

1 **Non-invasive stimulation of the human striatum disrupts reinforcement learning of**
2 **motor skills**

4 Pierre Vassiliadis^{1,2,3}, Elena Beanato^{1,2}, Traian Popa^{1,2}, Fabienne Windel^{1,2}, Takuya Morishita^{1,2},
5 Esra Neufeld⁴, Julie Duque³, Gerard Derosiere^{3,5}, Maximilian J. Wessel^{1,2,6} and Friedhelm C. Hummel^{1,2,7*}

8 ¹Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École
9 Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland.

10 ²Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de
11 Réadaptation, 1951 Sion, Switzerland.

12 ³Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium

13 ⁴Foundation for Research on Information Technologies in Society, Zurich, Switzerland

14 ⁵Lyon Neuroscience Research Center – Impact team - Inserm U1028 – CNRS UMR5292, Lyon 1
15 University, Bron, France

16 ⁶Department of Neurology, University Hospital, Julius-Maximilians-University, Würzburg, Germany

17 ⁷Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland.

19
20 *** CORRESPONDENCE TO:**

21 **Friedhelm C. Hummel**

22 Neuro-X Institute (INX)

23 École Polytechnique Fédérale de Lausanne (EPFL)

24 Campus Biotech, Room H4.3.132.084

25 Chemin des Mines 9, 1202 Geneva, Switzerland

26 and

27 EPFL Valais,

28 Clinique Romande de Réadaptation

29 Av. Grand-Champsec 90,

30 CH-1951 Sion

31 Email: friedhelm.hummel@epfl.ch

32 **Abstract**

33

34 Reinforcement feedback can improve motor learning, but the underlying brain mechanisms
35 remain unexplored. Especially, the causal contribution of specific patterns of oscillatory activity
36 within the human striatum is unknown. To address this question, we exploited an innovative, non-
37 invasive deep brain stimulation technique called transcranial temporal interference stimulation
38 (tTIS) during reinforcement motor learning with concurrent neuroimaging, in a randomised, sham-
39 controlled, double-blind study. Striatal tTIS applied at 80Hz, but not at 20Hz, abolished the benefits
40 of reinforcement on motor learning. This effect was related to a selective modulation of neural
41 activity within the striatum. Moreover, 80Hz, but not 20Hz, tTIS increased the neuromodulatory
42 influence of the striatum on frontal areas involved in reinforcement motor learning. These results
43 show for the first time that tTIS can non-invasively and selectively modulate a striatal mechanism
44 involved in reinforcement learning, opening new horizons for the study of causal relationships
45 between deep brain structures and human behaviour.

46 **Keywords:**

47 Motor learning, reward, reinforcement learning, non-invasive brain stimulation, deep brain
48 stimulation, temporal interference stimulation, striatum, neuroimaging

49 **1. Introduction**

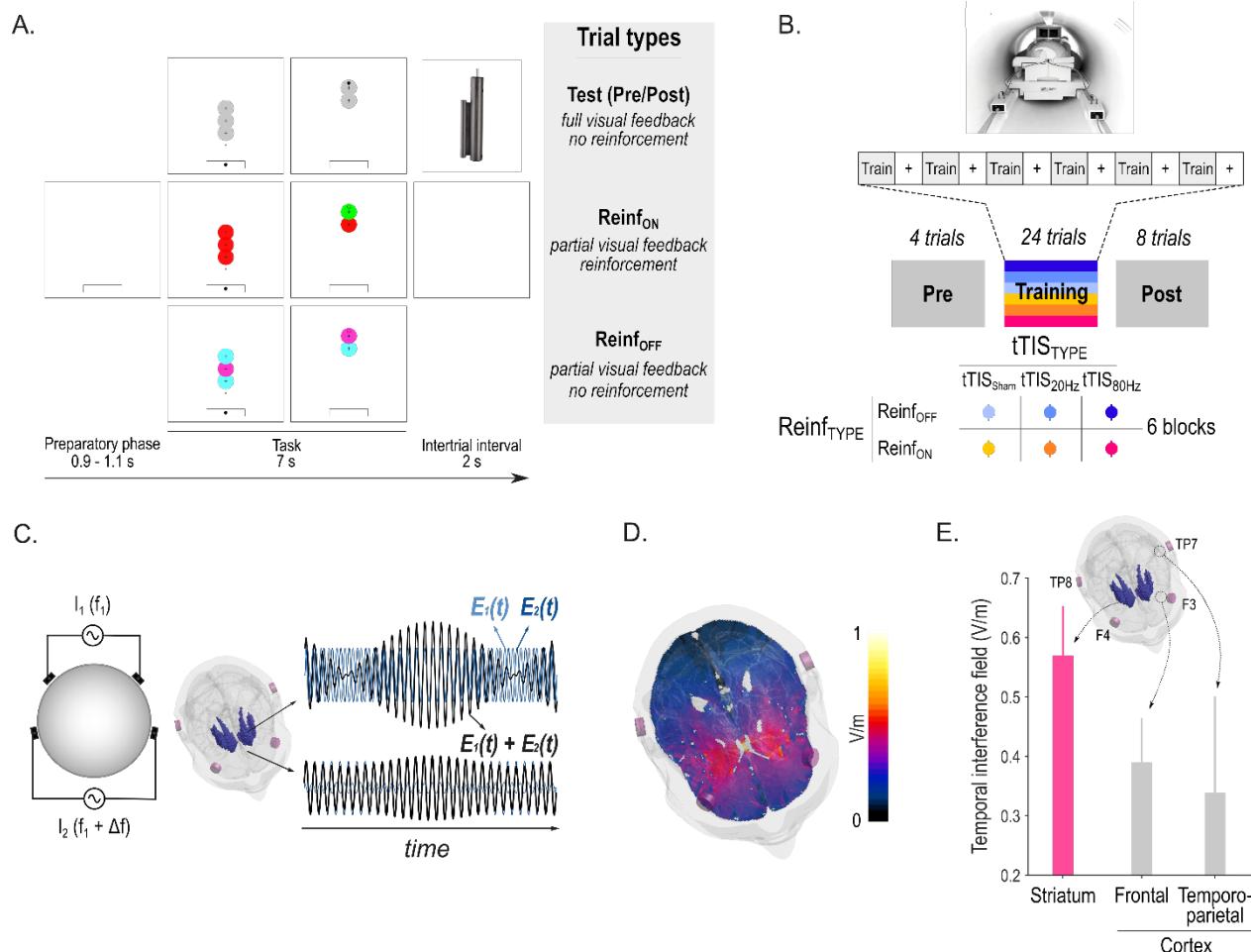
50 The ability to learn from past outcomes, often referred to as reinforcement learning, is
51 fundamental for biological systems¹. Reinforcement learning has been classically studied in the
52 context of decision making, when agents have to decide between a discrete number of potential
53 options². Importantly, there is an increasing recognition that reinforcement learning processes are
54 also at play in other contexts including when one has to learn a new motor skill^{3–5}. For instance,
55 the addition of reinforcement feedback during motor training can improve motor learning,
56 presumably by boosting the retention of newly acquired motor memories^{6,7}. Interestingly,
57 reinforcement feedback also appears to be relevant for the rehabilitation of patients suffering from
58 motor impairments^{8–10}. Yet, despite these promising results, there is currently a lack of
59 understanding of the brain mechanisms that are critical to implement this behaviour.

60 A prominent hypothesis in the field is that the striatum, an area that is active both during
61 reinforcement¹¹ and motor learning¹², may be causally involved in the beneficial effects of
62 reinforcement on motor learning. As such, the striatum shares dense connexions with
63 dopaminergic structures of the midbrain as well as with pre-frontal and motor cortical regions¹³,
64 and is therefore well positioned to translate information about reinforcement into motor
65 adjustments^{14–16}. This idea is in line with neuroimaging studies showing reward-related activation
66 of the striatum during motor learning^{17,18}. More specifically, within the striatum, oscillatory activity
67 in specific frequency bands is suggested to be involved in aspects of reinforcement processing.
68 As such, previous rodent studies have shown that striatal high gamma oscillations (~ 80 Hz) are
69 sensitive to reward and dopamine and are highly coherent with the frontal cortex, suggesting that
70 they may be involved in reinforcement learning^{19–23}. In particular, dynamic changes of high gamma
71 activity in the striatum^{19,24,25} and in other parts of the basal ganglia^{26,27} seem to encode the
72 outcome of previous movements (i.e., success or failure). Hence, this body of work suggests that
73 the fine-tuning of striatal oscillatory activity, especially in the gamma range, may be crucial for

74 reinforcement learning of motor skills. Conversely, striatal beta oscillations (~20 Hz) have been
75 largely associated with sensorimotor functions²⁸. For instance, beta oscillations in the striatum are
76 exacerbated in Parkinson's disease and associated to the severity of motor symptoms^{29–31}. Taken
77 together, these elements suggest that striatal high gamma and beta activity may have different
78 functional roles preferentially associated to reinforcement learning and sensorimotor functions,
79 respectively.

80 The studies mentioned above provide associative evidence linking the presence of
81 reinforcement with changes of neural activity within the striatum determined through
82 neuroimaging^{17,18}, but do not allow to draw conclusions regarding its causal role in reinforcement
83 motor learning in humans. The only causal evidence available to date comes from animal work
84 showing modulation of reinforcement-based decision-making with striatal stimulation^{32,33}. A
85 reason for the current absence of investigations of the causal role of the striatum in human
86 behaviour is related to its deep localization in the brain. As such, current non-invasive brain
87 stimulation techniques, such as transcranial magnetic stimulation (TMS) or classical transcranial
88 electric stimulation (tES), do not allow to selectively target deep brain regions, because these
89 techniques exhibit a steep depth-focality trade-off^{34,35}. Studies of patients with lesions of the
90 striatum^{36,37} or invasive deep brain stimulation of connected nuclei^{38,39} have provided insights into
91 the role of the basal ganglia in reinforcement learning. However, their conclusions are partially
92 limited by the fact that the studied patients also have altered network properties resulting from
93 neurodegeneration, lesions or respective compensatory mechanisms and therefore do not allow
94 to conclude comprehensively regarding the role of the striatum in the physiological state. Here,
95 we address these challenges by exploiting transcranial electric Temporal Interference Stimulation
96 (tTIS), a new non-invasive brain stimulation approach allowing to target deep brain regions in a
97 frequency-specific and focal manner^{40,41}.

98 The concept of tTIS was initially proposed and validated on the hippocampus of rodents⁴⁰
99 and was then further tested through computational modelling^{42–46} and in first applications on
100 cortical areas in humans^{47,48}. tTIS requires two pairs of electrodes to be placed on the head, each
101 pair delivering a high frequency alternating current. One key element is that this frequency has to
102 be high enough (i.e., in the kHz range) to avoid direct neuronal entrainment, based on the low
103 filtering properties of neuronal membranes⁴⁹. The second key element consists in applying a small
104 difference of frequency between the two alternating currents. The superposition of the electric
105 fields creates an envelope oscillating at this low-frequency difference, which can be steered
106 towards individual deep brain structures (e.g., by optimizing electrodes' placement), and is in a
107 range able to influence neuronal activity^{40,50–52}. An interesting feature of tTIS is to stimulate at a
108 particular frequency of interest in order to preferentially interact with specific neuronal
109 processes^{40,41}. Importantly, despite these exciting opportunities, current evidence for tTIS-related
110 neuromodulation of deep brain structures, such as the striatum, is lacking in humans.


111 Here, we combine tTIS with electric field modelling for target localisation, behavioural data
112 and functional magnetic resonance imaging (fMRI) to evaluate the causal role of specific striatal
113 oscillations in reinforcement learning of motor skills. In particular, based on the studies mentioned
114 above, we hypothesized that striatal tTIS at high gamma frequency (tTIS_{80Hz}) would disturb the
115 fine-tuning of high gamma oscillatory activity in the striatum and thereby would perturb
116 reinforcement motor learning in contrast to beta (tTIS_{20Hz}) or sham (tTIS_{Sham}) stimulation. In line
117 with our prediction, we report that tTIS_{80Hz} disrupted motor learning compared to the controls, but
118 only in the presence of reinforcement. To evaluate the potential neural correlates of these
119 behavioral effects, we measured BOLD activity in the striatum and effective connectivity between
120 the striatum and frontal cortical areas involved in reinforcement motor learning. We found that the
121 disruptive effect of tTIS_{80Hz} on reinforcement learning was associated to a specific modulation of
122 BOLD activity in the putamen and caudate, but not in the cortex, supporting the ability of tTIS to

123 selectively modulate striatal activity without affecting overlying cortical areas. Moreover, tTIS_{60Hz}
124 also increased the neuromodulatory influence of the striatum on frontal cortical areas involved in
125 reinforcement motor learning. Overall, the present study shows for the first time that tTIS can non-
126 invasively and selectively modulate a striatal mechanism involved in reinforcement learning and
127 opens new horizons for the study of causal relationships between deep brain structures and
128 human behaviour.

129 **2. Results**

130

131 24 healthy participants (15 women, 25.3 ± 0.1 years old; mean \pm SE) performed a force
132 tracking task in the MRI with concurrent tTIS of the striatum. The task required participants to
133 modulate the force applied on a hand-grip force sensor in order to track a moving target with a
134 cursor with the right, dominant hand^{53,54} (**Figure 1A**). At each block, participants had to learn a
135 new pattern of motion of the target (**Figure S1**; see Methods). In Reinf_{ON} blocks, participants were
136 provided with online reinforcement feedback during training, giving them real-time information
137 about success or failure throughout the trial, indicated as a green or red target, respectively
138 (please see **Video S1** for the task). The reinforcement feedback was delivered according to a
139 closed-loop schedule, considering previous performance to update the success criterion for each
140 sample⁸. In Reinf_{OFF} blocks, participants practiced with a visually matched random feedback
141 (cyan/magenta). Importantly, in both types of blocks, training was performed with intermittent
142 visual feedback of the cursor, a condition known to maximise the effect of reinforcement on motor
143 learning^{4,55–57}. Before and after training, participants performed Pre- and Post-training
144 assessments with full visual feedback, no reinforcement and no tTIS, allowing us to evaluate motor
145 learning. To assess the effect of tTIS on reinforcement-related benefits in motor learning and the
146 associated neural changes, participants performed 6 blocks of 36 trials in the MRI, with concurrent
147 tTIS during training, delivered with a Δf of 20 Hz (tTIS_{20Hz}), 80 Hz (tTIS_{80Hz}) or as a sham (tTIS_{Sham};
148 3 tTIS_{TYPE} x 2 Reinf_{TYPE} conditions; **Figure 1B, 1C**). To determine the best electrode montage to
149 stimulate the human striatum (putamen, caudate and nucleus accumbens [NAc] bilaterally),
150 computational modelling with a realistic head model was conducted with Sim4Life⁵⁸ (see
151 Methods). The selected montage (F3-F4; TP7-TP8) generated a theoretical temporal interference
152 electric field that was ~30-40% stronger in the striatum than in the overlying cortex, reaching
153 magnitudes of 0.5 to 0.6 V/m (**Figure 1D, 1E**), which are compatible with the field strengths known
154 to induce neuronal entrainment^{59–63}.

155

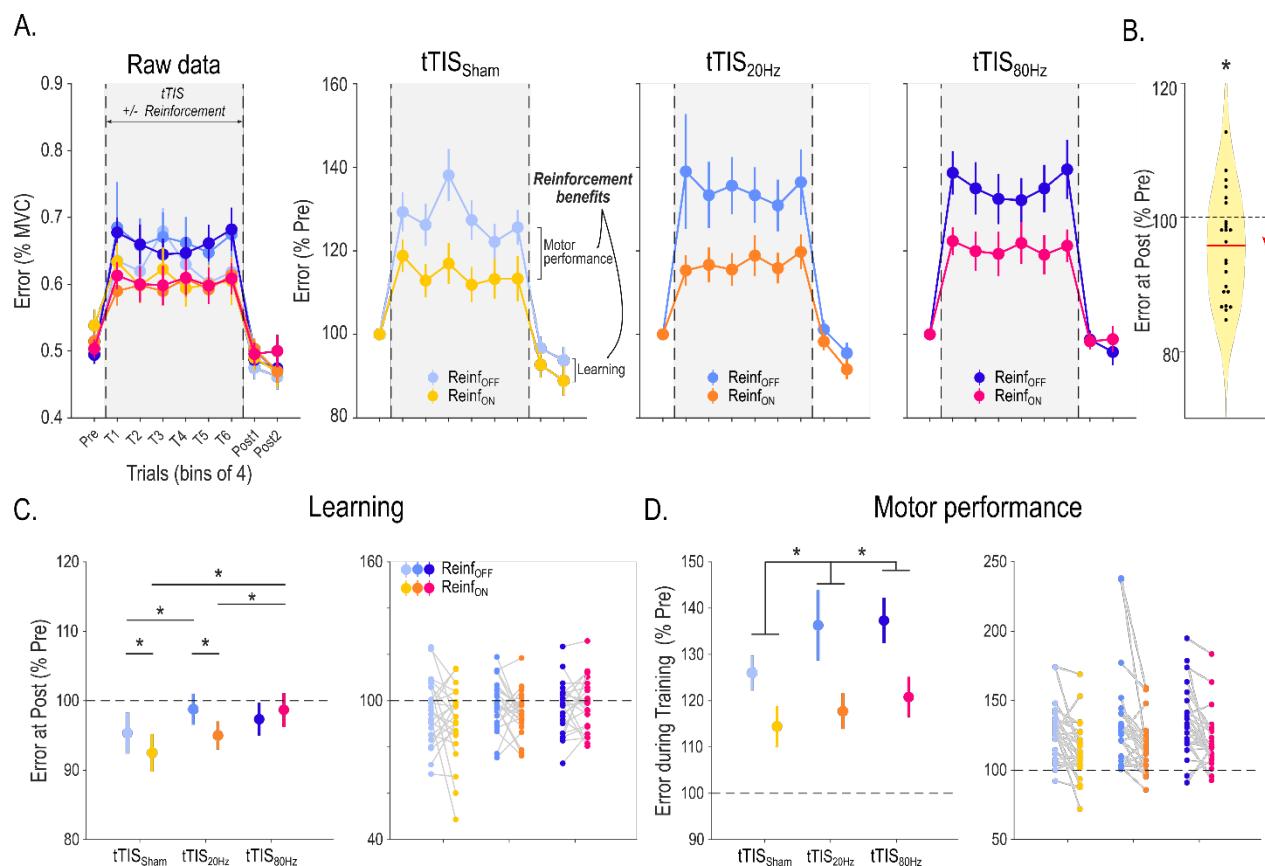
156 **Figure 1. Striatal tTIS during reinforcement learning of motor skills in the MRI. A)**
157 **Motor learning task.** Participants were required to squeeze a hand grip force sensor (depicted in
158 the upper right corner of the figure) in order to track a moving target (larger circle with a cross in
159 the center) with a cursor (black smaller circle)^{53,54}. Pre- and Post-training assessments were
160 performed with full visual feedback of the cursor and no reinforcement. In Reinf_{ON} and Reinf_{OFF}
161 trials, participants practiced the task with or without reinforcement feedback, respectively. As such,
162 in Reinf_{ON} trials, the color of the target varied in real-time as a function of the subjects' tracking
163 performance. **B) Experimental procedure.** Participants performed the task in the MRI with
164 concomitant TI stimulation. Blocks of training were composed of 36 trials (4 Pre-, 24 Training and
165 8 Post-training trials) interspersed with short resting periods (represented as + on the figure). The
166 6 training types resulted from the combination of 3 tTIS_{TYPEs} and 2 Reinf_{TYPEs}. **C) Concept of tTIS.**
167 On the left, two pairs of electrodes are shown on a head model and currents are applied with a
168 frequency f1 and f1+Δf. On the right, the interference of the two electric fields within the brain is
169 represented for two different locations with respectively high and low envelope modulation. E₁(t)
170 and E₂(t) represent the modulation of the fields' magnitude over time. tTIS was delivered either
171 with a Δf of 20 or 80 Hz or as a sham (ramp-up and immediate ramp-down of high frequency
172 currents with flat envelope). **D) Electric field modelling with the striatal montage.** Temporal
173 interference exposure (electric field modulation magnitude). **E) Temporal interference exposure
174 averaged in the striatum and in the overlying cortex.** Magnitude of the field in the cortex was
175 extracted from the Brainnetome atlas (BNA⁶⁴) regions underneath the stimulation electrodes (F3-

