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Abstract 1 

Butyrate-producing bacteria are found in many ecosystems and organisms, including humans. 2 

They ferment organic matter, producing the by-product butyrate, a short-chain fatty acid with 3 

important roles in human health. Several human diseases have been associated with a 4 

decreased abundance of butyrate-producing bacteria in the gut. Outdoor environments can 5 

potentially replenish the abundance of these commensal bacteria in humans. However, the 6 

environmental sources and exposure pathways remain poorly understood. Here we developed 7 

new normalized Butyrate Production Capacity (BPC) indices derived from global 8 

metagenomic (n=16,176) and Australian soil 16S rRNA (n=1,285) data to geographically 9 

detail the environments that associate with bacterial butyrate production potential. We show 10 

that the highest BPC scores were in anoxic and fermentative environments, including plant 11 

rhizospheres and the gut of vertebrates. Among land types, higher BPC scores were in soils 12 

from temperate urban hinterlands and bogs. Climatic and geographical variables were the 13 

primary drivers of BPC score variation across land types. We show that the potential for 14 

ambient human exposure to health-promoting butyrate-producing bacteria should be highest 15 

in residential woodlands, dense urban environments with moderate rainfall, and particular 16 

pastures and croplands. This new biogeographic understanding of how and where humans are 17 

exposed to these important health-promoting microbes should be integrated into health and 18 

environmental policies to improve public health outcomes. 19 

 20 

Keywords: 21 
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1. INTRODUCTION 25 

1Butyrate-producing bacteria are associated with host organisms and free-living in the 26 

environment. They have critical roles in breaking down organic products including 27 

fibres(Baxter et al., 2019) and cellulose(Goldfarb et al., 2011). Given suitable organic 28 

substrates and anaerobic conditions, these bacteria can produce butyrate, a short-chain fatty 29 

acid, as a metabolic by-product of fermentation. In soils, butyrate is associated with the 30 

suppression of soil-borne plant pathogens(Poret-Peterson et al., 2019). In humans, butyrate 31 

and the presence of butyrate-producing bacteria have direct implications for many health 32 

outcomes(Liu et al., 2018; Valles-Colomer et al., 2019). For example, during childhood, a 33 

delay in the assemblage of butyrate producers can contribute to atopic illnesses(Roduit et al., 34 

2019). During adulthood, a reduced abundance of butyrate-producing bacteria in the human 35 

gut is associated with several immune-related diseases including inflammatory bowel disease 36 

and multiple sclerosis(Miyake et al., 2015; Parada Venegas et al., 2019). Thus, improved 37 

human health outcomes associate with an adequate supply of butyrate producers. However, 38 

poor diet, lifestyle, and antibiotics can cause the loss of butyrate producers(Sonnenburg and 39 

Sonnenburg, 2019). Beyond probiotic(Chen et al., 2020) and prebiotic(Cantu-Jungles et al., 40 

2019) supplementation, strategies for replenishing the abundance of gut butyrate-producing 41 

bacteria that support human health remain poorly developed.  42 

The human living environment influences the abundance of butyrate-producers in the human 43 

gut(Nurminen et al., 2018). Outdoor environmental microbiomes contribute to the indoor 44 

environmental microbiomes(Alfven et al., 2007; Parajuli et al., 2018). Therefore, living in 45 

rural, agricultural, and more biodiverse areas can promote ambient exposure to diverse 46 

 
1 BPC = Butyrate production capacity 
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microbiota, which then modify the internal gut microbiomes and promote 47 

immunotolerance(Liddicoat et al., 2020; Ottman et al., 2019; Rothschild et al., 2018).  48 

However, in urban environments, residents’ exposure to beneficial environmental bacteria 49 

with which humans have co-evolved has waned(Rook et al., 2013). Indeed, urbanisation is 50 

associated with a rise in immune-related chronic diseases(Flies et al., 2019). Thus, regular 51 

exposure to biodiverse outdoor environments, especially during childhood, could provide a 52 

strategy to increase exposure to health-promoting bacteria, including butyrate 53 

producers(Liddicoat et al., 2020; Mohammadkhah et al., 2018; Selway et al., 2020). Detailed 54 

insights into the biogeography of butyrate-producing bacteria will further the understanding 55 

of the exposure pathways and links between human and environmental health.  56 

Here, we utilized global metagenomic datasets and a focussed regional analysis of continent-57 

wide Australian 16S rRNA amplicon data to provide insight into the global biogeographical 58 

distribution of butyrate-producing bacteria. We developed new indices to estimate the 59 

butyrate production capacity (BPC) of representative samples from both metagenomic 60 

(BPCmeta) and 16S rRNA amplicon (BPC16S) data. 61 

 62 

2. MATERIALS AND METHODS 63 

2.1. Gene selection and metagenome database interrogation 64 

The butanoate (butyrate) synthesis pathways were reviewed using Seed viewer subsystems 65 

(https://pubseed.theseed.org/) and the KEGG pathway 66 

(https://www.genome.jp/kegg/pathway.html) to determine the genes coding for enzymes that 67 

are part of the butyrate production pathway. Based on these pathways, the following two 68 

genes were chosen for further analysis: buk (butyrate kinase) and atoA (acetate-69 

