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Abstract 
The rapid growth of genomic data has led to a new research paradigm where data are stored 
centrally in Trusted Research Environments (TREs) such as the All of Us Researcher 
Workbench (RW) and the UK Biobank Research Analysis Platform (RAP). To characterize the 
advantages and drawbacks of different TRE attributes in facilitating cross-cohort analysis, we 
conducted a Genome-Wide Association Study (GWAS) of standard lipid measures on the UKB 
RAP and AoU RW using two approaches: meta-analysis and pooled analysis. We curated lipid 
measurements for 37,754 All of Us participants with whole genome sequence (WGS) data and 
190,982 UK Biobank participants with whole exome sequence (WES) data. For the meta-
analysis, we performed a GWAS of each cohort in their respective platform and meta-analyzed 
the results. We separately performed a pooled GWAS on both datasets combined. We identified 
454 and 445 significant variants in meta-analysis and pooled analysis, respectively. Comparison 
of full summary data from both meta-analysis and pooled analysis with an external study 
showed strong correlation of known loci with lipid levels (R2~91-98%). Importantly, 84 variants 
met the significance threshold only in the meta-analysis and 75 variants were significant only in 
pooled analysis. These method-specific differences may be explained by differences in cohort 
size, ancestry, and phenotype distributions in All of Us and UK Biobank. Importantly, we noted a 
significant increase in the proportion of significant variants predominantly from non-European 
ancestry individuals in the pooled analysis compared to meta-analysis (p=0.01). Pooled analysis 
required about half as many computational steps as meta-analysis. These findings have 
important implications for both platform implementations and researchers undertaking large-
scale cross-cohort analyses, as technical and policy choices lead to cross-cohort analyses 
generating similar, but not identical results, particularly for non-European ancestral populations. 
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Main 
Traditional data sharing processes require researchers to download copies of data to their own 
systems. More recently, health research is shifting to use Trusted Research Environments 
(TREs), such as the All of Us Researcher Workbench (AoU RW) and the UK Biobank Research 
Analysis Platform (UKB RAP), for large-scale clinical and genomic data-sharing and analysis.1–4 
In general, a TRE is a secure computing environment which provides approved researchers 
with tools to access and analyze sensitive health data. TREs offer many benefits, including 1) 
increased protection of study participant data, 2) decreased barriers to access and analyze 
data, 3) lower cost of shared data storage, and 4) increased collaboration across the scientific 
community.5–7 The positive impact of TREs is clear, as is their potential to facilitate population- 
and global-scale health research.8,9 
 
For many important reasons, including participant data privacy, trust and security, TREs often 
implement a variety of policy and technological safeguards. For example, data that reside in an 
enclave may not be allowed to leave the environment in non-aggregated form 10,11. Researchers 
wishing to safely and appropriately analyze data across different TREs face technological 
hurdles and policy requirements to do so 12. Several approaches to data analysis across 
enclaves have been proposed. These include a meta-analysis whereby researchers perform 
analysis in separate TREs and then meta-analyze de-identified aggregate results outside of an 
enclave, and pooled analysis whereby researchers create and analyze merged data within a 
single enclave (Fig. 1).  Each approach has advantages and limitations. All approaches to 
cross-analysis benefit from improved harmonization and standardization of data, policies, and 
working environments.8,13 Together with the broader research community, data providers play a 
critical role in charting approved paths to cross-analysis and disseminating this information 
broadly. This paper describes approaches to cross-analyze All of Us and UK Biobank data, and 
discusses benefits and limitations of each approach with respect to cost, complexity, and 
scientific utility (Supplemental Fig. 1). 
 
