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Abstract (words 239) 
To improve ‘bench-to-bedside’ translation, it is integral that knowledge flow bidirectionally—from animal models to 
humans, and vice versa. This requires common analytical frameworks, as well as open software and data sharing practices. 
We share a new pipeline (and test dataset) for the preprocessing of wide-field optical fluorescence imaging data—an 
emerging mode applicable in animal models—as well as results from a functional connectivity and graph theory analysis 
inspired by recent work in the human neuroimaging field. The approach is demonstrated using a dataset comprised of two 
test-cases: (1) data from animals imaged during awake and anesthetized conditions with excitatory neurons labeled, and (2) 
data from awake animals with different genetically encoded fluorescent labels that target either excitatory neurons or 
inhibitory interneuron subtypes. Both seed-based connectivity and graph theory measures (global efficiency, transitivity, 
modularity, and characteristic path-length) are shown to be useful in quantifying differences between wakefulness states 
and cell populations. Wakefulness state and cell type show widespread effects on canonical network connectivity with 
variable frequency band dependence. Differences between excitatory neurons and inhibitory interneurons are observed, with 
somatostatin expressing inhibitory interneurons emerging as notably dissimilar from parvalbumin and vasoactive 
polypeptide expressing cells. In sum, we demonstrate that our pipeline can be used to examine brain state and cell-type 
differences in mesoscale imaging data, aiding translational neuroscience efforts. In line with open science practices, we 
freely release the pipeline and data to encourage other efforts in the community. 

Keywords: Wide-field calcium imaging; mesoscale imaging; inhibitory interneurons, functional connectivity, graph theory, 
preprocessing pipeline 
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1 Introduction  
Relative to neuroimaging modes that are applicable in humans (e.g., functional magnetic resonance imaging, fMRI), wide-
field optical imaging in rodents offers high spatiotemporal resolution and specificity with sufficient brain coverage to 
support network-based analyses. These attributes uniquely position wide-field optical imaging to help answer outstanding 
questions in network neuroscience about mammalian brain functional organization. To accelerate research in this area, a 
supportive open-source software environment and mechanism for sharing data is essential. To this end, we present a new 
preprocessing pipeline for wide-field optical imaging data with an accompanying dataset. Using these tools, we apply seed-
based connectivity and novel graph theory analyses, matching recent approaches developed for human fMRI studies, to 
these data [1], [2]. Given the wide range of topics covered in this work (e.g., wide-field optical imaging, software/data 
sharing, and connectivity as well as graph theory analyses), we briefly review the relevant literatures and describe how the 
approach presented here helps to address outstanding issues in neuroscience by crossing what have been traditional field 
boundaries. 

1.1 Measuring brain functional organization across species 

Blood oxygen level dependent (BOLD) fMRI is a safe, noninvasive, whole-brain measure of activity [3] that is applicable 
in animals and humans. These qualities have led to BOLD-fMRI becoming one of the most widely implemented modalities 
for measuring brain activity with a rapidly growing literature on analysis methods [4]–[10]. Yet, instances where BOLD-
fMRI measures are used to inform clinical practice are uncommon [11]. This lack of translation is in part due to the BOLD-
signal being a cell-type agnostic measure that is sensitive to changes in blood oxygenation, flow, and volume, rather than a 
direct measure of neural activity [12]. This limits our understanding of the biological basis for measures of brain function 
estimated from the BOLD-signal. At the preclinical level, we can bridge this gap with the use of complementary 
neuroimaging modes, in this case wide-field optical imaging, that offer more direct measures of neural activity with cell-
type specificity [13]. Here, we apply analysis methods commonly used on BOLD-fMRI data in a murine wide-field optical 
imaging dataset. This trans-disciplinary application of analysis techniques aims to cross-pollinate ideas about how to 
characterize brain functional organization across neuroimaging fields and species.  

1.2 Wide-field ‘mesoscale’ optical imaging 

Among optical imaging techniques, wide-field imaging offers a balance between resolution and field-of-view (FOV). For a 
recent review of wide-field (or mesoscale) optical imaging, herein ‘mesoscale imaging’, refer to Cardin et al. [14]. Using a 
microscope coupled camera, this mode can capture the mouse neocortex (1.5 x 1.5cm2) [15] with a spatial resolution of a 
few tens of microns and temporal resolution on the order of 10-50Hz [16]–[18]. The data are two-dimensional with the 
signal being a mixture of sources in depth. This spatiotemporal resolution is substantially higher than typical murine fMRI 
data (where voxels are hundreds of microns, and data are acquired at ~1Hz). Besides these gains in resolution, mesoscale 
imaging can access intrinsic, fluorescent and luminescent sources of contrast [19], [20]. Here, we focus on fluorescent 
calcium (Ca2+) imaging. These data have a high signal-to-noise ratio (SNR) and offer cell-type specificity [21]–[23]. While 
the data reported here are from transgenic animals (with genetically encoded GCaMP), the preprocessing pipeline and 
analysis methods we use are broadly applicable to other fluorescent indicators (e.g., RCaMP), data from virally transfected 
animals, and other optical signal sources provided they have a sufficient SNR.  

1.3 Preprocessing pipelines and our pipeline for dual-wavelength mesoscale imaging data 

The major sources of noise in raw mesoscale imaging data come from the acquisition (photobleaching, optical artifacts like 
dust, and a nonuniform luminance profile), non-neuronal physiological processes (vascular, cardiac and respiratory 
variation), and animal/brain movement [24]. If left uncorrected, noise can lead to aberrant statistical associations, and 
ultimately false inferences. Typically, raw data undergo noise correction via the application of several algorithms—each 
designed to remove noise from a specific source. When grouped together, these algorithms constitute a ‘preprocessing 
pipeline’. Once data go through a preprocessing pipeline, the impact of noise should be minimal, and instances where 
algorithms may have failed should be flagged (by quality control, QC, metrics). As of this writing, there are three open-
source pipelines for preprocessing mesoscale imaging data [25], [26], [27]. The features of these, as well as the pipeline we 
present here, are compared in detail below (3.3). Our pipeline was developed for ‘dual-wavelength’ mesoscale Ca2+ imaging, 
which is comprised of a fluorophore-sensitive (signal) and fluorophore-insensitive (noise) set of images [28], [29]. As part 
of the pipeline, the noise-channel is regressed from the signal-channel. Of note, our pipeline is built on an established 
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codebase called BioImage Suite (BIS) [30]. This is a medical imaging analysis software package with a focus on fMRI data, 
as well as cross modal image registration [31].  

1.4  Data sharing 

Developing open-source software is inextricably linked to openly shared data. From a practical perspective, sharing data 
allows new users to ensure proper pipeline execution through obtaining predetermined outcomes. From an open-science 
perspective, sharing software and data help to accelerate scientific discovery. Whilst some fields (e.g., genomics [32] or 
human neuroimaging [33]–[35]) have embraced data-sharing, others—including mesoscale imaging—have lagged. This 
can partly be attributed to the large volume of data generated by mesoscale imaging experiments, but a larger issue is the 
perceived lack of similarity between experiments and the absence of a clear strategy for organizing and uploading data. 
Here, we contribute to changing the status quo by making our dataset freely available through the DANDI Archive 
(https://dandiarchive.org/) – a data sharing platform designed to accommodate neurophysiology, electrophysiology, 
optophysiology and behavioral time-series data. Here we detail the process, from acquisition, to naming convention (NWB 
[36], [37]), to upload, which facilitates easy sharing.  