CoA:acetoacetyl-CoA transferase subunit beta). ACADS/bcd (butyryl-CoA dehydrogenase) 70 
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and ptb (phosphate butyryltransferase) were analysed but subsequently excluded (all gene 71 

decisions explained in Supplementary Table 1). The genes atoA and buk participate in each 72 

of the two terminal pathways. The IMG/M genome database(Chen et al., 2021) was then 73 

searched for each butyrate-related gene to obtain their mean counts among genomes with at 74 

least one copy of either gene (Supplementary Table 2).  75 

We next searched global metagenomic databases for atoA and buk to find metagenomes that 76 

suggest the potential presence of butyrate-producing bacteria. Initial gene and translated gene 77 

searches of metagenomics data at searchsra.org using bowtie2 and diamond, respectively, 78 

yielded low numbers of samples returned and/or high E-values. The largest datasets came 79 

from searching IMG/M using EC numbers for each butyrate-production enzyme (butyrate 80 

kinase = EC 2.7.2.7, acetate-CoA:acetoacetyl-CoA transferase subunit beta = EC 2.8.3.8) as 81 

well as three enzymes with single-copy genes (phenylalanine—rRNA ligase = EC 6.1.1.20; 82 

guanylate kinase = EC 2.7.4.8; alanine—tRNA ligase = EC 6.1.1.7). Sample datasets with the 83 

genes atoA (n=19,993) and buk (n=16,263) were downloaded as our starting point for 84 

metagenomics analysis. We found 14,407 datasets with both genes and datasets with one 85 

gene but not the other (atoA n=6,330 and buk n=1,856), which created an initial dataset of 86 

22,593 metagenomic samples (Supplementary Table 3).  87 

Counts for each butyrate-production gene were normalized by dividing by counts of the 88 

single-copy gene pheS, which codes for the protein phenylalanine—tRNA ligase alpha 89 

subunit and was used as a proxy for total genome count. Counts for two other single-copy 90 

genes (GUK1: guanylate kinase and alaS: alanine—tRNA ligase) were also inspected, but 91 

they were not used because GUK1 searches showed low counts, and alaS showed slightly 92 

different but proportional counts to pheS, which validated the usage of pheS to normalize 93 

estimates of total genomes in the samples. However, 115 samples did not include pheS count 94 

data and were removed from our analysis. To minimize skewed data, outliers with a pheS 95 
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count <100 (n=5,479) and >50,000 (n=19) were removed from analysis. In addition, samples 96 

where the ratio (buk+atoA)/pheS was >30%, implying an inflated dominance of the two genes 97 

of interest, were removed from the analysis (n=804). The remaining 16,176 samples were 98 

analysed for this project. 99 

2.2. BPC scores for metagenomic samples 100 

To derive the Butyrate Production Capacity (BPCmeta) score for each sample with 101 

metagenomic data, the following formula was developed: 102 

Sample BPCmeta score = 103 

log10(∑
[	* !"#$%&'$'(

)'*$&'$'(!"+,'-
+ /𝐶𝑜𝑢𝑛𝑡	𝑆𝐶𝐺

+* !"#$%&'$'.
)'*$&'$'.!"+,'-

+ /	𝐶𝑜𝑢𝑛𝑡	𝑆𝐶𝐺	]
$
,/(  *10,000) 104 

 105 

 where:  SCG = single copy gene (pheS) 106 

  Gene1 = buk, Gene 2 = atoA 107 

  CountGene1, CountSCG are from global metagenomics sample datasets 108 

  MeanGeneXCopies = mean count of copies of gene X among all genomes  109 

found from searches of gene X within the IMG/M genome database. 110 

 111 

Once BPCmeta scores were computed and added to the spreadsheet using Excel formulas, the 112 

samples were sorted into six categories: soil and terrestrial sediments, aquatic, human, 113 

animal, plant, and agro-industrial (Supplementary Table 4). An additional “Excluded” 114 

category was created for samples that did not fall within our research question, such as 115 

subsurface, contaminated, and experimentally altered samples. Samples were then grouped 116 

by subcategories for statistical testing and results of interest: soil samples grouped by 117 

anthrome classification; aquatic samples grouped by source subcategory; human samples 118 

grouped by body compartment; animal samples grouped by vertebrate/invertebrate and by 119 
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phylum; plants were grouped by compartment; agro-industrial samples grouped by source 120 

site. For anthrome “Class” categories, to reduce bias, individual studies (n=2) whose samples 121 

accounted for >50% of the total class samples were removed from the analysis. 122 

To determine if our BPCmeta formula was only identifying anaerobicity rather than 123 

specifically butyrate production, we adapted the BPCmeta formula to represent ethanol 124 

production, a pathway that also requires anaerobic conditions. The butyrate synthesis genes 125 

were replaced with the terminal gene for alcohol dehydrogenase (ADH, EC 1.1.1.1) to derive 126 

an Ethanol Production Capacity (EPC) score. We then compared the EPC scores of the soil 127 

metagenomic samples in section 3.3 with their BPCmeta scores (Supplementary Figure 1).  128 