Specifically, a genome-wide association study (GWAS) was used to explore cross-analysis of 
UK Biobank and All of Us data, as it is a standard analytical approach that benefits significantly 
from the boost in power obtained from increased sample size.14,15 Additionally, methods for 
meta-analysis and pooled GWAS are well developed. 16 Circulating lipid concentrations were 
chosen as the target phenotype to enable validation of the two approaches by replicating well-
established genetic associations. The work presented here is the result of collaboration between the 
All of Us and UK Biobank programs intended to build and describe research resources rather 
than discover novel associations. 
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Fig. 1. Outline of steps in the meta- and pooled analyses for All of Us and UK Biobank 
cross-cohort analysis.  Researchers analyzing data across TREs, using either meta-analysis 
or a pooled approach, must negotiate policy requirements and technical hurdles. Top: 
Computational steps involved in meta-analysis, many of which are duplicated. Bottom: 
Computational steps involved in pooled analysis, where each distinct step is performed only 
once. 
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Results 
We performed a genome-wide association study on circulating lipid levels involving All of Us 
whole genome sequence data and UK Biobank whole exome sequence data twice - (1) by 
meta-analyzing GWAS results from separate TREs and (2) by analyzing pooled data in a single 
TRE. The goals, recruitment methods, scientific rationale and genomic data for All of Us and UK 
Biobank have been described previously.1,2 In All of Us, we leveraged 98,622 whole genome 
sequenced samples alongside 200,643 whole exome sequenced samples from the UK Biobank. 
Although whole genome sequence data are available for UK Biobank, pooled analysis would 
require the data to be moved to a common enclave, which is not permitted by its access policy. 
The 200k exome release from UK Biobank was therefore explicitly chosen for use in this project 
because it was the last release of individual-level UK Biobank sequence data permitted to be 
analyzed outside of the UKB RAP, and therefore available for use in both pooled and meta-
analyses performed on the AoU RW. Since our project was focused on comparing the 
computational approaches rather than on discovering new associations, maximal sample sizes 
were not needed. 
 
The Meta-Analysis 

For the meta-analysis, GWAS of lipid levels were performed separately in the All of Us 
and UK Biobank TREs (see methods for further details). Phenotypes were prepared separately. 
We curated lipid phenotypes (high-density lipoprotein cholesterol: HDL-C, low-density 
lipoprotein cholesterol: LDL-C, total cholesterol: TC, triglycerides: TG) using the cohort builder 
tool within the AoU RW. We obtained phenotype information on one or more lipid 
measurements from electronic health records for 37,754 All of Us participants with available 
whole genome sequence data. In the UK Biobank, one or more lipid measurements from 
systematic central laboratory assay were available for 190,982 participants with exome 
sequence data17. Covariate information (age, sex at birth, self-reported race) and data on lipid-
lowering medication for these corresponding samples were extracted from All of Us survey and 
electronic health record data and UK Biobank self-reported data. The lipid phenotypes were 
adjusted for statin medication 18,19 and normalized (as described in methods). 

 
A GWAS was performed in each cohort separately using REGENIE 20 on the subset of variants 
within the UK Biobank exonic capture regions (Fig. 2). In each TRE, we retained variants with 
allele count (AC) >=6, since variants with an exceptionally low allele count are not considered 
by the analysis method and obtained 1,699,534 biallelic exonic variants from All of Us and 
2,158,225 from the UK Biobank. After applying variant quality control to filter out low quality 
variants, single variant GWAS was performed with 1,581,044 variants from the All of Us cohort 
and associated with the LDL-C phenotype. Separately, this same process was carried out with 
2,107,238 variants from the UK Biobank cohort. Each set of results was then filtered to remove 
AC<40 in accordance with the All of Us Data and Statistics Dissemination Policy, which 
disallows disclosure of group counts under 20 prior to meta-analysis and a given individual 
could have two copies of a single allele 10. All of Us does permit researchers to request an 
exception to this policy through the program’s Resource Access Board, however we chose not 
to do so for this project to better explore the constraints in place by default. As a result, only 
30% of variants (254,931) were retained from All of Us and 23% of variants (469,809) were 
retained from UK Biobank for meta-analysis. Finally, we meta-analyzed variants by combining 
the summary statistics obtained from both studies using an inverse variance-weighted fixed 
effects method implemented in METAL 21. 454 variants from 286 loci (r2:0.5) were significantly 
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associated (p<5E-08) with LDL-C (Fig. 3b, Supplemental Table 2).

 
Fig. 2. Flow diagram highlighting the number of variants and sequenced samples retained at 
each stage of the meta- and pooled analyses. Whole Genome Sequencing, WGS. Whole 
Exome Sequencing, WES. Minor Allele Count, MAC.  
 
