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Abstract

The rapid growth of genomic data has led to a new research paradigm where data are stored
centrally in Trusted Research Environments (TRES) such as the All of Us Researcher
Workbench (RW) and the UK Biobank Research Analysis Platform (RAP). To characterize the
advantages and drawbacks of different TRE attributes in facilitating cross-cohort analysis, we
conducted a Genome-Wide Association Study (GWAS) of standard lipid measures on the UKB
RAP and AoU RW using two approaches: meta-analysis and pooled analysis. We curated lipid
measurements for 37,754 All of Us participants with whole genome sequence (WGS) data and
190,982 UK Biobank participants with whole exome sequence (WES) data. For the meta-
analysis, we performed a GWAS of each cohort in their respective platform and meta-analyzed
the results. We separately performed a pooled GWAS on both datasets combined. We identified
454 and 445 significant variants in meta-analysis and pooled analysis, respectively. Comparison
of full summary data from both meta-analysis and pooled analysis with an external study
showed strong correlation of known loci with lipid levels (R*~91-98%). Importantly, 84 variants
met the significance threshold only in the meta-analysis and 75 variants were significant only in
pooled analysis. These method-specific differences may be explained by differences in cohort
size, ancestry, and phenotype distributions in All of Us and UK Biobank. Importantly, we noted a
significant increase in the proportion of significant variants predominantly from non-European
ancestry individuals in the pooled analysis compared to meta-analysis (p=0.01). Pooled analysis
required about half as many computational steps as meta-analysis. These findings have
important implications for both platform implementations and researchers undertaking large-
scale cross-cohort analyses, as technical and policy choices lead to cross-cohort analyses
generating similar, but not identical results, particularly for non-European ancestral populations.


https://doi.org/10.1101/2022.11.29.518423
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.29.518423; this version posted December 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Main

Traditional data sharing processes require researchers to download copies of data to their own
systems. More recently, health research is shifting to use Trusted Research Environments
(TRES), such as the All of Us Researcher Workbench (AoU RW) and the UK Biobank Research
Analysis Platform (UKB RAP), for large-scale clinical and genomic data-sharing and analysis."™
In general, a TRE is a secure computing environment which provides approved researchers
with tools to access and analyze sensitive health data. TREs offer many benefits, including 1)
increased protection of study participant data, 2) decreased barriers to access and analyze
data, 3) lower cost of shared data storage, and 4) increased collaboration across the scientific
community.”” The positive impact of TREs is clear, as is their potential to facilitate population-
and global-scale health research.®?

For many important reasons, including participant data privacy, trust and security, TREs often
implement a variety of policy and technological safeguards. For example, data that reside in an
enclave may not be allowed to leave the environment in non-aggregated form '>**. Researchers
wishing to safely and appropriately analyze data across different TREs face technological
hurdles and policy requirements to do so **. Several approaches to data analysis across
enclaves have been proposed. These include a meta-analysis whereby researchers perform
analysis in separate TREs and then meta-analyze de-identified aggregate results outside of an
enclave, and pooled analysis whereby researchers create and analyze merged data within a
single enclave (Fig. 1). Each approach has advantages and limitations. All approaches to
cross-analysis benefit from improved harmonization and standardization of data, policies, and
working environments.®** Together with the broader research community, data providers play a
critical role in charting approved paths to cross-analysis and disseminating this information
broadly. This paper describes approaches to cross-analyze All of Us and UK Biobank data, and
discusses benefits and limitations of each approach with respect to cost, complexity, and
scientific utility (Supplemental Fig. 1).

Specifically, a genome-wide association study (GWAS) was used to explore cross-analysis of
UK Biobank and All of Us data, as it is a standard analytical approach that benefits significantly
from the boost in power obtained from increased sample size.'***> Additionally, methods for
meta-analysis and pooled GWAS are well developed. *® Circulating lipid concentrations were
chosen as the target phenotype to enable validation of the two approaches by replicating well-
established genetic associations. The work presented here is the result of collaboration between the
All of Us and UK Biobank programs intended to build and describe research resources rather
than discover novel associations.
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Fig. 1. Outline of steps in the meta- and pooled analyses for All of Us and UK Biobank
cross-cohort analysis. Researchers analyzing data across TREs, using either meta-analysis
or a pooled approach, must negotiate policy requirements and technical hurdles. Top:
Computational steps involved in meta-analysis, many of which are duplicated. Bottom:
Computational steps involved in pooled analysis, where each distinct step is performed only
once.
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Results