176 F4 and TP7-TP8). Error bars represent the standard deviation over the voxels in the considered
177 region.

178

179 **tTIS_{80Hz} disrupts reinforcement learning of motor skills**

180 Performance on the task was evaluated by means of the Error, which was defined as the
181 absolute difference between the applied and target force averaged across samples for each trial,
182 as done previously^{4,53,55} (**Figure 2A**). Across conditions, the Post-training Error was reduced
183 compared to the Pre-training Error (single sample t-test on the normalised Post-training data: $t_{(24)}=-$
184 2.69; $p=0.013$; Cohen's $d=-0.55$), indicating significant motor learning during the task (**Figure 2B**).
185 Such improvement was greater when participants had trained with reinforcement (Reinf_{TYPE} effect
186 in the Linear Mixed Model (LMM): $F_{(1, 1062.2)}=5.17$; $p=0.023$; $d=-0.14$ for the post-hoc contrast
187 Reinf_{ON}–Reinf_{OFF}), confirming the beneficial effect of reinforcement on motor learning^{7,57}. Crucially
188 though, this effect depended on the type of stimulation applied during training (Reinf_{TYPE} \times tTIS_{TYPE}
189 interaction: $F_{(2, 1063.5)}=2.11$; $p=0.034$; **Figure 2C**). While reinforcement significantly improved
190 learning when training was performed with tTIS_{Sham} ($p=0.036$; $d=-0.22$) and tTIS_{20Hz} ($p=0.0089$;
191 $d=-0.27$), this was not the case with tTIS_{80Hz} ($p=0.43$; $d=0.083$). Consistently, direct between-
192 condition comparisons showed that in the Reinf_{ON} condition, learning was reduced with tTIS_{80Hz}
193 compared to tTIS_{20Hz} ($p=0.039$; $d=0.26$) and tTIS_{Sham} ($p<0.001$; $d=0.45$), but was not different
194 between tTIS_{20Hz} and tTIS_{Sham} ($p=0.15$; $d=0.20$). This disruption of motor learning with tTIS_{80Hz} was
195 not observed in the absence of reinforcement (tTIS_{80Hz} vs. tTIS_{20Hz}: $p=0.59$; $d=-0.10$, tTIS_{80Hz} vs.
196 tTIS_{Sham}: $p=0.34$; $d=0.15$). These results strongly point to the fact that high gamma striatal tTIS
197 specifically disrupts the benefits of reinforcement on motor learning and not motor learning in
198 general.


199 Although training with tTIS_{20Hz} did not alter the benefits of reinforcement on motor learning,
200 we found that learning without reinforcement was significantly impaired in this condition (tTIS_{20Hz}
201 vs. tTIS_{Sham}: $p=0.046$; $d=0.25$, **Figure 2C**). This suggests that tTIS_{20Hz} may disrupt a qualitatively

202 different mechanism involved in learning from sensory feedback⁶⁵, in line with the role of striatal
203 beta oscillations in sensorimotor function²⁸.

204 As a next step, we evaluated the effect of tTIS on motor performance during training itself.
205 As shown in Figure 2A, the Error was generally higher during Training than in Test trials due to
206 the presence of visual uncertainty during this phase. The extent of this disruption was reduced in
207 the presence of reinforcement (Reinf_{TYPE}: $F_{(1, 3262.4)}=339.89$; $p<0.001$; $d=-0.64$ for the contrast
208 Reinf_{ON} – Reinf_{OFF}), demonstrating the ability of subjects to exploit real-time reinforcement
209 information to improve tracking (**Figure 2D**). Notably, this effect was not modulated by tTIS_{TYPE}
210 (Reinf_{TYPE} x tTIS_{TYPE}: $F_{(2, 3265.8)}=0.91$; $p=0.40$), indicating that tTIS did not directly influence
211 reinforcement gains during tracking. Interestingly though, striatal stimulation did impact on general
212 tracking performance independently of reinforcement as indicated by a significant tTIS_{TYPE} effect
213 (tTIS_{TYPE}: $F_{(2, 3262.4)}=42.85$; $p<0.001$). This effect was due to an increase in the Error when tTIS_{20Hz}
214 was applied ($p<0.001$; $d=0.28$ when compared to tTIS_{Sham}), which was even stronger during
215 tTIS_{80Hz} ($p<0.001$; $d=0.38$ and $p=0.031$; $d=0.11$ when compared to tTIS_{Sham} and tTIS_{20Hz},
216 respectively). These results suggest that striatal tTIS altered motor performance in a frequency-
217 dependent manner, but did not influence the ability to rapidly adjust motor commands based on
218 reinforcement feedback during training. Hence, tTIS_{80Hz} may not disrupt real-time processing of
219 reinforcement feedback, but may rather impair the beneficial effect of reinforcements on the
220 retention of motor memories^{6,7}.

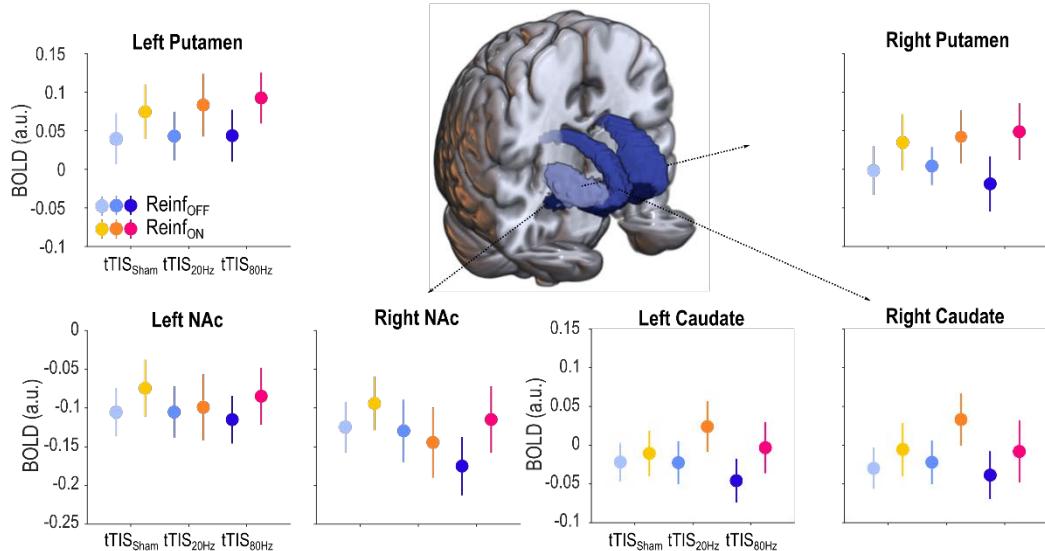
221 Notably, this effect could not be explained by potential differences in initial performance
222 between conditions (Reinf_{TYPE} x tTIS_{TYPE}: $F_{(2, 519.99)}=1.08$; $p=0.34$), nor by changes in the flashing
223 properties of the reinforcement feedback (i.e., the frequency of color change during tracking;
224 Reinf_{TYPE} x tTIS_{TYPE}: $F_{(2, 3283)}=0.19$; $p=0.82$), or by differences in success rate in the Reinf_{ON} blocks
225 (i.e., the proportion of success feedback during tracking; tTIS_{TYPE}: $F_{(2, 1702)}=0.17$; $p=0.84$; see
226 **Supplementary materials**).

227 Finally, these results can also not be a consequence of an inefficient blinding. As such,
 228 when debriefing after the experiment, only 6/24 participants were able to successfully identify the
 229 order of the stimulation applied (e.g., real – real – placebo; chance level: 4/24; Fisher exact test
 230 on proportions: $p=0.74$). Consistently, the magnitude (**Figure S2A**) and type (**Figure S2B**) of tTIS-
 231 evoked sensations evaluated before the experiment were qualitatively similar across conditions
 232 and tTIS was generally well tolerated in all participants (no adverse events reported). This
 233 suggests that blinding was successful and is unlikely to explain our findings. More generally, this
 234 is a first indication that tTIS evokes very limited sensations (e.g., only 2/24 and 1/24 subjects rated
 235 sensations evoked at 2 mA as “strong” for tTIS_{20Hz} and tTIS_{80Hz}, respectively; **Figure S2A**) that are
 236 compatible with efficient blinding.

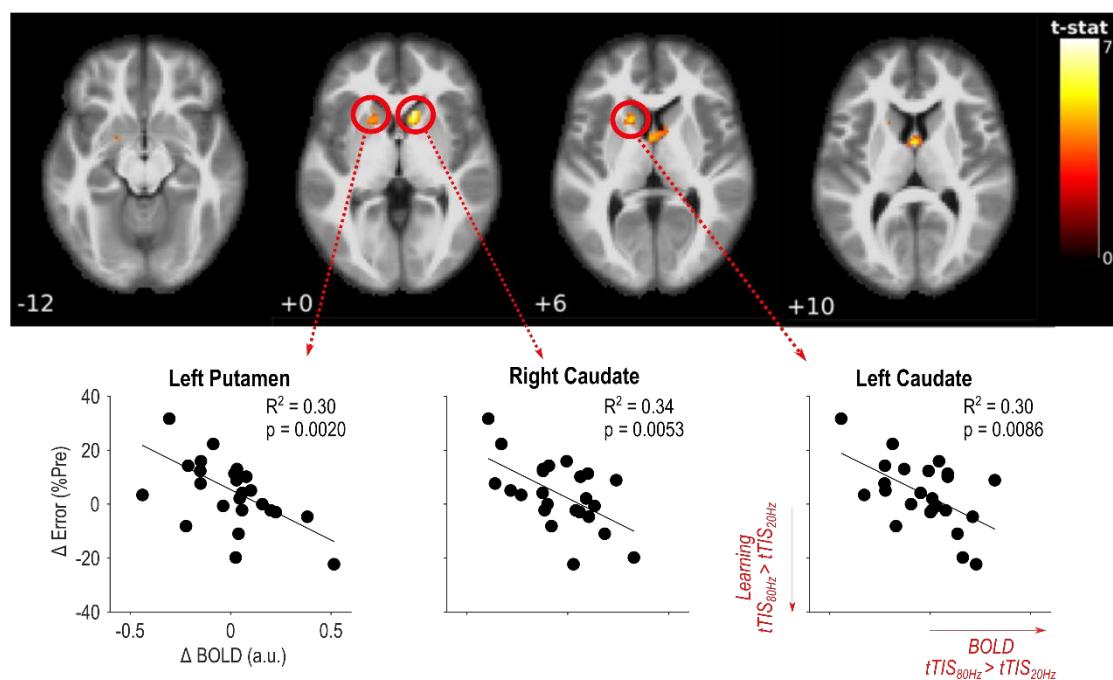
237
 238 **Figure 2. Behavioural results. A) Motor performance across training.** Raw Error data
 239 (expressed in % of Maximum Voluntary Contraction [MVC]) are presented on the left panel for the
 240 different experimental conditions in bins of 4 trials. The increase in Error during Training is related
 241 to the visual uncertainty (i.e., intermittent disappearance of the cursor) that was applied to enhance

242 reinforcement effects. On the right, the three plots represent the Pre-training normalised Error in
243 the tTIS_{Sham}, tTIS_{20Hz} and tTIS_{80Hz} blocks. Reinforcement-related benefits represent the
244 improvement in the Error measured in the Reinf_{ON} and Reinf_{OFF} blocks, during Training (reflecting
245 benefits in motor performance) or at Post-training (reflecting benefits in learning). **B) Averaged**
246 **learning across conditions.** Violin plot showing the Error distribution at Post-training (expressed
247 in % of Pre-training) averaged across conditions, as well as individual subject data. A single-
248 sample t-test showed that the Post-training Error was reduced compared to the Pre-training level,
249 indicating significant learning in the task. **C) Motor learning.** Averaged Error at Post-training
250 (normalised to Pre-training) and the corresponding individual data points in the different
251 experimental conditions are shown on the left and right panels, respectively. Reduction of Error at
252 Post-training reflects true improvement at tracking the target in Test conditions (in the absence of
253 reinforcement, visual uncertainty or tTIS). The LMM ran on these data revealed a specific effect
254 of tTIS_{80Hz} on reinforcement-related benefits in learning. **D) Motor performance.** Averaged Error
255 during Training (normalised to Pre-training) and the corresponding individual data points in the
256 different experimental conditions are shown on the left and right panels, respectively. Individual
257 data points are shown on the right panel. Error change during Training reflect the joint contribution
258 of the experimental manipulations (visual uncertainty, potential reinforcement and tTIS) on motor
259 performance. The LMM ran on these data showed a frequency-dependent effect of tTIS on motor
260 performance, irrespective of reinforcement. *: p<0.05. Data are represented as mean ± SE.

261


262 **The effect of tTIS_{80Hz} on reinforcement motor learning is related to modulation of neural**
263 **activity in the striatum**

264 As mentioned above, task-based fMRI was acquired during Training with concomitant tTIS.
265 This allowed us to evaluate the neural effects of tTIS and their potential relationship to the
266 behavioural effects reported above. As a first qualitative evaluation of the data, we performed a
267 whole-brain analysis in the tTIS_{Sham} condition to assess the network activated during reinforcement
268 motor learning (Reinf_{ON} condition). Consistent with previous neuroimaging studies employing
269 similar tasks^{66,67}, we found prominent BOLD activations in a motor network including the putamen,
270 thalamus, cerebellum and sensorimotor cortex, particularly on the left hemisphere, contralateral
271 to the trained hand (**Figure S3, Table S2**). Notably though, contrasting Reinf_{ON} and Reinf_{OFF}
272 conditions did not reveal any significant cluster at the whole-brain level.


273 As a second step, we evaluated the effect of tTIS on striatal activity, as a function of the
274 type of reinforcement feedback and focusing on the very same regions of interest (ROI) that were
275 used to optimise tTIS exposure in the modelling. Based on this, we extracted averaged BOLD

276 activity within the bilateral putamen, caudate and NAc based on the Brainnetome atlas (BNA⁶⁴),
277 in the different experimental conditions and considered these six striatal ROIs (ROI_{STR}) as fixed
278 effects in the LMM. This model revealed a strong enhancement of striatal activity with Reinf_{ON} with
279 respect to Reinf_{OFF} ($F_{(1, 800.01)}=13.23$; $p<0.001$; $d=0.25$ for the contrast Reinf_{ON} – Reinf_{OFF})
280 consistent with previous literature¹¹, but no tTIS_{TYPE} effect ($F_{(2, 800.01)}=0.46$; $p=0.63$) and no
281 interaction effect (all $p> 0.65$; **Figure 3A**). Despite the absence of effects of tTIS on averaged
282 striatal activity, we then asked whether the behavioural effects of tTIS_{80Hz} on reinforcement motor
283 learning (i.e., tTIS_{80Hz} vs. tTIS_{20Hz} and tTIS_{Sham} with Reinf_{ON}) could be linked to modulation of activity
284 in core brain regions. To do so, we ran a whole-brain analysis focusing on the main behavioural
285 effects mentioned above. Results revealed that the effect of tTIS_{80Hz} (with respect to tTIS_{20Hz}) on
286 motor learning in the Reinf_{ON} condition was specifically related to modulation of activity in two
287 clusters encompassing the left putamen and bilateral caudate (**Figure 3B, Table S3**). No
288 significant clusters were found for the tTIS_{80Hz} – tTIS_{Sham} contrast, neither for the control tTIS_{20Hz} -
289 tTIS_{Sham} contrast. Overall, these results provide evidence that the detrimental effect of tTIS_{80Hz} on
290 reinforcement learning of motor skills is related to a specific modulation of oscillatory activity in the
291 striatum, supporting the idea that high gamma striatal oscillations are causally involved in
292 reinforcement learning.

A.

B.

293

294 **Figure 3. Striatal activity. A) Striatal BOLD responses.** A 3D-reconstruction of the
295 striatal masks used in the current experiment is surrounded by plots showing averaged BOLD
296 activity for each mask in the different experimental conditions. A LMM ran on these data showed
297 higher striatal responses in the Reinf_{ON} with respect to the Reinf_{OFF} condition, but no effect of
298 tTIS_{TYPE} and no interaction. **B) Whole-brain activity associated to the behavioural effect of**
299 **tTIS_{80Hz} on reinforcement motor learning.** Correlation between tTIS-related modulation of
300 striatal activity ($tTIS_{80Hz} - tTIS_{20Hz}$) and learning abilities in the Reinf_{ON} condition. Significant
301 clusters of correlation were found in the left putamen and bilateral caudate (uncorrected voxel-
302 wise FWE: $p=0.001$, and corrected cluster-based FDR: $p=0.05$). Lower panel shows individual
303 correlations for the three significant regions highlighted in the whole-brain analysis. *: $p<0.05$. Data
304 are represented as mean \pm SE.