The Pooled Analysis 

For the pooled analysis, data from the UK Biobank were copied into the AoU RW for 
cross-analysis with data from All of Us. Phenotypes were prepared as previously described and 
merged into a single table. Genomic data were prepared by merging variants for all available 
samples from the UK Biobank and All of Us cohorts into a single genomic data set (Fig. 2). For 
the pooled analysis, biallelic variants were retained if the same variant was present in both 
cohorts to avoid the clear batch effect of a variant present in only one cohort. We obtained 
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4,139,211 biallelic exonic variants for the pooled analysis after subsetting to UK Biobank exonic 
capture regions. 4,467,359 biallelic exonic variants were found only in UK Biobank and 
5,447,006 were found only in All of Us (Supplemental Fig. 4) and are therefore not included in 
the pooled genomic data. Ultimately, GWAS was performed on 2,323,141 merged variants in 
the pooled cohort for each of the lipid phenotypes. Cohort source (either All of Us or UK 
Biobank) was included as an additional covariate to mitigate potential batch effects from the 
different sequencing approaches and informatics pipelines used in All of Us and UK Biobank 
(see supplemental methods). 464 variants were significantly associated (p<5E-08) with the 
LDL-C phenotype, 445 from 264 loci (r2:0.5) of which meet the data dissemination rule and are 
reported here (Fig. 3c, Supplemental Table 2). 

 
 

 

Fig. 3. a) Participant LDL-C levels for each cohort, before (left) and after (right) adjusting for statin use. 
Note that a few very high outliers were filtered to improve readability of the plot. b) Meta analysis results 
for LDL-C GWAS on merged exonic variants. c) Pooled results for LDL-C GWAS on merged exonic 
variants. Both replicate known gene associations.  
 
One concern of doing cross-analyses is the potential for batch effects. To explore potential 
batch effects in more detail in the pooled genomic data, we performed a separate GWAS to test 
for associations using the source cohort (either All of Us or UK Biobank) as the trait. Results 
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were obtained for all autosomes except chr10, chr13, chr18, chr20 (see methods). 2,167 
variants with AC>=40 were significantly associated (p<5E-08) (Supplemental Table 3). Further 
investigation of variant quality suggests some of the variants significantly affected by batch are 
in difficult-to-map regions of the genome, and therefore may be due to differences in 
sequencing approach and/or informatics calling pipelines used in data generation, but the 
majority appear to be real variants (see Supplemental Fig. 13). Only 2 out of 2,167 significant 
batch variants (Supplemental Fig. 14) overlapped with significant variants identified in the LDL-
C GWAS studies and therefore our pooled results were robust to potential batch effects. 
 
Scientific Differences between Pooled and Meta-Analyses 

We sought to test whether important scientific differences exist between our pooled and 
meta-analyses. We first investigated how the analytical approach impacted the identification of 
variants significantly associated with our phenotypes of interest. All significant variants identified 
by either method were previously reported to be associated with plasma lipids in external 
datasets (Supplemental Table 2). We then tested the extent to which each approach replicates 
known associations by comparing lipid GWAS results with two previously published datasets 
that contain the largest amount of data on exome and genome sequencing lipid associations 
22,23. The Selvaraj study includes diverse individuals from an external TOPMed cohort. The 
Hindy study included ~40,000 individuals from the UK Biobank (partially overlapping with our 
UK Biobank dataset) as well as ~170,000 other individuals, most of whom were of European 
ancestry.  Effect sizes from both of our analyses are highly correlated with the two previously 
published standards (Fig. 4b).  Analytical approach had little impact on either the number of 
significant SNPs or the concordance (R2) of associations in common with the Selvaraj study. 
When compared with the Hindy study, an average of ~10 more genome-wide significant SNPs 
were retained with the pooled analysis (Supplemental Fig. 10), however the concordance (R2) 
was slightly lower for all lipid phenotypes using the pooled approach (Fig. 4b). We next 
examined whether the pooled analysis includes a broader total set of variants than the meta-
analysis. There are ~1,000,000 variants which were present in only pooled analysis, most of 
which were of lower minor allele frequency (Fig. 4a). 
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Fig. 4. Scientific differences in pooled and meta-analyses demonstrated by (a) examination of 
variants included only in the pooled analysis and (b) comparison of lipid GWAS results against 
two previously published reference datasets. (c) a bar chart of ancestry proportions across all 
methods with the variant results meeting genome-wide significance superimposed. Here, AFR, 
AMR, EAS, NFE, and SAS indicate African, American, East Asian, Non-Finish European, and 
South Asian ancestry groups, respectively.  
 