We performed a genome-wide association study on circulating lipid levels involving All of Us
whole genome sequence data and UK Biobank whole exome sequence data twice - (1) by
meta-analyzing GWAS results from separate TREs and (2) by analyzing pooled data in a single
TRE. The goals, recruitment methods, scientific rationale and genomic data for All of Us and UK
Biobank have been described previously.™* In All of Us, we leveraged 98,622 whole genome
sequenced samples alongside 200,643 whole exome sequenced samples from the UK Biobank.
Although whole genome sequence data are available for UK Biobank, pooled analysis would
require the data to be moved to a common enclave, which is not permitted by its access policy.
The 200k exome release from UK Biobank was therefore explicitly chosen for use in this project
because it was the last release of individual-level UK Biobank sequence data permitted to be
analyzed outside of the UKB RAP, and therefore available for use in both pooled and meta-
analyses performed on the AoU RW. Since our project was focused on comparing the
computational approaches rather than on discovering new associations, maximal sample sizes
were not needed.

The Meta-Analysis

For the meta-analysis, GWAS of lipid levels were performed separately in the All of Us
and UK Biobank TREs (see methods for further details). Phenotypes were prepared separately.
We curated lipid phenotypes (high-density lipoprotein cholesterol: HDL-C, low-density
lipoprotein cholesterol: LDL-C, total cholesterol: TC, triglycerides: TG) using the cohort builder
tool within the AoU RW. We obtained phenotype information on one or more lipid
measurements from electronic health records for 37,754 All of Us participants with available
whole genome sequence data. In the UK Biobank, one or more lipid measurements from
systematic central laboratory assay were available for 190,982 participants with exome
sequence data'’. Covariate information (age, sex at birth, self-reported race) and data on lipid-
lowering medication for these corresponding samples were extracted from All of Us survey and
electronic health record data and UK Biobank self-reported data. The lipid phenotypes were
adjusted for statin medication *** and normalized (as described in methods).

A GWAS was performed in each cohort separately using REGENIE ?° on the subset of variants
within the UK Biobank exonic capture regions (Fig. 2). In each TRE, we retained variants with
allele count (AC) >=6, since variants with an exceptionally low allele count are not considered
by the analysis method and obtained 1,699,534 biallelic exonic variants from All of Us and
2,158,225 from the UK Biobank. After applying variant quality control to filter out low quality
variants, single variant GWAS was performed with 1,581,044 variants from the All of Us cohort
and associated with the LDL-C phenotype. Separately, this same process was carried out with
2,107,238 variants from the UK Biobank cohort. Each set of results was then filtered to remove
AC<40 in accordance with the All of Us Data and Statistics Dissemination Policy, which
disallows disclosure of group counts under 20 prior to meta-analysis and a given individual
could have two copies of a single allele *°. All of Us does permit researchers to request an
exception to this policy through the program’s Resource Access Board, however we chose not
to do so for this project to better explore the constraints in place by default. As a result, only
30% of variants (254,931) were retained from All of Us and 23% of variants (469,809) were
retained from UK Biobank for meta-analysis. Finally, we meta-analyzed variants by combining
the summary statistics obtained from both studies using an inverse variance-weighted fixed
effects method implemented in METAL . 454 variants from 286 loci (r*:0.5) were significantly
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associated (p<5E-08) with LDL-C (Fig. 3b, Supplemental Table 2).
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Fig. 2. Flow diagram highlighting the number of variants and sequenced samples retained at
each stage of the meta- and pooled analyses. Whole Genome Sequencing, WGS. Whole
Exome Sequencing, WES. Minor Allele Count, MAC.