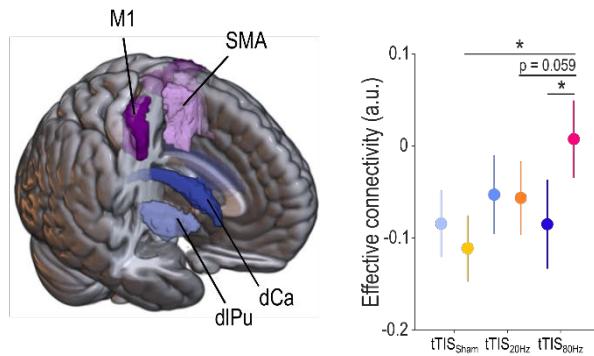
305 **tTIS_{80Hz} enhances effective connectivity between the striatum and frontal cortex.**

306 Interactions between the striatum and frontal cortex are crucial for a variety of behaviours
307 including motor and reinforcement learning¹³. In particular, reinforcement motor learning requires
308 to use information about task success to guide future motor commands⁴, a process for which the
309 striatum may play an integrative role at the interface between fronto-striatal loops involved in
310 reward processing and motor control^{13,68}. In a subsequent analysis, we asked whether striatal tTIS
311 modulates striatum to frontal cortex communication during reinforcement motor learning. More
312 specifically, we computed effective connectivity (using the generalized psychophysiological
313 interactions method⁶⁹) between striatal and frontal regions classically associated with motor and
314 reward-related functions, and thought to be involved in reinforcement motor learning^{70,71}. For the
315 motor network, we evaluated effective connectivity between motor parts of the striatum (i.e., dorso-
316 lateral putamen (dLPu) and dorsal caudate (dCa)) and two regions strongly implicated in motor
317 learning: the medial part of the supplementary motor area (SMA) and the part of the primary motor
318 cortex (M1) associated to upper limb functions (**Figure 4A**). For the reward network, we assessed
319 connectivity between parts of the striatum classically associated to limbic functions (i.e., the NAc
320 and the ventro-medial putamen (vmPu) and two frontal areas involved in reward processing: the
321 anterior cingulate cortex (ACC) and the ventro-medial prefrontal cortex (vmPFC; **Figure 4B**;
322 Bartra et al., 2013). The LMM ran with the fixed effects Reinf_{TYPE}, tTIS_{TYPE} and Network_{TYPE} showed
323 a significant effect of tTIS_{TYPE} ($F_{(2, 2264.0)}=5.42$; $p=0.0045$), that was due to higher connectivity in the
324 tTIS_{80Hz} condition with respect to tTIS_{Sham} ($p=0.0038$; $d=0.16$) and tTIS_{20Hz} (at the trend level,
325 $p=0.069$; $d=0.11$). There was no difference in connectivity between tTIS_{20Hz} and tTIS_{Sham} ($p=0.58$;
326 $d=0.051$). Hence, tTIS_{80Hz}, but not tTIS_{20Hz}, enhanced effective connectivity between the striatum
327 and frontal cortex during motor training.

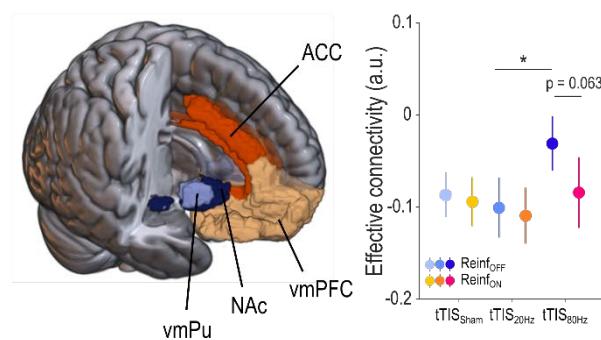
328 The LMM did not reveal any effect of Reinf_{TYPE} ($F_{(1, 2264.0)}=0.010$; $p=0.92$), Network_{TYPE} ($F_{(1, 2264.0)}=3.16$; $p=0.076$) and no double interaction (note the trend for a Reinf_{TYPE} x Network_{TYPE} effect

330 though: $F_{(1, 2264.0)}=3.52$; $p=0.061$). Yet, we did find a significant $\text{Reinf}_{\text{TYPE}} \times \text{tTIS}_{\text{TYPE}} \times \text{Network}_{\text{TYPE}}$
331 interaction ($F_{(2, 2264.0)}=4.87$; $p=0.0078$). Such triple interaction was related to the fact that $\text{tTIS}_{80\text{Hz}}$
332 increased connectivity in the Reinf_{ON} condition in the motor network (Reinf_{ON} vs. $\text{Reinf}_{\text{OFF}}$:
333 $p=0.0012$; $d=0.33$; Figure 4A), while it tended to have the opposite effect in the reward network
334 ($p=0.063$; $d=-0.19$; Figure 4B). This increase was not present in any of the two networks when
335 either $\text{tTIS}_{\text{Sham}}$ or $\text{tTIS}_{20\text{Hz}}$ were applied (all $p> 0.40$). Moreover, in the motor network, connectivity
336 in the Reinf_{ON} condition was higher with $\text{tTIS}_{80\text{Hz}}$ than with $\text{tTIS}_{\text{Sham}}$ ($p<0.001$; $d=0.42$) and $\text{tTIS}_{20\text{Hz}}$
337 (at the trend level; $p=0.059$; $d=0.23$, Figure 4A). These data suggest that $\text{tTIS}_{80\text{Hz}}$ enhanced the
338 neuromodulatory influence of the striatum on motor cortex during task performance, but only in
339 the presence of reinforcement. In the reward network, post-hocs revealed that connectivity in the
340 $\text{Reinf}_{\text{OFF}}$ condition was significantly higher with $\text{tTIS}_{80\text{Hz}}$ compared to $\text{tTIS}_{20\text{Hz}}$ ($p=0.045$; $d=0.25$;
341 Figure 4B), in line with the general effect of $\text{tTIS}_{\text{TYPE}}$ on connectivity reported above. This pattern
342 of results suggests that the increase of connectivity from striatum to frontal cortex observed with
343 $\text{tTIS}_{80\text{Hz}}$ depends on the presence of reinforcement, in particular in the motor network. Such
344 reinforcement-dependent increase of connectivity may reflect the preferential entrainment of
345 striatal gamma oscillations with $\text{tTIS}_{80\text{Hz}}$ ⁵⁹ in a situation where these oscillations are already
346 boosted by the presence of reinforcement¹⁹ (see Discussion).

347 Notably, contrary to the BOLD results presented above, we did not find any correlations
348 between the effects of $\text{tTIS}_{80\text{Hz}}$ on connectivity and motor learning, neither in the motor (robust
349 linear regression: $\text{tTIS}_{80\text{Hz}} - \text{tTIS}_{\text{Sham}}$: $R^2=0.019$; $p=0.48$; $\text{tTIS}_{80\text{Hz}} - \text{tTIS}_{20\text{Hz}}$: $R^2=0.034$; $p=0.54$) nor
350 in the reward ($\text{tTIS}_{80\text{Hz}} - \text{tTIS}_{\text{Sham}}$: $R^2=0.037$; $p=0.46$; $\text{tTIS}_{80\text{Hz}} - \text{tTIS}_{20\text{Hz}}$: $R^2<0.001$; $p=0.75$)
351 network, suggesting some degree of independence between the effect of $\text{tTIS}_{80\text{Hz}}$ on
352 reinforcement motor learning and on effective connectivity.


353 As a control, we verified that the effects of $\text{tTIS}_{\text{TYPE}}$ on connectivity could not be observed
354 in a control network associated to language (as defined by ⁷²), which was unlikely to be involved

355 in the present task and did not include the striatum (see Methods). As expected, effective
356 connectivity within the language network was not modulated by Reinf_{TYPE} ($F_{(1, 547)}=0.81$; $p=0.37$),
357 nor by tTIS_{TYPE} ($F_{(2, 547)}=0.58$; $p=0.56$), or by Reinf_{TYPE} x tTIS_{TYPE} ($F_{(2, 547)}=0.45$; $p=0.64$).


358 Overall, these results highlight the ability of tTIS_{80Hz}, but not tTIS_{20Hz}, to modulate striatum
359 to frontal cortex connectivity. Moreover, they suggest that a potential mechanism of action of
360 tTIS_{80Hz} is the induction of a state of hyper-connectivity between striatum and motor cortex that
361 may be detrimental for reinforcement motor learning.

362

A. Motor network

B. Reward network

363

364 **Figure 4. Striatum to frontal cortex effective connectivity. A) Motor network.** On the
365 left, 3D reconstruction of the masks used for the motor network (i.e., dorso-lateral putamen, dorsal
366 caudate, M1, SMA). On the right, plot showing effective connectivity from motor striatum to motor
367 cortex in the different experimental conditions. Note the increase of connectivity with tTIS_{80Hz} in
368 the presence of reinforcement. **B) Reward network.** On the left, 3D reconstruction of the masks
369 used for the reward network (i.e., ventro-medial putamen, NAc, vmPFC, ACC). On the right, plot
370 showing effective connectivity from motor striatum to motor cortex in the different experimental
371 conditions. ROIs were defined based on the BNA atlas¹² *: $p<0.05$. Data are represented as mean
372 \pm SE.

373

374 **Neural effects of tTIS_{80Hz} depend on impulsivity**

375 Determining individual factors that shape responsiveness to non-invasive brain stimulation
376 approaches is a crucial step to better understand the mechanisms of action but also to envision
377 stratification of patients in future clinical interventions⁷³. A potential factor that could explain inter-
378 individual differences in responsiveness to tTIS_{80Hz} is the level of impulsivity. As such, impulsivity
379 has been associated to changes of gamma oscillatory activity in the striatum of rats⁷⁴ and to the
380 activity of fast-spiking interneurons in the striatum^{75,76}, a neuronal population that is strongly
381 entrained to gamma rhythms^{19,21} and may therefore be particularly sensitive to tTIS_{80Hz}. In a
382 subsequent exploratory analysis, we asked if the neural effects of tTIS_{80Hz} were associated to
383 impulsivity levels, as evaluated by a well-established independent delay-discounting questionnaire
384 performed at the beginning of the experiment^{77,78}. Strikingly, a whole-brain analysis revealed that
385 impulsivity was associated to the effect of tTIS_{80Hz} on BOLD activity (with respect to tTIS_{20Hz})
386 specifically in the left caudate nucleus (**Figure S4A, S4B, Table S4**). Moreover, the effect of
387 tTIS_{80Hz} on striatum to motor cortex connectivity reported above was negatively correlated to
388 impulsivity both when contrasting tTIS_{80Hz} with tTIS_{Sham} (**Figure S4C, left**) and with tTIS_{20Hz} (**Figure**
389 **S4C, middle**). Such correlations were absent when contrasting tTIS_{20Hz} with tTIS_{Sham} (**Figure S4C,**
390 **right**), as well as when considering the same contrasts in the reward instead of the motor network
391 (see Supplementary materials for more details). Taken together, these results suggest that inter-
392 individual variability in impulsivity might influence the neural responses to striatal tTIS_{80Hz}.

393 **3. Discussion**

394

395 In this study, we combined striatal tTIS with electric field modelling, behavioural and fMRI

396 analyses to evaluate the causal role of the striatum in reinforcement learning of motor skills in

397 healthy humans. tTIS_{80Hz}, but not tTIS_{20Hz}, disrupted the ability to learn from reinforcement

398 feedback. This behavioural effect was associated to modulation of neural activity specifically in

399 the striatum. As a second step, we show that tTIS_{80Hz}, but not tTIS_{20Hz}, increased the

400 neuromodulatory influence of the striatum on connected frontal cortical areas involved in

401 reinforcement motor learning. Finally, inter-individual variability in the neural effects of tTIS_{80Hz}

402 could be partially explained by impulsivity, suggesting that this trait may constitute a determinant

403 of responsiveness to high gamma striatal tTIS. Overall, the present study shows for the first time

404 that striatal tTIS can non-invasively modulate a striatal mechanism involved in reinforcement

405 learning, opening new horizons for the study of causal relationships between deep brain structures

406 and human behaviour.

407

408 In this work, we investigated the causal role of the human striatum in reinforcement

409 learning of motor skills in healthy humans; a question that cannot be addressed with conventional

410 non-invasive brain stimulation techniques. In particular, by stimulating at different frequencies, we

411 aimed at dissociating striatal mechanisms involved in reinforcement and sensorimotor learning. In

412 line with our main hypothesis, we found that striatal tTIS_{80Hz} altered reinforcement learning of a

413 motor skill. Such disruption was frequency- and reinforcement-specific: learning was not altered

414 with striatal tTIS_{20Hz} in the presence of reinforcement, or when striatal tTIS_{80Hz} was delivered in the

415 absence of reinforcement. The rationale to stimulate at high gamma frequency was based on

416 previous work showing reinforcement-related modulation of gamma oscillations in the striatum^{19–}

417 ^{21,24,26,74,79} and in the frontal cortex^{79–82}. Several neuronal mechanisms may contribute to the

418 detrimental effect of tTIS_{80Hz} on reinforcement motor learning. First, as it consisted in a constant
419 high gamma oscillating field applied on the striatum, tTIS_{80Hz} may have perturbed the fine-tuned
420 reinforcement-dependent modulation of high gamma oscillatory activity^{19–21,25–27}, preventing
421 participants to learn from different outcomes. Another potential explanation is that tTIS_{80Hz}
422 disrupted the temporal coordination of striatal gamma activity to interacting ongoing rhythmic
423 activity, a mechanism that has been previously associated to reinforcement learning in humans²⁵.
424 Finally, the applied stimulation was not personalized as it did not take into account the individual
425 high gamma frequency peak associated to reward processing and the potential heterogeneity of
426 gamma activity within the striatum²⁴. Hence, tTIS_{80Hz} may have resulted in a frequency mismatch
427 between the endogenous high gamma activity and the externally imposed rhythm, that could
428 paradoxically result in a reduction of neuronal entrainment, in particular when the frequency
429 mismatch is relatively low⁶⁰. Importantly, in contrast to striatal tTIS_{80Hz}, we found that tTIS_{20Hz}
430 reduced learning, but only in the absence of reinforcement. This result fits well with the literature
431 linking striatal beta oscillations to sensorimotor functions^{28,29,31,83–85}. Taken together, these
432 elements suggest that different oscillations within the striatum support qualitatively distinct motor
433 learning mechanisms with beta activity contributing mostly to sensory-based learning and high
434 gamma activity being particularly important for reinforcement learning. More generally, these
435 results add to the growing body of evidence showing that sensory- and reinforcement-based motor
436 learning rely on partially different neural mechanisms^{8,9,65,71,86,87}.

437

438 Interestingly, striatal tTIS (especially tTIS_{80Hz}) also impaired tracking performance during
439 training, irrespective of the presence of reinforcement. This frequency-dependent reduction of
440 motor performance may be due to altered neuronal processing in the sensorimotor striatum that
441 may lead to less fine-tuned motor control abilities⁸⁸. Importantly though, tTIS did not modulate the
442 ability of participants to benefit from real-time reinforcement feedback during motor performance.

443 This suggests that striatal tTIS_{80Hz} altered the beneficial effects of reinforcement on learning (as
444 evaluated in Test conditions at Post-training), but not on motor performance (as evaluated during
445 Training). Such dissociation between the effects of striatal tTIS_{80Hz} on reinforcement-related gains
446 in motor performance and learning may be explained by the fact that these two phases of the
447 protocol probe different processes^{55,89}. While improvement of motor performance with
448 reinforcement feedback relies on rapid adjustments of motor output based on recent outcomes⁹⁰,
449 reinforcement gains in learning (i.e., probed in Test conditions without reinforcement) may rather
450 reflect the beneficial effect of performance feedback on the retention of motor memories^{7,53}.
451 Hence, a potential explanation for the present results is that striatal tTIS_{80Hz} did not disrupt real-
452 time processing of reinforcement feedback, but may rather alter the strengthening of the memory
453 trace based on reinforcements^{6,7}. Overall, these results are consistent with the view that specific
454 patterns of oscillatory activity in the striatum are causally involved in motor control and learning
455 processes³¹, and can be modulated with electrical stimulation^{59,61,91}.

456
457 To better understand the neural effects and frequency-specificity of tTIS, we coupled
458 striatal tTIS and task performance with simultaneous fMRI acquisition. The imaging results support
459 the view that the effect of tTIS_{80Hz} on reinforcement learning of motor skills was indeed related to
460 neuromodulation of the striatum. As such, when considering averaged BOLD activity, we found a
461 general increase of striatal activity when reinforcement was provided¹¹, but no effect of tTIS.
462 Crucially though, the detrimental effect of tTIS_{80Hz} on reinforcement learning was related to a
463 specific modulation of activity in the caudate and putamen, providing evidence that the present
464 behavioural effects were indeed driven by focal neuromodulation of the striatum (Figure 3).
465 Interestingly, participants with stronger disruption of reinforcement learning at the behavioural
466 level were also the ones exhibiting stronger suppression of striatal activity with tTIS_{80Hz} (compared
467 to tTIS_{20Hz}), suggesting that tTIS-induced reduction of striatal activity is detrimental for
468 reinforcement motor learning. Further analyses showed that tTIS_{80Hz}, but not tTIS_{20Hz}, increased

469 the neuromodulatory influence of the striatum on frontal areas known to be important for motor
470 learning and reinforcement processing^{92,93}. Interestingly, this effect depended on the type of
471 network considered (reward vs. motor) and on the presence of reinforcement. Striatal tTIS_{80Hz}
472 coupled with reinforcement increased connectivity between the motor striatum and the motor
473 cortex while it tended to have the opposite effect when considering the connectivity between limbic
474 parts of the striatum and pre-frontal areas involved in reward processing (Figure 4). This result
475 may reflect the differential influence of striatal tTIS on distinct subparts of the striatum, depending
476 on their pattern of activity during the task⁵¹. As such, a recent study in non-human primates
477 showed that tACS can have opposite effects on neuronal activity based on the initial entrainment
478 of neurons to the target frequency⁶⁰. Hence, the present differential effects of tTIS_{80Hz} on motor
479 and reward striato-frontal pathways may be due to different initial patterns of activity in these
480 networks in the presence of reinforcement. Electrophysiological recordings with higher temporal
481 resolution than fMRI are required to confirm or infirm this hypothesis. Overall, the present
482 neuroimaging results support the idea that the behavioural effects of striatal tTIS_{80Hz} on
483 reinforcement learning are associated to a selective modulation of striatal activity that influence
484 striato-frontal communication.