Next, we tested how the analytical approach impacted the ancestry frequency distributions of 
significant variants. We obtained ancestry data from gnomAD and referenced the popmax 
ancestry information 24. Out of the 454 significant variants from meta-analysis and 445 variants 
from pooled analysis, 370 variants were common between both analyses. The variants common 
between both analyses were from different ancestral groups, 15% African, 12% American, 25% 
Non-Finnish European, 24% each from East Asian and South Asian groups. Around 84 variants 
were identified as genome-wide significant in meta-analysis but not in the pooled analysis, 
whereas 75 variants were significant in the pooled analysis but not in meta-analysis. Some of 
the variants considered significant in only one method were below but near the significance 
cutoff, or not included in both analyses due to AC filtering or variant QC (Supplemental Fig. 8 
and 9). Variants unique to the pooled analysis were connected to African and American 
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ancestry compared to variants from meta-analysis (p-value 0.01). (Fig. 4c, Supplemental 
Table 4). We identified one (rs145777339) and eight low frequency variants (AF<0.01) from 
meta- and pooled analysis respectively from American and African ancestral groups (Table 1). 
Since the All of Us cohort is enriched for American (Hispanic) and African ancestral samples, 
we were able to identify multiple variants unique to these ancestral groups using the pooled 
approach. Among the ancestry-specific variants from the pooled analysis we identified 3 rare 
variants specific to African ancestry (rs67608943 [PCSK9], rs12713559[APOB], rs745561616 
[CLASRP]) and 5 rare variants specific to American ancestry (rs143117125 [PCSK9], 
rs759246439 [APOB], rs151135411 [SLC22A3], rs148698650 [LDLR], rs142412517[TOMM40]). 
We also observed that the 84 variants uniquely significant in pooled analysis had more 
significant CADD scores (Phred-scores >=20) when compared to those uniquely significant in 
meta-analysis (p-value 0.004), with the most significant difference observed from the American 
ancestral group (p-value 0.0008). The variants identified from pooled analysis (Phred-
scores>=20) were rare and present in non-European ancestry and these variants harbored 
functional severe consequences extending to missense, frameshift, stop-gain, and splice-donor 
mutations. 

 
Table 1. Rare variants uniquely significant in either meta-analysis or pooled analysis 

Analysis Type RS Id AF Ancestry Gene-Mutation 

Meta-analysis rs145777339 0.003 AMR APOB p.Tyr3098= 

Pooled rs67608943 0.003 AFR PCSK9 p.Tyr142Ter 

Pooled rs12713559 0.001 AFR APOB p.Arg3558Cys 

Pooled rs745561616 0.009 AFR CLASRP p.Ser429_Arg430dup 

Pooled rs143117125 0.001 AMR PCSK9 p.Asn157Lys 

Pooled rs759246439 0.0003 AMR APOB p.Lys1474Arg 

Pooled rs151135411 0.002 AMR SLC22A3 p.Arg298Gln 

Pooled rs148698650 0.001 AMR LDLR p.Glu277Lys 

Pooled rs142412517 0.001 AMR APOE p.Arg239Trp 

 

Cost and complexity differences between Pooled and Meta-Analyses 
Cost and complexity are critical considerations impacting the use and usability of large-

scale biomedical research data. We evaluated analysis complexity by examining the number of 
discrete computational steps required to complete a lipid GWAS (Fig. 1). The number of arrows 
(where each arrow represents an input or output of a computational step) required for the meta- 
and pooled analysis were 40 and 23, respectively. The increased complexity of the meta-
analytical approach is primarily attributed to the duplication of computational steps within each 
silo. Extending this model to a theoretical analysis of N datasets siloed in N distinct TREs, the 
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number of arrows required to complete the GWAS scales linearly at ~4.5x faster rate with the 
number of siloed TREs in the meta-analysis versus the pooled analysis (see methods).  

 
Additionally, we report the cost comparison of the meta- versus pooled analyses. There are two 
aspects to the overall cost: (1) Cloud resource utilization (including the cost of data storage and 
cloud compute), and (2) the person-time needed to perform and review the results of each step. 
For cloud data storage costs, the respective TREs assume the considerable cost of hosting the 
primary formats of the genomic data, freeing researchers of this cost burden. Cloud compute 
costs are tool dependent. For analysis steps involving R, PLINK, or REGENIE the cloud 
compute resource costs are quite low - on the order of cents to a few dollars. Analysis steps 
involving Hail, by comparison, incur increased cloud compute cost. Hail processes data in a 
parallel fashion, leading to reduced wall-clock time to complete large-scale analyses. Hail is 
particularly useful whenever there does not already exist an optimized, purpose-built tool to 
perform the exact genomic data transformation needed. The primary cost driver for the meta-
analysis was the Hail processing needed to extract relevant All of Us data from a Hail matrix 
table to create a BGEN file for use with REGENIE ($220). The primary cost driver for the pooled 
analysis was the Hail processing needed to merge the UK Biobank and All of Us variant data 
($360). 
 