The Pooled Analysis

For the pooled analysis, data from the UK Biobank were copied into the AoU RW for
cross-analysis with data from All of Us. Phenotypes were prepared as previously described and
merged into a single table. Genomic data were prepared by merging variants for all available
samples from the UK Biobank and All of Us cohorts into a single genomic data set (Fig. 2). For
the pooled analysis, biallelic variants were retained if the same variant was present in both
cohorts to avoid the clear batch effect of a variant present in only one cohort. We obtained
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4,139,211 biallelic exonic variants for the pooled analysis after subsetting to UK Biobank exonic
capture regions. 4,467,359 biallelic exonic variants were found only in UK Biobank and
5,447,006 were found only in All of Us (Supplemental Fig. 4) and are therefore not included in
the pooled genomic data. Ultimately, GWAS was performed on 2,323,141 merged variants in
the pooled cohort for each of the lipid phenotypes. Cohort source (either All of Us or UK
Biobank) was included as an additional covariate to mitigate potential batch effects from the
different sequencing approaches and informatics pipelines used in All of Us and UK Biobank
(see supplemental methods). 464 variants were significantly associated (p<5E-08) with the
LDL-C phenotype, 445 from 264 loci (r*:0.5) of which meet the data dissemination rule and are
reported here (Fig. 3c, Supplemental Table 2).
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Fig. 3. a) Participant LDL-C levels for each cohort, before (left) and after (right) adjusting for statin use.
Note that a few very high outliers were filtered to improve readability of the plot. b) Meta analysis results
for LDL-C GWAS on merged exonic variants. ¢) Pooled results for LDL-C GWAS on merged exonic
variants. Both replicate known gene associations.

One concern of doing cross-analyses is the potential for batch effects. To explore potential
batch effects in more detail in the pooled genomic data, we performed a separate GWAS to test
for associations using the source cohort (either All of Us or UK Biobank) as the trait. Results
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were obtained for all autosomes except chrl0, chrl3, chrl8, chr20 (see methods). 2,167
variants with AC>=40 were significantly associated (p<5E-08) (Supplemental Table 3). Further
investigation of variant quality suggests some of the variants significantly affected by batch are
in difficult-to-map regions of the genome, and therefore may be due to differences in
sequencing approach and/or informatics calling pipelines used in data generation, but the
majority appear to be real variants (see Supplemental Fig. 13). Only 2 out of 2,167 significant
batch variants (Supplemental Fig. 14) overlapped with significant variants identified in the LDL-
C GWAS studies and therefore our pooled results were robust to potential batch effects.

Scientific Differences between Pooled and Meta-Analyses

We sought to test whether important scientific differences exist between our pooled and
meta-analyses. We first investigated how the analytical approach impacted the identification of
variants significantly associated with our phenotypes of interest. All significant variants identified
by either method were previously reported to be associated with plasma lipids in external
datasets (Supplemental Table 2). We then tested the extent to which each approach replicates
known associations by comparing lipid GWAS results with two previously published datasets
that contain the largest amount of data on exome and genome sequencing lipid associations
2223 The Selvaraj study includes diverse individuals from an external TOPMed cohort. The
Hindy study included ~40,000 individuals from the UK Biobank (partially overlapping with our
UK Biobank dataset) as well as ~170,000 other individuals, most of whom were of European
ancestry. Effect sizes from both of our analyses are highly correlated with the two previously
published standards (Fig. 4b). Analytical approach had little impact on either the number of
significant SNPs or the concordance (R?) of associations in common with the Selvaraj study.
When compared with the Hindy study, an average of ~10 more genome-wide significant SNPs
were retained with the pooled analysis (Supplemental Fig. 10), however the concordance (R?)
was slightly lower for all lipid phenotypes using the pooled approach (Fig. 4b). We next
examined whether the pooled analysis includes a broader total set of variants than the meta-
analysis. There are ~1,000,000 variants which were present in only pooled analysis, most of
which were of lower minor allele frequency (Fig. 4a).
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Fig. 4. Scientific differences in pooled and meta-analyses demonstrated by (a) examination of
variants included only in the pooled analysis and (b) comparison of lipid GWAS results against
two previously published reference datasets. (c) a bar chart of ancestry proportions across all
methods with the variant results meeting genome-wide significance superimposed. Here, AFR,
AMR, EAS, NFE, and SAS indicate African, American, East Asian, Non-Finish European, and
South Asian ancestry groups, respectively.

