix (Figure S8B and Table S3), which could be attributed to the less
435 diverse cell type composition observed in this tissue. Indeed, as shown by the participating
436 senders and receivers, signaling pathways that were strongly implicated in the uterus and decidua
437 with preterm labor were not as enriched in cervical cell types (Figure 6A&B). On the other hand,
438 cell-cell signaling pathways related to extracellular matrix were strongly represented (Figure
439 6A&B), which is consistent with the primarily connective tissue composition of the cervix
440 (Granstrom et al., 1989; Krantz and Phillips, 1962; Ludmir and Sehdev, 2000). As expected,
441 given their inferred roles as receivers, most cervical epithelial cell types showed strong incoming

442 interactions with preterm labor, whereas the SMC-1, Fibroblast-2, and Stromal-1 subsets showed
443 a tendency towards increased outgoing interactions (Figure 6B&C). This was further supported
444 by the aggregated cervical cell-cell interactions in the control and preterm labor groups showing
445 increased receipt of signaling by Epithelial-1 and Epithelial-8 as well as SMC-1 and Fibroblast-2
446 (Figure 6D). Notably, Fibroblast-2 and SMC-1 were top contributors to enriched signaling
447 pathways such as Collagen and Tenascin (Figure 6E). It is possible that the Fibroblast-2 and/or
448 SMC-1 cell clusters include cervical myofibroblasts, given that a previous histological
449 investigation indicated a pregnancy-specific accumulation of such cells, which could be
450 interacting with the extracellular matrix to aid in supporting the mechanical stresses present
451 during labor (Montes et al., 2002). In the last decade, a new paradigm for the role of SMCs in the
452 human cervix has emerged, suggesting a sphincter-like function of the internal os, in which the
453 SMCs express contractility-associated proteins that are responsive to oxytocin signaling (Vink et
454 al., 2016). Together with our current findings, these observations support the involvement of
455 SMC-1 and Fibroblast-2 subsets in preterm labor-associated signaling in the murine cervix, and
456 further emphasize the unique cell-cell signaling pathways taking place in the cervix during
457 preterm labor.

458

459 **Shared cellular signaling pathways in the murine uterus and human myometrium during**
460 **the processes of preterm and term labor**

461 Last, to examine the shared pathways implicated in the process of parturition in mice and
462 humans, we utilized the differential cellular interactions in the murine uterus with preterm labor
463 together with our previously generated single-cell atlas of the human myometrium with labor at
464 term (Pique-Regi et al., 2022) (Figure 7). We investigated the interaction strength between cell

465 types affected by labor as well as prominent signaling pathways, and contrasted these between
466 the murine and human tissues. Overall, we found that labor-associated cell-cell interactions were
467 primarily driven by SMC, stromal, fibroblast, and innate immune cell types in both the murine
468 uterus and human myometrium, independently of differences in sender/receiver status (Figure
469 7A&B).

470 Specifically, in the murine uterus, non-immune cell types such as Fibroblast-1, -2, and -3,
471 Stromal-2 and -3, and SMC-1 showed the strongest labor-associated increase in outgoing cell-
472 cell signaling, whereas outgoing signaling by Macrophage-2 was greatly diminished (Figure 7A).
473 The top receivers of labor-associated signaling were Fibroblast-3, Stromal-2 and -3, and
474 Epithelial-6 as well as innate immune cell types (Monocyte, Neutrophil, and Macrophage-1)
475 (Figure 7A). Endothelial, SMC-1, Plasmocyte, and Macrophage-2 showed diminished incoming
476 signaling with preterm labor (Figure 7A).

477 In the human myometrium, labor involved increased outgoing signaling almost
478 exclusively by smooth muscle cell and stromal subsets, with Myofibroblast and LED cells also
479 contributing to this process (Figure 7B). Receivers of such outgoing interactions included
480 macrophage subsets and Monocytes, which is consistent with previous investigations indicating
481 that myometrial cell contraction during labor is promoted by crosstalk with macrophages in a co-
482 culture model (Wendremaire et al., 2020). Multiple myometrial cell subsets displayed
483 substantially reduced outgoing signaling with labor, such as EVT, Macrophage-4, Plasmablast,
484 Unciliated Epithelial, and ILC (Figure 7B). For incoming signaling, the majority of human
485 myometrial cell types tended to have increased interaction only with those cells that displayed
486 greater outgoing signals, such as smooth muscle and stromal cells (Figure 7B). Some exceptions

487 seemed to be the Macrophage-1, SMC-3, and Stromal-1 subsets, whose incoming signaling from
488 the majority of other cell types was strengthened (Figure 7B).

489 We then examined the top 25% of aggregated cell-cell interactions in the human
490 myometrium at term without labor and at term with labor (Figure S8A). Consistent with the
491 correlation analysis above (Figure 7B), a clear shift in the cell types contributing to myometrial
492 cell-cell signaling was observed between groups, with the EVT, Macrophage-4, Plasmablast, and
493 Unciliated epithelial clusters showing greatly diminished interactions in labor, and smooth
494 muscle and stromal cell subsets acquiring increased interactions (Figure S9A). This shift in
495 interaction with labor was also reflected by the combined differential interaction analysis shown
496 in Figure S8B. When examining the specific cell-cell signaling pathways that were impacted by
497 labor, terms such as Collagen, IL-1, CCL, Complement, and CXCL were found to be shared
498 between the murine uterus and human myometrium, indicating shared labor-associated cellular
499 signaling between species (Figure 7C&D and Figure S9C-G); yet, the closer inspection of these
500 shared signaling pathways revealed differences in the cell types contributing to each (Figure
501 7C&D and Figure S9C-G). The relevance of immune pathways such as chemokine signaling in
502 the process of labor is supported by previous reports demonstrating that the use of a chemokine
503 inhibitor on human myometrial cells decreased contraction and gap junction formation, thereby
504 disrupting intercellular communication (Boros-Rausch et al., 2021; Coleman et al., 2020). Taken
505 together, these data indicate that labor-associated cell-cell interactions heavily involve SMC,
506 stromal, fibroblast, and innate immune cell types in the murine uterus and the human
507 myometrium, providing evidence of labor-specific signaling processes between immune and
508 non-immune cells that are shared between species. Yet, this interpretation should be taken with

509 caution, given that we compared the physiologic process of labor in the human myometrium with
510 the pathologic process of labor induced by bacteria in the murine uterus.

511

512 **DISCUSSION**

513 The current study provides a single-cell atlas of the murine uterus, decidua, and cervix
514 that highlights the cell type composition, transcriptional profiles, and cell-cell signaling taking
515 place in these tissues in normal late gestation or in the context of infection-induced preterm labor
516 and birth. scRNA-seq allowed for the deep characterization of immune and non-immune cells
517 that demonstrates the underappreciated heterogeneity of cell types conventionally considered to
518 be uniform in function, such as uterine smooth muscle cells and cervical epithelial cells. Our data
519 can thus serve as a reference for future studies seeking to target specific subsets of these cells,
520 which may have differing roles in pregnancy and labor as indicated by their distinct
521 transcriptional profiles. Shared modulation of gene expression was noted between uterine and
522 decidual cell types and was reflected by the similar enrichment of labor-associated signaling
523 pathways, which is consistent with the spatial proximity of these tissues. Yet, the comparison of
524 individual cell types across tissues indicated that the most represented biological processes can
525 vary according to location, and therefore the tissue of origin should be taken into consideration
526 when inferring cellular function. Importantly, here we provide scRNA-seq characterization of the
527 understudied cervical tissues, demonstrating a plethora of epithelial subsets with different
528 potential functions as well as smooth muscle and fibroblast cell types that indicate an unexpected
529 level of heterogeneity in the cervix. Recent evidence has suggested a sphincter-like function of
530 SMCs in the internal os of the human cervix (Vink et al., 2016), and our current findings support
531 this concept. Inferred cell-cell communications provided evidence of substantial crosstalk among

532 uterine, decidual, and cervical cell types during the process of preterm labor, highlighting key
533 signaling pathways that could potentially be targeted in future translational studies aimed at
534 preventing spontaneous preterm labor. In addition, such analysis demonstrated cell types with
535 elevated or diminished interactions driven by inflammation, which can serve to identify those
536 cell types that are most and least involved in such signaling. To demonstrate the application of
537 our single-cell dataset, we have leveraged prior single-cell analysis of the human myometrium in
538 term labor to evaluate cellular interactions compared to our murine model of preterm labor. This
539 analysis provided useful insight into shared signaling pathways associated with the inflammatory
540 process of labor, providing a practical demonstration of how our scRNA-seq dataset can be
541 leveraged for *in silico* discovery of specific cell types, pathways, or genes that can be
542 subsequently targeted *in vitro* and/or *in vivo*.

543 The current study has some limitations. First, it is important to consider that spontaneous
544 preterm labor is a syndrome, for which intra-amniotic infection represents only one known
545 etiology (Romero et al., 2014a). Here, we focused on preterm labor triggered by intra-amniotic
546 infection of *E. coli*, a Gram positive bacteria, using an established animal model that resembles
547 the clinical condition (Gomez-Lopez et al., 2018a). Other known or proposed etiologies for
548 spontaneous preterm labor may have subtle differences in the involved cell types and associated
549 signaling pathways, and thus further characterization of the cellular atlas in each preterm labor
550 subtype is necessary for their distinction. Second, intra-amniotic infection is often polymicrobial
551 and/or can be induced by a variety of bacterial species (Burnham et al., 2020; Romero et al.,
552 2015c), of which *Ureaplasma* species are the most commonly found in the amniotic cavity
553 (Motomura et al., 2020b; Romero et al., 1989; Sweeney et al., 2016; Viscardi, 2010; Yoneda et
554 al., 2016b; Yoon et al., 1998); therefore, the immune responses triggered by each bacterium or

555 cluster of bacteria may differentially affect cellular responses in the reproductive and gestational
556 tissues. However, the *in vivo* standardization of a polymicrobial infection model and the isolation
557 of clinically-relevant *Ureaplasma* species are challenging, and thus here we utilized intra-
558 amniotic infection with an easily-cultured bacterium, *E. coli*, to induce preterm birth in mice.
559 Future investigations may utilize other bacteria detected in the amniotic cavity of women
560 diagnosed with intra-amniotic infection (DiGiulio et al., 2010; Romero et al., 2015c). In addition,
561 it should be noted that single-cell RNA-seq is a discovery-based approach that we have utilized
562 to generate an atlas of the murine reproductive tissues, and thus careful interpretation is required
563 when extrapolating specific findings to the human context. Last, it is worth mentioning that RNA
564 techniques using single-cell suspensions lose information about the spatial relationships among
565 cell types in target tissues; therefore, such data may be complemented by using spatial
566 transcriptomics and/or proteomics. Nonetheless, our data can serve as a resource for targeted
567 studies that can validate such findings using human samples.

568 **ACKNOWLEDGEMENTS**

569 The authors would like to acknowledge Yesong Liu for his assistance in performing some
570 of the immunofluorescence imaging.

571 This research was supported, in part, by the Perinatology Research Branch, Division of
572 Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, *Eunice Kennedy*
573 *Shriver* National Institute of Child Health and Human Development, National Institutes of
574 Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); and, in part, with
575 Federal funds from NICHD/NIH/DHHS under Contract No. HHSN275201300006C. Dr. Romero
576 has contributed to this work as part of his official duties as an employee of the United States
577 Federal Government. This research was also supported by the Wayne State University Perinatal
578 Initiative in Maternal, Perinatal and Child Health. The funders had no role in the study design,
579 data collection and analysis, decision to publish, or preparation of the manuscript. Figures
580 include art created with [BioRender.com](https://biorender.com)

581

582 **AUTHOR CONTRIBUTIONS**

583 Conceptualization, R.R., R.P-R., and N.G-L.; Methodology, V.G-F., J.G., Y.X., and N.G-L.;
584 Validation, A.P., R.P-R., and A.L.T.; Formal Analysis, V.G-F., A.P., R.P-R., and N.G-L.;
585 Investigation, V.G-F., J.G., E.P., B.P., D.M., Y.X., L.T., Z.L., and A.L.T.; Resources, R.R.,
586 A.L.T., R.P-R., and N.G-L.; Data Curation, V.G-F., A.P., and R.P-R.; Writing - Original Draft,
587 V.G-F., R.R., A.P., J.G., B.P., D.M.; Writing - Review & Editing, V.G-F., R.R., A.P., J.G., E.P.,
588 B.P., D.M., Y.X., L.T., Z.L., A.L.T., R.P-R., and N.G-L.; Visualization, V.G-F., A.P., J.G., E.P.;
589 Supervision, R.R., R.P-R., and N.G-L.; Project Administration, N.G-L.; Funding Acquisition,
590 R.R., and N.G-L.

591 **DECLARATION OF INTERESTS**

592 The authors declare that no competing interests exist.

593 **FIGURE TITLES AND LEGENDS**

594 **Figure 1. Single-cell atlas of the murine reproductive tissues during preterm labor induced**
595 **by intra-amniotic infection. (A)** Experimental design for the ultrasound-guided intra-amniotic
596 injection of *E. coli* or PBS (vehicle control) into pregnant mice on 16.5 days *post coitum* (dpc) (n
597 = 3-6 per group). Mice were monitored to determine pregnancy outcomes **(B-C)**. Gestational age
598 and preterm birth rate of dams intra-amniotically injected with *E. coli* or PBS. Gestational age
599 was compared using a 2-sided Mann-Whitney U-test, and preterm birth rates were compared
600 using a 2-sided Fisher's test. P < 0.05 was considered significant. **(D)** Experimental design for
601 the determination of cervical length on 16.5 dpc, prior to intra-amniotic injection of *E. coli* or
602 PBS, and 24 h later (17.5 dpc) (n = 6-9 per group). **(E)** Cervical length of dams intra-
603 amniotically injected with *E. coli* or PBS at 16.5 and 17.5 dpc. Cervical length was compared
604 between time points using a 2-sided Mann-Whitney U-tests. P < 0.05 was considered significant.
605 The change in cervical shortening was calculated by considering the measurement at 16.5 dpc as
606 100%. **(F)** Diagram illustrating the generation of single-cell suspensions from the uterus,
607 decidua, and cervix collected for single-cell RNA-sequencing experiments (scRNA-seq) (n = 4
608 per group). **(G)** Uniform manifold approximation and projection (UMAP) plot showing all cell
609 types present in the uterus, decidua, and cervix. **(H)** UMAP color-coded plot showing tissue-
610 specific predominance of distinct cell types in the uterus (blue), decidua (pink), and cervix
611 (orange). Blue dotted lines distinguish major cell types: myeloid, endothelial, stromal, smooth
612 muscle, epithelial, and lymphoid. Abbreviations used: SMC, smooth muscle cell; NK cell,
613 natural killer cell.

614

615 **Figure 2. Preterm labor induced by *E. coli* dysregulates the repertoire and gene expression**
616 **of immune and non-immune cell types in the reproductive tissues. (A)** Color-coded uniform
617 manifold approximation and projection (UMAP) plot showing the effects of preterm labor on the
618 abundance of specific cell types (shown in red) compared to control (shown in blue). **(B-D)** Bar
619 plots showing the numbers of each cell type in the uterus, decidua, and cervix. The comparison
620 of cell numbers between the two study groups for each cell type was performed using a 2-sided t-
621 test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$. **(E-G)** Bar plots showing the
622 numbers of differentially expressed genes (DEGs) induced by preterm labor in each cell type in
623 the uterus, decidua, and cervix. Red and pink bars indicate upregulated and downregulated
624 DEGs, respectively (derived from DESeq2, $q < 0.1$). The comparisons of the fraction of
625 downregulated and upregulated DEGs in each cell type between the study groups were
626 calculated using two-sided binomial tests. * $q < 0.05$, ** $q < 0.01$, *** $q < 0.001$, **** $q <$
627 0.0001. **(H-J)** Quantile-quantile plot showing differential expression of genes analyzed for
628 selected enriched cell types from the uterus, decidua and cervix. Deviation above the 1:1 line
629 (solid black line) indicates enrichment. Abbreviations used: SMC, smooth muscle cell; NK cell,
630 natural killer cell.

631
632 **Figure 3. Preterm labor induced by *E. coli* involves conserved cell types that display**
633 **distinct processes in the reproductive tissues. (A)** Venn diagrams showing the numbers of
634 differential expressed genes (DEGs, $q < 0.1$) that are unique to or shared among the uterus,
635 decidua, and cervix. **(B)** Box plots showing the correlation of specific cell types affected by
636 preterm labor and conserved across the uterus, decidua, and cervix using the Spearman's method.
637 Cluster profiler dot plots showing the preterm labor-associated Gene Ontology (GO) biological

638 processes that are unique or shared among **(C)** Neutrophil, **(D)** Monocyte and Macrophage, and
639 **(E)** Epithelial cell types from the uterus, decidua, and cervix. The size and color of each dot
640 represent gene ratio and significance level, respectively. 1-sided Fisher's exact tests were used.
641 Abbreviations used: SMC, smooth muscle cell; NK cell, natural killer cell.

642

643 **Figure 4. Cellular interactions in the uterus during preterm labor.** **(A-B)** Alluvial plots
644 showing the roles of specific cell types as senders or receivers of preterm labor-associated
645 signaling in the uterus based on selected enriched signaling pathways comparing the overall
646 information flow within networks between preterm labor and control derived from CellChat (full
647 list of pathways in Figure S5B). Connecting lines are color-coded and represent the participation
648 of each cell type as senders or receivers of the indicated signaling pathway. Line thickness is
649 proportional to the strength of interaction. **(C)** Arrow plot showing changes in outgoing and
650 incoming interactions strength between preterm labor (point of the arrow) and control condition
651 (base of the arrow) for specific cell types in the uterus. **(D)** Circle plots showing the top 25% of
652 aggregated interactions among cell types in the uterus for control and preterm labor groups. Each
653 node represents a cell type and the interaction is shown by lines color-coded based on the sender
654 cell. **(E)** Circle plots showing the top 25% increased (red) or decreased (blue) signaling
655 interactions in the uterus for specific pathways in preterm labor compared to controls.