485

486 Finding individual factors that influence responsiveness to brain stimulation is an important
487 line of research both for fundamental neuroscience but also to characterise profiles of responders
488 for future clinical translation⁷³. Based on previous literature linking striatal gamma oscillatory
489 mechanisms and impulsivity, we explored the possibility that impulsivity influences
490 responsiveness to striatal tTIS_{80Hz} (Figure S4). Consistent with this idea, we found that impulsivity
491 was associated to tTIS_{80Hz}-related BOLD changes specifically in the left caudate and to changes
492 of effective connectivity between the motor striatum and motor cortex during reinforcement motor
493 learning. Hence, a possibility is that the differences in endogenous striatal gamma-related activity

494 that have been associated to impulsive behaviour in animal models^{74–76}, influence the neural
495 effects of tTIS_{80Hz}. If this is the case, impulsivity could constitute a behavioural factor allowing to
496 determine responsiveness to striatal tTIS_{80Hz}. Conversely, an interesting avenue for future
497 research could aim at determining whether impulsivity can be modulated by striatal tTIS_{80Hz}.

498

499 From a methodological point of view, the present results provide new experimental support
500 to the idea that the effects of tTIS are related to amplitude modulation of electric fields deep in the
501 brain and not to the high frequency fields themselves, in line with recent work^{40,41,51}. As such, the
502 different behavioural and neural effects of striatal tTIS_{80Hz} and tTIS_{20Hz} despite comparable carrier
503 frequencies (centered on 2kHz) indicate that temporal interference was indeed the driving force
504 of the present effects. Moreover, disruption of reinforcement motor learning with tTIS_{80Hz} (relative
505 to tTIS_{20Hz}) was specifically related to neuromodulation of the striatum, where the amplitude of the
506 tTIS field was highest according to our simulations (see ^{52,94} for recent validations of comparable
507 simulations in cadavers experiments). Hence, we believe that the frequency- and reinforcement-
508 dependent tTIS effects reported here cannot be explained by direct modulation of neural activity
509 by the high frequency fields. Yet, disentangling the neural effects of the low-frequency envelope
510 and the high frequency carrier appears as an important next step to better characterise the
511 mechanisms underlying tTIS⁴⁶.

512

513 Conclusion

514 The present findings show for the first time the ability of non-invasive striatal tTIS to
515 interfere with reinforcement learning in humans through a selective modulation of striatal activity.
516 Such deep brain stimulation was well tolerated and compatible with efficient blinding, suggesting
517 that tTIS provides the exciting option to circumvent the steep depth-focality trade-off of current

518 non-invasive brain stimulation approaches in a safe and effective way. Overall, tTIS opens new
519 possibilities for the study of causal brain-behaviour relationships and for the treatment of neuro-
520 psychiatric disorders associated to alterations of deep brain structures.

521 **4. Methods**

522 **4.1. Participants**

523

524 A total of 24 right-handed healthy volunteers participated in the present study (15 women,
525 25.3 ± 0.1 years old; mean \pm SE). Handedness was determined via a shortened version of the
526 Edinburgh Handedness inventory⁹⁵ (laterality index = $89.3 \pm 2.14\%$). None of the participants
527 suffered from any neurological or psychiatric disorder, nor taking any centrally-acting medication
528 (see Supplementary Materials for a complete list of exclusion criteria). All participants gave their
529 written informed consent in accordance with the Declaration of Helsinki and the Cantonal Ethics
530 Committee Vaud, Switzerland (project number 2020-00127). Finally, all participants were asked
531 to fill out a delay-discounting monetary choice questionnaire⁹⁶, which evaluates the propensity of
532 subjects to choose smaller sooner rewards over larger later rewards, a preference commonly
533 associated to choice impulsivity^{77,97}.

534

535 **4.2. Experimental procedures**

536

537 The study employed a randomised, double-blind, sham-controlled design. Following
538 screening and inclusion, participants were invited to a single experimental session including
539 performance of a motor learning task with concurrent transcranial electric Temporal Interference
540 stimulation (tTIS) of the striatum and functional magnetic resonance imaging (fMRI). Overall,
541 participants practiced 6 blocks of trials, that resulted from the combination of two reinforcement
542 feedback conditions (Reinf_{TYPE}: Reinf_{ON} or Reinf_{OFF}) with three types of striatal stimulation
543 (tTIS_{TYPE}: tTIS_{Sham}, tTIS_{20Hz} or tTIS_{80Hz}).

544

545 4.2.1. Motor learning task

546

547 4.2.1.1. General aspects

548

549 Participants practiced an adaptation of a widely used force-tracking motor task (Abe et al.,
550 2011, Steel et al., 2016) with a fMRI-compatible fiber optic grip force sensor (Current designs,
551 Inc., Philadelphia, PA, USA) positioned in their right hand. The task was developed on Matlab
552 2018 (the Mathworks, Natick, Massachusetts, USA) exploiting the Psychophysics Toolbox
553 extensions^{98,99} and was displayed on a computer screen with a refresh rate of 60 Hz. The task
554 required participants to squeeze the force sensor to control a cursor displayed on the screen.
555 Increasing the exerted force resulted in the cursor moving vertically and upward in a linear way.
556 Each trial started with a preparatory period in which a sidebar appeared at the bottom of the screen
557 (**Figure 1A**). After a variable time interval (0.9 to 1.1 s), a cursor (black circle) popped up in the
558 sidebar and simultaneously a target (grey larger circle with a cross in the middle) appeared,
559 indicating the start of the movement period. Subjects were asked to modulate the force applied
560 on the transducer to keep the cursor as close as possible to the center of the target. The target
561 moved in a sequential way along a single vertical axis for 7 s. The maximum force required (i.e.,
562 the force required to reach the target when it was in the uppermost part of the screen;
563 MaxTarget_{Force}) was set at 4% of maximum voluntary contraction (MVC) evaluated at the beginning
564 of the experiment. This low force level was chosen based on pilot experiments to limit muscular
565 fatigue. Finally, each trial ended with a blank screen displayed for 2 s before the beginning of the
566 next trial.

567

568 4.2.1.2. Trial types and reinforcement manipulation

569

570 During the experiment, participants were exposed to different types of trials (**Figure 1A**,
571 **Video S1**). In Test trials, the cursor remained on the screen and the target was consistently

572 displayed in grey for the whole duration of the trial. These trials served to evaluate Pre- and Post-
573 training performance for each block. In Reinf_{ON} and Reinf_{OFF} trials (used during Training only), we
574 provided only limited visual feedback to the participants in order to increase the impact of
575 reinforcement on learning^{4,55-57}. As such, the cursor was only intermittently displayed during the
576 trial: it was always displayed in the first second of the trial, and then disappeared for a total of 4.5
577 s randomly split on the remaining time by bits of 0.5 s. The cursor was therefore displayed 35.7%
578 of the time during these trials (2.5 s over the 7 s trial). Importantly, contrary to the cursor, the target
579 always remained on the screen for the whole trial and participants were instructed to continue to
580 track the target even when the cursor was away.

581 In addition to this visual manipulation, in Reinf_{ON} trials, participants also trained with
582 reinforcement feedback indicating success or failure of the tracking in real time. As such,
583 participants were informed that, during these trials, the color of the target would vary as a function
584 of their performance: the target was displayed in green when tracking was considered as
585 successful and in red when it was considered as failure. Online success on the task was
586 determined based on the Error, defined as the absolute force difference between the force
587 required to be in the center of the target and the exerted force^{4,53-55}. The Error, expressed in
588 percentage of MVC, was computed for each frame refresh and allowed to classify a sample as
589 successful or not based on a closed-loop reinforcement schedule⁸. More specifically, for each
590 training trial, a force sample was considered as successful if the Error was below the median Error
591 over the 4 previous trials at this specific sample. Put differently, to be successful, participants had
592 to constantly beat their previous performance. This closed-loop reinforcement schedule allowed
593 us to deliver consistent reinforcement feedback across individuals and conditions, while
594 maximizing uncertainty on the presence of reinforcement, an aspect that is crucial for efficient
595 reinforcement motor learning¹⁰⁰. Notably, in addition to this closed-loop design, samples were also
596 considered as successful if the cursor was very close to the center of the target (i.e., within one

597 radius around the center, corresponding to an Error below 0.2% of MVC). This was done to prevent
598 any conflict between visual information (provided by the position of the cursor relative to the target)
599 and reinforcement feedback (provided by the color of the target), which could occur in situations
600 of extremely good performance (when the closed-loop Error cut-off is below 0.2% of MVC).

601 As a control, Reinf_{OFF} trials were similar to Reinf_{ON} trials with the only difference that the
602 displayed colors were either cyan or magenta, and were generated randomly. Participants were
603 explicitly told that, in this condition, colors were displayed randomly and could be ignored. The
604 visual properties of the target in the Reinf_{OFF} condition were designed to match the Reinf_{ON}
605 condition in terms of relative luminance (cyan: RGB = [127.5 242.1 255] matched to green: [127.5
606 255 127.5] and magenta: [211.7 127.5 255] to red: [255 127.5 127.5]) and average frequency of
607 change in colors (i.e., the average number of changes in colors divided by the total duration of a
608 trial, see Supplementary materials).

609

610 4.2.1.3. Motor learning protocol

611

612 After receiving standardised instructions about the force-tracking task, participants
613 practiced 5 blocks of familiarization (total of 75 trials) without tTIS. The first block of familiarization
614 included 20 trials with the target moving in a regular fashion (0.5 Hz sinusoid). Then, in a second
615 block of familiarization, participants performed 35 trials of practice with an irregular pattern, with
616 the same properties as the training patterns (see below). Finally, we introduced the reinforcement
617 manipulation and let participants perform 2 short blocks (8 trials each) including Reinf_{ON} and
618 Reinf_{OFF} trials. These four first blocks of familiarization were performed outside the MRI
619 environment. A last familiarization block (4 trials) was performed after installation in the scanner,
620 to allow participants to get used to performing the task in the MRI. This long familiarization allowed

621 participants to get acquainted with the use of the force sensor, before the beginning of the
622 experiment.

623 During the main part of the experiment, participants performed 6 blocks of trials in the MRI
624 with concurrent striatal tTIS (**Figure 1B**). Each block was composed of 4 Pre-training trials
625 followed by 24 Training and 8 Post-training trials. Pre- and Post-training trials were performed in
626 Test conditions, without tTIS and were used to evaluate motor learning. Training trials were
627 performed with or without reinforcement feedback and with concomitant striatal tTIS and were
628 used as a proxy of motor performance. During Training, trials were interspersed with 25 s resting
629 periods every 4 trials (used for fMRI contrasts, see below). The order of the 6 experimental
630 conditions was pseudo-randomised across participants: the 6 blocks were divided into 3 pairs of
631 blocks with the same tTIS condition and each pair was then composed of one Reinf_{ON} and one
632 Reinf_{OFF} block. Within this structure, the order of the tTIS_{TYPE} and Reinf_{TYPE} conditions were
633 balanced among the 24 participants.

634 As mentioned above, the protocol involved multiple evaluations of motor learning within
635 the same experimental session. In order to limit carry-over effects from one block to the following,
636 each experimental block was associated to a different pattern of movement of the target (**Figure**
637 **S1**). Put differently, in each block, participants had to generate a new pattern of force to
638 successfully track the target. To balance the patterns' difficulty, they all consisted in the summation
639 of 5 sinusoids of variable frequency (range: 0.1-1.5 Hz) that presented the following properties: a)
640 Average force comprised between 45 and 55% of the MaxTarget_{Force}; b) Absolute average
641 derivative comprised between 54 and 66 % of the MaxTarget_{Force}/s; c) Number of peaks = 14
642 (defined as an absolute change of force of at least 1% of MaxTarget_{Force}). These parameters were
643 determined based on pilot experiments to obtain a relevant level of difficulty for young healthy
644 adults and consistent learning across the different patterns.

645

646 4.2.2. Transcranial Electric Temporal Interference Stimulation (tTIS) applied to the
647 striatum

648

649 4.2.2.1. General concept

650

651 Transcranial temporal interference stimulation (tTIS) is an innovative non-invasive brain
652 stimulation approach, in which two or more independent stimulation channels deliver high-
653 frequency currents in the kHz range (oscillating at f_1 and $f_1 + \Delta f$; **Figure 1C**). These high-
654 frequency currents are assumed to be too high to effectively modulate neuronal activity^{40,49,101}.
655 Still, by applying a small shift in frequency, they result in a modulated electric field with the
656 envelope oscillating at the low-frequency Δf (target frequency) where the two currents overlap.
657 The peak of the modulated envelope amplitude can be steered towards specific areas located
658 deep in the brain, by tuning the position of the electrodes and current ratio across stimulation
659 channels⁴⁰ (**Figure 1C, 1D**). Based on these properties, tTIS has been shown to be able to focally
660 target activity of deep structures in rodents, without engaging overlying tissues⁴⁰. Here, we applied
661 temporal interference stimulation transcranially via surface electrodes applying a low-intensity,
662 sub-threshold protocol following the currently accepted cut-offs and safety guidelines for low-
663 intensity transcranial electric stimulation in humans¹⁰².

664

665 4.2.2.2. Stimulators

666

667 The currents for tTIS were delivered by two independent DS5 isolated bipolar constant
668 current stimulators (*Digitimer Ltd, Welwyn Garden City, UK*). The stimulation patterns were
669 generated using a custom-based Matlab graphical user interface and transmitted to the current
670 sources using a standard digital-analog converter (*DAQ USB-6216, National Instruments, Austin*,

671 TX, USA). Finally, an audio transformer was added between stimulators and subjects, in order to
672 avoid possible direct current accumulation.

673

674 4.2.2.3. Stimulation protocols

675

676 During the 6 Training blocks, we applied three different types of striatal tTIS (2 blocks
677 each): a stimulation with a tTIS envelope modulated at 20Hz (tTIS_{20Hz}), a stimulation with a tTIS
678 envelope modulated at 80Hz (tTIS_{80Hz}) and a sham stimulation (tTIS_{Sham}). For tTIS_{20Hz}, the
679 posterior stimulation channel (TP7-TP8, see below) delivered a 1.99 kHz stimulation while the
680 anterior one delivered a 2.01 kHz ($\Delta f = 20$ Hz). For tTIS_{80Hz}, the posterior and anterior channels
681 delivered 1.96 kHz and 2.04 kHz, respectively ($\Delta f = 80$ Hz). Hence in both conditions, the high
682 frequency component was comparable and the only difference was Δf . During each block, tTIS
683 was applied for 5 minutes (6 x 50 s) during Training. Each stimulation period started and ended
684 with currents ramping-up and -down, respectively, for 5 s. tTIS was applied only while participants
685 were performing the motor task and not during resting periods or Pre- and Post-training
686 assessments. Finally, tTIS_{Sham} consisted in a ramping-up (5 s) immediately followed by a ramping-
687 down (5 s) of 2 kHz currents delivered without any shift in frequency. This condition allowed us to
688 mimic the sensations experienced during the active conditions tTIS_{20Hz} and tTIS_{80Hz}, while
689 delivering minimal brain stimulation (Figure S2). A trigger was sent 5 seconds before the beginning
690 of each trial in order to align the beginning of the task and the beginning of the frequency shift
691 after the ramp-up. Other TI stimulation parameters were set as follows: current intensity per
692 stimulation channel = 2 mA, electrode type: round, conductive rubber with conductive
693 cream/paste, electrode size = 3 cm² (see ContES checklist in Supplementary materials for more
694 details).

695 The stimulation was applied within the MRI environment (Siemens 3T MAGNETOM
696 Prisma; Siemens Healthcare, Erlangen, Germany) using a standard RF filter module and MRI-
697 compatible cables (*neuroConn GmbH, Ilmenau, Germany*). The technological, safety and noise
698 tests, and methodological factors can be found in Supplementary materials (Table S1) and are
699 based on the ContES Checklist¹⁰³.

700

701 4.2.2.4. Modelling

702

703 Electromagnetic simulations were carried out to identify optimised electrode placement
704 and current steering parameters. Simulations were performed using the MIDA head model⁵⁸, a
705 detailed anatomical head model featuring >100 distinguished tissues and regions that was derived
706 from multi-modal image data of a healthy female volunteer. Importantly, for brain stimulation
707 modelling, the model differentiates different scalp layers, skull layers, grey and white matter,
708 cerebrospinal fluid, and the dura. Circular electrodes (radius = 0.7 cm) were positioned on the skin
709 according to the 10-10 system and the electromagnetic exposure was computed using the ohmic-
710 current-dominated electro-quasistatic solver from Sim4Life v5.0 (ZMT Zurich MedTech AG,
711 Switzerland), which is suitable due to the dominance of ohmic currents over displacement currents
712 and the long wavelength compared with the simulation domain¹⁰⁴. Dielectric properties were
713 assigned based on the IT'IS Tissue Properties Database v4.0¹⁰⁵. Rectilinear discretization was
714 performed, and grid convergence as well as solver convergence analyses were used to ensure
715 negligible numerical uncertainty, resulting in a grid that included more than 54M voxels. Dirichlet
716 voltage boundary conditions, and then current normalization were applied. The electrode-head
717 interface contact was treated as ideal. tTIS exposure was quantified according to the maximum
718 modulation envelope magnitude formula from Grossman et al., (2017)⁴⁰. Then, a sweep over 960
719 permutations of the four electrode positions was performed, considering symmetric and
720 asymmetric montages with parallel (sagittal and coronal) or crossing current paths, while

721 quantifying bilateral striatum (putamen, caudate and nucleus accumbens) exposure performance
722 according to three metrics: a) target exposure strength, b) focality ratio (the ratio of target tissue
723 volume above threshold compared to the whole-brain tissue volume above threshold, a measure
724 of stimulation selectivity), and c) activation ratio (percentage of target volume above threshold with
725 respect to the total target volume, a measure of target coverage). We defined the threshold as the
726 98th volumetric iso-percentile level of the tTIS. From the resulting Pareto-optimal front, two
727 configurations stood out particularly: one that maximised focality and activation (AF3 - AF4, P7 -
728 P8) and a second one that accepts a reduction of these two metrics by a quarter, while increasing
729 the target exposure strength by more than 50% (F3-F4, TP7-TP8). This last montage was
730 selected, to ensure sufficient tTIS exposure in the striatum⁵¹ (Figure 1C, 1D).