1.5 Functional connectivity and graph theory  

Analyses at the network-level often involve ‘functional connectivity’ based metrics [38] which estimate inter-regional 
relationships by correlating spatially averaged activity. A summary of all region-to-region connectivity can be expressed as 
a matrix (called the ‘connectome’ [39]). Depending on the granularity of the regions, connectomes can be complex and 
difficult to interpret, and can comprise hundreds to thousands of unique connections. Graph theory measures (e.g., 
modularity, or efficiency) allow for both node and network summary measures that quantify features of these complex 
functional connectivity patterns [40]. For example, these measures have allowed for the discovery of hubs (densely 
connected brain regions) with ‘rich club’ organization [41] and networks that are highly interconnected [7]. Importantly, 
differences in these measures, derived from human fMRI data, are associated with cognitive and psychiatric disorders [42]–
[45] hinting at their potential utility in uncovering clinically actionable imaging biomarkers. Although we adopt these 
measures from the human fMRI field, they can be broadly applied to any data which have a network structure. Here, for the 
first time, we apply these measures to mesoscale imaging data to interrogate differences between brain states (awake vs. 
anesthetized) and across signals originating from different neural cell types. We find that the functional organization of 
cortical regions in the mouse brain show differences between brain states, as well as between different cell populations in 
both seed-based connectivity and graph theory measures. We characterize these effects for canonical networks [46], [47] 
and frequency bands (infra-slow vs delta).  
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2 Results 

2.1 Preprocessing dual-wavelength mesoscale imaging data using BIS-MID  

Given the compatibility of our pipeline with BioImage Suite, we term it: BIS-MID (BioImage Suite - Mesoscale Imaging 
Data). The data taken as input are from a standard dual-wavelength experiment (Figure 1). In addition to the two-
dimensional optical imaging data, BIS-MID can accept an accompanying ‘trigger’ file that indicates the fluorophore-
sensitive and fluorophore-insensitive frames. Alternatively, BIS-MID can produce a semi-automated trigger array, so this 
file is not required. For motion correction, a reference frame is required (set by default or by the user, 2.1.2). Finally, a 
binary brain mask that delineates tissue from background is required. We recommend generating this mask using the 
reference frame. Although the automated generation of a brain mask from mesoscale imaging data has been described [48], 
we find user-drawn masks to be more robust to image artifacts. Inputs are summarized in Table 1.  

Figure 1. Overview of dual-wavelength mesoscale imaging acquisition paradigm and output data 

 

 

Figure 1 - Overview of dual-wavelength mesoscale imaging acquisition paradigm and output data. The dual-wavelength experiment has two 
components (A.). One where GCaMP-sensitive illumination (cyan) is used to excite the GCaMP fluorophore with subsequent collection of this 
signal (left) and one where GCaMP-insensitive illumination (violet) is used with subsequent collection of a background image (right). During 
the experiment (B.), these components are quickly interleaved to create two synchronized streams of data. Software (e.g., Spike2) is used to drive 
the illumination and camera (top). The ‘trigger’ file output by this software is an optional input for the BIS-MID software. If this ‘trigger’ file is 
missing (or corrupted), BIS-MID can be used to generate a semi-automated version. As part of the preprocessing of these data, each pair of 
GCaMP-sensitive and GCaMP-insensitive frames are used to generate one background-corrected brain image. An example timeseries output is 
shown (bottom). Every pair of frames (in time) is analyzed but only the odd frames are shown here to highlight the dynamic range of typical 
mesoscale imaging data. Data are normalized to the mean fluorescence (F) pixelwise (𝚫𝚫F/F). A static grey-scale anatomical image is shown in 
the background. 
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Table 1. Summary of required BIS-MID inputs 

Inputs Description File type 
Optical data Raw 2D imaging timeseries (pixel x pixel x time) TIFF (.tif) / NIFTI (.nii) 
Trigger file* Record of experimental features (attributes x time) Spike2 (.smr) 

Brain mask Binary image which delineates brain tissue (pixel x pixel) NIFTI (.nii) 
* File is optional 

2.1.2 BIS-MID preprocessing workflow 

The study workflow has four phases: (1) input triage (Table 1), (2) application of preprocessing algorithms (Figure 2), (3) 
QC output evaluation, and (4) subsequent analyses. Phase One consists of file conversion and splitting of the fluorescence-
sensitive and -insensitive imaging frames. Phase Two takes these files (and the brain mask) and applies algorithms to remove 
noise that are divided between spatial and temporal operations. Phase Three is a user guided evaluation of the QC metrics 
output by phase two (e.g., framewise displacement, FD, estimates of subject motion). These metrics can guide parameter 
optimization and should be used as subject inclusion criteria. Phase Four is mostly beyond the scope of BIS-MID and 
depends on the user’s application. We describe example analyses and results (2.3, 2.4, and 2.5). Example outputs from the 
workflow (QC) for our shared data (2.2) are available from the tools GitHub repository. Each phase is explained in greater 
detail in Methods 5.4. 

2.2 Mesoscale imaging data shared alongside BIS-MID 

Data from N=23 mice belonging to each of two test-case groups are included; (1) awake vs. anesthetized animals expressing 
GCaMP in excitatory neurons (2.2.1) and (2) data from mice expressing GCaMP in different cell types (2.2.2).  

2.2.1 Awake and anesthetized 

N=8 mice expressing genetically encoded GCaMP in excitatory neurons (Slc17a7-cre/Camk2α-tTA/TITL-GCaMP6f or 
Slc17a7-cre/Camk2α-tTA/Ai93), herein SLC, are included. Animals were imaged whilst both awake and anesthetized (with 
low-dose 0.5% isoflurane) during one imaging session without being removed from the imaging apparatus (Methods). The 
acquisition of awake data and anesthetized data was performed on different days. For each condition, we collect a minimum 
of 60 minutes of spontaneous data. Data from these mice in the awake condition are also used for comparisons between 
signals originating from different neural populations (2.2.2).  

2.2.2 Different cell types 

N=15 mice expressing GCaMP in one of three inhibitory interneuron subtypes: (1) VIP (vasoactive intestinal (poly)peptide-
cre/Ai162) N=6, (2) SOM (somatostatin-cre/Ai162) N=5, and (3) PV (parvalbumin-cre/Ai162) N=4 are included. Data are 
collected while mice are awake. From each animal, we collect a minimum of 60 minutes of spontaneous data. Based on 
BIS-MID QC metrics, we conservatively exclude four runs (10-minute epochs) for motion.   