656

657 **Figure 5. Cellular interactions in the decidua during preterm labor.** **(A-B)** Alluvial plots
658 showing the roles of specific cell types as senders or receivers of preterm labor-associated
659 signaling in the decidua based on 11 enriched signaling pathways comparing the overall
660 information flow within networks between preterm labor and control derived from CellChat (full

661 list of pathways in Figure S6B). Connecting lines are color-coded and represent the participation
662 of each cell type as senders or receivers of the indicating signaling pathway. Line thickness is
663 proportional to the strength of interaction. **(C)** Arrow plot showing changes in the outgoing and
664 incoming interaction strength between preterm labor (point of the arrow) and control condition
665 (base of the arrow) for specific cell types in the decidua. **(D)** Circle plots showing the top 25% of
666 aggregated interactions among cell types in the decidua for control and preterm labor groups.
667 Each node represents a cell type and the interaction is shown by color-coded lines. **(E)** Circle
668 plots showing the top 25% increased (red) or decreased (blue) signaling interactions in the
669 decidua for specific pathways in preterm labor compared to controls.

670

671 **Figure 6. Cellular interactions in the cervix during preterm labor.** **(A-B)** Alluvial plots
672 showing the roles of specific cell types as senders or receivers of preterm labor-associated
673 signaling in the cervix based on selected enriched signaling pathways (full list of pathways in
674 Figure S7B). Connecting lines are color-coded and represent the participation of each cell type as
675 senders or receivers of the indicating signaling pathway. Line thickness is proportional to the
676 strength of interaction. **(C)** Arrow plot showing changes in the strength of outgoing and
677 incoming interactions between preterm labor (point of the arrow) and control (base of the arrow)
678 for specific cell types in the cervix. **(D)** Circle plots showing the top 25% of aggregated
679 interactions among cell types in the cervix for control and preterm labor groups. Each node
680 represents a cell type and the interaction is shown by color-coded lines. **(E)** Circle plots showing
681 the top 25% increased (red) or decreased (blue) signaling interactions in the cervix for specific
682 pathways in preterm labor compared to controls.

683

684 **Figure 7. Shared cellular signaling pathways in the murine uterus and human myometrium**
685 **during the processes of preterm and term labor.** **(A)** Heatmap showing the differential
686 interaction strength among cell types in the murine uterus with preterm labor. Red and blue
687 shading indicate increased or decreased signaling, respectively, in preterm labor compared to
688 control. **(B)** Heatmap showing the differential interaction strength among cell types in the human
689 myometrium with term labor. Red and blue shading indicate increased or decreased signaling,
690 respectively, in term labor compared to term without labor. **(C)** Circle plots representing the top
691 25% murine uterine cell-cell communications inferred for the Collagen, IL-1, CCL pathways for
692 the control and preterm labor groups. **(D)** Circle plots representing the top 25% human
693 myometrial cell-cell communications inferred for the Collagen, IL-1, and CCL pathways for the
694 control and preterm labor groups. Abbreviations used: SMC, smooth muscle cell; NK cell,
695 natural killer cell; EVT, extravillous trophoblast; ILC, innate lymphoid cell; LED, lymphoid
696 endothelial decidual cell.

697 **STAR METHODS**

698 **KEY RESOURCES TABLE**

699 (Submitted separately)

700

701 **RESOURCE AVAILABILITY**

702 ***Lead contact***

703 Further information and requests for resources and reagents should be directed to and will
704 be fulfilled by the lead contact, Nardhy Gomez-Lopez (nardhy.gomez-lopez@wayne.edu).

705

706 ***Material Availability***

707 This study did not generate new unique reagents.

708

709 ***Data and Code Availability***

710 The scRNA-seq data reported in this study has been submitted to the Gene Expression
711 Omnibus repository (GEO accession number GSE200289). All software and R packages used
712 herein are detailed in materials and methods section. Scripts detailing the single-cell analysis are
713 available at GitHub (https://github.com/piquelab/murine_scRNA)

714 **EXPERIMENTAL MODEL DETAILS**

715 ***Mice***

716 Mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA) and bred in
717 the animal care facility at the C.S. Mott Center for Human Growth and Development, Wayne
718 State University (Detroit, MI, USA). Mice were under a circadian cycle of light:dark = 12:12 h.
719 Eight- to twelve-week-old C57BL/6 (RRID:IMSR_JAX:000664) female mice were bred with
720 BALB/cByJ male mice (RRID:IMSR_JAX:001026), and females were examined daily between
721 0800 and 0900 to check for the presence of a vaginal plug, which was considered as 0.5 days
722 *post coitum* (dpc). Upon observation of a vaginal plug, females were removed from mating cages
723 and housed separately, and their weights were monitored daily. At 12.5 dpc, a weight gain of ≥ 2 g
724 was considered confirmation of pregnancy. Mice were randomized to receive intra-amniotic
725 injection of *E. coli* or vehicle control, and investigators were not blinded to control or treatment
726 assignment. No experimental mice were excluded from analysis. All procedures and experiments
727 were approved by the Institutional Animal Care and Use Committee (IACUC) at Wayne State
728 University under Protocol nos. 18-03-0584 and 21-04-3506.

729 **METHOD DETAILS**

730 ***Preparation of E. coli for intra-amniotic injection***

731 *Escherichia coli* was purchased from the American Type Culture Collection (ATCC,
732 Manassas, VA, USA) (ATCC 12014) and was grown in Luria-Bertani (LB) broth (cat. no.
733 L8050, Teknova, Hollister, CA, USA) at 37°C. From an overnight culture, a sub-culture was
734 placed with fresh LB broth and grown to the logarithmic phase (OD₆₀₀ 0.9 - 1). Additional
735 dilution was performed using sterile 1X phosphate-buffered saline (PBS, Thermo Fisher
736 Scientific/Gibco, Grand Island, NY, USA) to reach a working concentration of 10 CFU/25µL.

737

738 ***Measurement of cervical length by ultrasound***

739 Dams were anesthetized on 16.5 dpc by inhalation of 2% isoflurane (Aerrane; Baxter
740 Healthcare Corporation, Deerfield, IL, USA) and 1 to 2 liters/min of oxygen in an induction
741 chamber. Anesthesia was maintained with a mixture of 1.5 to 2% isoflurane and 1.5 to 2
742 liters/min of oxygen. Mice were positioned on a heating pad and stabilized with adhesive tape.
743 Fur removal from the abdomen was performed using Nair cream (Church & Dwight Co., Inc.,
744 Ewing, NJ, USA). Sterile forceps were utilized to expose the vulva and 200 µL of Sterile
745 Aquasonic® 100 ultrasound transmission gel (Parker laboratories, Fairfield, NJ, USA) was used
746 to fill the vagina to create contrast and allow for clear visualization of the external limit of the
747 uterine cervix (i.e., the external os). A trans-abdominal ultrasound approach was utilized to
748 evaluate the cervix. The transducer was slowly moved toward the lower part of the abdomen and
749 the cervix was positioned in a longitudinal view. The cervical length was measured from the
750 internal to the external os at least three times per mouse, and its average was utilized as the final
751 value for cervical length. This procedure was performed prior to ultrasound-guided injection

752 with either *E. coli* or PBS and repeated 24 h later (on 17.5 dpc) (i.e., prior to tissue collection).
753 The change in cervical length was determined as a percentage by considering the cervical length
754 on 16.5 dpc as 100% and then calculating the percentage of the cervical length on 17.5 dpc.

755

756 ***Intra-amniotic inoculation with E. coli***

757 Dams that underwent cervical measurement were maintained on the heating pad under
758 anesthesia as described above. The ultrasound transducer was slowly moved toward the abdomen
759 to localize the amniotic sacs. The syringe with *E. coli* suspension (10 CFU/25 μ L) was stabilized
760 by a mechanical holder (VisualSonics). Ultrasound-guided intra-amniotic inoculation with *E.*
761 *coli* was performed in each amniotic sac using a 30G needle (BD PrecisionGlide needle; Becton
762 Dickinson, Franklin Lakes, NJ, USA). Controls were injected with 25 μ L of sterile 1X PBS into
763 each amniotic sac. After the ultrasound injection, the dams were placed under a heat lamp for
764 recovery (defined as when the mouse resumed normal activities such as walking and
765 responding), which typically occurred 10–15 min after removal from anesthesia. After recovery,
766 mice were video monitored to observe pregnancy outcomes.

767

768 ***Video Monitoring***

769 Pregnancy outcomes were recorded via video camera (Sony Corporation, Tokyo, Japan)
770 to determine gestational length, and therefore rate of preterm birth. Preterm birth was defined as
771 delivery occurring before 18.5 dpc, based on the earliest delivery of PBS-injected control dams,
772 and its rate was represented by the percentage of females delivering preterm among the total
773 number of mice injected.

774

775 ***Tissue collection prior to preterm birth***

776 Dams were euthanized on 17.5 dpc and the reproductive tissues (uterus, decidua, and
777 cervix) were collected. Tissues collected for the preparation of single-cell suspensions were
778 placed in sterile 1X PBS, while tissues for histological analyses were fixed in 10% Neutral
779 Buffered Formalin (Surgipath, Leyca Biosystems, Wetzlar, Germany) and embedded in paraffin.
780 Five- μ m-thick sections were cut and mounted on Superfrost \circledR Plus microscope slides (Cat. No.
781 48311-703, VWR International, LLC. Radnor, PA, USA).

782

783 ***Histological characterization of murine reproductive tissues***

784 ***Leukocyte detection using DAB immunohistochemistry***

785 Five- μ m-thick tissue sections from mice injected with PBS or *E. coli* were deparaffinized
786 and rehydrated using xylene and a series of decreasing ethanol concentrations, respectively.
787 Immunohistochemistry staining using the Monoclonal Rabbit Anti-Mouse CD45 (AB_2799780;
788 clone D3F8Q, cat. no. 70257S, Cell Signaling Technology, Danvers, MA, USA) was performed
789 using the Leica Bond Max Automatic Staining System in a peroxidase-mediated oxidation of
790 3,30-diaminobenzidine (DAB) from the Bond \circledR Polymer Refine Detection Kit (both from Leica
791 Microsystems, Wetzlar, Germany). The negative control used was the Rabbit FLEX Universal
792 Negative Control (cat. no. IR60066-2, Agilent, Santa Clara, CA, USA). Images were scanned
793 using the Brightfield setting of the Vectra Polaris Multispectral Imaging System.

794

795 ***Movat's pentachrome staining***

796 Five- μ m-thick tissue sections from mice injected with PBS or *E. coli* were histologically
797 characterized for the presence of collagen, elastin, muscle, and mucin using the Movat

798 Pentachrome Stain Kit (Modified Russell-Movat; ScyTek Laboratories, Inc. Logan, UT, USA),
799 following manufacturer's instructions with modifications. Briefly, tissue sections were
800 deparaffinized, stained with working Elastic Stain solution for 20 min, and rinsed in running tap
801 water for 1 min followed by rinsing with deionized water. Then, the following reagents from the
802 kit were sequentially applied to the entire tissue section with distilled water rinsing in between
803 each application: 2% Ferric Chloride for 5-8 s, 5% Sodium Thiosulfate Solution for 1 min,
804 Alcian Blue Solution (pH 2.5) for 20 min, Biebrich Scarlet-Acid Fuchsin Solution for 2 min, 5%
805 Phosphotungstic Acid Solution for 7 min, and 1% Acetic Acid Solution for 3 min. Excess Acetic
806 Acid Solution was drained from the slides and Yellow Stain Solution was immediately applied
807 for 20 min. The slides were then rinsed in 100% ethanol followed by rinsing with xylene. Images
808 were scanned using the Brightfield setting of the Vectra Polaris Multispectral Imaging System
809 (Akoya Biosciences, Marlborough, MA, USA).

810

811 *OPAL multiplex immunofluorescence*

812 OPAL multiplex immunofluorescence staining was performed using the OPAL Multiplex
813 7-color IHC kit (Cat. no. NEL811001KT; Akoya Biosciences), according to the manufacturer's
814 instructions. Prior to multiplex staining, the order of antibody staining was optimized using
815 single-plex staining paired with tyramide signal amplification (TSA)-conjugated OPAL
816 fluorophores. The optimized detection panel includes antibody-OPAL fluorophore pairs in the
817 following order: Monoclonal Rabbit Anti-Mouse F4/80 (AB_2799771; clone D2S9R; cat. no.
818 70076S, Cell Signaling Technology) with OPAL 520, Monoclonal Rabbit Anti-Mouse CD3ε
819 (AB_2889902; clone E4T1B; cat. no. 78588S, Cell Signaling Technology) with OPAL 570,
820 Monoclonal Rabbit Anti-Mouse Klrb1c/CD161c (AB_2892989; clone E6Y9G; cat. no. 39197S,

821 Cell Signaling Technology) with OPAL 620, Polyclonal Rabbit Anti-Mouse Ly6C (cat. no.
822 HA500088, HuaBio, Boston, MA, USA) with OPAL 650, and Monoclonal Rabbit Anti-Mouse
823 Ly6G (AB_2909808; clone E6Z1T; cat. no. 87048S, Cell Signaling Technology) with OPAL
824 690. The Rabbit FLEX Universal Negative Control (Agilent) was used as isotype. Briefly, 5- μ m-
825 thick tissue sections from mice injected with PBS or *E. coli* were deparaffinized and rehydrated
826 using xylene and a series of decreasing ethanol concentrations, respectively. The slides were
827 rinsed in deionized water and epitope retrieval was performed by submerging the slides in
828 appropriate antigen retrieval (AR) buffer and boiling in a microwave oven. Non-specific binding
829 was prevented by incubating slides in OPAL antibody diluent/blocking solution prior to
830 incubating with each primary antibody at room temperature. Next, the slides were rinsed in
831 TBST prior to incubation with anti-mouse secondary antibody-horse radish peroxidase (HRP)
832 conjugate followed by the selected TSA-conjugated OPAL fluorophore. Cycles of sequential
833 epitope retrieval, target detection, and signal amplification were repeated using the optimized
834 antibody-OPAL fluorophore pair. Once all targets were detected, the slides were incubated with
835 DAPI (4',6-diamidino-2-phenylindole) as a nuclear counterstain and mounted using AquaSlipTM
836 Aqueous Permanent Mounting Medium (American MasterTech). Fluorescence image acquisition
837 was performed using the Vectra Polaris Multispectral Imaging System at 20x magnification.
838 Multispectral images were analyzed using the inForm software version 2.4 (Akoya Biosciences).
839

840 ***Tissue dissociation of murine uterus and decidua***

841 Immediately following tissue collection, the uterus and decidua were dissociated to
842 prepare single-cell suspensions. The tissues were mechanically dissociated and enzymatically
843 digested by incubating at 37°C using enzymes from the Umbilical Cord Dissociation Kit

844 (Miltenyi Biotec). A second round of mechanical dissociation was performed using the
845 gentleMACS Dissociator (Miltenyi Biotec), and dissociated cells were rinsed with 1X PBS
846 (Thermo Fisher Scientific) prior to filtration using a 100 μ m cell strainer (Miltenyi Biotec).
847 Filtered cells were pelleted by centrifugation at 300 x g for 5 min, erythrocytes were eliminated
848 using ACK Lysing Buffer (Life Technologies), and the cells were rinsed in 0.04% BSA (Sigma
849 Aldrich) and 0.5 mM EDTA (Sigma Aldrich) diluted in 1X PBS. Finally, the cells were filtered
850 using a 30 μ m cell strainer (Miltenyi Biotec), and the Dead Cell Removal Kit was used to remove
851 dead cells to obtain a cell viability of \geq 80%.

852

853 ***Tissue dissociation of the murine cervix***

854 Immediately following the collection of the cervix, the tissue was mechanically
855 dissociated and enzymatically digested using Collagenase A (160 mg/mL) (Sigma Aldrich, St.
856 Louis, MO, USA) and incubated at 37°C. Then, the dissociated cells were pelleted by
857 centrifugation at 16,000 x g for 10 min at 20°C and resuspended with 0.05% trypsin-EDTA
858 (Thermo Fisher Scientific, Waltham, MA) prior to a second round of mincing and incubation in
859 0.05% trypsin-EDTA at 37°C. The enzymatic reaction was stopped by the addition of FBS (Fetal
860 Bovine Serum, Thermo Fisher). Cells were then filtered using a 70 μ m cell strainer (Miltenyi
861 Biotec, San Diego, CA, USA) and pelleted by centrifugation at 300 x g for 10 min. Erythrocytes
862 were removed using ACK Lysing Buffer (Life Technologies, Grand Island, NY, USA). Finally,
863 the cells were resuspended in 0.04% Bovine Serum Albumin (BSA) (Sigma Aldrich) diluted in
864 1X PBS (Thermo Fisher Scientific, NY, USA) and filtered through a 30 μ m cell strainer
865 (Miltenyi Biotec). The cell concentration and viability were determined using an automatic cell

866 counter (Cellometer Auto 2000, Nexcelom Bioscience, Lawrence, MA, USA) and the Dead Cell
867 Removal Kit (Miltenyi Biotec) was used to remove dead cells to obtain a cell viability of $\geq 80\%$.