Statistical tests were then performed in R (version 4.0.2Team, 2021). Shapiro-Wilk test was 129 

used to determine the normality of distribution. In each case, the data did not fit a normal 130 

distribution, and either the non-parametric Kruskal-Wallis test or Wilcoxon rank-sum test 131 

was then used to test the significance of between-group variation. Due to a high n in some 132 

subgroups, a post hoc Dunn test with Bonferroni correction was used to compare subgroup 133 

pairwise differences at a=0.05. ggplot2 (version 3.3.5Wickham, 2016) was used for data 134 

visualisation. Mapping of soil samples was performed from 2,850 sample metadata 135 

coordinates after excluding 360 samples with coordinates with less than two decimal points 136 

and 153 samples with no coordinates. 137 

2.3. BPC scores for 16S rRNA amplicon samples  138 

To assemble 16S rRNA gene abundance data in Australian soil samples, the Australian 139 

Microbiome Initiative(Bissett et al., 2016) database was queried for the following parameters: 140 

Amplicon = “27F519R”, Kingdom = “bacteria”, Environment = “is soil”, Depth = “between 141 

1 and 10” (cm). The zOTU abundances and metadata for each resulting sample (n=3,023) 142 

were downloaded. We used the phyloseq package(McMurdie and Holmes, 2013) for 143 

managing and cleaning the 16S rRNA data. We removed all “chloroplast” and 144 
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“mitochondria” data, which have non-bacterial origins. We removed low abundance zOTUs 145 

that did not occur in at least two samples and had total counts of <20, which may have arisen 146 

from processing errors. In addition, we kept only samples with total sequences between 147 

30,000 and 500,000 to remove outliers and samples with low read depth. The final sample 148 

size was n=2,795. 149 

16S rRNA data often have relatively poor resolution at the genus and species level, so we 150 

focussed our BPC16S derivation on family-level data. Using the Genome Taxonomy Database 151 

(GTDB) website interface and a set of putative butyrate-producing species (n=118) from 152 

Vital et al.(Vital et al., 2014), we identified the families with members from our species list 153 

(n=54, Supplementary Table 5). This family list was then matched with the Australian 154 

Microbiome Initiative taxonomy listings for each downloaded sample. Of the 54 taxonomic 155 

families with butyrate-producing bacteria analyzed, 31 families had no representative zero-156 

radius operational taxonomic units (zOTUs) in any sample. The proportion of butyrate-157 

producers in each family was used to estimate the abundance of butyrate-producing taxa 158 

within each sample and a corresponding BPC16S score, as follows: 159 

Sample BPC16S score =  160 

log10(∑ [(𝐶𝑜𝑢𝑛𝑡𝑍𝑂𝑇𝑈𝑠	𝑓𝑟𝑜𝑚	𝑏𝑢𝑡𝑦𝑟𝑎𝑡𝑒	𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔	𝑓𝑎𝑚𝑖𝑙𝑦	1) B#	#$%&'(%)	*'+,$-./0	1*)-.)1	./	2(3.4&	5
#	1*)-.)1	./	2(3.4&	5

C +/678
.65161 

(𝐶𝑜𝑢𝑛𝑡𝑍𝑂𝑇𝑈𝑠	𝑓𝑟𝑜𝑚	𝑏𝑢𝑡𝑦𝑟𝑎𝑡𝑒	𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔	𝑓𝑎𝑚𝑖𝑙𝑦	2) B#	#$%&'(%)	*'+,$-./0	1*)-.)1	./	2(3.4&	9
#	1*)-.)1	./	2(3.4&	9

C +162 

⋯+ (𝐶𝑜𝑢𝑛𝑡𝑍𝑂𝑇𝑈𝑠	𝑓𝑟𝑜𝑚	𝑏𝑢𝑡𝑦𝑟𝑎𝑡𝑒	𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔	𝑓𝑎𝑚𝑖𝑙𝑦	𝑛) B#	#$%&'(%)	*'+,$-./0	1*)-.)1	./	2(3.4&	/
#	1*)-.)1	./	2(3.4&	/

C] 163 

*10,000) 164 

Where: family1= Acetonemaceae, family 2 = Acidaminococcaceae, … (see 165 

Supplementary Table 5 for a list of all 54 families) 166 

Count zOTUs in each butyrate-producing family are from Australian Microbiome 167 

Initiative datasets 168 
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# butyrate-producing species (and total binomial species) in each family are from the 169 

GTDB. 170 

 171 

16S rRNA amplicon datasets are often rarefied to normalize for sampling effort. However, in 172 

soils the butyrate-producing bacteria are often rare taxa, which could more easily be missed 173 

with rarefaction. Therefore, we chose to utilize unrarefied data. In addition, to reduce data 174 

handling requirements, zOTU abundances, rather than relative abundances, were used for 175 

analysis. 176 

2.4. Regional environmental correlation modelling for BPC16S scores 177 

To provide further biogeographical context to butyrate-producing bacteria in soils, BPC16S 178 

scores were associated with geographically paired environmental metadata. We chose 16S 179 

rRNA amplicon-based studies for this analysis because many soil studies in Australia have 180 

utilized 16S data, and the Australian Microbiome Initiative facilitated access to a continental 181 

coverage of data collected via a common sampling and bioinformatic protocol. By selecting a 182 

manageable spatial scale (Australia only), we efficiently examined associations of a larger 183 

pool of environmental characteristics with BPC16S scores. We also used environmental 184 

metadata from sources that focus solely on Australia (e.g., Atlas of Living Australia), which 185 

differs from the metadata sources utilized in our global analyses (e.g., anthropogenic biomes).  186 