2.2.3 Acquisition & sharing 

Surgical preparation is detailed in Methods 5.2. For all experiments, we perform dual-wavelength imaging as we have 
described previously [31]. Briefly, data are recorded at an effective 10Hz. To enable noise correction, violet (370-410nm, 
GCaMP-insensitive), and cyan (450-495nm, GCaMP-sensitive) illumination is interleaved at 20Hz (Methods 5.3 & Figure 
1). Files are organized in the NWB (NeuroData Without Borders, Teeters et al. [36]) format and downloadable from DANDI 
(https://dandiarchive.org/dandiset/000244). NWB is a consensus driven set of organization principles for naming 
neurophysiology datasets, encompassing optical techniques [36], [37]. It aims to ensure that all information required to 
use/analyze data is present at the point of data sharing. These organizational principles have commonalities across 
modalities, which we aim to emulate, but also have modality specific recommendations (see Teeters et al. for more details).  
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Figure 2. Flow chart of data processing 
 

 

2.3 Data analysis 

We conduct a functional connectivity-based analysis inspired by recent methods developed in the human fMRI field [1], 
[2]. To aid interpretability of connectome results, we derive graph theory measures from these data. The frequency content 
and roles of canonical networks are considered. Findings are contrasted between states of wakefulness and cell populations. 
All data are preprocessed using BIS-MID, global signal regression (GSR) is applied, data are moved to a common space, 
and the Allen atlas is used for region and network definitions [46] (Methods). 

  

Figure 2 – A flowchart of data processing steps, including BIS-MID preprocessing (Spatial & Temporal Operations). The preprocessing module 
accepts three images: (1) the signal-sensitive cyan wavelength, (2) signal-insensitive ultraviolet wavelength, and (3) a brain mask. The mask is 
applied only after spatial operations are complete. The GCaMP sensitive and insensitive images are preprocessed identically until they are 
reunited at the wavelength regression step. After this point, the data can undergo further processing depending on the user’s application (post-
preprocessing). 
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Figure 3. Connectomes show strong within, relative to between, network synchrony 

2.3.1 Functional connectivity 

Connectivity between all pairs of ROIs is computed using Pearson’s correlation (Fisher’s z-transformed). Network 
connectomes are computed by averaging within or between network connectivity. Results are shown for each group, 
averaging across all within group spontaneous runs: (1) awake and anesthetized SLC, as well as (2) awake PV, SOM, and 
VIP (Figure 3). Data are band-pass filtered (Butterworth) to isolate non-overlapping infra-slow (0.008-0.2 Hz), and delta 
(0.4-4.0 Hz) frequency bands. Across all groups, and between frequency bands, the network connectomes show a high 
degree of similarity as well as high within, relative to between, network connectivity (Welch t-test, T = 2.673e+01, 
Bonferroni corrected p = 1.31e-58). This is consistent with the expected bilateral synchrony of these networks. Across 
groups and frequency bands, the somatosensory and visual networks show moderately reduced within network synchrony 
relative to other networks.  

2.3.2 Seed-based connectivity differences with wakefulness 

To compare seed-based connectivity maps between brain states and neural populations (next, 2.3.3) we investigate three 
seeds (retrosplenial, somatosensory, and visual) commonly reported in the literature [49], [50] spanning a range of functional 
roles. Each map is generated from an average of all spontaneous runs for a given group. Figure 4 shows seed-based 
connectivity maps from SLC data whilst animals are awake (column 1) and anesthetized (column 2). Their difference (awake 
– anesthetized) is taken to uncover how induced loss of wakefulness affects connectivity (column 3). Maps, and difference 
maps, are computed within both frequency bands (infra-slow, and delta).  

Figure 3 - Connectomes show strong within, relative to between, network synchrony. Connectivity values are computed for each pair of ROIs 
in the Allen atlas (A.). ROIs are delineated by dark lines and networks are color-coded. (B. - F.). Within network connectivity (diagonal) and 
between network connectivity (off-diagonal) values are averaged across runs and displayed as a matrix. For example, connectivity values between 
all violet ROIs (Visual) in both hemispheres (and between hemispheres) are averaged to obtain one value on the diagonal of the matrix. Since 
matrices are symmetrical, in that there is no directional information, one half is shown (including the diagonal) for each group for each frequency 
band. Network connectomes for the infra-slow band are displayed in the upper half whilst network connectomes for the delta band are displayed 
in the lower half. Average network connectomes for each group: (B.) anesthetized and (C.) awake SLC, as well as awake (D.) PV, (C.) SOM 
and (D.) VIP are shown. Connectomes show a high degree of similarity across groups and between frequency bands. Average connectivity values 
within networks (values on the diagonal) are greater than between networks (off-diagonal values), Welch t-test, T = 2.673e+01, p = 1.350e-60. 
This indicates high within network synchrony and bilateral symmetry. Abbreviations: AC – Anterior Cingulate, PL – Prelimbic, TA – Temporal 
Association, M – Motor, SS – Somatosensory, V – Visual, PPA - Posterior Parietal Area, RS – Retro splenial, A – Auditory. 
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The data exhibit a greater range of (anti)correlations in the 
infra-slow frequency band when compared to the delta 
band. As expected, seed-based maps for awake and 
anesthetized states (columns 1 & 2) show high correlation 
values around the seed and in contralateral regions as well 
as a high degree of bilateral symmetry. When wakefulness 
states are compared (column 3), the difference maps also 
show bilateral symmetry.  

For the retrosplenial seed, in the infra-slow band, the awake 
data exhibit higher correlations around the seed relative to 
the anesthetized data indicating more synchronous activity 
in the awake state. This is evident from the negative (blue) 
correlation values in the difference map. Also, for the 
retrosplenial seed, the anesthetized data exhibit greater 
anticorrelation values than the awake data in the anterior 
regions indicating more asynchronous activity in the 
anesthetized state. This is evident from the positive (red) 
correlation values in the difference map. Overall, we 
observe a decrease in local and contralateral synchrony, and 
an increase in long-range asynchrony with anesthesia. This 
pattern is replicated in the delta band.  

For the somatosensory seed, in the infra-slow band, we 
observe similar results to those found in the retrosplenial 
seed: a decrease in local synchrony, and synchrony with the 
contralateral seed-region, as well as an increase in 
asynchrony with anterior regions with induced loss of 
wakefulness. However, unlike the retrosplenial seed, this 
pattern is less well replicated in the delta band. Here, we 
observe more widespread decreases in synchrony, 
including with anterior regions, and an increase in 
asynchrony with visual areas with induced loss of 
wakefulness.   

For the visual seed, the infra-slow band, shows a more 
complex pattern than either the retrosplenial or 
somatosensory seeds. The emergence of this 
(a)synchronous pattern indicates a refinement of inter-
regional relationships in the awake, relative to the 
anesthetized, state. This pattern is not recapitulated in the corresponding difference map for the delta band. Instead, we see 
the same decrease in local, and contralateral, synchrony and increase in long-range asynchrony with induced loss of 
wakefulness that we observed for the retrosplenial seed.   

2.3.3 Seed-based connectivity differences between neural populations 

We consider the same seeds as above (2.3.3): (1) retrosplenial (Figure 5), (2) somatosensory (Supplementary Figure 1), 
and (3) visual (Supplementary Figure 2). For each seed, maps are arranged in a grid with the seed-based connectivity maps 
for each neural population on the diagonal (blue background) and the difference maps on the off-diagonal (orange or yellow 
background). Data from the infra-slow band are shown in the upper right half, and data from the delta band are shown in 
the lower left half.  
  