Next, we tested how the analytical approach impacted the ancestry frequency distributions of
significant variants. We obtained ancestry data from gnomAD and referenced the popmax
ancestry information **. Out of the 454 significant variants from meta-analysis and 445 variants
from pooled analysis, 370 variants were common between both analyses. The variants common
between both analyses were from different ancestral groups, 15% African, 12% American, 25%
Non-Finnish European, 24% each from East Asian and South Asian groups. Around 84 variants
were identified as genome-wide significant in meta-analysis but not in the pooled analysis,
whereas 75 variants were significant in the pooled analysis but not in meta-analysis. Some of
the variants considered significant in only one method were below but near the significance
cutoff, or not included in both analyses due to AC filtering or variant QC (Supplemental Fig. 8
and 9). Variants unique to the pooled analysis were connected to African and American
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ancestry compared to variants from meta-analysis (p-value 0.01). (Fig. 4c, Supplemental
Table 4). We identified one (rs145777339) and eight low frequency variants (AF<0.01) from
meta- and pooled analysis respectively from American and African ancestral groups (Table 1).
Since the All of Us cohort is enriched for American (Hispanic) and African ancestral samples,
we were able to identify multiple variants unique to these ancestral groups using the pooled
approach. Among the ancestry-specific variants from the pooled analysis we identified 3 rare
variants specific to African ancestry (rs67608943 [PCSK9], rs12713559[APOB], rs745561616
[CLASRP]) and 5 rare variants specific to American ancestry (rs143117125 [PCSK9],
rs759246439 [APOB], rs151135411 [SLC22A3], rs148698650 [LDLR], rs142412517[TOMM40]).
We also observed that the 84 variants uniquely significant in pooled analysis had more
significant CADD scores (Phred-scores >=20) when compared to those uniquely significant in
meta-analysis (p-value 0.004), with the most significant difference observed from the American
ancestral group (p-value 0.0008). The variants identified from pooled analysis (Phred-
scores>=20) were rare and present in non-European ancestry and these variants harbored
functional severe consequences extending to missense, frameshift, stop-gain, and splice-donor
mutations.

Table 1. Rare variants uniquely significant in either meta-analysis or pooled analysis

Analysis Type RS Id AF Ancestry Gene-Mutation

Meta-analysis rs145777339 0.003 AMR APOB p.Tyr3098=
Pooled rs67608943 0.003 AFR PCSK9 p.Tyrl42Ter
Pooled rs12713559 0.001 AFR APOB p.Arg3558Cys
Pooled rs745561616 0.009 AFR CLASRP p.Ser429 Arg430dup
Pooled rs143117125 0.001 AMR PCSK9 p.Asn157Lys
Pooled rs759246439 | 0.0003 AMR APOB p.Lys1474Arg
Pooled rs151135411 0.002 AMR SLC22A3 p.Arg298GIn
Pooled rs148698650 0.001 AMR LDLR p.Glu277Lys
Pooled rs142412517 0.001 AMR APOE p.Arg239Trp

Cost and complexity differences between Pooled and Meta-Analyses

Cost and complexity are critical considerations impacting the use and usability of large-
scale biomedical research data. We evaluated analysis complexity by examining the number of
discrete computational steps required to complete a lipid GWAS (Fig. 1). The number of arrows
(where each arrow represents an input or output of a computational step) required for the meta-
and pooled analysis were 40 and 23, respectively. The increased complexity of the meta-
analytical approach is primarily attributed to the duplication of computational steps within each
silo. Extending this model to a theoretical analysis of N datasets siloed in N distinct TRES, the
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number of arrows required to complete the GWAS scales linearly at ~4.5x faster rate with the
number of siloed TREs in the meta-analysis versus the pooled analysis (see methods).

Additionally, we report the cost comparison of the meta- versus pooled analyses. There are two
aspects to the overall cost: (1) Cloud resource utilization (including the cost of data storage and
cloud compute), and (2) the person-time needed to perform and review the results of each step.
For cloud data storage costs, the respective TREs assume the considerable cost of hosting the
primary formats of the genomic data, freeing researchers of this cost burden. Cloud compute
costs are tool dependent. For analysis steps involving R, PLINK, or REGENIE the cloud
compute resource costs are quite low - on the order of cents to a few dollars. Analysis steps
involving Hail, by comparison, incur increased cloud compute cost. Hail processes data in a
parallel fashion, leading to reduced wall-clock time to complete large-scale analyses. Hail is
particularly useful whenever there does not already exist an optimized, purpose-built tool to
perform the exact genomic data transformation needed. The primary cost driver for the meta-
analysis was the Hail processing needed to extract relevant All of Us data from a Hail matrix
table to create a BGEN file for use with REGENIE ($220). The primary cost driver for the pooled
analysis was the Hail processing needed to merge the UK Biobank and All of Us variant data
($360).