For the analysis of potential environmental influences on the BPC scores, covariate data were 187 

collated from a variety of sources and reflect a range of soil-forming factors (i.e. SCORPAN 188 

variables(McBratney et al., 2003); S=soil; C=climate; O=organisms; R=relief; P=parent 189 

material; A=age; N=spatial location) (see Supplementary Table 6 for a list and description 190 

of all environmental covariate data). We identified 49 predictor variables (43 numeric, 6 191 

categorical) as being relevant to our study, for which data sets were downloaded from the 192 

following sources: Australian Microbiome Initiative(Bissett et al., 2016) (e.g., organic 193 
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carbon, clay content %, conductivity), Atlas of Living Australia(Belbin, 2011; Williams et 194 

al.) (e.g., annual temperature range, aridity index annual mean), Soil and Landscape Grid of 195 

Australia(O’Brien, 2021) (e.g., Prescott index, topographic wetness index), and Geoscience 196 

Australia(Cudahy et al., 2012) (silica index). We used the best available resolution of source 197 

data as supplied to avoid introducing additional noise or bias into our analyses. For example, 198 

certain analytical test results were available from sample metadata corresponding to 16S 199 

rRNA amplicon data, and other environmental covariate data were extracted from gridded 200 

spatial environmental layers at points corresponding to the site locations. 201 

Analysis of the predictor variables showed multiple instances of collinearity (e.g., r>0.80 or 202 

high Variable Inflation Factor scores >12), and scatterplots generated often showed a 203 

curvilinear relationship with BPC16S scores (scatterplots shown in Supplementary Figure 2). 204 

Therefore, two method sequences less influenced by collinearity were chosen for subsequent 205 

analysis: principal components analysis into k-means clustering and decision tree modelling 206 

via Random Forest. Incomplete cases (n=1,510) were removed, leaving 1,285 samples in the 207 

analyses.  208 

To further understand the relationships between environmental influences, we scaled and 209 

analysed the 43 continuous predictor variables using principal component (PC) analysis to 210 

reduce the dimensionality of the variables. BPC16S scores were excluded from this analysis to 211 

avoid response variable influence. PC1 and PC2 demonstrated the highest explanation of 212 

variance (27.2% and 14.2% of variance explained, respectively) and were thus selected for 213 

truncation to maximize data visualisation (Supplementary Figure 3). k-means clustering 214 

was then performed on scaled original data to assign the samples into clusters. The optimal 215 

number of clusters was examined using the “elbow” method, silhouette method, and gap 216 

statistic method. While four was considered an optimal number of clusters, we examined 217 

results using both four-cluster and five-cluster analyses and found that the additional fifth 218 
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cluster more distinctly separated out the resulting land types. Thus, the five-cluster approach 219 

was selected for analysis. The resulting cluster data was collated, and BPC16S scores were 220 

then matched and returned to the data set. Medians were calculated for each variable in each 221 

cluster, revealing environmental trends distinct to each cluster. Between-cluster significance 222 

was tested using the Kruskal-Wallis test. We gave each cluster a generalized description and 223 

plotted the sample geospatial coordinates into maps using ggmap(Kahle and Wickham, 2013) 224 

and Google maps to visualize their geographical distribution.  225 

We then utilized Random Forest regression modelling(Breiman, 2001) to discern variable 226 

importance results and obtain partial dependence plots for each variable against BPC16S 227 

scores. Only the 43 continuous variables were included in this analysis. The model fit was 228 

estimated using out-of-bag error from the bootstrap. To reduce multicollinearity, highly 229 

correlated predictor variables (r>0.80, n=9) were removed. Tuning the hyperparameters of 230 

the model did not improve its performance, so the original model was used. The R package 231 

spatialRF was used to minimize spatial autocorrelation of the residuals while fitting the 232 

spatial regression model. The resulting Random Forest decision tree model could explain 233 

52.6% of the variance. The variable importance plot was created using random permutations 234 

for each predictor variable’s values in out-of-bag data, then calculating the mean decrease in 235 

node impurity. Thirty model repetitions were used to create the plot of variable importance. 236 

Partial dependence plots were then generated and confirmed the non-linear relationship of 237 

most variables with BPC16S scores (Supplementary Figure 4).  238 

 239 

3. RESULTS 240 

3.1. Global distribution of butyrate-producing bacteria  241 
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To characterize the global distribution of butyrate-producing bacteria, we analysed shotgun 242 

metagenomic datasets (n=16,176) from the IMG/M database(Chen et al., 2021). Samples 243 

originated from a broad range of sources, including soils and sediments, marine samples, 244 

human and animal faecal samples, and wastewater samples. Our novel BPCmeta index (see 245 

Methods) was established using the counts of two terminal genes in the butyrate production 246 

metabolic pathway, weighted by the mean count of each gene in bacterial genomes (full 247 

workflow shown in Supplementary Figure 5). The genes selected for analysis were buk 248 