 Figure 4 - Seed-based connectivity compared across brain states. Maps in 
the upper half are generated from data band-pass filtered at 0.008-0.2 Hz. 
Data in the lower half are generated from data band-pass filtered at 0.4-4.0 
Hz. The left column of seed-based maps is computed from SLC mice whilst 
animals are awake, the middle column is computed from the same SLC mice 
whilst animals are anesthetized with low-dose isoflurane (0.5%). Maps in 
the right column are the difference (awake – anesthetized) between the left 
and middle columns. The seed region (for each row) is indicated by a black 
dot on each map. 

Figure 4. Connectivity compared across brain states 
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Figure 5. Retrosplenial seed-based connectivity compared across neural populations  

As above (2.3.2), seed-based connectivity maps (blue background) for all neural subtypes show high correlations around 
the seed and in contralateral regions, as well as bilateral symmetry. A greater range of (anti)correlation values are observed 
in the infra-slow compared to the delta band. 

In the infra-slow band, inhibitory interneurons (PV, SOM, and VIP) differ similarly from excitatory neurons (SLC), Figure 
5 (orange background). The difference maps show relatively little cell-type specific (a)synchrony around the seed. More 
synchrony is exhibited in inhibitory interneurons, relative to excitatory neurons, in posterior regions, with more asynchrony 
in anterior regions. This pattern is replicated in the delta band for SOM inhibitory interneurons, but not for PV or VIP 
inhibitory interneurons. In the delta band, these latter two inhibitory interneuron subtypes show slightly less synchrony 
around the seed and slightly less asynchrony in more remote regions relative to excitatory neurons. Between inhibitory 
interneurons (yellow background), PV and VIP are more like one another than either are to SOM. This is true for both the 
infra-slow and delta band. SOM deviates from each in a similar manner, with more asynchrony in the lateral anterior regions 
and more synchrony in the posterior regions.  
For the somatosensory and visual seeds, many of the same themes are replicated (Supplementary Figures 1 & 2). While 
inhibitory interneurons differentiate from excitatory neurons in more heterogenous ways, SOM still emerges as different 
from PV and VIP. As above (2.3.2), more heterogeneity, and complexity, is observed for the visual seed relative to the 
retrosplenial and somatosensory seeds. To summarize this complexity more efficiently, we next turn to graph theory 
measures.   

Figure 5 - Retrosplenial seed-based connectivity compared across neural populations. Connectivity (red/blue color) is estimated using Pearson’s 
correlation. Awake data are shown for both the infra-slow (upper right) and delta (lower left) bands. Seed-based connectivity maps (blue 
background) and their inter-neural subtype differences (orange and yellow backgrounds) are shown for the retrosplenial seed (black dot). Data 
are arranged like a matrix with seed-based maps for each neural population on the diagonal, and their inter-neural subtype difference maps on 
the off-diagonal. The neural population identities (SLC, PV, SOM, and VIP), or computed differences (e.g., SLC - PV), are indicated above each 
image. Differences between SLC (excitatory) and inhibitory interneuron subtypes (PV, SOM, and VIP) are highlighted with an orange 
background. Differences between inhibitory interneuron subtypes are highlighted with a yellow background. Correlation maps for SLC (awake) 
are reproduced from Figure 4. 
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2.4 Using graph theory measures to help interpret complex differences in connectome data 

We compute four graph theory measures: global efficiency, transitivity, modularity, and characteristic path length (CPL). 
See Methods for more details, and Supplementary Figure 3 for graphical representation of these measures. Values for t-
case group: (1) awake vs. anesthetized and (2) different neural populations, are plotted (Figure 6).  
 
Figure 6 Differences in graph theory measures between wakefulness states and neural cell subpopulations 

To generate graph theory measures (Methods), connectomes are binarized based on absolute connectivity strength (at the 
60th percentile for data in Figure 6 and at 40th and 50th percentiles in Supplementary Figures 4 & 5, respectively). Within 
the 40th-60th percentile range, trends are maintained. Below the lower bound (40th percentile), graphs become too densely 
connected to calculate meaningful metrics. Above the upper bound (60th percentile), graphs become disjoint 
(Supplementary Figure 6). This may be attributable to the less than whole brain coverage of the imaging technique. 

All graph theory measures for all groups are substantially different from random results generated using synthetic 
connectomes from a randomized truncated normal distribution (Methods). With induced loss of wakefulness, graph theory 
measures do not change in the infra-slow band but do differ in the delta band. Awake, relative to anesthetized mice, show 
higher global efficiency, lower interconnectedness (transitivity), less modularity, and a shorter characteristic path length 
(CPL). Across different neural cell subpopulations, except for modularity, SOM inhibitory interneurons emerge as 
consistently different from excitatory (SLC) neurons (as well as PV and VIP inhibitory interneurons) with lower global 
efficiency, higher interconnectedness, and a greater CPL. These observations hold for both frequency bands. Overall, PV 

Figure 6 - Differences in graph theory measures between wakefulness states and neural cell subpopulations. Data are generated from binarized 
connectomes at the 60th percentile for absolute connectivity strength. The top row compares graph theory measures between wakefulness states. 
Results from anesthetized mice are plotted in purple; whilst results from awake mice are plotted in navy. The bottom row compares graph theory 
measures between neural subpopulations (all data are from awake animals). Data are colored by cell-type. For all plots, random results were 
generated using synthetic connectomes generated from a randomized truncated normal distribution - shown in white (Methods). Data from 
awake SLC mice (navy) are plotted in both rows. Each plot shows results for each frequency band: infra-slow (left) and delta (right). Each 
column of plots shows a different graph theory metric, from left-to-right: global efficiency, transitivity, modularity, and characteristic path length 
(CPL). Boxes show median and interquartile range, error bars extend to the 95th percentile. Differences between groups are computed using 
Welch’s t-test with Bonferroni correction. ns: 0.05 < p <= 1.00e+00, *: 1.00e-02 < p <= 5.00e-02, **: 1.00e-03 < p <= 1.00e-02, ***: 1.00e-04 
< p <= 1.00e-03, ****: p <= 1.00e-04. 
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and VIP inhibitory interneurons are similar to each other with lower modularity, than SLC or SOM, in both frequency bands, 
a trend towards lower transitivity, than SOM, in both bands, and SLC in the delta band. PV and VIP also show some CPL 
and global efficiency differences from SOM and SLC that are frequency band dependent. The results of all statistical tests 
are shown in Supplementary Table 1. 
2.5 The frequency content compared between wakefulness states and across neural cell subpopulations 

Power spectra for each test-case group are plotted in Figure 7. Frequency bins have been normalized based on the low 
frequency content. Below 0.2Hz, there are minimal differences between test-case groups. In the infra-slow band, 
anesthetized, relative to awake, mice show more power. In the delta band this relationship flips, and then reverts. For 
different neural subpopulations the frequency content is very similar in the infra-slow band. In the delta band, the frequency 
content of SOM and VIP inhibitory interneurons is similar and low relative to PV inhibitory interneurons and SLC excitatory 
neurons (with VIP showing less frequency content than SLC).   
 