868

869 ***Generation of gel beads-in-emulsion (GEMs) and library preparation***

870 Generation of gel beads-in-emulsion (GEMs) and preparation of library constructs was
871 performed on viable single-cell suspensions using the 10x Genomics Chromium Single Cell 3'
872 Gene Expression Version 3.1 Kit (10x Genomics, Pleasanton, CA, USA), according to the
873 manufacturer's instructions. Briefly, viable single cells were encapsulated in partitioning oil
874 together with a single Gel Bead with barcoded oligonucleotides within the Chromium Controller.
875 Reverse transcription of mRNA into complementary (c)DNA was performed using the Veriti 96-
876 well Thermal Cycler (Thermo Fisher Scientific, Wilmington, DE, USA). Dynabeads MyOne
877 SILANE (10x Genomics) and the SPRIselect Reagent (Beckman Coulter, Indianapolis, IN,
878 USA) were used to purify resulting cDNA, which was optimized by enzymatic fragmentation,
879 end-repair, and A-tailing. Next, adaptors and sample index were incorporated by ligation. The
880 sample index PCR product was then amplified using the Veriti 96-well Thermal Cycler and
881 double-sided size selection was performed using the SPRIselect Reagent. Following the
882 formation of cDNA and final library construct, the Agilent Bioanalyzer High Sensitivity DNA
883 Chip (Agilent Technologies, Wilmington, DE, USA) was used determine sample quality and
884 concentration.

885

886 ***Sequencing***

887 Prior to sequencing of post-library constructs, samples were quantified using the Kapa
888 DNA Quantification Kit for Illumina platforms (Kapa Biosystems, Wilmington, MA, USA),

889 following the manufacturer's instructions. The sequencing of 10x scRNA-seq libraries was
890 performed on the Illumina NextSeq 500 at the Genomics Services Center (GSC) of the Center
891 for Molecular Medicine and Genetics (Wayne State University School of Medicine, Detroit, MI,
892 USA). The Illumina 75 Cycle Sequencing Kit (Illumina, San Diego, CA, USA) was used with 58
893 cycles for R2, 26 for R1, and 8 for I1.

894

895 **QUANTIFICATION AND STATISTICAL ANALYSIS**

896 *scRNA-seq data normalization and pre-processing*

897 Sequencing data were processed using Cell Ranger version 4.0.0 (10x Genomics). The
898 “cellranger counts” was also used to align the scRNA-seq reads by using the STAR
899 aligner(Dobin et al., 2013) to produce the bam files necessary for demultiplexing the individual
900 of origin based on genotype information using demuxlet(Kang et al., 2018) and a custom vcf file.
901 The genotype data were downloaded from ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.dbSNP142.vcf.gz, the strains
902 C57BL_6NJ and BALB_cJ were extracted, and a new synthetic vcf file was generated consisting
903 of all the genetic variants where these two strains diverge, and containing a maternal genotype
904 column identical to the C57BL_6NJ strain and a fetal genotype column with a “0/1”
905 heterozygote genotype. Ambient RNA contamination and doublets were removed using SoupX
906 version 1.5.2(Young and Behjati, 2020) and DoubletFinder 2.0.3(McGinnis et al., 2019).
907 Additionally, any cell with < 200 genes or > 20,000 genes detected, or that had > 10%
908 mitochondrial reads, was excluded (Table S4). All count data matrices were then normalized and
909 combined using the Seurat package in R (Seurat version 4.0.3)(Hafemeister and Satija, 2019;
910 Stuart et al., 2019). The first 100 principal components were obtained, and the different libraries

912 were integrated and harmonized using the Harmony package in R version 1.0.0(Korsunsky et al.,
913 2019). The top 30 harmony components were then processed to embed and visualize the cells in
914 a two-dimensional map via the Uniform Manifold Approximation and Projection for Dimension
915 Reduction (UMAP) algorithm(Becht et al., 2018; McInnes et al., 2018). A resolution of 0.5 was
916 used to cluster the single cells.

917

918 ***Annotation of cell types***

919 The SingleR(Aran et al., 2019) package in R version 1.6.1 was used to annotate cell types
920 based on their similarities to reference datasets with known labels(Buechler et al., 2021; Tabula
921 Muris et al., 2018). SingleR annotates single cells from query data by computing the Spearman's
922 correlation coefficient between the single-cell gene expression data and samples from the
923 reference dataset. The correlation is measured only based on the variable genes in the reference
924 dataset. The multiple correlation coefficients per cell type are combined according to the cell
925 type labels of the reference dataset to assign a score per cell type. Additionally, we confirmed the
926 cell type identities by identifying the top DEGs (see below) and the gene-cell type mapping data
927 provided by the Mouse Cell Atlas and single-cell MCA (scMCA) package(Han et al., 2018) in R
928 version 0.2.0. Using different annotations obtained from the reference mapping workflows, the
929 final cell type labels were assigned based on a majority vote. If multiple clusters were assigned
930 to the same consensus cell type, we added a sub-index to that cell type for each different original
931 Seurat cluster: Clusters 0, 1, and 21 were annotated as Fibroblast-1, Fibroblast-2, and Fibroblast-
932 3; clusters 2, 4, and 12 were annotated as Stromal-1, Stromal-2 (Decidua), and Stromal-3;
933 clusters 5, 7, 8, 10, 11, 13, 14, 20, 23, and 28 were annotated as Epithelial-1 (basal), Epithelial-2
934 (squamous), Epithelial-3 (squamous), Epithelial-4 (glandular), Epithelial-10 (proliferative),

935 Epithelial-5 (luminal), Epithelial-6 (secretory), Epithelial-7 (glandular), Epithelial-8
936 (Enterocyte), and Epithelial-9 (Secretory); clusters 9 and 24 were annotated as Macrophage-1
937 and Macrophage-2 (progenitor); clusters 15 and 26 were annotated as SMC-1 and SMC-2; and
938 clusters 19 and 27 were annotated as NK-cell-1 and NK-cell-2. All remaining clusters were
939 assigned a unique cell type identifier (Table S5).

940

941 ***Differential gene expression for cell type analysis***

942 For this analysis, the differential expression of selected marker genes for each cell
943 type/cluster was identified using the Wilcoxon Rank Sum test and the FindAllMarkers function
944 from Seurat (Table S5). For this analysis, we first compared each cluster to all cell types. We
945 further used the top cell markers [ranked based on $\log_2(\text{Fold change})$] and requiring $q < 0.1$]
946 assigned to each sub-cluster to annotate the clusters using the Mouse Cell Atlas and scMCA
947 package(Han et al., 2018).

948

949 ***Differential gene expression in preterm labor***

950 The identification of preterm labor-associated DEGs between study groups was
951 performed using the DESeq2 R package version 1.32.0(Love et al., 2014). A term for each
952 library was added to the DESeq2 model to correct for technical batch effects (library identifier).
953 For each cell type/replicate combination, we only used combinations with more than 20 cells;
954 otherwise, it was treated as non-observed. Cell types found in < 3 combinations per study group
955 were dropped from the differential gene expression analysis (Table S2 contains all genes
956 determined as differentially expressed). Note that these thresholds imply that clusters with < 120
957 cells are not analyzed to ensure robust gene expression estimation. Quantile-quantile plots were

958 used to show that p-values are well calibrated under the null hypothesis of no effect of preterm
959 labor, and also to show which tissues and cell types are more enriched for preterm labor-
960 associated gene expression changes (Figure 2H-J). Multiple comparison correction was
961 performed by controlling for false discovery rate using Benjamini-Hochberg's method and genes
962 with $q < 0.1$ were reported in Figure 2E-G and Table S2. Statistical difference between the
963 fraction of genes that were upregulated versus downregulated by preterm labor in each cell type
964 was assessed with a binomial test and corrected for multiple comparisons using Benjamini-
965 Hochberg's method. To compare the effects of preterm labor on gene expression across different
966 tissues and cell types, we performed Spearman's correlation between the \log_2FC obtained in each
967 DESeq2 analysis performed using genes that had been detected as differentially expressed in at
968 least one cell-type/tissue, $q < 0.1$. These correlations were visualized as a heatmap in Figure
969 S5A, S6A, and S7A and in boxplots for relevant tissue and cell-type combinations in Figure 3B-
970 D.

971

972 ***Gene ontology and pathway enrichment analysis of genes affected by preterm labor***

973 The clusterProfiler in R version 4.0.4(Yu et al., 2012) was used to perform the Over-
974 Representation Analysis (ORA) separately for each list of genes obtained as differentially
975 expressed for each cell type based on the Gene Ontology (GO), Kyoto Encyclopedia of Gene and
976 Genomes (KEGG), and Reactome databases. The functions “enrichPathway”, “enrichKEGG”,
977 and “enrichGO”, from “clusterProfiler” were used. In ORA analyses, the universe of genes for
978 each cell type was the subset that was expressed at a level sufficient to be tested in differential
979 gene expression analysis. When results are combined across cell types, any genes tested (with a

980 calculated p-value) in any of the cell types are used for the universe. Only ORA results that were
981 significant after correction were reported with $q < 0.05$ being considered statistically significant.

982

983 ***Cell-cell communication analysis***

984 CellChat (Jin et al., 2021) was used to infer the cell-cell communications using the
985 single-cell gene expression data from preterm labor and control conditions and a database of
986 prior knowledge of the interactions between signaling ligands, receptors, and their cofactors. The
987 top 25% of significant cell-cell communications ($p < 0.05$) across different pathways were shown
988 for the two conditions of preterm labor and control. Next, the aggregated cell-cell
989 communication between different cell groups was calculated for the two study groups, and the
990 interaction strength was compared among different cell types from the two study groups. The
991 differential interaction strength was represented with circle plots with red (or blue) edges
992 showing the increased (or decreased) signaling in preterm labor compared to controls.
993 Additionally, the detailed differential interaction strengths were shown using heatmap
994 representations. Major signaling sender and receiver cells were displayed using scatter plots
995 where the changes in signaling strength from control to preterm labor were represented by
996 arrows. The R packages CellChat version 1.1.2, ggalluvial version 0.12.3, and ggplot2 version
997 3.3.5 were used to visualize cell-cell communication analyses. The major sending and receiving
998 signaling roles based on context-specific pathways across different cell groups were identified
999 using a cut-off of 0.5 when visualizing the connection. The overall information flow [sum of the
1000 significant communication probability ($p < 0.05$) in the inferred cell-cell network] for each
1001 signaling network was represented using a bar plot. The comparison between the overall

1002 information flow from the two study groups (preterm labor and control) was performed using the
1003 paired Wilcoxon test with the function “rankNet” from CellChat.

1004

1005 ***Comparison between cell-cell communication in human and murine uterine tissues***

1006 We inferred cell-cell communications using the human myometrial single-cell gene
1007 expression data from term in labor (TIL) and term without labor (TNL) study groups(Pique-Regi
1008 et al., 2022), and compared the inferred interactions between mouse (uterus) and human
1009 (myometrium) across the top common signaling pathways with highest numbers of DEGs.

1010

1011 ***Statistical analysis***

1012 Observational mouse data were analyzed by using SPSS v19.0 and GraphPad Prism
1013 version 8. For comparing the rates of preterm birth, the Fisher's exact test was used. For
1014 gestational length and cervical shortening, the statistical significance of group comparisons was
1015 assessed using the Mann-Whitney U-test or paired t-test, respectively.

1016 **SUPPLEMENTAL INFORMATION**

1017 **Supplementary Figure Legends**

1018 **Figure S1. Preterm labor induced by intra-amniotic infection alters the cellular**
1019 **composition of the murine reproductive tissues, related to Figure 1. (A)** UMAP plots
1020 showing the cell types present in the uterus, decidua, and cervix of control mice and **(B)** mice
1021 with preterm labor. **(C-E)** UMAP plots showing the distribution of cells according to fetal
1022 (purple) or maternal (grey) origin in the uterus, decidua, and cervix. Abbreviations used: SMC,
1023 smooth muscle cell; NK cell, natural killer cell.

1024

1025 **Figure S2. Leukocyte infiltration in the uterus, decidua, and cervix, related to Figure 2. (A-**
1026 **C)** Representative Movat pentachrome staining images of the uterus, decidua, and cervix from
1027 control (top row) and preterm labor (bottom row) mice. Red staining indicates muscle/fibrin,
1028 dark purple staining indicates elastic fibers, blue staining indicates mucin, and yellow indicates
1029 collagen/reticular fibers. Nuclei appear as dark blue/black. Whole-slide images taken at (A)
1030 control: 3.7X, preterm labor 4X; (B) control: 2.9X, preterm labor: 4.9X; (C) control: 3.2 X,
1031 preterm labor: 3.1X (scale bars = 300 μ m). Zoomed images were all taken at 20X magnification
1032 (scale bars = 50 μ m). **(D-F)** Representative images showing 3, 3'diaminobenzidine (DAB)
1033 immunohistochemistry to detect the pan-leukocyte marker CD45 in the uterus, decidua, and
1034 cervix of control mice (top row) and preterm labor (bottom row) mice (n = 3 per group). Whole-
1035 slide brightfield images taken at (E) control: 3.5X, preterm labor: 3.3X; (F) control: 2.9X,
1036 preterm labor 3.9X; (G) control: 3.4X, preterm labor: 3.2X (scale bars = 300 μ m). Zoomed
1037 images were taken at 20X magnification (scale bars = 50 μ m). **(G-I)** Representative merged
1038 image showing the co-localized immunofluorescence detection of neutrophils (Ly6G+ cells,

1039 pink), monocytes (Ly6C+ cells, cyan), macrophages (F4/80+ cells, red), T cells (CD3+ cells,
1040 yellow) and NK cells (CD161c+ cells, green) in the uterus, decidua, and cervix of control and
1041 preterm labor mice only (n = 3). Nuclear staining is shown in blue (4',6-diamidino-2-
1042 phenylindole; DAPI). Images were taken at 20X magnification. Scale bar = 100 μ m.

1043

1044 **Figure S3. Shared and unique biological processes in specific cell types impacted by labor**
1045 **across tissues, related to Figure 3. (A)** Box plots showing the Spearman's correlation of the
1046 preterm labor-associated log₂(Fold change, FC) among cell types within each tissue. **(B)** Box
1047 plots showing the Spearman's correlations between tissue pairs for the preterm labor-associated
1048 logFC in cell types present in the two tissues. **(C)** ClusterProfiler dot plot showing preterm labor-
1049 associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in specific
1050 cell 588 types in the uterus, decidua, and cervix. The size and color of each dot represents
1051 enrichment score and significance level, respectively. Significant KEGG pathways (q < 0.05)
1052 were identified based on over-representation analysis using one-sided Fisher's exact tests.
1053 Abbreviations used: SMC, smooth muscle cell; NK cell, natural killer cell.

1054

1055 **Figure S4. The uterus and decidua share enrichment of biological processes in preterm**
1056 **labor, related to Figure 3.** Cluster profiler dot plots showing the Gene Ontology (GO)
1057 biological processes enriched with preterm labor in **(A)** Stromal-1 and Stromal-2, **(B)** Stromal-3
1058 and Fibroblast-1, **(C)** Fibroblast-2 and Fibroblast-3, and **(D)** Endothelial cells in the uterus and
1059 decidua. The size and color of each dot represent gene ratio and significance level, respectively.
1060 A 1-sided Fisher's exact test was used.

1061

1062 **Figure S5. Preterm labor-associated enrichment of signaling pathways in uterine cell types,**
1063 **related to Figure 4. (A)** Heatmap showing correlations among uterine cell types where red and
1064 white blocks signify increased and decreased correlation, respectively. Pearson correlation tests
1065 was used. **(B)** Bar plots showing the high expression of specific signaling pathways in the uterus
1066 of control mice (blue bars/pathway names) or mice with preterm labor (red bars/pathway names).
1067 **(C)** Forest plot showing the $\log_2(\text{FC, fold change})$ and 95% confidence intervals of differentially
1068 expressed (DEGs) across cell types in murine uterus. DEGs shown are significant with FDR ($q <$
1069 0.1). Abbreviations used: SMC, smooth muscle cell; NK cell, natural killer cell.

1070

1071 **Figure S6. Preterm labor-induced induced changes in the expression of prostaglandin-**
1072 **associated genes in different cell types across the reproductive tissues, related to Figures 4-**
1073 **6.** Forest plot showing the $\log_2(\text{FC, fold change})$ and 95% confidence intervals of differentially
1074 expressed (DEGs) in selected cell types across the murine cervix, decidua and uterus. DEGs
1075 shown are significant with FDR ($q < 0.01$).

1076

1077 **Figure S7. Preterm labor-induced changes in interaction between decidua cell types,**
1078 **related to Figure 5. (A)** Heatmap showing correlations among decidua cell types where red and
1079 white blocks signify increased and decreased correlation, respectively. Pearson correlation tests
1080 was used. **(B)** Bar plots showing the high expression of specific signaling pathways in the
1081 decidua of control mice (blue bars/pathway names) or mice with preterm labor (red bars/pathway
1082 names). **(C)** Forest plot showing the $\log_2(\text{FC, fold change})$ and 95% confidence intervals of
1083 differentially expressed (DEGs) across cell types in murine decidua. DEGs shown are significant
1084 with FDR ($q < 0.1$). Abbreviations used: SMC, smooth muscle cell; NK cell, natural killer cell.

1085

1086 **Figure S8. Preterm labor-induced changes in interaction between cervical cell types,**
1087 **related to Figure 6. (A)** Heatmap showing correlations among cervical cell types where red and
1088 white blocks signify increased and decreased correlation, respectively. Pearson correlation tests
1089 was used. **(B)** Bar plots showing the high expression of specific signaling pathways in the cervix
1090 of control mice (blue bars/pathway names) or mice with preterm labor (red bars/pathway names).