Person-time is highly dependent on the researcher’s familiarity with the datasets, methods,
tools, and TRE capabilities. We found the amount of person-time for the meta-analyses was
roughly twice that required for the pooled analyses. The person-time savings gained during
pooled data harmonization, manipulation, and visualization within a single analysis environment,
outweighed the cost of the additional steps required to merge the phenotype and genomic data.

Discussion

We present two potential methods for the cross-analysis of UK Biobank and All of Us data using
lipid GWAS as a case-study in computational approaches to analysis across TREs. Specifically,
we looked at scientific and technical differences between meta-analysis of data in separate TRE
silos, and pooled analysis of data in a single TRE. In each analysis we controlled for potential
batch effects by including the source cohort as a covariate and limiting both pooled and meta-
analyses to the subset of variants common in both the All of Us and UK Biobank cohorts. Each
approach successfully replicated known genetic associations with plasma lipids. For both
approaches, effect sizes found for each lipid trait are highly correlated with previously published
studies. However, we did note several important scientific differences. First, pooled analysis
enabled ~1,000,000 additional variants to be included in the GWAS, compared with meta-
analysis. Most of these variants were of lower minor allele frequencies, and thus this difference
may be attributed to the fact that merging the two cohorts prior to applying the AC > 40 filter
“rescued” rarer variants. We expect that the smaller overall number of variants retained for
meta-analysis because of data dissemination policies may negatively impact analysis of rare
disease or rare variants. In these cases, a pooled approach may be preferred, and researchers
may also choose to file for a dissemination policy exception if it is available (as is the case for
All of Us).

Second, the analytical approach impacted the number and ancestry frequency
distributions of variants significantly associated with our phenotype of interest. We report 454
variants significantly associated with LDL-C from meta-analysis of GWAS performed separately
in All of Us and UK Biobank TREs. Application of the All of Us Data and Statistics Dissemination
Policy prior to meta-analysis allowed fewer than 30% of potentially analyzable variants to be
retained for meta-analysis. In comparison, we found 464 variants significantly associated with
LDL-C from pooled analysis of All of Us genome and UK Biobank exome sequencing data, 445
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of which (96%) meet the data dissemination rule and are reported here. Importantly, pooled
analysis led to more non-European ancestry individuals in the final analytical cohort, and
significant variants unique to pooled analysis were connected to African and American ancestral
groups (p=0.01). Prior foundational work has demonstrated that given otherwise equivalent
datasets pooled and meta-analysis will generate theoretically and empirically equivalent
results.”>*® However real-world experience as illustrated above and by others*

has identified numerous differences between cohorts including phenotype ascertainment,
genetic ancestry and population structure. Therefore, it is not surprising that these two analytical
approaches yielded scientifically similar, but not identical, results. This has important
implications for studying genetic variants in diverse individuals.

In addition to the scientific differences considered above, researchers seeking to analyze data
across TREs face significant technical hurdles. Both complexity and cost scale with the number
of data enclaves cross-analyzed. The pooled GWAS approach described was the least complex
of the two investigated, requiring almost half as many discrete computational steps as meta-
analysis. While analysis steps are displayed in a logical order in Fig. 1, many steps are run
multiple times as an analyst becomes familiar with the datasets and capabilities of the
respective TRESs. There is a significant increase in meta-analysis cost associated with the
person-time required to develop and debug an analysis.

Table 2. Important capabilities and opportunities to consider for improved cross-cohort
analysis

Existing - Maintain a single centrally funded copy of data that can be accessed in-place by
Capability researchers

- Expand the ability to store temporary working data outside the source TRE (e.g.,
to create a single table containing all the multi-cohort phenotypes being studied)

- Engage with participants around the potential scientific value balanced by privacy
and trust concerns of disseminating more granular results (eg results summarizing
observations from <20 individuals)

- Support mirroring of several datasets into a mutually trusted multi-dataset TRE

Data Access
Safeguards
Opportunity

Existing - Have a reasonable researcher-onboarding process and good researcher
Capability documentation on how to do in-TRE analysis
Research
Support - Build a library of cross-TRE-analysis examples, including run-it-yourself copies of
Opportunity | well-documented analysis code, that cover a variety of analysis types and input
datasets