731
732 4.2.2.5. Electrode positioning and evaluation of stimulation-associated sensations
733

734 Based on the modelling approach described above, we defined the stimulation electrode
735 positions in the framework of the EEG 10-10 system¹⁰⁶. The optimal montage leading in terms of
736 target (i.e. the bilateral striatum) exposure strength and selectivity, was composed of the following
737 electrodes: F3, F4, TP7 and TP8. Their locations were marked with a pen on the scalp and, after
738 skin preparation (cleaned with alcohol), round conductive rubber electrodes of 3 cm² were placed
739 adding a conductive paste (*Ten20, Weaver and Company, Aurora, CO, USA* or *Abralyt HCl, Easycap GmbH, Woerthsee-Etterschlag, Germany*) as an interface to the skin. Electrodes were
740 held in position with tape and cables were oriented towards the top in order to allow good
741 positioning inside the scanner. Impedances were checked and optimised until they were below 20
742 kΩ⁴⁷. Once good contact was obtained, we tested different intensities of stimulation for each
743 stimulation protocol in order to familiarise the participants with the perceived sensations and to
744 systematically document them. tTIS_{Sham}, tTIS_{20Hz} and tTIS_{80Hz} were applied for 20 seconds with the
745 following increasing current amplitudes per channel: 0.5 mA, 1 mA, 1.5 mA and 2 mA. Participants

747 were asked to report any kind of sensation and, if a sensation was felt, they were asked to grade
748 the intensity from 1 to 3 (light to strong) as well as give at least one adjective to describe it (Figure
749 S2). Following this step, cables were removed to be replaced by MRI-compatible cables and a
750 bandage was added to apply pressure on the electrodes and keep them in place. An impedance
751 check was repeated in the MRI right before the training and after the intervention.

752
753 4.2.3. MRI data acquisition
754

755 Structural and functional images were acquired using a 3T MAGNETOM PRISMA scanner
756 (*Siemens, Erlangen, Germany*). T1-weighted images were acquired via the 3D MPRAGE
757 sequence with the following parameters: TR = 2.3 s; TE = 2.96 ms; flip angle = 9°; slices = 192;
758 voxel size = 1 × 1 × 1 mm, FOV = 256 mm. Anatomical T2 images were also acquired with the
759 following parameters: TR = 3 s; TE = 409 ms; flip angle = 120°; slices = 208; voxel size = 0.8 ×
760 0.8 × 0.8 mm, FOV = 320 mm. Finally, functional images were recorded using Echo-Planar
761 Imaging (EPI) sequences with the following parameters: TR = 1.25 s; TE = 32 ms; flip angle =
762 58°; slices = 75; voxel size = 2 × 2 × 2 mm; FOV = 112 mm.

763
764 **4.3. Data and statistical analyses**
765

766 Data and statistical analyses were carried out with Matlab 2018a (the Mathworks, Natick,
767 Massachusetts, USA) and the R software environment for statistical computing and graphics (R
768 Core Team 2021, Vienna, Austria). Robust linear regressions were fitted with the Matlab function
769 robustfit. Linear mixed models (LMM) were fitted using the lmer function of the lme4 package in R
770 ¹⁰⁷. As random effects, we added intercepts for participants and block. Normality of residuals, and
771 homoscedasticity of the data were systematically checked, and logarithmic transformations were
772 applied when necessary (i.e., when skewness of the residuals' distribution was not comprised

773 between - 2 and 2^{108} or when homoscedasticity was violated based on visual inspection). To
774 mitigate the impact of isolated influential data points on the outcome of the final model, we used
775 tools of the influence.ME package to detect and remove influential cases based on the following
776 criterion: $\text{distance} > 4 * \text{mean distance}^{109}$. Statistical significance was determined using the anova
777 function with Satterthwaite's approximations of the lmerTest package¹¹⁰. For specific post-hoc
778 comparisons we conducted pairwise comparisons by computing estimated marginal means with
779 the emmeans package with Tukey adjustment of p-values¹¹¹. Effect size measures were obtained
780 using the effectsize package¹¹². The level of significance was set at $p < 0.05$.

781

782

783 4.3.1. Behavioural data

784

785 4.3.1.1. Evaluation of motor learning

786

787 The main goal of the present study was to evaluate the influence of striatal tTIS on
788 reinforcement motor learning. To do so, we first removed trials, in which participants did not react
789 within 1 s after the appearance of the cursor and target, considering that these extremely long
790 preparation times may reflect significant fluctuations in attention¹¹³. This occurred extremely rarely
791 (0.52 % of the whole data set). For each subject and each trial, we then quantified the tracking
792 Error as the absolute force difference between the applied and required force as done
793 previously^{4,53,55}. Tracking performance during Training and Post-training trials were then
794 normalised according to subjects' initial level by expressing the Error data in percentage of the
795 average Pre-training Error for each block. In order to test our main hypothesis predicting specific
796 effects of striatal tTIS on reinforcement motor learning, we performed a LMM on the Post-training
797 data with tTIS_{TYPE} and Reinf_{TYPE} as fixed effects. We then also ran the same analysis on the
798 Training data, to evaluate if striatal tTIS also impacted on motor performance, while stimulation
799 was being delivered.

800 As a control, we checked that initial performance at Pre-training was not different between
801 conditions with a LMM on the Error data obtained at Pre-training. Again, $tTIS_{TYPE}$ and $Reinf_{TYPE}$
802 were considered as fixed effects. Finally, another LMM was fitted with the fixed effect $tTIS_{TYPE}$ to
803 verify that the amount of positive reinforcement (as indicated by a green target) in the $Reinf_{ON}$
804 blocks was similar across $tTIS_{TYPES}$.

805
806 4.3.2. fMRI data

807
808 4.3.2.1. Imaging Preprocessing

809
810 We analyzed functional imaging data using Statistical Parametric Mapping 12 (SPM12;
811 *The Wellcome Department of Cognitive Neurology, London, UK*) implemented in MATLAB
812 R2018a (*Mathworks, Sherborn, MA*). All functional images underwent a common preprocessing
813 including the following steps: slice time correction, spatial realignment to the first image,
814 normalization to the standard MNI space and smoothing with a 6 mm full-width half-maximal
815 Gaussian kernel. T1 anatomical images were then co-registered to the mean functional image and
816 segmented. This allowed to obtain bias-corrected gray and white matter images, by normalizing
817 the functional images via the forward deformation field. To select subjects with acceptable level of
818 head movement, framewise displacement was calculated for each run. A visual check of both non-
819 normalised and normalised images was performed in order to ensure good preprocessing quality.
820 Finally, possible tTIS-related artifacts were investigated based on signal to noise ratio maps (see
821 below).

822
823 4.3.2.2. Signal to Noise Ratio

824
825 Total signal to noise ratio (tSNR) maps were computed to check the presence of possible
826 artifacts induced by the electrical stimulation. The values were calculated as mean over standard

827 deviation of each voxel time series. Spherical regions of interest were then defined both
828 underneath the tTIS electrodes and at 4 different locations, distant from the electrodes as a
829 control. The center of each spherical ROI was obtained by projecting the standard MNI
830 coordinates on the scalp¹¹⁴ toward the center of the brain. After visual inspection of the ROIs,
831 average tSNR maps were extracted and a LMM was used to compare signal to noise ratio
832 underneath the electrodes and in the control regions. The results of this analysis are presented in
833 Supplementary materials (Figure S5).

834

835 4.3.2.3. Task-based BOLD activity analysis

836

837 A general linear model was implemented at the single-subject level in order to estimate
838 signal amplitude. Eight regressors were included in the model: 6 head motion parameters
839 (displacement and rotation) and normalised time series within the white matter and the
840 corticospinal fluid. Linear contrasts were then computed to estimate specific activity during the
841 motor task with respect to resting periods. Functional activation was also extracted within specific
842 ROIs individually defined based on structural images. More specifically, the Freesurfer recon-all
843 function was run based on the structural T1w and T2w images
844 (<https://surfer.nmr.mgh.harvard.edu/>). The BNA parcellation was derived on the individual subject
845 space and the selected ROIs were then co-registered to the functional images and normalised to
846 the MNI space. BOLD activity within the individual striatal masks was averaged and compared
847 between different striatal nuclei namely the putamen, caudate and NAc. Comparison between
848 conditions were presented for uncorrected voxel-wise FWE, $p=0.001$ and multiple comparison
849 corrected at the cluster level to reduce False Discovery Rate (FDR), $p=0.05$.

850

851

852 4.3.2.4. Effective connectivity analyses

853

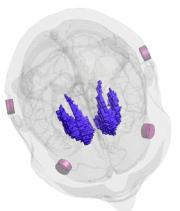
854 As an additional investigation, we computed task-modulated effective functional
855 connectivity by means of the CONN toolbox 2021a (www.nitrc.org/projects/conn,
856 RRID:SCR_009550) running in Matlab R2018a (*Mathworks, Sherborn, MA*). An additional
857 denoising step was added by applying a band-pass filtering from 0.01 to 0.1 Hz and by regressing
858 potential confounders (white matter, CSF and realignment parameters). After that, generalized
859 Psycho-Physiological Interactions (gPPI) connectivity was extracted within specific pre-defined
860 customised sub-networks: a reward and a motor network. The reward network was defined as
861 following: two regions within the striatum, namely the NAc (BNA regions 223 and 224) and the
862 ventro-medial putamen (BNA regions 225 and 226, left and right respectively), and two frontal
863 areas, namely the anterior cingulate (BNA regions 177, 179, 183 and 178, 180, 184, left and right
864 respectively) and the orbitofrontal cortex within the vmPFC (BNA regions 41, 45, 47, 49, 187 and
865 42, 46, 48, 50, 188 for left and right respectively). The motor network included the following areas:
866 the medial part of the SMA (BNA regions 9 and 10, left and right respectively) and the part of the
867 M1 associated to upper limb function (BNA regions 57 and 58, left and right respectively). Notably,
868 we considered connectivity in the left and right motor and reward networks regardless of laterality.
869 Finally, gPPI was also extracted within a control language network, defined based on the
870 functional atlas described by Shirer et al.(2012)⁷².

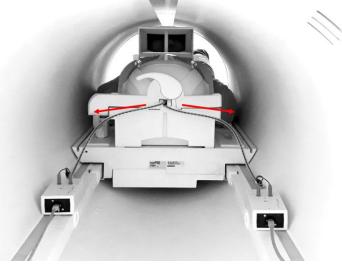
871 **Supplementary material**

872

873 **1. Exclusion criteria**

874


- 875 ● Unable to consent
- 876 ● Severe neuropsychiatric (e.g., major depression, severe dementia) or unstable systemic
- 877 diseases (e.g., severe progressive and unstable cancer, life threatening infectious
- 878 diseases)
- 879 ● Severe sensory or cognitive impairment or musculoskeletal dysfunctions prohibiting to
- 880 understand instructions or to perform the experimental tasks
- 881 ● Color blindness
- 882 ● Inability to follow or non-compliance with the procedures of the study
- 883 ● Contraindications for NIBS or MRI:
 - 884 ○ Electronic or ferromagnetic medical implants/device, non-MRI compatible metal
 - 885 implant
 - 886 ○ History of seizures
 - 887 ○ Medication that significantly interacts with NIBS being benzodiazepines, tricyclic
 - 888 antidepressant and antipsychotics
- 889 ● Regular use of narcotic drugs
- 890 ● Left-handedness
- 891 ● Pregnancy
- 892 ● Request of not being informed in case of incidental findings
- 893 ● Concomitant participation in another trial involving probing of neuronal plasticity.


894

895

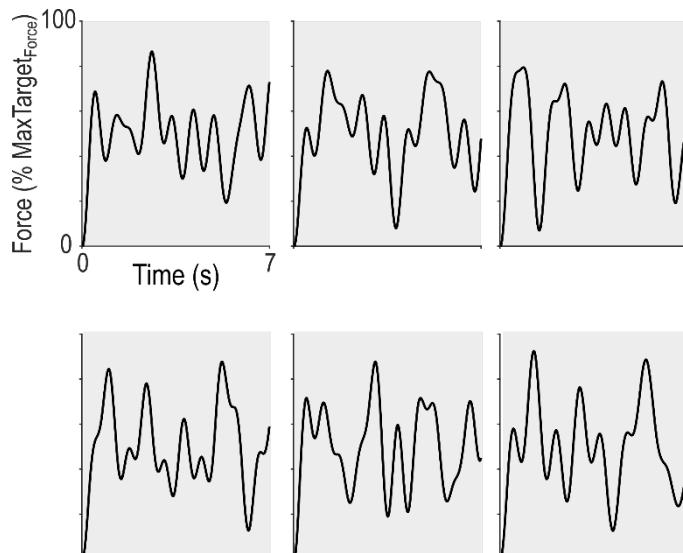
2. ContES Checklist

896

Technological factors	
Manufacturer of Stimulator	DS5 Isolated Bipolar Constant Current Stimulator (Digitimer)
MR Conditional Electrode Details	Round, 3 cm ² conductive rubber electrodes
Electrode Positioning	<p>F3 → F4 TP7 → TP8</p> <p>A bandage is warped around the head to apply pressure and keep the electrodes in place</p> <p>Electrodes are oriented in order to have vertical cables entering parallel to the MRI coil</p> <p>Head was fixed with pillows to avoid movements</p>
MR Conditional Skin-Electrode Interface	<p>10-20 gel</p> <p>One or two drops of saline were added when impedances were too high</p>
Amount of Contact Medium (Paste/Gel/Electrolyte)	Around 1mm of paste was manually placed on the electrodes
Electrode Placement Visualization	Pictures

RF Filter	NeuroConn DC-STIMULATOR MR RF filter module with MRI-compatible cables and electrodes
Wire Routing Pattern	<p>10 m ethernet cables between inner and outer box pass through a conduit along the wall of the MRI room until reaching the back of the MRI. Cables are then fixed with straps on the ground and on the wall of the MRI machine in order to avoid loops until reaching the interior of the coil.</p> <p>Cables between the head and the inner boxes were also fixed with straps and they were oriented in order to exit the magnetic field direction as soon as possible as indicated by the red arrows of the image below.</p>
tES-fMRI Machine Synchronization/Communication	<p>Stimulation was triggered by the stimulus delivery PC via parallel port to BNC cable. The parallel port of the stimulus delivery PC was connected to the DAQ controlling the stimulators.</p> <p>Stimulus delivery PC, in turn, was also receiving the scanner trigger from the scanner via USB port.</p>
Safety and noise tests	
MR Conditionality Specifics for tES Setting	Please refer to Section “Methods-Imaging acquisition”
tES-fMRI Setting Test - Safety Testing	Impedances were checked before and after

	<p>the stimulation.</p> <p>No temperature tests were performed during the experiment.</p> <p>Intensity titration was performed prior to entering the MRI, testing increasing currents (0.5, 1, 1.5 and 2 mA) and asking the subject to report any type of sensation.</p> <p>A sensation questionnaire was also performed at the end of the experiment.</p>
tES-fMRI Setting Test - Subjective Intolerance Reporting	No intolerances were reported by any subject
tES-fMRI Setting Test - Noise/Artifact	Signal to Noise Ratio (SNR) analysis was performed on the fMRI images, please refer to Section "Methods-Signal to Noise Ratio"
Impedance Testing	<p>Impedances were checked right after electrodes positioning outside the scanner, before and after the stimulation inside.</p> <p>One or two drops of saline solution were added if impedances were higher than 20kΩ</p>
Methodological factors	
Concurrent tES-fMRI Timing	<p>For timings, please refer to the "Methods-Stimulation protocols" section</p> <p>To mitigate the impact of potential carry-over effects on our experimental results we used the following strategy:</p> <ol style="list-style-type: none">1) We stimulated for short periods in each condition (5 minutes interspersed with resting periods without stimulation; see "Methods-Stimulation protocols");2) We imposed breaks (~7-8 minutes) between each stimulation protocol;3) We randomised the order of the


	Stimulation conditions
Imaging Session Timing	All sequences were performed with T1 stimulation electrodes placed on the subjects' head.
tES Experience Report	Please refer to "Results" section and to Figure S2.

897 **Table S1. ContES checklist as recommended in Ekhtiari et al., 2022 for concurrent tES-fMRI studies.**

898

899

3. Patterns of motion of the target used in the study

900

901 **Figure S1. Patterns of motion of the target.** For each block of training, participants had to learn
902 a new pattern of motion of the target. The patterns had similar mathematical properties and their
903 relationship to a condition was randomised (see Methods for more details)..

904

905

4. Control analyses of behavioural data

906

Pre-training performance

907

908

909

910

In order to verify that our main behavioural results were not influenced by potential

differences in initial performance between conditions despite randomization, we analysed the

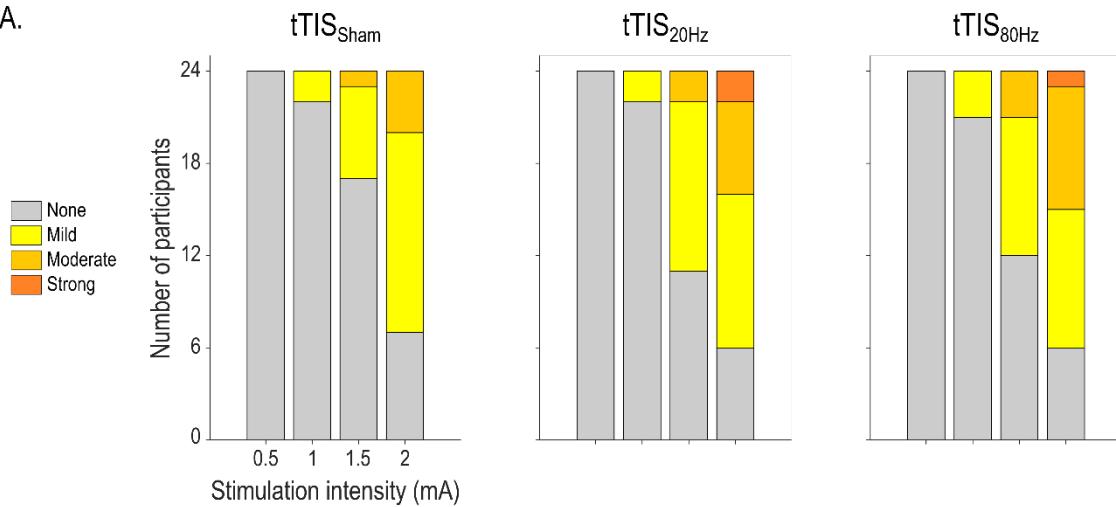
Error at Pre-training between conditions. We did not find any tTIS_{TYPE} ($F_{(2,519.15)}=1.64$; $p=0.20$) or

tTIS_{TYPE} x Reinf_{TYPE} effect ($F_{(2,519.99)}=1.08$; $p=0.34$), suggesting that the main behavioural results

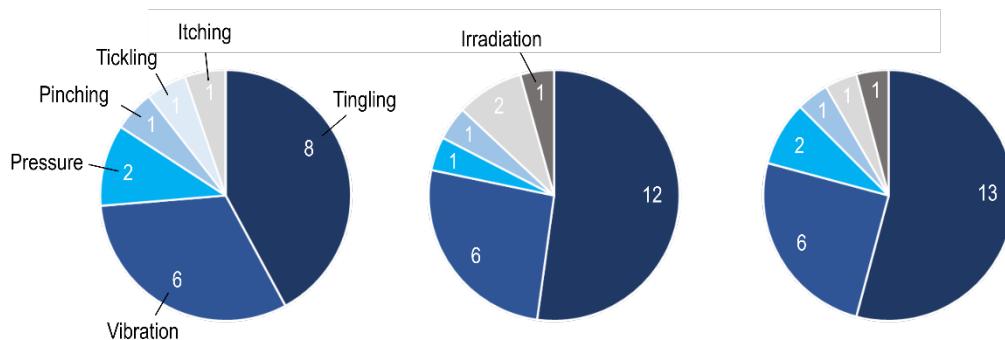
911 could not be accounted for by differences in initial performance between conditions. However, the
912 LMM did reveal a Reinf_{TYPE} effect ($F_{(1,519.15)}=12.47$; $p<0.001$), that was due to the fact that Pre-
913 training performance was generally better in Reinf_{OFF} blocks. This effect, which was opposite to
914 our learning results (generally better learning with Reinf_{ON}), may be related to an expectancy effect
915 stemming from the repetitive structure of the reinforcement conditions (see Methods). However,
916 the absence of interaction with tTIS_{TYPE} is strongly suggestive that this effect did not drive any of
917 the main findings. Put together, these data provide confidence that the differential effects of striatal
918 tTIS on motor learning depending on the presence of reinforcement were not the result of different
919 initial performance between conditions.