1091

1092 **Figure S9. Labor-associated signaling in the human myometrium partially overlaps with**
1093 **preterm labor-associated changes in the murine uterus, related to Figure 7. (A)** Circle plots
1094 showing the top aggregated interactions among cell types in the myometrium from humans
1095 without (left) or with labor at term (right). Each node represents a cell type and the interaction is
1096 shown by lines color-coded based on the sender cell. Representation of aggregated interactions
1097 with $p < 0.05$ using cell chat. **(B)** Circle plot showing the increased (red) or decreased (blue)
1098 signaling interactions in the human myometrium in labor compared to controls without labor.
1099 Representation of top 25% differential interaction strength. **(C)** Venn diagram showing the
1100 overlap in upregulated signaling pathways between the murine uterus in preterm labor (left
1101 circle, pink) and the human myometrium in term labor (right circle, orange). Shared labor- and
1102 inflammation-associated pathways are highlighted in red. **(D-E)** Circle plots representing the top
1103 25% human myometrial cell-cell communications inferred for the Complement and CXCL
1104 pathways for the Term not in labor and Term in labor groups. **(F-G)** Circle plots representing the
1105 top 25% murine uterine cell-cell communications inferred for the Complement and CXCL
1106 pathways for the control and preterm labor groups. Abbreviations used: SMC, smooth muscle

1107 cell; NK cell, natural killer cell; EVT, extravillous trophoblast; ILC, innate lymphoid cell; LED,
1108 lymphoid endothelial decidual cell.

1109 **SUPPLEMENTAL EXCEL TABLE TITLES**

1110 **Table S1.** Summary of the numbers of uterine, decidual and cervical cells encapsulated within
1111 the 10x Genomics Gel-bead-in-emulsion (GEM), related to Figure 2.

1112

1113 **Table S2.** Preterm labor-associated differentially expressed genes in uterine, decidual and
1114 cervical cell types, as well as the total differentially expressed genes across tissue, related to
1115 Figures 2 and 3.

1116

1117 **Table S3.** Summary of genes and pathways used in the CellChat intercellular communication
1118 analysis for the uterus, decidua and cervix, related to Figures 4, 5, and 6.

1119

1120 **Table S4.** Summary of quality control metrics calculated with the 10x Genomics Cell Ranger
1121 pipeline for each library, related to methods section “*scRNA-seq data normalization and pre-*
1122 *processing*”.

1123

1124 **Table S5.** List of marker genes for the identification of cell types in the murine uterus, decidua
1125 and cervix, related to methods section “*Annotation of cell types*”.

1126 REFERENCES

1127 Agrawal, V., and Hirsch, E. (2012). Intrauterine infection and preterm labor. *Semin Fetal*
1128 *Neonatal Med* 17, 12-19. 10.1016/j.siny.2011.09.001.

1129 Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R.P., Wolters,
1130 P.J., Abate, A.R., et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a
1131 transitional profibrotic macrophage. *Nat Immunol* 20, 163-172. 10.1038/s41590-018-0276-y.

1132 Arenas-Hernandez, M., Romero, R., Xu, Y., Panaitescu, B., Garcia-Flores, V., Miller, D., Ahn,
1133 H., Done, B., Hassan, S.S., Hsu, C.D., et al. (2019). Effector and Activated T Cells Induce
1134 Preterm Labor and Birth That Is Prevented by Treatment with Progesterone. *J Immunol* 202,
1135 2585-2608. 10.4049/jimmunol.1801350.

1136 Bartmann, C., Segerer, S.E., Rieger, L., Kapp, M., Sütterlin, M., and Kämmerer, U. (2014).
1137 Quantification of the predominant immune cell populations in decidua throughout human
1138 pregnancy. *Am J Reprod Immunol* 71, 109-119. 10.1111/aji.12185.

1139 Bastek, J.A., Gómez, L.M., and Elovitz, M.A. (2011). The role of inflammation and infection in
1140 preterm birth. *Clin Perinatol* 38, 385-406. 10.1016/j.clp.2011.06.003.

1141 Becht, E., McInnes, L., Healy, J., Dutertre, C.A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., and
1142 Newell, E.W. (2018). Dimensionality reduction for visualizing single-cell data using UMAP. *Nat*
1143 *Biotechnol*. 10.1038/nbt.4314.

1144 Boros-Rausch, A., Shynlova, O., and Lye, S.J. (2021). A Broad-Spectrum Chemokine Inhibitor
1145 Blocks Inflammation-Induced Myometrial Myocyte-Macrophage Crosstalk and Myometrial
1146 Contraction. *Cells* 11. 10.3390/cells11010128.

1147 Buechler, M.B., Pradhan, R.N., Krishnamurty, A.T., Cox, C., Calviello, A.K., Wang, A.W.,
1148 Yang, Y.A., Tam, L., Caothien, R., Roose-Girma, M., et al. (2021). Cross-tissue organization of
1149 the fibroblast lineage. *Nature* 593, 575-579. 10.1038/s41586-021-03549-5.

1150 Bukowski, R., Hankins, G.D., Saade, G.R., Anderson, G.D., and Thornton, S. (2006). Labor-
1151 associated gene expression in the human uterine fundus, lower segment, and cervix. *PLoS Med*
1152 3, e169. 10.1371/journal.pmed.0030169.

1153 Burnham, P., Gomez-Lopez, N., Heyang, M., Cheng, A.P., Lenz, J.S., Dadhania, D.M., Lee,
1154 J.R., Suthanthiran, M., Romero, R., and De Vlaminck, I. (2020). Separating the signal from the
1155 noise in metagenomic cell-free DNA sequencing. *Microbiome* 8, 18. 10.1186/s40168-020-0793-
1156 4.

1157 Chawanpaiboon, S., Vogel, J.P., Moller, A.B., Lumbiganon, P., Petzold, M., Hogan, D.,
1158 Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M., et al. (2019). Global,
1159 regional, and national estimates of levels of preterm birth in 2014: a systematic review and
1160 modelling analysis. *Lancet Glob Health* 7, e37-e46. 10.1016/s2214-109x(18)30451-0.

1161 Chumduri, C., Gurumurthy, R.K., Berger, H., Dietrich, O., Kumar, N., Koster, S., Brinkmann,
1162 V., Hoffmann, K., Drabkina, M., Arampatzis, P., et al. (2021). Opposing Wnt signals regulate
1163 cervical squamocolumnar homeostasis and emergence of metaplasia. *Nat Cell Biol* 23, 184-197.
1164 10.1038/s41556-020-00619-0.

1165 Coleman, M., Orvis, A., Wu, T.Y., Dacanay, M., Merillat, S., Ogle, J., Baldessari, A., Kretzer,
1166 N.M., Munson, J., Boros-Rausch, A.J., et al. (2020). A Broad Spectrum Chemokine Inhibitor
1167 Prevents Preterm Labor but Not Microbial Invasion of the Amniotic Cavity or Neonatal
1168 Morbidity in a Non-human Primate Model. *Front Immunol* 11, 770. 10.3389/fimmu.2020.00770.

1169 Combs, C.A., Gravett, M., Garite, T.J., Hickok, D.E., Lapidus, J., Porreco, R., Rael, J., Grove,
1170 T., Morgan, T.K., Clewell, W., et al. (2014). Amniotic fluid infection, inflammation, and

1171 colonization in preterm labor with intact membranes. *Am J Obstet Gynecol* 210, 125 e121-125
1172 e115. 10.1016/j.ajog.2013.11.032.

1173 Danforth, D.N., and Ivy, A.C. (1949). The lower uterine segment; its derivation and physiologic
1174 behavior. *Am J Obstet Gynecol* 57, 831-841. 10.1016/0002-9378(49)90639-0.

1175 DiGiulio, D.B., Romero, R., Kusanovic, J.P., Gómez, R., Kim, C.J., Seok, K.S., Gotsch, F.,
1176 Mazaki-Tovi, S., Vaisbuch, E., Sanders, K., et al. (2010). Prevalence and diversity of microbes
1177 in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with
1178 preterm pre-labor rupture of membranes. *Am J Reprod Immunol* 64, 38-57. 10.1111/j.1600-
1179 0897.2010.00830.x.

1180 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
1181 M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29,
1182 15-21. 10.1093/bioinformatics/bts635.

1183 Dobyns, A.E., Goyal, R., Carpenter, L.G., Freeman, T.C., Longo, L.D., and Yellon, S.M. (2015).
1184 Macrophage gene expression associated with remodeling of the prepartum rat cervix: microarray
1185 and pathway analyses. *PLoS One* 10, e0119782. 10.1371/journal.pone.0119782.

1186 Dubicke, A., Ekman-Ordeberg, G., Mazurek, P., Miller, L., and Yellon, S.M. (2016). Density of
1187 Stromal Cells and Macrophages Associated With Collagen Remodeling in the Human Cervix in
1188 Preterm and Term Birth. *Reprod Sci* 23, 595-603. 10.1177/1933719115616497.

1189 Faro, J., Romero, R., Schwenkel, G., Garcia-Flores, V., Arenas-Hernandez, M., Leng, Y., Xu,
1190 Y., Miller, D., Hassan, S.S., and Gomez-Lopez, N. (2019). Intra-amniotic inflammation induces
1191 preterm birth by activating the NLRP3 inflammasome. *Biol Reprod* 100, 1290-1305.
1192 10.1093/biolre/foy261.

1193 Galaz, J., Romero, R., Slutsky, R., Xu, Y., Motomura, K., Para, R., Pacora, P., Panaitescu, B.,
1194 Hsu, C.D., Kacerovsky, M., and Gomez-Lopez, N. (2020a). Cellular immune responses in
1195 amniotic fluid of women with preterm prelabor rupture of membranes. *J Perinat Med* 48, 222-
1196 233. 10.1515/jpm-2019-0395.

1197 Galaz, J., Romero, R., Xu, Y., Miller, D., Slutsky, R., Levenson, D., Hsu, C.D., and Gomez-
1198 Lopez, N. (2020b). Cellular immune responses in amniotic fluid of women with preterm clinical
1199 chorioamnionitis. *Inflamm Res* 69, 203-216. 10.1007/s00011-019-01308-x.

1200 Gershater, M., Romero, R., Arenas-Hernandez, M., Galaz, J., Motomura, K., Tao, L., Xu, Y.,
1201 Miller, D., Pique-Regi, R., Martinez, G., 3rd, et al. (2022). IL-22 Plays a Dual Role in the
1202 Amniotic Cavity: Tissue Injury and Host Defense against Microbes in Preterm Labor. *J
1203 Immunol.* 10.4049/jimmunol.2100439.

1204 Gibbs, R.S., Blanco, J.D., St Clair, P.J., and Castaneda, Y.S. (1982). Quantitative bacteriology of
1205 amniotic fluid from women with clinical intraamniotic infection at term. *J Infect Dis* 145, 1-8.
1206 10.1093/infdis/145.1.1.

1207 Gibbs, R.S., Romero, R., Hillier, S.L., Eschenbach, D.A., and Sweet, R.L. (1992). A review of
1208 premature birth and subclinical infection. *Am J Obstet Gynecol* 166, 1515-1528. 10.1016/0002-
1209 9378(92)91628-n.

1210 Goldenberg, R.L., Culhane, J.F., Iams, J.D., and Romero, R. (2008). Epidemiology and causes of
1211 preterm birth. *Lancet* 371, 75-84. 10.1016/s0140-6736(08)60074-4.

1212 Gomez-Lopez, N., Estrada-Gutierrez, G., Jimenez-Zamudio, L., Vega-Sanchez, R., and Vadillo-
1213 Ortega, F. (2009). Fetal membranes exhibit selective leukocyte chemotactic activity during
1214 human labor. *J Reprod Immunol* 80, 122-131. 10.1016/j.jri.2009.01.002.

1215 Gomez-Lopez, N., Garcia-Flores, V., Chin, P.Y., Groome, H.M., Bijland, M.T., Diener, K.R.,
1216 Romero, R., and Robertson, S.A. (2021a). Macrophages exert homeostatic actions in pregnancy

1217 to protect against preterm birth and fetal inflammatory injury. *JCI Insight* 6.
1218 10.1172/jci.insight.146089.

1219 Gomez-Lopez, N., Romero, R., Arenas-Hernandez, M., Panaitescu, B., Garcia-Flores, V., Mial,
1220 T.N., Sahi, A., and Hassan, S.S. (2018a). Intra-amniotic administration of lipopolysaccharide
1221 induces spontaneous preterm labor and birth in the absence of a body temperature change. *J
1222 Matern Fetal Neonatal Med* 31, 439-446. 10.1080/14767058.2017.1287894.

1223 Gomez-Lopez, N., Romero, R., Galaz, J., Bhatti, G., Done, B., Miller, D., Ghita, C., Motomura,
1224 K., Farias-Jofre, M., Jung, E., et al. (2022). Transcriptome changes in maternal peripheral blood
1225 during term parturition mimic perturbations preceding spontaneous preterm birth. *Biol Reprod*
1226 106, 185-199. 10.1093/biolre/ioab197.

1227 Gomez-Lopez, N., Romero, R., Galaz, J., Xu, Y., Panaitescu, B., Slutsky, R., Motomura, K.,
1228 Gill, N., Para, R., Pacora, P., et al. (2019a). Cellular immune responses in amniotic fluid of
1229 women with preterm labor and intra-amniotic infection or intra-amniotic inflammation. *Am J
1230 Reprod Immunol* 82, e13171. 10.1111/aji.13171.

1231 Gomez-Lopez, N., Romero, R., Leng, Y., Garcia-Flores, V., Xu, Y., Miller, D., and Hassan, S.S.
1232 (2017a). Neutrophil extracellular traps in acute chorioamnionitis: A mechanism of host defense.
1233 *Am J Reprod Immunol* 77. 10.1111/aji.12617.

1234 Gomez-Lopez, N., Romero, R., Leng, Y., Xu, Y., Slutsky, R., Levenson, D., Pacora, P., Jung, E.,
1235 Panaitescu, B., and Hsu, C.D. (2019b). The origin of amniotic fluid monocytes/macrophages in
1236 women with intra-amniotic inflammation or infection. *J Perinat Med* 47, 822-840. 10.1515/jpm-
1237 2019-0262.

1238 Gomez-Lopez, N., Romero, R., Varrey, A., Leng, Y., Miller, D., Done, B., Xu, Y., Bhatti, G.,
1239 Motomura, K., Gershater, M., et al. (2021b). RNA Sequencing Reveals Diverse Functions of
1240 Amniotic Fluid Neutrophils and Monocytes/Macrophages in Intra-Amniotic Infection. *J Innate
1241 Immun* 13, 63-82. 10.1159/000509718.

1242 Gomez-Lopez, N., Romero, R., Xu, Y., Leng, Y., Garcia-Flores, V., Miller, D., Jacques, S.M.,
1243 Hassan, S.S., Faro, J., Alsamsam, A., et al. (2017b). Are amniotic fluid neutrophils in women
1244 with intraamniotic infection and/or inflammation of fetal or maternal origin? *Am J Obstet
1245 Gynecol* 217, 693.e691-693.e616. 10.1016/j.ajog.2017.09.013.

1246 Gomez-Lopez, N., Romero, R., Xu, Y., Miller, D., Arenas-Hernandez, M., Garcia-Flores, V.,
1247 Panaitescu, B., Galaz, J., Hsu, C.D., Para, R., and Berry, S.M. (2019c). Fetal T Cell Activation in
1248 the Amniotic Cavity during Preterm Labor: A Potential Mechanism for a Subset of Idiopathic
1249 Preterm Birth. *J Immunol* 203, 1793-1807. 10.4049/jimmunol.1900621.

1250 Gomez-Lopez, N., Romero, R., Xu, Y., Miller, D., Leng, Y., Panaitescu, B., Silva, P., Faro, J.,
1251 Alhousseini, A., Gill, N., et al. (2018b). The immunophenotype of amniotic fluid leukocytes in
1252 normal and complicated pregnancies. *Am J Reprod Immunol* 79, e12827. 10.1111/aji.12827.

1253 Gomez-Lopez, N., Vadillo-Perez, L., Hernandez-Carballo, A., Godines-Enriquez, M., Olson,
1254 D.M., and Vadillo-Ortega, F. (2011a). Specific inflammatory microenvironments in the zones of
1255 the fetal membranes at term delivery. *Am J Obstet Gynecol* 205, 235.e215-224.
1256 10.1016/j.ajog.2011.04.019.

1257 Gomez-Lopez, N., Vadillo-Perez, L., Nessim, S., Olson, D.M., and Vadillo-Ortega, F. (2011b).
1258 Choriodecidua and amnion exhibit selective leukocyte chemotaxis during term human labor. *Am
1259 J Obstet Gynecol* 204, 364.e369-316. 10.1016/j.ajog.2010.11.010.

1260 Gomez-Lopez, N., Vega-Sanchez, R., Castillo-Castrejon, M., Romero, R., Cubeiro-Arreola, K.,
1261 and Vadillo-Ortega, F. (2013). Evidence for a role for the adaptive immune response in human
1262 term parturition. *Am J Reprod Immunol* 69, 212-230. 10.1111/aji.12074.

1263 Gomez, R., Ghezzi, F., Romero, R., Muñoz, H., Tolosa, J.E., and Rojas, I. (1995). Premature
1264 labor and intra-amniotic infection. Clinical aspects and role of the cytokines in diagnosis and
1265 pathophysiology. *Clin Perinatol* 22, 281-342.