(butyrate kinase) and atoA (acetate-CoA:acetoacetyl-CoA transferase subunit beta). Both 249 

enzymes catalyse the final steps in converting butyryl-CoA into butyrate, also referred to as 250 

butanoate (Supplementary Table 1). We grouped gene count data, BPCmeta scores, and 251 

sample metadata into six general source categories: soil, aquatic (including freshwater, 252 

brackish, and marine waters), non-human animal host-associated, human host-associated, 253 

plant-associated (e.g., root-associated, rhizosphere), and agro-industrial (e.g., anaerobic 254 

digesters, agricultural soil).  255 

Metagenomes with genes for butyrate production were found on every continent, in every 256 

ocean, and in 89 countries (Figure 1A). Overall highest median BPCmeta scores were found in 257 

human host-associated (2.99, n=1 553) and non-human animal host-associated samples (2.91, 258 

n=771), with the lowest median BPCmeta scores in aquatic samples (1.93, n=6 017) (Figure 259 

1B).  260 
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 261 

Fig.1: Butyrate-producing bacteria are found on every continent, in every ocean, and in 89 262 

countries. (A) Map showing study locations of samples with buk and/or atoA genes.  (B) Density 263 

plots showing frequency distributions of sample BPCmeta scores in the six highest-level groupings (x 264 

axis=BPCmeta score). BPCmeta score medians rather than means are presented due to non-normal 265 

BPCmeta score distributions. The range of sample BPCmeta scores was from 0.02 to 3.39. Bimodal 266 

peaks in five of the six categories may represent divergence between environments supportive and 267 

unsupportive of fermentative activity (discussed below). n is the number of samples.  268 

3.2. Butyrate production capacity of different environments 269 

To examine the global biogeographical distribution of butyrate producers more closely, we 270 

further subdivided each category into subcategories. Human samples were sorted into five 271 

body compartments: skin, nasal, oral, genital, and gut. The highest median BPCmeta score 272 

came from the gut (3.19, n=800), with faecal samples acting as a proxy for the anaerobic gut 273 
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environment. The lowest median BPCmeta score came from the skin (1.86, n=17), which is 274 

exposed to aerobic conditions. Between-group differences were statistically significant 275 

(H=1136, 4 d.f., P<0.001, Kruskal-Wallis test; Figure 2A). 276 

Non-human animal host-associated samples included in our analysis (n=771) were either 277 

direct or proxy (e.g., faecal) measures of animal gut microbiota (n=448) or were non-gut but 278 

host-associated samples (e.g., attine ant fungus gardens, gutless marine worms, n=323). We 279 

first compared animal groupings by vertebrates (median BPCmeta score=3.11, n=389) and 280 

invertebrates (median BPCmeta score=2.76, n=382) (between-group differences statistically 281 

significant, W=22,592, P<0.001, Wilcoxon rank sum test). We then compared non-human 282 

animal samples by taxonomic phylum (between-group differences statistically significant, 283 

H=331, 4 d.f., P<0.001, Kruskal-Wallis test; Figure 2B), where Chordata had the highest 284 

median BPCmeta score (3.11, n=389) and Porifera (sponges), which lack a gut, had the lowest 285 

BPCmeta scores (1.87, n=34). A further comparison of the median BPCmeta scores of the 286 

primate gut (3.12) versus the human gut (3.19) corroborates the findings of a recent related 287 

study that showed a higher abundance of butyrate production pathway genes in humans 288 

versus most non-human primates(Mallott and Amato, 2022). 289 

Our dataset included 1,006 plant-associated samples. These were subcategorized into four 290 

groups by plant compartment: leaf surface, plant litter, rhizosphere, and root. Root samples 291 

had the highest median BPCmeta score (2.50, n=123). Leaf surface samples, which are 292 

exposed to aerobic conditions, had the lowest median BPCmeta score (1.76, n=30). Between-293 

group differences were statistically significant (H=105, 3 d.f., P<0.001, Kruskal-Wallis test; 294 

Figure 2C). 295 

Soil samples (n=2,850) were sorted using the anthropogenic biome (anthrome) 296 

categories(Ellis et al., 2021; Gauthier et al., 2021), representing varying densities of human 297 

population and land use (anthrome classes and world map shown in Supplementary Figure 298 
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6). Here, we used the “Level” category of anthromes. The highest median BPCmeta scores 299 

came from both “Dense settlements” (includes classes “urban” and “mixed settlements”; 300 

median BPCmeta score=2.38, n=297) and “Cultured” (includes “woodlands” classes and the 301 

“inhabited drylands” class; median BPCmeta score=2.36, n=1076). The lowest median BPCmeta 302 

score (1.94, n=167) came from the anthrome level “Wildlands”, which has the lowest human 303 

influence (between-group differences statistically significant, H=186, 5 d.f., P<0.001, 304 

Kruskal-Wallis test; Figure 2D) 305 

Aquatic samples (n=6,017) were sub-grouped into five categories: marine, freshwater, 306 

brackish water and estuary, springs, and inland saltwater. The highest median BPCmeta score 307 

(2.52, n=911) was found in inland saltwater samples, and marine samples had the lowest 308 

median BPCmeta score (1.67, n=2047) (between-group differences statistically significant, 309 