Figure 7 Power spectra for wakefulness states and different neural subpopulations 

 

3.  Discussion 
A better collective understanding of mammalian brain functional organization will come from utilizing multiple imaging 
modalities and the application of creative analytical frameworks. Openly shared data and software will accelerate this 
discovery process [51]. We describe a newly created preprocessing pipeline for mesoscale imaging data which dovetails 
with an established imaging software package, BIS, and accompanying data. Using these resources, we conduct a functional 
connectivity-based analysis to investigate the effects of anesthesia on brain functional organization and characterize 
differences between neural subpopulations. These analyses are inspired by recent work in human fMRI [42], [45].  
3.1 Patterns of functional and anatomical connectivity 

The bilateral symmetry, and synchrony between seed and homologous regions, in excitatory neural activity tracks well with 
previous mesoscale imaging findings in the infra-slow [52], and delta bands [49], [50]. Seed-based connectivity maps show 
broad similarities to cortical networks generated from cell tracing experiments [53] indicating partial agreement between 
functional measures and the underlying anatomical infrastructure. Although, importantly, we also observe that regions 
defined by functional organization do not strictly adhere to our a priori anatomical network boundaries. This is consistent 

A
 

B
 

Figure 7– Averaged power spectra for all spontaneous runs from each wakefulness state and different neural subpopulations. The frequency 
content for awake (navy) and anesthetized (purple) excitatory (SLC) neurons are plotted in (A.). The frequency content of different neural 
subpopulations, color-coded by cell-type, are plotted in (B.). The bands investigated in our analyses, infra-slow and delta, are delineated by 
dotted lines. Bins are normalized based on the low frequency content by group. The dark lines represent the mean frequency content across scans, 
while the shaded band represents the range of mean content plus/minus the standard deviation across scans. 
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with findings in human studies where it has been shown that there is a flexible functional architecture atop the structural 
scaffold for both node [54] and network [55] definition. While tremendous energies are currently focused on defining the 
structural connectome, it’s clear that this effort will be complemented by a deeper understand of how the functional 
connectome flexibly (re)organizes alongside this structural backbone. 

3.2 The effects of loss of wakefulness on functional connectivity and graph theory measures 

Previous work, using mesoscale imaging, has found differences in the delta band (0.4-4.0Hz) between states of wakefulness 
[49], [56], including evidence that anesthesia can elicit strong asynchronies in seed-based correlation maps [56]. We 
recapitulate these findings using seed-based connectivity, where we observe a decrease in local, and contralateral, synchrony 
and an increase in long-range asynchrony with induced loss of wakefulness. This general observation holds for several cases 
(seeds), and across bands, with some notable variation. This heterogeneity can be hard to summarize, so we turn to graph 
theory measures to quantify gross differences. Using these metrics, we find that wakefulness states differ in the delta, but 
not the infra-slow band. Specifically, when animals are awake, they show more integration, a lower tendency to form 
modules, shorter path lengths, and more efficient communication (global efficiency). We also observe differences between 
wakefulness states in the temporal characteristics of the data, with the frequency content differing by state in both the infra-
slow (increased content with wakefulness) and delta band (showing a biphasic pattern). Previous work examining these 
measures has found an increase in the frequency content of these data with anesthesia at higher frequencies (0.7-3.0Hz)[56]. 
Here, we do not replicate this finding; most likely because of the different anesthetics used. Gaining a more comprehensive 
understanding of how different anesthetics, or the absence of anesthesia, influences brain activity has implications for 
studies that use anesthesia (e.g., the majority of murine fMRI), and for translation to human studies where the use of 
anesthesia is rare.  
3.3 The effects of neural cell subpopulation on functional connectivity and graph theory measures 

We were curious if differences between neural subtypes emerge at the mesoscale. In light of the tight link between excitatory 
and inhibitory activity at the cellular level [57], [58], and their spatial cooccurrence [59], [60], we were unsure whether 
differences would manifest at a coarse level. Indeed, we observe qualitative similarities between all neural populations 
examined, but also intriguing differences. Overall, PV and VIP inhibitory populations appear most like one another, and 
somewhat different from excitatory cells. SOM inhibitory interneurons emerge as being the most distinct. This pattern is 
evident in both seed-based correlation analyses and graph theory metrics, where SOM cells show a higher CPL and 
transitivity, as well as a lower global efficiency, than SLC, PV or VIP cells. A distinguishing phenotype of different cell 
populations is their spike frequency profile [61]. Although the characteristic high frequency spiking of interneurons (30-
50Hz) cannot be directly captured with our 10Hz sampling rate, it has been suggested that lower frequency bands may still 
reflect some high frequency contributions [62]. The power spectra suggests that the frequency content of SOM and VIP 
cells are more like one another than to PV cells, and that all three inhibitory populations are different from excitatory cells 
in the delta band. However, it should be noted that there are differences in the power spectra of excitatory neurons between 
brain regions [50] that are not captured by a cortical average. A more detailed characterization of the frequency content of 
these data is warranted and will be the focus of future work.  

To the best of our knowledge, functional connectivity measures based on mesoscale imaging data have chiefly examined 
hemodynamic or excitatory neural activity. That investigations of inhibitory populations have lagged their excitatory 
counterparts is due to the availability of reporters and an assumption that the sparseness of inhibitory cells (~20% of neurons 
[63]) translates to a lesser role in shaping brain activity. However, emerging evidence suggests that the opposite may be 
true. Inhibitory cells regulate timing in neural networks [57], and state transitions [64]. They also play key roles in memory 
formation [65] and goal directed behavior [29]. Further, they are implicated as crucial circuit elements in several 
neurological conditions including autism [66], Alzheimer’s disease [67], and schizophrenia [68]. Gaining a better 
understanding of the roles different neural populations play in shaping brain functional organization, through the methods 
explored here as well as through other means, will aid in our collective understanding of brain health. To this end, common 
analytical frameworks and tools are essential to progress and facilitating translation. 
 
3.4 Cross-modal and cross-species translational neuroscience 

It is difficult to overstate the scope of recent advances in animal experimental methods for disentangling the complex biology 
supporting the functional organization of the brain (see reviews, [44], [69]). Particularly explosive growth in optical imaging 
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methods has been facilitated by the advent of targeted genetically encoded [20] or virally mediated [70] fluorescent 
indicators [20], [21], [23]. Additionally, there are means of measuring more than one cell population simultaneously [23], 
measuring membrane potential [71], as well as developing means for measuring layer specific activity, and sub-cellular 
signals [72], [73]. Yet, these incredible tools still have their limitations; chiefly that they are only applicable in animal 
models due to their invasiveness. In the endeavor to uncover clinically actionable biomarkers of brain functional 
organization, BOLD-fMRI is critically positioned given its primacy in human studies and applicability in animal models. 
To this end, there is a burgeoning field of simultaneous implementations of fMRI and optical imaging methods. These 
studies have revealed a strong concordance between hemodynamic measures, the BOLD signal, and cellular activity [74] 
and are poised to reveal much more. The experimental challenges overcome by multimodal imaging implementations are 
substantial. Yet, as solutions become more established, the ensuing possibilities for analyzing these rich data expand 
quickly. To maximize translation, across modes, species and ultimately to the clinic, the application of common analytical 
frameworks across fields will be critical. In anticipation of substantial growth in this area, we have designed BIS-MID to 
interface with an established open-source software originally designed to preprocess and analyze human fMRI data that has 
recently been extended to include packages that support murine fMRI as well as simultaneous fMRI and mesoscale imaging 
data analyses [31]. Here, we add to this growing environment by building out the software capabilities for preprocessing 
and analyzing dual-wavelength mesoscale fluorescent Ca2+ imaging data.  
3.5 Pipeline 