1266 Gomez, R., Romero, R., Galasso, M., Behnke, E., Insunza, A., and Cotton, D.B. (1994). The
1267 value of amniotic fluid interleukin-6, white blood cell count, and gram stain in the diagnosis of
1268 microbial invasion of the amniotic cavity in patients at term. *Am J Reprod Immunol* 32, 200-210.
1269 10.1111/j.1600-0897.1994.tb01115.x.

1270 Gonçalves, L.F., Chaiworapongsa, T., and Romero, R. (2002). Intrauterine infection and
1271 prematurity. *Ment Retard Dev Disabil Res Rev* 8, 3-13. 10.1002/mrdd.10008.

1272 Gonzalez, J.M., Dong, Z., Romero, R., and Girardi, G. (2011). Cervical remodeling/ripening at
1273 term and preterm delivery: the same mechanism initiated by different mediators and different
1274 effector cells. *PLoS One* 6, e26877. 10.1371/journal.pone.0026877.

1275 Granstrom, L., Ekman, G., Ulmsten, U., and Malmstrom, A. (1989). Changes in the connective
1276 tissue of corpus and cervix uteri during ripening and labour in term pregnancy. *Br J Obstet
1277 Gynaecol* 96, 1198-1202. 10.1111/j.1471-0528.1989.tb03196.x.

1278 Gravett, M.G., Hummel, D., Eschenbach, D.A., and Holmes, K.K. (1986). Preterm labor
1279 associated with subclinical amniotic fluid infection and with bacterial vaginosis. *Obstet Gynecol*
1280 67, 229-237. 10.1097/00006250-198602000-00013.

1281 Guzick, D.S., and Winn, K. (1985). The association of chorioamnionitis with preterm delivery.
1282 *Obstet Gynecol* 65, 11-16.

1283 Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of single-cell
1284 RNA-seq data using regularized negative binomial regression. *Genome Biol* 20, 296.
1285 10.1186/s13059-019-1874-1.

1286 Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou, Z., Chen, H., Ye,
1287 F., et al. (2018). Mapping the Mouse Cell Atlas by Microwell-Seq. *Cell* 172, 1091-1107 e1017.
1288 10.1016/j.cell.2018.02.001.

1289 Hillier, S.L., Martius, J., Krohn, M., Kiviat, N., Holmes, K.K., and Eschenbach, D.A. (1988). A
1290 case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. *N
1291 Engl J Med* 319, 972-978. 10.1056/nejm198810133191503.

1292 Huang, J., Li, Q., Peng, Q., Xie, Y., Wang, W., Pei, C., Zhao, Y., Liu, R., Huang, L., Li, T., et al.
1293 (2021). Single-cell RNA sequencing reveals heterogeneity and differential expression of
1294 decidual tissues during the peripartum period. *Cell Prolif* 54, e12967. 10.1111/cpr.12967.

1295 Huang, J.R., Nie, J., Liu, L.J., Zhang, X.W., Xie, Y.M., Peng, Q.Z., Wang, W.N., Pei, C.L.,
1296 Zhao, Y.H., Liu, R., et al. (2020). Single-cell transcriptomics reveals the heterogeneity of the
1297 decidual endothelial cells that participate in labor onset. *Eur Rev Med Pharmacol Sci* 24, 10359-
1298 10365. 10.26355/eurrev_202010_23385.

1299 Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.H., Myung, P., Plikus,
1300 M.V., and Nie, Q. (2021). Inference and analysis of cell-cell communication using CellChat. *Nat
1301 Commun* 12, 1088. 10.1038/s41467-021-21246-9.

1302 Kang, H.M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., Wan, E.,
1303 Wong, S., Byrnes, L., Lanata, C.M., et al. (2018). Multiplexed droplet single-cell RNA-
1304 sequencing using natural genetic variation. *Nat Biotechnol* 36, 89-94. 10.1038/nbt.4042.

1305 Keelan, J.A., Blumenstein, M., Helliwell, R.J., Sato, T.A., Marvin, K.W., and Mitchell, M.D.
1306 (2003). Cytokines, prostaglandins and parturition--a review. *Placenta* 24 *Suppl A*, S33-46.
1307 10.1053/plac.2002.0948.

1308 Keski-Nisula, L.T., Aalto, M.L., Kirkinen, P.P., Kosma, V.M., and Heinonen, S.T. (2003).
1309 Myometrial inflammation in human delivery and its association with labor and infection. *Am J*
1310 *Clin Pathol* *120*, 217-224. 10.1309/kc6k-dtx9-8lfy-b3j7.

1311 Kim, C.J., Romero, R., Chaemsathong, P., Chaiyasit, N., Yoon, B.H., and Kim, Y.M. (2015a).
1312 Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance.
1313 *Am J Obstet Gynecol* *213*, S29-52. 10.1016/j.ajog.2015.08.040.

1314 Kim, M.J., Romero, R., Gervasi, M.T., Kim, J.S., Yoo, W., Lee, D.C., Mittal, P., Erez, O.,
1315 Kusanovic, J.P., Hassan, S.S., and Kim, C.J. (2009). Widespread microbial invasion of the
1316 chorioamniotic membranes is a consequence and not a cause of intra-amniotic infection. *Lab*
1317 *Invest* *89*, 924-936. 10.1038/labinvest.2009.49.

1318 Kim, S.M., Romero, R., Park, J.W., Oh, K.J., Jun, J.K., and Yoon, B.H. (2015b). The
1319 relationship between the intensity of intra-amniotic inflammation and the presence and severity
1320 of acute histologic chorioamnionitis in preterm gestation. *J Matern Fetal Neonatal Med* *28*, 1500-
1321 1509. 10.3109/14767058.2014.961009.

1322 Koh, W., Wu, A., Penland, L., Treutlein, B., Neff, N.F., Mantalas, G.L., Blumenfeld, Y.J., El-
1323 Sayed, Y.Y., Stevenson, D.K., Shaw, G.M., and Quake, S.R. (2019). Single Cell Transcriptomes
1324 Derived from Human Cervical and Uterine Tissue during Pregnancy. *Adv Biosyst* *3*, e1800336.
1325 10.1002/adbi.201800336.

1326 Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner,
1327 M., Loh, P.R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-
1328 cell data with Harmony. *Nat Methods* *16*, 1289-1296. 10.1038/s41592-019-0619-0.

1329 Krantz, K.E., and Phillips, W.P. (1962). Anatomy of the human uterine cervix, gross and
1330 microscopic. *Ann N Y Acad Sci* *97*, 551-563. 10.1111/j.1749-6632.1962.tb34666.x.

1331 Li, Y., Lopez, G.E., Vazquez, J., Sun, Y., Chavarria, M., Lindner, P.N., Fredrickson, S., Karst,
1332 N., and Stanic, A.K. (2018). Decidual-Placental Immune Landscape During Syngeneic Murine
1333 Pregnancy. *Front Immunol* *9*, 2087. 10.3389/fimmu.2018.02087.

1334 Liu, L., Li, H., Dargahi, D., Shynlova, O., Slater, D., Jones, S.J., Lye, S.J., and Dong, X.
1335 (2015a). HOXA13 Regulates Phenotype Regionalization of Human Pregnant Myometrium. *J Clin*
1336 *Endocrinol Metab* *100*, E1512-1522. 10.1210/jc.2015-2815.

1337 Liu, L., Oza, S., Hogan, D., Perin, J., Rudan, I., Lawn, J.E., Cousens, S., Mathers, C., and Black,
1338 R.E. (2015b). Global, regional, and national causes of child mortality in 2000-13, with
1339 projections to inform post-2015 priorities: an updated systematic analysis. *Lancet* *385*, 430-440.
1340 10.1016/s0140-6736(14)61698-6.

1341 Lopez Bernal, A. (2003). Mechanisms of labour--biochemical aspects. *BJOG* *110 Suppl 20*, 39-
1342 45. 10.1046/j.1471-0528.2003.00023.x.

1343 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
1344 dispersion for RNA-seq data with DESeq2. *Genome Biol* *15*, 550. 10.1186/s13059-014-0550-8.

1345 Ludmir, J., and Sehdev, H.M. (2000). Anatomy and physiology of the uterine cervix. *Clin Obstet*
1346 *Gynecol* *43*, 433-439. 10.1097/00003081-200009000-00003.

1347 Makieva, S., Dubicke, A., Rinaldi, S.F., Fransson, E., Ekman-Ordeberg, G., and Norman, J.E.
1348 (2017). The preterm cervix reveals a transcriptomic signature in the presence of premature
1349 prelabor rupture of membranes. *Am J Obstet Gynecol* *216*, 602 e601-602 e621.
1350 10.1016/j.ajog.2017.02.009.

1351 Martinez-Varea, A., Romero, R., Xu, Y., Miller, D., Ahmed, A.I., Chaemsathong, P., Chaiyasit,
1352 N., Yeo, L., Shaman, M., Lannaman, K., et al. (2017). Clinical chorioamnionitis at term VII: the
1353 amniotic fluid cellular immune response. *J Perinat Med* *45*, 523-538. 10.1515/jpm-2016-0225.

1354 McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: Doublet Detection in
1355 Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* 8, 329-337
1356 e324. 10.1016/j.cels.2019.03.003.

1357 McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform Manifold Approximation and
1358 Projection for Dimension Reduction. *arXiv*:1802.03426.

1359 Migale, R., MacIntyre, D.A., Cacciatore, S., Lee, Y.S., Hagberg, H., Herbert, B.R., Johnson,
1360 M.R., Peebles, D., Waddington, S.N., and Bennett, P.R. (2016). Modeling hormonal and
1361 inflammatory contributions to preterm and term labor using uterine temporal transcriptomics.
1362 *BMC Med* 14, 86. 10.1186/s12916-016-0632-4.

1363 Montes, G.S., Zugaib, M., Joazeiro, P.P., Varayoud, J., Ramos, J.G., Munoz-de-Toro, M., and
1364 Luque, E.H. (2002). Phenotypic modulation of fibroblastic cells in the mucous layer of the
1365 human uterine cervix at term. *Reproduction* 124, 783-790. 10.1530/rep.0.1240783.

1366 Mosher, A.A., Rainey, K.J., Bolstad, S.S., Lye, S.J., Mitchell, B.F., Olson, D.M., Wood, S.L.,
1367 and Slater, D.M. (2013). Development and validation of primary human myometrial cell culture
1368 models to study pregnancy and labour. *BMC Pregnancy Childbirth* 13 *Suppl 1*, S7.
1369 10.1186/1471-2393-13-s1-s7.

1370 Motomura, K., Romero, R., Galaz, J., Tarca, A.L., Done, B., Xu, Y., Leng, Y., Garcia-Flores, V.,
1371 Arenas-Hernandez, M., Theis, K.R., et al. (2021). RNA Sequencing Reveals Distinct Immune
1372 Responses in the Chorioamniotic Membranes of Women with Preterm Labor and Microbial or
1373 Sterile Intra-amniotic Inflammation. *Infect Immun* 89. 10.1128/IAI.00819-20.

1374 Motomura, K., Romero, R., Tarca, A.L., Galaz, J., Bhatti, G., Done, B., Arenas-Hernandez, M.,
1375 Levenson, D., Slutsky, R., Hsu, C.D., and Gomez-Lopez, N. (2020a). Pregnancy-specific
1376 transcriptional changes upon endotoxin exposure in mice. *J Perinat Med* 48, 700-722.
1377 10.1515/jpm-2020-0159.

1378 Motomura, K., Romero, R., Xu, Y., Theis, K.R., Galaz, J., Winters, A.D., Slutsky, R., Garcia-
1379 Flores, V., Zou, C., Levenson, D., et al. (2020b). Intra-Amniotic Infection with Ureaplasma
1380 parvum Causes Preterm Birth and Neonatal Mortality That Are Prevented by Treatment with
1381 Clarithromycin. *mBio* 11. 10.1128/mBio.00797-20.

1382 Nelson, A.C., Mould, A.W., Bikoff, E.K., and Robertson, E.J. (2016). Single-cell RNA-seq
1383 reveals cell type-specific transcriptional signatures at the maternal-foetal interface during
1384 pregnancy. *Nat Commun* 7, 11414. 10.1038/ncomms11414.

1385 Norwitz, E.R., Robinson, J.N., and Challis, J.R. (1999). The control of labor. *N Engl J Med* 341,
1386 660-666. 10.1056/NEJM199908263410906.

1387 Odibo, A.O., Rodis, J.F., Sanders, M.M., Borgida, A.F., Wilson, M., Egan, J.F., and Campbell,
1388 W.A. (1999). Relationship of amniotic fluid markers of intra-amniotic infection with
1389 histopathology in cases of preterm labor with intact membranes. *J Perinatol* 19, 407-412.
1390 10.1038/sj.jp.7200210.

1391 Oh, J.W., Moon, K.C., Park, C.W., Park, J.S., and Jun, J.K. (2021). Acute chorioamnionitis and
1392 intra-amniotic inflammation are more severe according to outside-in neutrophil migration within
1393 the same chorio-decidua. *Taiwan J Obstet Gynecol* 60, 639-652. 10.1016/j.tjog.2021.05.011.

1394 Oh, K.J., Park, K.H., Kim, S.N., Jeong, E.H., Lee, S.Y., and Yoon, H.Y. (2011). Predictive value
1395 of intra-amniotic and serum markers for inflammatory lesions of preterm placenta. *Placenta* 32,
1396 732-736. 10.1016/j.placenta.2011.07.080.

1397 Oh, K.J., Romero, R., Park, J.Y., Lee, J., Conde-Agudelo, A., Hong, J.S., and Yoon, B.H.
1398 (2019). Evidence that antibiotic administration is effective in the treatment of a subset of patients

1399 with intra-amniotic infection/inflammation presenting with cervical insufficiency. *Am J Obstet
1400 Gynecol* 221, 140.e141-140.e118. 10.1016/j.ajog.2019.03.017.

1401 Olding, L. (1970). Value of placentitis as a sign of intrauterine infection in human subjects. *Acta
1402 Pathol Microbiol Scand A* 78, 256-264. 10.1111/j.1699-0463.1970.tb03300.x.

1403 Osman, I., Young, A., Ledingham, M.A., Thomson, A.J., Jordan, F., Greer, I.A., and Norman,
1404 J.E. (2003). Leukocyte density and pro-inflammatory cytokine expression in human fetal
1405 membranes, decidua, cervix and myometrium before and during labour at term. *Mol Hum
1406 Reprod* 9, 41-45. 10.1093/molehr/gag001.

1407 Pacora, P., Chaiworapongsa, T., Maymon, E., Kim, Y.M., Gomez, R., Yoon, B.H., Ghezzi, F.,
1408 Berry, S.M., Qureshi, F., Jacques, S.M., et al. (2002). Funisitis and chorionic vasculitis: the
1409 histological counterpart of the fetal inflammatory response syndrome. *J Matern Fetal Neonatal
1410 Med* 11, 18-25. 10.1080/jmf.11.1.18.25.

1411 Park, C.W., Moon, K.C., Park, J.S., Jun, J.K., Romero, R., and Yoon, B.H. (2009). The
1412 involvement of human amnion in histologic chorioamnionitis is an indicator that a fetal and an
1413 intra-amniotic inflammatory response is more likely and severe: clinical implications. *Placenta*
1414 30, 56-61. 10.1016/j.placenta.2008.09.017.

1415 Patwardhan, M., Hernandez-Andrade, E., Ahn, H., Korzeniewski, S.J., Schwartz, A., Hassan,
1416 S.S., and Romero, R. (2015). Dynamic Changes in the Myometrium during the Third Stage of
1417 Labor, Evaluated Using Two-Dimensional Ultrasound, in Women with Normal and Abnormal
1418 Third Stage of Labor and in Women with Obstetric Complications. *Gynecol Obstet Invest* 80,
1419 26-37. 10.1159/000370001.

1420 Pavličev, M., Wagner, G.P., Chavan, A.R., Owens, K., Maziarz, J., Dunn-Fletcher, C., Kallapur,
1421 S.G., Muglia, L., and Jones, H. (2017). Single-cell transcriptomics of the human placenta:
1422 inferring the cell communication network of the maternal-fetal interface. *Genome Res* 27, 349-
1423 361. 10.1101/gr.207597.116.

1424 Payne, K.J., Clyde, L.A., Weldon, A.J., Milford, T.A., and Yellon, S.M. (2012). Residency and
1425 activation of myeloid cells during remodeling of the prepartum murine cervix. *Biol Reprod* 87,
1426 106. 10.1095/biolreprod.112.101840.

1427 Pique-Regi, R., Romero, R., Garcia-Flores, V., Peyvandipour, A., Tarca, A.L., Pusod, E., Galaz,
1428 J., Miller, D., Bhatti, G., Para, R., et al. (2022). A single-cell atlas of the myometrium in human
1429 parturition. *JCI Insight* 7. 10.1172/jci.insight.153921.

1430 Pique-Regi, R., Romero, R., Tarca, A.L., Sendler, E.D., Xu, Y., Garcia-Flores, V., Leng, Y.,
1431 Luca, F., Hassan, S.S., and Gomez-Lopez, N. (2019). Single cell transcriptional signatures of the
1432 human placenta in term and preterm parturition. *Elife* 8. 10.7554/elife.52004.

1433 Pollard, A.J., Sparey, C., Robson, S.C., Krainer, A.R., and Europe-Finner, G.N. (2000). Spatio-
1434 temporal expression of the trans-acting splicing factors SF2/ASF and heterogeneous ribonuclear
1435 proteins A1/A1B in the myometrium of the pregnant human uterus: a molecular mechanism for
1436 regulating regional protein isoform expression in vivo. *J Clin Endocrinol Metab* 85, 1928-1936.
1437 10.1210/jcem.85.5.6537.