H=530, 4 d.f., P<0.001, Kruskal-Wallis test; Figure 2E). 310 

Agricultural and industrial (“agro-industrial”) samples (n=881) were from a wide variety of 311 

sources and materials. We grouped them into seven source types, which include two sample 312 

types from wastewater treatment plants (i.e., activated sludge from aeration tanks and 313 

anaerobic digesters). The highest median BPCmeta scores (3.16, n=120) were from anaerobic 314 

digester samples. The lowest median BPCmeta scores were from the agricultural soils (2.16, 315 

n=486) and activated sludge (2.23, n=50) (between-group differences statistically significant, 316 

H=431, 6 d.f., P<0.001, Kruskal-Wallis test; Figure 2F). Activated sludge is a bacteria-rich 317 

product formed in aeration tanks with aerobic conditions.  318 
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 319 

Fig.2: BPCmeta scores vary between host communities and environmental sources. BPCmeta score 320 

density plots by group subcategories. (A) BPCmeta scores of humans, sorted by body compartment. (B) 321 

BPCmeta scores of non-human animal-associated microbial communities, sorted by class. Note that 322 

Porifera do not possess a gut. (C) BPCmeta scores of plant-associated samples, grouped into 323 

compartments. (D) BPCmeta scores of soil samples, grouped into anthropogenic biomes (anthromes) 324 

levels that represent human influence on land use. The level “Cultured” includes woodlands and 325 

inhabited drylands. (E) BPCmeta scores of aquatic ecosystem samples, grouped into source site 326 

categories. (F) BPCmeta scores of agricultural and industrial samples, grouped by source site. Activated 327 

sludge and anaerobic digesters are common components of wastewater treatment plants. In each of 328 

(A)-(F), Kruskal-Wallis tests show that between-group differences were significant at P<0.001. 329 

Medians sharing a letter are not significantly different by the adjusted Dunn test at the 5% level of 330 

significance. Boxes show the interquartile range.  331 
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3.3. Butyrate production capacity of soils  332 

Butyrate production involves fermentation and is characteristically an anaerobic activity. In 333 

land types where soils undergo lengthy periods of desiccation (e.g., desert soils) or have 334 

regular disruption from human activity (e.g., agricultural soils), butyrate production would be 335 

expected to decrease. By contrast, in soils from land types with longer annual periods of 336 

waterlogging or inundation, with sufficient organic matter and where human disruption of 337 

soils is minimal, we would expect more anaerobic conditions and therefore also butyrate 338 

production. Landscapes which combine cooler and wetter climate patterns, appreciable levels 339 

of primary production, flat terrain, and typically acidic soil pH have been associated with the 340 

conditions that support organic matter degradation via fermentation(Pemberton, 2005). Thus, 341 

land type and soil oxygenation appear to be drivers for butyrate production activity and 342 

selection for fermentative bacterial taxa. 343 

We compared the median BPCmeta scores across soil metagenome projects that used the 344 

GOLD Ecosystem Classification path(Ivanova, 2010; Mukherjee et al., 2021) (Figure 3). We 345 

show that bogs had the highest median BPCmeta score (2.75). Bogs and their associated peat 346 

have submerged layers of decaying plant matter. Anoxic conditions and depletion of 347 

inorganic oxidants delay the full degradation of organic matter(Conrad, 2020), sometimes for 348 

thousands of years. Thus, the microbial content of bogs includes fermenters and 349 

methanogenic archaea. 350 

Orchard soil and deserts had the lowest median BPCmeta scores (1.48 and 1.77, respectively). 351 

Hot, dry temperatures and regular soil turnover should not favour anaerobic butyrate 352 

production. However, desert soil crusts (comprising a resilient biofilm and associated 353 

microbiota(Cania et al., 2020), discussed below) and the propensity of Bacillota (formerly 354 

Firmicutes) to form endospores(Browne et al., 2016) may maintain dormant butyrate 355 

production potential until wetter conditions arrive.  356 
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With our focus on human exposure to commensal butyrate-producing bacteria, accessibility 357 

of the land type to human visitation is central to assessing the feasibility of exposure. Bogs 358 

have a high median BPCmeta score, but their anaerobic microbial activity occurs primarily 359 

beneath the waterlogged surface; therefore, direct human exposure to their butyrate producers 360 

would be challenging. Our results suggest that agricultural land and forest soils may be more 361 

reasonable for human exposure due to moderate butyrate production capacity and higher 362 

human accessibility. 363 

 364 

Fig.3: Soil ecosystem data show that land types with persistent anaerobic conditions have high 365 

BPCmeta scores. Median BPCmeta score boxplots of soil ecosystem categories. Between-group 366 

differences were statistically significant, H=233, 10 d.f., P<0.001, Kruskal-Wallis test. Medians 367 

sharing a letter are not significantly different by the adjusted Dunn test at the 5% level of significance.  368 

Boxes show the interquartile range. 369 

 370 

3.4. Environmental characteristics associate with BPC scores 371 
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To examine regional-scale variations in environmental influences on BPC scores, we 372 

analysed 1,285 surface soil samples from across Australia for associations between 373 

environmental metadata and BPC scores derived from bacterial 16S rRNA amplicon data 374 

(BPC16S). 16S rRNA amplicons are commonly used to quantify bacterial taxonomic 375 

abundances, and here we examined an extensive dataset collected using consistent protocols 376 

across the continent of Australia(Bissett et al., 2016). For associated environmental metadata, 377 

covariate data with 49 variables (Supplementary Table 7) were downloaded and analysed. 378 