920 Success rate

921 Overall, the amount of positive reinforcement (i.e., when the target was green) averaged
922 52.78 +/- 0.42% and was comparable across tTIS_{TYPEs} ($F_{(2,1702)}=0.17$; $p=0.84$), suggesting that the
923 closed-loop reinforcement schedule was successful at providing similar reinforcement feedback
924 despite differences in performance between conditions. Hence, different success rates during
925 training cannot explain the effect of the different striatal tTIS conditions on motor learning.

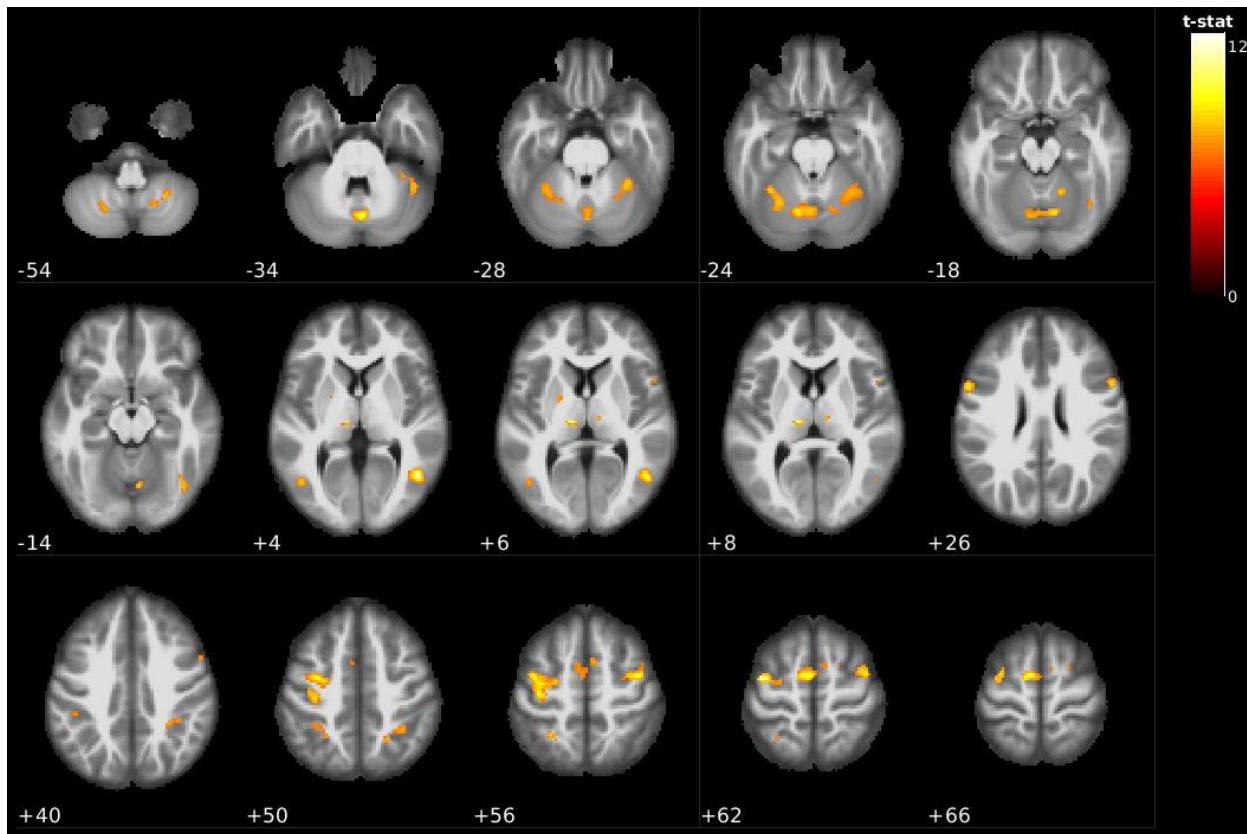

926 Frequency of flashing

927 Analysis of the frequency of flashing in the different conditions did not reveal any effect of
928 tTIS_{TYPE} ($F_{(2,3283)}=0.85$; $p=0.43$) nor any Reinf_{TYPE} x tTIS_{TYPE} interaction ($F_{(2,3283)}=0.19$; $p=0.82$),
929 suggesting that the behavioural effects of tTIS could not be explained by a visual confound.
930 However, this analysis did reveal a Reinf_{TYPE} effect ($F_{(1,3283)}=33.62$; $p<0.001$) which was due to the
931 fact that the average frequency in the Reinf_{OFF} condition (4.28 ± 0.097 Hz) was slightly but
932 significantly higher than with Reinf_{ON} (4.08 ± 0.098 Hz; $F_{(1,3283)}=33.62$; $p<0.001$). Notably, in
933 absolute terms, this difference represented only a difference of 1.4 change of color over the whole


934 7 s trial, which we think is unlikely to explain the improvement of performance in the Reinf_{ON}
935 condition.

936 **5. Blinding integrity and tTIS-evoked sensations**

A.


B.

937
938 **Figure S2. tTIS-related sensations. A) Magnitude of tTIS-related sensations.** Magnitude of sensations
939 reported before the experiment for current amplitudes ranging from 0.5 to 2 mA for each tTIS_{TYPE}. The
940 current amplitude used in the present experiment was 2 mA. **B) Types of tTIS-related sensations.** Type
941 of sensations as described by the participants, at 2 mA. Note that subjects were allowed to describe their
942 sensations with up to two different words.
943

944

6. Brain activity during reinforcement motor learning

946 **Figure S3. Whole-brain activity during reinforcement motor learning.** Activation maps for the contrast
947 task>rest in the tTISsham, ReinfON condition showing activation of key areas of the reinforcement motor
948 learning network including the putamen, thalamus, cerebellum and sensorimotor network, especially on the
949 left side. Significant clusters are shown for corrected voxel-wise family wise error (FWE), $p=0.05$, and
950 corrected cluster-based false discovery rate (FDR), $p=0.05$.

951
952

Cluster-level				Peak-level					x	y	z	Region	
pFWE-corr	qFDR-corr	k _E	P _{uncorr}	pFWE-corr	qFDR-corr	T	(Z _E)	P _{uncorr}					
<0.001	<0.001	135	<0.001	<0.001	0.005	12.63	6.84	<0.001	46	-62	4	Temporal_Mid_R	
<0.001	<0.001	523	<0.001	<0.001	0.005	12.32	6.77	<0.001	-40	-8	62	Precentral_L	
				<0.001	0.021	10.62	6.33	<0.001	-34	-6	52	Postcentral_L	
				<0.001	0.021	10.43	6.28	<0.001	-36	-20	54	Precentral_L	
<0.001	<0.001	335	<0.001	<0.001	0.018	11.08	6.46	<0.001	-8	-6	64	Supp_Motor_Area_L	
					0.003	0.145	8.21	5.56	<0.001	6	6	58	Supp_Motor_Area_R
					0.003	0.145	8.20	5.55	<0.001	-4	-2	54	Supp_Motor_Area_L
<0.001	<0.001	44	<0.001	<0.001	0.021	10.65	6.34	<0.001	-10	-20	6	Thal_IL_L	
<0.001	<0.001	162	<0.001	<0.001	0.021	10.36	6.26	<0.001	42	-6	56	Frontal_Mid_2_R	
				<0.001	0.042	9.48	5.99	<0.001	34	-4	58	Frontal_Sup_2_R	
<0.001	<0.001	175	<0.001	<0.001	0.021	10.27	6.23	<0.001	-58	10	28	Precentral_L	
				<0.001	0.037	9.60	6.03	<0.001	-56	8	20	Frontal_Inf_Oper_L	
					0.019	0.490	7.32	5.21	<0.001	-48	2	16	Rolandic_Oper_L
<0.001	<0.001	601	<0.001	<0.001	0.024	10.06	6.17	<0.001	2	-74	-34	Vermis_7	
					<0.001	0.025	9.99	6.15	<0.001	-12	-70	-22	Cerebellum_6_L
				<0.001	0.027	9.88	6.12	<0.001	12	-70	-20	Cerebellum_6_R	
<0.001	<0.001	82	<0.001	<0.001	0.070	9.14	5.88	<0.001	56	10	26	Frontal_Inf_Oper_R	
					0.006	0.234	7.86	5.42	<0.001	56	10	38	Precentral_R
<0.001	<0.001	141	<0.001	0.001	0.092	8.89	5.80	<0.001	-34	-52	-24	Cerebellum_6_L	
					0.002	0.117	8.47	5.65	<0.001	-28	-62	-24	Cerebellum_6_L
<0.001	<0.001	76	<0.001	0.001	0.092	8.87	5.79	<0.001	-28	-52	56	Parietal_Sup_L	
					0.011	0.341	7.57	5.31	<0.001	-30	-44	48	Parietal_Inf_L
<0.001	<0.001	200	<0.001	0.001	0.092	8.77	5.76	<0.001	32	-48	-28	Cerebellum_6_R	
					0.013	0.382	7.49	5.28	<0.001	34	-40	-34	Cerebellum_6_R
<0.001	<0.001	36	<0.001	0.001	0.092	8.73	5.74	<0.001	16	-54	-18	Cerebellum_4_5_R	
<0.001	<0.001	28	<0.001	0.001	0.101	8.63	5.71	<0.001	26	-58	-54	Cerebellum_8_R	
<0.001	<0.001	62	<0.001	0.001	0.113	8.51	5.67	<0.001	38	-62	-16	Fusiform_R	
					0.002	0.117	8.45	5.64	<0.001	42	-72	-12	Occipital_Inf_R
<0.001	<0.001	21	<0.001	0.002	0.117	8.41	5.63	<0.001	-46	-68	4	Occipital_Mid_L	
<0.001	<0.001	141	<0.001	0.002	0.130	8.33	5.60	<0.001	22	-56	50	Location not in atlas	
					0.002	0.130	8.30	5.59	<0.001	30	-48	48	Parietal_Sup_R
					0.007	0.266	7.76	5.39	<0.001	36	-40	42	SupraMarginal_R
<0.001	<0.001	29	<0.001	0.004	0.170	8.09	5.51	<0.001	44	-50	-34	Cerebellum_Crus_1_R	

<0.001	<0.001	59	<0.001	0.004	0.178	8.04	5.49	<0.001	-22	-66	-52	Cerebellum_8_L
<0.001	0.006	12	0.003	0.004	0.190	7.99	5.47	<0.001	10	-16	8	Thal_MDI_R
0.001	0.043	6	0.028	0.009	0.319	7.63	5.33	<0.001	-22	-2	6	Putamen_L
<0.001	<0.001	34	<0.001	0.009	0.319	7.63	5.33	<0.001	18	-64	-54	Cerebellum_8_R
0.001	0.300	7	0.019	0.023	0.545	7.23	5.17	<0.001	20	2	62	Frontal_Sup_2_R
0.001	0.030	7	0.019	0.024	0.560	7.21	5.16	<0.001	52	12	8	Frontal_Inf_Oper_R
0.001	0.030	7	0.019	0.025	0.568	7.19	5.16	<0.001	-44	-36	40	Parietal_Inf_L

953 **Table S2: Significant clusters and the respective local maxima in the tTIS_{Sham}, Reinf_{ON} condition.**
954 Related to Figure S3. Regions were identified with the Automated Anatomical Labelling atlas 3 (AAL3, Rolls
955 et al., 2020). Significant clusters were selected for corrected voxel-wise family wise error (FWE), p=0.05,
956 and corrected cluster-based false discovery rate (FDR), p=0.05.

957

958

959 **7. Correlation between effect of tTIS_{80Hz} on reinforcement motor learning and**
960 **modulation of whole-brain activity**

961

Cluster-level				Peak-level					x	y	z	Region
pFWE-corr	qFDR-corr	k _E	P _{uncorr}	pFWE-corr	qFDR-corr	T	(Z _E)	P _{uncorr}				
0.003	0.005	157	<0.001	0.027	0.065	7.29	5.14	<0.001	10	18	0	Caudate_R
				0.639	0.678	5.38	4.25	<0.001	0	0	10	Location not in atlas
				0.921	0.757	4.89	3.98	<0.001	6	6	2	Location not in atlas
0.007	0.005	138	<0.001	0.693	0.678	5.30	4.21	<0.001	-16	14	6	Location not in atlas
				0.923	0.757	4.88	3.98	<0.001	-22	14	-2	Putamen_L
				1.000	0.810	4.26	3.60	<0.001	-18	8	-6	Putamen_L

962 **Table S3. Significant clusters for the correlation between the behavioural and neural effects of**
963 **tTIS_{80Hz} (vs. tTIS_{20Hz}).** Related to Figure 3B. Two significant clusters were found with several local maxima.
964 Notably, the left cluster also encompassed a portion of the left caudate (related to Figure 3). Regions were
965 identified with the Automated Anatomical Labelling atlas 3 (AAL3¹¹⁵). Significant clusters were selected for
966 uncorrected voxel-wise family wise error (FWE), p=0.001, and corrected cluster-based false discovery rate
967 (FDR), p=0.05.

968

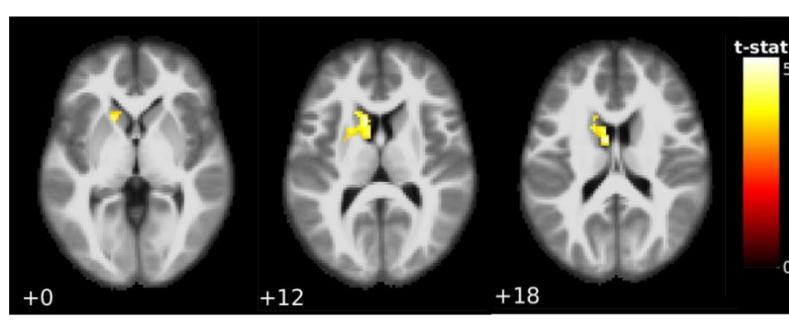
969 **8. Relationship between the neural and behavioural effects of tTIS_{80Hz} and impulsivity**

970

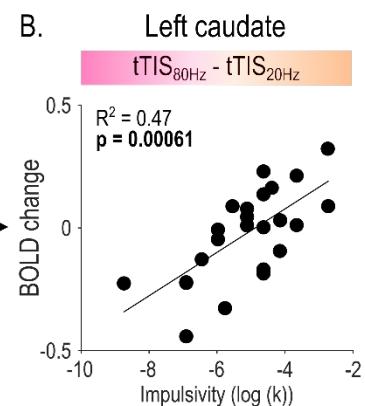
Characterising individual factors that influence responsiveness to brain stimulation is an

971

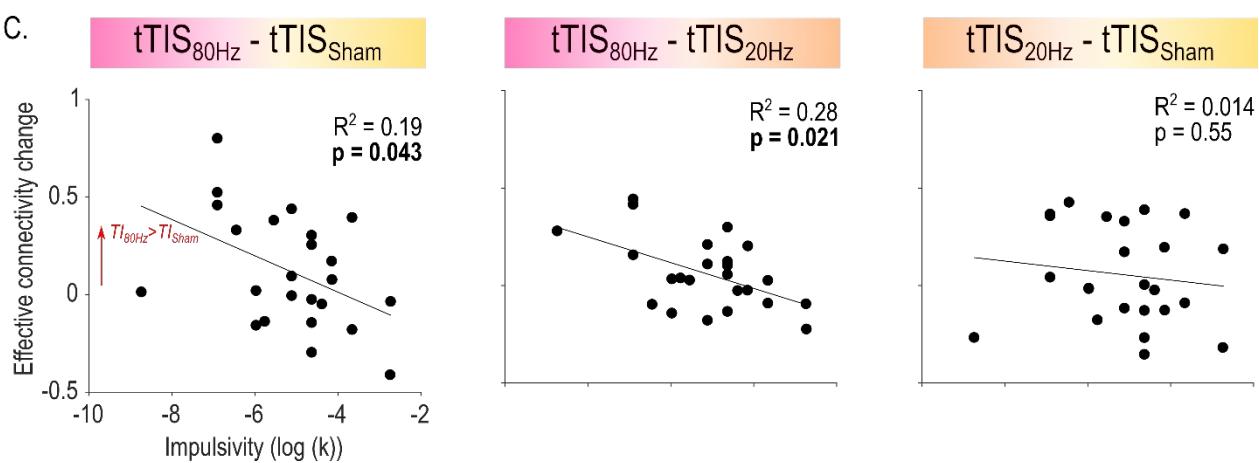
important line of research both for fundamental neuroscience but also to determine profiles of
972 responders for future clinical translation. Based on previous literature linking striatal gamma


973 oscillatory mechanisms and impulsivity⁷⁴, we explored the possibility that impulsivity influences
974 responsiveness to striatal tTIS_{80Hz} (**Figure S4**).