Person-time is highly dependent on the researcher’s familiarity with the datasets, methods, 
tools, and TRE capabilities. We found the amount of person-time for the meta-analyses was 
roughly twice that required for the pooled analyses. The person-time savings gained during 
pooled data harmonization, manipulation, and visualization within a single analysis environment, 
outweighed the cost of the additional steps required to merge the phenotype and genomic data. 
 

Discussion 
We present two potential methods for the cross-analysis of UK Biobank and All of Us data using 
lipid GWAS as a case-study in computational approaches to analysis across TREs. Specifically, 
we looked at scientific and technical differences between meta-analysis of data in separate TRE 
silos, and pooled analysis of data in a single TRE. In each analysis we controlled for potential 
batch effects by including the source cohort as a covariate and limiting both pooled and meta-
analyses to the subset of variants common in both the All of Us and UK Biobank cohorts. Each 
approach successfully replicated known genetic associations with plasma lipids. For both 
approaches, effect sizes found for each lipid trait are highly correlated with previously published 
studies. However, we did note several important scientific differences. First, pooled analysis 
enabled ~1,000,000 additional variants to be included in the GWAS, compared with meta-
analysis. Most of these variants were of lower minor allele frequencies, and thus this difference 
may be attributed to the fact that merging the two cohorts prior to applying the AC > 40 filter 
“rescued” rarer variants. We expect that the smaller overall number of variants retained for 
meta-analysis because of data dissemination policies may negatively impact analysis of rare 
disease or rare variants. In these cases, a pooled approach may be preferred, and researchers 
may also choose to file for a dissemination policy exception if it is available (as is the case for 
All of Us). 

Second, the analytical approach impacted the number and ancestry frequency 
distributions of variants significantly associated with our phenotype of interest. We report 454 
variants significantly associated with LDL-C from meta-analysis of GWAS performed separately 
in All of Us and UK Biobank TREs. Application of the All of Us Data and Statistics Dissemination 
Policy prior to meta-analysis allowed fewer than 30% of potentially analyzable variants to be 
retained for meta-analysis. In comparison, we found 464 variants significantly associated with 
LDL-C from pooled analysis of All of Us genome and UK Biobank exome sequencing data, 445 
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of which (96%) meet the data dissemination rule and are reported here. Importantly, pooled 
analysis led to more non-European ancestry individuals in the final analytical cohort, and 
significant variants unique to pooled analysis were connected to African and American ancestral 
groups (p=0.01). Prior foundational work has demonstrated that given otherwise equivalent 
datasets pooled and meta-analysis will generate theoretically and empirically equivalent 
results.25,26 However real-world experience as illustrated above and by others27–29  
has identified numerous differences between cohorts including phenotype ascertainment, 
genetic ancestry and population structure. Therefore, it is not surprising that these two analytical 
approaches yielded scientifically similar, but not identical, results. This has important 
implications for studying genetic variants in diverse individuals. 
 
In addition to the scientific differences considered above, researchers seeking to analyze data 
across TREs face significant technical hurdles. Both complexity and cost scale with the number 
of data enclaves cross-analyzed. The pooled GWAS approach described was the least complex 
of the two investigated, requiring almost half as many discrete computational steps as meta-
analysis. While analysis steps are displayed in a logical order in Fig. 1, many steps are run 
multiple times as an analyst becomes familiar with the datasets and capabilities of the 
respective TREs. There is a significant increase in meta-analysis cost associated with the 
person-time required to develop and debug an analysis. 
 
Table 2. Important capabilities and opportunities to consider for improved cross-cohort 
analysis 

Data Access 
Safeguards 

Existing 

Capability 

- Maintain a single centrally funded copy of data that can be accessed in-place by 

researchers 

Opportunity 

- Expand the ability to store temporary working data outside the source TRE (e.g., 

to create a single table containing all the multi-cohort phenotypes being studied) 

- Engage with participants around the potential scientific value balanced by privacy 

and trust concerns of disseminating more granular results (eg results summarizing 

observations from <20 individuals) 

- Support mirroring of several datasets into a mutually trusted multi-dataset TRE 