1438 Redline, R.W. (2012). Inflammatory response in acute chorioamnionitis. *Semin Fetal Neonatal
1439 Med* 17, 20-25. 10.1016/j.siny.2011.08.003.

1440 Redline, R.W., Faye-Petersen, O., Heller, D., Qureshi, F., Savell, V., and Vogler, C. (2003).
1441 Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns.
1442 *Pediatr Dev Pathol* 6, 435-448. 10.1007/s10024-003-7070-y.

1443 Romero, R., Dey, S.K., and Fisher, S.J. (2014a). Preterm labor: one syndrome, many causes.
1444 *Science* 345, 760-765. 10.1126/science.1251816.

1445 Romero, R., Espinoza, J., Kusanovic, J.P., Gotsch, F., Hassan, S., Erez, O., Chaiworapongsa, T.,
1446 and Mazor, M. (2006). The preterm parturition syndrome. *BJOG 113 Suppl 3*, 17-42.
1447 10.1111/j.1471-0528.2006.01120.x.

1448 Romero, R., Gomez-Lopez, N., Winters, A.D., Jung, E., Shaman, M., Bieda, J., Panaitescu, B.,
1449 Pacora, P., Erez, O., Greenberg, J.M., et al. (2019). Evidence that intra-amniotic infections are
1450 often the result of an ascending invasion - a molecular microbiological study. *J Perinat Med 47*,
1451 915-931. 10.1515/jpm-2019-0297.

1452 Romero, R., Mazor, M., Munoz, H., Gomez, R., Galasso, M., and Sherer, D.M. (1994). The
1453 preterm labor syndrome. *Ann N Y Acad Sci 734*, 414-429. 10.1111/j.1749-6632.1994.tb21771.x.

1454 Romero, R., Miranda, J., Chaemsathong, P., Chaiworapongsa, T., Kusanovic, J.P., Dong, Z.,
1455 Ahmed, A.I., Shaman, M., Lannaman, K., Yoon, B.H., et al. (2015a). Sterile and microbial-
1456 associated intra-amniotic inflammation in preterm prelabor rupture of membranes. *J Matern Fetal
1457 Neonatal Med 28*, 1394-1409. 10.3109/14767058.2014.958463.

1458 Romero, R., Miranda, J., Chaiworapongsa, T., Chaemsathong, P., Gotsch, F., Dong, Z., Ahmed,
1459 A.I., Yoon, B.H., Hassan, S.S., Kim, C.J., et al. (2014b). A novel molecular microbiologic
1460 technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic
1461 infection in preterm labor with intact membranes. *Am J Reprod Immunol 71*, 330-358.
1462 10.1111/aji.12189.

1463 Romero, R., Miranda, J., Chaiworapongsa, T., Chaemsathong, P., Gotsch, F., Dong, Z., Ahmed,
1464 A.I., Yoon, B.H., Hassan, S.S., Kim, C.J., et al. (2015b). Sterile intra-amniotic inflammation in
1465 asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. *J
1466 Matern Fetal Neonatal Med 28*, 1343-1359. 10.3109/14767058.2014.954243.

1467 Romero, R., Miranda, J., Kusanovic, J.P., Chaiworapongsa, T., Chaemsathong, P., Martinez, A.,
1468 Gotsch, F., Dong, Z., Ahmed, A.I., Shaman, M., et al. (2015c). Clinical chorioamnionitis at term
1469 I: microbiology of the amniotic cavity using cultivation and molecular techniques. *J Perinat Med
1470 43*, 19-36. 10.1515/jpm-2014-0249.

1471 Romero, R., Quintero, R., Nores, J., Avila, C., Mazor, M., Hanaoka, S., Hagay, Z., Merchant, L.,
1472 and Hobbins, J.C. (1991). Amniotic fluid white blood cell count: a rapid and simple test to
1473 diagnose microbial invasion of the amniotic cavity and predict preterm delivery. *Am J Obstet
1474 Gynecol 165*, 821-830. 10.1016/0002-9378(91)90423-o.

1475 Romero, R., Sirtori, M., Oyarzun, E., Avila, C., Mazor, M., Callahan, R., Sabo, V.,
1476 Athanassiadis, A.P., and Hobbins, J.C. (1989). Infection and labor. V. Prevalence, microbiology,
1477 and clinical significance of intraamniotic infection in women with preterm labor and intact
1478 membranes. *Am J Obstet Gynecol 161*, 817-824. 10.1016/0002-9378(89)90409-2.

1479 Romero, R., Yoon, B.H., Mazor, M., Gomez, R., Diamond, M.P., Kenney, J.S., Ramirez, M.,
1480 Fidel, P.L., Sorokin, Y., Cotton, D., and et al. (1993a). The diagnostic and prognostic value of
1481 amniotic fluid white blood cell count, glucose, interleukin-6, and gram stain in patients with
1482 preterm labor and intact membranes. *Am J Obstet Gynecol 169*, 805-816. 10.1016/0002-
1483 9378(93)90009-8.

1484 Romero, R., Yoon, B.H., Mazor, M., Gomez, R., Gonzalez, R., Diamond, M.P., Baumann, P.,
1485 Araneda, H., Kenney, J.S., Cotton, D.B., and et al. (1993b). A comparative study of the
1486 diagnostic performance of amniotic fluid glucose, white blood cell count, interleukin-6, and
1487 gram stain in the detection of microbial invasion in patients with preterm premature rupture of
1488 membranes. *Am J Obstet Gynecol 169*, 839-851. 10.1016/0002-9378(93)90014-a.

1489 Sakamoto, Y., Moran, P., Bulmer, J.N., Searle, R.F., and Robson, S.C. (2005). Macrophages and
1490 not granulocytes are involved in cervical ripening. *J Reprod Immunol* 66, 161-173.
1491 10.1016/j.jri.2005.04.005.

1492 Schwalm, H., and Dubrauszky, V. (1966). The structure of the musculature of the human uterus--
1493 muscles and connective tissue. *Am J Obstet Gynecol* 94, 391-404. 10.1016/0002-
1494 9378(66)90661-2.

1495 Senthamarai kannan, P., Presicce, P., Rueda, C.M., Maneenil, G., Schmidt, A.F., Miller, L.A.,
1496 Waites, K.B., Jobe, A.H., Kallapur, S.G., and Chougnat, C.A. (2016). Intra-amniotic Ureaplasma
1497 parvum-Induced Maternal and Fetal Inflammation and Immune Responses in Rhesus Macaques.
1498 *J Infect Dis* 214, 1597-1604. 10.1093/infdis/jiw408.

1499 Sindram-Trujillo, A., Scherjon, S., Kanhai, H., Roelen, D., and Claas, F. (2003). Increased T-cell
1500 activation in decidua parietalis compared to decidua basalis in uncomplicated human term
1501 pregnancy. *Am J Reprod Immunol* 49, 261-268. 10.1034/j.1600-0897.2003.00041.x.

1502 Slutsky, R., Romero, R., Xu, Y., Galaz, J., Miller, D., Done, B., Tarca, A.L., Gregor, S., Hassan,
1503 S.S., Leng, Y., and Gomez-Lopez, N. (2019). Exhausted and Senescent T Cells at the Maternal-
1504 Fetal Interface in Preterm and Term Labor. *J Immunol Res* 2019, 3128010.
1505 10.1155/2019/3128010.

1506 Smith, R. (2007). Parturition. *N Engl J Med* 356, 271-283. 10.1056/NEJMra061360.

1507 Sooranna, S.R., Grigsby, P.L., Engineer, N., Liang, Z., Sun, K., Myatt, L., and Johnson, M.R.
1508 (2006). Myometrial prostaglandin E2 synthetic enzyme mRNA expression: spatial and temporal
1509 variations with pregnancy and labour. *Mol Hum Reprod* 12, 625-631. 10.1093/molehr/gal061.

1510 Sparey, C., Robson, S.C., Bailey, J., Lyall, F., and Europe-Finner, G.N. (1999). The differential
1511 expression of myometrial connexin-43, cyclooxygenase-1 and -2, and Gs alpha proteins in the
1512 upper and lower segments of the human uterus during pregnancy and labor. *J Clin Endocrinol*
1513 *Metab* 84, 1705-1710. 10.1210/jcem.84.5.5644.

1514 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y.,
1515 Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data.
1516 *Cell* 177, 1888-1902 e1821. 10.1016/j.cell.2019.05.031.

1517 Suryawanshi, H., Morozov, P., Straus, A., Sahasrabudhe, N., Max, K.E.A., Garzia, A., Kustagi,
1518 M., Tuschl, T., and Williams, Z. (2018). A single-cell survey of the human first-trimester
1519 placenta and decidua. *Sci Adv* 4, eaau4788. 10.1126/sciadv.aau4788.

1520 Svensson, L., Ingemarsson, I., and Mårdh, P.A. (1986). Chorioamnionitis and the isolation of
1521 microorganisms from the placenta. *Obstet Gynecol* 67, 403-409.

1522 Sweeney, E.L., Kallapur, S.G., Gisslen, T., Lambers, D.S., Chougnat, C.A., Stephenson, S.A.,
1523 Jobe, A.H., and Knox, C.L. (2016). Placental Infection With Ureaplasma species Is Associated
1524 With Histologic Chorioamnionitis and Adverse Outcomes in Moderately Preterm and Late-
1525 Preterm Infants. *J Infect Dis* 213, 1340-1347. 10.1093/infdis/jiv587.

1526 Tabula Muris, C., Overall, C., Logistical, C., Organ, C., processing, Library, P., sequencing,
1527 Computational data, A., Cell type, A., Writing, G., et al. (2018). Single-cell transcriptomics of 20
1528 mouse organs creates a Tabula Muris. *Nature* 562, 367-372. 10.1038/s41586-018-0590-4.

1529 Tarca, A.L., Romero, R., Erez, O., Gudicha, D.W., Than, N.G., Benshalom-Tirosh, N., Pacora,
1530 P., Hsu, C.D., Chaiworapongsa, T., Hassan, S.S., and Gomez-Lopez, N. (2021). Maternal whole
1531 blood mRNA signatures identify women at risk of early preeclampsia: a longitudinal study. *J*
1532 *Matern Fetal Neonatal Med* 34, 3463-3474. 10.1080/14767058.2019.1685964.

1533 Tarca, A.L., Romero, R., Xu, Z., Gomez-Lopez, N., Erez, O., Hsu, C.D., Hassan, S.S., and
1534 Carey, V.J. (2019). Targeted expression profiling by RNA-Seq improves detection of cellular

1535 dynamics during pregnancy and identifies a role for T cells in term parturition. *Sci Rep* 9, 848.
1536 10.1038/s41598-018-36649-w.

1537 Theis, K.R., Romero, R., Motomura, K., Galaz, J., Winters, A.D., Pacora, P., Miller, D., Slutsky,
1538 R., Florova, V., Levenson, D., et al. (2020). Microbial burden and inflammasome activation in
1539 amniotic fluid of patients with preterm prelabor rupture of membranes. *J Perinat Med* 48, 115-
1540 131. 10.1515/jpm-2019-0398.

1541 Timmons, B.C., Fairhurst, A.M., and Mahendroo, M.S. (2009). Temporal changes in myeloid
1542 cells in the cervix during pregnancy and parturition. *J Immunol* 182, 2700-2707.
1543 10.4049/jimmunol.0803138.

1544 Toothaker, J.M., Presicce, P., Cappelletti, M., Stras, S.F., McCourt, C.C., Chouquet, C.A.,
1545 Kallapur, S.G., and Konnikova, L. (2020). Immune Cells in the Placental Villi Contribute to
1546 Intra-amniotic Inflammation. *Front Immunol* 11, 866. 10.3389/fimmu.2020.00866.

1547 Trundley, A., and Moffett, A. (2004). Human uterine leukocytes and pregnancy. *Tissue Antigens*
1548 63, 1-12. 10.1111/j.1399-0039.2004.00170.x.

1549 Tsang, J.C.H., Vong, J.S.L., Ji, L., Poon, L.C.Y., Jiang, P., Lui, K.O., Ni, Y.B., To, K.F., Cheng,
1550 Y.K.Y., Chiu, R.W.K., and Lo, Y.M.D. (2017). Integrative single-cell and cell-free plasma RNA
1551 transcriptomics elucidates placental cellular dynamics. *Proc Natl Acad Sci U S A* 114, E7786-
1552 e7795. 10.1073/pnas.1710470114.

1553 van Hoeven, K.H., Anyaegbunam, A., Hochster, H., Whitty, J.E., Distant, J., Crawford, C., and
1554 Factor, S.M. (1996). Clinical significance of increasing histologic severity of acute inflammation
1555 in the fetal membranes and umbilical cord. *Pediatr Pathol Lab Med* 16, 731-744.

1556 Vargas, M.L., Sántos, J.L., Ruiz, C., Montes, M.J., Alemán, P., García-Tortosa, C., and García-
1557 Olivares, E. (1993). Comparison of the proportions of leukocytes in early and term human
1558 decidua. *Am J Reprod Immunol* 29, 135-140. 10.1111/j.1600-0897.1993.tb00578.x.

1559 Vento-Tormo, R., Efremova, M., Botting, R.A., Turco, M.Y., Vento-Tormo, M., Meyer, K.B.,
1560 Park, J.E., Stephenson, E., Polanski, K., Goncalves, A., et al. (2018). Single-cell reconstruction
1561 of the early maternal-fetal interface in humans. *Nature* 563, 347-353. 10.1038/s41586-018-0698-
1562 6.

1563 Vink, J.Y., Qin, S., Brock, C.O., Zork, N.M., Feltovich, H.M., Chen, X., Uriel, P., Myers, K.M.,
1564 Hall, T.J., Wapner, R., et al. (2016). A new paradigm for the role of smooth muscle cells in the
1565 human cervix. *Am J Obstet Gynecol* 215, 478 e471-478 e411. 10.1016/j.ajog.2016.04.053.

1566 Viscardi, R.M. (2010). Ureaplasma species: role in diseases of prematurity. *Clin Perinatol* 37,
1567 393-409. 10.1016/j.clp.2009.12.003.

1568 Wendremaire, M., Hadi, T., Pezze, M., Barrichon, M., Lopez, T., Neiers, F., Sagot, P., Garrido,
1569 C., and Lirussi, F. (2020). Macrophage-induced reactive oxygen species promote myometrial
1570 contraction and labor-associated mechanisms. *Biol Reprod* 102, 1326-1339.
1571 10.1093/biolre/ioaa032.

1572 Wikland, M., Lindblom, B., Wilhelmsson, L., and Wiqvist, N. (1982). Oxytocin, prostaglandins,
1573 and contractility of the human uterus at term pregnancy. *Acta Obstet Gynecol Scand* 61, 467-
1574 472. 10.3109/00016348209156592.

1575 Willcockson, A.R., Nandu, T., Liu, C.L., Nallasamy, S., Kraus, W.L., and Mahendroo, M.
1576 (2018). Transcriptome signature identifies distinct cervical pathways induced in
1577 lipopolysaccharide-mediated preterm birth. *Biol Reprod* 98, 408-421. 10.1093/biolre/iox180.

1578 Yoneda, N., Yoneda, S., Niimi, H., Ueno, T., Hayashi, S., Ito, M., Shiozaki, A., Urushiyama, D.,
1579 Hata, K., Suda, W., et al. (2016a). Polymicrobial Amniotic Fluid Infection with
1580 Mycoplasma/Ureaplasma and Other Bacteria Induces Severe Intra-Amniotic Inflammation

1581 Associated with Poor Perinatal Prognosis in Preterm Labor. *Am J Reprod Immunol* 75, 112-125.
1582 10.1111/aji.12456.