We envisage an open-source code and data sharing ecosystem for mesoscale imaging akin to that which exists for human 
fMRI: a global community that facilitates widespread usage and alleviates much of the monetary and time investment of 
data collection and the development of sophisticated computational tools [34], [35], [75]. Using the human fMRI field as a 
model will accelerate creating similar resources in fields where data/code sharing are in their infancy. To this end, we have 
shared our data in the NWB format on DANDI and dovetailed our preprocessing pipeline with BIS. Moving away from 
proprietary preprocessing pipelines (where there is little-to-no consensus on best practices, or means of testing replicability 
and reproducibility), will only help to accelerate discovery. In addition to BIS-MID, there are three packages for 
preprocessing mesoscale imaging data: “MouseWOI” [27], “Mesoscale Brain explorer” [25], and “VOBI One” [26]. The 
functionalities of each are compared with BIS-MID in Table 2. 

Table 2. Summary of available preprocessing packages for mesoscale imaging data 

Processing Phase (see 2.1.2) Name of software package 
1 Input Triage BIS-MID MouseWOI Mesoscale brain explorer VOBI One  
  File conversion Applied - - - 
2 Preprocessing  Operations in orange are spatial and green are temporal 
a Brain mask creation Manual Manual Manual - 
b Smoothing   X X 
 Motion correction  X  X 
 Spatial down sampling Factor of 2 Factor of 2 X X 
 Spatial detrending X  X X 
 Sharpening X X  X 
 Luminance correction X  X  
 Photobleach correction  X X  
 Heartbeat frequency estimation X X X  
 Spectral denoising X X X  
 Wavelength regression  X X X 
 Bandpass filtering    X 
 Temporal detrending X  X  
 Temporal down sampling X Factor of 2 X X 
 Normalized fluorescence (dF/F)  X   
 Hemodynamic correction N/A*  X N/A** 
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 Common space alignment   X X 
 Global signal regression   X X 
 Band pass filtering    X 
3 Quality control         
a Framewise displacement Output - Output - 
b Brain mask - Output - - 

* For dual-wavelength mesoscale imaging data, wavelength regression is a hemodynamic correction 
** Correction is performed for estimated heartbeat frequency 

BIS-MID and MouseWOI offer the most functionality (greatest number of noise-reducing algorithms) with a good amount 
of cross-pipeline agreement. A few key differences are that BIS-MID integrates with an existing code base capable of cross 
modal preprocessing and registration, and that BIS-MID relies on open-source software packages whilst MouseWOI is 
written in MATLAB. In future work, we will quantitatively compare the outputs from BIS-MID and MouseWOI. We did 
not conduct this test here because MouseWOI does not implement dual wavelength regression, which we felt was necessary 
to denoise our dataset. An essential part of facilitating pipeline (and dataset) comparisons will be to increase the flexibility 
of their operationalization through making the application of algorithms optional and eliminating hard coded parameters. 
This will also be a goal of our future work on BIS-MID. In designing BIS-MID, we emphasized usability for novices 
(inclusion of singularity and a data-triage phase), which was informed by sharing the pipeline with novice users during its 
development.  
3.6 Sharing data 

Software development through sharing is easier to incentivize than data sharing because the reward structures for the latter 
are not well established despite clear benefits (e.g., increased participation in the field independent of funding and 
experimental expertise/resources) [51]. This shortcoming hinders software development and scientific advancement. To 
amass large open-source datasets, strategies to improve data sharing practices are needed. Here, we address some of the 
practical challenges of sharing data by leveraging existing infrastructure ([36] & https://www.dandiarchive.org/). 
However, we recognize that a concerted effort to change the culture around data sharing is needed [35]. 

4.  Conclusions 
We perform a functional connectivity-based analysis, inspired by recent work in the human fMRI field, to quantify 
differences in brain organization with induced loss of wakefulness and between neural subpopulations using mesoscale 
fluorescent Ca2+ imaging data. Our findings build on recent work in excitatory neural populations by extending seed-based 
connectivity measures to inhibitory interneurons, and by pioneering the application of graph theory measures to mesoscale 
imaging data. We find that the effects of induced loss of wakefulness are most evident in the delta band across graph theory 
measures. Differences between neural subpopulations are observed across frequency bands, with SOM expressing cells 
emerging as notably dissimilar from other inhibitory cells (PV and VIP) and excitatory neurons (SLC). Our work includes 
the development of an openly available preprocessing pipeline for mesoscale imaging data which dovetails with the 
established BIS codebase. The data have also been made openly available. We strongly support the sharing of code and data 
to facilitate scientific discovery and translation.    
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Code availability 

This pipeline is available as part of BioImage Suite (github.com/bioimagesuite) for installation, or as a singularity container. 
Detailed instructions for usage can be found here: https://github.com/YaleMRRC/calPrep.  
Data availability 

The data are available on DANDI; https://dandiarchive.org/dandiset/000244. 
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All procedures were performed in accordance with the Yale Institutional Animal Care and Use Committee and are in 
agreement with the National Institute of Health Guide for the Care and Use of Laboratory Animals. 
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5.  Methods 

5.1  Subjects 

Mice were housed on a 12-h light-dark cycle. Food and water were available ad libitum. Mice were mixed-sex adults that 
were 14-16 weeks old and 25-30 g at the time of imaging. We report data from four groups of mice each expressing the 
GCaMP fluorophore at a different locus to achieve neural cell subpopulation fluorescence. The parental lineage of each 
group is given in Table 3. All groups share a C57BL/6J background. Male CRE mice were selected from the offspring of 
parents with different genotypes; this is required to avoid leaking of CRE expression. The Ai162 genotype results from tTA 
and TITL-GCaMP6s (TIGRE1.0) [31]. All mice were obtained from Jackson labs: SLC (Strain #: 024115), PV (008069), 
VIP (010908), and SOM (013044).  