Research 
Support 

Existing 

Capability 

- Have a reasonable researcher-onboarding process and good researcher 

documentation on how to do in-TRE analysis 

Opportunity 

- Build a library of cross-TRE-analysis examples, including run-it-yourself copies of 

well-documented analysis code, that cover a variety of analysis types and input 

datasets 

Analysis 

Infrastructure 

Existing 

Capability 

- Support standard code packaging tools, especially Docker containers and Jupyter 

notebooks 

- Provide flexible access to native cloud infrastructure, including different compute, 

storage, and database resources 

- Provide access to large-scale analysis methods, including special-purpose tools 

like REGENIE and general-purpose tools like Hail 

Opportunity 

- Provide access to a single dataset from more than one TRE and include mappings 

to common vocabularies or data models, to make it easier to share analysis code 

- Use standard analysis application programming interfaces, such as those from the 

GA4GH, to allow central orchestration of distributed analysis using common 

methods 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.11.29.518423doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518423
http://creativecommons.org/licenses/by-nc-nd/4.0/


- Expose cloud-native data analysis tooling (vs. requiring researchers to learn and 

use TRE-specific tooling and techniques) 

 
This study found several capabilities provided by existing TREs that facilitated cross-cohort 
analysis, and that if adopted by future TREs would facilitate incorporation of more data into 
future analyses. These include: (1) maintaining a single centrally funded copy of data that can 
be accessed in-place by researchers, (2) providing robust, integrated research support, (3) 
providing access to flexible, scalable infrastructure and tools suited to large-scale data analysis 
(Table 2). 
 
In addition, this study identified many opportunities to improve the support for cross-analysis in 
current and future TREs, including both technical and policy considerations (Table 2). In a 
meta-analysis, TRE technical differences (such as differences in user interfaces, analytical 
tools, supported programming languages, acceptable mechanisms for data access, acceptable 
mechanisms for data output, and methods for organizing and orchestrating an analysis) are 
considerable hurdles. The activation energy just to “get started” in multiple TREs is high. Our 
study team found it challenging to manage multiple copies of code in separate TREs. Data 
harmonization, a critical and time-consuming step, becomes much more tedious and error prone 
when one cannot view and visualize together the row-level data. Many common analytical tasks, 
including creating a simple comparison plot with dots and whisker detail like the one in Fig. 3a, 
are infeasible with aggregate data. Improved harmonization and standardization of data, 
policies, and working environments across TREs can help reduce this burden.  
 
Policy decisions are based on complex rationale that attempt to balance participant privacy, 
data security, scientific utility, and data sharing goals which have significant practical impact on 
cross-analysis. Policy changes that enable researchers to cross-analyze pooled data in a 
mutually trusted TRE would be a powerful step forward towards improved data usability and 
increased research productivity. The additional friction incurred when performing data 
harmonization for the meta-analysis could be reduced if TREs had reciprocal policies that 
permitted some row level data, such as phenotypes and non-aggregated GWAS results, to be 
securely transferred between them. This middle-ground approach may be a compromise to 
increase data usability in a manner respectful of the current myriad of genomic data sharing 
policy and governance issues. 
 
The analyses and results in this paper have several limitations. First, cross-analyses were 
limited to All of Us whole genome sequence and UK Biobank whole exome data available at the 
time of this study. As noted previously, these data were generated using different sequencing 
methods and informatics pipelines. Future cross-analyses may be improved by further 
harmonizing approaches and joint-calling pipelines used to generate these data. The primary 
goal of this work was to build and describe approved paths for cross-analysis to encourage use 
by the broader scientific community. As such, the case study selected for cross-analysis was 
intentionally limited to common variants associated with well-studied lipid phenotypes. Future 
cross-analysis of All of Us and UK Biobank data exploring rare-variants and novel associations 
are likely to have greater scientific impact, and potentially to surface greater sensitivity to 
methodological differences. Finally, this study was limited to the cross-analysis of data residing 
in two enclaves. Future work is needed to expand these approaches to cross-analysis of data 
residing in additional enclaves. 
 
Early paths for cross-analysis of population-scale clinical and genomic data are clear. Program 
leaders, data providers, policy groups, and TRE developers have a shared responsibility to 
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ensure data assets generated from public funding yield maximal scientific benefit while 
continuing to balance and honor participants as partners in research programs. Thoughtful 
approaches to reducing barriers for efficient data access and analysis across large programs 
can increase the power of discovery while preserving participant trust. Data providers could 
consider providing mirrored copies of the data in multiple clouds to better enable pooled 
analyses. Additionally, and consistent with many existing efforts at federated analysis, data 
generators can further harmonize and standardize methods to avoid the need for downstream 
researchers to re-align and re-call genomic data. This study reinforces the need to reduce 
friction in cross-analysis to fully realize the potential of global-scale health research. 
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