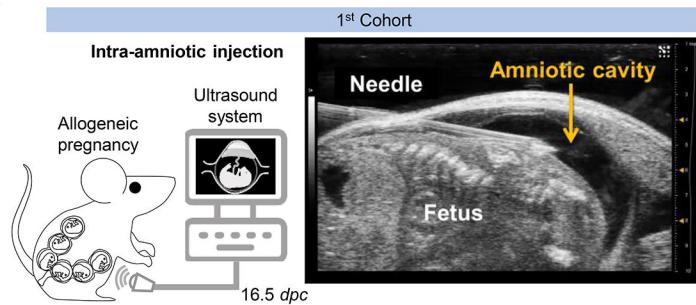
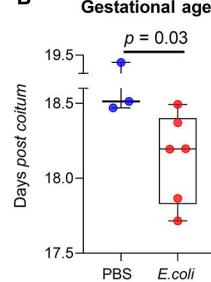
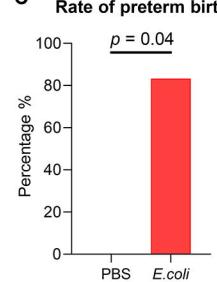
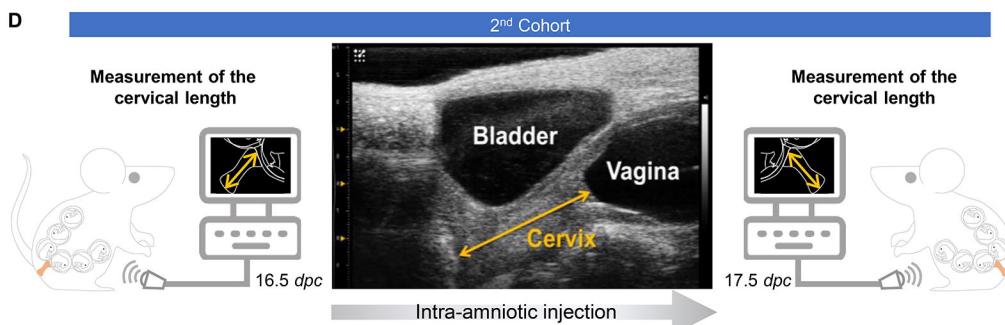
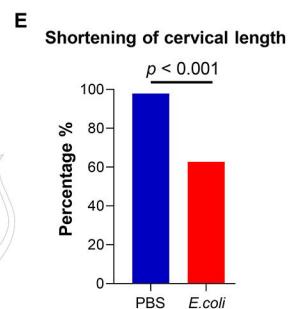
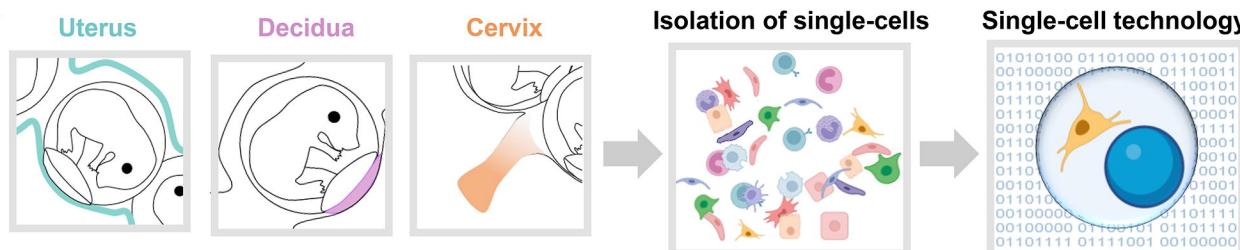
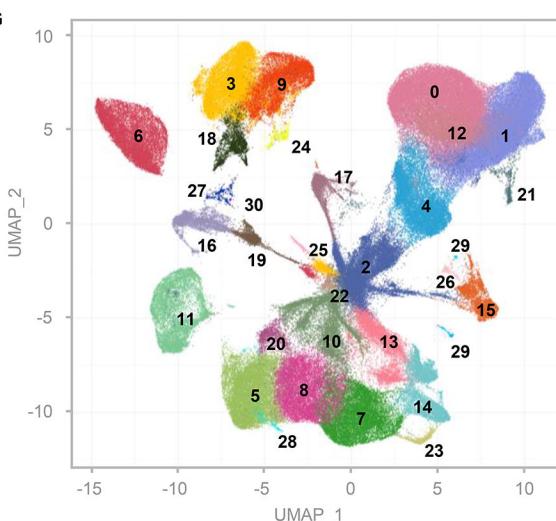
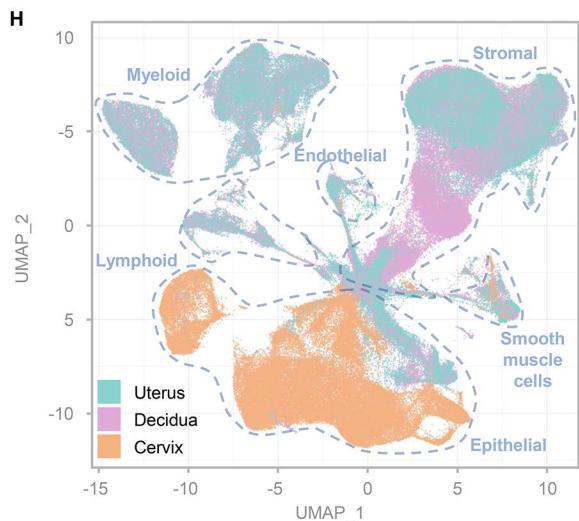
1583 Yoneda, S., Shiozaki, A., Yoneda, N., Ito, M., Shima, T., Fukuda, K., Ueno, T., Niimi, H.,
1584 Kitajima, I., Kigawa, M., and Saito, S. (2016b). Antibiotic Therapy Increases the Risk of Preterm
1585 Birth in Preterm Labor without Intra-Amniotic Microbes, but may Prolong the Gestation Period
1586 in Preterm Labor with Microbes, Evaluated by Rapid and High-Sensitive PCR System. *Am J*
1587 *Reprod Immunol* 75, 440-450. 10.1111/aji.12484.

1588 Yoon, B.H., Chang, J.W., and Romero, R. (1998). Isolation of *Ureaplasma urealyticum* from the
1589 amniotic cavity and adverse outcome in preterm labor. *Obstet Gynecol* 92, 77-82.
1590 10.1016/s0029-7844(98)00122-7.

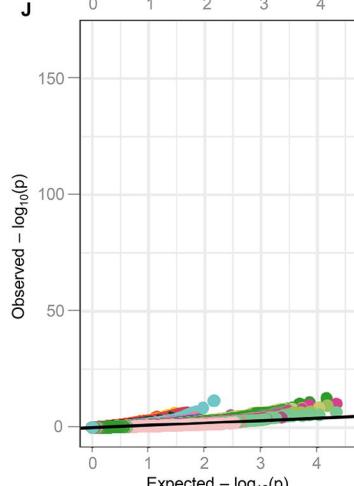
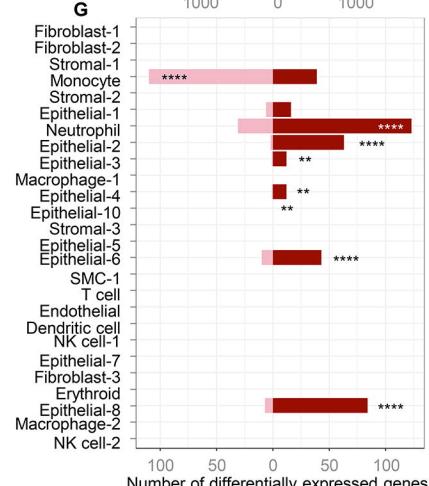
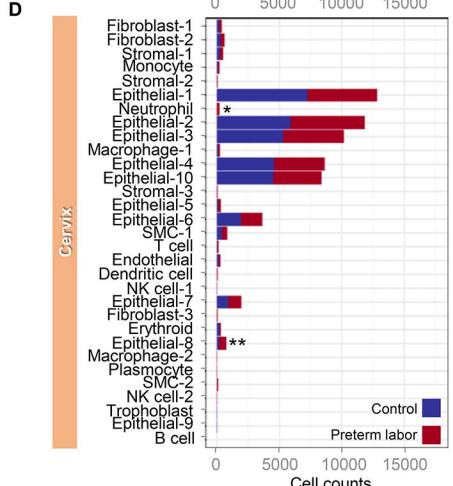
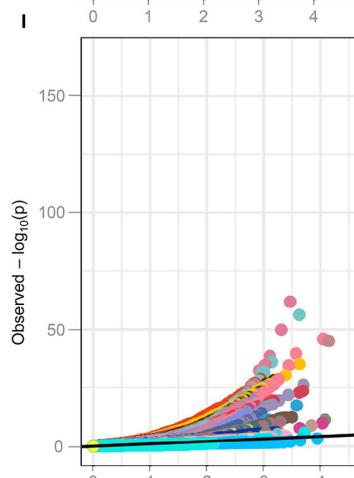
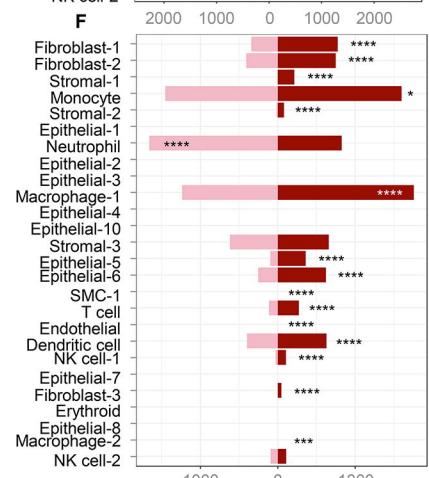
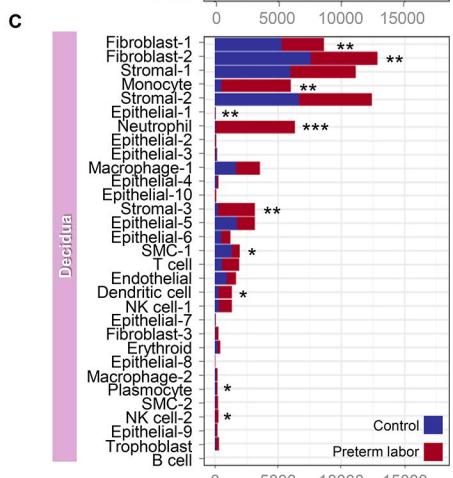
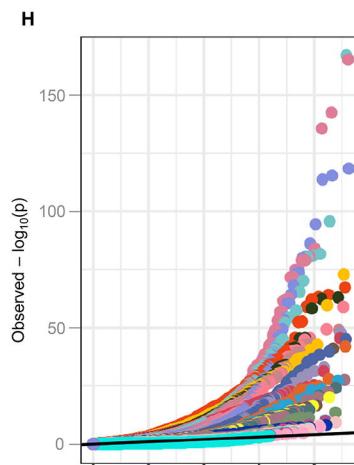
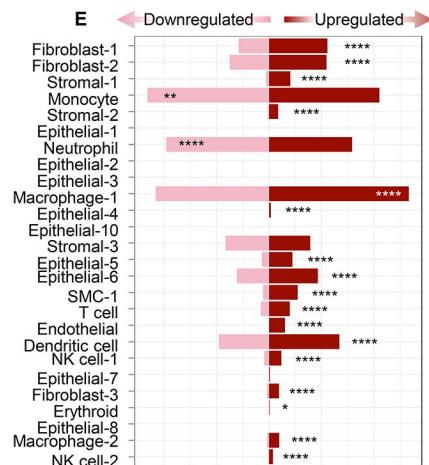
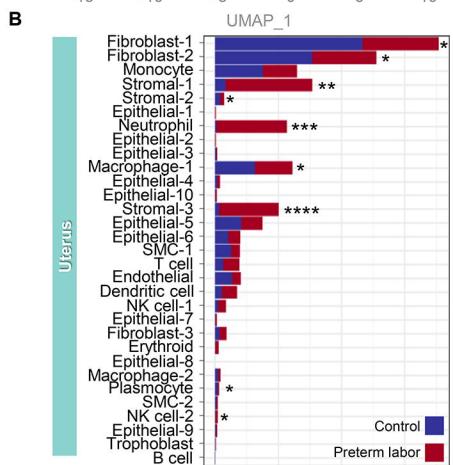
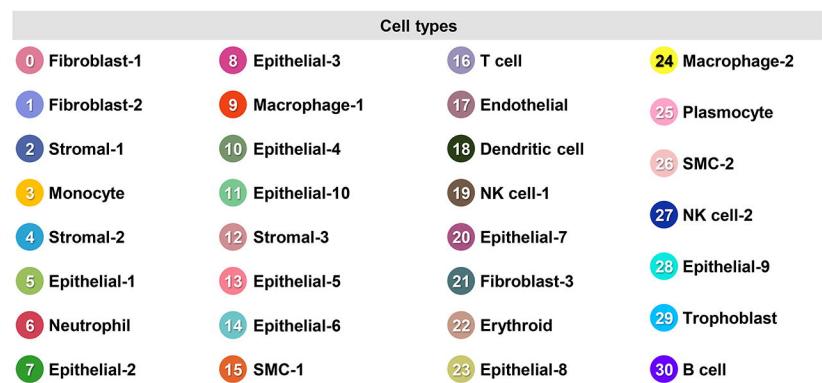
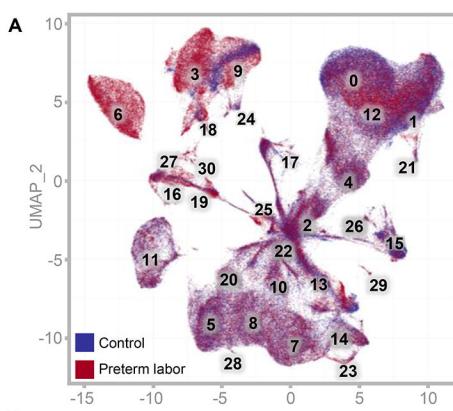
1591 Yoon, B.H., Romero, R., Moon, J.B., Shim, S.S., Kim, M., Kim, G., and Jun, J.K. (2001).
1592 Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact
1593 membranes. *Am J Obstet Gynecol* 185, 1130-1136. 10.1067/mob.2001.117680.

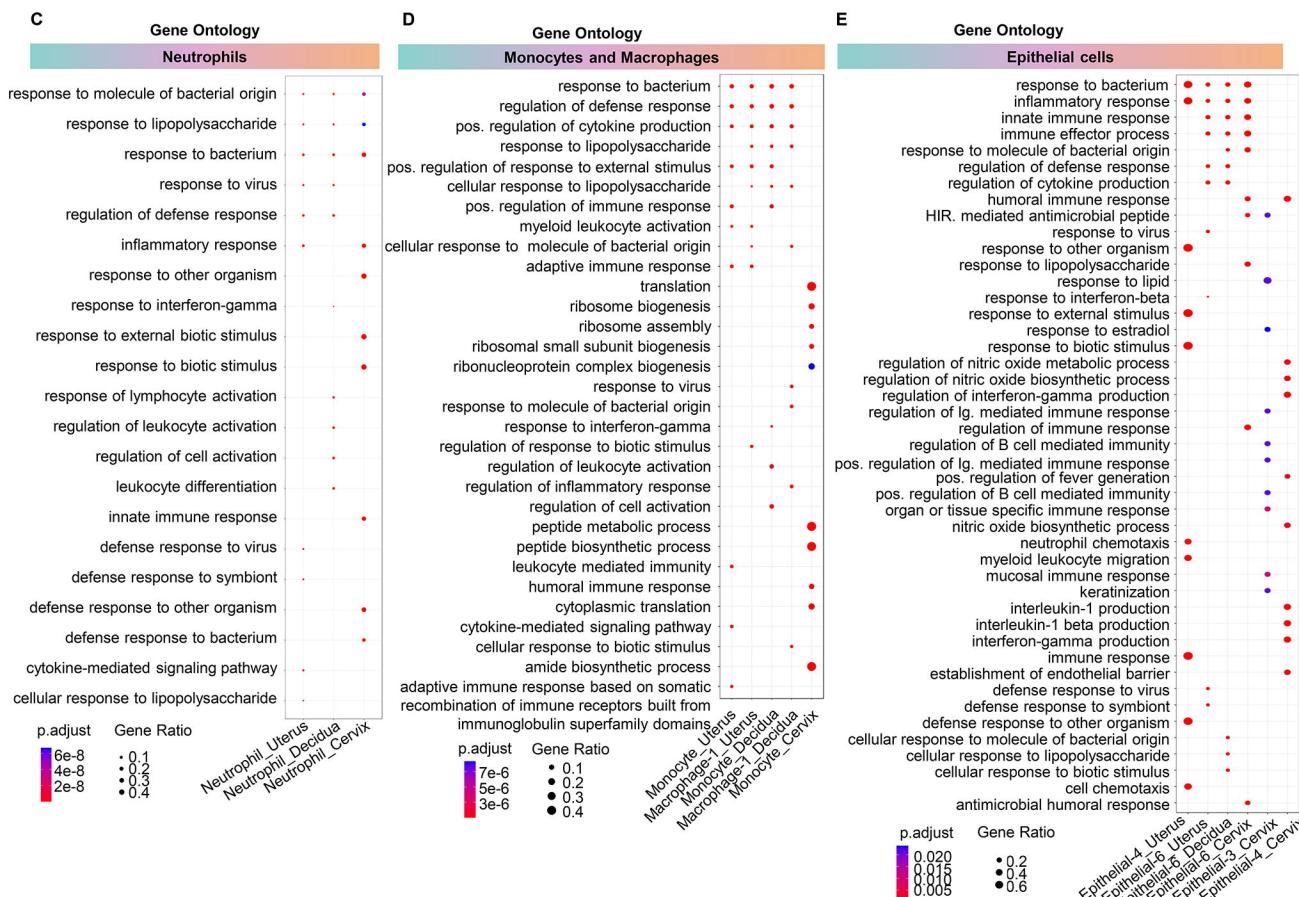
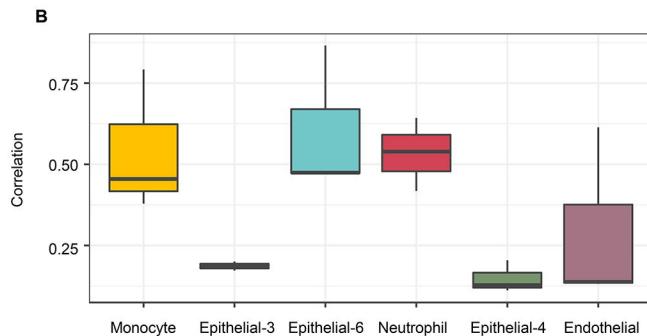
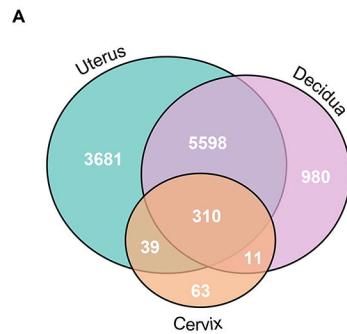
1594 Yoon, B.H., Romero, R., Park, J.Y., Oh, K.J., Lee, J., Conde-Agudelo, A., and Hong, J.S.
1595 (2019). Antibiotic administration can eradicate intra-amniotic infection or intra-amniotic
1596 inflammation in a subset of patients with preterm labor and intact membranes. *Am J Obstet*
1597 *Gynecol* 221, 142.e141-142.e122. 10.1016/j.ajog.2019.03.018.