All continuous predictor variables (n=43) were analysed using principal components analysis 379 

to discern relationships between the variables. The environmental origins of samples were 380 

visualized by plotting coordinates of the top two principal components and grouping into five 381 

land type clusters via k-means clustering. This process revealed a mapping of samples to 382 

distinct land types that were distributed across Australia (Figure 4A) and corresponded with 383 

differences in the predictor variables across the clusters (Figure 4B). The cluster plot (Figure 384 

4C) showed clear separation of land type clusters with dominant influences of moisture and 385 

fertility, consistent with the map display and later modelling of key drivers of BPC16S scores.  386 
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 387 

Fig.4: Clustering of environmental data shows five distinct land types. Analysis of environmental 388 

variables associated with Australian soil samples and their BPC16S scores. (A) Map of Australian soil 389 

samples clustered on 43 continuous environmental variables, five cluster distribution, mapped using R 390 

package ggmap and Google maps. Photographs were downloaded from Unsplash.com under CC0 391 

license. (B) Boxplots for BPC16S scores and the top 3 variables from (D) across each of the 5 clusters. 392 

Between-cluster BPC16S score differences were statistically significant (H=170, 4 d.f., P<0.001, 393 

Kruskal-Wallis test). Boxes show the interquartile range. (C) First two principal components coloured 394 

by k-means clusters. The x-axis can be broadly interpreted as environmental wetness and associated 395 

variables (e.g., vegetation cover). The y-axis can be broadly interpreted as soil fertility and the 396 

presence of cations. 397 

BPC16S scores varied significantly between the clusters (H=170, 4 d.f., P<0.001, Kruskal-398 

Wallis test). The highest median BPC16S scores came from the temperate urban hinterland 399 

cluster
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cluster (2.96, n=429) and the sandy desert cluster (2.84, n=155). The lowest median BPC16S 400 

score came from the wet vegetated montane cluster (2.53, n=208).  401 

The cluster with the highest median BPC16S score was the temperate urban hinterland soil and 402 

is generally moderate in elevation, annual rainfall, topographic relief, clay, and soil fertility, 403 

and has high levels of zinc and manganese (Supplementary Table 8). A separate analysis of 404 

categorical variables also showed the highest BPC16S scores among urban land cover types 405 

(“built-up”) and land use types (“rural residential”), further reflecting the potential 406 

association with human population density (Supplementary Table 9). The cluster with the 407 

second-highest median BPC16S score was, intriguingly, from sandy inland deserts, with 408 

moderate elevation, dry climate, low soil nutrient content, low soil organic carbon content, 409 

minimal vegetation cover, and higher annual mean temperature. The cluster with the lowest 410 

median BPC16S score, wet vegetated montane, had high elevation and topographic relief, cold 411 

mean annual temperature, high annual rainfall and aridity index, consistent rainfall levels 412 

throughout the year, high soil organic carbon content, and high soil iron and aluminium 413 

content. The two additional clusters, arid inland clay plains and sandy coastal zones, also had 414 

distinct characteristics (Supplementary Table 8). Because our 16S rRNA data came only 415 

from Australia, our modelling may not be generalisable to global conditions that exceed the 416 

ranges of our environmental covariate data. For example, the height of mountains in Australia 417 

does not exceed 2,745 metres; thus, our mountain cluster modelling may not fit other 418 

countries with higher mountains.  419 

Random Forest decision tree analysis(Breiman, 2001) was then used to better understand how 420 

the continuous predictor variables influenced BPC16S scores. The resulting variable 421 

importance plot (Figure 5) showed that the five top predictor variables were Prescott Index, 422 

topographic relief, elevation, longitude, and latitude, suggesting climate and geography are 423 
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the strongest overall environmental drivers of the abundance of butyrate-producing bacteria 424 

in soils. Partial dependence plots for each variable are shown in Supplementary Figure 4. 425 

 426 

Fig. 5: Variable importance results from Random Forest decision tree modelling. Random Forest 427 

variable importance results from 43 continuous environmental predictor variables. The model was 428 

fitted using out-of-bag errors from the bootstrap. The variable importance was determined using 429 

random permutations of predictor variables and the mean decrease in node impurity.  430 

 431 

4. DISCUSSION 432 

Butyrate-producing bacteria have critical roles in human health. Their assemblage in the 433 

human gut receives extensive attention, but the original environmental sources of these 434 

bacteria remain poorly understood. Here, we characterized the presence of butyrate-435 

producing bacteria in outdoor environments worldwide. We compared outdoor samples with 436 
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human and non-human animal gut samples to provide insights into the potential for these 437 

bacteria to transfer to people spending time outdoors. Our novel BPC score formulae from 438 

both 16S rRNA and metagenomic bacterial data were validated through several lines of 439 

evidence. We identified specific geographical trends that advance the characterization of 440 

butyrate-producing bacteria in outdoor locations. Of the many patterns revealed in our results, 441 

we highlight two of them here: anaerobic conditions and human presence.  442 

First, BPCmeta scores were, as expected, higher in anaerobic environments, which agrees with 443 

previous work showing that butyrate-producing bacteria thrive in anaerobic 444 

environments(Conrad, 2020; Riviere et al., 2016). Our analysis of plant and animal data 445 

shows that compartments exposed to air, such as leaf surfaces and human skin, had the lowest 446 

median BPCmeta scores of their respective group. Similarly, wastewater treatment plant 447 

samples showed that activated sludge, a product formed from aeration tanks, had among the 448 

lowest BPCmeta scores of its category. Yet, samples from anaerobic digesters and chordate gut 449 

samples, which each employ anaerobic processes, had the highest BPCmeta scores. These 450 

findings are consistent with the literature and, including evidence of the specificity of the 451 