- Support standard code packaging tools, especially Docker containers and Jupyter
notebooks
Existing - Provide flexible access to native cloud infrastructure, including different compute,
Capability storage, and database resources
- Provide access to large-scale analysis methods, including special-purpose tools
Analysis like REGENIE and general-purpose tools like Hail
Infrastructure

- Provide access to a single dataset from more than one TRE and include mappings
to common vocabularies or data models, to make it easier to share analysis code

Opportunity | - Use standard analysis application programming interfaces, such as those from the
GA4GH, to allow central orchestration of distributed analysis using common
methods
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- Expose cloud-native data analysis tooling (vs. requiring researchers to learn and
use TRE-specific tooling and techniques)

This study found several capabilities provided by existing TREs that facilitated cross-cohort
analysis, and that if adopted by future TREs would facilitate incorporation of more data into
future analyses. These include: (1) maintaining a single centrally funded copy of data that can
be accessed in-place by researchers, (2) providing robust, integrated research support, (3)
providing access to flexible, scalable infrastructure and tools suited to large-scale data analysis
(Table 2).

In addition, this study identified many opportunities to improve the support for cross-analysis in
current and future TREs, including both technical and policy considerations (Table 2). In a
meta-analysis, TRE technical differences (such as differences in user interfaces, analytical
tools, supported programming languages, acceptable mechanisms for data access, acceptable
mechanisms for data output, and methods for organizing and orchestrating an analysis) are
considerable hurdles. The activation energy just to “get started” in multiple TREs is high. Our
study team found it challenging to manage multiple copies of code in separate TREs. Data
harmonization, a critical and time-consuming step, becomes much more tedious and error prone
when one cannot view and visualize together the row-level data. Many common analytical tasks,
including creating a simple comparison plot with dots and whisker detail like the one in Fig. 3a,
are infeasible with aggregate data. Improved harmonization and standardization of data,
policies, and working environments across TREs can help reduce this burden.

Policy decisions are based on complex rationale that attempt to balance participant privacy,
data security, scientific utility, and data sharing goals which have significant practical impact on
cross-analysis. Policy changes that enable researchers to cross-analyze pooled data in a
mutually trusted TRE would be a powerful step forward towards improved data usability and
increased research productivity. The additional friction incurred when performing data
harmonization for the meta-analysis could be reduced if TREs had reciprocal policies that
permitted some row level data, such as phenotypes and non-aggregated GWAS results, to be
securely transferred between them. This middle-ground approach may be a compromise to
increase data usability in a manner respectful of the current myriad of genomic data sharing
policy and governance issues.

The analyses and results in this paper have several limitations. First, cross-analyses were
limited to All of Us whole genome sequence and UK Biobank whole exome data available at the
time of this study. As noted previously, these data were generated using different sequencing
methods and informatics pipelines. Future cross-analyses may be improved by further
harmonizing approaches and joint-calling pipelines used to generate these data. The primary
goal of this work was to build and describe approved paths for cross-analysis to encourage use
by the broader scientific community. As such, the case study selected for cross-analysis was
intentionally limited to common variants associated with well-studied lipid phenotypes. Future
cross-analysis of All of Us and UK Biobank data exploring rare-variants and novel associations
are likely to have greater scientific impact, and potentially to surface greater sensitivity to
methodological differences. Finally, this study was limited to the cross-analysis of data residing
in two enclaves. Future work is needed to expand these approaches to cross-analysis of data
residing in additional enclaves.

Early paths for cross-analysis of population-scale clinical and genomic data are clear. Program
leaders, data providers, policy groups, and TRE developers have a shared responsibility to
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ensure data assets generated from public funding yield maximal scientific benefit while
continuing to balance and honor participants as partners in research programs. Thoughtful
approaches to reducing barriers for efficient data access and analysis across large programs
can increase the power of discovery while preserving participant trust. Data providers could
consider providing mirrored copies of the data in multiple clouds to better enable pooled
analyses. Additionally, and consistent with many existing efforts at federated analysis, data
generators can further harmonize and standardize methods to avoid the need for downstream
researchers to re-align and re-call genomic data. This study reinforces the need to reduce
friction in cross-analysis to fully realize the potential of global-scale health research.
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