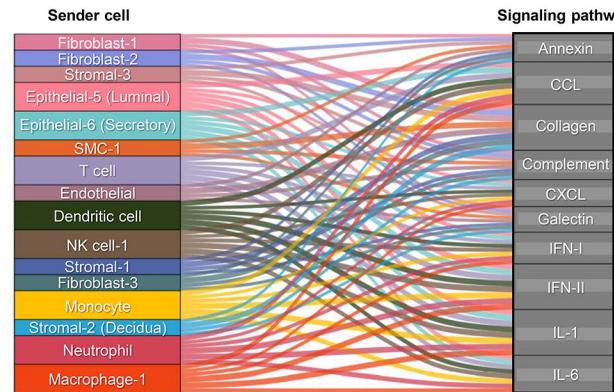
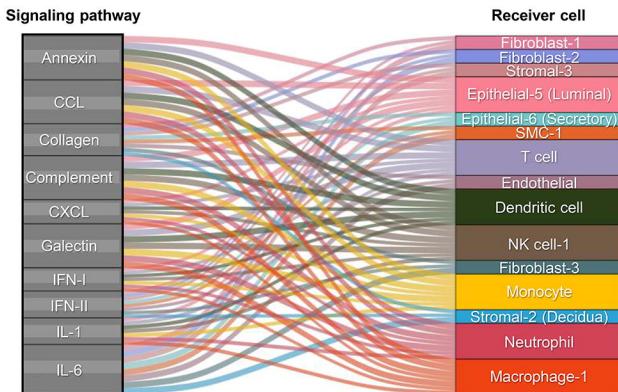
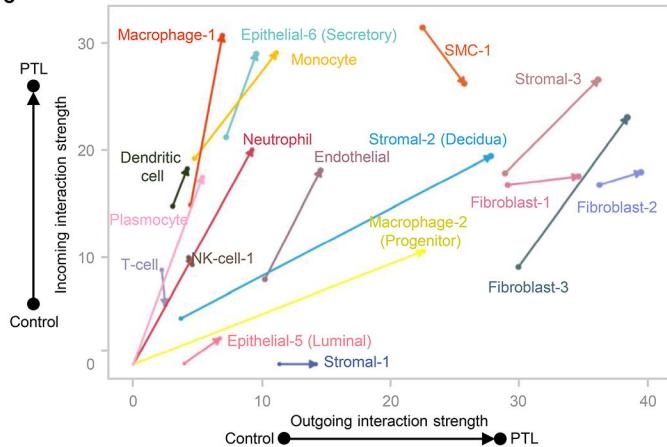
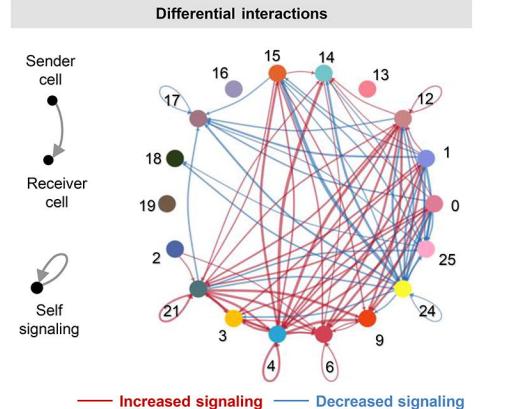
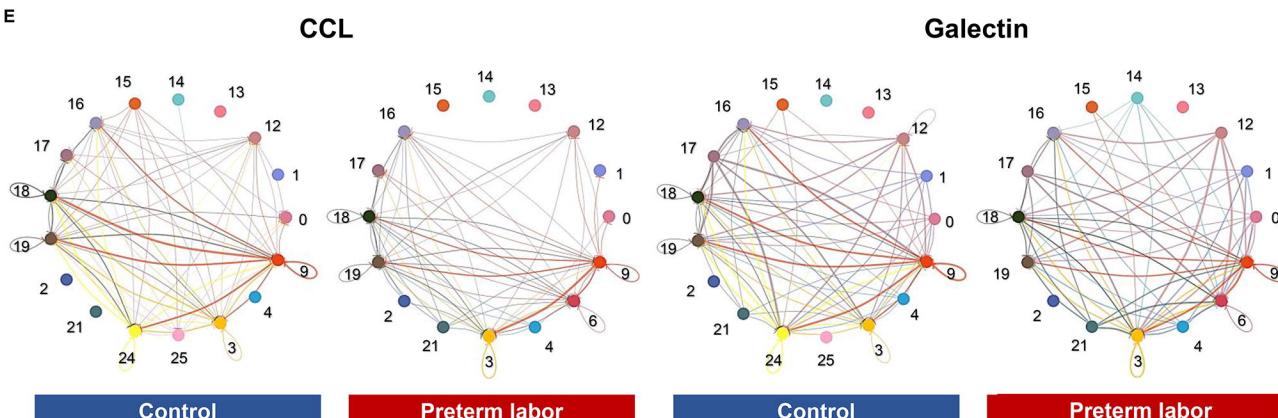
1598 Yoon, B.H., Yang, S.H., Jun, J.K., Park, K.H., Kim, C.J., and Romero, R. (1996). Maternal
1599 blood C-reactive protein, white blood cell count, and temperature in preterm labor: a comparison
1600 with amniotic fluid white blood cell count. *Obstet Gynecol* 87, 231-237. 10.1016/0029-
1601 7844(95)00380-0.

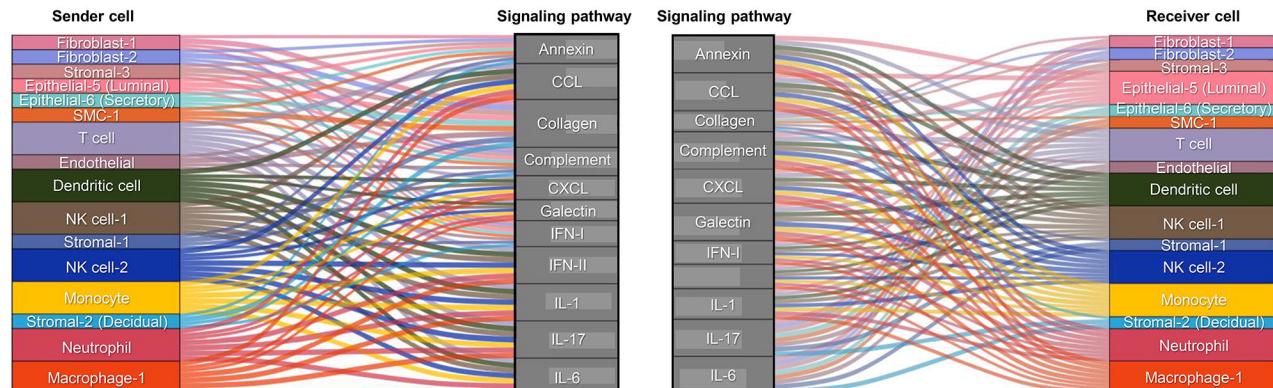
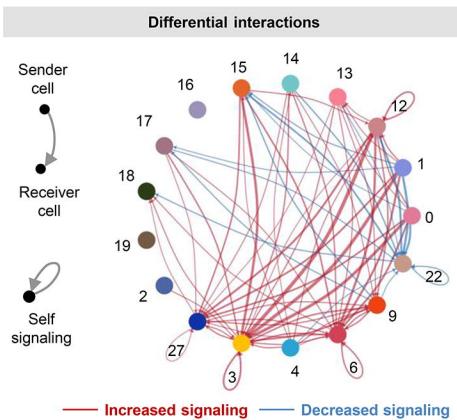
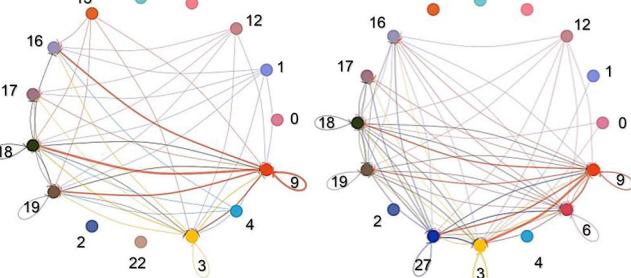








1602 Young, M.D., and Behjati, S. (2020). SoupX removes ambient RNA contamination from droplet-
1603 based single-cell RNA sequencing data. *Gigascience* 9. 10.1093/gigascience/giaa151.

1604 Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing
1605 biological themes among gene clusters. *OMICS* 16, 284-287. 10.1089/omi.2011.0118.

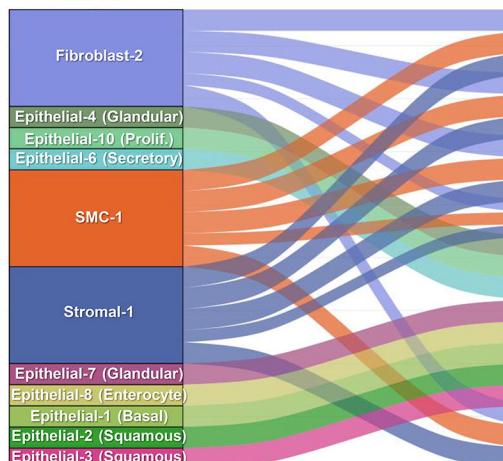











1606 Zhang, J.M., Kraus, F.T., and Aquino, T.I. (1985). Chorioamnionitis: a comparative histologic,
1607 bacteriologic, and clinical study. *Int J Gynecol Pathol* 4, 1-10.




1608 Zhao, Z., Wang, Y., Wu, Y., Li, D., Zhang, T., Ma, Y., Teng, X., and Zuo, W. (2021). Single-
1609 cell analysis defines the lineage plasticity of stem cells in cervix epithelium. *Cell Regen* 10, 36.
1610 10.1186/s13619-021-00096-2.






1611




A**B****C****D****E****F****G****H****Cell types**

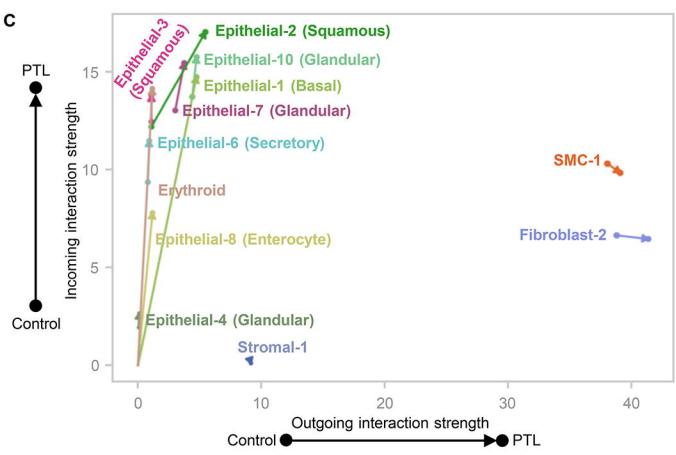
0 Fibroblast-1	6 Neutrophil	12 Stromal-3	18 Dendritic cell	24 Macrophage-2 (Progenitor)
1 Fibroblast-2	7 Epithelial-2 (Squamous)	13 Epithelial-5 (Luminal)	19 NK cell-1	25 Plasmocyte
2 Stromal-1	8 Epithelial-3 (Squamous)	14 Epithelial-6 (Secretory)	20 Epithelial-7 (Glandular)	26 SMC-2
3 Monocyte	9 Macrophage-1	15 SMC-1	21 Fibroblast-3	27 NK cell-2
4 Stromal-2 (Decidual)	10 Epithelial-4 (Glandular)	16 T cell	22 Erythroid	28 Epithelial-9 (Secretory)
5 Epithelial-1 (Basal)	11 Epithelial-10 (Glandular)	17 Endothelial	23 Epithelial-8 (Enterocyte)	29 Trophoblast
11 Epithelial-10 (Glandular)	17 Endothelial	23 Epithelial-8 (Enterocyte)	29 Trophoblast	30 B cell



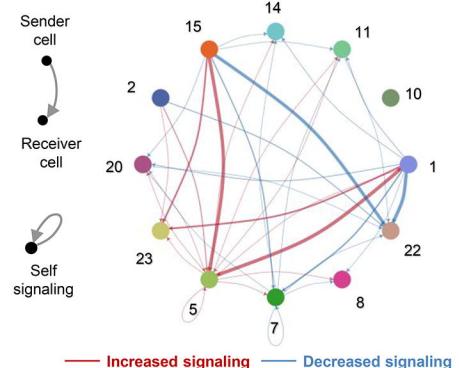
A**B****C****D****E**

A**C****D****E****CCL****Galectin****Control****Preterm labor**

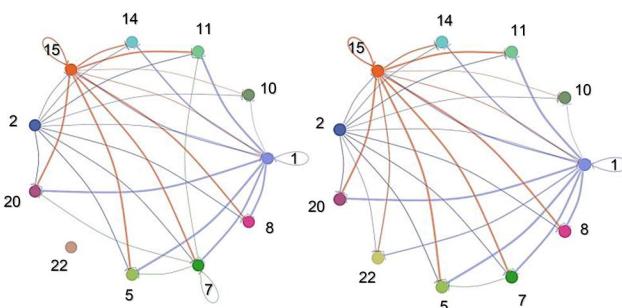
Cervix


A Sender cell

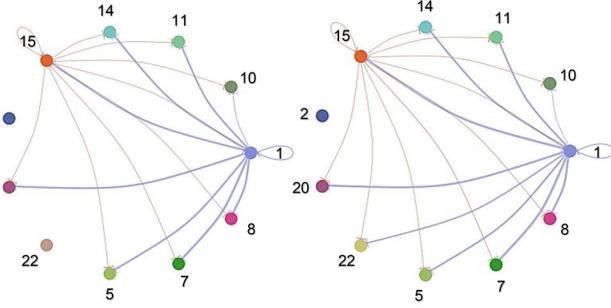
B Signaling pathway



C Signaling pathway


D

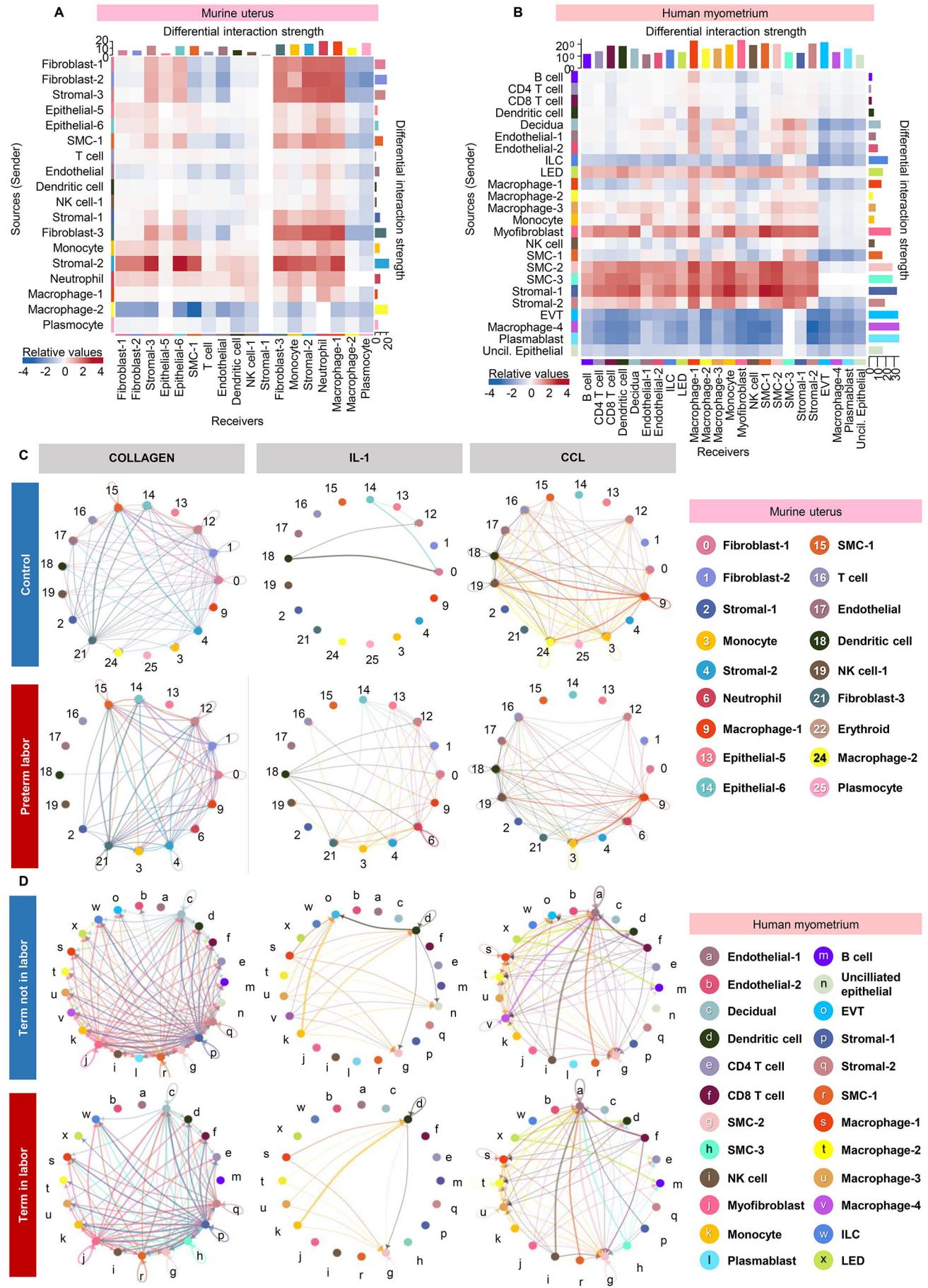
Differential interactions



E

Collagen

Tenascin



Control

Preterm labor

Control

Preterm labor