BPCmeta formula toward butyrate production (Supplementary Figure 1), support the validity 452 

of our BPCmeta formula. 453 

Second, our results show an association between human presence and BPC scores. Soils from 454 

the anthrome level ‘dense settlements’ showed the highest BPCmeta scores within its group. In 455 

contrast, soils from the anthrome level ‘wildlands’ had a low median BPC score. These 456 

results suggest that the presence of humans may in fact contribute to the BPC score, possibly 457 

from gut-associated bacteria being inadvertently dispersed into the environment. Our 16S 458 

rRNA data from Australian soils also support this connection between human presence and 459 

BPC scores. Australia’s major cities and hinterlands are coastal, often with river-floodplain 460 

systems and areas of fertile soils that were attractive to the European settlers. Thus, evidence 461 
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suggests an association between human presence, soil fertility, and high BPC scores, but the 462 

direction of influence raises a compelling question: Are the higher soil BPC scores in urban 463 

areas due to the presence of humans (and perhaps also their chordate pets), whose digestive 464 

products are introduced into the environment, or are humans drawn to live in areas with 465 

naturally high soil fertility and high BPC scores due to their high capacity for primary 466 

production? These questions may be of future research interest. 467 

Intriguingly, inland sandy deserts had relatively high BPC scores. This finding does not 468 

follow the pattern of higher BPC scores in more fertile soils, temperate areas, and anaerobic 469 

conditions. Our data were unable to identify a specific reason for this finding; however, it 470 

should be noted that desert microbiota often form biological soil crusts (biocrusts), which are 471 

densely packed microbial structures that are desiccation-resistant and include 472 

photosynthesizers such as cyanobacteria(Garcia-Pichel et al., 2001). Therefore, it may be 473 

possible that butyrate production potential is conserved in these bacteria and biocrusts but 474 

remains dormant until more favourable environmental conditions prevail following rainfall. 475 

Upon wetting, soil biocrust microbial activity rapidly accelerates, and growing biomass can 476 

create anoxic microniches that could favour fermentative processes such as butyrate 477 

production(Angel et al., 2011).  478 

During the development of our methods, several limitations of our study became apparent. 479 

Analyses of shotgun metagenomic sequences and bacterial 16S rRNA amplicons rely on 480 

reference databases that are continually being developed but are incomplete. Missed or 481 

incomplete sequence identification could affect the reliability of our formulae. Likewise, 482 

taxonomy databases are regularly updated due to new information, but their updates are not 483 

uniform across databases. We used the GTDB database to classify our list of butyrate-484 

producing bacteria, but it showed occasional discrepancies with the classification system on 485 

which the downloaded Australian soils 16S rRNA data are based. Thus, the utilisation of 486 
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multiple taxonomic classification systems likely means that some butyrate producers were 487 

not identified in our data. This could affect the reliability of our BPC formulae.  488 

To maximize the precision of our butyrate producer database, we chose to use species-level 489 

classifications via GTDB representative species. This may have inadvertently created 490 

inconsistent data from species with multiple strains (sometimes hundreds of strains are 491 

present), among which some may be butyrate producers and others not. In addition, some 492 

strains may display pathogenicity. Thus, analysis at the strain level could provide a higher 493 

resolution of data, which could be a future research opportunity. Finally, our data is 494 

dependent on the capacity of laboratory DNA extraction methods to open endospores. 495 

Because butyrate-producers tend to thrive in anaerobic environments, they often form 496 

endospores when exposed to air, protecting them until they can germinate in a new anaerobic 497 

environment. Thus, sampling methods that expose the samples to air may inadvertently cause 498 

sporulation of bacteria. Such methods may subsequently reduce the quantities of DNA 499 

extracted from spore-formers, a number of which may be butyrate-producing 500 

bacteria(Browne et al., 2016). Consistency across sampling and DNA extraction methods 501 

among future studies could help improve butyrate-producing bacterial abundance data 502 

reliability. 503 

Time spent in natural and biodiverse settings is known to offer human health benefits(Kondo 504 

et al., 2018; Lai et al., 2019). The transfer of health-beneficial microbes to people spending 505 

time in green spaces could be a key mechanism of such health benefits. Urban green space 506 

designers rely on evidence of these health benefits to identify particular green space attributes 507 

that could be utilized in urban design, such as the abundance of health-beneficial butyrate-508 

producing bacteria in soils and plants. Because half of the world’s population now lives in 509 

cities(Rydin et al., 2012), policy makers and urban green space designers have a critical need 510 

for research to guide the development of green infrastructure(Robinson et al., 2021) that 511 
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supports the health of its residents. Our study helps advance such research. We applied our 512 

methods on a broad biogeographical scale. Future assessment of butyrate-production capacity 513 

across finer metropolitan-level scales will provide greater precision for city infrastructure 514 

planning and further microbiome-based public health research. 515 
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