975 First, we exploited the BOLD data and asked if inter-individual variability in the neural
976 effects of tTIS_{80Hz} during reinforcement motor learning (i.e., in the Reinf_{ON} condition) was related
977 to impulsivity at the whole-brain level. Impulsivity was evaluated by a well-established independent
978 delay-discounting questionnaire performed at the beginning of the experiment^{77,78}. Strikingly, this
979 analysis revealed that impulsivity was associated to the effect of tTIS_{80Hz} (with respect to tTIS_{20Hz})
980 specifically in the left caudate nucleus (Figure S4A, Table S4). No other clusters were found. As
981 such, the most impulsive participants exhibited an increase of left caudate activity with tTIS_{80Hz}
982 (compared to tTIS_{20Hz}) while the least impulsive ones rather presented a decrease of BOLD signal,
983 consistent with the idea that impulsivity modulates the neuronal responsiveness to tTIS ($R^2=0.47$;
984 $p<0.001$; Figure S4B). No significant clusters of correlation were found for the tTIS_{80Hz} – tTIS_{Sham}
985 contrast, neither for the control tTIS_{20Hz} - tTIS_{Sham} contrast. Hence, this analysis suggests that the
986 effect of tTIS_{80Hz} on caudate activity depends on participants' impulsivity.


987 As a second step, we aimed at evaluating the association between impulsivity and the
988 increased striatum to motor cortex connectivity observed with tTIS_{80Hz}, in the presence of
989 reinforcement. Notably, such pattern of hyper-connectivity in fronto-striatal circuits has been
990 described as a pathophysiological mechanism in multiple neuro-psychiatric disorders involving
991 impulsivity^{116–119}. Hence, we first asked if striatum to motor cortex connectivity was related to
992 impulsivity during reinforcement motor learning in the absence of stimulation (i.e., in the tTIS_{Sham}
993 condition). Indeed, we found a significant positive relationship between impulsivity and striatum to
994 motor cortex connectivity (robust linear regression: $R^2=0.10$; $p=0.0038$), in line with previous
995 results^{116–119}. Then, we evaluated whether the increase of connectivity observed with tTIS_{80Hz} in
996 the Reinf_{ON} condition (Figure 4A) could be related to impulsivity. Indeed, we found that the effect
997 of tTIS_{80Hz} on connectivity was negatively correlated to impulsivity both when contrasting tTIS_{80Hz}

998 with $t\text{TIS}_{\text{Sham}}$ ($R^2=0.19$; $p=0.043$, Figure S4C, left) and with $t\text{TIS}_{20\text{Hz}}$ ($R^2=0.28$; $p=0.021$, Figure S4C, middle): participants with the largest increase in connectivity with $t\text{TIS}_{80\text{Hz}}$ in the Reinf_{ON} condition 999 were also the least impulsive ones. Such correlation was absent when contrasting $t\text{TIS}_{20\text{Hz}}$ and 1000 $t\text{TIS}_{\text{Sham}}$ ($R^2=0.0031$; $p=0.31$, Figure S4C, right), but also when considering the same contrasts in 1001 the reward instead of the motor network ($p=0.93$ and $p=0.86$ for the $t\text{TIS}_{80\text{Hz}}-t\text{TIS}_{\text{Sham}}$ and $t\text{TIS}_{80\text{Hz}}-$ 1002 $t\text{TIS}_{20\text{Hz}}$ contrasts, respectively). Hence, striatum to motor cortex effective connectivity during the 1003 task was positively correlated to impulsivity, but the change in connectivity induced by $t\text{TIS}_{80\text{Hz}}$ 1004 was rather negatively associated with impulsivity. This may be due to a ceiling effect in the most 1005 impulsive participants: exhibiting initially high levels of connectivity may leave less room for further 1006 modulation by $t\text{TIS}_{80\text{Hz}}$. These results suggest that inter-individual variability in impulsivity might 1007 influence neural responses to striatal $t\text{TIS}_{80\text{Hz}}$. 1008


A.

B.

C.

1010 **Figure S4. Relationship between impulsivity and the neural effects of tTIS_{80Hz}. A)**
1011 **Whole-brain correlation between the neural effects of tTIS_{80Hz} (with respect to tTIS_{20Hz}) and**
1012 **impulsivity.** Correlation between tTIS-related modulation of striatal activity (tTIS_{80Hz} – tTIS_{20Hz})
1013 during reinforcement motor learning (Reinf_{ON}) and individual impulsivity levels. A single significant
1014 cluster of correlation was found in left caudate (uncorrected voxel-wise FWE: p=0.001, and
1015 corrected cluster-based FDR: p=0.05). **B) Correlation between left caudate activity and**
1016 **impulsivity.** A positive correlation was found showing that participants with higher levels of
1017 impulsivity exhibited stronger activation of the left caudate in the tTIS_{80Hz} (with respect to tTIS_{20Hz}).
1018 **C) Correlations between impulsivity and tTIS-related modulation of effective connectivity.**
1019 Impulsivity was associated to the neural effects of tTIS_{80Hz} both when contrasting to tTIS_{Sham} (left)
1020 and tTIS_{20Hz} (middle), but was not correlated to the effect of tTIS_{20Hz} (right).

1021

Cluster-level				Peak-level					x	y	z	Region
pFWE-corr	qFDR-corr	k _E	P _{uncorr}	pFWE-corr	qFDR-corr	T	(Z _E)	P _{uncorr}				
<0.001	<0.001	254	<0.001	0.707	0.524	5.29	4.20	<0.001	-8	0	18	Location not in atlas
				0.719	0.524	5.27	4.19	<0.001	-14	16	16	Caudate_L
				0.971	0.620	4.72	3.88	<0.001	-16	16	0	Location not in atlas

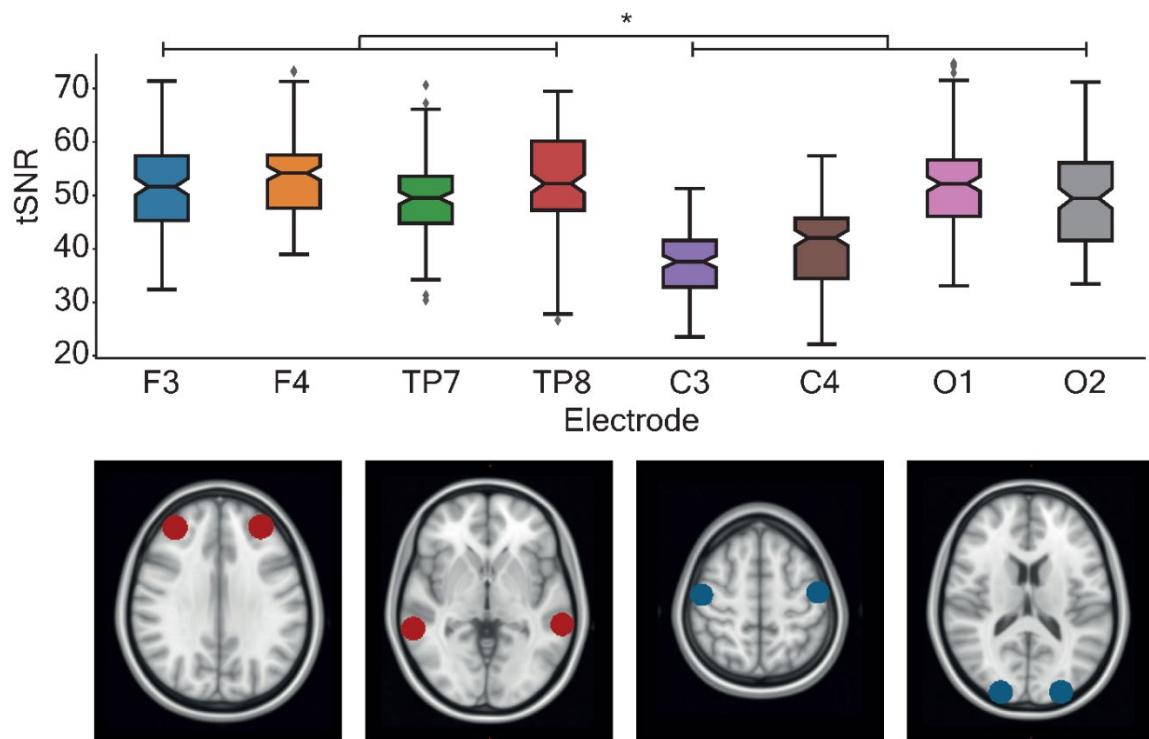
1022 **Table S4. Significant clusters for the correlation between impulsivity and effects of tTIS_{80Hz} on BOLD**
1023 **activity (vs. tTIS_{20Hz}).** Related to Figure S4A. One significant cluster encompassing the left caudate nucleus
1024 was found. Regions were identified with AAL3¹¹⁵.

1025

1026 As a last step, we verified if impulsivity was also predictive of the behavioural effects of
1027 tTIS_{80Hz} on reinforcement motor learning. We did not find any significant correlation between
1028 impulsivity and the effect of tTIS_{80Hz} on motor learning (tTIS_{80Hz} – tTIS_{Sham}: R²=0.098; p=0.17;
1029 tTIS_{80Hz} – tTIS_{20Hz}: R²=0.11; p=0.21). Hence, impulsivity was associated to the neural, but not the
1030 behavioural effects of tTIS_{80Hz}.

1031

1032


1033 9. Imaging quality control

1034

1035 A threshold of 0.5 was chosen to discard subjects showing more than 40% of voxels with
1036 framewise displacement FD higher than this threshold. In the current study cohort, no subject
1037 exceeded the limit value, thus the whole dataset could be used. Furthermore, successful cleaning

1038 of the data was ensured by visual checking the preprocessing results. In particular, good
1039 registration between anatomical and functional images and normalization to standard space were
1040 checked.

1041 Signal to noise ratio analysis showed significantly higher tSNR values underneath the stimulating
1042 electrodes ($F_{(1,1122)}=249.25$, $p<0.001$; **Figure S5**). This result suggests that the stimulation did not
1043 introduce additional noise to the MR images. In summary, all controls confirmed the good quality
1044 of the imaging data.

1045
1046 **Figure S5. Total signal to noise ratio (tSNR).** Total signal to noise ratio investigation. On the
1047 top panel, the average tSNR is shown within spheres of 10mm radius underneath the 4 stimulation
1048 electrodes (F3, F4, TP7 and TP8) and underneath other 4 locations more distal from the
1049 electrodes (C3, C4, O1 and O2). A significant higher tSNR was found underneath the electrodes
1050 with respect to the distal locations ($F_{(1,1122)}=249.25$, $p<0.001$). This indicates that there was no
1051 reduction of the tSNR due to the presence of electrical current. On the bottom panel, the location
1052 of the spheres from where the average tSNRs were extracted: F3 and F4 in red in the first image
1053 from the left, TP7 and TP8 in red on the second image from the left, C3 and C4 in blue on the third
1054 image from the left, O1 and O2 in blue on the forth image from the left.

1055 **Acknowledgements**

1056 P.V. was a PhD student supported by the Fund for Research training in Industry and
1057 Agriculture (FRIA/FNRS; FC29690), and grants by the Platform for Education and Talent
1058 (Gustave Boël - Sofina Fellowships) and Wallonie-Bruxelles International. J.D. was
1059 supported by grants from the Belgian FNRS and the Fondation Médicale Reine Elisabeth
1060 (FMRE). G.D. was supported by the Belgian FNRS. The research was partially funded by
1061 the Novartis Research Foundation—FreeNovation (Basel, CH) to MJW and EN, the
1062 Bertarelli Foundation (Catalyst ‘Deep-MCI-T’, Gstaad, CH) to FCH, the SNSF Lead
1063 Agency (NiBS-iCog 320030L_197899) to FCH and the Defitech Foundation (Morges, CH)
1064 to FCH. We acknowledge access to and expertise of the Neuromodulation and the
1065 Neuroimaging facilities of the Human Neuroscience Platform of the Campus Biotech
1066 Geneva and of the MRI Platform of the HVS (Sion). We would also like to thank Prof.
1067 Leonardo Cohen for insightful feedback on a previous version of this manuscript.

1068

1069 **Competing interests**

1070 E.N. is co-founder of TI Solutions AG, a company committed to producing hardware and
1071 software solutions to support tTIS research.

1072 **References**

1073 1. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological
1074 systems. *Nat. Mach. Intell.* **1**, 133–143 (2019).

1075 2. Schultz, W. Neuronal Reward and Decision Signals: From Theories to Data.
1076 *Physiol. Rev.* **95**, 853–951 (2015).

1077 3. Dhawale, A. K., Smith, M. A. & Ölveczky, B. P. The Role of Variability in Motor
1078 Learning. *Annu. Rev. Neurosci.* **40**, 479–498 (2017).

1079 4. Vassiliadis, P. et al. Reward boosts reinforcement-based motor learning. *iScience*
1080 **24**, 102821 (2021).

1081 5. Spampinato, D. & Celnik, P. Multiple Motor Learning Processes in Humans:
1082 Defining Their Neurophysiological Bases. *Neuroscientist* **27**, 246–267 (2021).

1083 6. Huang, V. S., Haith, A., Mazzoni, P. & Krakauer, J. W. Rethinking Motor Learning
1084 and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions
1085 Combines with Internal Models. *Neuron* **70**, 787–801 (2011).

1086 7. Galea, J. M., Mallia, E., Rothwell, J. & Diedrichsen, J. The dissociable effects of
1087 punishment and reward on motor learning. *Nat Neurosci* **18**, 597–602 (2015).

1088 8. Therrien, A. S., Wolpert, D. M. & Bastian, A. J. Effective Reinforcement learning
1089 following cerebellar damage requires a balance between exploration and motor
1090 noise. *Brain* **139**, 101–114 (2016).

1091 9. Vassiliadis, P., Derosiere, G. & Duque, J. Beyond Motor Noise : Considering Other
1092 Causes of Impaired Reinforcement Learning in Cerebellar Patients. *Eneuro* **6**, 1–4
1093 (2019).

1094 10. Widmer, M. *et al.* Reward During Arm Training Improves Impairment and Activity

1095 After Stroke: A Randomized Controlled Trial. *Neurorehabil. Neural Repair* **0**,

1096 154596832110628 (2021).

1097 11. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: A coordinate-

1098 based meta-analysis of BOLD fMRI experiments examining neural correlates of

1099 subjective value. *Neuroimage* **76**, 412–427 (2013).

1100 12. Hardwick, R. M., Rottschy, C., Miall, R. C. & Eickhoff, S. B. A quantitative meta-

1101 analysis and review of motor learning in the human brain. *Neuroimage* **67**, 283–

1102 297 (2013).

1103 13. Haber, S. N. Corticostriatal circuitry. *Dialogues Clin. Neurosci.* **18**, 7–21 (2016).

1104 14. Balleine, B. W., Delgado, M. R. & Hikosaka, O. The role of the dorsal striatum in

1105 reward and decision-making. *J. Neurosci.* **27**, 8161–8165 (2007).

1106 15. Piray, P., den Ouden, H. E. M., van der Schaaf, M. E., Toni, I. & Cools, R.

1107 Dopaminergic modulation of the functional ventrodorsal architecture of the human

1108 striatum. *Cereb. Cortex* **27**, 485–495 (2017).

1109 16. Hori, Y. *et al.* Ventral striatum links motivational and motor networks during

1110 operant-conditioned movement in rats. *Neuroimage* **184**, 943–953 (2019).

1111 17. Wachter, T., Lungu, O. V., Liu, T., Willingham, D. T. & Ashe, J. Differential Effect

1112 of Reward and Punishment on Procedural Learning. *J. Neurosci.* **29**, 436–443

1113 (2009).

1114 18. Widmer, M., Ziegler, N., Held, J., Luft, A. & Lutz, K. Rewarding feedback promotes

1115 motor skill consolidation via striatal activity. in *Progress in Brain Research* **5**, 303–

1116 323 (2016).

1117 19. Berke, J. D. Fast oscillations in cortical-striatal networks switch frequency
1118 following rewarding events and stimulant drugs. *Eur. J. Neurosci.* **30**, 848–859
1119 (2009).

1120 20. van der Meer, M. A. A. *et al.* Integrating early results on ventral striatal gamma
1121 oscillations in the rat. *Front. Neurosci.* **4**, 1–12 (2010).

1122 21. van der Meer, M. A. A. & Redish, A. D. Low and high gamma oscillations in rat
1123 ventral striatum have distinct relationships to behavior, reward, and spiking activity
1124 on a learned spatial decision task. *Front. Integr. Neurosci.* **3**, 1–19 (2009).

1125 22. Dwiel, L. L., Khokhar, J. Y., Connerney, M. A., Green, A. I. & Doucette, W. T.
1126 Finding the balance between model complexity and performance: Using ventral
1127 striatal oscillations to classify feeding behavior in rats. *PLoS Comput. Biol.* **15**, 1–
1128 19 (2019).

1129 23. Matsumoto, J. *et al.* Neuronal responses in the nucleus accumbens shell during
1130 sexual behavior in male rats. *J. Neurosci.* **32**, 1672–1686 (2012).

1131 24. Kalenscher, T., Lansink, C. S., Lankelma, J. V. & Pennartz, C. M. A. Reward-
1132 associated gamma oscillations in ventral striatum are regionally differentiated and
1133 modulate local firing activity. *J. Neurophysiol.* **103**, 1658–1672 (2010).

1134 25. Cohen, M. X. *et al.* Good vibrations: Cross-frequency coupling in the human
1135 nucleus accumbens during reward processing. *J. Cogn. Neurosci.* **21**, 875–889
1136 (2009).

1137 26. Sepe-Forrest, L., Carver, F. W., Quentin, R., Holroyd, T. & Nugent, A. C. Basal

1138 ganglia activation localized in MEG using a reward task. *Neuroimage: Reports* **1**,
1139 100034 (2021).

1140 27. Herrojo-Ruiz, M. *et al.* Involvement of human internal globus pallidus in the early
1141 modulation of cortical error-related activity. *Cereb. Cortex* **24**, 1502–1517 (2014).

1142 28. Jenkinson, N. & Brown, P. New insights into the relationship between dopamine,
1143 beta oscillations and motor function. *Trends Neurosci.* **34**, 611–618 (2011).

1144 29. Brown, P. Abnormal oscillatory synchronisation in the motor system leads to
1145 impaired movement. *Curr. Opin. Neurobiol.* **17**, 656–664 (2007).

1146 30. McCarthy, M. M. *et al.* Striatal origin of the pathologic beta oscillations in
1147 Parkinson's disease. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 11620–11625 (2011).

1148 31. Kondabolu, K. *et al.* Striatal cholinergic interneurons generate beta and gamma
1149 oscillations in the corticostriatal circuit and produce motor deficits. *Proc. Natl.*
1150 *Acad. Sci. U. S. A.* **113**, 3159–3168 (2016).