Table 3. Genotype lineage of mice 

Offspring Parent 1 Parent 2 
SLC (Slc17a7-cre/Camk2α-tTA/TITL-GCaMP6f or 

Slc17a7-cre/Camk2α-tTA/Ai93) 
Slc17a7-cre 

 
Camk2α-tTA/TITL-GCaMP6f 

(Camk2α-tTA/TITL-GCaMP6f - TIGRE1.0) 
PV (PV-cre/Ai162) PV-cre Ai162 

VIP (VIP-cre/Ai162) VIP-cre Ai162 
SOM (SOM-cre/Ai162) SOM-cre Ai162 

5.2  Surgical preparation for mesoscale imaging 

All mice undergo a minimally invasive surgical preparation for permanent optical access to the cortex (to enable chronic 
mesoscale imaging) a minimum of four weeks before imaging data were collected. This procedure has been described 
previously by us [31]. Briefly, mice are anesthetized with 5% isoflurane (30% O2 and 70% medical air) and head-fixed in a 
stereotaxic frame (KOPF). Anesthesia is then reduced to 2%. Paralube is applied to the eyes, bupivacaine (0.1%) injected 
under the scalp, a subcutaneous injection of meloxicam (2 mg/kg body weight) given, and fur removed from the scalp using 
Nair. The scalp is washed 3 times using betadine and 70% ethanol before the skin, soft tissue overlying the skull, and upper 
portion of the neck muscle are removed. Neo-Predef is applied to the skin, and isoflurane is further reduced to 1.5%. The 
parietal and frontal plates of the skull are thinned with a 1.4-mm and 0.7-mm tip diameter hand-held drill (FST). The thinned 
bone is cleaned using a fine brush, and a small amount (less than one drop) of superglue is applied to the thinned surface 
(Loctite). When the glue is dry, transparent dental cement C&B Metabond (Parkell) is applied, and the head-post (for 
immobilization during image collection) attached. The head-post is a double-dovetail 3D-printed plastic frame with a 
microscope slide hand-cut to match the size and shape of the mouse skull. 
5.3  Dual-wavelength mesoscale imaging data acquisition 

Prior to imaging, mice are briefly anesthetized (with isoflurane) so that they can be placed in the imaging apparatus. For 
awake imaging, animals are allotted a minimum of 30 minutes to recover from this exposure prior to the acquisition of any 
data. Data acquisition is performed using a Zeiss AxioZoom v.16 microscope with a PlanNeoFluar Z 1x/0.25 objective. 
Illumination was provided by an LED source (X-Cite XLED1) with blue light (470nm, Chroma ET470/20x) and violet light 
(395nm, Chroma ET395/25x) interleaved at 20Hz for background corrected GCaMP imaging. Emission fluorescence passes 
an emission filter (Chroma ET525/50m) and was collected by an sCMOS camera (pco.edge 4.2, PCO) affixed to the 
microscope. Images were collected by Camware software. ‘Trigger’ files are recorded using Spike2 (7.07, Cambridge 
Electronic Design Limited). Body temperature is maintained by a circulating water bath. During image acquisition, 
illumination and camera exposure are synchronized by a Master-8 (A.M.P.I., which couples with the Spike2 software). 
 
5.4  Data processing workflow 

Phase 1 – Input triage 
Convert data output by the acquisition software to a more interoperable file format and QC. Imaging data are in tiff 
format (save by the proprietary camera software), and non-imaging parameters (the trigger file) are saved as smr files. 
Tiff files are converted to NIFTI format, and smr files are converted to csv format.  

1) Ingest tiff and smr files 
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2) Extract dual-wavelength timing vector from the smr object, down sample to the same resolution as the imaging 
data, and output as a csv file. 

3) Extract a stimulation timing vector, if present, down-sample to imaging data resolution, and output as a csv file. 
4) Use dual-wavelength timing vector to split the optical imaging data into a fluorescence-sensitive array, and a 

fluorescence-insensitive array, and output each as a separate NIFTI file. 
5) QC: Visually inspect data for correct wavelength splitting. Each wavelength (fluorescence-sensitive and 

fluorescence-insensitive) typically has a distinct mean intensity. Viewing mean intensity across time helps 
identify mislabeled frames. Methods for triaging mislabeled frames are detailed online 
(https://github.com/YaleMRRC/calPrep).  

Phase 2 – Application of preprocessing algorithms 
Spatial operations are performed prior to temporal operations. Since spatial operations are applied to each imaging 
frame in isolation, the full imaging run does not need to be loaded to complete these steps. The last step of the spatial 
operations is down sampling. In the case that the spatial preprocessing was performed on a split imaging run (multiple 
files), the files are concatenated prior to temporal preprocessing. This is important to prevent discontinuities in the 
temporal profile of the data. Steps are applied to both wavelengths.  

1. Spatial smoothing with a large kernel (16-pixel kernel, median filter) is applied to reduce an/or remove focal 
optical artifacts (e.g., dust on the lens). These artifacts do not move with the subject and can bias motion 
correction. 

2. Estimate motion correction parameters with a normalized mutual information algorithm using the images 
smoothed with a large kernel. Rigid image registration is performed between each imaging frame in the 
timeseries and the reference frame. Registration parameters are saved and large kernel smoothed images are 
discarded. 

3. Spatial smoothing (4-pixel kernel, median filter). 
4. The saved motion correction parameters are applied to the lightly smoothed data.  
5. Data are down-sampled by a factor of two in both spatial dimensions.  

For our dataset (2.2), images were saved in 2GB files. Thus, one 10-minute timeseries (at our specified spatiotemporal 
resolution) is comprised of three files. We use the middle frame of the first file as our reference frame for motion 
correction, as the effects of photobleaching have reached equilibrium (this selection is configurable). As mentioned 
above, following down-sampling (Step 5), data are temporally concatenated. This allows all 10-minutes of the timeseries 
to be loaded together for the application of the temporal operations (Steps 6 & 7, below).  
1. Photo bleach correction to reduce the exponential decay in the fluorescence signal. This is a typical property of 

fluorophores and does not reflect biologically relevant activity [76].   
2. The fluorophore-insensitive timeseries is regressed from the fluorophore-sensitive timeseries pixelwise to 

remove the measured background noise.  
We recommend Steps 1-7 be performed on all data for adequate denoising. Additional preprocessing steps may be 
added depending on the planned analyses. Bandpass filtering can be applied to narrow analyses to specific frequency 
ranges of interest, and one can apply post hoc nuisance regression techniques such as GSR. GSR is a much-discussed 
topic in neuroimaging, but has been shown to improve brain behavior relationships in human studies [77], and has been 
employed previously in mesoscale Ca2+ imaging [49], [50]. In our study we apply bandpass filtering for two ranges 
(Results 2.3, 2.4, & 2.5).  

Phase 3 – QC 
BIS-MID outputs figures after each preprocessing step for easy data QC. Visually inspecting data is vital to catching 
imaging artifacts and failed denoising (some typical examples are given online). For each relevant step, the mean and 
standard deviation (SD) of each image array is output. For motion correction (Step 2), estimates of displacement in each 
dimension is plotted. 

Phase 4 – Subsequent analyses 
At this juncture, the data are fully preprocessed and reduced to one file containing a 3D image array (X x Y x Time) 
that resides in “individual space” (i.e., the same space in which they were acquired). Data can be analyzed in individual 
space or registered to a “common space” for groupwise analyses, and/or to integrate external resources into the analysis 
such as an atlas (a priori region or network definitions). Here, we aligned our data to a 2D version of the Allen mouse 
brain atlas [46], [47], (Methods, 5.6). Registration to the atlas was accomplished using the manual registration tool in 
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BioImage Suite Web (https://bioimagesuiteweb.github.io/webapp/dualviewer.html). Briefly, affine registration 
matrices are generated between the atlas and the reference image for each dataset which are then applied (framewise) 
to the data (refer to BioImage Suite documentation for more details: https://bioimagesuiteweb.github.io/bisweb-
manual/). Once data are co-registered, we generate mean timeseries for each ROI in the atlas, seed-based connectivity 
maps (2.3.1), and functional connectivity matrices (which were used to compute graph theory measures, 2.3.2).  