1151 32. Williams, Z. M. & Eskandar, E. N. Selective enhancement of associative learning
1152 by microstimulation of the anterior caudate. *Nat. Neurosci.* **9**, 562–568 (2006).

1153 33. Nakamura, K. & Hikosaka, O. Facilitation of saccadic eye movements by
1154 postsaccadic electrical stimulation in the primate caudate. *J. Neurosci.* **26**, 12885–
1155 12895 (2006).

1156 34. Deng, Z. De, Lisanby, S. H. & Peterchev, A. V. Electric field depth-focality tradeoff
1157 in transcranial magnetic stimulation: Simulation comparison of 50 coil designs.
1158 *Brain Stimul.* **6**, 1–13 (2013).

1159 35. Wagner, T. *et al.* Transcranial direct current stimulation: A computer-based human

1160 model study. *Neuroimage* **35**, 1113–1124 (2007).

1161 36. Nickchen, K. *et al.* Reversal learning reveals cognitive deficits and altered
1162 prediction error encoding in the ventral striatum in Huntington’s disease. *Brain*
1163 *Imaging Behav.* **11**, 1862–1872 (2017).

1164 37. Schmidt, L. *et al.* Disconnecting force from money: Effects of basal ganglia
1165 damage on incentive motivation. *Brain* **131**, 1303–1310 (2008).

1166 38. Seymour, B. *et al.* Deep brain stimulation of the subthalamic nucleus modulates
1167 sensitivity to decision outcome value in Parkinson’s disease. *Sci. Rep.* **6**, 1–12
1168 (2016).

1169 39. Atkinson-Clement, C. *et al.* Effects of subthalamic nucleus stimulation and
1170 levodopa on decision-making in Parkinson’s disease. *Mov. Disord.* **34**, 377–385
1171 (2019).

1172 40. Grossman, N. *et al.* Noninvasive Deep Brain Stimulation via Temporally Interfering
1173 Electric Fields. *Cell* **169**, 1029-1041.e16 (2017).

1174 41. Song, S., Zhang, J., Tian, Y., Wang, L. & Wei, P. Temporal Interference
1175 Stimulation Regulates Eye Movements and Neural Activity in the Mice Superior
1176 Colliculus. *Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS* 6231–6234
1177 (2021). doi:10.1109/EMBC46164.2021.9629968

1178 42. Esmaeilpour, Z., Kronberg, G., Reato, D., Parra, L. C. & Bikson, M. Temporal
1179 interference stimulation targets deep brain regions by modulating neural
1180 oscillations. *Brain Stimul.* **14**, 55–65 (2021).

1181 43. Rampersad, S. *et al.* Prospects for transcranial temporal interference stimulation

1182 in humans: A computational study. *Neuroimage* **202**, 116124 (2019).

1183 44. von Conta, J. *et al.* Interindividual variability of electric fields during transcranial
1184 temporal interference stimulation (tTIS). *Sci. Rep.* **11**, 1–12 (2021).

1185 45. Cao, J., Doiron, B., Goswami, C. & Grover, P. The mechanics of temporal
1186 interference stimulation. *bioRxiv* 1–6 (2020). doi:10.1101/2020.04.23.051870

1187 46. Mirzakhalili, E., Barra, B., Capogrosso, M. & Lempka, S. F. Biophysics of
1188 Temporal Interference Stimulation. *Cell Syst.* **11**, 557–572.e5 (2020).

1189 47. von Conta, J. *et al.* Benchmarking the effects of transcranial temporal interference
1190 stimulation (tTIS) in humans. *Cortex* **154**, 299–310 (2022).

1191 48. Ma, R. *et al.* High Gamma and Beta Temporal Interference Stimulation in the
1192 Human Motor Cortex Improves Motor Functions. *Front. Neurosci.* **15**, 1–11 (2022).

1193 49. Hutcheon, B. & Yarom, Y. Resonance, oscillation and the intrinsic frequency
1194 preferences of neurons. *Trends Neurosci.* **23**, 216–222 (2000).

1195 50. Acerbo, E. *et al.* Focal Non-invasive Deep-brain Stimulation with Temporal
1196 Interference for the Suppression of Epileptic Biomarkers. 1–21 (2022).

1197 51. Wessel, M. J. *et al.* LTP-like noninvasive striatal brain stimulation enhances
1198 striatal activity and motor skill learning in humans. *bioRxiv* 1–30 (2022).
1199 doi:10.1101/2022.10.28.514204

1200 52. Violante, I. R. *et al.* Non-invasive temporal interference electrical stimulation of the
1201 human hippocampus. (2022).

1202 53. Abe, M. *et al.* Reward improves long-term retention of a motor memory through
1203 induction of offline memory gains. *Curr. Biol.* **21**, 557–562 (2011).

1204 54. Steel, A., Silson, E. H., Stagg, C. J. & Baker, C. I. The impact of reward and
1205 punishment on skill learning depends on task demands. *Sci. Rep.* **6**, 1–9 (2016).

1206 55. Vassiliadis, P., Lete, A., Duque, J. & Derosiere, G. Reward timing matters in motor
1207 learning. *iScience* (2022).

1208 56. Izawa, J. & Shadmehr, R. Learning from sensory and reward prediction errors
1209 during motor adaptation. *PLoS Comput. Biol.* **7**, 1–12 (2011).

1210 57. Mawase, F., Uehara, S., Bastian, A. J. & Celnik, P. Motor Learning Enhances
1211 Use-Dependent Plasticity. *J. Neurosci.* **37**, 2673–2685 (2017).

1212 58. Iacono, M. I. *et al.* MIDA: A multimodal imaging-based detailed anatomical model
1213 of the human head and neck. *PLoS One* **10**, (2015).

1214 59. Krause, M. R., Vieira, P. G., Csorba, B. A., Pilly, P. K. & Pack, C. C. Transcranial
1215 alternating current stimulation entrains single-neuron activity in the primate brain.
1216 *Proc. Natl. Acad. Sci. U. S. A.* **116**, 5747–5755 (2019).

1217 60. Krause, M. R., Vieira, P. G., Thivierge, J. P. & Pack, C. C. Brain stimulation
1218 competes with ongoing oscillations for control of spike timing in the primate brain.
1219 *PLoS Biol.* **20**, 1–27 (2022).

1220 61. Johnson, L. *et al.* Dose-dependent effects of transcranial alternating current
1221 stimulation on spike timing in awake nonhuman primates. *Sci. Adv.* **6**, 1–9 (2020).

1222 62. Antal, A. & Herrmann, C. S. Transcranial Alternating Current and Random Noise
1223 Stimulation: Possible Mechanisms. *Neural Plast.* **2016**, (2016).

1224 63. Alekseichuk, I., Wischnewski, M. & Opitz, A. A minimum effective dose for
1225 (transcranial) alternating current stimulation. *Brain Stimul.* **15**, 1221–1222 (2022).

1226 64. Jiang, T. Brainnetome: A new -ome to understand the brain and its disorders.

1227 *Neuroimage* **80**, 263–272 (2013).

1228 65. Areshenkoff, C. N., de Brouwer, A. J., Gale, D. J., Nashed, J. Y. & Gallivan, J. P.

1229 SEPARATE AND SHARED LOW - DIMENSIONAL NEURAL ARCHITECTURES

1230 FOR ERROR - BASED AND REINFORCEMENT. (2022).

1231 doi:10.1101/2022.08.16.504134

1232 66. Floyer-Lea, A. & Matthews, P. M. Changing brain networks for visuomotor control

1233 with increased movement automaticity. *J. Neurophysiol.* **92**, 2405–2412 (2004).

1234 67. Floyer-Lea, A. & Matthews, P. M. Distinguishable brain activation networks for

1235 short- and long-term motor skill learning. *J. Neurophysiol.* **94**, 512–518 (2005).

1236 68. Graybiel, A. M. & Grafton, S. T. The striatum: Where skills and habits meet. *Cold*

1237 *Spring Harb. Perspect. Biol.* **7**, 1–14 (2015).

1238 69. McLaren, D. G., Ries, M. L., Xu, G. & Johnson, S. C. A generalized form of

1239 context-dependent psychophysiological interactions (gPPI): A comparison to

1240 standard approaches. *Neuroimage* **61**, 1277–1286 (2012).

1241 70. Codol, O., Holland, P. J., Manohar, S. G. & Galea, J. M. Reward-Based

1242 Improvements in Motor Control Are Driven by Multiple Error-Reducing

1243 Mechanisms. *J. Neurosci.* **40**, 3604–3620 (2020).

1244 71. Sidarta, A., Vahdat, S., Bernardi, N. F. & Ostry, D. J. Somatic and reinforcement-

1245 based plasticity in the initial stages of human motor learning. *J. Neurosci.* **36**,

1246 11682–11692 (2016).

1247 72. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding

1248 subject-driven cognitive states with whole-brain connectivity patterns. *Cereb.*
1249 *Cortex* **22**, 158–165 (2012).

1250 73. Morishita, T. & Hummel, F. C. Non-invasive Brain Stimulation (NIBS) in Motor
1251 Recovery After Stroke: Concepts to Increase Efficacy. *Curr. Behav. Neurosci.*
1252 *Reports* **4**, 280–289 (2017).

1253 74. Donnelly, N. A. *et al.* Oscillatory activity in the medial prefrontal cortex and nucleus
1254 accumbens correlates with impulsivity and reward outcome. *PLoS One* **9**, 14–17
1255 (2014).

1256 75. Schall, T. A., Wright, W. J. & Dong, Y. Nucleus accumbens fast-spiking
1257 interneurons in motivational and addictive behaviors. *Mol. Psychiatry* **26**, 234–246
1258 (2021).

1259 76. Pisansky, M. T. *et al.* Nucleus Accumbens Fast-Spiking Interneurons Constrain
1260 Impulsive Action. *Biol. Psychiatry* **86**, 836–847 (2019).

1261 77. Kirby, K. N., Petry, N. M. & Bickel, W. K. Heroin addicts have higher discount rates
1262 for delayed rewards than non-drug-using controls. *J. Exp. Psychol. Gen.* **128**, 78–
1263 87 (1999).

1264 78. Mitchell, J. M., Fields, H. L., D'Esposito, M. & Boettiger, C. A. Impulsive
1265 responding in alcoholics. *Alcohol. Clin. Exp. Res.* **29**, 2158–2169 (2005).

1266 79. Catanese, J., Carmichael, J. E. & van der Meer, M. A. A. Low- and high-gamma
1267 oscillations deviate in opposite directions from zero-phase synchrony in the limbic
1268 corticostriatal loop. *J. Neurophysiol.* **116**, 5–17 (2016).

1269 80. Rothé, M., Quilodran, R., Sallet, J. & Procyk, E. Coordination of high gamma

1270 activity in anterior cingulate and lateral prefrontal cortical areas during adaptation.

1271 *J. Neurosci.* **31**, 11110–11117 (2011).

1272 81. Del Arco, A., Park, J., Wood, J., Kim, Y. & Moghaddam, B. Adaptive encoding of
1273 outcome prediction by prefrontal cortex ensembles supports behavioral flexibility.

1274 *J. Neurosci.* **37**, 8363–8373 (2017).

1275 82. Yoshimoto, A., Shibata, Y., Kudara, M., Ikegaya, Y. & Matsumoto, N.
1276 Enhancement of Motor Cortical Gamma Oscillations and Sniffing Activity by
1277 Medial Forebrain Bundle Stimulation Precedes Locomotion. *eNeuro* **9**, 1–14
1278 (2022).

1279 83. Courtemanche, R., Fujii, N. & Graybiel, A. M. Synchronous, Focally Modulated β -
1280 Band Oscillations Characterize Local Field Potential Activity in the Striatum of
1281 Awake Behaving Monkeys. *J. Neurosci.* **23**, 11741–11752 (2003).

1282 84. Costa, R. M. *et al.* Rapid Alterations in Corticostriatal Ensemble Coordination
1283 during Acute Dopamine-Dependent Motor Dysfunction. *Neuron* **52**, 359–369
1284 (2006).

1285 85. Engel, A. K. & Fries, P. Beta-band oscillations-signalling the status quo? *Curr.*
1286 *Opin. Neurobiol.* **20**, 156–165 (2010).

1287 86. Uehara, S., Mawase, F. & Celnik, P. Learning similar actions by reinforcement or
1288 sensory-prediction errors rely on distinct physiological mechanisms. *Cereb. Cortex*
1289 **28**, 3478–3490 (2018).

1290 87. Mathis, M. W., Mathis, A. & Uchida, N. Somatosensory Cortex Plays an Essential
1291 Role in Forelimb Motor Adaptation in Mice. *Neuron* **93**, 1493-1503.e6 (2017).

1292 88. Brücke, C. *et al.* Scaling of movement is related to pallidal γ oscillations in patients
1293 with dystonia. *J. Neurosci.* **32**, 1008–1019 (2012).

1294 89. Soderstrom, N. C. & Bjork, R. A. Learning Versus Performance: An Integrative
1295 Review. *Perspect. Psychol. Sci.* **10**, 176–199 (2015).

1296 90. Dhawale, A. K., Miyamoto, Y. R., Smith, M. A. & Ölveczky, B. P. Adaptive
1297 Regulation of Motor Variability. *Curr. Biol.* **29**, 3551-3562.e7 (2019).

1298 91. Beliaeva, V., Savvateev, I., Zerbi, V. & Polania, R. Toward integrative approaches
1299 to study the causal role of neural oscillations via transcranial electrical stimulation.
1300 *Nat. Commun.* **12**, 1–12 (2021).

1301 92. Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L. & Haith, A. M. Motor
1302 Learning. *9*, 613–663 (2019).

1303 93. Averbeck, B. & O'Doherty, J. P. Reinforcement-learning in fronto-striatal circuits.
1304 *Neuropsychopharmacology* **47**, 147–162 (2022).

1305 94. Acerbo, E. *et al.* Focal non-invasive deep-brain stimulation with temporal
1306 interference for the suppression of epileptic biomarkers. *Front. Neurosci.* **16**, 1–12
1307 (2022).

1308 95. Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh
1309 inventory. *Neuropsychologia* **9**, 97–113 (1971).

1310 96. Kaplan, B. A. *et al.* Automating Scoring of Delay Discounting for the 21- and 27-
1311 Item Monetary Choice Questionnaires. *Behav. Anal.* **39**, 293–304 (2016).

1312 97. Mitchell, M. R. & Potenza, M. N. Recent Insights into the Neurobiology of
1313 Impulsivity. *Curr. Addict. Reports* **1**, 309–319 (2014).

1314 98. Brainard, D. H. The Psychophysics Toolbox. *Spat. Vis.* **10**, 433–436 (1997).

1315 99. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming
1316 numbers into movies. *Spat. Vis.* **10**, 437–442 (1997).

1317 100. Dayan, E., Averbeck, B. B., Richmond, B. J. & Cohen, L. G. Stochastic
1318 reinforcement benefits skill acquisition. *Learn. Mem.* **21**, 140–142 (2014).

1319 101. Grossman, N. Modulation without surgical intervention. *Science (80-)*. **361**, 461–
1320 462 (2018).

1321 102. Antal, A. *et al.* Low intensity transcranial electric stimulation: Safety, ethical, legal
1322 regulatory and application guidelines. *Clin. Neurophysiol.* **128**, 1774–1809 (2017).

1323 103. Ekhtiari, H. *et al.* A checklist for assessing the methodological quality of concurrent
1324 tES-fMRI studies (ContES checklist): a consensus study and statement. *Nat. Protoc.* **17**, 596–617 (2022).

1326 104. Bossetti, C. A., Birdno, M. J. & Grill, W. M. Analysis of the quasi-static
1327 approximation for calculating potentials generated by neural stimulation. *J. Neural
1328 Eng.* **5**, 44–53 (2008).

1329 105. Hasgall, P. *et al.* “IT’IS Database for thermal and electromagnetic parameters of
1330 biological tissues,” Version 4.1. (2022). doi:10.13099/VIP21000-04-1

1331 106. Seeck, M. *et al.* The standardized EEG electrode array of the IFCN. *Clin.
1332 Neurophysiol.* **128**, 2070–2077 (2017).

1333 107. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects
1334 models using lme4. *J. Stat. Softw.* **67**, (2015).

1335 108. Ryu, E. Effects of skewness and kurtosis on normal-theory based maximum

1336 likelihood test statistic in multilevel structural equation modeling. *Behav. Res.*

1337 *Methods* **43**, 1066–1074 (2011).

1338 109. Nieuwenhuis, R., te Grotenhuis, M. & Pelzer, B. Influence.ME: Tools for detecting

1339 influential data in mixed effects models. *R J.* **4**, 38–47 (2012).

1340 110. Luke, S. G. Evaluating significance in linear mixed-effects models in R. *Behav.*

1341 *Res. Methods* **49**, 1494–1502 (2017).

1342 111. Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the

1343 linear model: An alternative to least squares means. *Am. Stat.* **34**, 216–221

1344 (1980).

1345 112. Ben-Shachar, M., Lüdecke, D. & Makowski, D. effectsize: Estimation of Effect Size

1346 Indices and Standardized Parameters. *J. Open Source Softw.* **5**, 2815 (2020).

1347 113. Derosière, G., Billot, M., Ward, E. T. & Perrey, S. Adaptations of motor neural

1348 structures' activity to lapses in attention. *Cereb. Cortex* **25**, 66–74 (2015).

1349 114. Okamoto, M. *et al.* Three-dimensional probabilistic anatomical cranio-cerebral

1350 correlation via the international 10-20 system oriented for transcranial functional

1351 brain mapping. *Neuroimage* **21**, 99–111 (2004).

1352 115. Rolls, E. T., Huang, C. C., Lin, C. P., Feng, J. & Joliot, M. Automated anatomical

1353 labelling atlas 3. *Neuroimage* **206**, 116189 (2020).

1354 116. Hampton, W. H., Alm, K. H., Venkatraman, V., Nugiel, T. & Olson, I. R.

1355 Dissociable frontostriatal white matter connectivity underlies reward and motor

1356 impulsivity. *Neuroimage* **150**, 336–343 (2017).

1357 117. Mosley, P. E. *et al.* The structural connectivity of discrete networks underlies

1358 impulsivity and gambling in Parkinson's disease. *Brain* **142**, 3917–3935 (2019).

1359 118. Ma, I. *et al.* Ventral striatal hyperconnectivity during rewarded interference control

1360 in adolescents with ADHD. *Cortex* **82**, 225–236 (2016).

1361 119. Wang, Q. *et al.* Dissociated neural substrates underlying impulsive choice and

1362 impulsive action. *Neuroimage* **134**, 540–549 (2016).

1363