5.5 Installation of BIS-MID software and dependencies 

BIS-MID is written primarily in python, but also draws on modules within BIS written in C++ (Supplementary Figure 7).  
To make installation as easy as possible, we have created a container using singularity; downloadable from a link on our 
GitHub repository: https://github.com/YaleMRRC/calPrep. This file corresponds to an encapsulated virtual environment, 
with a self-contained operating system, and preinstalled software. Thus, using singularity ensures that all software 
dependencies are present and that operating system compatibility problems are negated. Once singularity is installed, the 
container can be downloaded using the above link, or built using a recipe provided in our GitHub repository specified above. 
Execution scripts for converting tiff (optical data) and smr (trigger file) inputs (Table 1) to nifti and csv outputs (5.4 Phase 
1) are available in the same repository. Resources for singularity are located here: https://sylabs.io/guides/3.5/user-
guide/index.html. Alternatively, BIS-MID can be accessed and installed by following the instructions on GitHub: 
https://github.com/bioimagesuiteweb/bisweb. This option may be desirable for intermediate users who wish to adapt the 
pipeline to specific use-cases not covered in the current release. 

5.6 Creation of 2D Allen Atlas in mesoscale imaging common space 

The annotated CCFv3 (Allen mouse Common Coordinate Framework version 3), data, and ontology were downloaded from 
the Allen Institute (http://atlas.brain-map.org/). We take 207 structures listed in the white paper which are well defined in 
CCFv3 [46] and 14 broader anatomical structures (Table 4). Using BIS, we map these to a 3D reference space we have 
created, from N=162 whole-brain structural MRI datasets (MSME, multi-spin-multi-echo, images collected at an isotropic 
resolution of 0.2×0.2×0.2mm3, using two averages, a repetition/echo time of 5500/20ms, and 78 slices). Bilateral symmetry 
is enforced on the anatomical data and the atlas. Data and atlas regions are resampled to 0.1×0.1×0.1mm3. Using 
simultaneously collected MRI and fluorescence Ca2+ imaging data, co-registered as described by us previously [31], we 
back-project the 2D mesoscale imaging FOV onto the 3D MRI common space. This determines our mesoscale imaging 
FOV in 3D. The Allen atlas regions within this space are then projected to the 2D mesoscale common space. These steps 
are all accomplished using tools that are freely available in BIS (https://github.com/bioimagesuiteweb/bisweb). This 2D 
version of the Allen atlas in our mesoscale common space is comprised of 60 regions per hemisphere belonging to 9 
networks. Four regions were excluded in our analyses due to having a very small representation in the projected 2D atlas, 
giving 56 total which were used in the analysis. Supplementary Figure 8 shows a region level representation of the atlas. 
The quality of the alignment of each scan to the common atlas was assessed by overlaying the atlas outline on the mean 
mask across all scans (Supplementary Figure 9). 
Table 4. Structure names and annotation labels from Allen Institute CCFv3 

 Name Annotation  Name Annotation 
1 Isocortex 315 8 Hypothalamus 1097 
2 Sub cortical 703 9 Medulla 354 
3 Thalamus 549 10 Ventricular 73 
4 Pons 771 11 Hippocampus 1089 
5 Fiber tracts 1009 12 Pallidum 803 
6 Olfactory 698 13 Mid brain 313 
7 Striatum 477 14 Cerebellum 512 

 

5.7  Analysis methods 

Analyses were performed on both common space pixelwise timeseries, and parcel averaged timeseries. Seed based 
correlation maps were generated using Pearson’s Correlation of pixel timeseries, with the seed based on the 2D Allen 
anatomical atlas. The three seeds used in this study were the centroids of: the right primary visual cortex (visual), the right 
somatosensory cortex – barrel field (somatosensory), and the combined retrosplenial areas – dorsal, ventral, and lateral 
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agranular (retrosplenial). Cortex wide pairwise functional connectivity matrices were also generated using Pearson’s 
correlation, but based on the mean timeseries within region, defined by the Allen atlas. We also performed FFT on wide 
bandpass filtered data [0.008 – 5Hz] for each ROI timeseries. 

From the correlation matrices we generated binarized graphs based on the distribution of connectivity values, taking 
thresholds at the 40th, 50th and 60th percentile. These thresholds were chosen because below the 40th percentile binarized 
matrices were too densely connected, and above the 60th percentile graphs became disjoint or split into subgraphs 
(Supplementary Figure 6).  From each of these thresholded sets of graphs we then calculated: 

1. Global efficiency: “speed” of communication between regions based on path length 
2. Transitivity: tendency of nodes to cluster together 
3. Modularity: capacity of a network to be subdivided into smaller modules of highly interconnected regions 
4. Characteristic path length: Inversely related to global efficiency, the median of the mean of all pairwise path lengths 

For more detailed information on these network theory measures applied to neuroimaging data please see papers by Farahani  
et al. [42] and Sporns [40]. Briefly, these measures can be mathematically summarized as follows: 

5.7.1 Global efficiency [78] 

The efficiency between two nodes i and j is defined as: 𝜖𝜖𝑖𝑖,𝑗𝑗 = 1
𝑑𝑑(𝑖𝑖,𝑗𝑗)𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ≠ 𝑗𝑗, where d is distance. 

The global efficiency is the mean over all pairs of vertices: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐺𝐺)  = 1
𝑛𝑛(𝑛𝑛−1)

∑ 𝜖𝜖𝑖𝑖,𝑗𝑗𝑖𝑖≠𝑗𝑗  

5.7.2 Transitivity [79] 

Transitivity is the ratio of triangles to potential triangles (triads) in a graph. A triangle is when three nodes are interconnected, 
and a triad is a set of three nodes summarized by the potential connections between them, regardless of whether they are 
connected.  𝑇𝑇(𝐺𝐺)  = 3 #𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
 

5.7.3 Modularity [80] 

Modularity is defined as 𝑄𝑄 = 1
2𝑚𝑚

∑ �𝐴𝐴𝑖𝑖𝑖𝑖 − 𝛾𝛾 𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

�𝛿𝛿(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗)𝑖𝑖𝑖𝑖  where m is the number of edges, A is the adjacency matrix 
of graph G, ki is the degree of i, γ is the resolution parameter, and δ(ci,cj) is 1 if i and j are in the same community else 0. 

5.7.4 Characteristic path length [80] 

CPL is defined as 𝑎𝑎 = ∑ � 𝑑𝑑(𝑖𝑖,𝑗𝑗)
𝑛𝑛(𝑛𝑛−1)

�𝑖𝑖𝑖𝑖 ∈𝑉𝑉  where V is the set of nodes in graph G, d(i, j) is the shortest path from node i to j, 

and n is the number of nodes in G. 

5.7.5 Generation of control  

We generated artificial connectomes comprised of edges sampled from a truncated normal distribution. These artificial 
matrices were binarized based on percentiles of connectivity values (just as was done with real data). Each of the four graph 
theory measures were computed from these artificial data and served as our control measures.  

5.7.6 Python packages 

All analyses and analysis figures were generated using python, in particular the packages numpy, scipy, pandas, networkx, 
matplotlib and seaborn. 
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